
PDB ain’t PDD: Let’s introduce
program database files

Written by:
Axel ”0vercl0k” Souchet.

Twitter:
@0vercl0k

March 18, 2013

https://twitter.com/0vercl0k

PDB ain’t PDD:
Let’s introduce program debug database files

Contents

I Introduction 2

II Back to basics 4

1 What we already know 4

2 The MS Debug Interface Access 4
2.1 First steps with DIA . 5

2.1.1 Initializing the COM client . 5
2.1.2 Loading a PDB file . 6
2.1.3 Querying the database . 7

2.2 Playing with structures and functions 9
2.2.1 Extract the field types of a structure from a PDB 9
2.2.2 Extract the arguments of a function 13

3 PDB format, the hard way 15
3.1 It looks like a file-system . 15
3.2 The Type Info stream . 16

III Explaining the message box problem 18

4 Recon 18
4.1 Copy that . 18
4.2 Read the source luke . 18

5 Building a clean trigger 20
5.1 We want moar crashes! . 22

6 Debug information inside the binary 24

IV This is the end 25

Axel ”0vercl0k” Souchet. 1

PDB ain’t PDD:
Let’s introduce program debug database files

Part I

Introduction
After spending some cool time for the New Year’s eve, I was back at home ready to
start a new year full of system programming, exploit writing, bug-hunting, etc. So
the 01/01, glad to be alive, I was finally back at my desk and I wanted to write a
toy program using libogg1 in order to play with it (who said fuzzing?). After reading
the examples provided by the libogg team, I compiled a sort of libogg hello-world,
fired up IDA to analyze it and at this very moment the impossible happened:

Figure 1: The impossible happened.

First, I thought this was just a random crash of IDA, maybe because of the IDB
or something like that. Thus, I tried to reload what I will call the magic binary

several times and it kept crashing IDA: every time a message box pops up and as I
click on ”OK”, IDA closes. It was quite fun, because a few days ago I read nitr0us’
paper on the bugs in IDA: he also got that type of message box error. However, as
you will see in the following, my bug is really different from his, but I do not want
to spoil the paper.

Next step was to check whether the crash occurred only on my machine, or if
it was really something related to IDA. I powered on my reversing-dedicated VM,
downloaded the last IDA demo version (version 6.3) and tried to load the magical

binary. Unfortunately, I didn’t see the message box :-(.
RIGHT, after doing some trollfaces I decided to investigate a little bit more the

issue. So I started my debugger:

1. The message box is triggered by IDA!build func type2()

1http://www.xiph.org/ogg/

Axel ”0vercl0k” Souchet. 2

http://www.xiph.org/ogg/doc/libogg/encoding.html
http://blog.ioactive.com/2012/12/striking-back-gdb-and-ida-debuggers.html
http://blog.ioactive.com/2012/12/striking-back-gdb-and-ida-debuggers.html
http://out7.hex-rays.com/files/idademo63_windows.exe

PDB ain’t PDD:
Let’s introduce program debug database files

2. The faulting function is called from the IDA PDB management module (pdb.plw
in the modules directory)

Let’s give it another shot, I moved the magical binary and its PDB file on my VM
and launched IDA on the binary. I finally got my message box :-).

So in this paper I am going to describe my journey into the PDB file format, and
of course I will explain the reason of the IDA crash.

I hope you will enjoy the read, despite my English is quite bad... So you are
cordially invited to take a seat and grab a cup of your favorite coffee:

GLADIATORS, LET’S GET STARTED!

Axel ”0vercl0k” Souchet. 3

PDB ain’t PDD:
Let’s introduce program debug database files

Part II

Back to basics

1 What we already know

The usual way to analyze such a nasty bug is to dig in depth. In our case, the first
step is to understand the PDB file format. First of all, I think you all know that these
files store debug information, which are particularly handy for reverse-engineering:

• Structure definitions ;

• Function prototypes, argument types, argument names ;

• Class declarations ;

• Enumeration definitions ;

• etc.

You surely also know that debuggers can load these files and use them to annotate and
enhance their listings. A common example is the Windows kernel whose Microsoft
provides some PDB files via the symbol store. But I always thought these files were
very simple, and actually I was quite wrong. The PDB format is a proprietary format
developed by Microsoft, it exists several versions of the format (usually when a new
version is out, it is shipped with the Visual C++ compiler) but we will focus on the
version 7.0: this is the version currently generated by VC++.

In the next parts, we will dig a bit into those databases to get a brief overview of
which information is stored, how they are stored and above all how we can extract
them easily (or not).

