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PREFACE.

I HAVE endeavoured in the following Treatise to exhibit the
subject in a simple manner for the benefit of beginners, and
at the same time to include in one volume all that students
usually require. In addition, therefore, to the propositions
which have always appeared in such treatises, I have intro-
duced the methods of abridged notation, which are of more
recent origin ; these methods which are of a less elementary
character than the rest of the work, are placed in separate
Chapters, and may be omitted by the student at first.

The examples at the end of each Chapter, will, it is hoped,
furnish sufficient exercise on the principles of the subject,
as they have been carefully selected with the view of illus-
trating the most important points, and have been tested by
repeated experience with pupils. At the end of the volume
will be found the results of the examples, together with hints
for the solution of some which appear difficult. )

The properties of the parabola, ellipse, and hyperbola, have
been separately considered before the discussion of the general
equation of the second degree, from the belief that the subject
is thus presented in its most accessible form to students in
the early stages of their progress.

1. TODHUNTER.

8t JorN's CoLLEGE,
July, 183s.



vi PREFACE.

In the fourth edition the work has been carefully revised,
and a large amount of new matter has been introduced,
chiefly relating to the more recent methods of investigating
the properties of the conic sections. The work was originally
designed for early students, and in the additions which have
been made this object has been constantly regarded.
Accordingly great attention has been given to the explanation
and illustration of the principles of the methods which are
employed ; so that it will be easy for a student hereafter to
develope these principles to any required extent.

The favour with which the work has been received in-
- dicates that it has been found adapted for the purpose of
elementary instruction ; and the hope may be expressed that
the improvements now effected will increase its utility.

May, 1867,
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PLANE CO-ORDINATE GEOMETRY.

CHAPTER L

.
CO-ORDINATES OF A POINT.

1. IN Plane Co-ordinate Geometry we investigate the
properties of straight lines and curves lying in one plane
by means of co-ordinates; we commence by explaining what
we mean by the co-ordinates of a point.

Y
N P
M
X o X
] R
Y'

Let O be a fixed point in a plane through which the
straight lines X’0X, Y'0Y, are drawn at right angles. Let
P be any other point in the plane ; draw PM parallel to 0Y
meeting OX at M, and. PN parallel to OX meeting OY at
N. The position of P is evidently known if OM and ON
are known; for if through N and M straight lines be drawn
parallel to 0.X and OY respectively, they will intersect at P.

The point. O is called the origin; the straight lines OX
and OY are called azes; OM is called the -abscissa of the
point P; and ON, or itg equal MP, is called the ordinate of
the point P. Also OM and MP are together called co-ord:-
nates of the point P.

2. Let OM=a, and ON=1), then according to our defi-
nitions we may say that the point P has its abscissa equal to a,
and its ordinate equal to b; or, more briefly, the co-ordinates

T. C. S, 1
69
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2 CO-ORDINATES OF A POINT.

of the point P are a and b. We shall often ‘speak of the
point which. has a for its abscissa and & for its ordinate, as
the point (a, b). :

3. A distance measured along the axis OX is however
most frequently dengted by the symbol z, and a distance
measured along the axis OY by the symbol y. Hence OX
is called the axis of z, and OY the axis of y. Thus z and y
are symbols to which we may ascribe different numerical
values corresponding to the different points we consider, and
we may express the statement that the co-ordinates of the
point P are a and b, thus; for the point P, x =« and y = b.

Y
Q N P
M
X o X
S R
Y

4. The straight lines X'0X, Y'0Y, being indefinitely
produced divide the plane in which they lie into four com-
partments. It becomes therefore necessary to distinguish
points in one compartment from points in, the others. For
this purpose the following convention is adopted, which the
reader has already seen in works on Trigonometry; straight
lines measured along OX are considered positive and along
OX’ negative; straight lines measured along OY are con-
sidered positive, and along OY" negative. (See ZTrigonometaryy,
Chap. 1v.) If then we produce PN to a point @ such that
NQ = NP, we have for the point @, x=—a, y=5. If we
produce PM to R so that MR= MP, we have for the point
R, x=a, y=—0b. Finally, if we produce PO to S so that
08 = OP, we have for the point S, x=—a, y=-10.

e




POLAR CO-ORDINATES OF A POINT. 3

5. In the figure in Art. 1 we have taken the angle YOX
a right angle; the axes are then called rectangular. If the
angle YOX be not a right angle, the axes are called obligue.
All that has been hitherto said applies whether the axes are
rectangular or oblique. 'We shall always suppose the axes
rectangular unless the contrary be stated; this remark applies
both to our investigations and to the examples which are given
Jor the exercise of the student.

6. Another method of determining the position of a point

in a plane is by means of polar co-ordinates. :
Let O be a fixed point, and OX a fixed straight line,

Let P be any other point; join : P

OP; then the position of P is

determined if we know the an-

gle XOP and the distance OP. o % .

The angle is usually denoted by \) '

6 and the distance by 7.

O is called the pole, OX the initial line; OP the radius
vector of the point P, and P OX the vectorial angle.

7. The position of any point might be expressed by
positive values of the polar co-ordinates 8 and , since there
1s here no ambiguity corresponding to that arising from the
four compartments of the figure in Art. 4. It is however
found convenient to use a similar convention to that in
Art. 4; angles measured in one direction from QX are con-
sidered positive and in the other negative. Thus if in the
figure XOP be a positive angle, X0Q will be a negative
angle; if the angle XO@ be a quarter of a right angle, we

may say that for X0Q, 0= -—g. It is, as we have stated,

not absolutely necessary to introduce negative angles, but con-
ventent; the position of the straight line O¢), for instance,
might be determined by measuring from OX in the positive

direction an angle = 27 —% as well as by measuring in the

negative direction an angle = %.‘



4 LENGTH OF THE STRAIGHT LINE

Also positive and negative values of the radius vector are
admitted. Thus, suppose the

co-ordinates of P to be :’I' and

a, that is, let XOP =g and

OP = a; produce PO to P, so
that OP = OP, then P may
be determined by saying its

N
A

co-ordinates are g and —a. Thus when the radius vector is

a negative quantity, we measure it on the same straight line
as if 1t had been a positive quantity but in the opposite direc-
tion from O. :

Hence if 8 represent any angle and ¢ any length the
same point is determined by the polar co-ordinates 8 and
— ¢ as by the polar co-ordinates = -+ 8 and c.

8. Let 2, y denote the co-ordinates of P referred to OX
as the axis of x, and a straight line through O at right angles
to OX as the axis of y. Also let 6 and » be the polar co-
ordinates of P. If we draw from P a perpendicular on O X,
we see that

=rcosf, and y=rsiné.

These equations connect the rectangular and polar co-ordi-
nates of a point. From them, or from the figure, we may
deduce :

& +y=r, %:tan 6.

We proceed to investigate expressions for some geome-

trical quantities in terms of co-ordinates.

9. To find an expression for the length of the straight
line joining two points.

" Let P and @ be the two points; o the inclination of the
axes 0X, O0Y. Draw PM, QN parallel to OY; let z,, 7, be
the co-ordinates of P, and =,, y,, those of Q. Draw PR
parallel to OX. Then, by Trigonometry,

P@'= PR+ QR*—~2PR. QR cos PRQ
= PR+ QR'+2PR. QR cos w.
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JOINING TWO POINTS. 5

But PR=2,—z,, and QR=y,—y,; therefore

PQ’= (zs" wx),"l" (.’/:— y;)’ +2 (wn "'mx) (ya —yx) cos w"'(l):
and thus the distance PQ is determined.

If the axes are rectangular, we have

PQ=(x,—x) + .- Y ereennneniiininn . (2).

xr (V]

The student should draw figures placing Pand Q in the
different compartments and in different positions; the equa-
tions (1) and (2) will be found universally true.

From the equation (2) we have
P@=z'+y'+2}+3'- 2 (@z,+33) ...... (3).

The following particular cases may be noted.

If Pbe at O then 2,=0 and y,=0; thus PQ'=="+y"

If P be on the axis of # and Q on the axis of ¥, then
y, =0 and 2,=0; thus PQ* =2 +y,"

Let 6,, 7, be the polar co-ordinates of P, and 6,, r, those
of Q; then, by Art. 8, .

x,=rcosb,, y=rsinb, x=rcnwb, y=rsnb,
Substitute these values in (3) and we have
PQ'=r'+r'—2rpr, cos (6, 6).

" This result can also be obtained immediately from the tri-
angle POQ formed by drawing straight lines from 2 and Q
to the origin.,



6 CO-ORDINATES OF A POINT.

10. 7o find the co-ordinates of the point which divides in
a given ratio the straight line joining two given points.

. Let 4 and B be the given points, z,, y, the co-ordinates
of 4, and z,, y, those of B; and let the given ratio be
that of m, to m,. Suppose C the required point, so that
AC: CB: n :n,. Draw the ordinates AL, BM, CN; and
AR parallel to 0x meeting CN at D. Let 2, y be the co-
ordinates of C.

It is obvious from the ﬁgufe that

IN_AD_AC.
NM~ DR CB’
that is, &4 _ ﬁ;
z,—x n,
therefore z= i kY .
n,+n,
M 3 — nly’ + nﬁyl
Similarly, y= T n

In this Article the axes may be oblique or rectangular. A
simple case is that in which we require the co-ordinates of the
point midway between two given points ; then n, =n, and

z=} (&, +2), y=3% @+



AREA OF A TRIANGLE. 7

11.  To express the area of a triangle tn terms of the co-
ordinates of its angular points. )

Let ABC be a triangle ; let #,, y, be the co-ordinates of
A ; =, y, those of B; =,, y, those of C. Draw the ordinates
AL, Bi’ll‘, CN. The area of the triangle is equal to the
trapezium 4 BML + trapezium BCNM — trapezium ACNL.

Y
B

o L M N X

The area of the trapezium ABML is 3 LM (AL + BM).
This is obvious, because if we join BL we divide the trape-
zium into two triangles, one having AL for its base and the
other BM, and each having LM for its height ;

thus, ~ trapezium ABML =4} (x,—x,) (y,+,);
also, trapezium BCNM =} (z,—z,) (y,+ ¥, ;
and, trapezium ACNL =} (2, — ) (y, + ¥5) ;
therefore triangle 4 BC

=3{(@,— =)@y, +9) + (@~ 2) (4 +3) — (&~ =) @ +39)-.
This expression may be written more symmetrically thus:
H@—2) @t 3+ (&= 2) (@, + 52) + (@~ 2) (4, %)l (1):

By reducing it, we shall find the area of the triangle
=} (oY, — 2y, + 2y, — 2y, + Y~ Ty} ®-

_If the axes be oblique and inclined at an angle w, the area
of the trapezium ABML =% LM (AL + BM) sin », and simi-
larly for the other trapeziums. Thus the area of the triangle



8 LOCUS OF AN EQUATION.

will be found by multiplying the expressions given above
by sin .

Y However the relative situations of 4, B, C'may be changed,
the student will always find for the area of the triangle the
expression (2), or that expression with the sign of every term
changed. Hence we conclude, that we shall always obtain
the area of the triangle by calculating the value of the expres-
sion (2), and-changing the sign of the result if it should prove
negative, : '

Locus of an equation. Equation to a curve.

12. Suppose an equation to be given between two unknown
quantities, for example, y —x—2=0. We see that this
equation has an indefinite number of solutions, for we may
assign to z any value we please, and from the equation deter-
mine the corresponding value of y. Thus corresponding to
the values 1, 2, 3,... of @, we have the values 3, 4, 5,... of y.
Now suppose a line, straight or curved, such that it passes
through every point determined by giving to  and y values
that satisfy the equation y —2—2=0; such a line 1s called
the locus of the equation. It will be shewn in the next
Chapter that the locus of the equation in question is a straight
line. We shall see as we proceed that generally every equa-
tion between the quantities « and y has a corresponding locus.

But instead of starting with an equation and investigating
what locus it represents, we may give a geometrical definition
of a curve and deduce from that definition an appropriate
eqll(lation; this will likewise appear as we proceed ; we shall
take successively different curves, define them, deduce their
equations, and then investigate the properties of these curves
by means of their equations. We shall in the next Chapter
begin with the equation to a straight line.

The connexion between a locus and an equation is the
fundamental idea of the subject and must therefore be care-
fully considered; we shall place here a formal definition
which we shall illustrate in the next Chapter by applying it
to a straight line.

The equation which expresses the invariable relation
which exists between the co-ordinates of every point of a




EXAMPLES. CHAPTER L 9

curve 18 called the equation to the curve; and the curve, the
co-ordinates of every point of which satisfy a given equation,
18 called the locus of that equation.

13. The student has probably already become familiar
with the division of algebraical equations into equations of
the first, second, third... degree. When we speak of an
equation of the »* degree between two variables we mean
that every term is of the form Aa*y# where a and B are zero
or positive integers such that a+ 8 is equal to n for one or
more of the terms but not greater than » for any term, and 4
is a constant numerical quantity ; and the equation is formed
by connecting a series of such terms by the signs + and —,
and putting the result =0.

EXAMPLES.

1. Find the polar co-ordinates of the points whose rect-
angular co-ordinates are :
1) ==1, y=1; 2) z=-1,y=2;
3) z=-1,y=1; (4) @=-1,y=-1;
and indicate the points in a figure.

2. Find the rectangular co-ordinates of the points whose
polar co-ordinates are

(1) 6=3,r=3; ® 0=-% r=3;
(8) 6=%, r=-3; 4 6=-3, r=-3;

and indicate the points in a figure.

3. The co-ordinates of P are —1 and 4, and those of @
are 3 and 7; find the length of PQ.

4. Find the area of the triangle formed by joining the
first three points in Example 1.

5. A is a point on the axis of 2 and B a point on the
axis of y; express the co-ordinates of the middle point’of
A B in terms of the abscissa of 4 and the ordinate of B; shew
also that the distance of this point from the origin = } 4B.
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Transform equation (2) of Art. 11 so as to give an
ssion for the area of a triangle in terms of the polar
linates of its angular points. Also obtain the result
ly from the figure.

A and B are two points and O is the origin ; express
rea of the triangle AOB in terms of the co-ordinates
and B, and also in terms of the polar co-ordinates of
1B ’ ‘

A, B, C are three points the co-ordinates of which are
ssed as in Art. 11 ; suppose D the middle point of 4B;
CD and divide it at G so that CG=2GD: find the
linates of G.

Shew that each of the triangles GAB, GBC, GAC,
d by joining the point G in the preceding Example to
oints 4, B, C, is equal in area to one-third of the
rle ABC. See Art. 11.

). A and B are two points; the polar co-ordinateg of 4
» 75 and those of Bare ,, r,. A straight line is drawn
the origin O bisecting the angle 4 OB; if C be the point
> this straight line meets 48 shew that the polar co-

ates of Care §=1% (0, +6,) and » = 2ryrcos § (6,—6,) .
ro+T,

l. Find the value of CD* and 4AD* in Example 8 in
.of the co-ordinates there used ; and shew that
' AC'+BC*=2CD*+ 24D
2. Find the value of G4°, GB* and G'C*, in Example 9
‘ms of the co-ordinates there used ; and shew that
3(GA*+ GB*+ GC*) = AB* + B(C* + C4*.
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CHAPTER IIL

ON THE STRAIGHT LINE.

.14.  To find the equation to a straight line.

Y D
B
E P
/. | °
Y' \

We shall first suppose the straight line not parallel to
either axis.

Let ABD be a straight line meeting the axis of y at B.
Draw a straight line O through the origin parallel to 4 BD.
In ABD take any point P; draw PM parallel to OY, meet-
ing OX at M and OF at Q.

Suppose OB =c¢, and the tangent of £ZOX =m; and let
x, y be the co-ordinates of P; then

y=PM=PQ+ QM= OB+ QM
=c¢+ OMtan QOM = ¢ + ma.
Hence the required equation is
y=mz+c.
OB is called the infercept on the axis of y ; if the straight

line crosses the axis of y on the negative side of O, ¢ will be
negative.
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EQUATION TO A STRAIGHT LINE.

We denote by m the tangent of the angle QOM or BAO,

he tangent of the-angle which that part of the
ne which is above the axis of z makes with the
produced in the positive direction. Hence if the
ne through the origin parallel to the given straight
setween OY and OX, m is the tangent of an acute
. is positive ; if between OY and OX produced to
v is the tangent of an obtuse angle and is negative.
3 we consider the same straight line m and ¢ remain
able, they are therefore called constant quantities or
But « and y may have an indefinite number of
ce we may ascribe to one of them, as @, any value
, and find the corresponding value of y from the
y=mz+c;  and y are therefore called variable
or variables. - ‘
straight line pass through the origin, ¢ =0, and the
becomes y = ma.

Ve have now to consider the cases in which the
ine is parallel to one of the axes.

straight line be parallel to the axis of «, m =0, and
ion becomes y = c.

straight line be parallel to the axis of y, m becomes
mt of a right angle and is infinite; the preceding
ion is then no longer applicable. We shall now
rate investigations of these two cases.

sestigate the equation to a straight line parallel to one

Y D
B P ¢
A
x (] M X
.

suppose the straight line parallel to the axis of a.
)e the straight line meeting the axis of y at B; sup-




EQUATION OF THE FIRST DEGREE. ' 13

Since the straight line is parallel to the axis of «, the or-
dinate PM of any point of it is equal to OB. Hence calling
y the ordinate of any point P, we have for the equation to the
strajght line y =0, : _

Next suppose the straight line parallel to the axis of y.
Let AD be the straight line meeting the axis of = at 4 ; sup-
pose OA=a. Since the straight line is parallel to the axis of
y, the abscissa of any point of it is 04. Hence calling
the abscissa of any point, we have for the equation to the
straight line z =a.

16. We have thus shewn that any straight line whatsoever
is represented by an equation of the first degree; we shall
now shew that any equation of the first degree with two
variables represents a straight line.

The general equation of the first degree with two variables

is of the form
Ax+By+ C=0.ceuevrrnrrnnnnnnn ),
A, B, C being finite or zero.
First suppose B not zero ; divide by B, then from (1)

Now we have seen in Art. 14, that if a straight line be
drawn meeting the axis of y at a distance —% from the
origin and making with the axis of & an angle of which the
tangent is — % , then (2) will be the equation to this straight

line. Hence (2), and therefore also (1), represents a straight
line.
If 4 =0, then by Art. 15 the straight line represented by
(1) is parallel to the axis of .

If B=0, then (1) becomes

Ax+ C=0,
Y

or ' ==
and from Art. 15 we know that this equation represents a
straight line parallel to the axis of .

Heuce the equation Az + By + C'= 0 always represents a
straight line,



EQUATION IN TERMS OF THE INTERCEPTS.

E'?uatz'on in terms of the intercepts. The equation to
t line may also be expressed in terms of its untercepts
70 axes.

Y

AN

B

X 0 M Nﬁ

Y’

1 and B be the points where the straight line meets
of # and y respectively. Suppose 04 =a, OB=2>.
any point in the straight line; , y its co-ordinates ;
"parallel to OY. Then by similar triangles,
PM AM
OB 40’

|
]

.
b

a

=

+

RIg O
RSN

[t will be a useful exercise for the student to draw the
lines corresponding to some given equations. Thus
the equation 2y + 8z =7 proposed ; since a straight
termined when two of its points are known, we may
mny manner we please two points that lie on the
line, and by joining them obtain the straight line.
then #=1, it follows from the equation that y =2
> point which has its abscissa =1 and its ordinate = 2
straight line. Again, suppose =2, then y=4%; the
ich has its abscissa =2 and its ordinate =% is there-
‘he straight line. Join the two points thus deter-
nd the straight line so formed, produced indefinitely
s, is the locus of the given equation. The two points
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that will be most easily determined are generally those in
which the required straight line cuts the axes. Suppose =0
in the given equation, then y =17, that is, the straight line
passes through a point on the axis of y at a distance § from
the origin. Again, suppose y =0, then z =}, that 1s, the
straight line passes through a point on the axis of x at a dis-
tance § from the origin. Join the two points thus deter-
mined, and the straight line so formed, produced indefinitely
both ways, is the locus of the given equation. What we have
here ascertained as to the points where the straight line cuts
the axes, may be obtained immediately from the equation;
for if we write it in the form

3z 2y
7T
and compare it with the equation in Art. 17,

L Y_
a+b L

we see that a=F and b=1.

Again, suppose the equation y =2 proposed.” Since this
equation can be satisfied by supposing =0 and y=0, the
origin is a point of the straight line which the equation repre-
sents ; therefore we need only determine one other point in it.
Suppose =1, then y=1; here another point is determined
and the straight line can be drawn. The straight line may
also be constructed by comparing the given equation with
the form in Art. 14,

y=maz.

This we know represents a straight line passing through the
origin and making with the axis of = an angle of which the
tangent is m. Hence y=x represents a straight line passing
through the origin and inclined at an angle of 45° to the
axis of «.

Similarly the equation y=— z represents a straight line
inclined to the axis of x at an angle of which the tangent is
—1; that is, at an'angle of 135. Hence this equation repre-
sents a straight line through O bisecting the angle between
0Y and OX produced to the left in the figure to Art. 14.
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19.

EQUATION IN TERMS OF THE PERPENDICULAR.

The student is recommended to make himself tho-
wequainted with the previous Articles before proceed-
the subject. In Algebra the theory of indeterminate
s does not usually attract much attention, and the
s sometimes perplexed on commencing a subject in
: has to consider one equation between two unknown
8, which generally has an infinite number of solutions.
rineipal result up to the present point is,that a straight
esponds to an equation of the first degree, and the
must accustom himself to perceive the appropriate
line as soon as any equation is presented to hm. The
line can be determined by ascertaining two points
which it passes, that is, by finding two points such
co-ordinates of each satisfy the given equation, and
ght line being thus determined, the co-ordinates of
t of it will satisfy the given equation.

Equation to a straight line tn terms of the perpendicular
origin, and the inclination of this perpendicular to the

Y

B

o M A\ X
0Q be the perpendicular from the origin O on a
line 4B. Take any point P in the straight line ;
{ perpendicular to 04, MN perpendicular to O Q,
perpendicular to MN. Suppose 0@ =p, and the
JA=a. Let z, y be the co-ordinates of P; then
=0N+NQ=ON+PR

=0Mcos QOA + PMsin PMR

=gcosa+ysina
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Therefore the e\quation to the straight line is

x cos & + ¥ sin a = p.

21. We have given separate investigations of the dif-
ferent forms of the equation to a straight line in Articles 14,
17, 20 ; any one of these forms may however be readily de-
duced from any other by making use of the relations which
exist between the constant quantities.

The quantity which we have denoted by & in Art. 17,
that is OB, is denoted by ¢ in Art. 14;

therefore b=Ceeerrreinirninninnens ceaes (l).
In Art. 17,
2 o tan BAO=tan (v~ BAX) = —tan BAX;
in Art. 14 we have denoted the tangent of BAX by m,
therefore % = —Mariiiininenne (2).

p=acosa=0sina............... 3);
therefore from (2) and (3), m=-—cota............... (4).
Also if the equation
Az+ By + C=0,
represent the straight line under consideration, then by
Art. 16, .
y| c
—73=m, —B=c—b ............... (5),
A C P
therefore 5= cot @, and B T ana (6).

By means of these relations we may shew the agreement
of the equations in Arts. 14, 17, 20, or from one of them
deduce the others.

T. C. S. 2
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22. The student may exercise himself by varying the
rures which we have used in investigating the equations.
1us, for example, in the figure to Art. 17, suppose the point
to be in BA produced, so that it falls delow the axis of .
‘e shall still have

PM_AM  PH _x—a

OB~ 40’ b a
Now since P is below the axis of @, its ordinate y is
negative quantity, hence we must not put PM=y but

M= —y, because by PM we mean a certain length esti-
ated positively. Thus

~4_%2=%  and therefore, as before, =+ =1,
b a a b

Oblique Co-ordinates.

23. Eguation to a straight line.

We shall denote the inclination of the axes by w.

Suppose first, that the straight line is not parallel to
‘her axis. Let ABD be a straight line meeting the axis
y at B. Draw a straight line OE through the origin
rallel to ABD. In ABD take any point P; draw PM
rallel to OY, meeting OX at M and OF at Q. Suppose
B=c, and the angle QOM=a.

—

Let x, y be the co-ordinates of P; then
y=FPM=PQ+ QM= 0B+ QM.
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QM _ sina | _ xsina
But O~ s (w—a)’ therefore QM = nw—a)
Hence the required equation is
zsina
Y= sn (@ —a) te

If we put m for B2 the equation becomes
sin (o — a)
y=mztec,

asin Art. 14. The meaning of ¢ is the same as before ; m is
the ratio of the sine of the inclination of the straight line to
the axis of & to the sine of its inclination to the axis of y.
Since sin a is always positive, m will be positive or negative
according as sin (w —a) is positive or negative ; thus as before
m will be positive or negative according as the straight line
through the origin parallel to the given straight line falls
between OY and OX, or between OY and OX’'. The mean-

ing of m coincides with that in Art. 14 when w = 7—; , for then

m=tan a.
- 24. Since m=_—n2 .
sin (w—a)
therefore m (sin @ cos @ — cos w sina) =sin « ;
therefore m (sinw —cosw tana) =tana;
therefore . tang= —0 oo ®
l+mcosw
Hence  sina= M ARD
+ /(1 +2mcosw+m")’
cos @ = " 14+ mcosw .
£/ +2mcos w +m?)

_ Since sina is positive, we must take the upper or lower
8ign according as m is positive or negative.

- 25. The investigations in Arts. 15 and 17 apply without
alteration to the case of oblique axes, and those in Art. 16
with the requisite change in the meaning of the constant m.

2—2

e



EQUATION IN TERMS OF THE PERPENDICULAR.

To find the equation to a straight line in terms of the
licular from the origin, and the inclinations of the per-
lar to the axes.

/ 0 A\ X
0Q be the perpendicular from the origin on a straight
B; let OQ=p, OA=a, OB=b. If we suppose
a, we have QOB = w —a; denote this by 8; then
p : \

cosa’

OQ=acosa; therefore a=
O0Q=>bcosB; therefore b=c_o€—E’

titute in the equation, Art. 17, §+ % =1, and we |

rcos a+ycos B=p.
The following form of the equation to a straight line |
useful. \

TR /o N M x

2 be a fixed point in any straight line AB; h, & its
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co-ordinates; let P be any other point in the sfraight line ;
2, y its co-ordinates; let QP=r, and the angle BAX =q.
Draw the ordinates PM, QN ; and QR parallel to OX ; then

z—h _sin(@—a) y—k_sina _
= sne =] suppose, and T dme T suppose,
thus z=h_y—k =7
l n
For the equation to the straight line it is sufficient to put
ad l— h_ ;y_;_k , but it is useful to remember that each of

these quantities is equal to 7.

The constants ! and » are connected by a certain con-
dition. For, by Art. 9, :

(@—h)+(y—k)+2 (z—h) (y— k) cosw=7";
substitute for x —h and y —k: thus ‘
P4+n*+2ncose=1.

If the axes are rectangular, [ and » become respectively
cos @ and sin a, that is, the cosines of the inclinations of the
straight line to the axes of = and y respectively.

In the preceding figure P falls to the right of Qand 2z —%
is positive. If P were to the left of Q then = —% would be
negative. Thus since @ — A =1Ir, the product I must be
capable of changing its sign; this leads us to consider » as
positive or negative according to circumstances. When there-
fore we write the equation to a straight line under the form

z—h_y-k

-1 n ’
and ascribe to I and n the values given above, we conclude
xz—h y—Fk . .
] and o 18 numerically
equal to the distance between the point (h, k) and the point
(z, ), but that the sign of each expression will depend upon
the relative positions of the two points.

that each of the expressions
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Polar Co-ordinates.

28. Polar equation to a straight line.

< .

6 : \ <
Let AB be a straight line, OQ the perpendicular on it
from the origin, OX the initial line, Pany point in the straight

line. Suppose OQ=p, and the angle QOX=a. Let r, 6
be the polar co-ordinates of P; then

0Q@=0P cos POQ;
that is, p =7 cos (6 — a).
This is the polar equation to the straight line.
29. The polar .eq{la.t'idn may also be derived from the
equation referred to rectangular co-ordinates. Let
Ax+By+ C=0

be the equation to a straight line referred to rectangular co-
ordinates. Put 7 cos @ for «, and r sin 6 for y, Art. 8; thus

Arcos @ + Brsin  + C=0............... 1)
is the polar equation. This equation may be shewn to agree
with .
P=7co8 (0 —a)eeeurerrrrieruurnnnns e (2).

For by Art. 21 we have

A ()
j—cqta and B- " sina’
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Hence (1) becomes

cot arcos0+rsin9—;.£~ =0,

‘ in ¢
which agrees with (2).
30. The equation to a straight line passing through the
origin is, by Art. 14,
y= mx.

Put 7 cos 8 for z and rsin 6 for y; the equation then
becomes

rsinf@=mys cosf;
therefore tanf0=m;
therefore 6 = a constant ;

this is therefore the polar equation to a straight line passing
through the origin.

31. We will collect here the different forms of the equa-
tion to a straight line which have been investigated,

“  y=mz+ec, Arts. 14 and 23.
« =constant, or, y =constant, Arts. 15 and 25.

- §+~’7’,-1=o, Arts. 17 and 25.
L zcosa+ysina—p=0, Art. 20.
=%x+q Art. 23.
v zcosa+ycosB—p=0, Art. 26.
z—h_ y—Fk

—l"= n =7, Al't.27.

p=rcos(f0—a), Art. 28.
Arcos0+ Brsin 0+ C=0, Art. 29.
0 = constant, Art. 30.



EXAMPLES. CHAPTER IIL

EXAMPLES.

raw the straight lines represented by the following
ions:

1) y+2x=4; (2) 2y—2=2;

B) y+x=-=2; (4) =—-2y=4;

(5) y+2¢=0; (6) 1=cos(0—%);
(N ==1; ® 6=%;

9) 6=0; (10) é6=1.




CHAPTER IIL
PROBLEMS ON THE STRAIGHT LINE.

32. We proceed to apply the results of the preceding
Articles to the solution of some problems. |

To find the form of the equation to a straight line which
passes through a given point.

Let a,, y, be the co-ordinates of the given point, and
suppose

Y=MEFC verrennriieninennnnnns ree(1)

to represent the straight line. Since the point (z,, ¥,) is on
the straight line, its co-ordinates must satisfy (1) ; hence

By .subtraction,

Y=Y =M (& =T )eeeeeeuiirrnacrennnn. 3);
* this is the required equation.