2 The MS Debug Interface Access

The first thing I found when googling around was the DIA (Debug Interface Access)
SDK provided by Microsoft. Microsoft had to create an API for the users that want
to extract useful information from these files. The DIA binaries are shipped with the
Redistribuable Microsoft Visual C++ 2008 (x86) package, and after the installation
you can find them in the following directory (on my Win7 x64 machine):

C:\Program Files (x86)\Common Files\microsoft shared\VC>dir

19/02/2011 23:03 799 568 msdia100.dll

19/04/2011 09:47 670 032 msdia90.dll

With these files, IDA will be able to load debug information via the DIA library
instead of using the dbghelp.dll way. In IDA the DIA interface is considered as the
new-way of loading debugging information and the dbghelp.dll as the old. If it can’t
find the DIA binaries, IDA will smoothly fall back on the old-way.

Axel ”0vercl0k” Souchet. 4

http://support.microsoft.com/kb/311503
http://msdn.microsoft.com/en-us/library/x93ctkx8(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/x93ctkx8(v=vs.80).aspx
http://www.microsoft.com/fr-fr/download/details.aspx?id=29]
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679309(v=vs.85).aspx

PDB ain’t PDD:
Let’s introduce program debug database files

For those who have already installed VS2010 on your computer, you should find
the development files in the following directory and the official documentation here:

C:\Program Files (x86)\Microsoft Visual Studio 10.0\DIA SDK>dir

03/05/2012 17:39 <DIR> bin

03/05/2012 17:39 <DIR> idl

03/05/2012 17:39 <DIR> include

03/05/2012 17:39 <DIR> lib

03/05/2012 16:21 <DIR> Samples

C:\Program Files (x86)\Microsoft Visual Studio 10.0\DIA SDK\include>dir

31/08/2009 01:34 94 165 cvconst.h

13/01/2010 00:40 281 626 dia2.h

31/08/2009 01:35 1 241 diacreate.h

2.1 First steps with DIA

Before going on the technical stuff, I just wanted to say a few words about the
library: msdia90.dll. Its export-address table is nearly empty, only six functions are
exported:

Ordinal RVA Symbol Name

------- ---------- -----------------------

0x0001 0x00011C1D "DllCanUnloadNow"

0x0002 0x0001293C "DllGetClassObject"

0x0003 0x0001278B "DllRegisterServer"

0x0004 0x000128A7 "DllUnregisterServer"

0x0005 0x00012751 "VSDllRegisterServer"

0x0006 0x0001276E "VSDllUnregisterServer"

This is because the API is COM based, long story short: COM is something that
allows inter-object communication between COM clients and COM providers. The
object can be in the same address-space (a .dll file for example) or not, but from
the programmer’s point of view it doesn’t change anything: the code is the same
(even if you know that behind the hood, there is an RPC mechanism like). Also,
the interesting point is that you can query a COM object very easily from whatever
language you like: you don’t have to deal with the interfacing, COM is like a software
bridge between your program and the provider.

2.1.1 Initializing the COM client

If you ever tried to interact with a COM provider, you should know that the first step
is to call CoInitialize() to initialize the COM magic. Once you did that, you need to
instantiate a COM object by calling CoCreateInstance() with the GUID identifying
this object: in our case it will be CLSID DiaSource defined in the DIA development
files.

Axel ”0vercl0k” Souchet. 5

http://msdn.microsoft.com/en-us/library/x93ctkx8(v=vs.71).aspx
http://en.wikipedia.org/wiki/Component_Object_Model
http://msdn.microsoft.com/fr-fr/library/ms693719(v=vs.85).aspx
http://msdn.microsoft.com/fr-fr/library/windows/desktop/ms678543.aspx
http://msdn.microsoft.com/fr-fr/library/ms686615(v=VS.80).aspx

PDB ain’t PDD:
Let’s introduce program debug database files

IDiaDataSource* instanciate_source(void)

{

HRESULT hr;

IDiaDataSource* src = NULL;

hr = CoInitialize(NULL);

if(FAILED(hr))

return NULL;

hr = CoCreateInstance(

CLSID_DiaSource , // be sure to link with

diaguids.lib

NULL ,

CLSCTX_INPROC_SERVER , // the provider is an in

-process one

__uuidof(IDiaDataSource),

(void **)&src

);

return src;

}

Listing 1: Initialize the COM stuff

2.1.2 Loading a PDB file

When the initialization of the COM client is done, we can start to play with the
DIA API. We now have a pointer on a IDiaDataSource instance, and we can call the
method loadDataFromPdb() with the path of our PDB file. If the call is a success, we
have to open a session to gain access to the debugging information, to do so you call
openSession(). If the session is opened, you can now query debugging information
through this session.

IDiaSession* load_pdb_file(IDiaDataSource* src ,

pdb_path)

{

HRESULT hr;

IDiaSession* sess;

hr = src ->loadDataFromPdb(pdb_path);

if(FAILED(hr))

return NULL;

hr = src ->openSession (&sess);

Axel ”0vercl0k” Souchet. 6

http://msdn.microsoft.com/en-us/library/6e7sb8hy.aspx
http://msdn.microsoft.com/en-us/library/2008hf0e.aspx
http://msdn.microsoft.com/en-us/library/3tw26387.aspx

PDB ain’t PDD:
Let’s introduce program debug database files

if(FAILED(hr))

return NULL;

return sess;

}

Listing 2: Load a PDB file

2.1.3 Querying the database

Before going deeper, let’s talk about database’s organization. It really works like
a tree, there is a root (given by the get globalScope() method) and this root has
children: each element of the tree is an instance of the IDiaSymbol interface. This
interface has a really high number of methods, but only a small set is available to
an IDiaSymbol instance. All the instances (during my tests sessions at least) define
several methods to determine which type of information they hold, and to know how
you are supposed to handle them, here are the two functions we will massively use:

• get symTag() gives a value taken from the available tags listed in SymTa-
gEnum. With this tag you know exactly what you are supposed to do with the
symbol: for example if it is a SymTagFunctionType you may want to find the
number of arguments the function has, the type of these arguments, the type
of the return value, etc.

• get symIndexId() is used to have a unique integer that identifies the symbol.
You will see that when an IDiaSymbol instance is unnamed, this identifier is
pretty useful.

In order to query the database, first get the root of the tree via get globalScope()
as I said earlier, then call findChildren() to handle each child.

IDiaSymbol* get_symbols_root(wchar_t* pdb_path)

{

IDiaDataSource* src = instanciate_source ();

if(src == NULL)

Fatal("instanciate_source\n");

IDiaSession* sess = load_pdb_file(src , pdb_path);

if(sess == NULL)

Fatal("load_pdb_file\n");

IDiaSymbol* root = NULL;

HRESULT hr = sess ->get_globalScope (&root);

if(FAILED(hr))

Fatal("get_globalScope\n");

Axel ”0vercl0k” Souchet. 7

http://msdn.microsoft.com/en-us/library/fkcc8hx6(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/w0edf0x4(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/w0edf0x4(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/419fhdyz(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/bkedss5f(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/bkedss5f(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/tas7f8b4.aspx
http://msdn.microsoft.com/en-us/library/6a3f441a(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/fkcc8hx6(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/yfx1573w(v=vs.80).aspx

PDB ain’t PDD:
Let’s introduce program debug database files

return root;

}

Listing 3: Get the root of the symbols tree

When you call the findChildren() method, the third argument can be used to find
only one type of debugging information: it is a kind of a filter. If you don’t want
to filter the children the symbol has, you can just pass SymTagNull to have them
all. Well, as you may notice, the API is a bit strange, and not really convenient
for querying some specific stuff because you always have to go down, and up in the
tree. But anyway, if you currently don’t really get the API philosophy, next parts
will help you a lot by showing some examples and illustrations.

void play_with_dia ()

{

IDiaEnumSymbols *enu = NULL;

IDiaSymbol *sym = NULL , *global = NULL;

HRESULT hr;

ULONG celt = 0;

global = get_symbols_root(PATH_PDB_FILE);

hr = global ->findChildren(

SymTagNull , // We want all the children

NULL ,

nsNone ,

&enu

);

if(FAILED(hr))

Fatal("find_children\n");

hr = enu ->Next(1, &sym , &celt));

while(SUCCEEDED(hr) && celt == 1)

{

// Do something with sym

}

}

Listing 4: Iterate through the children of the global scope

Axel ”0vercl0k” Souchet. 8

http://msdn.microsoft.com/en-US/library/yfx1573w(v=vs.80).aspx

PDB ain’t PDD:
Let’s introduce program debug database files

2.2 Playing with structures and functions

2.2.1 Extract the field types of a structure from a PDB

The first thing to do is to create a new project in which we define a structure, then
compile it in order to have a PDB file to analyze. Let’s take this definition:

typedef struct

{

int* a;

char b;

int array_1 [15];

int array_2 [2][15];

int array_3 [137][2][15];

} test_array_struct_t;

Listing 5: This is the structure we want to observe

As previously, we will reuse our open pdb function to have a pointer on the
global scope and will try to find the symbol named ”test array struct t” with a call
to get name(). Because we don’t know (before testing) the tag of the symbol, we
will print the tag of the symbol to see what it is.

int main()

{

IDiaEnumSymbols *enu;

IDiaSymbol *sym , *global;

global = get_symbols_root(PATH_TEST);

if(global == NULL)

Fatal("get_symbols_root\n");

HRESULT hr = global ->findChildren(

SymTagNull , // No filter , remember

NULL ,

nsNone ,

&enu

);

if(FAILED(hr))

Fatal("findChildren\n");

ULONG celt = 0;

while(SUCCEEDED(hr = enu ->Next(1, &sym , &celt)) &&

celt == 1)

{

BSTR name;

Axel ”0vercl0k” Souchet. 9

http://msdn.microsoft.com/en-US/library/6ywcde1w(v=vs.80).aspx

PDB ain’t PDD:
Let’s introduce program debug database files

DWORD tag;

if(SUCCEEDED(sym ->get_name (&name)))

{

if(StrCmpW(name , L"test_array_struct_t")

== 0)

{

sym ->get_symTag (&tag);

printf("Found test_array_struct_t , tag

: %d\n", tag);

printf("We’re done.\n", tag);

return 0;

}

}

}

return 0;

}

Listing 6: Finding the test array struct t symbol

And after execution we get:

D:\TODO\tests_dia\Debug>parse_array_types.exe

Found test_array_struct_t, tag: 11

We’re done.