33. The equation (3) of the preceding Article obviously
represents what is required, namely, a straight line passing
through the point (z,, ). For the equation is of the first
degree in the variables @, y, and therefore, by Art. 16, must
represent some straight line. Also the equation is obviously
satisfied by the values z=ua,, y=y,; that is, the straight
line which the equation represents does pass through the
given point. The constant m is the tangent of the angle
which the straight line makes with the axis of x, and by
giving a suitable value to m we may make the equation (3)
represent any straight line which passes through the assigned
point.

The geometrical meaning of equation (3) is obvious. For
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straight line passing through the given point
any point on the straight line; z, y its co-

N P/

R

|

/ O N T M X

w the ordinates PM, QN; and QR parallel to

gg = tangent PQR

1at is, 'Z’—Z‘=tanBAX=m,

rith equation (3).

t. 32 we eliminated ¢ between the equations (1)

tained m; we may if we please eliminate m

From (2)
m=%"2,

z,

in (1), thus;l/=y1 Sote;
ml .
yx,—xy, +c(x—xz)=0.
on obviously represents a straight line passing
ven point, because it is an equation of the first
atisfied by the values z=2, y = y,.

d the equation to the straight line which passes
sen points.

)¢ the co-ordinates of one given point; x,, 7,
her; suppose the equation to the straight Yine

Y=SME+C eeernennnns feveenrerenes (1).
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Since the straight line passes through (z,, ,) and (,, ¥,),

Yy =ML FCrnrrvrrinnennennnannns (2)
Ya=MEFC evvnvrrrnnnienenienennns (3)

From (1) and (2) by subtraction,
Y=Y =m (@ =) ccerirrinninnnnnns (4).

From (2) and (8) by subtraction,
% —3/1=m(w —w)’

hence m ==1—
1~ T
Substitute the value of m in (4) and we have for the
required equation

y—y,=%{—i—:(w-x,); ................ S (3).

We may also write the equation thus,
@ =) (y—y) = (#-y) @—2) .ccoen. (6).

Some particular cases may here be noted. Suppose y,=y,,
then (6) becomes (z,—x,) (y—y,) =0, therefore y=y,; the
required straight line is thus parallel to the axis of @. Simi-
larly if we suppose z,=z,, then (6) becomes (y,—,) (x—2 )—0
therefore 2= thus the required straight ine 1s paral el to
the axis of y La,stly, suppose the point (z,, y,) to be the
origin; hence %, =0 and y,=0; thus (6) becomes z,y = y2.
The student should illustrate these particular cases by figures.

36. The equation (6) of Art. 35 becomes by reduction

zy—xy, + &y, — 2.y, +xy,— 2,y = 0.

If we compare the expression on the left-hand side of this
equation with the expression in brackets in equation (2) of
Art. 11, we see the onYy difference is.that we have zand y in
the pla.ce of x, and y, respectively. Thus the equation
informs us that the area of the triangle formed by joining
(=, 9), (=, gl), (z,» y;) vanishes, as should evidently be. the
case since the vertex (, y) falls on the base, that is, on the
stralght line joining (z,, ,) to (z,, ¥,).

N\



PARALLEL LINES.

the equation to the straight line which passes
point and divides the straight line joining
oints 1n a given ratio.

the first given point; let (z,, y,), (z,, y,) be
ren points; let the given ratio 1 which the
ing the last two points is to be divided be
; then, by Art. 10, the co-ordinates of the

are

nlw, + nﬂwl nly? + nyyl .
n+n ' n+n
1ation (5) of Art. 35 the equation required is
nl:l/ 2 + 'n,,'l/ 1 __ k

e ok S T
T, + N2, h (@—h);
n,+ n,

=" (319"7") +n, (yl_k)
= e B (o)

the form of the equation to a straight line
to @ given straight line.
tion to the given straight line be

: to the other straight line
Y=MTHC eereernerrrrennereennens (2).

-aight lines represented by (1) and (2)- are
ist have the same inclination to the axis of

m=1m,
ymes

y=mzx+ec. _
¢ remains undetermined since an indefinite
sht lines can be drawn parallel to a given
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39. To determine the co-ordinates of the point of inter-
section of two given straight lines.

Let the equation to one straight line be
Y=MEAC, ceeernnennnnnns assaee 1),

and the equation to the other
: T N (2).

The co-ordinates of the point where the straight lines
intersect must satisfy both equations; we must therefore find
the values of z and y from (1) and (2). Thus

_ G —¢ ’ y=c,m!—c,m‘;
m, —m, my—m,

these are the required oo-ordinates.

40. To find the condition in order that three straight lines
may meet at a point.

Let the equations to the straight lines be respectively
y=mz+c..(1), y=mz+ec,...2), y=maz+c,..(3).

The co-ordinates of the point of intersection of (1) and
(2) are ‘
& =0 = Oy — Gy .
my—m’ m,—m,

X =

If the third straight line passes through the intersection
of the first and second, these values must satisfy (3). Hence
the necessary and sufficient condition is

C,my = clml', ma (01 - GL) +c
»
my = m, my, — m,

that is,
¢,m, = c;m, + oMy — ¢;m, + cm, — ¢,m, =0,
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41. To find the angle between two given strasght lines.
. ¥

= A |° s 3

Let ABC be one straight line and DEC the other; let
the equation to the former be y =mx + ¢, and the equation
to the latter y =mz + ¢,

Then tan ACD =tan (CAX - CDX)

_ tan CAX—tan CDX _ m,—m,
" 1+tan C4AXtan CDX 1+mm,’
From this we may deduce

= 1+m:ms ) .
COSACD—V{(1+mxz) (1+m’s)}’ -
sin 40D = T ™

VL +mf) 1+m,)}
42. To find the form of the equation to a straight line
which 18 perpendicular to a given straight line.

Let y = mz -+ ¢ be the equation to the given straight line,
and y =m'z + ¢ the equation to another straight line, Then
the tangent of the angle between these straight lines is

m—m
1+ mm'*
If these straight lines are perpendicular to each other,

* 14 mm' = 0; therefore m'=_’,_n.,

' .z
Hence y==—4c
m

represents a straight line perpendicular to the straight line
. ‘ y=mz+c.
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43. The result of the last Article may also be obtained
thus.

— o \ —X
Let 4B be the given straight line, so that tan BAX =m.
Let CD be a straight line perpendicular to 4B; then -

mmDaX=—mnb00=-mnBAO=—%.

Hence the equation to CD is
= — ;’a-’; +c.',
where ¢ = 0D,

44. To find the equation to the straight line which passes
through a given point, and 18 perpendicular to a given straight
line.

Let x,, y, be the co-ordinates of the given point, and

' Y=ME+ Covvvrennraninnnnnnnns (1)

the equation to the given straight line. The form of the
equation to a straight line through (z,, y,) is

y4y1=m’(w—wl) ocuonau‘ot..n (2)0
If (2) is perpendicular to (1), we have m'm +1 =0.

Hence the required equation is

1
y=yp=-,@-=)



32 STRAIGHT LINES WHICH MAKE

45. To find the equations to the straight lines which pass
through a given point and make a given angle with a given
straight line.

Y

o /
AN

Let AB be the given straight line; C the given point;
h, k its co-ordinates; B the given angle. Let the equation
to 4B be
y=mzx+c

Suppose CD and CE the two straight lines which can be
drawn through C, each making an angle 8 with AB. Then

_ __m+tanpB
= - - m—tanf
tan CEX = — tan OEA__tan(’B—BAX)_1+mtanB'
Hence the equation to CD is
+ ta:
y—k= =)
and the equation to CE is
_ m—tanB
yfk_1+ﬂ&tan/3(w—h)'

46, The following particular cases of the preceding results
may be noted.

1) Suipose m=0; then the given straight line is
parallel to the axis of «. The required equations then are

y—k=tanB(x—h), and y — k==~ tan B (¢ — k).
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(2) Suppose m=c0; then the given straight line is
parallel to the axis of y And since

1
m+ tan B 1+—tanB

1- mtan,B

ta.nB

we have when m =, and therefore i =0, for the equation
1

to CD, y—k=—m(x—h)=—-cot,8(w—h)..
Similarly the equation to CE becomes y—k = cot B(z—£4).
(8) Suppose m =tan'8. In this case the equation to CD

tan 8 .

m (w '—h), that 18, y—k =tan 2,3 (a:—h).
The equation to CE becomes y—k=0, so that CE is

parallel to the axis of .

becomes y—k =

(4) Suppose m=cotB. The equation to O'D may be
written in the form (y — %) (1—m tan 8)=(m + tan 8) (a: k),
and we see that when m =cot 3 the left-hand side is zero;
thus the required equation is then z — 42 =0.

The equation to CE becomes y — k= M

@—h)
_cos’B—sin’B @
" 2cosBsin B
(5) Suppose m=—tanB. Then the equation to CD
becomes y —k=0; and the equation to CE becomes

%@_h}:_mzﬁ =4

(6) Suppose m=—cotB. Then the equation to CD
$an B~ OB (5 — ) = — cot 28 (& — B).

— k) =cot 28 (z — k).

y—k=

becomes y —k =

The équa.tion to OF may be written in the form
(y—Fk) (1 +m tan B) = (m — tan B) (z — &),
T. C. 8. 3
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and we see that when m =—cot 8 the left-hand member 1is
zero; thus the required equation is then 2 —4 =0.

Suppose 8 = g The equation to CD may be written
—k=

mecotB+1
y cot B —m (&~ ).

T we have cot B=0; thus the equation

aen /3=2

y—k=— 1 (@—h)

rly the equation to CE takes the same form ; and thus
sult agrees with that of Art. 44.

2 have discussed these particular cases as an example of
anner in which the student should test his comprehen-
’ the subject by applying the general formulz to special
les.. He will find it useful to illustrate these cases by

To find the length of the perpendicular drawn from
1 point upon-a given straight line.

t AB be the given straight line; D the given point;
s co-ordinates. Let the equation to 4B be
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The equation to the straight line through D perpendicular
to 4B is, by Art. 44,

1
y—k=—-a(a:—h) ..................... 2.
Let #,, y, be the co-ordinates of E; then, by Art. 9,
‘ DE* = (z,— h)* + (y, — k)* ..... cececenes .(3).

It remains then to substitute for #, and y, their values in
(3). Now, since z,, y, are the co-ordinates of E, which is
the point where (1) and (2) meet, we have

1
Yy, =mz, +¢, and yx_k=-;b(‘”x_h);

1 mk + kh —me
therefore mw,+c=7f—-;l (z,—h), and hET e )
k_mk—m’h—mc

thus x,—h= 15w

1

=3 ;"m, (k= mh —¢).

Also ' y‘_k=_l(¢_],)=_'ihi°;k;

m 14+m?
therefore by (3) DE*
2

. om —np_ay (E=mh—c)' (k—mh—c)
=3 (f—mh —c)* + A+my — T4m
k—mh—c

Hence | DE = m,—) .

The radical in the denominator may be taken with the
positive or negative sign, according as the numerator is posi-
tive or negative, so as to give for DE a positive value.

‘We may also obtain the value of DE thus; draw the ordi-
nate DM meeting the straight line 4B at H; then

DE=DH sin DHE = DH cos HAM.
Now OM=h; therefore HM =mh + ¢, and DM =F;
therefore DH =k —mh—c.

. 1
Also tan HAM =m; theretZre c;s HAM= Ty
—mh—c
therefore DE = VAT Trm)

3—2
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TT---- if on the straight line y —mz—c=0 a perpen-
drawn from the point (h, k) and also a per-
from the point (h,, k,), the ratio of the first
lar to the second is equal to the numerical ratio
,— ¢ to ky—mh,—c.
) find the length of the straight line drawn from a
wm @ given direction to meet a given straight line.

k) be the given point; and suppose a straight line
1 this point at an inclination a to the axis of z to
traight line

Az 4+ By+ C=0 .ccvurerrriiennnnnnes (1).
se the required length; =, y, the co-ordinates of

rhere the straight line drawn from (k, k) meets (1);
rt. 27,

@, —h=rcosa, y,—k=rsna........ - (2).

s Yy is on (1),
fore A (h+r cosa)+ B(k+rsina)+ C=0;
Ah+ Bk + C

therefore r=— m.

1 this Chapter we have used equations of the form

to represent straight lines. The student may
mself by solving the problems by means of the
1etrical forms of the equation to a straight line,

+ C=0, §+%—1= 0, zcosa+ysina—p=0.
sults of course can be easily compared with those we

aed. For example, if in Art. 47 we represent the
zht line by the equation A2+ By+C'= 0, the result

1ould coincide with the value of ]‘;-(-17—'_:_’1;:; when for
!
) - % and — % _for ¢; that is, the resglt must be
Ak + Bk+C

V(Aa"'bz) °
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Similarly, if the given straight line be represented by
zcosa+ysina—p=0,
we shall find for the perpendicular on it from (A, %)
4 (hcosa+ ksina—p).
Thus if the equation to a straight line be in the form
zcosa+ysina—p=0,

the length of the perpendicular drawn from a point on this
straight line is the numerical value of the expression on the
k;’);t-hand stde of this equation, when for x and y are.substituted
the co-ordinates of the given point. This result is of such great
importance that we shall proceed to examine it more closely.

50. We may however previously observe that if the equa-
tion to a straight line be given in any form, we can immedi-
ately transform it so that it may be expressed in terms of the
length of the perpendicular from the origin and the inclination
of this perpendicular to the axis of z. For example, suppose
the equation to be

2x+3y+4=0.

Change the sign of eve;'y term so that the last term may be
negative; thus the equation becomes '

-2 —-3y—4=0.
Divide by y/(2°+ 8%); thus
_2 3y _ 4 _,

NIERRVIERV T e
This is of the form

zcosa+ysina—p=0,

and cos a=——2— sina=——3— p=i .
Vi3’ Vi3’ P=yis

In this example « is an angle lying between 7 and §27_r .

Any other example may be treated in a similar manner,
the rule being the following. Collect the terms on one side,
and if necessary, change the signs so that the equation may
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be in the form Az + By — C=0, where C is positive ; then
divide by #/(4*+ B*); thus the equation becomes
Az By Cc
@+ 5) @ B) T @+ B)
this is of the required form, and

_ 4 _B - C
V& BY Y@ By P i@ By

Thus every equation representing a straight line may be
brought to the form @cosa+ysina—p=0, where p is a
positive quantity, unless the straight line passes through the
origin, and then p=0.

When we use the equation X cosa +y sina —p= 0 we shall
always suppose p positive. '

cos o = sina=

51. The straight line whose equation is
zcosa+ysina—p=0
might be called “the straight line (p, a),” since the constants
 and a determine the straight line ; but when there is no risk
of confounding it with another straight line, it may be more
shortly called “the straight line a,” and the equation may be
expressed shortly, thus, “a=0."

We shall now give another investigation of the expression
for the length of the perpendicular from a given point on the
straight line (p, a).

Let AB represent the straight line (p, a), O the origin, P
the point (z, y), so that P and O are on opposite sides of AB.

~.

" P
\\\ o

B




.LENGTH OF A PERPENDICULAR. 39

Draw 00, PZ perpendicular to 4B, and PM parallel to OY;
through M draw a straight line parallel to 4B, meeting 0Q
and PZ, produced if necessary, at ¢ and Z' respectively.

Then 0Q = OMcosa=azcosa; PZ = PMsina=ysina;

PZ=0Q +PZ' — 0Q=xzcosa+ysina—p.

If P and O be on the same side of AB we shall obtain for

the length of the perpendicular
p—xcosa—ysina

Tt will be found that these results will hold for all varieties
of the figure.

52. Or we may proceed as follows.

Let zcosa+ysina—p=0...ccccccerrrurnnnn. (€))
be the equation to a straight line, and let 2', ' be the co-
ordinates of the point from which a perpendicular is drawn
upon the straight line; it is required to find the length of
this perpendicular. The equation to any straight line which

is parallel to (1) and on the same side of the origin, may be
written thus,

zcosa+ysina—p' =0......... A (2),

where p’ is the perpendicular from the origin upon this straight
Jdine. If this straight line pass through the point (, ¥'), we
must have

' cosa+ty sina—p =0;

therefore p'=a cosa+y sira

The length of the perpendicular from (2, ') on (1) will be
p’ —p if the point and the origin are on different sides of the
straight line, and p — p’ if they are on the same side ; that is,

' cosa+y sina—p iy
in the former case, and in the latter case
p—a cosa—y sina twdews

If the straight line parallel to (1) be on the oppositc side
of the origin, its equation will be

" @cos (m+a) + ysin (7 4a) —p' =0,
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where p’ is the length of the perpendicular from the origin
upon it. If this straight line pass through the point (z', ')
we must have

a’cosa+y sina+p =0;
therefore p'=—2 cosa—y sina.

The length of the perpendicular from (z’, 3) on (1) will be
the sum of p" and p, that is,

p—a' cosa—y sina.
We may now suppress the accents on # and y, and we
have the same conclusion as before.

53. Thus the length of the perpendicular from the point
(x, y) on the straight line

_ xcosa+ysina—p=0
is zcosa+ysina—p, or p—axcosa—ysina,

according as the point (z, %) and the origin are on different
sides of the straight line or on the same side of it. '

The student will perceive that we speak here of the point
(z, y) and the straight line @ cos a +  sin a — p = 0, and that
we use the same symbols z, ¥, in speaking of the point and of
the straight line. But we do not mean that the point (z, y)
is to be on the straight line, that is, we do not mean the  and
y which are co-ordinates of the point (z, %) to have the same
values as they have for any point in the straight line

zcosa+ysina—p=0.

We might use ', 5’ as co-ordinates of the point to prevent
confusion, but it is found convenient to adopt the notation
here used, as the advantages more than compensate for the
increased attention which is required from the student in dis-
tinguishing the different meanings of the symbols.

54. We have in Art. 51 left the student to convince him-
self by drawing the figures in different ways, that the length
of the perpendicular from the point (z, %) on the straight line
(p, @) is always + (x cos @ +y sin & — p), the upper or lower
sign being taken according as (z, y) and the origin are on
different sides, or on the same side of the straight line (p, a):

e may also arrive at the result imperfectly, thus. We may
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first. shew, as in Art. 47, that the length of the perpen-
dicular must always be equal to one of the two expressions
+ (z cosa + y sina — p), and may then proceed to distinguish
the cases. Now the expression # cosa+ y sin a —p is nega-
tive when the point (z, y) is the origin, because it becomes
then —p; also this expression cannot change its sign so
long as (z, y) is taken on the same side of the straight line
(p, @) as the origin because it cannot change its sign without
passing through the value zero, and it cannot vanish until the
point (z, y) is on the straight line. Hence the expression re-
mains negative so long as (z, y) is on the same side of the
straight line (p, a) as the origin. Similarly, if the expression
is positive when the point (z, y) has any one position on the
other side of the straight line (1/ , a), it will continue positive
80 long as (z, y) is on that side of the straight line; and it
may be easily shewn that the expression can be made posi-
tive by suitable values of # and ¥ ; hence it us always positive
while (z, y) is on the opposite side from the origin. We call
this an imperfect method, because the sentence in italics on
which the method depends, has probably not sufficiently at-
tracted the student’s attention up to this period of his studies
to produce perfect conviction.

55. If the equation to a straight line be z cos a+y sina=0,
so that p =0, we shall still have + (zcosa+ysina) as the
length of the perpendicular from the point (2, y) on it. We
may discriminate as follows: let the equation be so written
that the coefficient of y is positive; then for points on the same
side of the straight line as the positive part of the axis of y,
the perpendicular is # cos a + y sin a; for points on the other
side it 18 — (zcosa+ysina). This is easily shewn by com-
paring a few figures, or as in Art. 54.

Oblique Awes.

56. The results in Arts. 32—40 hold whether the axes
are rectangular or oblique; in Art. 33, however, m must have
that meaning which is required when the axes are oblique.

To find the angle between two straight lines referred to
oblique axes. »

Let o be the angle between the axes; y =mgx+c, the
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equation to one straight line; y=m+c, the equation to the
other. Let a, a, be the angles which ' these straight lines
make with the axis of z; and B the angle between them.

By Art. 24

m, sin @ m, sin @
tang=-—=>"————; tanag,= .
14 m, cosw 1+ m, cos
m, 8in @ m, sin ®
1+m,cosw  1+m, cose
Hence tanB or tan (2, — a,)—
mm, sin’ @

(1+m cos a)) (1+ m, cos w)

(m,—m)sinw
1+(m + m,) cos w + mm,’

Hence the condition that the straight lines may be at right
angles is
1+ (m, +m,) cos @ + mm,= 0.

57.  To find the length of the perpendwular drawn from
a given point on a straight line.

We shall proceed as in the latter part of Art. 47; the
student may also obtain the result by the method in the
former part of that Article.

D

B

— /0 M X
Let 4B be the given straight line} D the given point ;
h, k its co-ordinates.

Let the equation to 4B be y=mz+c.
Draw DHM parallel to OY, and DE perpendicular to 4B;

then
DE = DH sin DHE,
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Now DH=DM—-HM=k— (mh+c)=Fk—mh—ec.
Let BAX=a, then DHE or AHM=w —a,

sina
and m) = m (Al't. 24!),
. sin a sin @
—a) = = . 24);
therefore sin (o — a) m = V(+2m cos ot ) (Art. 249 ;

) _ (k—mh—c)sinw
therefore DE= V(LT 2m cos @+ m)"

If a straight line be drawn from D to meet AB at an
angle B, its length will be DE cosec 8, and will therefore be
known since DE is known.

If the equation to a straight line be in the form given in
Art. 26, namely, « cas a+ ycos 8 — p =0, the length of the
perpendicular on it from the point (z’, ') will be

+ (@’ cosa+z cos B—p).

This may be deduced from the preceding expression, or it
may be obtained in the manner of Art. 51.

Polar Co-ordinates.

58. To find the polar equation to the straight line which
passes through two given points.

Let r,, 6, be the' co-ordinates of one point; and 7, 6,
those of the other; and suppose the equation to the straight
line

rcos (0 —a)=p,
that is, rcosfcosa+rsinfsina=p.....cccueennnen. 1).

Since this straight line passes through the two points, we
have

r,co86,cos a+r sin 6, sina=p........ verevesees @),
r,co86,co8a+r,sinf,sina=p.....ccoeeunnenne. (3).
From (1) and (2)
(r cos @ —r, cos 8,) cos a + (r sin —r, 8in'd,)sin & = 0...(4).
From (2) and (3)
- (r,co8 0, — 1, cos 0,) cos a + (r,sin O, — r, sin G,) sin a =0...(3),
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rcos @—r, cos @ rsin §—r sin 6
therefore 1 L=
r,c080,—7r,cos0, r sinf —rsinf,"

After reduction we obtain

rr,sin (0, — 6) +rr, sin (0,—6,) +r,;rsin (0 —6,) = 0...(6).

This equation has a simple geometrical interpretation; for
if we draw a figure and take O for the origin and 4, B, P for
the points (r,, 0,), (r,, 6,), (r, 8), respectively, we see that
equation (6) is the expression of the fact that one of the tri-
angles 0AP, OBP, OAB, is equal in area to the sum of the
other two.

59. We have seen that a straight line is the locus of an
equation of the first degree; as we proceed it will appear that
if an equation be of a degree higher than the first, the cor-
responding locus will be generally some curve ; we may notice
here some exceptional cases. '

Suppose the equation

~ & —daz +4a’+y'=0
be proposed ; this equation may be written
) (#—2a)’+ 4" =0.

Hence we see that the only solution is

y=0, 2= 2a.

Thus the corresponding locus consists only of a single
point on the axis of # at a distance 2a from the origin.

Again, suppose the equation to be

Z+y+1=0.

No real values of z and y will satisfy this equation; in
this case then there is no corresponding locus, or as it is
usually expressed, the locus is vmpossible. Thus, the locus
corresponding to a given equation may reduce to a single
‘point, or it may be impossible.

60. We have seen that the equation to a single straight
line is always of the first degree; an equation of a higher
degree than the first may however represent a locus consist-
ing of two or more straight lines. For example, suppose

therefore y = ......... (2), or y=—=.cecurunn. 3).
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If the co-ordinates of a point satisfy either (2) or (3), they
will satisfy (1); that is, every point which is comprised in
the locus (2) is comprised in (1), and every point which is
comprised in (3) is also comprised in (1). Hence (1) repre-
sents fwo straight lines which pass through the origin, and
make respectively angles of 45° and 135° with the axis of x.

Again take the general equation of the second degree be-
tween two variables »

ax’ +bxy +cy’ +de+ey+f=0;
and let us determine when it represents two straight lines.
We have
¢y + (b +e) y + az’ +-dx + f=0.
Hence considering this as a quadratic equation in %, and
solving in the usual way we obtain

=_b:c+ V{(bx + )* — 4c (az® + dz + f)}
2¢ 2¢ :

The expression under the radical sign is
(* — 4ac) & + 2 (be — 2cd) @ + €' — 4cf';

if this expression is an exact square with respect to z it is
obvious that the proposed equation of the second degree
breaks up into two equations of the first degree between
« and y, and so represents two straight lines.

The condition which is necessary and sufficient to ensure
that the expression under the radical sign is a perfect square
with respect to « is, by Algebra, Chapter xXii,

(be — 20d)* = (B* — 4ac) (& — 4cf).

61. An equation which only involves one of the varia--
bles, represents a series of straight lines parallel to one of the
axes. Thus, if there be an equation f(x) =0, we obtain by
solving it a series of values for z, as z =a,, z=a,,...... and
each of these equations represents a straight line parallel to
the axis of y. Similarly f(y) =0 represents a series of
straight lines parallel to the axis of .

g

An equation of the form f (£)=0 represents a series of
straight lines passing through the origin; for by solving the
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equation we obtain a series of values for % , a.s% =m, % =m,,...
and each of these equations represenjs a straight line passing
through the origin. Of course if an equation f(z)=0,

S(®=0, or f (%) =0 have no real roots, the corresponding

locus is impossible.
The equation Ay®+ Bxy + Oz’ =0 may be put in the form
2
A (3) +BZy0=0.
z x

Since this is a quadratic in % we obtain two values for it,

suppose g=m‘ and %=m,; hence the equation generally

represents two straight lines passing through the origin. If
B’ be less than 44 C, then m, and m, are impossible, and the
only solution of the given equation 18 =0, y=0; that is,
the locus is a single point, namely, the origin.

62. It is obvious that if the locus represented by an
equation f (2, y) =0 passes through the origin, the values
=0, y =0 must satisfy the equation. We can thus imme-
diately determine by inspection whether a proposed locus
passes through the origin or not.

63. In Art. 39 we determined the co-ordinates of the
point of intersection of two given straight lines: the pro-
position may obviously be generalised. Let f,(x, y) =0,
- f,(x, y) =0, represent two curves, then the co-ordinates of
the points where they meet will be determined by solving
these simultaneous equations. It may be shewn that if one
equation be of the m*™ degree and the other of the n*, the
number of common points cannot exceed mn. (See Theory
of Equations, Chapter XX.)

64. We will exemplify the Articles of this Chapter by
applying them to demonstrate some properties of a triangle.

The straight lines drawn from the angles of a triangle to
the middle povnts of the opposite sides meet at a point.
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Let ABC be a tna.nO'le, D, E, F the middle points of the
sides ; take 4 for the origin, AB for the direction of the axis

F B p.<

of z, and a stralfht hne through 4 at right angles to AB for
the axis of et AB=a,and let &, 4 be the co-ordinates
of C. Slnce Dis the mlddle point of CB, the abscissa of D is

3 (' + a) and its ordinate y (Art 10) ; since X is the mlddle

point of AC, the abscissa of Z i is 5 a.nd its ordinate ¥ 5 sincé

F is the middle point of 4B, its abscissa is % and its ordi-
nate zero. Hence by Art. 35,
. s y'w' .
the equation to 4D is y = Zqar (1);

the equation to BE is y = y—,(ﬁ_—%ai) .......... ®);
y (2z—a)

the equation to CF'is y = o — g (3).

To find the point of intersection of (2) and (3) we put
Y (e—a)_y (2w—a)
' —2a 22 —a

therefore (x—a) (22’ — @) = (2z —a) (& — 2a);

therefore  3axz =a (¢’ + a) ; therefore z =1} (a: + a).

Substitute this value of # in (2) and we find y = §

’

‘We have thus determined the co-ordinates of the point
of intersection of (2) and (3); moreover we see that these
values satisfy (1); hence the straight line represented by (1)
passes through the intersection of the straight lines repre-
gented by (2) and (3), which demonstrates the proposition.
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The straight lines drawn from the angles of a triangle
perpendicular to the opposite sides meet at a point.

equation to BC is (Art. 35)
y=t-a;

he equation to the straight line through 4 perpen-
to BC is (Art. 44)

equation to AC is y =%w; hence the equation to
ight line through B perpendicular to 4C is

/

straight line through C perpendicular to 4B will be
to the axis of y, and its equation will be (Art. 15)

=8 cerererecruennnsnnnrananans (6).
- at the point of intersection of (5) and (6) we have

4
z=2x, =-:£;-,(w'—a);

hese values satisfy (4), the straight line represented
passes through the intersection of the straight lines
ited by (5) and (6).
straight lines drawn through the middle points of the
"a triangle respectively at right angles to those sides
a point.
equation to the straight line through D at right
o BCis
_Y__a—a _a+w’) .
y-3 7 (:v g ) et woen (7).

equation to the straight line through E at right
o U4 is :
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The equation to the straight line through F at right angles:
to ABis

Now at the point of intersection of (8) and (9) we have

—2, =Yg,

=3 -’/‘E‘y"(z'2 ’
these values satisfy (7); hence the straight lines represented
by (7), (8), and (9), meet at a point.

Let us denote by P the point of intersection of the three
straight lines in the first proposition, by @ the point of inter-
section of the three straight lines in the second proposition,
and by R the point of intersection of the three straight lines
in the third proposition; we will now shew that P, ¢, and B
lie in one straight line. - The co-ordinates

’

of Parex =} (2 +a), y=2%

3,;
« 4
of Q are z =, y=;—;(a-w’);
' a _Y_4(a—d)
ofRarez='2, =3 3y

Hence the equation to the straight line passing through
Pand Qis

& ey Y
__'=3/'(a “) 3@-‘“‘“) ......... (10).
Y3 d—f@ta\ 3 .

In this equation put z= g , then

<

Yy 8 d\__ (T, g _.z'}.
Y3 1@7—a) (6 3) *{y'(“ %) =33
d@—2a) ¥ y_y _4(a=2)

2yl +3+6_2 2y/‘_'.

Hence the point R is on the straight line represented by
(10), for the co-ordinates of R satisfy (10).

T.C. S. i 4

therefore y=—.
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1. Find the equations-to the straight lines' which pass
through the following pairs-of peints:

(1) (0,1),and (I, —=1).  (2) (2, 83), and (2, 4).
() (1,1),and(—2,—2). (4 (0, —a), and (0, —b).

2. Find the equations to the straight lines which pass
through the point (4, 4) and are inclined at an angle of 45°
to the line y = 2z.

8. Find the equations to the straight lines which pass
through the point (0, 1), and are inclined at an angle of 30°
to the line y+2z=2.

4. Find the equations to the straight lines which
through the origin and are inclined at an angle of 45° to the
straight line z = 2.

5. Find the equations to the straight lines which pass
through the origin and are inclined at an angle of 60° to the
straight line z+y4/3=1.

6. TFind the angle between the straight lines 2+ y=1,
y=x+ 2; also find the co-ordinates of the point of intersec-
tion.

7. TFind the angle between the straight lines 2+y4/3=0
and z—y4/3=2. .

8. Find the angle between +3y=1and 2—2y=1,

9. Find the equations to the straight lines passing
through a given point in the axis of #, and making an angle
of 45° with the axis of x. '

. 10. Find the equation to the straight line which passes
through the origin and is perpendicular to the straight line
z+y=2.

11. Find the perpendicular distance of the point (1, — 2)
from the straight line 2+ y—3=0.

12. Find the length of the perpendicular from the point

(a, b) on the straight line §+ % =1
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13. Find the wordﬁates of the point of intersection of

e &Y ., Y_
the straight lines E+b_1 and 5ta 1L

14. TFind the equation to the straight line which passes
through the point (a, b), and through the intersection of the

ight lines 2+ 7 = ry¥-
straight lmesa+b 1 and +5 1

b
15. Shew what loci are represented by the equations:
Q) o+y'=0, @) o-y'=0,
@ @+ay=0, #) ay=0,

(B3) 2+y'+d'=0, (6) z(y—a)=0.
16. Interpret
(1) @-a)@-b=0,
@ (@-af+@y-b7=0,
(B (@—y+a)+(@+y—a)=0.
17. What straight lines are represented by the equation
¥ — 4oy + 32" =07

18. Shew that 3y"— 8xy — 32* + 30z — 27 = 0 represents
two straight lines at right angles to one another.

19. Find the equations to the diagonals of the four-sided
figure, the sides of which are represented by the equations

z=4, y=5 y=a y=2u

20. ABCDEF is a regular hexagon; take 4 for the
origin, AB as axis of #, and a straight line through 4 at
right angles to 4B as axis of y; find the equations to all the
straight lines joining the angular points of the hexagon.

21. Given the co-ordinates of the angular points of a
triangle, find the equation to the straight line which joins the
middle points of two sides.

22. Find the tangent of the angle between the straight
lines

y—me=0 and my+x=0,
when referred to oblique axes.

sre eahmn
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Shew that whether the axes be rectangular or oblique
uight lines y + =0 and y — =0 are at right angles.

Given the lengths of two sides of a -parallelogram
: angle between them, write-down the equations to the
gonals and find the angle between them ; taking one
:orners as origin, and the two sides which meet at that
a8 axes. : :

In the figure to Art. 75, take B4 and BC as the axes
ad ¥y ; suppose BA=a, BC=c; and let %, k be the
rates of D; then form the equations to 4AC, BD,

With the notation of the preceding Example, find
>rdinates of the middle point of 4C and those of the
point of BD, and form the equation to the straight
ising through these two points. '

‘With the same notation find the co-ordinates of the
point of EF, and thus shew that this point lies on
ught line joining the middle points of 4 C and BD.

If§+ v = 1 and §+%-, =1 be the equations to two

; lines, which with the co-ordinate axes (rectangular or
) contain equal areas, and &/, ' be the co-ordinates of
ot of their intersection ; shew that

y_b-=V%

Z d-a’
What points on the axis of  are at a perpendicular

> a from the straight line §+% =11

Form the equation for determining the abscissa of a
o the straight line of which the equation is g+ %’ =],

listance from a given point (a, B) shall be equal to a
;raight line c. Shew that there are in general two such
and in the particular case in which those points coincide
¢ (a*+ b") = (aB + ba — abd)".
Find the tangent of the angle between the two straight
presented by the equation Ay*+ Bzy+ Cz'=0.
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32. Find the points of intersection of the straight lines
z242y—~5=0, 204+y—T7=0, and y—2z—1=0; and shew

that the area of the triangle formed by them is g

33. The area of the triangle formed by the straight lines
y=ztana, y=xztanB, y=atany+e,
¢ sin(a—}p) cos'y
2 sin (@ — ) sin (B —4) "
34. Given the equations to two parallel straight lines,
find the distance between them.

35. Determine the angle between the straight lines

g=4scos€+3 sin 0, g=3 cos 0 — 4 sin 6.

36. Interpret F(f)=0; for example, sin 36 = 0.

37. If the axes be inclined at an angle o, the condition
that the straight lines 42+ By+ C=0, A'z+By+ (' =0,
may be ‘equally inclinéd to-the axis of # in opposite direc-
tions is »

B
atz= 2 cos .

38. In the preceding Example, if besides being equally
inclined to the axis of « the straight lines pass through the
origin and are perpendicular to one another, the equation to
the straight lines is #* + 2zy cos ® + ¥ cos 2w = 0.

39. Two parallel straight lines are drawn at an inclina-
tion 6 to the axis of « through the two points whose co-ordi-
nates are a, b, and a/, &'; shew that the distance between
these straight lines is (b'—3) cos @ — (¢’ —a)sin 6. Hence
determine the rectangle whose sides pass through four given
points, and whose area is given. E

40. A square is moved so as always to have the two
extremities of one of its diagonals ugon two fixed straight
lines at right angles to each other in the plane of the square;
shew that the extremities of the other diagonal will at the
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same time move upon two other fixed straight lines at right
angles to each other.

41. AB and BC are two straight lines at right angles to
each other, 4 is a fixed point, B moves along a given straight
litp% and 4B to BC is a given ratio; determine the locus
o .

42. OX and OY are fixed straight lines meeting at any
angle; a straight line of given length slides along 0X, and
another straight line of given length slides along OY. Find
the locus of a point which is so taken that the sum of the
areas formed by joining it to the ends of the moving straight
lines is constant. »

43. Shew that the straight lines FC, KB, AL, in the
figure to Euclid 1. 47, meet at a point.

44. If on the sides of a triangle as diagonals, parallelo-
grams be described, having their sides parallel to two given
straight lines, the other diagonals of the parallelograms will
meet at a point. ’

45. If from a fixed point O a straight line be drawn
OABCD... meeting at 4, B, C, D,... any given fixed straight
lines in one plane, and if

1 -1 1 1
ox~oa*toB*o0ot
X being a point in 04, the locus of X is a straight line.

46. Shew that the area of the triangle contained by the
axis of y and the straight lines y =mz + ¢, y=me +c,, is
(O, - cx)’ .

. 2 (mn - mx) .

47. Determine the area of the triangle contained by the

straight lines y =mx+c, y=mmx + ¢, y=mz+c,

48. The area of the triangle formed by the three straight

lines y=ax—%£, y=bx—a—2°, y=cx——, is

2
(@a=8)(d—c)(c—a) )
8
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CHAPTER 1V.

STRAIGHT LINE CONTINUED.

65. WE have seen that each of the equations
Adz+ By+ C=0, A'z+ B'y+C =0,

represents a straight line. We will now interpret the equa-
tion :
Az+ By+ C+A(4d'z+By+0')=0...... 1),

where ) is some constant quantity.

_ L Equation (1) must represent some straight line, because
it is of the first degree in the variables z, y. (Art. 16.)

II. The straight line represented by (1) passes through
the intersection of the straight lines represented by °

Az + By + C=0..cuueeennenneenn.n. 2),
Az+ By+C'=0..ccccerurunrinnnnen. (3).

For the values of # and y which satisfy simultaneously (2)
and (3) will obviously satisfy (1); that is, the point at which
(2) and (3) intersect lies on (1). B '

III. By giving a suitable value to the constant \ the
uation (1) may be made to represent any straight line
which passes through the intersection of (2) and (3).

For let «,,y, denote the co-ordinates of the point of inter-
section of (2) and (3); suppose any straight line drawn through
this point, and let z,, y, be the co-ordinates of another point
in it. Now we have already shewn in IL that the straight
line (1) passes through (z,, y,); we have therefore only to
shew that by giving a suitagfe value to A the straight line
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n be made to pass through (z,, y,), because two straight
which have two common points must coincide. Substi-
s Y, for @ and y respectively in (1), and determine A so
satisfy the equation. Thus

Az, + By, + C

Az, +By+ C"

ow use this value of A in (1) ; then the equation

' Az, + By, +C , ,, n_

sents a straight line passing through (z,, ,) and (z,, ,).
Te have thus shewn that by giving a suitable value to A,
:quation (1) will represent any straight line passing
gqb the intersection of (2) and (3).

A=~

2

3. The preceding Article is very important, and com-
y presents difficulties to beginners. ’.l!l)xoe student should
ave it until he is thoroughly familiar with the three
sitions which are contained in it. The first proposition
7ious. To demonstrate the second proposition the student
if he pleases, actually find the values of z and y which
y simultaneously Az+ By+ C=0, and 4'z+ B'y+ C'=0,
ronvince himself, by substituting these values, that they
itisfy Az + By + C+A(4d'2+ By+ (') =0. There is,
ver, no necessity for solving the first equations, because
svident that values of  and y which make Az+ By + C
A'z+ B'y+ C’ vanish simultaneously must also make
By + C+\(A'z+ B'y+ C’) vanish, because they make
of the two members of the expression vanish. The third
sition of the preceding Article is usually the most dif-
: the student is apt to think it needs no demonstration.
ay be obvious, however, that by giving different values
different straight lines are represented, and that we can
obtain as many straight lines as we please, but this does
hew that we can by a suitable value of A in (1) represent
traight line passing through the intersection of (2) and (3).

‘'or example, if the straight lines (2) and (3) be DSE and
-respectively, 1t might have happened that all the straight -
represented by (1) fell within the angle #'SD and none
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within #SE. It requires to be demonstrated then that by
F| /

]
e

" giving to A a suitable value in (1) we can obtain the equation
to any straight line through 8.

67. It is often convenient to denote by a single symbel
the expression which we equate to zero in our investigations
in this subject; for example, in Art. 51 we have used the
symbol « as an abbreviation for zcosa+ysina—p. In
like manner we may denote such expressions as 4z + By + C,

y—mx—c, g-}-%-—l,... by single symbols, a8 %, v,... ¥...

Now it will be seen that the demonstration in Art. 65 applies
to any form of the equation te a straight line as well as to
the form Az + By + (=0 which we have used. Hence the
result may be enunciated thus: if u=0 and v=0 be the
equations to two straight lines, and A a constant quantity,
the equation u + Av =0 will represent a straight line passing
through the intersection of the two straight lines; and by
giving a suitable value to A, the equation will represent any
straight line passing through the intersection of the two
straight lines.

68. If u=0and v=0 be the equations to two straight
lines, then as we have shewn, %+ Av=0 will represent a
straight line passing through their intersection ; it is sometimes
convenient to use the more symmetrical form lu + mv =0,
where ! and m are both constants. It is obvious that what has
been said respecting the first form applies to the second ; in

fact the second is deducible from the first by writing %’-’ for A.
It must be remembered throughout this Chapter that § m,
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... A,... are constants, though for shortness we may omit to
state it specially in every Article.

69. Similarly if u=0, v=0, w=0, be the equations to
three straight lines, and [, m, n be constants, the equation
ltmy+rnw=0....cccceevvueenenen. (1)

will represent a straight line. Moreover, by giving suitable
values to /, m, » we may in general make this equation re-
present any straight line whatsoever. For suppose we wish
this equation to represent the straight line passing through
(x,, y,) and (=,,y,). Let u, v, w, denote the values of w, v,
‘w respectively when we put 2, for z and y, for y; and let u,,
?,, W, be the respective values when #, and 7, are put for x

and y respectively. Then determine the values of ? and ?

from the equations lu, + mbl +nw,=0 and lu,+ mv,+ nw,=0;
m_K

i N
in the equation u + %‘ v+ %" w=0, and we obtain

suppose we thus find and %’ = %; substitute these values

u+£v+§
which represénts the straight line passing through the points
'(‘”1’ yl) and (a:,, 3/3)' '
" 'We have said above that the equation (1) can in general

be made to represent any straight line, because there are
‘exceptions which we now proceed to. notice.

w=0, or Au+uv+rw=0,

‘When the straight lines represented by v =0, v=0, and
w =0 meet at a point, the equation (1) represents a straight
line which necessarily passes through that point. For since
the three given straight lines meet at a point, %, v, and w
vanish simultaneously at that point; therefore lu + mv+ nw
‘also vanishes at that point, so that the straight line repre-
sented by equation (1) passes through that point.

‘When the three given straight lines are parallel the equa-
‘tions ¥ =0, v=0, w=0 will be of the forms

« Aw+By+ 0,=0, Az+By+ C,=0, Az+ By+ C,=0,
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and thus equation (1) may be reduced to
10, +mC,+nC, _
l+m+n

and this equation represents a straight line parallel to the
given straight lines.

Az + By + 0,

Thus if the three given straight lines meet at a point or
are parallel, equation (1) will not represent any straight line ;
for the straight line represented by equation (1), in the former
‘case passes through the point at which the given straight
lines meet, and in the latter case is parallel to the given
straight lines.

‘We may shew that there is no other exception. For the
general investigation is always conclusive except when A, u,
and v all vanish, that is, when

vw,—vw, =0, wu—wu =0 uv,—upy,=0.... 2).

We shall now shew that when equations (2) are satisfied,
the three given straight lines either all meet at a point or are
parallel.

First suppose that the points (z,, 7,) and (z,, y,) are not
on any of the three given straight lines; so that none of the
quantities u,, v,, w,, U, v,, w, Vanish.

From the first of equations (2) we have % = :%; hence by

Art. 47 it follows that the ratio of the per;)endfcula.rs from
(=, ¥,) and (,, y,) on the straight line v =0, is the same as
the ratio of the perpendiculars from the same points on the
straight line w=0. Hence it will follow geometrically either
that the straight lines v =0 and w =0 are both parallel to the
straight line joining (z,, %,) and (z,, y,), or else that these three
straight lines meet at a point. Similar results follow from the
second of equations (2), and from the third of equations (2).
Hence in this case if equations (2) are satisfied, the three
given straight lines either meet at a point or are parallel.

Next suppose that one of the two given points is situ-
ated on one of the three given straight lines; suppose for
example that w, =0. Then from the first of equations (2) it
follows that either »,=0 or w,=0. Suppose we take v;,=0.
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Then from the second and third of equations (2) we deduce
either that u, =0 or else that w, =0 and v,=0; in the former
case the three given straight lines all pass through the point
(x,, y,) ; in the latter case the straight lines =0 and w=0
both pass through the two points:(z,, y,) and (z,, 3,), that is,
" the given straight lines coincide so that all three will
» either to two intersecting straight lines or to two par-
traight lines. Suppose we take w,=0 in conjunction
5,=0. Then the straight line w =0 passes through the
points (x,, y,) and (@,,y,). From the third of equa-

2) we have %=:’—)1; and thus the straight lines =0

=0 either meet on the straight line joining the points
) and (x,, y,), or are parallel to this straight line ; that
: straight lines u=0, v=0, and w=0 either meet at a
or are parallel.

Let a=0, 8=0 be the equations to two straight
xpressed in terms of the perpendiculars from the origin
ielr inclinations to the axis of z (see Art. 50), so that a
wbbreviation for  cosa+ysina—p,, and B is an abbre-
1 for zcos B+ ysinB—p,; we proceed to shew the
og of the equations a — 8=0and a + 8=0.

t S be the straight line a =0, and SB the straight line
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B =0; let SC bisect the angle 4S8B, and SD bisect the sup-
glement of AS8B; the angle DSC is therefore a right angle.

ake any point P in SC and draw the perpendiculars PM,
PN on S4, 8B respectively. If z, y be the co-ordinates
of P, the length of PM is a by Art. 54, and the length of PN
is B. Since SC bisects the angle ASB, PM = PN; therefore
for any point in SC we have 8=a; that is, the equation to
SCisa=p.

Similarly, the equation to SD is a=—28.

Thus a— 8 =0 and a+ 8 =0-represent the two straight
lines which pass.through the intersection of a=0 and 8=0
and bisect the angles formed by these straight lines.

The student.must distinguish between the straight lines
a—B=0 and a+B=0; the following rule may be used:
the two straight lines a =0, 8=0, will divide the plane in
which they lie into four compartments ; ascertain in which of
these compartments the origin of co-ordinates is situated ;
@ — B =0 bisects that angle between a= 0 and 8 =0 in which
the origin of co-ordinates lies. This is obvious from the in-
vestigation in the preceding Article and the remarks in Arts.
53, b4

The equation « + A8 =0 represents a straight line such
that A is numerically equal to the ratio of the perpendicular
from any point of it on @ =0 to the perpendicular from the
same point on 8=0. If A is positive the straight line
a+ A8 =0 lies in ‘the same two of the four compartments
just alluded to as the straight line a+8=0; if A be negative
the straight line a + A8 =0 lies in the same two compart-
ments as the straight line e =8 =0. From the figure we see
that PM = PSsin PSM and PN = PSsin PSN; hence A or
% = :’i——zi’z% ; that is, A.expresses the ratio of the sine qf
the angle between a=0and a+A8=0 to the sine of the
angle between 3 =0 and a+2A8=0.

71. We shall continue to express the equation to a
straight line by the abbreviation a =0 when the equation is
of the form #cosa+ysina—p=0; when we do not wish to
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restrict ourselves to this form, we shall use such notation as
u=0,v=0,4=0, ...

Let u=0, v =0 be the equations to two straight lines,
the axes being rectangular or oblique; then 4 —Av =0 and
%+ M = 0 represent two straight lines passing through the
intersection of the first two. Suppose, as in Art. 70, that 54,
"SB are the first two straight lines and SC, SD the second
two ; then will

sin CS4 _sin DSA
sin CSB ~ sin DSB’

For by Art. 57 it apﬂears that if p be the perpendicular
from a point (2, y) on the straight line w=0, then p = pu,
where p s a constant quantity ; similarly if p’ denote the per-
pendicular from the same point on v =0, then p’ = u'v, where
w4 is a constant quantity. Hence the equation w—Av=0, or

%— }“ﬂ, =0 shews that £ = M ; thus we see that numerically
without regard to algebraical sign

sin 084 _ Ap
sin CSB~ u °
. sin DSA
Similarly, SoDSB =W’
therefore .sin CS4 sin DSA

sin CSB ~ sin DSB"

72. We will apply the principles of the preceding Arti-
cles to some examples. '

Let a=0, 8=0, v =0 be the equations to three straight
lines which meet and form a triangle, and suppose the origin
of co-ordinates within the triangle; then the equations to
the three straight lines bisecting the interior angles of the
triangle are, by Art. 70,

B—y=0...1); y-a=0...2); a—B=0...(3).
These three straight lines meet at a point; for it is

obvious that the values of 2 and y which simultaneously:
satisfy (1) and (2) will also satisfy (3).
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Again the equations to the three straight lines which

pass through the angles of the triangle and bisect the angles
supplemental to those of the triangle are

B+y=0...4); y+a=0...(5); a+8=0...(6).

It is obvious that (3), (4), and (5) meet at a point; simi-

larly (5), (6), and (1) meet at a point; so hkemse (4), (6),
and (2) meet at a point.

In all our propositions and examples of this kind;, we
shall always suppose the origin of co-ordinates within the
triangle, unless the contrary be stated.

78. If a=0, B=0, y=0 be the equations to three
straight lines which form a triangle, then any straight
line may be represented by an equation of the form

la+mB+mny=0; for the exceptional cases noticed in
Art. 69 cannot occur here.

Let a, b, ¢ denote the lengths of the sides of the triangle
which form parts of the straight lines a =0, 8=0, y=0 re-
spectively. Take any point within the tnangle and join it
with the three angular points; thus we obtain three triangles
the areas of which are respectivel _%a , --bB , and — 0’7
Hence aa+bB+cy=a consfant

the constant being in fact twice the area of the triangle
taken negatively.

This result holds obviously for any point within the tri-
angle determined by a=0, 8=0, y=0. It will be found
on examining the different cases which arise that it is also

true for any point without the tnangle Hence it is uni-
versally true.

" Suppose we require the equation to a straight line par-
allel to the straight line la + mB+ ny =0.

This required equation may be written la+mg8+ny+k=0,
where k is a constant. (Art. 38.)

Or, since aa + b8+ cy is a constant, the required equatlon

may be written, la + mB+ ny + k' (aa + b8 + cy) =0, where
K is a constant.

N
|
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74. The straight lines represented by the equations
u=0, v=0, w=0, will meet at a point, provided lu+mv+nw
is ddentically =0; I, m, n being constants. For if

lu + my +nw =0 dentically, we have w=_{u+mv

always.

Hence the equation w =0 may be written — b -;mv =0,

that is, the straight line w=0 is a straight line passing
through the intersection of # =0 and v=0.

75. The following example will furnish a good exercise
in the subject.

B : A E

Let ABCD be a quadrilateral ; draw the diagonals AC,
BD; produce B4 and CD to meet at E, and 4D and BC
to. meet at F; join EF, forming what is called the third
diagonal of the quadrilateral. Suppose

u =0, the equation to 4B,.................. (1),
v= 0, .................. .BC,...' ............... (2),
w=0, cccooernrinninnnen CD,...cucuuvvunnnnn. (3).

We propose to express the equations to the other straight
lines of the figure in terms of u, v, w, and constant quan-
tities. Assume for the equation to BD

Cl—my =0, 4),
and for the equation to C4
my—nw=0.............. DN (5).
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These assumptions are legitimate, because (4) represents
some straight line passing through B, whatever be the values
of the constants [ and m; by properly assuming these con-
stants, we may therefore make (4) represent BD. Also (5)
represents some straight line through C, and by giving a
suitable value to n, we may make it represent C4. We may
if we please suppose one of the three constants I, m, n, equal
to unity, but for the sake of symmetry we will not make
this supposition. The equation to 4D is

Ww—my+nw=0.....cc.cuuucuees 6);

for (6) represents a straight line passing through the intersec-
tion of lu —mv=0 and w =0, that is, a straight line through
D; also (6) represents a straight line passing through the
intersection of u =0 and mv — nw = 0, that is, a straight line
through 4. Hence (6) represents 4.D. The equation to

EF is
lut+nw=0......... cossonscsnase ;s

for (7) obviously represents some straight line through %, and
since {u + nw = lu — mv + nw + mv, (7) represents some straight
line through #. Hence (7) represents EF.

Let G be the interseetion of AC and BD. The equation
to EQ is

for (8) represents a straight line passing threugh the inter-
sectton of (1) and (3), and also through the intersection of (4)
and (5). The equation to F@G is :

lu—2my+nw=0 .ocovrvverrreneeae 9);

for (9) represents a straight line passing through the inter-
section of (4) and (5), and also through the intersection of (2)
and (6). '
Suppose BD produced to meet EF at H, and AC and
EF produced to meet at K; then it may be shewn that the
equation to A H is 2lu—mv+nw=0, that to CH is mv+nw=0,
that to KB is lu+ mv=0, that to KD is lu —mv + 2nw=0.

We have introduced this example, not on account of any
importance in the results, but as an exercise in forming the
equations to straight lines, We proceed to another example.

T.C. 8 5
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76. If there be two triangles such that the straight lines
joining the corresponding angles meet at a point, then the in-
tersections of the corresponding sides lie on a straight line.

Let ABCbe one triangle, A'B C’ the other triangle ; let S
be the point at which the straight lines 4 4', BB', CC' meet.
Let the equation to BC be u=0, to 4 v=0, and to 4B
w=0. Assume for the equation to

BC lu+mov+nw=0...cccevurrueenenn.. (1),
and to 0’4’ lu+mv+nw=0...... ereeasecsniens 2).

It is shewn in Art. 69 that the equation to B'C’ may be
written in the above form, and by the method of that Article
it may be shewn that by giving suitable values to the con-
stants /, m', we may make (2) represent C'4’. We will now
shew that the equation to 4'B’ may be written in the form

Wwt+my+rw=0 ..ccoceuvrunnna. 3).

The constant #n’ may be obviously determined, so as to
make the straight line represented by (3) pass through 4';
let » be so determined ; it remains to shew that the straight
line (3) will pass through B. From (1) and (2) it follows
that the equation

T-Du+(m—=—m)v=0..cccuc.ceen....(4)
represents some straight line through C'; but (4) obviously
represents a straight line passing through the intersection of
B(C and CA. Hence (4) 1s the equation to CC".

" Again, the straight line represented by (3) by supposition
passes through A4’; hence from (2) and (3) we see that

(M —m)v+(n—=n)w=0.irceeneer(5)
is the equation to 44'. ‘
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The equation (F—=0)u+n—n)w=0.......... veene (6)
represents a straight line passing through the intersection of
BC and AB, that is, through B; and from (4) and (5) it fol-
lows that this straight line passes through the intersection of
c CA;' znd A4, that is, through 8. Hence (6) is the equation
to . .

Now from (1) and (3) it follows that the straight lines re-
presented by these equations meet on the straight line (6).
Hence (3) is the equation to 4'B'. :

The required proposition now easily follows: for the
straight line represented by :

Dt MY+0=0 ererrrrererrrenne. )

passes through the intersection of BC and B'C’, of C4 and
C'A4’, and of AB and A4'B'; that is, these three intersections
are on the same straight line. .

Conversely, if there be two triangles such that the inter-
sections of the corresponding sides lie on a straight line, then
the straight lines joining the corresponding angles meet at a
point. T'o prove this we may begin with the equations to
BC, CA, AB, B'C', C'4' as before, and assume (3) as the
equation to some straight line through 4’. Then (7) will re-
present the straight line passing through the intersection of
BC and B'C’, and of 04 and C'A’; now (3) is the equation
to a straight line passing through the intersection of 4B and
(7) ; hence (3) must be the equation to A'B. Then from the
form of (1), (2), and (3), it follows immediately that CC”
passes through the intersection of 44’ and BB d

It may be shewn also that the equation to the straight
line whiclr passes through the intersection of 4B and 4'C’,
and of AC and 4'B, is

lut+mv+nw=0 .ccocernrvennnnn. (8).
And the intersection of (8) with BC will lie on the
straight line
Vud+mov+nw=0.ccceeveenennn... 9).
Similarly the straight line joining the intersection of B4
and B’ (' with the intersection of BC and B'’A4’ meets C4 on (9):

And also the straight line joining the intersection of C4 and
C'B' with the intersection of OB and ("4’ meets 4B on (9).

5—2
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The two triangles considered in this Article are said to be
homologous ; the point at which the straight lines joining the
corresponding angles meet is called the centre of homology,
and the straight line which contains the intersections of the
corresponding sides is called the axis of homology.

77. The equation u+Av=0 represents a straight line
passing through the intersection of the straight lines » =0,
v=0. Hence if there be a series of straight lines the equa-
tions of which are all of the form u+Av=0, and differ merely
in having different values of the constant A, all these straight
lines pass through a point, namely, the intersection of » =0
and v=0.

78. The student is recommended to make himself very
familiar with the preceding Articles of the present Chapter,
as they contain the essential principles of a subject which has
received much attention during the last few years. When
these principles are mastered no difficnlty will be found in
following the numerous investigations in which they have
been applied.

The name trilinear co-ordinates is often applied to the
subject which has been brought before the notice of the stu-
dent in the present Chapter; and it is easy to explain the
appropriateness of the term. Let there be any fixed triangle
ABC, which may be called the triangle of reference; take
any point P in the plane of the triangle, and let a, 8, y denote
the perpendicular distances of P from BC, C4, AB respec-
tively: then «, B, v may be called the three co-ordinates of
the point . 'We shall consider a as positive when P is on
the same side of BC as 4 is, and as negative when P is on
the opposite side of BC; and a similar rule will be adopted
with respect to the signs of 8 and «. '

The three co-ordinates of a point are connected by a rela-
tion ; for aa+ b8+ cy is equal to twice the area of the tri-
angle ABC. See Art. 78.

Tt will be seen that the meanings here assigned to a, 8, y
correspond with those already adopted in this Chapter, except
that the signs are reversed. Thus to connect trilinear co-
ordinates with the common co-ordinates we may suppose a to
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stand for p — x cosa — y sin ¢, and make similar suppositions
with respect to B and «.

Formule which involve trilinear co-ordinates may be in-
vestigated immediately from the definitions without any re-
ferenoe to the common co-ordinates ; or they may be investi-
gated with the aid of the common co-ordinates. The latter
method is naturally suggested by the plan of an elementary
work like the present; and accordingly we have in substance
adopted this method in the present Chapter. We will now
discuss briefly a few more applications of trilinear co-ordi-
nates; the student should also exercise himself by the ex-
amples at the end of the Chapter.

1. To find the angle between two given straight lines.

Let M+ pB +vy=0 and Na+ w8 +v'y=0 be the equa-
tions to the straight lines. .

If we express the first equation in rectangular co-ordinates
it becomes

C—(\ cosa+pcosB+vcosy)x—(Nsina+usinB+vsiny) y=0,
where C is a constant.

The second equation may be put into a similar form.

Let ¢ denote the angle betvzeen the two straight lines;

m—m
then, by Art. 41, tan ¢ B where

_ AcosatpcosB+wcosy
" Asina+pusin B+vsiny’
and m,=_h,c?sa+/l:o:os;3+vlc?svy.
A'sina+u'sin 8+ v singy
Henece, substituting and reducing, we find tan ¢ is equal
to a fraction of which the numerator is

(' —pv) sin (y— B) + (M'—¥'2) sin (a—v) + (W'~ Np) 8in (B—a),
and the denominator is
AN+ pp + oV + (w0 + w'y) cos (y — B)
+ (WN'+ »'A) cos (@ — ) + (Ap' + Np) cos (B —a).
Now we can express the angles y— 8, a—y, B—a in
terms of the angles of the triangle of reference. For suppose
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we take any point within the triangle of reference and draw
perpendiculars on the sides; then the angle between the per-
pendiculars on 4B and AC is the supplement of A4 : thus
- either y — 8=180°—4 or B—y=180"— 4. It depends on
~ the position of the axis of # in the rectangular co-ordinates
which of these cases holds.

~ We shall thus find that

cos (y—B)=—cos 4, cos(a—q)=—cosB, cos(B—a)=-cosC,
sin (y—B)=+sin 4, sin(a—¢) =+ sin B, sin (B8 —a) = +sinC;
and in the second line we must take the upper sign in all
three-cases, or the lower sign in all three cases.

Thus finally tan ¢ is equal to the following expression
with the double sign prefixed.