As we can see in the SymTagEnum enumeration, it is a SymTagUDT. All the func-
tion names, structures names, enumerations names, etc. are SymTagUDT. But this
symbol doesn’t really describe the structure itself, because it is only a name. If we
want to get more information about that structure, like the number of fields, or their
types, we need to deal with the symbol tree. The following presents many examples
to illustrate how the tree works when you are dealing with structures (actually the
same philosophy will be applied for function arguments for example):

Axel ”0vercl0k” Souchet. 10

http://msdn.microsoft.com/en-us/library/bkedss5f.aspx

PDB ain’t PDD:
Let’s introduce program debug database files

Figure 2: Global overview of the symbol tree.

Read carefully because what follows is a little bit tricky. Let’s take a look at this
tree, and more precisely at how you are supposed to read it:

1. As I said earlier, the global scope is the root of the tree ;

2. Then, we are looking for an instance named ”test array struct t” ;

3. Once you found your instance, we need to enumerate its children ;

4. That’s where we will get the name of each field, each child is a field ;

5. Now if you want to get the type of each field, you have to call the get type()
method.

Another interesting detail you can see on Figure 2 is, that complex types are divided
into several basic ones and those basic types make what we will call a type-chain.

Let’s take some examples, first the field a from our structure (cf Figure 3). The
type of a (in the tree) is defined as a SymTagPointer, that’s the first element of the
type-chain. Now, we must take the type of that pointer to know on what type of
data it is pointing, and we see the last element (because we got a SymTagBaseType,
the most basic type you can find) is an integer ; thus a is a int*, it matches :-).

Figure 3: The type-chain of a.

Same thing for the field array 1 (cf Figure 4): the first element of the chain is a
SymTagArrayType that means, obviously, array 1 is an array. To know the type of

Axel ”0vercl0k” Souchet. 11

http://msdn.microsoft.com/en-US/library/cwx3656b(v=vs.80).aspx
http://msdn.microsoft.com/fr-fr/library/t8zkw674(v=vs.100).aspx
http://msdn.microsoft.com/en-us/library/twhw26hs.aspx

PDB ain’t PDD:
Let’s introduce program debug database files

data this array stores, we always have to call get type(). Here our last element is a
SymTagBaseType: array 1 is an int[15].

Figure 4: The type-chain of array 1.

For the last example (cf Figure 5), we are going to analyze the type-chain of
array 3 (if you get this one, it means you have understood!). As the others, the
process is the same: we call get type() until we find a SymTagBaseType symbol,
and of course we keep building simultaneously our type-chain. The type of array 3
is a SymTagArrayType, it is the first element of our chain, but it is not a SymTag-
BaseType so we keep going. Then it is another SymTagArrayType (that means it
is an array with 2 dimensions), then again SymTagArrayType (it is now a three-
dimensional array now), and finally we find the last element of the chain, the type
of data stored by our three-dimensional array. array 3 is a int[137][2]15].

Figure 5: The type chain of array 3.

All these things are really important to understand before we talk about the
evocated IDA message box. To implement what we did manually just before, you
can define a recursive function that resolves the type of each field ; the recursion is
finished when you get an error calling get type().

void display_type(IDiaSymbol *sym , unsigned int lvl)

{

IDiaSymbol *type;

if(sym ->get_type (&type) == S_OK)

{

for(unsigned int i = 0; i < lvl; ++i)

printf(" ");

DWORD id , tag;

type ->get_symIndexId (&id);

type ->get_symTag (&tag);

printf("ID: %d, type: %s", id , tag_to_str(tag)

);

Axel ”0vercl0k” Souchet. 12

http://msdn.microsoft.com/en-US/library/cwx3656b(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/cwx3656b(v=vs.80).aspx
http://msdn.microsoft.com/en-US/library/cwx3656b(v=vs.80).aspx

PDB ain’t PDD:
Let’s introduce program debug database files

if(tag == SymTagArrayType)

{

DWORD count;

type ->get_count (& count);

printf(", count: [%d]", count);

}

if(tag == SymTagBaseType)

{

DWORD basetype;

type ->get_baseType (& basetype);

printf(", BaseType: %s", basetype_to_str(

basetype));

}

printf("\n");

display_type(type , lvl + 4);

}

}

Listing 7: Resolve recursively an IDiaSymbol type

Let’s be sure we are right:

D:\TODO\tests_dia\Debug>parse_array_types.exe

Found test_array_struct_t at id: 1250, type: SymTagUDT

- a - ID: 1251, type: SymTagData

ID: 1252, type: SymTagPointerType

ID: 1253, type: SymTagBaseType, BaseType: Int

[...]