(uv'— vy sin 4 + (W\'— v'\) sin B+ (Au'—A\'p) sin C
AN+ '+ vv —(uv'+ p'v)cos A —(vN +v'N)cos B—(Aw'+ N p)cos C *
Again, by Art. 41,

sin ¢ = ™~ m o)
VA YA T

Proceeding in the same way we find that sin ¢ is equal to
a fraction of which the numerator is

+ {(uv'— p'v) sin 4 + (W' —¥'\) sin B+ (Mg~ N') sin C},
and the denominator is the product of

N AT+ p? + v* — 2uv cos A — 2vA cos B—2\u cos C)

and y/(\*+ u* 49— 2u"y cos A — 20\ cos B—2\'u’ cos C').

IL  Tb find the condition that two straight lines may be

o .

at right angles.

The value of tan ¢ must be infinite, and thus the deno-
minator of the fraction obtained for tan ¢ must be zero.

III. Let ABC be the triangle of reference ; and suppose
the straight line denoted by la+ m8 + ny = 0 to cut the sides
of the triangle at D, E, F respectively.

- At D we have a=0, and therefore m8 +ny=0. Here 8
denotes the length of the perpendicular from D on 4C, so that
B = CDsin C; and v denotes the length of the perpendicular
from D on AB, so that ¢y=BD sin B.
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Thus mCDsin C=—~nBDsin B,
Similarly at E we have ‘
B=0, y=AEsin 4, a= CEsin C;
therefore nAE sin A =—1CEsin C.

C

A B ¥

And at F we have :
v=0, a=—BFsinB, B=AFsind;

therefore IBFsin B=mAFsin A.

Hence by multiplication we obtain

CD.AE.BF=BD.CE.AF.

See Appendiz to Euclid, Arts. 56...58.

IV. Let ABC be the triangle of reference: we shall
shew how the constants /, m, » in the equation to a straight
line la +mB + ny = 0 may be expressed in terms of the sides

of the triangle and the perpendiculars from its angles on the
straight line.

Let p, ¢, r denote the perpendiculars drawn from 4, B, C-
respectively ; any two of them will be considered to be of the
same sign or of contrary signs according as they fall on the
same side of the straight line or on contrary sides.

Proceeding as in III. we have
mCD sin C=—nBD sin B;

CcD r
but ‘ ._B_D = - E ’
therefore mr sin C = ngsin B,
therefore mre = ngb.
Similarly npa = lre,

and lgb = mpa.
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omon,
pa gb rc’
and the equation to the straight line becomes
paa+qbB+roy=0.

V. To find the length of the perpendicular drawn from
a given point on a given stratght line.

Let («/, B, o) be the given point, and Ma+uB + »y=0
the given straight line.

By Art. 49 the perpendicular distance is

Hence

A 4 pf + oy
' v A+ B
where — A =2Acosa+pucosB+vcosy,
— B =\sina+pusin B+ vsingy.
Thus A4+ B*= ‘

M+ @'+ '+ 2uv cos(B — ) + 2v\ cos (y — @) + 2Apu cos (a — B)
=N+ u'+v* — 2uv cos A — 2vA cos B — 2 u cos C.

VI Suppose we take for the fized point the vertex 4 of
the triangle of reference, so that /=0 and v’ =0; and use
the values of /, m, n found in IV. Thus the length of the per-
pendicular from 4 on the straight line paa + ¢b8 + roy =0 is

. pax’ .
N (p'a*+ g'b*+ ' — 2grbe cos A — 2rpea cos B — 2pqab cos C) ’
and this perpendicular is equal to p. Moreover if A denote |
the area of the triangle of reference a'a=2A. Hence finally
4A'=p'a’+ ¢'b*+ r°c*— 2¢rbe cos A — 2rpea cos B — 2pgab cos C.

This relation then must hold between the lengths of the

gerpendiculars drawn from 4, B, C on any straight line. |
ubstitute for cos 4, cos B, and cos C their values in.terms of ,

I:he sides of the triangle ; then the result may be put in the
orm '

40'=d*(p—q) (p—r)+¥(g—1) (g-p) +¢(r—p) (r—g).

This may be easily verified. For we see that if it be
true for one straight line it must be true for every parallel
straight line, since it involves only the differences of the per-

4 |
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pendiculars p, ¢, . It will be sufficient then to shew that
the result is true for every straight line which passes through
an angular point of the triangle. .

Take any straight line through 4, supgose it to make an
angle 0 with 4B, and an angle ¢ with 4C; so that

0+¢+.4=180"
Then | p=0, g=csinf, r=>sin¢.
We have then to shew that
¢°6* + 7°¢* — 2grbe cos A = 4A%

The left-hand member

=b%" (sin® @ + sin’ ¢ — 2 sin O sin ¢ cos 4)

=b'%" {sin® 0 + sin® ¢ + 2 sin G sin ¢ cos (6 + ¢)}

=b%" {sin” § (1 — sin’ $) +sin’ ¢ (1 —sin* 6) .

+ 2gin @ sin ¢ cos 6 cos ¢}
= b%"*{sin’@ cos’ ¢ + sin* ¢ cos® § + 2 sin O sin ¢ cos 6 cos ¢}
=b%"sin’® (0 + ¢) =b*c"sin’ 4.

This establishes the required relation.

VII. We have seen in Art. 69 that every straight line
can be represented by an equation of the form
la+mB +ny=0. .
‘We shall now shew conversely that every equation of this
{grm, with a single exception, will represent some straight
ine.
Develope the equation as in I.; then we see that it must
represent a straight line except when
lcosa+mcos B+ncosy=0,
and lsina+msin B+ nsiny=0.
‘Eliminate n ; thus
lein (y —a) + msin (y—B) =0;
I 0m
Sy —A) 4m (a—7)’
and in the same way we find that each of these is equal to

therefore

n
sin (B —a)
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Thus by what is shewn in I. we have

I _m _ n
sind sinB sinC’

It follows that lz+4+mB+nwy=0 will always denote a
straight line except when I, m, and n are proportional to
sin 4, sin B, and sin C, that is to a, b, and c.

And we have seen that az + 58 + ¢y expresses double the
area of the triangle of reference, so that it cannot be equal
to zero. '

VIII. In the equation Ax+ By+ C=0, suppose that
A and B diminish indefinitely while ¢ remains constant.
The straight line represented by the equation then moves
away to an indefinite distance from the origin ; for the inter-

cepts on the axes are— —g and — % .

In like manner if /, m, # are in proportions to each other
which differ infinitesimally from the proportions of a, b, ¢ the
straight line la+mB+ny = 0 is situated at an indefinitely great
distance from the triangle of reference. For abbreviation it is
usual to speak of the equation ax+ b8+ cy=0 as denoting
a straight line at an infinite distance, or a straight line at
infinity ; very often the equation is said to represent the
straight line at infinity, which is open to the objection that
it seems to imply that there is some definite position towards
which the straight line tends as it moves away from the
triangle of reference. -

IX. To find the equation to the straight line which passes
through two given points.

Let (a,, B,, %, and (a,, B,, v,) be the two points. Then,
as in Art. 35, assume for the equation to the straight line

la+mB+ny=0.

Thus  la,+mB, +ny, =0,
and la,+ mB, + ny,=0.
Hence we deduce

l _om _ n .
Bﬁa - 1.3271 V1% — Y% 01,3, - aﬂl ’
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and the required equation is

a (Bﬂa - 3371) + B ('Yxa: - '7371) + b4 (axﬁa - aan) =0.
Hence the condition which must hold in order that the
point (a,, 8,, 7v,) may be on the straight line which joins the
points (z,, B,, v,) and (a,, B,, 7,) i8

ay (Bx'ys - Bs%.) + /sa ('Yxaa - 'Ysax) +% (aIBI - aan) =0.

X. Denote the condition just obtained by 7T'=0 for
abbreviation. The expression for the same condition in com-
mon rectangular co-ordinates is by Art. 36 '

2,y — LY, + Yy — Ty, + Ty, — 2,9, = 0,
which we will denote by C'=0.

We may infer that if we transform from trilinear co-ordi-
nates to common rectangular co-ordinates the eondition 7'=0
will become C=0; so that, whether the three points are in
the same straight line or not, 7' can only differ from C by
some constant factor which does not depend on the co-ordinates
of the points. But, by Art. 11, when the three points are not
in the same straight line ¢ expresses double the area of the
triangle which can be formed by joining them. Hence we
conclude that the area of this triangle can also be expressed
by kT, where k is some constant.

We may find the value of % by considering a particular
case. Let the three points be the vertices of the triangle of
reference ; so that we may take 8,=0, ¢, =0, a,=0, 4,=0,
a,=0, B,=0. Thus 7' reduces to apfy,, which is equal

8A* 8A? ¢
to 2’ therefore % 2he = A ; therefore k= BA®*

Hence the area of the triangle formed by joining the
points (2, B, 1), (%, B 7,)» and (g, By, v,) 18

g_bA% {as (3173 - Bayx) + Bx ('71% - '7211) +% (a:Ba - aﬂx)} .

XI. The student should carefully notice in this subject
that geometrical theorems may often be obtained by inter-
preting equations which naturally present themselves in our
1nvestigations. For example in Art. 72 we have shewn the
meaning of the equations B+ vy=0, y+a=0, a+B=0:
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we are naturally led to consider the meaning of the equation
a+ B+ =0. The straight line thus denoted passes through
the intersection of 8+ 4=0 and a=0, andp through two
analogous points. Hence we have this result : the straight
‘lines which pass through the angles of a triangle and bisect
the supplemental angles meet the respectively opposite sides
in three points which lie on a straight line. gimila.rly we
may interpret the following equations:

B+y—a=0, y+a—B=0, a+B—y=0.

XII. It is very easy to pass from trilinear co-ordinates to
common oblique co-ordinates. Suppose we have any equation
between a, B, and ¢ ; we can express v in terms of a and 8,
by means of the relation az+ 58+ ¢y =24, and thus trans-
form the given relation into one involving only a and 8.

B

¢ M A

Let ABC be the triangle of reference. Suppose CA the
axis of , and CB the axis of y. Let P be any point; z, y
its co-ordinates. Draw PM parallel to BC, meeting 4 C at M.
Then if a and B refer to the point P, we have

B=PMsin C=ysin C;
and similarly a ==sin C. Thus if we substitute zsin C
for a, and y sin C for B, we finally transform the equation into
one involving the common oblique co-ordinates z and y.

EXAMPLES.

1. Find the equation to the straight line passing through
the origin and the point of intersection of the straight lines

i Y- z. Y-
aty L il & L

2. A, A’ are two points on the axis of , and B, B’ two
points on the axis of y, at given distances from the origin;




EXAMPLES. CHAPTER IV. 77

AB and A'B' intersect at P, and AB’ and 4'B at @Q; find
the equation to the straight line P¢), and shew that the axes
are divided harmonically by it.

8. If a=0, 8=.0, y=0 be the equations to the sides
of a triangle ABC opposite the angles 4, B, C, prove that
asin 4 —Bsin B=0 is the equation to the straight line
bisecting 4B from C.

4. Prove by means of such equations as that given in the
preceding Example the first proposition in Art. 64.

5. Shew that acos 4 —Bcos B =0 is the equation to the
perpeundicular from Con 4B.

6. Hence prove the second proposition in Art. 64.

7. If a, b, ¢ be the lengths of the sides of a triangle
opposite the angles 4, B, C, respectively, prove that

aeosA-—BoosB+§(sinBcosA—sinAcosB)=0

is the equation to the straight line which bisects 4B and is
perpendicular to it. The equation may also be written
a sin Bsin bsin Csin 4
(++*% sin_.éi_c) cond = (B+23 ) s B=0.
8. Hence prove the third proposition in Art. 64.
9. Interpret the equation ez +b8=0.

10. Shew that ax+b8—cy=0 is the equation to the
straight line which joins the middle points of 4C and BC.

11. Shew that acos 4 + B cos B—q cos C=0 is the equa-
tion to the straight line which joins the feet of the perpen-
diculars from 4 on BC, and from B on AC.

12. If straight lines be drawn bisecting the angles of a
triangle and the exterior angles formed by producing the
sides, these lines will intersect at only four points besides the
angles of the triangle.

13. If =0, v=0, w=0 be the equations to three
straight lines, find the equation to the straight line passing
through the two points

;1:-2:'2-’ and—;;: =

S|e
AR
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14. TFind the equation to the straight line passing through
the intersections of the pairs of straight lines

) 2au + bv+cw =0, bv—cw=0;
and 2bu+ av+cw=0, av —cw =0,

15. Ifa=0, 8=0, y=0 be the equations to the sides of
a triangle ABC, shew that the equation to the straight line
which joins the centres of the inscribed circle and the circum-
scribed circle is

a (cos B —cos C) + B (cos O—coéA) + o (cos A —cos B) =0.

16. If the equations to the sides of a triangle ABC be
u=0, v=0, w=0, and to the sides of a triangle 4'BC,
u=a,v=>0, w=c¢, then A4’, BB, and CC’ meet at a point.

17. If the straight lines 44’, BB, CC’, in the last
Example meet respectively the sides of the triangle ABC at
D, E, F, shew that the intersections of DE and AB, of EF
and BC, of FD and CA4, will all lie on one straight line ; and
that a similar property will hold for the intersections of the
same straight lines with the sides of the triangle 4'B'C".

18. In Art. 75, suppose the straight line joining F' and
G to meet AB at Pand CD at Q; then find the equations to
CP, DP, AQ, BQ, in terms of the notation of that Article.

19. From the middle points of the sides of a triangle
straight lines are drawn at right angles (all internal or all ex-
ternal) and proportional to those sides ; prove that the straight
lines which join the angles with the extremities of the oppo-
site perpendiculars pass through one point. o

20. Let the three diagonals of a quadrilateral be produced
to meet each other at three points, and let each of these
points be joined with the two opposite corners of the quadri-
lateral ; the six straight lines so drawn will meet each other
three and three at four points,

21. In the figure constructed in the preceding Example
the Tour straight lines whieh meet each other at any corner of
the quadrilateral are so related that two of them are parallel to
the sides, and two to the diagonals of some parallelogram.

22. Shew that the three points of intersection which are
found in Examples 4, 6, 8, lie on the straight line
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asin 4 cos 4 sin (B— C) + Bsin B cos Bsin (C — 4)
+ ¢ sin C cos Csin (4 — B)=0.

23. Let any point P be taken in the plane of a triangle
ABC, and from the angular points 4, B, g’ let straight lines
be drawn through P cutting the opposite sides at D, E, F re-
spectively; if the equations to BC, C4, AB be u=0, v=0,
w =0 respectively, shew that the equations to 4P, BP, CP
may be taken to be my—nw=0, nw—Ilu=0, lu—mv=0;
and find the equations to EF, D, DE.

24. With the notation of the preceding Example let EF
and BC be produced to meet at 4’, let #D and CA4 be pro-
duced to meet at B, and DE and AB at O’ : then shew that
4A', B, C’ lie on one straight line.

25. With the notation of the preceding Example shew
that BB, CC’, and 4D meet at a point; also CC’, 44’, and
BE; and A4', BB' and CF. :

26. Three points 4’, B, " in the sides BC, C4, AB of
a triangle heing joined form a second triangle of which any
two sides make equal angles with the side of the former at
which they meet. Shew that 44, BB, CC’ are perpen-
diculars to BC, C4, AB.

27. ABC is any triangle, O the centre of the inscribed
circle, O' the centre of the escribed circle which touches BC.
The straight line OO0’ meets BC at D, and any straight line
drawn through D meets AC at E and AB at F. The straight
lines OF and O’ E meet at P, and the straight lines OF and
O'F at . Shew that 4, P, and @ lie on one straight line
perpendicular to 00

28. Find the equations to the two straight lines which
bisect the angles formed by the straight lines

la+mB+ny=0, and l'a4+m'B+n'y=0.

29. Shew that the co-ordinates of the point of inter-
section of la+m'B+ny=0, and "a+m'B+n'y=0, are -
given by .

a

mn —m'n = U —nT = Tm — lnmi
' B 2A
- a (mlnll — mllnl) + b (n’l'l -nlll’) + c (llmlf — lllml) .
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30. Find the length of the perpendicular drawn from the
intersection of la + m'B+n'y=0, and I'a+m"B +n"y=0, on
la+mB+ny=0,

31. Shew that the area of the triangle formed by the
straight lines
lat+mB+ny=0,l'a+m'B+n'y=0, and l"a+m’'B+n"y=0,

Aabe {l (m'n" —m"w) + m (0¥ —2"l) + n (I'm" —U'm)}*
DD'D” ’
where D =a (m'n’ —m"n') +b (0T —n"l) + c(Im” —U'm’),
D=a(@m'n—mn") +b®'l—nl") +c(@'m—1Im"),
D'=qa(mn'—m'n) +b(nl —nl) +c(m'—1Im).
32. Find the condition which must hold in order that the

ions 2B, By y_qa
equations = =", A= voa may represent three parallel

straight lines.

83. When the condition in the preceding Example is satis-
fied find the condition which must hold in order that the
straight line la+mfB+my=0 may be parallel to the three
straight lines.

34. Find the condition which must hold in order that the
a—a'_B-B_v—«
A I v

35. ABCis the triangle of reference ; through any point
P within the triangle straight lines AP, BP, CP are drawn
meeting the opposite sides at D, E, F respectively: if the
equations to. AP, BP, CPare

mB—mwy=0, ny—Ila=0, la—mB=0,
compare the areas of A EF and DEF with that of ABC.

36. Perpendiculars are drawn from the angles of a tri-
angle on the opposite sides, and a second triangle is formed
by joining the feet of these perpendiculars: shew that the
two triangles are homologous, and that the equation to the
axis of homology is

acos 4 + B cos B+ycos C=0.

may represent a straight line.

equations




—
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87. Investigate the condition which must hold in order
that the following equation may represent two straight lines:
Ad* + BB+ Cy' + 2DBy + 2Eya + 2FaB = 0.

38. Investigate the following expressions for the square
of the distance between the points (a,, B, 7,) and (a,, B, 7,):

(0, —a)* + (8, =B +2 (x,— @) (B,— B) cos C

sin® 0

(a, -—a,)'sm2A+(B, B,)*sin 2B + (y, —v,)* sin 2C
2sin 4 sin B sin C ’

_(B—= )(fyl—fy,) smA+(~yl-fy,) (a —a )smB+(a —a.)(B,—B,)sin O’
sin 4 sin B sin O

T. C. S, 6
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CHAPTER V.

TRANSFORMATION OF CO-ORDINATES.

79. WE have seen in' the preceding Articles that the
general equation to a straight line is of the form y =mz+ ¢,
but that (tlhe equation takes more simple forms in particular
cases. If the origin is on the straight line the equation be-
comes y =ma ; if the axis of = coincides with the straight line,
the equation becomes y=0. In a similar manner we shall
see as we proceed that the equation to a curve often assumes
a more or less simple form, according to the position of the
origin and of the axes. It is consequently found convenient
to introduce the propositions of the present Chapter, which
enable us when we know the co-ordinates of a point with
respect to any origin and axes, to express the co-ordinates of
the same point with respect to any. other given origin and
axes. It will be seen that these propositions might have been
placed at the end of the first Chapter; as they involve none of
the results of the succeeding Chapters.

80. To change the origin of co-ordinates without changing
the direction of the awes, the axes beng oblique or rectangular.

/" / |

Let OX, OY be the original axes; 'O'X’, o Y’ the new
axes; so that O'X' is parallel to OX, and O'Y’ to OY.
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Let A, k be the co-ordinates of O’ with respect to 0. Let P
be any point; ,y its co-ordinates referred to the old axes; -
&', y' its co-ordinates referred to the new axes. :

Let Y' O produced cut OX at 4; draw PM parallel to
OY meeting OX’ at N; then

OA =4, A0'=k;
#2=O0M=AM+ OA= ON+ OA=2 +14,
y=PM=PN + NM=PN+AO0=y +Fk.

Hence the old co-ordinates of .P are expressed in terms of
its new co-ordinates.

81. To change the direction of the axes without changing
the origin, both systems being rectangular.

Y Y
P

-

o M N p. <

Let 0X, OY be the old axes; OX’, OY the new axes,
both systems being rectangular; let the angle X0X'=6.-
Let P be any point; @, y its co-ordinates referred to the old
axes; &, y its co-ordinates referred to the new axes. Draw
PM parallel to 0Y, PM' parallel to 0Y’, M'N parallel to
0Y, and M'R parallel to 5} :

Then 2=O0OM=ON-MN=ON-MR

= OM' cos XO0X' — PM sin M'PR

=a cosf—1y sinf;
y=PM=RM+PR=M'N+ PR

=g sin 0+ y' cos @. ,

Hence the old co-ordinates of P are expressed in terms of
its new co-ordinates.

¢

6—2
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n the preceding Article 6 is measured from the

art of the axis of & towards the positive part of the
therefore if in any example to which the formulee
d, OX fall on the other side of OX, 6 must be con-

:gative.

the formule of the preceding Article, we see that

&+ yz= "+ ’/s; .

wrse should be the case, since the distance OPis the

shever system of axes we use.

lo change the direction of the axes without changing
both systems being oblique.

X, OY be the old axes; 0X’, 0Y' the new axes.
) denote the angle between OX, OY; and let a
rtation be used to express the other angles which
1by the straight lines meeting at 0. Let P be any
y its co-ordinates referred to the old axes; ', ¥ its
es referred to the new axes. Draw PM parallel to
PM’ parallel to 0Y"; from P and M'draw PL,
§l;1dicular to OY; from M' draw M'R perpendicular
‘hen . :

x=0M, y=PM;

' =0M, y=PM.
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Now PL = perpendicular from M on 0Y =zsin (XY),
also "PL=RL+PR=M'N+PR
=0M'sin X'OY + PM’sin Y OY
: =2'sin (X'Y)+4y sin (Y'Y);
therefore @sin (XY)=2a'sin (X'Y)+4 sin (Y'Y)...... (1).
Similarly by drawing from P and M’ perpendiculars on
OX we may shew that
ysin (YX) =2 sin (X'X) +y'sin (Y'X)...... (2).
Equations (1) and (2) express the old co-ordinates of P

in terms of its new co-ordinates; (YX) and (XY) denote
the same angle, but we use both forms for greater symmetry.

Let X0X'=a, X0Y'=8, XOY=w; then (1) and (2)
become

xsin o =2'sin (0 —a) +y'sin (0 — B)............ (3)

ysinw=a'sina +y'sinB.ininnnnnn.e. (4).

84. Two particular cases of the general proposition in
the preceding Article may be noticed.

If the original axes are rectangular » = %, and the equa-
tions (3) and (4) become _
x=a'cosa+y' cos B, y=a'sina+y sinp.
ks

If the new axes be rectangular 8 =5 +a and the equa-

tions (3) and (4) become
2 sin w =2’ sin (@ — a) —y' cos (0 —a),
ysinw=2a'sina +% cosa.

85. Suppose we require to change both the origin and
the direction of the axes; let =, v be the co-ordinates of a
point referred to the old axes; &', ¥’ the co-ordinates of the
same point referred to the new axes. By Arts. 80 and 83
we have xz=x,+h, y=vy,+k where h and % are the co-
ordinates of the new origin referred to the old axes, and

_ ' sin (0 —a) + g sin (0 —B) _@'sina+y’'sinB
fB= sln @ » 6= sin

The expressions for z, and y, will simplify when one or
each of the systems is rectangular. (See Art. 84.)
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The formule which connect the rectangular and
ordinates of a point in the particular case in which
in is the same in both systems, and the axis of =
i with the initial line, have already been given.
. 8) The following is the general proposition.

mnect the polar and rectangular co-ordinates of @
DX, OY be the rectangular axes; let S be the pole

the nitial line. Let &, £ be the co-ordinates of S
» O; draw SX' parallel to OX, and let the angle

P
Y )
/A
,,,,, /\
B X'
0o C M X

Pbe any point ; @, y its co-ordinates referred to the
lar axes; 7, @ its polar co-ordinates. Draw PM,
llel to OY, the former cutting SX' at N, and join

x=O0M, y=PM,
r=8P,° 6 =the angle PSA.
z=00+CM=0C+8N
= h+rcos(@+a) ............ ),
y=MN+ PN=SC+ PN
= k+rsin(@+a)..cceeunn.nn. (2).
=0 we have
x=h+rcosf ...cc..cvvvvnenn.n 3),



POLAR AND RECTANGULAR CO-ORDINATES. 87

87. By means of the formule of the present Chapter we
shall sometimes be able to simplify the form of -an equation ;'
for example, the axes being rectangular, suppose we have

Y+a'+ 6y =2 1.

This equation represents some locus, and by ascribing
different values to # and determining the corresponding
values of y from the equation, we can find as many points
of the locus as we please. The equation however will be
simplified by turning the axes through an angle of 45°. In

the formuls of Art. 81 put 7 for 0; thus

! ’ ’

_z -y _z +y
= ~—-/ 5 y V g errrteeeseeees (-t).
Substitute these values in (1) ; thus
@ +y) + (@ —y) +6 "~y =8;
therefore 2 (2" + 62"y +y*) + 6 (" —y*)* =8,
or B AF S TAED R e (3).
Since (3) is a simpler form than (1), we shall find it easier
to trace the locus by using (3) and the new axes, than by
using (1) and the old axes. The student must observe that
we make ne change in the locus by thus changing the axes
- or the origin to which we refer 1t; that is, equation (1)
represents precisely the same assemblage of points as (3);
for instance, the point for which «'=1 and 3 =0 is obviously
situated on the locus (3) ; now this point will by (2) have for
1

its co-ordinates referred to the old system w=7§, y=;/—2,

and these values satisfy (1), that is, this point is on the
locus (1).

We may remark that we’ cannot alter the degree of an
equation by transforming the co-ordinates. For if in the
expression Aa*y? we substitute the values of & and y in terms
of 2’ and g’ given in Arts. 80...84, we obtain

A (ax” + by + k)* (e’ + ef + K)?, .
where a, b, ¢, ¢, h, k& are all constant quantities; by expanding
this expression we shall obtain a series of terms of the form
A'z’vy’®, where ¢y + & cannot be greater than a+ 8. Hence
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the degree of an equation cannot be raised by transformation
of co-ordinates. Neither can it be depressed ; for if from a
given equation we could by transformation obtain one of a
lower degree, then by retracing our steps we should be able
from the second equation to obtain one of a higher degree,
which has been shewn to be impossible.

EXAMPLES.

1. Change the equation 7*=a’ cos 20 into one between
z and ¥.

2. Shew that the equation 4ay— 8t =a’ is changed
into a*— 44" = a’, if the axes be turned through an angle
whose tangent is 2. .

3. Transform &/z+ s/y =/c so that the new axis of =
may be inclined at 45° to the original axis.

4. The equation to a curve referred to rectangular axes
is y"+4aycota—4ar=0; find its equation referred to
oblique axes inclined at an angle a retaining the same axis
of .

5. Shew that the equation 2%’=a (¢’ +2°) will admit
of ‘solution with respect to g’ if the axes be moved through
an angle of 45°.

6. If «, y be co-ordinates of a point referred to one
system of oblique axes, and «, ' the co-ordinates of the same
point referred to another system of oblique axes, and

a:=mx'+ny'-, -y=m:w/+n'y’
shew that
m'+m*—1_ mm’
' +n*—1 " an
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CHAPTER VL
THE CIRCLE.

88. WE now proceed to the consideration of the loci
represented by equations of the second degree ; the simplest
of these is the circle, with which we shall commence.

To find the equation to the circle referred to any rectangular
axe.

Y
P .
c ~7
As Q
o N M X

Let Cbe the centre of the circle; P any point on its cir-
cumference. Let ¢ be the radius of the circle; a, b the co-
ordinates of C; @, y the co-ordinates of P. Draw ON, PM
parallel to 0Y, and CQ parallel to OX. Then

CQ*+ PQ'=CP;

that is, (—a)’+(y—=0b)l=c"cccovurneennn. 1),
or Z+y —20x-2by+ a’+b'—c*=0 ............ (2).
This is the equation required. ’

The following varieties occur in the equation.

I. Suppose the origin of co-ordinates at the centre of the

circle; then ¢ =0, and 6=0; thus (1) and (2) become

‘ L+y'—c=0....... cersernisteeenes 3).
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' EQUATION TO THE CIRCLE.

. Suppose the origin on the circumference of the circle;
the values =0, y=0, must satisfy (1) and (2);

re
a4+ —-c'=0, .
1 relation is also obvious from the figure, when O is on
rcumference ; hence (2) becomes
2+ 9y — 202 — 20y =0...... ceeeas (4).
1. Suppose the origin is on the circumference, and that

iameter which passes through the origin is taken for the.
f & ; then b=0, and a’=¢*; hence (2) becomes

+Y—202=0 .ccooereiriienninnen. (5).

imilarly if the origin be on the circumference and the
f y coincide with the diameter through the origin, we
a=0, and *=¢*; hence (2) becomes

B+Y =20y =0 .cc0vrreniriinnnns (6).

lence we conclude from (2) and the following equations,
the equation to a circle when the axes are rectangular
vays of the form

2+ y'+Az+ By+ C=0,

e A, B, C are constant quantities any one or more of
h in particular cases may be equal to zero.

9. We shall next examine, conversely, if the equation
Z+y'+Az+ By+C=0 ...cuuunn.ees ()
ys has a circle for its locus.

iquation (1) may be written
(:v +§)’ + (y+g-)’ =£—J{TB’- O rerpel(®)
If A*+ B*— 4C be negative, the locus is impossible.
I. If A+ B*—~4C=0, equation (2) represents a potni
so-ordinates of which are — 25" This point may be
idered as a circle which has an indefinitely small radius.

II. If A+ B*—40C be positive, we see by comparing
tion (2) with equation (1) of the preceding Article that 1t
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represents a ciréle, such that the co-ordinates of its centre are
- g , _5, and its radius § (4*+ B'— 4C).

It will be a useful exercise to construct the circles repre-
sented by given equations of the form :
2'+y'+ Az + By + C=0.

For example, suppose #* + y*' +4x—8y—5=0,
or (+2)+ (y—4)"=5+4+16=25.

Here the co-ordinates of the centre are —2, 4, and the
radius is 5.

Tangent and Normal to a Circle.

90. Let two points be taken on a curve and a secant
drawn through them; let the first point remain fixed and
the second point move on the curve up to the first ; the secant’
in its limiting position is called the tangent to the curve
at the first point.

91. To find the equation to the tangent at any pomt of
a circle.
Let the equation to the circle be :
Yy =c i (1).

Let o, ' be the co-ordinates of the point on the circle at
which the tangent is drawn; and &, y” the co-ordinates of
an adjacent pomt on the circle, The equation to the secant
through (2, y) and (2", ") is : .

y—y= ’/—"—-”- I TR ).
Now since (2, ') and (w R y’) are both on the circumfer-
ence of the circle,
?+y'=7, a"+y"t=¢";
therefore by subtraction, 4 — 2"+ 3" — y*=0, !
or  ("-d) @+5) + (4" ~y) ¢ +y)=0;

therefore Y= y: =— w,, + w, .
. . . a'—-a ¥ +y
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Hence (2) may be written
xl' + w’
Y- '=—'~—,,—-, L&) eovacceesssss «.(3).
y=y==gryy @2 3
Now in the limit when (2", ") coincides with (#, y), we
‘have 2”=2/, and y" =y'; hence (3) becomes

, 22 , '
i =—— =2 )=—— =X ).
y-y=—gy @-a)=—5@-2)
Thus the equation to the tangent at the point (2, ') is

&
-— '=——,a:-w’ .................. 4).
y=y 3,( ) 4)

This equation may be sim;)liﬁed ; by multiplying by 5" and
transposing we have z&' + yy' = 2"+ y*;
therefore 22 + Yy =C"irriiirnnriniennnnnen (5).

92. The equation to the tangent can be conveniently ex-
pressed in terms of the tangent of the angle which the straight

line makes with the axis of z. For the eguation to the tan-
2

gent at («, y) is yy +@a’ = ¢, or yé—; w+§

Let — 3, =m; thus the equation becomes

cl
=me+—.
y 2 I
We have then to express % in terms of m.
Now '=—my, and 2" +y =7";
therefore y* (1 +m¥)=c",
and Y= ——9—,.
V({1 +m®)

Hence the equation to the tangent may be written
y=mz+c J1 +m’).
Conversely every straight line whose equation is of this form
is a tangent to the circle.

93. The definition in Art. 90 may appear arbitrary to the
student, and he may ask why we do not adopt that given by
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Euclid (Def. 2, Book 111.). To this we reply that the defini-
tion in Art. 90 will be convenient for every curve, which is
not the case with Euclid’s definition. The student however
cannot at first be a judge of the necessity or propriety of any
definition; he must confine himself to examining the conse-
quences of the definition and the accuracy of the reasoning
based upon it. ,

‘We may easily shew however that the straight line re-
presented by the equation

: X N (1)
touches, according to Euclid’s definition, the circle
+Y=c" eviiiiiiiiiiiiiin ),

the point (z', ') being supposed to lie on the circle. To find
the point or points of intersection of the straight line and
circle we combine the equations (1) and (2); substitute in (2)
the value of 5 from (1), then

' + (o’ -;Ia:a: ,) - L

or o (2% +y*) - 28’z + ¢* — c*y* =0,
or da' - 207w+ 2 =0
therefore o — 2 +a%=0;
therefore rz=a;

therefore from (1), y=y.

Hence (1) and (2) meet at only one point, the point (7, y).
Hence (1) touches the circle according to Euclid’s definition.

94. Also every straight line which meets the circle at
one point only is a tangent to the circle.

For suppose #* + y* = ¢* to be the equation to a circle and
y =mz+ n the equation to a straight line; to find the points
of intersection of the straight line and circle we combine the
equations ; thus we obtain, to determine the abscissee of the
points, (me+n)'+a*'=c' or (m*+1)a*+2mnz+n'—c*=0.
Now this quadratic equation will have fwo roots except when

(m* + 1) (n* = ¢*) = m™n",
that is, when n*=c* (1 +m").
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Hence if the straight line meets the circle it must meet
it at two points umless this condition holds, and then, by
Art. 92, the straight line is a tangent to the circle.

95. Instead of supposing one of the points on the circle
fixed and the other to move along the circle as in the defi-
nition of Art. 90 we may suppose both to move along the
circle until they meet at some fixed point of the circle, and
the secant in its limiting position will be the tangent at that
fixed point. For let («, ¥) and (2", ") denote the two
moving points on the circle, and (x,, ,) the fixed point.
Then as in equation (3) of Art. 91, we shall have for the -
equation to the secant
’ ! w” + w, (w wr)

Y=Y ==y
In the limit 2’ and 2" each = z,, and 3’ and " each =y,, and
we obtain for the equation to the tangent at (z,, ,)

x
y=u =—'; (w— w;):
1
which agrees with the former result.

96. If the equation to a circle be given in the form
(e —a)'+(y =By = =0,
we may find the equation to the tangent at any point in the
same manner as in Art. 91.
Let («', y") be the point on the circle at which the tangent
is drawn ; gv” ,%") an adjacent point on the circle; then
@@t - =0, (@ —a'+ (=D~ =0;
therefore (2" —a)’— (& —a)*+ (y"' - 8)'— (¥ - b)*=0,
or (¢"—a)(z"+a—2a)+ (¥ —9) (¥ +y—2b)=0...(1).
Also the equation to the secant through (¢, 3') and (2", y”) is

4

¥-9y =5 @) @)
By means of (1) this may be written
, o &'+ad —2a "
y—y _—:l/,"+y' _T 2b (w"'w) ooooooo ;'..._.....(3). .
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.~ Now in the limit &’ = and ¥"=y'; hence we have for
the equatlon to the tangent at (#, %)

y—y ——H(w—w’) .................. 4.
This may be written
y-b—( - b)———‘;‘,{w a— (@ —a)];
therefore (z—a)(z'—a)+ (y—0) (¥ —b)
=@ —a)+ @ —-b"'=c...... (5).

97. DEFINITION. The normal at any point of a curve is
a straight line drawn' through that point at rlght angles to
the tangent to the curve at that point.

98. To find the equation to the normal at any point of a
circle.

Let the equation to the circle be

Y =Ctruiiriiiiiiiiiennnn ),

and let &', 5’ be the co-ordinates of a point on the cxrcle, then
the equation to the tangent at that point is #2’ + yy'=¢’, or
, 0’
=——z+5
: y= ¥y oy
Hence the equation to a straight line through (', y')
at right angles to the tangent at that point is :
y-y —z(w @), or y—zav
Since this equation is satisfied by the values =0, y= 0
the normal at any point passes through the origin of co-ordi-
nates, that is, through the centre of the circle.

- 99. From any external point two tangents can be drawn
to a circle.
Let the equation $o a circle be

F+Y=Crrriiiiiniiinnieinnn (1),

and let h, k be the co-ordinates of an external point.. Sup-
pose &, y the co-ordinates of a point on the circle such that
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the tangent at this point passes through (4, k). The equation
to the tangent at (z', y') is

' + Yy =i, (2).
Since this tangent passes through (%, &)
he' + by =c"evennnnnnnnninnnnnnen. 3).
Also since (2, y') is on the circle
Z+yt=chiiiinnnns eereneas (4).

Equations (3) and (4) determine the values of 2’ and /.
Substitute from (3) in (4), thus

s (P o

therefore 2™ (A*+ &) — 2¢°%ha’ +¢* (P — k") = 0.

The roots of this quadratic equation will be found to be
both possible since (h, k) is an external point and therefore
I+ k* greater than ¢*. To each value of 4’ corresponds one
value of y' by (3); hence fwo tangents can be drawn from
any external point.

The straight line which passes through the points where
these tangents meet the circle is called the chord of contact.

100. Tangents are drawn fo a circle from a given external
point ; to find the equation to the chord of contact.

Let h, k be the co-ordinates of the external point; z,, y,
the co-ordinates of the point where one of the tangents from
(h, k) meets the circle; z,, y, the co-ordinates of the point
where the other tangent from (k, k) meets the circle.

The equation to the tangent at (z,, y,) is

XL A+ YY, = CCoerrernniinniennneens 1)
Since this tangent passes through (&, %), we have
ho +ky, =c* cunennvnnninninninanee. (2).

Similarly, since the tangent at (z,, y,) passes ‘ through
(h) k)’ .
ha, + by, =cCuunriennininnnnnnnnnn. (3).
Hence it follows that the equation to the ckord of con-
tact is :
a'h +yk = 0’ sessesecititiccnencnonee (4)1
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For (4) is obviously the equation to some straight line;
also this straight-line passes through (z,, y,), for (4) is satisfied
by the values #=x,, y=y,, as we see from (2); similarl
from (3) we conclude that this straight line passes througg
(@, 7,). Hence (4) is the required equation.

Thus we may proceed as follows in order to draw tan-
gents to a circle from a given external point: draw the
straight line which is represented by (4); join the points -
where it meets the circle with the given external point, and
the straight lines thus obtained are the required tangents.

101. Through any fized point chords are drawn to a circle,
and tangents to the circle drawn at the exttemities of each chord;
-the locus of the intersection of the tangents s a straight line.
Let h, k be the co-ordinates of the point through which
the chords are drawn ; let tangents to the circle be drawn at
the extremities of one of these chords, and let (z,, y,) be the
point at which they meet. The equation to the correspond-
1ng chord of contact is, by Art. 100, zx, + yy, =c¢". But this
chord passes through (%, k) ; therefore hz, + ky, = c'.

Hence the point (z,, #,) lies on the straight line
a4+ yk=c*;

that is, the locus of the intersection of the tangents is a
straight line.

‘We will now demonstrate the converse of this proposition.

102. If from any point in a straight line a pair of tan-
gents be drawn to a curcle, the chords of contact will all pass
through a fized point.

Let Az +By+ C=0..ccccevvvivnnnenen. (1)

be the equation to the straight line; let (', ') be a point in
this straight line from which tangents are drawn to the circle;
then the equation to the corresponding chord of contact is

T + Yy =" i v, 2).
Since («/, y) is on (1) we have Aa'+ By + C=0;
Az + 0 _ &
B 2
T.C.S. 7

therefore (2) may be written aa’—y
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INTERPRETATIONS OF AN EQUATION.

( ——Az)a: —y—o—c’=0.

B B

ow, whatever be the value of &/, this straight line passes
gh ‘the point whose co-ordinates are found by the simul-
us equations w—% =0, ¥ 0+ ¢*=(; that is, the point

3
hich y——B—UO’, w=—%.

)3. The student should observe the different interpreta-
that can be assigned to the equation x4 + yk —¢* = 0.

If (%, k) be any point whatever, the equation repre-
the locus of the intersection of tangents at the extre-
s of each chord through (k, k). (Art. 101.)

. If (b, k) be an external point, the equa,tlon represents
hord of contact. -(Art. 100.)

1 If (&, k) be on the circle, the equation represents the
nt at that point. (Art. 91.)

1 the following figures Q denotes the point (k, k), and
he straight line A + yk =c".
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In the first figure @ is within the circle, and the straight
line R R receives only the interpretation I.

In the second figure ¢ is wnthout the circle, hence the
straight line BR receives both interpretations I. and IL ; if
therefore tangents be drawn from @ to the circle they will
meet it at the points where RR intersects 1.

If @ be on the circle, then RRE becomes the tangent at Q.

 Oblique Axes.

104. 7o find the equation to the circle referred to any
oblique axes,

o N M X

Let o be the inclination of the axes; let C be the centre
of the circle; P any point on its circumference. Let ¢ be
the radius of the circle; @, b the co-ordinates of O; «, the
co-ordinates of P. Draw CN, PM parallel to OY an
parallel to 0X. Then

OP=C@ + P@'—20Q. PQ cos CQP
—CQ’+PQ'+2CQ PQcosw;
tha.tls, (@—a)'+ (y—b)*+2 (z—a) (y—b) coso=c";

or, @ +3"+2xy cosw—2(a+bcosw)z—2(b+acosw)y
+ a® +b* + 2ab cos @ —¢'=0.
7—2
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Hence the equation to the circle referred to oblique axes
is of the form

2 +y'+ 2zy cosw + Az -+ By+ C=0,
where 4, B, C are constant quantities,

Polar Equation.
105.  To find the polar equation to the circle.
N Q N .
P
5 . _ x

Let 8 be the pole, SX the initial line; C the centre of
the circle, P any point on its circumference.

Let SC=1, C8X =a, so that [, a are the polar co-ordi-
nates of C; let ¢ be the radius of the circle ; ; and let 7, @ be
the polar co-ordinates of P.

Then  CP*=PS"+ C8*—2PS. CS.cos PSC;
that is, C=r+l—2lrcos(@—a) ceeoveriennnnnnn. 1),
or r*—2rl (cosa cos @ +sina sin 6) + ' —c'=0... (2).
Hence the polar equation to the circle is of the form
P+ Arcos@+ Brsinf+ C=0............... (8).

The polar equation may also be deduced from the equa-
tion referred to rectangular axes in Art. 88 by putting » cos
and rsin @ for  and y respectively.. = -

If the initial line be a diameter we have a= 0, hence (1)
becomes
P=2rcos0+F—c"=0.0crrvrrerereenens (4).
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If, in addition, the origin be on the circumference & =¢*,
therefore r=2lcosf............ sereereenras (3).

106. 7o express the perpendicular from the origin on the

tangent at any point in terms of the radius vector of that
point.

Let 8Q be the perpendicular from the origin on the tan-
gent at P, and suppose SQ =p; then

SC*= 8P+ PC*—-28P. PC cos SPC
= SP + PC* - 28P. PC sin SPQ;
that is, F=r"+c"-2cp. e

In the figure Sand C are on the same side of the tangent
at P. If we take P so that the tangent at P falls between S
and C, we shall find I*=1" + ¢* + 2cp.

107. These equations are sometimes useful in the solu-
. tion of problems, or demonstration of properties of the circle.
For example, take the equation (4) in Art. 105,

rP—=2rlcos0+0P—c'=0;

by the theory of quadratic equations we see that the product
of the two values of » corresponding to any value of @ is
I — % which is independent of 6. This agrees with Euclid
1. 35, 36. :

Also the sum of the two values of » is 21 cos §; hence if a
straight line be drawn through the pole at an inclination 8 to
the initial line, the polar co-ordinates of the middle {:;int of
the chord which the circle cuts off from this straight line are
il c2os o, and 0; that is, I cos 6, and 6.

Hence the polar equation of the locus of the middle point

of the chord is » =1 cos §, which by (5) in Art. 103, is a circle,
of which the diameter is . ~
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EXAMPLES.

1. Determine the position and magnitude of the circles
(1) 2+y+4y—4x-1=0,
(2) #"+y"+6x-3y—1=0.
2. Find the points of intersection of the straight lines
y+e=-1, y+z=-5, and 3y+dx=-25,
with the circle &* + y* = 25.
8. A circle passes through the origin and intercepts

lengths A and % respectively from the positive parts of the
axes of z and y; determine the equation to the circle.

4. A circle passes through the points (&, k) and (%, &) ;
shew that its centre must lie on the straight line
, h+n E+ %y _
=k (w——2—) +(k—k) (y-—z——)_o.
5. On the straight line joining (2, 4’} and (2, y") as \
a diameter a circle is described ; find its equation.
6. A4 and B are two fixed points, and P a point such

that 4 P=mBP, where m is a constant ; shew that the locus
of P is a circle, except when m=1,

7. The locus of the point from which two given unequal
circles subtend equal angles is a circle. 1

8. Find the equation which determines the points of

intersection of the straight line %’+ %— 1=0, and the circle

a* +y* —2ax — 20y =0. Deduce the relation that must hold
in order that the straight line may fouch the circle.
9. Find the equation to the tangent at the origin to the

circle 2 + 3* — 2y — 3z =0.

. 10. Shew that the length of the common chord of the
circles whose equations are

(@z-a)+@-by=c, (z-b)'+(@y—a)=c,

is V{4’ —2 (a—0)"}.
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11. A point moves so that the sum of the squares of its
distances from the four sides of a square is constant; shew
that the locus of the point is a circle.

12. A point moves so that the sum of the squares of its
distances from the sides of an equilateral triangle is constant ;
shew that the locus of the point is a circle.

13. A point moves so that the sum of the squares of its
distances from any given number of fixed points is constant ;
shew that the locus is a circle. '

14. Shew what the equation to the circle becomes when
the origin is a point on the perimeter, and the axes are in-
clined at an angle of 120° and the parts of them intercepted
by the circle are & and £.

15. Find the inclination of the axes in order that the
equation '+ y*— oy —hx—hy=0 may represent a circle.
Determine the position and magnitude of the circle.

16. Find the inclination of the axes in order that the
equation &'+ y'+zy—he —hy =0 may represent a circle.
Determine the position and magnitude of the circle.

17. Determine the equation to the circle which has its
centre at the origin, and its radius=3, the axes being in-
clined at an angle of 45°.

18. Determine the equation to the circle which has each

of the co-ordinates of its centre =— } and its radius =2

V3’
the axes being inclined at an angle of 60°.

~ 19. The axes being inclined at an angle o, find the radius
of the circle #*+ %' + 2zy cos @ —ha — ky =0.

20. Shew that the equation to a circle of radius ¢ referred
to two tangents inclined at an angle o as axes is

a:’+y’+2xycosgo—-2(w+y)qcotg+c’cotf§=,0,

-21. Shew that the equation in the preceding Example

may also be written z +y — 2 ,/(xy) sin g=c cotg.
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922. Find the value of ¢ in order that the circles
(x—a)+(y—-b)'=¢, and (z-0)'+(y—a)'=c’,
may touch each other.

23. ABC is an equilateral triangle; take 4 as origin,
and AB as axis of z; find the rectangular equation to the
circle which passes through 4, B, C. Deduce the polar equa-
tion to this circle. ,

24. If the centre of a circle be the pole, shew that the
polar equation to the chord of the circle which subtends an
angle 28 at the centre is r=ccos Bsec (f — a), where a is
the angle between the initial line and the straight line from
the centre which bisects the chord. Deduce the polar equa-
tion to a straight line touching the circle at a given point. .

25. Find the polar equation to the circle, the origin being
on the circumference and the initial line a tangent. Shew
that with this origin and initial line, the polar equation to the
tangent at the point &' is rsin (26' — 6) =2csin’ 4.

26. Shew that if the origin be en the circumference and
the diameter through that point make an angle a with the.
initial line, the equation to the circle is = 2¢ cos (6 — a).

27. Determine the locus of the equation
r=A4 cos (6 —a) + Beos (8 —B)+ Ccos (@ —q) +......

28. ABis a given straight line; through 4 two inde-
finite straight lines are drawn equally inclined to 4B, and
any circle passing through 4 and B meets those lines at
L, M; shew that the sum of AL and AM is constant when
L and M are on opposite sides of 4B, and that the difference
of AL and AM is constant when L and M are on the same
side of AB.

29. ABC is an equilateral triangle: find the locus of P
when P4 =PB+ PC.

- 80. There are n given straight lines making with another
fixed straight line angles a, 8, v, ...... ; & point P is taken
such that the sum of the squares on the perpendiculars from
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it on these n straight lines is constant: find the conditions
that the locus of P may be a circle.

31. A point moves so that the sum of the squares of its
distances from the sides of a regular polygon is constant:
shew that the locus of the point is a circle.

32. A straight line moves so that the sum of the perpen-
diculars AP, B(), from the fixed points A and B is constant ;
find the locus of the middle point of PQ.

. 83. O is a fixed point and 4B a fized straight line; a
straight line is drawn from O meeting 4B at P; in OP a
point @ is taken so that OP. 0Q=%": find the locus of Q.

34. A straight line is drawn from a fixed point O, meet-
ing a fixed circle at P; in OP a point ¢ is taken so that
OP.0Q=1F: find the locus of Q.

35. Shew that (hy —kx)'=c* {(x— h)'+ (y — k)"} repre-
sents the two tangents to the circle, '+ y* = ¢’, which pass
through the-point (k, k). '

36. Determine what is represented by the equation
' r* — ra cos 20 sec § — 2a* = 0.

37. The polar equation to a circle being 7= 2¢ cos 6, shew
that the equation 2¢cosBcosa=rcos (8+a—0) represents
a chord such that the radii drawn to its extremities from the
pole, make angles a, 8 with the initial line.

38. Tangents to a circle at the points P and @ intersect
at T; if the straight lines joining these points with the ex-
tremity of a diameter cut a second diameter perpendicular to
the former at the points p, g, ¢, respectively, shew that pt = gt.

39. Find the equation to the circle which passes through
three points whose co-ordinates are given.

40. Shew that the co-ordinates of the centre and the
radius of the circle in the preceding Example are always
finite except when the three given points are on a straight
line. ' : e
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CHAPTER VIL

RADICAL AXIS. POLE AND POLAR.

Radical Aars.

v 108. 'WE have shewn in Art. 88 that the equation to a

circle is (z—a)’+ (y—3)*—c'=0. We shall write this for
abbreviation §=0. If the point (x, ) be not on the circum-
ference of the circle, S is not =0; we may in that case give
a simple geometrical meaning to S.

I Let (=, y) be without the circle; draw a tangent from
(, y) to the circle ; join the point of contact with the centre
of the circle (a, 8); also join (, y) with (a, 3). Let O re-
present the point (a, b), (3 the point (, ), and T the point
of contact of the tangent. Thus we have a right-angled
triangle formed, and since (z —a)*+ (y —b)* = QC?, it follows
that 8= QT?; that is, S expresses the square of the tangent
from (2, y) to the circle. By Euclid 111. 36, the square of the
tangent is equal to the rectangle of the segments made by the
circle on any straight line drawn from (z, y), and thus S will
also express the value of this rectangle.

IL. Let (2, y) be within the circle ; then 8§ is negative.
Let C and Q have the same meaning as before, and produce
C@ to meet the circle at 7" and 7"; then

—-8=0T"-C@=(CT-CQ)(CT+0CQ)=TQ.TQ.
Hence by Euclid 111. 35, if any straight line PQP’ be drawn
meeting the circle at P and P’, the value of the rectangle
PQ.PQis — 8.
109. Let Sdenote (x—a)+ (y—28)°—c",
and . &' denote (x—a')*+ (y—b)"—c*; .
50 that 8=0..c.c00uunus (1), and 8'=0............ (2),
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are the equations to two circles; we proceed to interpret the

equation
B=8=0.ceeiiirieeriennannns (3).

8 — ' contains only the first powers of # and y; therefore
S — 8'=0 is the equation to some straight line. Also if
values of z and y can be found to satisfy simultaneously (1)
and (2), these values will satisfy (8). Hence when the
-circles represented by (1) and (2) intersect, (3) is the equa-
tion to the straight line which joins their points of inter-
section.

Also suppose that from any point in (3), extérnal to both
circles, we draw tangents to (1) and (2); then, by Art. 108,
these tangents are equal in length. Hence whether (1) and
(2) intersect or not, the straight line (3) has the following
property : if from any point of it straight lines be drawn to
touch both circles, the lengths of these straight lines are equal.

110. An equation of the form
A +y)+Bz+ Cy+ D=0

will represent a circle ; for after division by 4 we obtain the
ordinary form of the equation to a circle. We shall say that

the equation to a circle is in its svmplest form when the co-
efficient of «* and 3* is unity.

DeFINITION. If S=0, 8’=0, be the equations to two
circles in their stmplest forms, the straight line S — 8 =0 is
called the radical azis of the circles.

The axes of co-ordinates may here be rectangular or oblique.

Or we may give a geometrical definition thus. A straight
line can always be found such that if from any point of it
tangents be drawn to two given circles, these tangents are
equal ; this straight line is called the radical axis of the circles.

111. The three radical axes belonging to three given circles
meet at a point.
Let the equations to the three circles be

8=0.n (@), 8=0....(2), 8£=0......(3).



108

RADICAL AXIS.

The equations to the radical axes are
8,—-8,=0, beloﬂging to (1) and (2),
8,— 8,=0, cccovrrennnnnn (2) and (3),
8,—8,=0, wccervrereenes (3) and (1).
‘hese three straight lines meet at a point; since it is ob-

3 that the values of « and y which simultaneously satisfy
of the equations, will also satisfy the third. -

12. A large number of inferences may be drawn from
receding Articles by examining the special cases which
inder the general propositions. (See Pliicker Analytisch-
netrische Entwickelungen, Vol. 1. pp. 49—69.) We notice
7 of these respecting the radical axis of two circles.

18. The radical axis 18 perpendicular to the straight line
ng the centres of the two circles.

.et the equations to the circles be
—a)+(y=0'~c'=0, (x—a)+ (y—=0b)-c"=0;
the equation to the radical axis is

(@—a)—(x—a) '+ (y—b)'—(y=b)—c+c*=0;
—a)+y@'-b)+3(@—a’+ 5 -8"—c"+c%)=0...(1).

ind the equation to the straight line joining the centres
e circles is (Art. 35)

’

b —
y_b=a'—a

nd (2) are at right angles by Art. 42.

14. When two circles touch, their radical axis is the
non tangent at the point of contact. For the radical axis
's through the common point and is perpendicular to the
zht line joining the centres of the circles.

15. Suppose the radius of one of the circles to become
initely small, that is, the circle to become a point; the
'al axis then has the following property: if from any
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point of the radical axis we draw a straight line to the given
point, and a tangent to the given circle, the straight line and
the tangent will be equal in length. )

116. The radical axis of a point and a circle falls without
the circle, whether the point be without or within the circle.
For if the radical axis met the circle, the co-ordinates of the
points of intersection would satisfy the equation to the point as
well as the equation to the circle. But the equation to the
point can be satisfied by no co-ordinates except the co-ordi-
nates of that point; therefore the radical axis cannot meet
the circle. If the point be on the circle, the radical axis is
the tangent to the circle at this point.

117. Suppose both circles to become points. Then the
straight lines drawn from any point in the radical axis to the
two fixed points are equal in length. Hence the radical axis
belonging to two given points is the straight line which bisects
at right angles the distance between the two given pointa.

118. Suppose in Art. 111 that each circle becomes a point;
the theorem proved is then the following: the straight lines
drawn from the middle points of the sides of a triangle at
right angles to the sides meet at a point.

119. It is a well-known geometrical problem ¢o draw a
straight line which shall touch two given circles. If the circles
do net intersect, four common tangents can be drawn ; two of
them will be equally inclined to the straight line joining the
centres, and w%.l intersect on that straight line between the
circles; the other two will also be equally inclined to the
straight line joining the centres, and will intersect on that
straight line beyond the smaller circle. These two points of
intersection are called centres of similitude.

'We will briefly explain some of the properties of cenires
of stmilitude. 4

L Leta centre of similitude of two circles be taken as
the pole, and the straight line passing through the centres of

the circles as the initial line. By Art. 105 the equations to
the two circles will be of the forms

*—2rlcos+P —c'=0, r*—2rl cos 0+ I"—c*=0...(1).
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F roni the first equation
r=1lcos @ +y/(c'—1sin*f)............... 2.

When the two values of » are equal the radius vector
becomes a tangent : this takes place when I*sin*@=¢', Since
the circles have common tangents passing through the pole

0 ’
;-’;=(l;—,,, and therefore (l—;, =% %" If the lower sign is taken
the centre of similitude is between the centres of the two
circles ; if the upper sign is taken the centre of similitude is
on the production of the straight line which joins the centres:
we may call the former the inner centre of similitude, and the
latter the outer centre of similitude, ’

% ]
Since %,=-cl; the second of equations (1) may be written

r=L st 4y (e Pein?O)........ e (B

From (2) and (8) we have the following result: Let 4 be
the centre of one circle, and B the centre of another, and let
T be a centre of similitude ; let any straight line through 7'
cut the former circle at K and L, and the latter at M and N,
so that TK is less than 7L, and 7'M less than 7'N: then

II. 'When two circles intersect only one pair of common
tangents can be drawn ; and when one circle is entirely within
the other no common tangent can be drawn. Nevertheless
two points always exist such as the point 7' just considered;
so that we may take the following as the most general defi-
nition of the centre of similitude of two circles: A centre of
similitude is a point on the straight line joining the centres
or on this straight line produced such that its distances from
the centres are proportional to the radii of the corresponding
circles. The essential property of a centre of similitude -
ma{ be considered to be that expressed by the final result
in L
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IXII. Let 7 be a centre of similitude of two circles ; draw
from 7' two straight lines, one cutting the circles at K, L,
M, IV; and the other at &, [, m, n.

Now we have just shewn that
IE Tk,
™ Twm’
therefore the triangles Kk and TMm are similar, and Mm is
parallel to K%.

Hence the angle Kkl =the angle Mmn; and therefore
the angles MNn and Kkl are supplemental, by Euclid 1. 22,
so that a circle would pass round NKkn: let Nn and Kk
be produced to meet at R, then RK.Rk=REN.Rn, by
Euclid 111. 36. Cor. Hence the tangents from B to the two
circles are equal, by Euclid 111, 36 ; and therefore R is on the
.radical axis of the two circles,

Similarly Nn is parallel to LI; and Mm and L if pro-
duced meet on the radical axis.

IV. Suppose there are three circles ; since each pair has
two centres of similitude there will be six centres of simili-
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tude on the whole : we shall shew that four straight lines can
be drawn each containing three centres of similitude.

Let A, B, C be the centres of three circles; let p, ¢,  be
their radii, .

A

Let F be a centre of similitude of the circles which have
their centres at 4 and B; draw a straight line through ¥
meeting CA and CB at E and D respectively.

By page 71 we have

"AE.CD.BF=CE.BD. AF.

- , AF _p. ‘
But . FF—Q’ ‘

) CD _pCE.
thus B—D—-q--Z—E—,. ‘

Now suppoée that E is a centre of similitude of the circles
~which have their centres at 4 and C; then

GE v, therefore —C—I-)=C
AE p’ BD ¢’

Hence D is a centre of similitude of the circles which have
their centres at B and C. In this way we obtain results
which can be enunciated definitely thus: the outer centre of
similitude of two circles, and the two inner centres of simili-
tude of these two circles and any third circle lie on a straight
line ; also the three outer centres of similitude lie on a straight
line,

Pole and Polar.

120. DErINITION. If the equation to a given circle be
2+ y'=¢", and h, k be the co-ordinates of any point, then
the straight line @h + yk = ¢' is called the polar of the point J
“(h, k) with respect to the given circle, and ‘the point (&, k) is
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called the pole of the straight line h + yk = ¢* with respect to
the given circle.

‘We may also express our definition thus: the polar of a
given point with respect to a given circle is the straight line
whose equation involves the co-ordinates of the given point
in the same manner as the equation to the tangent at any
point of the circle involves the co-ordinates of the point of
contact; and the given point is the pole of the straight line.

This definition might be misunderstood. For the equa-
tion to the tangent to a circle at a given point might be
expressed in different forms by using the relation which holds
between the co-ordinates of the given point by virtue of the
equation to the circle. We might for example express the
equation to the tangent in terms of either of the co-ordinates
of the given point alone. But in the above definition we mean
that the equation to the tangent is to be in the form which 1t
naturally assumes, involving the co-ordinates of the given
point rationally. '

Or we may define the polar of a point by means of the
properties which it possesses (Art. 103). The polar of a
given point with respect to a given circle is the straight line
which is the locus of the intersection of tangents drawn at
the extremities of every chord through the given point; and
the given point is called the pole of this straight line.

If the given point be without the circle, its polar coincides
with the chord of contact of tangents drawn from that point.

121. If one straight line pass through the pole of another
straight line, the second straight line will pass through the pole
of the first straight line.