- array_3 - ID: 1258, type: SymTagData

ID: 1249, type: SymTagArrayType, count: [137]

ID: 1248, type: SymTagArrayType, count: [2]

ID: 1247, type: SymTagArrayType, count: [15]

ID: 1253, type: SymTagBaseType, BaseType: Int

We’re done.

2.2.2 Extract the arguments of a function

In this section, we are going to focus on function symbols. So we start a new project
with this function definition:

typedef struct

{

unsigned char field_1 [10];

bool field_2;

Axel ”0vercl0k” Souchet. 13

PDB ain’t PDD:
Let’s introduce program debug database files

} structure_t;

bool testing_function(int arg1 , int* arg2 , char arg3 ,

structure_t* arg4)

{

printf("testing_function .\n");

return true;

}

Listing 8: Function definition

The first step is to find the ”testing function” identifier in the symbol tree. As for
the structure name, the function name is a SymTagUDT. Then, the arguments of
the function are its children. If you want to resolve their types, you can even use
the work we did before with the recursive type resolving. The only difference is that
when you want to obtain information on the return type of the function, instead of
calling findChildren() (that returns the arguments) you resolve directly the type of
the symbol. Here is the global overview of our symbol tree that summaries what I just
said (I chose not to draw the global scope neither the children of the ”structure t”
symbol just to simplify the tree) :

Figure 6: Overview of the symbol tree.

And here is the output of our PDB parser:

D:\TODO\tests_dia\Debug>parse_function_types.exe

tests_dia - parse_function_types

PDB loaded, enumerating types..

Found testing_function id: 1.

Getting the ret type of the function:

Axel ”0vercl0k” Souchet. 14

http://msdn.microsoft.com/en-us/library/yfx1573w(v=vs.80).aspx

PDB ain’t PDD:
Let’s introduce program debug database files

ID: 2, type: SymTagFunctionType

ID: 3, type: SymTagBaseType, BaseType: Bool

Type of testing_function: tag: SymTagFunctionType, id: 2

Getting the arguments of the functions:

- SymTagFunctionArgType

ID: 4, type: SymTagBaseType, BaseType: Int

- SymTagFunctionArgType

ID: 5, type: SymTagPointerType

ID: 4, type: SymTagBaseType, BaseType: Int

- SymTagFunctionArgType

ID: 6, type: SymTagBaseType, BaseType: Char

- SymTagFunctionArgType

ID: 7, type: SymTagPointerType

ID: 8, type: SymTagUDT, name: structure_t

3 PDB format, the hard way

The purpose of this section is to have a brief overview of the organization of a PDB
database. You will see that knowing just a bit of how the data are organized in this
type of file will be required to implement a clean bug trigger.

Fortunately the file format is documented by a chapter in ”Undocumented Win-
dows 2000 Secrets: A programmers cookbook” written by Sven Boris Schreiber.
The author also gives the sources of a tool ”win pdbx” he developed to parse the
database2. But of course this is not the only available tool, you can also check pdb-
parse written in Python and developed by mooyix. Note that I will speak only about
the version 7.0 of the format.

3.1 It looks like a file-system

The first element of a PDB file is a header that describes several important things
like the page size, the version of the format used or the total number of pages in the
database:

• The file is subdivided into pages of the same size ;

• Pages don’t need to be contiguous ;

• There are things stored thanks to this minimal file-system, those things are
called ”streams”.

Once you have read this header you can find the position of another crucial structure
called the ”stream directory pointers”, the header tells you in which page you can

2he also made an update of the tool to work with the version 7.0 of the format, the version we
focus on

Axel ”0vercl0k” Souchet. 15

http://undocumented.rawol.com/
http://undocumented.rawol.com/
http://code.google.com/p/pdbparse/
http://code.google.com/p/pdbparse/
http://moyix.blogspot.fr/

PDB ain’t PDD:
Let’s introduce program debug database files

find this directory. This stream directory pointers is a table where you find which
pages is used to store the different stream directories. A stream directory is another
structure that will reference several streams. Here is an illustration to explain the
basics:

Figure 7: Brief overview of a PDB file.

Note that it is not really required to understand the whole file structure to tamper
successfully our PDB file.

3.2 The Type Info stream

Among a lot of streams, there is a specific one that is really interesting for us. It is
called the TPI stream (this is the third one for PDB v7), you can find a list of all
defined types3. As we saw earlier there are different types, here is a list of the most
important ones:

#define LF_ARRAY 0x00001503

#define LF_BITFIELD 0x00001205

#define LF_CLASS 0x00001504

#define LF_STRUCTURE 0x00001505

#define LF_UNION 0x00001506

3Check ”tpi.py” from the pdbparse project for more details

Axel ”0vercl0k” Souchet. 16

http://code.google.com/p/pdbparse/

PDB ain’t PDD:
Let’s introduce program debug database files

#define LF_ENUM 0x00001507

#define LF_POINTER 0x00001002

#define LF_PROCEDURE 0x00001008

#define LF_MFUNCTION 0x00001009

#define LF_ARGLIST 0x00001201

#define LF_VTSHAPE 0x0000000A

#define LF_FIELDLIST 0x00001203

Listing 9: Different types of symbols

In a few words: if we want to tamper the PDB file, we will have to deal with the
TPI stream. Don’t hesitate to check the parse types from tpi stream project, and
the stream itself in your hexeditor to understand briefly the structure.

Axel ”0vercl0k” Souchet. 17

PDB ain’t PDD:
Let’s introduce program debug database files

Part III

Explaining the message box
problem

4 Recon

4.1 Copy that

We saw in the introduction the problem seemed to come from the PDB module when
it called the function IDA!build func type2(). The PDB module is a simple DLL that
either uses the DbgHelp or the DIA API to obtain symbol information. As we saw
earlier, the DbgHelp way is the old one and the DIA API is the new, check the log
window of IDA to know which one is used.

[...]

PDB: using DIA dll "C:\Program Files (x86)\Common Files\Microsoft Shared\VC\msdia90.dll"

PDB: DIA interface version 9.0

Assuming __cdecl calling convention by default

PDB: loaded 0 types

PDB: total 2529 symbols loaded for C:\Users\0vercl0k\Desktop\user32.dll

[..]

After spending some time reverse-engineering the PDB module, I finally found the
sources of the module in the leaked IDA SDK. As the module is coded in C++, there
are a lot of structures / classes used: in one word it would have been a real pain
in the ass to reverse-engineer it without this discovery :P. Then I compiled a debug
build of the PDB module to ease the debugging.

4.2 Read the source luke

I’m going to explain the main actions realized by this module:

1. The module checks if it can use the DIA API, does some initialization job ;

2. Then the PDB file is loaded in the module in order to extract relevant infor-
mation: types, function definitions, number of arguments, etc. ;

3. The problem appears when the module wants to handle the symbols, with the
function PDB!handle symbols(). The code isn’t really trivial to read, because
it uses recursive functions and a visitor/visited pattern4 ;

4. Each symbol is handled by PDB!handle symbol(). In this function the module
tries to resolve recursively the type of the symbol like we did in the first part ;

4See the definition of PDB!for all children(), and the classes that inherit PDB!children visitor t
(and more precisely the method ”visit”)

Axel ”0vercl0k” Souchet. 18

http://msdn.microsoft.com/en-us/library/windows/desktop/ms679267(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/x93ctkx8(v=vs.80).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/ms679267(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/x93ctkx8(v=vs.80).aspx
http://en.wikipedia.org/wiki/Visitor_pattern

PDB ain’t PDD:
Let’s introduce program debug database files

5. When it is a SymTagFunction (that’s why we focused this type before), the
function wants to know, among other things, the type of the return value.
To accomplish that it calls the function PDB!really convert type() with the
SymTagFunctionType (remember you call get type()) symbol in argument ;

6. This function will after call PDB!get symbol type(), PDB!retrieve type(),
PDB!convert type(), ..., and eventually it will call IDA!build func type() ;

7. The IDA!build func type() creates a structure describing a function type: the
type of the return-value, the number of arguments and the type of each of
them.

Then this type is added to a global list where all the details of all types are
stored (PDB!typemap). That way, if a function has the same type, the resolver
will see that its type has already been added to the PDB!typemap list and stop
the type resolving ;

8. When IDA!build func type() finds something weird with a resolved type, it
shows the message box we saw earlier. The pseudo-code of IDA!build func type()
is:

int build_func_type(qtype *ftype , qtype *ffields ,

func_type_info_t *fi)

{

return build_func_type2(idati , ftype , ffields ,

fi);

}

//Note: func_type_info_t is a type used to store

// *all* the available information , like the

number

// of arguments , the type of the arguments , the

// type of the return value , etc.

int build_func_type2(int a1,

_qstring_unsigned_char *ftype ,

_qstring_unsigned_char *ffields ,

func_type_info_t *fi)

{

char *v25;

if (fi->rettype.body.n)

{

v25 = fi ->rettype.body.array;

if (!v25)

goto LABEL_38;

}

Axel ”0vercl0k” Souchet. 19

http://msdn.microsoft.com/en-us/library/cwx3656b.aspx

PDB ain’t PDD:
Let’s introduce program debug database files

//[...]

if ((*v25 & TYPE_BASE_MASK) == BT_ARRAY)

goto LABEL_40;

//[...]