Let («/, ") be the pole of the first straight line, and
therefore the equation to the first straight line

Let (2", ¥”) be the pole of the second straight line, and
therefore the equation to the second straight line

22"+ Yy =" i (2).

/)

Since (1) passes through (2", y") we have 2"z + y"y' =¢*;
and since this equation holds, (2) passes through (z/, ¥').

T.C. 8. 8
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122. The intersection of two straight lines is the pole of the
straight line which joins the poles of those straight lines.

Denote the two straight lines by 4 and B, and the straight
line joining their poles by C'; since C passes through the pole
of A4, therefore, by Art. 121, 4 passes through the pole of C;
similarly B passes through the pole of C; therefore the inter-
section of 4 and B is the pole of C.

MISCELLANEOUS EXAMPLES.

1. Find the tangent of the angle between the two straight
lines whose intercepts on the axes are respectively a, b, and
a,b.

2. If the two straight lines represented by the equation
& (tan® ¢ + cos® ) — 2xy tan ¢ + y* sin’ ¢ = 0, make angles
a, B with the axis of #, shew that tan a~tan 8=2.

3. One side of a square a corner of which is at the origin
makes an angle a with the axis of #; find the equations to
the four sides and the two diagonals.

4. Find the equations to the diagonals of the parallelogram
formed by the straight lines

Ti¥_1 ZiY_9 T Y_q1 ZiY_9.
atp=b g¥p=2 pre=h gt
and shew that the diagonals are at right angles.

5. The distance of a point (x,, y,) from each of two straight

lines which pass through the origin of co-ordinates is & ; shew
that the two straight lines are represented by the equation

(2,y —zy,) = (2" + ¢") &

- 6. Find the condition that one of the straight lines re-
presented by Ay’ + Bxy+ Cx'=0 may coincide with one of
those represented by ay* + bay + ¢z’ = 0, '

7. If a=0, B=0, y=0 be the equations to the three
sides of a triangle ; and a, b, ¢ be the perpendicular distances
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between these sides and those of another triangle parallel to
them respectively, the straight line joining the centres of the
inscribed circles will be represented by any of the equations

e—B_B-—y_nv—ca
a=-b b—c c—a’

8. Shew that the equatioﬁ to the straight line passing
through the middle point of the side BO of a triangle ABC
and parallel to the external bisector of the angle 4 1s

B+7+%(sinB+sin 0)=0.

9. The equation to the straight line drawn parallel to BC
through the centre of the escribed circle which touches BC is

(a+B)sin B+ (x +9) sin C=0.

10. Find the equations to the straight lines which pass
through the intersection of the straight lines

la+mB+ny=0, ‘a+m'B+u'y=0,

and divide the angles between them into parts having their
sines in a given ratio.

. 11. Find the equé,tions to the two straight lines which
bisect the angles between the straight lines represented by
Ay*+ Bxy + Co* =0, '

12. Find the condition in order that the straight lines
Ay + Bzy + C2'=0 and ay* + boy + cx* = 0 may have their
angles bisected by the same pair of straight lines.

13. If u=0, v=0, be the equations to two circles, shew
that by giving a suitable valtie to the constant A, the equation
% +Av =0 will represent any circle passing through the points
of intersection of the given circles.

14. A fixed circle is cut by a series of circles, all of which
pass through two given points; shew that the straight lines
which join the points of intersection of the fizxed circle with
each circle of the series all meet at a point. . :

- 8—2
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CHAPTER VIIL
THE PARABOLA.

123. THERE are three curves which we now proceed to
define ; we shall then deduce their equations from the defini-
tions, and investigate some of their properties from their
equations. ‘

DEFINITION. A conic section is the locus of a point which
moves so0 that its distance from a fixed point bears a constant
ratio to its distance from a fixed straight line. If this ratio
be unity, the curve is called a parabola, if less than unity, an
ellipse, if greater than unity, an hyperbola. ’ '

The fixed point is called the focus, and the fixed straight
line the directrix, '

124. It will be shewn hereafter that if a cone be cut by
a plane, the curve of intersection will be one of the following ;
a parabola, an ellipse, an hyperbola, a circle, two straight
lines, one straight line, or a point. Hence the term conic
section is applied to the parabola, ellipse, and hyperbola, and
may be extended to include the circle, two straight lines, one
straight line and point. 'We shall also shew that every curve
of the second degree must be a conic section in this larger
sense of the term.

At present we confine ourselves to tracing the consequeﬁces
of the definitions in Art. 123.
125. To find the equation to the Parabola.

A parabola is the locus of a point which moves so that its
distance from a fixed point is egqual to its distance from a
fixed straight line.

Let S be the fixed point, YY" the fixed straight line.
Draw SO perpendicular to YY'; take O as the orgin, 08
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as the direction of the axis of #, OY as that of the axis
Suppose 08 =2a.

Y

N L —
oAl S M X
Y’

Let P be any point on the locus; join SP; draw
parallel to OY and PN parallel to 0X; let 02
PM=y.

By definition SP= PN ; therefore SP°=PN?; the:
PM?+ SM? = PN that is, y*+ (z — 2a)' = 2*;

therefore y*=4a (¢ — @) ...cccvveennennee. l

This is the equation to the parabola with the ass
origin and axes. The curve cuts the axis of « at a poi
which bisects OS; for when y=0 in (1), we have :
The equation will be simplified if we put the origin ¢
let 2’ =AM, then & =x — a, and (1) becomes y* = 4ax’".

We may suppress the accent, if we remember tha
origin is now at 4; thus we have for the equation t

parabola
Y=dax..... cevesence ceerseanes (

126, To trace the parabola from its equation y* = 4e

From this equation we see that for every positive -
of & there are two values of y, equal in magnitude, b
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n. Hence for every point P on one side of the
here is a point P’ on the other side, such that

JPN

Hence the curve is symmetrical with respect
of . Negative values of « do not give possible
; hence no part of the curve lies to the left of the
« may have any positive value, the curve extends
it on the right of the origin.

ed the vertex of the curve and AX the aats of

e have drawn the curve concave towards the axis
llowing proposition will justify the figure.

nate of any point of the curve which lies between
nd a fixed point of the curve is greater than the
1g ordinate of the straight line joining the vertex
d point.

3 the fixed p,oint; &', y its co-ordinates; then the
AP is y='g; w=«/(%?) ., since y"” = 4ax’.

note any abscissa less than &, then since the ordi-
curve i8 #/(4ax), and that of the straight line is
or ,\/ (g;) x #/(4az), it is obvious that the ordi-
surve is greater than that of the straight line.

ts may be said to be outside the curve for which
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y* — 4az is positive ; that is, points for which 2 is negative,

2 .
or for which # is positive and less than i"—; . And all points
may be said to be inside the curve for which y* — 4azx is nega-
tive. Since the square of the distance of any point from the
focus is y*+ (z—a)’, that is (z+ a)*+y* — 4az, it follows
that the distance of any point, not on the curve, from the
focus is greater or less than its distance from the directrix
according as the point is outside or inside the curve.

128. DerINITION. The double ordinate through the
focus of a conic section is called the Latus Rectum.
Thus in the figure in Art. 126, LSL' is the Latus Rectum.

Let 2 =a, then from the equation 3'=4daz, y= + 2a.
Hence LS=L'S=2a; and LL' = 4a.

129. 7o express the focal distance of any point of the
parabola in terms of the a£cissa of the poi{t. yr 4

- The distance of any point on the curve from the focus is
equal to the distance of the same point from the directrix.
Hence (see figure to Art. 125), SP=AM+ AS, =z + a.

Tangent and normal to a Parabola.

130. To find the equation to the tangent at any point of
a parabola. (See Def. Art. 90.)

. Let @, 3 be the co-ordinates of the point, ', y” the co-
ordinates of an adjacent point on the curve.
The equation to the secant through these points is

" !

y-—‘y’=y = (@ =& ) i, (1);

z' -

since (2, ') and (", y") are on the parabola
y?=das!, y"=4dax";
therefore y'” —y*=4a (2" - &) ;
Y-y _ 4a

therefore e m;

4a
hence (1 be written y —y' = -——, (x — «').
ence (1) may be written y —y y_+y( )
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Now in the limit,y” =3'; hence the equation to the tan-
gent at the point (z, y) is

s _2a ,
Y-y =?(a:—:v) ................ (2).
This equation may be simplified ; multiply by 3, thus
yy =2a (x—2') + ¥y, =2ax —2az’ + 4ax’,
=2a (@+&) ...t eesrasrnsrntansaenn (3).

131. The equation to the tangent can be conveniently
expressed in terms of the tangent of the angle which the
straight line makes with the axis of the parabola.

For the equation to the tangent at (2, y) is

vy =2a (z+ ),

2 | 2ax 2a  4aa’
or y="z+— =S+
y y ¥ %
2, .Y
= —y—,— x+ greeeee Vevessessnstnnann (1).
Let % =m; therefore % = %; thus (1) may be written

this is the required equation. Conversely, every straight line
whose equation is of this form is a tangent to the parabola.

132. It may be shewn as in Art. 93, that a tangent to
the parabola meets it at only one point. Also, if a straight
line meets a parabola at only one point, it will in general be
the tangent at that point.

For suppose the equation to a parabola to be

Y =4a2 ccoiennniiiiiiiiiiiina ),
and the equation to a straight line to be
Y=ME+HCovrvnrenennenniiniannnnnnns 2

To determine the abscissee of the points of intersection, we
have the equation (mz+ ¢)* = 4az,

or m'e’+ (2mc—4a) x4+ =0 ..uvrrennennnnnen 3);

[
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this quadratic equation will have two roots, except when
(mc —2a)’=m’c", that is, when c=% .

Hence if the straight line (2) meets the parabola, it will
meet it at two points, unless ¢= %, and then the straight line
is a tangent to the parabola by Art. 131. b

If, however, the equation (2) be of the form y =¢, so that
the stralght line is parallel o the axis of @, then instead of
(3) we have the equation ¢* = 4az, which has but one root ;
hence a straight line parallel to the axis of the parabola meets
it at only one point, but is not a tangent,

133. The axis of y is a tangent to the curve at the vertex.
For the equation to the tangent at (2, ') is
¥y =2a(2+2);
and when 2’ =0 and 3 =0, this becomes z =0.
l! 134. To find the equation to the normal at any point of
\ a parabola. (See Def. Art. 97.)

Let #/, ¥ be the co-ordinates of the pomt the equatlon
to the tangent at that pomt is

The equation to a stralght line through («, y) at right
angles to ?1) is
y—y’=—-2za(x—m) ..................... (2)

This is the equation to the normal at (, y').

135. The equation to the normal may also be expressed

in terms of the tangent of the angle which the straight line
makes with the axis of the curve.

For the equation to the normal is y=— l 2Ty +y

or - y= gaw+y+y ........... peneenaeens (1)
> ’

St s YR SR g
-t
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Let - ;—/—a =m; therefore y' = — 2am;

thus (1) may be written
y=mz—2am—am® .......ccceuureennn.. (2).
~136. We shall now deduce some properties of the para-
bola from the preceding Articles.

Let 4/, ' be the co-ordinates of P; let PT be the tangent
at P and PG the normal at P.

The equation to the tangent at Pis yy’=2a (z + ).

v

Let y =0, then & =—2"; hence 4AT=AM.

Also ST=AT+ AS, =AM+ AS, = SP (Art. 129).

Hence the triangle STP is isosceles, and the angle STP
is equal to the angle SPT. Thus if PN be parallel to the
axis of the curve, PN and PS are equally inclined to the
tangent at P, so that the tangent bisects the angle between
PS§ and NP produced. :

Since the angle PTS is half the angle PSX, it follows
that the angle between two tangents to a parabola is half the
angle between the focal distances of the points of contact.

h
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137. The equation to the normal at Pis

y—y=-Lo~d).

At the point @, where the normal cuts the axis, y=0;
hence from the above equation # — 2’ =2a; thus

M@ = 2a = half the latus rectum. Also SG=SP.

138. To find the "df the intersection of the tangent
at any point with the perpendicular on it from the focus.

Let ', y be the co-ordinates of any point Pon the curve;
the equation to the tangent at P is

The equation to the straight line through the focus per-
pendicular to (1) is

We have now to eliminate ¢’ and 3 by means of (1),
(2), and ,

From (3) we find &’ in terms of 3, and thus (1) may be
written

Thus the problem is reduced to the elimination of g’ from
(2) and (4) ; from (2)

/ 29Y e cerensenens ...(5) H

¥="%"a
substitute in (4); then y=— (@ —ya) z- w‘f_ya ;
therefore  3' (x—a)+ (@—a)'z+ay’=0,
or : '+ @—a)}z=0............. veeeeenn(6).

If the factor y* + (z — a)* be equated to zero, we haye
y 0, . w=a oooooooo oounn-ooc-(7)c
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The point thus determined is the focus; this however is
not the locus of the intersection of (1) and (2), for the values
in (7), although they satisfy (2), do not satisfy (1). We
conclude therefore that the required locus is given by the
-equation =0, which we obtain by considering the other
factor in (6). ' .

This result can be easily verified ; for if we put 2=0 in
‘(1) we obtain y=2%=%; and if we put =0 in (2), we
also obtain y =‘g—; thus (1) and (2) intersect on the straight
line 2 =0.

Thus, if in the figure in Art. 136, Z be the intersection of
the tangent at P with the axis of y, SZ is perpendicular to
the tangent. . '

139. The process of the preceding Article is of frequent
_use and of great importance. We have in (1) and (2) the
equations to two straight lines; if we obtain the values of
and y from these simultaneous equations, we thus determine
the point of intersection of the straight lines; the values of
and y will depend upon those of &’ and g/, thus giving dif-
ferent points of intersection corresponding to the different
straight lines represented by (1) and (2). If from (1), (2),
and (3) we eliminate 2’ and 5’ we obtain an equation which
holds for the co-ordinates of every point of intersection of (1)
and (2). This equation is by our definition of a locus the
equation corresponding to the locus of the intersection of (1)
and (2).

Sometimes the elimination produces, as in the preceding
Article, an equation which does not represent the required
locus. The student has probably noticed in solving  alge-
braical questions that he often arrives at more results than
that which he is especially seeking. We can frequently
inters;ret these additional results; thus in the preceding
Article, since, whatever ' and ¥ may be, the values x =a,
y =0, satisfy one of the equations which we use in effectin
the elimination, we might anticipate that our result woulg
involve a corresponding factor.
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140. If the straight line from the focus, instead of being
perpendicular to the tangent, meet it at any constant angle,
the locus of their intersection will still be a straight line. We
will indicate the steps of the investigation. Suppose B the
angle between the tangent and the straight line from the
focus; equation (1) remains as in Art. 138; instead of (2)
we have, by Art. 45,

2a

y= —37+t_a.n;8 (w~—a)=w z— a).
l_z_tlztanﬁ y—2ata.n/$

" Instead of (5) in Art. 138, we shall find
, _2a(x—a)+2aytan B
¥ T y—@—a)tan
" The result of the elimination is
y{y—(x—a)tan B} {x—a+y tan B} ,
—z{y—(x—a)tan B}' —a (z—a + ytan 8)*=0.

Now, guided by the result of Art. 138, we may anticipate
that 3*+ (¢ — a)® will prove a factor of the left-hand member
of the equation; and we shall find by reduction that the equa-
tion may be written {3 + (z—a)’} (y tan 8 —x tan’ 8 —a) = 0.

Hence the required locus is determined by
y=atan 8+ acotf. :
141. To find the length of the perpendicular from the
focus on the tangent at any point of the parabola. :
The equation to the tangent at the point (2, §') is

2a
3/=7(a’+w')-

The perpendicular on this from the point (@, 0) by Art. 47
_20(@+a) _2a(@+e) _ ,
V@* + 4a”)  J[ta(a+o)} */{‘,’ (a+27}.
. Call the focal distance of the point of contact r, and the
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perpendicular p; then, by Art. 129, r=a +4';
therefore p=1/(ar).

142. From any external point two tangents can be drawn
to a parabola.

Let the equation to the parabola be y*=4az; and let
k, k be the co-ordinates of an external point. Suppose =/,
the co-ordinates of a point on the parabola such that the
tangent at this point passes through (b, k). The equation
to the tangent at («, ¥) is yy' =2a (x + &).

Since this tangent passes through (&, k)

kY =2a (h4+2) cooicnnisrenernnnnen. .
Also since (, 3) is on the parabola
’ Y =4 coeenniiiiiiiniiannne 2).

Equations (1) and (2) determine the values of 2" and %/’

/2
Substitute from (2) in (1), thus &y’ = 2ah + 3’? therefore

y*—2ky + 4ah=0. The roots of this quadratic will be
found to be both possible, since (A, k) is an external point
and therefore &' greater than 4ah. To each value of 3" cor-
responds one value of 2’ by (1); hence fwo tangents can be
drawn from any external point. '

The straight line which passes through the points where
these tangents meet the parabola is called the chord of con-
tact.
. 143. Toamgents are drawn to a parabola from a given
external point ; to find the equation to the chord of contact.

Let %, k be the co-ordinates of the external point; z, z,
the co-ordinates of the point where one of the tangents from
(R, k) meets the parabola ; x,, y, the co-ordinates of the point
where the other tangent from (A, k) meets the parabola.

The equation to the tangent at (z,, y,) is

Y1, =20 (@ +2) coeerninninnnnnes oo (D).
Since this tangent passes through (h, k) we have
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Similarly, since the tangent at (z,, y,) passes through (, &)

by =20 (h+ o) ccovennnnnnnnnnnnnn. 3).
Hence it follows that the equation to the chord of con-
tact is
ky=2a (@+h)eeeeiininiiininnnnn, (4).

For (4) is obviously the equation to some straight line;
also this straight line passes through (z, ,), for (4) is satis-
fied by the values z =, Y=Yy, as we see from (2); similarly
from (3) we conclude that this straight line passes through
(x,, y,). Hence (4) is the required equa,tlon

Thus we may proceed as follows in order to draw tangents
to a parabola from a given external point. Draw the straight
line which is represented by (4), join the points where it
meets the parabola with the given external point, and the
straight lines thus obtained are the required tangents.

144. Through any fized point chords are drawn to a
parabola, and tangents to the parabola drawn at the extremi-
ties of each chord : the locus of the intersection of the tangents
18 a straight line.

Let %, k& be the co-ordinates of the point through which
the chords are drawn ; let tangents to the parabola be drawn
at the extremities of one of these chords, and let (z, y,) be
the point at which they meet. The equation to the corre-
sponding chord of contact is, by Art. 143, yy, =2a (:v+wl)
But this chord passes through (h k); thérefore }cy =2a(h+z).
Hence the point (z,, y,) lies on the stra.lght line ky—2a (ac+h‘)
that is, the locus of the intersection of the tangents is a
stra.lght line.

‘We will now prove the converse of this proposition.

145. If from any point in a straight line a pair of
tangents be drawn to a parabola, the chords of contact will
all pass through a fixed point.

Let Ax+By+ C=0.ccucriereunininnnnn 1)
be the equation to the straight line; let (<, §) be a point
in this straight line from which tangents are drawn to the
parabola; then the equation to the correspondmv chord ‘of
contact is . -

vy =2a (x+ .v’) ..................... 2).



128 TANGENTS FROM AN EXTERNAL POINT.

. Since («, ") is on (1) we have Az’ + By’ + C=0; there-

fore (2) may be written y (d2'+ C) + 2¢B(z+ ") =0,

or (dy +2aB) 2’ + Cy+ 2aBx=0.

Now whatever be the value of a’, this straight line passes

through the point. whose co-ordinates are found by the simul-

taneous equations Ay + 2aB=0, Cy+ 2aBx=0; that is the
. . 2aB 4

point for which y=——FT=7:

The student should observe the different interpretations
that can be assigned to the equation ky =2a (x + ). The
statements in Art. 103 with respect to the circle may all be
applied to the parabola.

146. Some interesting geometrical investigations relat-
ing to tangents to a parabola from an external point may be
noticed.

_To draw the two tangents to a parabola from any external
point. L

Let O denote the external point and S'the focus. On 08
as diameter describe a circle, and let it cut the tangent at
the vertex at Zand 2. Join 0Z and Oz: these straight lines,
produced if necessary, are the tangents from O by Art. 138
and Euclid 1. 31.

Or we may proceed thus. Join 0S. With centre O and

Q
<

radius OS describe a circle, and let it cut the directrix at
and g. Through these points draw parallels to the axis meet-
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ing the parabola at P and p. Then OPand Op are th
quired tangents. : .

For join 0Q and SP. Then in the triangles OPS
OPQ we have 0S= 0@ by construction, PS=PQ by
nature of the parabola, and OP common. Therefore

angle OPS=the angle OPQ; and OP is the tangent :
by Art. 136.

Similarly Op is the tangent at p.

The two tangents to a parabole from an external j
subtend equal angles at the focus.

Since the triangles OPS and OPQ are equal in all
spects, the angle OSP= the angle OQP; and similarly
angle OSp = the angle Ogp: and the angles OQP and
are equal, for they are the complements of the equal ax
0@gq and OgQ.

The angle between a tangent and a straight line par
to the axis 13 equal to the angle between the other tangent
the straight line from the external point to the focus.

Draw OH parallel to the axis.
The angle QOH = the angle ¢OH; that is
twice the angle POS — the angle SOH
= twice the angle p OS + the angle SOH;

therefore the angle POS = the angle pOH, and therefore
the angle POH = the angle pOS. -

The student should observe the extension thus give
the result in Art. 136: at any point of the curve the stra
line which bisects the angle between the focal distance of
point and the parallel to the axis is at right angles to
tangent, and at any external point the straight line w
bisects the angle between the focal distance and the par
to the axis is equally inclined to the two tangents.

The circle which passes through the intersections of 1
tangents to a parabola will pass through the focus.

T.C. S, H

129
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Let P, Q, R be the points of contact, and pgr the triangle
formed by the tangents, :

Since Pr and Qr subtend equal angles at S the angle
PSr is half the angle PSQ. :

.- Similarly the angle PS8y is half the angle PSR. Hence
the angle ¢Sr is half the angle QSE; that is by Art. 136 the

angle ¢Sr 18 equal to the angle gpr: therefore S is on the
circumference of the circle which passes round pgr.

Diameters.

147. To find the length of a straight line draun JSrom any
point tn a given direction to meet a parabola.

Let &', 3’ be the co-ordinates of the point from which the
straight line is drawn ; #, y the co-ordinates of the point to
which the straight line is drawn; 6 the inclination of the
straight line to the axis of #; r the length of the straight
line; then (Art. 27)

e¢=a'+rcosf, y=z +rsinb.

If (x, ) be on the parabola, these values may be substituted

in the equation y’=4ax; thus (¥’ + 7 sin 6)* = 4a(z'+ r cos);

or  7*sin’0+ 2r(y’ sin 0 — 2a cos ) + y* — 4ax’=0.
From this quadratic two values of » can be found, which

are the lengths of the straight lines that can be drawn from
(#, ¥) in the given direction to the parabola.
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‘When the point (2, ¥') is within the parabola, the roots of
the above quadratic will be of different signs; in this case
the two straight lines that can be drawn from (2, ') to meet
the curve are drawn in different directions. When the point
(«, ¥') is without the parabola, the roots are of the same sign,
and the straight lines are drawn in the same direction.

148. DEFINITION. A diameter of a curve is the locus of
the middle points of a series of parallel chords.

149. To find the diameter of a given system of pardllel
chords in a parabola.

Let 0 be the inclination of the chords to the axis of the
parabola ; let ', 5 be the co-ordinates of the middle point
of any one of the chords; the equation which determines the
lengths of the straight lines drawn from («/, ') to the curve
is (Art. 147)

7*sin® 0 + 2r (y' sin 0 — 2a cos ) + y"* — 4az’=0...... (1).

Since («, y) is the middle point of the chord, the values
of » furnished by this quadratic must be equal in magnitude
and opposite in sign; hence the coefficient of » must vanish;
thus 4y sinf—2a cos 8=0;
therefore Y=2acot@.unnenniennnnnen. (2);

thus the required diameter is a straight line parallel to the
axis of the parabola.

Hence every diameter is parallel to the axis of the para-

Also every straight line parallel to the axis of the para-
bola is a diameter, that is, bisects some system of parallel
chords ; for by giving to € a suitable value, the equation (2)
may be made to represent any straight line parallel to the axis.

150. Let a tangent be drawn to the parabola at the
point where the straight line 3’ = 2a cot § meets the curve;

the equation to the tangent is 3/=%z (x+4); that is,

y=tan 0 (z + ') ; hence, the tangent at the extremity of any
diameter of the parabola s parallel to the chords which that
diameter bisects.

9—2
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151. To find the equation to the parabola, the azes being
any diameter and the tangent at the point where 1t meets
the curve. ’ : :

p ¢/
Y P__
AI
M R x
A s L N M X

Let &, & be the co-ordinates of a point 4’ on the parabola;
take this point for a new origin ; draw through it a straight
line A’ X' parallel to the axis of the curve for the new axis of
«, and a tangent A4'Y’ to the curve for the new axis of y.

Let Y'A'X’' = 6; then (Art. 150 ?]g =tan 6.

Let 2, y be the co-ordinates .of a point P on the curve
referred to the original axes; &', y' the co-ordinates of the
same point referred to the new axes; draw PM parallel to
AY and PM’ parallel to 4'Y’; also draw A'L, M'N parallel
to AY; let R denote the intersection of PM and 4'X’; then

2=AM=AL+ LN+ NM=AL+AM + M'R
=h+a'+y cosé,
y=PM=RM+PR=A'L+ PR
=k+y sin 6.
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Substitute these values in the equation 3* = 4az; thus

(k+y sin6)*=4a (h+ 2 +y cosf),
or  y”sin’0+ 2y (ksin 6 — 2a cos 0) + &* — 4ah =4az’.
But, & = 2a cot 0, and &* = 4ak ; thus we have
y” sin® = 4aa’,
‘ w_ 4o,
or y = m x,
which is the required equation.

We may shew that = = S4'; for S4'=a+ (Art.

; i 2g. a
and A —4—a—acot 0; therefore a +h ="

Hence the equation may be written y*=4a'z, v
@ = SA'; or suppressing the accents on the variables

y'=4a'z.

152. * The equation to the tangent to the parabola w
of the same form whether the axes be rectangular, o
oblique system formed by a diameter and the tangent
extremity ; for the investigation of Art. 130 will apply "
out any change to the equation y*= 4a’z which represe
parabola referred to such an oblique system.

153. Tangents at the extremities of any chord of a j
bola meet on the diameter which bisects that chord.

Refer the parabola to the diameter bisecting the c
and the corresponding tangent, as axes; let the equ
to the parabola be y*=4a'z; let #/, 3’ be the co-ordi
of one extremity of the chord; then the equation tc
tangent at this point is

Yy =20 (Z4+2) coviiiiniinnnnnnnns \
The co-ordinates of the other extremity of the chor
&/, —y; and the equation to the tangent there is
—yY =20 B+ &) eeveeeriinrnninnes {
The straight lines represented by (1) and (2) me
the point for which y =0, z=—2'; this demonstrate
theorem. :
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Polar Equation.

154. To find the Polar Equation to the parabola, the focus
being the pole.

Let SP=r, ASP=0, (see figure to Art. 125); then
SP = PN, by definition ; that is, SP= 0S8 + SM;

or r=2a+rcos(r—0);
therefore 7 (1 + cos 0) = 2a,
2a
and r= m .
If we denote the angle XSP by 6, then we have as before
SP=08+ SM; thus r=2a+rcos'0, and r=i—_2:—080.

155. The polar equation to the parabola when the vertex
is the pole may be conveniently deduced from the equation
y' =4ax by putting rcosd and rsind for « and ¥y respec-
4a cos §

. gin*¢ °
We add a few miscellaneous propositions on the parabola.

DEFINITION. A chord passing through the focus of a
conic section is called a focal chord.

156. If tangents be drawn at the extremities of any focal
chord of a parabola, (1) the tangents wnll intersect on the
directriz, (2) the tangents will meet at right angles, (3) the
straight line drawn from the point of intersection of the tan-
gents to the focus will be perpendicular to the focal chord.

(1) If the tangents to a parabola meet at the point (b, k)
the equation to the chord of contact is, ky = 2a (« +A) by
Art. 143. Suppose the chord passes through the focus; then
the values  =a, y =0, must satisfy this equation ;

therefore 0= 2a (a+ &) ;
therefore h=—a;

that is, the point of intersection of the tangents is on the
directrix, . '

tively ; we thus obtain »=
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(2) The equation to the tangent to a parabola may be
written (Art. 131) y=ma+ %. Suppose (k, k) a point on

the tangent; therefore Am*— km +a=0. This quadratic will
determine the inclinations to the axis of the parabola of the two
straight lines that may be drawn through the point (%, %) to
touch the parabola. Suppose m,, m, the tangents of these in-

clinations, then by the theory of quadratic equations mm, = % .

If h=—a, mm,=—1; that is, the two tangents are at
right angles.

(8) The equation to the straight line passing through the

focus and (%, k) is y = F—a (# = a). If h=-a, this becomes

y=— % (z—a); the straight line is therefore pérpendicular
to the focal chord of which the equation is gk = 2a (z — a).

157. If through any point within or without a parabola,
two straight lines be drawn parallel to two given straight lines
to meet the curve, the rectangles of the segments unll be to one
another in an invariable ratio.

Let (<, y') be the given point, and suppose a and B
respectively the inclinations of the given straight lines to
the axis of the parabola. By Art. 147, if a straight line be
drawn through &r %) to meet the curve and be inclined at
an angle a to the axis, the lengths of its segments are given by
the equation #* sin*a+ 2r (3" sina— 2a cosa) + y* — 4ax’=0.

Therefore by the theory. muadratic equations the rect~

'
angle of the segments =Y

sin’ @
Similarly the rectangle of the segments of the straight line

, » i
drawn through («/, ") 4t an angle 8 =7 sin’;w .

in? 8

Hence the ratio of the rectangles =ssiTt , and this ratio

is constant whatever &’ and ¥’ may be.
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Let O be the point through which the straight lines OFp,
' o. ‘

P

 0Qq, are drawn inclined to the axis of the parabola at angles
a, B, respectively ; then we have shewn that

OP.Op _sin’B
0Q.0q  sin’a’

Let tangents to the parabola be drawn parallel to Pp, ¢y,
meeting the parabola at E and D respectively; let S be the
focus; then by Art. 151, .

8E_sin'B . OP.Op _GSE'
SD= s e’ therefore 0Q.0q ~8D"

Suppose O to coincide with T'; then OP, Op becomes TE

and 0Q. Og becomes TD*;

TE* SE
therefore T = 8D"




EXAMPLES. CHAPTER VIIL 187

EXAMPLES.

- - 1. Find the equation to the straight line joining 4 and
L. (See figure to Art. 126.) '

2. Find the equation to the circle which passes through
A, L, L. (See figure to Art."126.) ‘

3. A point moves so that its shortest distance from a
. given circle is equal to its distance from a given fixed dia-
meter of that circle; find the locus of the point.

4. Trace the curves 1/ =4az, and o*+4ay=0; and
determme their points of intersection.

5. Determine the equation to the tangent at L. (See
figure to Art. 126.)

6. Find the angle between the straight lines in Exam-
ples 1 and 5.

¢ 7. Determine the equation to the normal at L.

. 8. Find the point where the normal at L meets the curve
again, and the length of the intercepted chord.

9. Find the point in a parabola where the tangent is
inclined at an angle of 30° to the axis of 2.

10. The- length of the perpendicular from the inter-
section of the directrix and axis on the tangent at («, %) is
' a (2 — a)
Via (@ +a)}’
11. Find the points of contact of tangents the perpen-

diculars-on which from the intersection of the directrix and
axis are equal to one-fourth of the latus rectum.

12. A circle has its centre at the vertex 4 of a parabola
whose focus is S, and the diameter of the circle is 3AS
shew that the common chord bisects .4.S. ,
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13. Trace the curve y=a—2a’, and determine whether
the straight line #+ y =1 1s a tangent to it.

14. The tangent at any point of a parabola will meet the
directrix and latus rectum produced at two points equally
distant from the focus.

15. PM is an ordinate of a point P on a parabola; a
straight line is drawn parallel to the axis bisecting PM and
cutting the curve at @; M(Q cuts the tangent at the vertex
A4 at T'; shew that AT = §PM.

16. If from any point P of a circle PC be drawn to the
centre O, and a chord PQ be drawn parallel to the diameter
ACB and bisected at R, shew that the locus of the inter-
section of CP and AR is a parabola.

17. Find the ordinates of the points where the straight
line y=ma + ¢ meets the parabola; hence determine the
ordinate of the middle point of the chord which the para-
bola intercepts on this straight line. :

18. A is the origin, B is a point on the axis of y, BQ is
a straight line parallel to the axis of #; in 4, produced if
necessary, P is taken such that its ordinate is equal to BQ;
shew that the locus of P is a parabola.

19. From any point Q in the straight line BQ which is
perpendicular to the axis CAB of a parabola whose vertex
18 4, PQ is drawn parallel to the axis to meet the curve
at P; shew that if OA be taken equal to 4B, the straight
lines 4@ and CP will intersect on the parabola.

20. At the point («, ¥') a normal is drawn; find the
co-ordinates of the point where the normal meets the curve
again, and the length of the intercepted chord.

. 21. If the normal at any point P meet the curve again
at @, and SP=r, and p be the perpendicular from S on the

tangent at P, then PQ =;§:—l .

22. Pis any point on a parabola, 4 the vertex; tﬁrough
A is drawn a straight line perpendicular to the tangent at P,

ke
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and through P is drawn a straight line parallel to the axis;
the straight lines thus drawn meet at a point @: shew that
the locus of @ is a straight line. Find also the equation to
the locus of @' the intersection of the perpendicular from 4
and the ordinate at P.

23. PQ is a chord of a parabola, PT the tangent at P.
A straight line Ea.ra.llel to the axis of the parabola cuts the
tangent at 7, the arc PQ at E, and the chord PQ at F.
Shew that TE : EF :: PF : FQ.

24. In a parabola whose equation is y*=4a=, pairs of
tangents are drawn at points whose absciss® are in the ratio
of 1: p; shew that the equation to the locus of their inter-

section will be y*= (/4* + ,uf})’ az when the points are on the

same side of the axis, and y*=— (,u‘i - n’*)’aw when they are
on different sides. '

25. Two straight lines are drawn from the vertex of
a parabola at right angles to each other; the points where
these straight lines meet the curve are joined, thus forming
a right-angled triangle ; find the least area of this triangle.

26. Let r and 7 be the lengths of two radii vectores
drawn at right angles to each other from the vertex of a

parabola; then (rr')t = 16a* o+ 3.

27. Find the polar equation to the parabola referred to
the intersection of the directrix and axis as origin and the
axis as initial line.

28. If a straight line be drawn from the intersection of
the directrix and axis cutting the parabola, the rectangle of
the intercepts made by the curve is equal to the rectangle of

the parts into which the parallel focal chord is divided by the
focus.

29. Find the polar equation to the parabola when the
intersection of the directrix and axis is the origin and the
initial line the directrix.

" 80. A system of parallel chords is drawn in a parabola;
find the locus of the point which divides each chord into
segments whose product is constant. : s
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31. In a triangle ABC if tan 4 ta.ng =2, and 4B be

fixed, the locus of C' will be-a parabola whose vertex is 4
and focus B.

32. Find the equation to the parabola referred to tan-
gents at the extremities of the latus rectum as axes.

33. Find the equation to the parabola referred to the
normal and tangent at L as axes.

34. Pis a point on a parabola; ', 3 are its co-ordinates ;
find the equation to the circle described on SP as diameter.

35. Shew that the circle described on SP as diameter
touches the tangent at the vertex.

36. If the straight line y =m (# — a) meets the parabola
at («, ¥') and (2", y"), shew that

’ r” 4a ’ 1 ’ 4“ ! 7
&+ =2a+’7"§; 22" =a*; y+y”=a; yy'=—4a,’.'

- 87. A circle is described on a focal chord of a parabola
as diameter; if m be the tangent of the inclination of this
chord to the axis of «, the equation to the circle is

a’—2a:c(1+”—2z;) +y’—ia—y—3a’=0.

m B

88. Any circle described on a focal chord as diameter
touches the directrix.

39. If the focus of the parabola be the origin, shew that
the equation to the tangent at (, ¥') i8 yy' = 2a (z+ &'+ 2a).

~ 40. If the focus of a parabola be the origin, shew that
the equation to a tangent to the parabola is y=m(z+a)+ ,,% .
41. Two parabolas have & common focus and axis, and a

tangent to one intersects a tangent to the other at right
angles; find the locus of the point of intersection.



EXAMPLES. CHAPTER VIII 141

42. 1If a chord of the parabola y® =4az be a tangent of

the parabola y* = 8a (2 —c), shew that the straight line z=¢
bisects. that chord. ' '

43. TFrom any point there cannot be drawn more than
three normals to a parabola.

44. In a parabola whose equation is y*=4az, the ordi-
nates of three points such that the normals pass through the
same points are ¥,, ¥,, ¥,; shew that y, +y,+y,=0. Shew
also that a circle described through these thrée points passes
through the vertex of the parabola.

45. If two of the normals which can be drawn to a para-

bola through a point are at right angles, the locus of that
point is a parabola.

46. Iftwo equal parabolas have the same focus and their
axes perpendicular to each other, they enclose a space whose
length is 8a, and breadth is 2a4/2, where 4a is the latus
rectum of the parabola.

47. Tind the length of the perpendicular from an exter-
nal point (h, £) on the corresponding chord of contact.

48. From an external point. (h, k) two tangents are
drawn to a parabola: shew that the length of the chord of

(& + 4a%)? (k* — 4ah)?

a

contact is

49. From an external point (h, k) two tangents are
drawn to a parabola: shew that the area of the triangle

—4ah)t
formed by the tangents and chord is (102—2?@—.

50. Tangents to a parabola TP, Tp are drawn at the
extremities of a focal chord; PG@, pg are normals at.the
same points. Shew that ?1@,+ —1? is invariable; and that

the normals subtend equal angles at 7.

51. Two equal parabolas have the same axis, but their
vertices do not coincide. If through any point O on the inner
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curve two chords of the outer curve POp, QOg, be drawn

at right angles to one another, then 0 0p+ Q0. 07 is

invariable.
52. A circle described upon a chord of a parabola as

diameter just touches the axis; shew that if 8 be the inclina-
tion of the chord to the axis, 4a the latus rectum of the

parabola, and ¢ the radius of the circle, tan 8 = 26_a .

53. If 6, & be the inclinations to the axis of the para-
bola of the two tangents through (%, k), shew that

tano+tana=§; tan ftan 0'= 2.

54. If two tangents be drawn to a parabola so that the
sum of the angles which they make with the axis is constant,
the locus of their intersection will be a straight line passing
through the focus.

55. Shew that the two tangents through (&, k) are repre-
sented by the equation

k(y—k)'—k@y—k)(z—h)+a(xz—k)'=0;
or (K* — 4ak) (y* — 4ax) = {ky — 2a (z + &)}".
56. Shew that the straight lines drawn from the vertex

to the points of contact of the tangents from (k, k) are repre-
sented by the equation Ay*= 2z (ky — 2az).

57. Determine the co-ordinates of the point of intersec-
tion of two tangents to a parabola

a a
=max+— and y=maz+—.
y 1 ,”?’l y 3 + m’
Also form the equation to the straight line drawn from this
point of intersection perpendicular to a third tangent; and
determine the ordinate of the point where this straight line
meets the directrix.

58. A triangle is formed by three tangents to a para-
bola : shew that the perpendiculars from each angle on the
opposite side intersect on the directrix,
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CHAPTER IX.

THE ELLIPSE.

158.  To find the equation to the ellipse.

The ellipse is the locus of a point which moves so tl
distance from a fixed point bears a constant ratio to if
tance from a fixed straight line, the ratio being less
unity.

Y

. !
Let 8 be the fixed point, Y'Y’ the fizxed straighi

Draw SO perpendicular to YY”; take O as the origi
as the direction of the axis of z, OY as that of the axis

. Let Pbe a point on the locus; join SP; draw PM p
to OY and PN parallel to OX. Let OS=p, and lete
ratio of SPto PN. Let z, y be the co-ordinates of P.

By definition, SP=e.PN; therefore SP*=¢'"PN*;
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therefore PM*+ SM*=¢'PN’,
that is, ¥+ (z—p)l=éd

This is the equa,tlon to the ellipse w1th the assumed
origin and axes.

159. To find where the ellipse meets the axis of z, we
put y =0 in the equation to the ellipse; thus (z — p)’— ’w’

- 2 '
therefore  —p = + ex; therefore &= T3¢ Let 04'= i -l- -

and 04 = _p_, then 4 and A4’ are points 611. the elhpse.

A and A are called the vertices of the ellipse, and C, the
point midway between 4 and 4', is called the centre of the
ellipse. .

160. We shall obtain a simpler form of the equation to
the ellipse by transferring the origin to 4’ or C.

- I. Suppose the origin at 4’ A
i =P =g+ i
Since 04 1re’ we put z=2 +1 e and substitute
this value in the equation 3*+ (2 — p)* = é'2*;

p 2 ( p 2
thus y’+(a:’+1+e ) (@ +y2-)s )
2 2
2 _.e Y4
ot -”"'( 1+) e’("”+1+e)
n_2ep_ 2pw)
therefore 3* + & Tre ( +1+e

therefore y®=2pes’ — (1 —¢’) 2™
=(1-¢) (27”” d*) )

The distance 4’4 = ——{—e - 1—1_:?; 12epe” we shall denote

this by 2a; hence the equation becomes

y'=(1-¢) (202’ - 2").
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We may suppress the accent if we remember that the
origin is at the vertex A’, and thus write the equation
P=(1-€)(202—2") .ccccurrrrinnnnans 1).

IL. Suppose the origin at C.

Since 4’0 = a, we put =2"+ a and substitute this value
in (1); thus ¥'= (L —0) (24 (& + o) — (&' + )}
== @—a.

‘We may suppress the accent if we remember that the
origin is now at the centre C, and thus write the equation

P @ =) i @)

In (2) suppese # =0, then y*=(1 —¢') a*; if then we de-
note the ordmat,e CB by b we have b*= (1 —¢')a”; thus (1)
may be written ,

4 y’—a, 2ax = 2") ceverriniinnnnnnnn 3),
and (2) may be written
b’
y’=;,(a.’—a:') ...................... 4),
or, more symmetrically,
s -
_’+b’—1 ora’y' + b2 =a%’............ (3)-
161, Since 4’S=¢04’ and OA'-—-I—?;_—;, we have
’ 1-
4812 = ( Iji’ep’““(l“’)’
od'=P_ _20-9
l+e e ’

8C=A4C—-A'8=a~-a(l—e)=ae
0C=A4'C+ 0A'=a+a—(lg:9=g
08=p=21=9)

é
T.C. 8. 10

?
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162.- We may now ascertain the form of the- ellipse.
~ Take the equation referred to the centre as origin

K’ B K

5

N
g.

Y/

€

For every value of @ less than a there are two values of y,
equal in magnitude but of opposite sign. ,Hence if Pbea
point in the curve on one side of the axis of « there is a point
P on the other side of the axis such that P’M/=PM. Hence
the curve is symmetrical with respect to the axis of =" Values
of x greater than a do not give possible values of y; hence,
CA being equal to a, the curve does not extend to the right
of 4. :

If we ascribe to z any negative value comprised between 0
and — a, we obtain for ¢ the same pair of values as when we
ascribe to a the corresponding positive value between 0
and a. Hence the portion of the curve to the left of YY" is
similar to the portion to the right of YY".-

As the. equation (1) may be put in the form
a'
(
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we see that the axis of y also divides the curve symmetrically
and that the curve does not extend beyond the points B and
B, where CB and OB’ each =b.

The straight line E'K’ is the directrix; § is the corre-
sponding focus, .

Since -the curve is symmetrical with respect to the-
straight line ¥ CY", it follows that if we take CH = CS and
CE= CFE', and draw EK at riﬁht angles to CE, the point H
and the straight line EK will form respectively a second
focus and directrix by means of which the curve might have
been generated. |

163. The point C is called the centre of the ellipse be-
cause every chord of the ellipse which passes through C 1is
bisected at C. For suppose (h, Ic)sto be a point-on the

curve, so that the equation %+z7= 1 is satisfied by the

values 2="h, y=Fk; then (—h, —%) is also a point on the
curve, because since x =h, y =k, satisfy the above equation,
it is obvious that & =—h, y=—Fk, will also satisfy it. Hence
to every point P on the curve there corresponds another
point P, 1n the opposite quadrant, such that PCP, is a
straight line and P, C=FC, Hence every chord passing
through C is bisected at C.

164. We have drawn the curve concave towards the
axis of «; the following proposition will justify the figure.

The ordinate of any point of the curve which lies be-
tween a vertex and a fixed point of the curve is greater than
the corresponding ordinate of the straight line joining that
vertex and the fixed point. : :

Let A’ be the vertex, and take it for the origin ; let P be
the fixed point; &', §' its co-ordinates. Then the equatiqn
to the ellipse-is (Art. 160) y* = % (2a0x — ). .

The equation to 4'P is y=‘—i—, z, ory= &b \/ (2;? - 1) z,
since (', y") is on the ellipse. o
" Let a.denote any abscissa less than &', then since the:

10—2
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ordinate of the curve is 24(2ax z*) or - \/ ——l)a:

and that of the straight line is g 'V/ (2;-“ - 1) z, it is obvious

that the ordinate of the curve is greater than that of the
straight line.

165. 44 and BB are called azes of the ellipse. The
axis AA’ which contains the two foci is called the major axis
and sometimes the transoerse axis; BB’ is called the minor
axis and sometimes the conjugate axis.

The ratio which the distance of any point in the el]ipse
from the focus bears to the distance of the same point from
the corresponding directrix is called the excentricity of the
ellipse. We have denoted it by the symbol e.

To find the latus rectum (see Art. 128) we put @ = CH,
that is, = ae, in equation (1) of Art. 162; thus

pate0=d) B
b!

therefore LH = E 2’ and the latus rectum = -

a* a

Since ' =d’ —ae’, therefore b + a’¢* =qa*; that is,
CB*+ CH*=a*;
therefore BH=a ;
similarly, BS=a.
166. To exprass the focal distances qf any point of the
ellipse in terms of the abscissa of the point. v

Let S be one focus, E’'K’ the corresponding directrix ; H
the other focus, ZK the corresponding directrix. Let P be a
point on the elhpse &, y its co-ordinates, the centre being
the origin. Join 8P, HP, and draw N'EN parallel to the
major axis, and PM perpendlcular to it.

Then SP=¢PN'=¢(E'C+ CM)=e (§+w)=a+m

Also, HP=ePN=e(0E-0M)=e(;-‘-z)=a-ea.
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Hence SP+ HP=2a; that is, the sum of the focal dis-
tances of any point on the ellipse is equal to the major axis,

K’ ) X
)
NV // r N
i -5 ” (4 y: g E X

It is obvious from Euclid, 1. 21, that the sum of the focal
distances of any point outside the ellipse is greater than the
major axis, and the sum of the focal distances of any point
insude the ellipse is less than the major axis.

It is easily seen that g+%—:— 1 is positive for any point

' outside the ellipse, and megative for any point inside the
ellipse.

Let the co-ordinates of any point @ be z and y; then
HQ'=y'+ (e—ae)* = (ew—a)' + 5"+ (1= &) (&'~ )

=¢ (o= 4y 56 —a)

L]
Thus H@ is greater or less than ¢ (a: - ;—l) according as

Q is outside or inside the ellipse; therefore the focal distance
of any point not on the curve bears to the distance of the
point from the corresponding directrix a ratio which is

greater or less than e according as the point is outside or
inside the ellipse,
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$ .
~ 167. The equation y*= g, (@ — 2") may be written

2
Y= ‘% (e —z)(a+ ). Hence (see figure to Art. 162)
PM* _ BC*
A'M.MA~ AC*
168. Let acircle be described on the major axis of the el-

lipse asa dia,me’oer; its equation referred to the centre as origin
will be y*=a"—2". Hence if any ordinate MP of the elhpse

be produced to meet the circle at P’ we have PM* = —; P’ M*;

PM b
therefore S, PU=a"

Join P’ witﬁ C the centre of the ellipse ;. let P'CM= ¢,
and let «, y be the co-ordinates of P; then

- 2#=CP’'cosp=a cos¢ y~=§P’M=llasin¢=bsin¢.

These values of  and y are sometimes useful in the solu-
tion of problems.

The angle P’ CM is called the excentric angle of the point P.
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The circle described on the major axis of an ellipse as
diameter is sometimes ca,lled the auziliary circle. '

169. From Art. 160 we see. that the- equation to the
ellipse when the vertex is the origin is y’ Ipex — (1 — &) o™,

If we suppose &=1; this becomes y*=2pz, which is the
equation to a parabola. whose lat.us rectum is 2p.

Alsomtheelhpsea—l e”b 0,4/(1 ¢) = «/(1
AH or a(l—e)—

¢)’

1+e’
If we now make e=1, we have @ and b infinite, and

a(l—e) =2. Thus if we suppose the distance between the

vertex and nearer focus of an ellipse to remain 'constant
while the excentricity approaches continually nearer to unity,
the major and minor axes of the ellipse increase indefinitely

and the ellipse about the vertex approximates to the form of
a parabola.

Thus if any property is established for an ellipsé we may
seek for a corresponding property in the parabola by referring
the ellipse to the vertex as origin and examining what the
result becomes when e is made to approach continually to

unity, while the distance between the vertex and the nearer
focus remains constant.

Tangént and Normal to an Ellipse.

170. To find the equation to the tangent at any pomt of
an ellipse. (See Def. Art. 90.).

Let o, y' be the co-ordinates of the point, " y  the co-
ordinates of an adjacent point on the curve.

The equation to the secant through these points is

y-y=% Z,(w—x')...., .............. ;
since (2, ¥) and (z”, ¥”) are points on the ellipse, ’

) alylﬁ+b2 '2=a9bﬂ agy"l_l_bﬁ ’3__ 2b2
therefore @' (¥ —y") +0* (&7 —-2") =0;
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”

‘  yY-y__ ¥ m"+a/
therefore = e - T vl
Hence (1) may be written

;b 2"+
y-r=- 55t o)

Now in the limit #” = &, and y =y'; hence the equation
to the tangent at the point (x y) is S

, bz

y—y =—a’—y,($—z ...... voeoee doowen (2).
This equation may be simplified ; multiply by o'y, thus
a'yy + baxl = a’y”? + e =a’p’.

171. The equation to the tangent can be conveniently
expressed in terms of the tangent of the angle which the
straight line makes with the major axis of the ellipse. For
the equation to the tangent at (¢, 7) is

b2 [
ayy + bz’ =a't’, or y=— ;2 +—.
b;y? ! i y N
Let — a,;,=m thus the equation be¢omes y =mz 4 - 7 3

.
we bave then to express v in terms of m.

Now ¥'z'=—a"'m, and o'y +b'2" =a'’;

( s, "
therefore ay* + n;‘z/ =a’b*;
therefore y” (@’m® + b)) =",
therefore = =a(@mt + D7)

.1/

Hence the equation to the tangent may be written
y=mz +4/(a’m* + V).

Conversely every straight line whose equatlon is of this
form is a tangent to the ellipse.

It may be shewn as in Arts. 93, 94, that the tangent at
any point of an ellipse meets it at only one point, and that
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a straight line which meets an ellipse at only one point is
the tangent at that peint.

172. The tangents at the extremities of either axis are
parallel to the other axis.

For the co-ordma.tes of 4 are a, 0. (See Flg to Art. 162)
Hence, putting 2’ =a, ' =0, the equation a’yy’ + b%z’ = o
becomes z=a, which is the equation to a straight line
through 4 parallel to CY. Similarly the tangent at 4’ is
pa.raCl‘lYel to CY, and the tangents at B and B’ are parallel
to

173. To find the equation to the normal at any point of
an elhpse ( ee Def. Art. 97.)

Let &, 3’ be the co-ordinates of the pomt the equation
to the tangent at that point is

Ve b
Y= ~ z+— g e aees .

The equation to the straight line through (2, 3') at right
angles to (1) is

y-y'= b.y, (=2 ceereenerirnrennne (2).

This is the equation to the normal at (z', ¥').

174. The equation to the normal may also be expressed
in terms of the tangent of the angle which the straight line
makes with the major axis of the elhpse The equation

!
to the normal at (2, y) is y= b’ o AP (, 'l)y'. Let
Q s
411;’1/' =m; thus the equation becomes

2z
y=ma— Ty s, 1);

3
we have then to expres's 2

B y"in terms of m.

!l
Now, b =2y , and a® ’+b’z"=a’b’;

’2
therefore a’y" + ,=a’d?;
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therefore y™* (b’qﬁ' +a') =b'm*
(@*=b)m
V(m*+a)’

~ 175, 'We shall now deduce some properties of the ellipse
from the precedmg Articles..

Let &, 3 be the co-ordinates of P; let PT be the tangent
at P, and PG the normal at P; PM PN perpendiculars on
the axes.

The equation to the tangent at Pis a’yy’ + bxx’ = 'b"

Hence (1) becomes y = mz —

Let’ y= =0, then z=2 27’ hence 0T = oL therefore

-CM’ .

¥

z

T,
@ H A =z
CM.CT=CA"
Similarly, if the tangent at P meet C¥ at T,
CN.CT"=ChB.

176. The equation to the normal at P is
y—y'_bswi (Q! w)

At the point G where the normal cuts the major axis,
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g 7
T -

s there-
@’ v

¥ = 0, hence from the above e_qdation x—a ==
fore 2 =2 (1-!’— =¢'z’. Thus CG =¢CHM.

At the point G where the normal cuts the minor axls,

!
=0, hence from the above equation y = y ——Z =_..bT v
a‘e’

bl
_Suppose the focal distance PH produced to meet the
ipse again at p. Let @ denote the middle point of Fp, -

and through @ draw a straight line parallel to the major axis
meeting the normal PG at K. Then, by similar triangles,

Thus 0@ = %% PM,

- e——_, = ="

thus QK =e.QP= 3 Pp.

If K had denoted the point of mtersectlon of the stra.lght
line through @ and the normal at p, we should have obtained-
the same value of QK; hence we have the following result:
the straight line parallel to the major axis which

through the intersection of normals at the ends of a focal
chord bisects that chord.

177. The lengths of PG and PG may be convemently
expressed in terms of the focal dlstances of P.

PF=PM'+ GM*= y"+(a: *z')*

b4 %3 8 b( ,
=y*+at (- e)= Y —an+ 5

:,{ (1—% }-—-c—";(a’—e’w").

Let SP=1v", HP =r; then ' =a+ex, r=a—er’;
b'rr’

o

thus PG =

’
a'rr

Slmllarly, it may be shewn that PG” A
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178. The normal at any point bisects the angle between
the focal distances of that pont.

Let ', ¥’ be the co-ordinates of P; the co-ordinates of S
are —ae, 0 hence the equa.tlon to SPis (Art. 35)

(CEX7) ESTOORsa ().

y—w +ae
The equation to the normal at Pisy—y' = b" iy ( w)

Hence the tangent of the angle GPS

o Yy
b 4a:‘+a,e _ @ =82y +dey
= T @Y+ b7+ brae

The equé,tion to HP is y= , 2 (@—9e); bence it may

be shewn that the tangent of the angle GPH also———

bt ’
therefore the angle SPG =the angle HPG.

Hence the angle SPT =the angle HPT; that is, the
ngent at any point is equally mclmed to the focal distances
of that point.

179. The preceding proposition may also be established

thus:
CG=¢é7, (Art. 176);
therefore SG=ae+ ¢z, and HG =ae —é'x'.
Also SP=aq + ex', HP=a — ex’; hence
sa _ 8P
HG  HP’
therefore by Euclid, vI. 3, PG bisects the angle SPH.

180. To find the locus of the intersection of the tangent at
any point with the perpendicular on it from the foeus.
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Let y=mz+ (" +m'a"........ eavoraseanns @)
be the equation to a tangent to the ellipse (Art. 171); then

the equation to the perpendicular on it from the focus H is
(see figure to Art: 175)

If we suppose = and y to have respectively the same
values in (1) and (2), and eliminate m between the two equa-
tions, we shall obtain the required locus.

From (1) y—maz=4/(}"+m'a}); from (2) my+z=ae;
square and add, then

@+ A +m)=t"+m'a’+a’¢=a* (1 +m");
thus 4"+ o =a® is the equation to the required locus, which

is therefore a circle described on the major axis of the ellipse
as diameter.

‘We have supposed the perpendicular drawn from H'; we
shall arrive at the same result if it be drawn from §; hence
if HZ, 8Z' be these perpendiculars, CZ and CZ’ each =a.

181. To find the length of the perpendioular from the
Jfocus on the tangent at any point.
The equation to the tangent at the point (), ¥) is
ym-2as L.
2y ¥

The co-ordinates of the focus H are ae, 0. But if p de-
note the length of the perpendicular from a peint (z,, y,) on
the straight line y =mz +c, by Art. 47
s (y,— —c)
== 1 +m°‘ y
ve b
asyf » V= y' ]

rae b
(ba“y' B éﬁ- _ a'b(a—ex)" - @'t (a—ex')*
b'e? T a%t+b%” & (@~ b%) 4+ b
1 + a4y_:’ !

In the present case «,=ae, y, =0, m=—

thus p* =
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o't (a—ex’)' b (a—ea) b'r

a'(a'—éz") a+ed 1’ (Art. 177).
. b'r
- -— 2 =
Since 7' =2a—1r we have p Sa—r"

Similarly if p' be the perpend’icular from 8 on the tan-
gent at («, y") we shall find p”=br—r . Therefore pp’ = b".

From the point @ in the figure of Art. 175 suppose a
perpendicular drawn on PH meeting it at B ; then by similar
triangles DX =HZ, therofore PR=PGx 2. Substitute

the value of HZ just obta.ined,' and the value of P@ from -
Art. 177, and we have PR-—-%. Thus the length PR is

constant and equal to half the latus rectum.

182. From any external point two tangents can be drawn
- to an ellipse. '
Let the equation to the ellipse be a'y* + b*2* = a’b*, and
“let h, k be the co-ordinates of an external point. Suppose
. &', y' the co-ordinates of a point on the ellipse, such that the
tangent at this point passes through (k, k). The equation to
the tangent at («, ') is a’yy' + b*za’ =a’’. Since this tan-
gent passes through (h, %)

@ky +0ha’ =a'tt .......uu.e....... (1).
Also since (2, y) is on the ellipse
‘ Y = (2),
Equations (1).and (2) determine the values of «’ and ¥'.

. 272 37,7\ 2 .
Substitute from (1) in (2), thus (ﬂ%"ﬁ) B =,
or * (a'k* + k%) —2a°°ha’ + a* (B* — k') =0. The roots of
this quadratic will be found to be both possible since (&, k) is
an external point and therefore a’%® + b*A* greater than 4%,
The straight line which passes through the points where
these tangents meet the ellipse is called the chord of contact.

. 188, Tangents are drawn to an ellipse from a given ex-
ternal point; to find the equation to the chord of contact.
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Let k, % be the co-ordinates of the external point; z;, ¥,
the co-ordinates of the point where one of the tangents from
(h, k) meets the ellipse; x,, y, the co-ordinates of the point
where the other tangent from (%, %) meets the ellipse.  The
equation to the tangent at (:v)l. y,) is a’yy, + b'ax, = a’b*; since

this tangent passes through (%, k) we have
&’ky, + b%haw, = %" .....couueneenennnnnn. (1.
" Similarly, since the tangent at (,, y,) passes through (&, k)
" @y, + bha, =B .......... S @).

Hence it follows that the equation to the chord of contact is
Chy+ DA = @B e, (3).

For (3) is obviously the equation to some straight line;
also this straight line passes through (,, y,) for (3) is satisfied
by the values z =z,, y =y, as we see from (1) ; similarly from

“(2) we conclude that this straight line passes through (z,, y,).
Hence (3) is the required equation.

Thus we may proceed as follows in order to draw tangents
to an ellipse from a given external point: draw the straight
line which is represented by (3); join the points where it
meets the ellipse with the given external point, and the
straight lines thus obtained are the required tangents.

184. Through any fized point chords are drawn to an
ellipse, and tangents to the ellipse are drawn at the extremities
of each chord ; the locus of the intersection of the tangents is a
straight line.

~ Let A, k& be the co-ordinates of the point through which
the chords are drawn; let tangents to the ellipse be drawn at
the extremities of one of these chords, and let (z,, ¥,) be the
point at which they meet. The equation to the corresponding
chord of contact is, a’yy, + b*zx, = a*5", by Art. 183. But this
chord passes through (h, k); therefore a'ky, + d%hx, = a’b.
Hence the point (z,, y,)lies on thestraight line a’)cy+b’h:c=a’ *
that is, the locus of the intersection of the tangents is a
straight line,

We will now prove the converse of this proposition,
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185. If from any point in a straight line a pasr of tan-
gents be drawn to an ellipse the chords of contact will all pass
through a fived point.

Let Az + By 4+ C=0 .uu..ueeeuennnnn... (1
be the equation to the straight line; let (¢, ") be a point in
this straight line from which tangents are drawn to the ellipse;
then the equation to the corresponding chord of contact is

a'yy + Vax’ =a’B.....ueneenneeee(2).