LABEL_40:

if (under_debugger)

__debugbreak ();

interr (91); // That calls MessageBox and

displays the error 91

}

Listing 10: IDA!build func type pseudo-code

To sum-up, IDA shows me the message box error because my magical PDB file
is a bit weird: the type of the return value of some functions were a two-dimensional
array, but of course it isn’t possible in C / C++, that’s the reason why IDA shows
an error5.

I must admit I was a bit disappointed because of two things:

• No memory corruption bug is involved ;

• I couldn’t reproduce the generation of the magical PDB file in my compiler
(maybe that’s a good thing, because I doubt that debugging VC++ 2010 is
really fun :P).

My wild guess is: this is a bug of a VC++’s component.

5 Building a clean trigger

Let’s create a clean, minimal, magical PDB trigger). Reminder: all the types are
stored in a specific stream called ”the TPI stream”. We will have to modify some
bytes in this stream.

The first thing I did was to use the win pdbx tool to extract all the streams, then
I only kept the stream number 2 (the third): the TPI stream. Then I read several
sources like the win pdbx and the pdbparse ones to see how I could enumerate each
type in order to understand better how I can tamper the database. As the types
aren’t name identified, we can use their arguments number to identify them6. Thus,
we define this function in our trigger project:

5I don’t understand why it doesn’t simply quit the PDB loading and still runs IDA without
symbol information instead of killing the IDA instance.

6Feel free to check the ”parse types from tpi stream” project (link at the end) to understand
how to parse this stream.

Axel ”0vercl0k” Souchet. 20

http://code.google.com/p/pdbparse/

PDB ain’t PDD:
Let’s introduce program debug database files

int BOOM [1337][1338] = {0};

void crashing_function(int a, int b, int c, int d, int

e, int f, int g, int h, int i, int j, int k, int l

)

{

printf("crashing_function .\n");

}

Listing 11: Minimal clean trigger!

Keep in mind our purpose: we want to tamper the PDB file in order to have the type
of the return value of trigger!crashing function() pointing on the type of BOOM: a
2-dimensions array just to trigger the message box. Launching my tool to enumerate
the different types in the TPI stream returns me something like that:

D:\TODO\trigger\Debug\experimentation\original>parse_types_from_tpi_stream.exe

ID: 1527, Type: 00001008, Size: 000e, Offset: 0001f870 -- LF_PROCEDURE

RetType:00000003 ; calltype: 00 ; parmcount: 000c ; arglist: 00001526

ID: 1528, Type: 00001503, Size: 000e, Offset: 0001f880 -- LF_ARRAY

ID: 1529, Type: 00001503, Size: 0012, Offset: 0001f890 -- LF_ARRAY

EOF.

We can see that the type 0x1527 is the trigger!crashing function() one: it is the
only symbol with 12 arguments (it is also the only LF ARRAY one).

Let’s doing some voodoo magic on the PDB file. Open your favorite hex-editor
and start looking for the first occurrence of the string ”crashing function”. On my
side I got this:

Figure 8: First occurrence of ”crashing function” in the trigger.pdb.

As you may have noticed, the highlighted DWORD (cf Figure 8) is the ID of
the crashing function’s type we saw in the previous dump. That means that if we
modify this DWORD and we put the ID of 2-dimensions array type we will get our
clean and minimal trigger. In the previous dump we saw that the type 0x1528 is an
array type, so let’s try to update the DWORD with this ID:

Axel ”0vercl0k” Souchet. 21

PDB ain’t PDD:
Let’s introduce program debug database files

Figure 9: The type of trigger!crashing function() (a SymTagFunction) is now an
array.

And to be sure, we can even use the DIA API to parse the type of the trig-
ger!crashing function() before the modification:

D:\TODO\trigger\Debug\experimentation\original>parse_function_types.exe

tests_dia - parse_function_types

Initializing DIA..

PDB loaded, enumerating types..

Found testing_function id: 1.

Getting the ret type of the function:

ID: 2, type: SymTagFunctionType

ID: 3, type: SymTagBaseType, BaseType: Void

[...]

And after the modification:

D:\TODO\trigger\Debug\experimentation\boom>parse_function_types.exe

tests_dia - parse_function_types

Initializing DIA..

PDB loaded, enumerating types..

Found testing_function id: 1.

Getting the ret type of the function:

ID: 2, type: SymTagArrayType, count: [1337]

ID: 3, type: SymTagArrayType, count: [1338]

ID: 4, type: SymTagBaseType, BaseType: Int

[...]

We finally got our clean and minimal trigger! With this trigger, I can crash IDA
6.1, IDA 6.3 but not IDA 6.4 (I don’t have a license, so I couldn’t debug the problem
; if you have some precisions I will be happy to merge them into this section ;-)).

5.1 We want moar crashes!

After finishing the previous trigger, I wasn’t really satisfied because the last version
of IDA didn’t crashed. So I came up with a fun idea: What if we have a symbol S
and its type is S?

Clearly in the way we implemented our type resolving in the first part, our al-
gorithm will run infinitely (until the stack explodes by the recursive calls) ; but I

Axel ”0vercl0k” Souchet. 22

PDB ain’t PDD:
Let’s introduce program debug database files

was curious to know if I could crash IDA with that tips. By the way, the exercise of
making the modification in the PDB file is left to the reader (though if you diff the
original trigger.exe and the recursive one, you will quickly spot how I did it).

Figure 10: Let’s crash our program.

With that neat trick I can crash IDA 6.1, 6.3 and finally IDA 6.4!
Then I started OllyDBG 2 to add a custom symbol directory like that:

Figure 11: Configure a symbol directory in OllyDBG 2.

and ..BOOM, again :-) !7.

7Don’t forget it needs user interaction to configure the symbol directory ; though I wouldn’t be
surprise it exists a trick to avoid this user interaction: if you succeed, feel free to share the details,
I will add them!)

Axel ”0vercl0k” Souchet. 23

PDB ain’t PDD:
Let’s introduce program debug database files

Figure 12: B.O.O.O.O.M.

6 Debug information inside the binary

Keep in mind I wanted to have an anti-IDA, so I tried to embed the debug information
inside the PE itself. After googling a lot around the subject I saw that a lot of years
ago, it was possible to embed directly the debug information into the PE, more
precisely in the DEBUG DIRECTORY. @gentilkiwi kindly uploaded me a really old
version of MS VC++ to try this feature (the new version of VC++ doesn’t support
it anymore). I thought it was a cool idea to have a ”real” maybe usable anti-IDA,
but I didn’t really succeed at this part. If you load the file into IDA, the codeview
information embedded seem to be handled by the DBG module instead of calling
directly the PDB module (like earlier). So to trigger the message box, after loading
the file, you have to click on File and then Load PDB file and BOOM. That’s not
that great :-(8.

8Note that I didn’t really made a lot of research to bypass this user interaction ; I was a bit
tired to work on these nasty PDB files, so if you get cool results feel free to shoot me!

Axel ”0vercl0k” Souchet. 24

https://twitter.com/gentilkiwi

PDB ain’t PDD:
Let’s introduce program debug database files

Part IV

This is the end
That’s it guys, I hope you learned a lot of things (because I really did!) even if the
purpose of the research is pretty useless. As usual, you will find several dirty codes
(you have been warned :-P) I’ve produced to play with many different subjects.

If you are still interested in the subject, here is a nice list of links:

• http://undocumented.rawol.com/

• http://code.google.com/p/pdbparse/

• http://waleedassar.blogspot.fr/2012/06/ida-pro-and-codeview-debug-info-bug.html

• http://pdbdump.sourceforge.net/pdbleak.html

• https://www.mandiant.com/blog/exploring-symbol-type-information-pdbxtract/

• http://www.informit.com/articles/article.aspx?p=22685

• http://support.microsoft.com/default.aspx?scid=kb;en-us;Q121366

• http://www.godevtool.com/Other/pdb.htm

• http://www.debuginfo.com/articles/debuginfomatch.html

• http://moyix.blogspot.fr/2007/10/types-stream.html

High five for the reviewers and the guys who helped me: Jiss, @joancalvet, @Ivan-
lef0u and @gentilkiwi.

Axel ”0vercl0k” Souchet. 25

https://github.com/0vercl0k/stuffz/tree/master/PDB%20ain't%20PDD/
http://undocumented.rawol.com/
http://code.google.com/p/pdbparse/
http://waleedassar.blogspot.fr/2012/06/ida-pro-and-codeview-debug-info-bug.html
http://pdbdump.sourceforge.net/pdbleak.html
https://www.mandiant.com/blog/exploring-symbol-type-information-pdbxtract/
http://www.informit.com/articles/article.aspx?p=22685
http://support.microsoft.com/default.aspx?scid=kb;en-us;Q121366
http://www.godevtool.com/Other/pdb.htm
http://www.debuginfo.com/articles/debuginfomatch.html
http://moyix.blogspot.fr/2007/10/types-stream.html
https://twitter.com/joancalvet
https://twitter.com/Ivanlef0u
https://twitter.com/Ivanlef0u
https://twitter.com/gentilkiwi

	I Introduction
	II Back to basics
	What we already know
	The MS Debug Interface Access
	First steps with DIA
	Initializing the COM client
	Loading a PDB file
	Querying the database

	Playing with structures and functions
	Extract the field types of a structure from a PDB
	Extract the arguments of a function

	PDB format, the hard way
	It looks like a file-system
	The Type Info stream

	III Explaining the message box problem
	Recon
	Copy that
	Read the source luke

	Building a clean trigger
	We want moar crashes!

	Debug information inside the binary

	IV This is the end