Since (2, ) is on (1), we have 4a'+ By +C=0;
therefore (2) may be written 3%za’— Az ; ¢ a’y = a'd’,

2,
or, (b’w - A; J ) a— %‘f’ﬁ —-a'b*'=0.

Now, whatever be the value of «/, this straight line passes
through the point ,whose co-grdina.tes are found by the simul-
‘taneous equations &z — Azy =0, Czy +a'%* =0, that is,

2 3
the point for which y=—B—g,, z=—‘—%"~.

The student should observe the different interpretations
that can be assigned to the equation a’ky + b*hz = a'b".

The statements in Art. 103 with respect to the circle may
all be applied to the ellipse.

186. Some interesting geometrical investigations relat-
ing to tangents to an ellipse from an external point may be
noticed.

To draw the two tangents to an ellipse from any external
point.

Let O denocte the external point, and § either focus. On
O#8 as diameter describe a circle and let it cut the circle
described on the major axis as diameter at Z and 2. Join 02
and Oz. Then these straight lines, produced if necessary, are
the tangents from O by Art. 180 and Euclid, 111. 31.

Or we may proceed thus. Let O denote the external point,
S the more remote focus. With S as centre and radius equal
to the major axis of the ellipse describe a circle. Let gbe
the other focus. With O as centre and radius equal to OH
describe another circle cutting the former at Q and ¢. Join
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S @ and 8y cutting the ellipse at Pand p; then OP and Op
are the required tangents. For join OS, OH, OP, and 0¢.

Then in the triangles OPQ and OPH we have 0Q= OH by
construction, PQ = 2a — SP= PH, and OP common. There-

fore the angle OP(Q = the angle OPH; and OPis the tan-
gent at Pby Art. 178.

Similarly Op is the tangent at p.

The two tangents to an ellipse from an external point sub-
tend equal angles at each focus.

Join Hp and Og. The triangles 0SQ and OSq are equal
in all respects; thus the tangents OP and Op subtend equal
angles-at 8. Also the angle OHP = the angle OQP, and the
angle OHp = the angle Ogp : thus the tangents OP and Op
subtend equal angles at ﬁp

The angle between a tangent and a focal distance of the
external pont is equal to the angle between the other tangent
and the other focal distance.

The angle SOQ = the angle SOq; that is,

twice the angle SOP+ the angle SOH
= twice the angle HOp + the angle SOH ;
therefore the angle SOP= the angle HOp, and also the angle
HOP=the angle SOp.

T. C. 8. .11
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¢ The student should notice the extension which is thus
obtained of the result in Art. 178. At any point of the curve
the straight line which bisects the angle between the focal
distances is at right angles to the tangent; at any external
_point the straight line which bisects the angle between the
- focal distances bisects the angle between the two tangents.

EXAMPLES.

1. Find the excentricity of the ellipse 2z + 3y*=c"

2. Find the,'e%ua.tio'n to the tangent at the end of the
latus rectum L. (See figure to Art. 162.) ° Also find the
lengths of the intercepts of this tangent on the axes.

3. Write down the equation to the normal at L.

4. If the normal at L passes through the extremity of
the minor axis B’, find the excentricity of the ellipse.

- 5. Find the equation to 4'B and CL. (See figure to
-Art. 162.) Find the excentricity of the ellipse if these
straight lines are parallel.

6. Find the equation to B'H,and determine the abscissa
of the point where this straight line cuts the ellipse again.

7. Find the equation to AL, and determine the angle
between this straight line and the tangent at L. ’

- 8 If from the point P whose abscissa is &, a straight line
‘be drawn through H, determine the abscissa of the point where
it meets the ellipse again.

9. Find a point in the ellipse such that the tangent there
i8 equally inclined to the axes.
" 10. Find a point in the ellipse such that the intercepts

made by the tangent on the co-ordinate axes are proportional
to the corresponding axes of the ellipse.

11. Pisa point on an ellipse, y its ordinate ; shew that
2
tan APA =22 '
acy
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12. P is a point on an ellipse, y its ordinate; shew that
the tangent of the angle between the focal distance and the
2

tangent at Pis L .
acy

18. If ¢ denote the angle mentioned in the preceding
Example, PC=4/(a’—b* cot’ ¢).

14. From P a point@wman ellipse straight lines are drawn
to 4, A, the extremities of the major axis, and from 4, 4’
straight lines are drawn at right angles to 4P, A’P; shew

that the locus of their intersection will be another ellipse,
and find its axes.

15. If any ordinate MP be produced to meet the tangent
at L at Q, prove that QM = PH. (See figure to Art. 162.)

16, -If a series of ellipses be described having the same
major axes the tangents at the ends of their latera recta will
pass through one or other of two fixed points.

17, If the focus of an ellipse be the common focus of two
parabolas whose vertices are at the ends of the axis major,
these parabolas will intersect at right angles, at points whose
distance from each other is equal to twice the minor axis.

18. Shew that the length of the longer normal drawn
from a point in the minor axis of an ellipse at a distance ¢
from the centre and intercepted between that point and the

curve is (a’+ :—:)‘.

19. If any parallel straight lines be drawn from the focus
H and the extremity 4 of the axis major of an ellipse, and
if M and N be the points where they meet the axis minor, or
the axis minor produced, then the circle whose centre is M
and radius N4 will either touch the ellipse, or fall entirely
outside of it.

20. A and 4’ are the extremities of the major axis of an
ellipse, 7" is the point where the tangent at the point P of
the curve meets EA' produced ; through 7T a straight line is
drawn at right angles to 44’ and meeting 4P and AP’ pro-
duced at @ and R respectively; shew that QT'= RT.

11—2
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21. If ¢, ¢’ be the excentric angles of two points, the
equation to the chord joining the points is

§m¢;¢’+%’dn¢;¢'=m¢;¢"

22. Express the equation to the tangent at any point in
terms of the excentric angle of that point. ,

23. Shew that the equation to the normal at the point
whose excentric angle is ¢ is az sec ¢— by cosec ¢ = a*— b".

24. The locus of the middle point of P& (see Art. 176) is
an ellipse of which the excentricity ¢’ is connected with that
of the given ellipse by the equation 1 —¢'=(1+ ¢")*(1-¢).

_ 25. Determine the point of intersection of the tangent at
L with the straight line HB; find the value of the excentri-
city of the ellipse when these straight lines are parallel.

26. A tangent at any point P of an ellipse meets the
directrix EK at T and E'K" at T": shew that 7K varies as
the cotangent of PHS, and T"E’ varies as the cotangent of
PSH. (See figure to Art. 162.)

27. If the straight line y =ma + ¢ intersect the ellipse
a'y* + b%* = a’b’, shew that the length of the chord will be
’ 2ab V/{(1 + m*) (m'a’ + b* — ¢*)}
) mwa + b
Hence find the relation between the constants that this
straight line may be a tangent to the ellipse.

28. Find the equation to the circle described on HP as
diameter, supposing «’, 3’ the co-ordinates of P.

29. Shew that any circle described on HP as diameter,
touches the circle described on the major axis as diameter.

30. From a point (A, k) two tangents are drawn to an
ellipse : find the sum of the perpendiculars from the foci on
the chord of contact.

31. Any ordinate PM of an ellipse is produced to meet the
circle on the axis major at @, and normals to the ellipse and
circle at P and Q respectively meet at R:. find the locus of £
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32. Two ellipses have a common centre and their axes
coincide in direction ; also the sum of the squares of the axes
is the same in the two ellipses: find the equation to a common
tangent. .

33. If 6, & be the inclinations to the major axis of the
ellipse of the two tangents that can be drawn from the point
(h, k), shew that o

' 2hk b —r

tan9+tan0'=—a,~:?, tanﬁtan0’=m.

84. Find the locus of a point such that the two tangents
from it to an ellipse are at right angles.
.35. Shew that the two tangents which can be drawn to
an ellipse through the point (&, £) are represented by
@-)(y—-k)'+2@y—k) (@—h) e+ - &) (z—h)*=0,
or by
(@’K* + &2 — a’") (a’y® + b2 — a'D%) = (a’ky + b'ha — ab*)".
36. Tangents are drawn to an ellipse from the point (b, k);
shew that the straight lines drawn from the origin to the points
of contact are represented by ‘g: +%: = ("fg + %’) .
37. Pairs of radii vectores are drawn at right angles to
each other from the centre of an ellipse ; shew that the tan-
gents at their extremities intersect on the ellipse
2 ¥y 1 1
sttty

38. From an external point I' whose co-ordinates are h
and % a straight line is drawn to the centre C meeting the
ellipse at B: shew that

CT* o'k + '
CE ™ b .
39. From an external point (%, k) tangents are drawn ; if
z,, @, be the abscisse of the points of contact, shew that
2ha’b* _at (b’=FY)
aF+ o - ST R
40. From an external point (%, k) tangents are drawn

meeting the ellipse at P and Q: find the value of HP, HQ,
H being a focus, ,

@, o, =
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41. From an external point 7 the straight lines 7P, T'Q
are drawn to touch the ellipse at Pand Q. CT cuts the ellipse
at B, and RN is drawn parallel to H T to meet the axis major
at N: shew that HP. §3=RN'.

42. Two ellipses of equal excentricity and whose major
axes are parallel can only have two points in common : prove
this, and shew that if three such ellipses intersect, two and
two at the points P and P, @ and ¢, R'and R', respectively,
the straight lines PP, @@, RR/, meet at a point.

48. Two concentric ellipses which have their axes in the
same direction intersect, and four common tangents are drawn
80 as to form a rhombus, and the points of intersection of the
ellipses are joined so as to form a rectangle: prove that the
product of the areas of the rhombus and rectangle is equal to
half the continued product of the four axes.

. 44. - The ordinate at any point P of an ellipse is produced
to meet the circle described on the major axis as diameter at
Q : prove that the perpendicular from the focus S on the tan-
gent at @ is equal to SP.

45. Find the equation to the ellipse referred to axes
passing through the extremities of the minor axis, and meet-
ing at one extremity of the major axis.

. . 8 6

46. If from points of the curve :7, + % =(a'—b")", tangents

. : ]
be drawn to the ellipse :—:+ %—i= 1, the chords of contact will

be normal to the ellipse.

47. Prove the proposition in Art. 180 in a manner similar
to that used in Art. 138. Also prove the proposition in
Art. 138 in a manner similar to that used in Art. 180.

48. TFind the equation to the ellipse the origin being the
point (h, %) on the ellipse and the axes parallel to the axes of

the ellipse.

49. From a point P on an ellipse two chords PQ), P(' are
drawn meeting the ellipse at @, @'; if A, k be the coordi-
nates of P referred to the centre, and mz+ny=1 the equation
to Q@' referred to P as origin, shew that with P as origin
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the straight lines PQ, PQ are represented by

¥ (2xh | 24k
47'+I?+(a’ +—l:—/;—) (max + ny) =0.

50. Let Pbe any point on an ellipse; draw PP’ parallel
to the major axis and cutting the curve at P’; through P draw
two chords P, PQ’, making equal angles with the major
axis; join QQ': @@’ shall be parallel to the tangent at P.

51. From the equation y = mx + /(m’a’ + b*) deduce the
equation to the tangent to the parabola.

. 52, In the figure of Art. 175 suppose G'P produced to a
point @ such that GQ =n.GP, and find the locus of Q.

53. If PN be any ordinate of a circle, and from the ex-
tremity A4 of the corresponding diameter AB, 4Q be drawn
meeting PN at ¢, so that 4 Q= PN, find the locus of @ and
the position of its focus.

54. Express the tangent of the angle between CP and
the normal at P in terms of the co-ordinates of P.

55. Find the greatest value of the tangent of the angle
. between CP and the normal at P,

56. The major axis of an ellipse is equal to twice the
minor axis; a straight line of length equal to half the major
axis is placed with one end on the curve and the other on the
minor axis; shew that the middle point of the straight line is
on the major axis. o

57. A circle is inscribed in the triangle formed by two
focal distances and the major axis of an ellipse: find the locus
of the centre. ‘

- 58. If 8Z', HZ be perpendiculars on the tangent at the,
point P of an ellipse, 8Z and HZ will intersect on the normal
at P.

59. Shew that the equation to the two straight lines
which join the point (h, k) with a focus of the ellipse is

(hy— ko)t — @’ (y = )" = .

60. Shew that the straight lines in Examples 35 and 59
have the.same bisectors of their angles,
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CHAPTER X.

THE ELLIPSE CONTINUED,

Diameters.

187. To find the length of a straight line drawn from
any point in a given direction to meet an ellipse.

Let 2, 3 be the co-ordinates of the point from which the
straight line is drawn; =z, y the co-ordinates of the point to
which the straight line is drawn; 6 the inclination of the
straight line to the axis of «; » the length of the straight line;
then (Art. 27)

z=a'+rcosb, y=y' +rsinf.
If (2, y) be on the ellipse these values may be substituted
in the equation a’y* + b’2* = a'b*; thus
@ (y +r sin 0)* + b* (' + r cos 6)* = a'b*;
therefore 7* (a® sin® 6 + b* cos*@) + 27 (a’y’ sin 8 4 b*s" cos 6)
, + a’y” + b2 — bt =0,
From this quadratic two values of = can be found which are
the lengths of the two straight lines that can be drawn from
(@', ¥) in the given direction to the ellipse.

188. To find the diameter of a given system of parallel
chords in an ellipse. (See definition in Art. 148.)

Let 0 be the inclination of the chords to the major axis of
the ellipse; let 2, ¥’ be the co-ordinates of the middle point
of any one of the chords; the equation which determines the
lengths of the straight lines drawn from (', ¥') to the curve is
(Art. 187)

#* (a*sin® 8 + b* cos’ ) + 2r (% sin 0 + b’ cos 6)
+a'y*+ b~ a'h' =0........ ceennes(1).
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Since (2, %) is the middle point of the chord, the values of »
furnished by this quadratic must be equal in magnitude and

opposite in sign ; hence the coefficient of » must vanish ; thus
2

cos@=0, or g/=—-%,cot 0.« ... oeee(2).

a’y’ sin 0 + b’

Considering #' and 3’ as variable, this is the equation to a
straight line passing through the origin, that is, through the
centre of the ellipse.

Hence every diameter passes through the centre.

Also every straight line passing through the centre is a
diameter, that is, bisects some system of parallel chords; for
by giving to 6 a suitable value the equation (2) may be made
to represent any straight line passing through the centre.

If @ be the inclination to the axis of = of the diameter
which bisects all the chords inclined at an angle # we have

t]
from (2) tan § = — b—, cot 8; therefore
a

tan0tan0’=-é—,.
. a

189. If one diameter bisect all chords parallel to a second
diameter, the second diameter will bisect all chords parallel to
the first. : 4

Let 6, and 6, be the respective inclinations of the two
diameters to the major axis of the ellipse. Since the first'
bisects all the chords parallel to the second, we have

2

tana,tan0,=—%r.

And this is also the only condition that must hold in order
that the second may bisect the chords parallel to the first.

190. The tangent at either extremity of any diameter 1s
parallel to the chords which that diameter bisects,

Let %, & be the co-ordinates of either extremity of a
diameter; @ the inclination to the major axis of the ellipse
of the chords which the diameter bisects. Then the values
z=h, y="Fk must satisfy the equation o'y sin 8+ bz cos 0 =0;

t]

therefore tan @ = — %‘% . But, by Art: 170, the equation to the
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. S
tangent at (b, k) isy —k=— % (x— k). Hence the tangent

is parallel to the bisected chords.

.191. DEFINITION. Two diameters are called éonjugate
when each bisects the chords parallel to the other.

From Art. 190 it follows that each of the conjugate dia-
meters is parallel to the tangent at either extremity of the
other.

192. - Given the co-ordinates of one extremity of a diameter
to find those of either extremity of the conjugate diameter.

Let ACA', BCB' be the axes of an ellipse; PCP, DCD’
a pair of conjugate diameters.

¥
B
D,
! A
X
Dl
< .

Let &, 4’ be the given co-ordinates of P; then the equa-
tion to CPis

Since the conjugate diameter DD’ is parallel to the tangent at
P, the equation to DI is
b’

=gy e @).
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We must combine (2) with the equation to the ellipse
to find the co-ordinates of D and D', Substltute the value of

4
y from (2) in &%+ b’ =a'"; then o' b, y,,a:’+b’w’ =a’’;

4,73
therefore (b "+ay")w’ a'y”; therefore #=2 =‘_"-_',/--

262 b[ ?
therefore = b H b'” .
In the figure the abscissa of .D is negative and that of Y
positive ; hence the upper sign applies to D' and the lower
to D.

The properties' of the ellipse connected with conjugate
diameters are numerous and important; we shall now give
a few of them.

193. The sum of the squares of two conjugate semi-dia-
melers 18 constant.

Let ', y" be the co-ordinates of P; then by the preceding

Article o
CPt 4 CDP =2 +y’*+“”" ik
a
R
. b" + a

—a-l-b’

Thus the sum of the squares of two conJuaate semi-diame-
ters is equal to the sum of the squares of ‘the semi-axes.

Moreover
CD*=a*+ 1" — = yt=ad"+b—2" ——,(a —a:")

=a'_(1—f;')w"*=a=—e' "= SP. HP by Art. 166.

194. The area of the parallelogram which touches the
ellipse at the ends of conjugate diaineters is constant.
Let PCP’, D CD’ be the conjugate diameters (see figure to

Art. 192). The area of the parallelogram described so as to
touch the ellipse at P, D, P, D',is 4CP. CD sin PCD, or
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4}).CD, where p denotes the perpendicular from C on the
tangent at P. Let &, ¥’ be the co-ordinz,ates of P; then the
b b

equation to the tangent at Pis y=———x+ .
q g Yy &y z Py
bl
- ;’7 _ a*h?
Hence (.Al‘t. 47) p N/ 1 RN Q/(a‘y’g'l" b‘m") B
| (4G

AN o
And 0p=\/(9_%+%')___g@%ﬁ);

therefore 4p . CD = 4ab.

Thus the area of any parallelogram which touches the
ellipse at the ends of conjugate diameters is equal to the area
of the rectangle which touches the ellipse at the ends of the
axes.

195. Let o, b’ denote the lengths of two conjugate semi-
diameters; a the angle between them; by the preceding
Article a'd’sin « =ab ; therefore
A 4a°0* _ 4a’d*

a"? - (alﬁ + bls)a — (all’ — b':)c - (ai + bS)s — (a's — blt)z .
Hence sin’a has its least value when a' = &', and then

sin® a=

T a4+
196. From Art. 194 we have
R a’b’ a’b’

P=gpi=rp—gp (At 199).

This gives a relation between p the pefpendicular from the

centre on the tangent at any point P and the distance CP of
that point from the centre.

2
In Art. 177 it is shewn that PG’=%§ CD'. Hence
p.PG="0. Similarly p. PG =a’

‘We may also express p in terms of the angle its direction
makes with the axis major; for let 4o denote the angle, then
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the equation to the tangent at (&, y) is a'yy + &'z2’ =a’®’,

and this may also be put in the form (Art. 20)
zcosY+ysiny=p.

2 2
Hence b E' , P__2% 5
siny y cos @

.
therefore ay’ = ab_s;ﬂ

bat = a'b cos yr

. . P
27.2
and therefore a’*= '—;;f— (b'sin’®yr + @ cos® ) ;

o
)

therefore p*=>5"sin®yr + a® cos® Y = a* (1 — €*sin’ ).

197. Let ¢ and ¢’ be the excentric angles corresponding
to P and D respectively (Art. 168). Then

-%ammw ..... we(8), - =bsing..... ).
From (2) and (3) cos ¢’ =—sin ¢,
from (1) and (4) sin ¢’ =cos¢;
therefore ¢’ = g+ ¢.

198. To find the equation to the ellipse referred to a pair
of conjugate diameters as axes.

Let CP, CD be two conjugate semi-diameters (see figure to
Art. 192), take CP as the new axis of #, CD as that of y;
let PCA=a, DCA=PB. Let z, y be the co-ordinates of any
point of the ellipse referred to the original axes; «', ¥’ the

co-ordinates of the same point referred to the new axes; then
(Art. 84)

x=a cosa+y cosB, y==z'sina+y sinpf.
Substitute these values in the equation
' o'y + b’ = a'l';
then a® (' sin a + 3 sin B)* + &* (2’ cos a + 3 cos B)* = a’F?,
or & (a*sin® a + b* cos’ @) + 3™ (a* sin’ B + b° cos® )
+ 22"y’ (a* sin a sin 8 + b* cos a cos B) = a'd"
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But, since CP and CD are conjugate semi-diameters,
2
tanatan B8=— %'; hence the coefficient of &y’ vanishes, and

the equation becomes
2™ (a’sin® a + b* cos® @) + 3 (a* sin’ B+ b* cos* B) =a'd".
In this equation, suppose &’ = 0, then
" . a!b’
¥ =a’sin’/8+b’cos’B'
This is the value of CD?, which we shall denote by 5*;
similarly we shall denote CP* by o™, so that
aﬁbl .
a"= 55—
~ d'sin*a+b'cos’a’
Hence the equation to the ellipse referred to conjugate
diameters is ‘

z’! ‘s
' A=l
or, suppressing the accents on the variables,
L ¥
P + i 1.

N 199. A particular case of the preceding is when a'=?';
then

a’sin’ 8 + b* cos’ 8= a’sin’ a + b* cos a;

therefore a® (sin® 8 —sin*a) = b (cos® a'— cos* B)
=}*(sin*B —sin'a);
therefore (a®— ") (sin® 8 —sin*a)=0;
therefore sin*B=sin’a;
therefore B=m—a. »
2

¢ ;b', (Att. 199).
Hence from the value of a” in the preceding Article, we

have
. a'+b a’b* .
. 2  a'sin*a+bcosfa’

And since a”=b" each of them =
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therefore (a'+ b*) {(a" —b*) sin’ a + b} = 2u’D*
ab'- b
(@ +70) (@*=0) o'+ b
This shews that the equal conjugate diameters are parallel
to the straight lines BA and B4'. '

200. The equation to the tangent to the ellipse will be of
the same form whether the axes be rectangular or the oblique
system formed by a pair of conjugate diameters; for the in-
vestigation of Art. 170 will apply without any change to the
equation a”y*+ 5" =a"”b" which represents an ellipse re-
ferred to such an oblique system.,

201. Tangents at the extremities of any chord of an ellipse
meet on the diameter which bisects that chord.

Refer the ellipse to the diameter bisecting the chord as the
axis of «, and the diameter parallel to the chord as the axis
of y; let the equation to the ellipse be ay*+ 5"z =ab"™
Let @', 4" be the co-ordinates of one extremity of the chord;
then the equation to the tangent at this point is

HE

therefore sin*a=

The co-ordinates of the other extremity of the chord are
@, — 3/, and the equation to the tangent there is

—a*yy +b%xa’ =a"b".................. (2).
The straight lines repres’;a'ntéd by (1) and (2) meet at the

point for which y=0, = g'z—, : this proves the proposition,

Supplemental chords.

202. DerFiNITION. Two straight lines drawn from a
point of the ellipse to the extremities of any diameter are
called supplemental chords. They are called principal sup-
plemental chords if that diameter be the major axis.

203. Ifa chord and diameter of an ellipse are parallel, the
supplemental chord is parallel to the conjugate diameter.

Let PP’ be a diameter of the ellipse; QP, QP two sup-
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plemental chords. Let &/, ¥” be the co-ordinates of P, and
therefore — &', — ' the co-ordinates of P,

¥
Q
P
/ A
A X
Pl
Let the equation to PQ be (Art. 32)
Y=y =m@—a)cecirieiernna. D),
and the equation to P Q
Yy+y=m (+a)cciieiinnnnne.. 2)

The co-ordinates of the point @ satisfy (1) and (2); if then
we suppose &, y to denote those co-ordinates, we have from
(1) and (2) by multiplication :

‘ ¥ =y =mm (2 —2%).eeeereeninns (8)-
But since (z, ) and (2, y') are points on the ellipse
&'y’ + 0% = ', a’y* + b =a't';
therefore a* (y* — y”*) + b* (¢’ — ") =0;

therefore ' — 4™ = — II;}' (@ = 2™) cerenirnnninnnenn. (4).

: 2
From (3) and (4) we have mm'=—g,. But we have

shewn in Art. 188 that if this relation be satisfied, the two
straight lines represented by y=mx and y=m'z are conjugate
diameters ; this proves the theorem.
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Polar Equation.

204. To find the polar equation to the ellipse, the focus
being the pole.

Let SP=r, A'SP=0, (see figure to Art. 158); then
SP =¢PN, by definition ; that is, SP=¢ (0S+8M);

or - r=a(l—¢€)+ercos (w—4§), (Art. 161);
therefore r(l+ecosf)=a(l-¢),

- a(l—¢
and T =T+ecosd’

If we denote the angle 4 SP by 6, then we have as before
SP=¢(0S+8SM); thusr=a(1— e’)+ercos€
. _a(l-é)
and T T—¢cos6’

205. We shall make use of the preceding Article in
finding the polar equation to a chord, from which we shall
deduce the polar equation to the tangent.

Let P and P be two Spomts on the ellipse ; suppose that
A'SP=a—pB, and A'SP =a+p, so that PSP = =28;
and let ! be the semi-latus rectum of the elhpse, so that

l=a (1 —¢’): it is required to find the polar equation to the
straight line PP,

Assume for the equation (see Art. 29)

Arcos 6+ Brsin 6+ 0=0,..ucuunee.. ).
T. C. S, - 12
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Since the straight line passes through P, equation (1) must
be satisfied by the co-ordinates of P; now A'SP=qa—p, and

l
therefore SP= .].'I'—B(;O—SW H thus from (1)

1 {4 cos (a— B) + Bsin (a — B)}
+C{1+ecos(@=B)}=0..cco.ccuunnnee. ).
Similarly, since the straight line passes through P’,
1 {A cos(a+p)+ Bsin (a + B)}
+ C{l+ecos (a+B)}=0.cceceuunnnnn. (3).
From (2) and (3), by subtraction,
l(Asinasin 83— Bcosasin 8) + Cesina sin8=0;
therefore [ (A sina — B cosa) + Cesin a=0......... (4).
From (2) and (3), by addition,
l(AcosacosB+ BsinacosB)+C(1+ecosacosB)=0;
therefore I (4 cosa + Bsina) + C (sec B+ecosa) =0...(5).
From (4) and (5) we find
lA+ C(secBcosa+e)=0,
IB+ CsecBsina =0.
Substitute the values of 4 and B in (1) and divide by C;
thus » {(secB cosa + ¢) cos 0 + sec B sin asin 0} -1=0;
l
ecosf@+secBcos(a—0)"
If 8Q bisect the angle PSP’, we have
PSQ=B, and 4'SQ=a.

" Now suppose B to dimrinish indefinitely; then the chord
PP’ becomes the tangent at Q, and we obtain its polar equation
by putting 8 =0 in the preceding result; thus we have

l
T cosOtcos(@—0)"

therefore r =
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The investigations of this Article will apply to the para-
bola by supposing ¢=1.

206. The polar equation to the ellipse referred to the
centre is sometimes useful; it may be deduced from the
equation a’y*+ b'2'=a’h’, by putting rcosd, »sin 6, for
and y respectively ; we thus obtain 7*(a’sin*6+3"cos*6) =a"".

‘We add a few miscellaneous propositions on the ellipse. -

207. If tangents be drawn at the extremities of any focal
chord of an ellipse, (1) the tangents unll intersect on the corre-
sponding directriz, (2) the straight line drawn from the point
of wntersection of the tangents to the focus will be perpendicular
to the focal chord.

(1)- If two tangents to an ellipse meet at the point (k, %)
the equation to the chord of contact is, by Art. 183,

a'ky + bha = a’b’.

Suppose the chord passes through the focus whose co-ordi-

nates are =— a¢, y=0; then — b'haue =a’??,

therefore A=— :—: ;

that is, the point of intersection of the tangents is on the
directrix corresponding to this focus.

(2) The equation to the straight line through (&, k) and
. a ...
the focus is y = htae (z+ae). Ifh=-— 3 this becomes

Y= o (@ 06) = s (a4 ),

and the straight line is therefore perpendicular to the focal
chord of which the equation is
__¥ha B
Y="a% k"

208. If through any povnt within or without an ellipse, two
strasght lines be drawn parallel to two given straight lines to

meet the curve, the rectangles of the segments will be to one an-
other in an invariable ratio. ' .

12—2
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. Let («, %) be the given point and suppose a and 2 respec-
tively the inclinations of the given straight lines to the major
axis of the ellipse. By Art. 187 if a straight line be drawn
from (z, /) to meet the curve and be inclined at an angle « to
the major axis, the lengths of its segments are given by the
equation

»* (a* sin*a + b* cos' a) + 2 (a"y sin @ + bz’ cosa) '
+a'y" + V2" —a%'=0;

asy'. + b’x"_ a’b’

a'sin’q + 6*cos’a

therefore the rectangle of the segments =

Similarly the rectangle of the segments of the straight line
aay': +b 4 —
a'sin’ B+ b* cos*B*
. _ a'sin'B+bcos’B
Hence the ratio of the rectangles = Tarat Foda’ and
this ratio is constant whatever ' and 3" may be. ’

drawn from (#, y') at an angle 8=

e

Let O be the point through which the straitght lines OPp,

0Qq, are drawn 1nclined to the major axis o
angles a, B, respectively; then
OP.0Op =a’ sin’ B+ &" cos' B
0Q.0q  a'sit*a+b cos’a’

the ellipse at
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Draw the semi-diameters CD, CE, parallel to Pp, Qg
respectively, then by Art. 206, :

_CD_' 3 a,'sin’B+b'cos’B.

CE*  o*sin*a+ b*cos’a’

OP.Op CD*

0Q.0q  CE*

Let TM, TN be tangents parallel to Plp, Qqg, respectively;
e

then if O coincides with 7, the rectangle OP . Op becomes
T'M? and the rectangle 0Q. Og becomes T'N*; therefore

e _op. T CD
TN*~ CE*’ TN~ CE°

The preceding investigations are very important: we will.
point out some inferences which may be drawn from them.

Suppose that an ellipse and a circle intersect at four points:
denote these points by P, p, @, . Then we have seen that

OP.Op _CD?
0Q.0q CE*

But since the four points are on the circle we have
OP. Op = 04Q. Oq by Euclid, 111. 35 and 86, Cor. 'Therefore
CD*=CE". And since CD and CE are equal they make
equal angles with the major axis of the ellipse. Thus if an
ellipse and a circle intersect at four points the common chords
make equal angles with the major azs of the ellipse. ‘

Suppose that Q and ¢ coincide so that OQq becomes a
common tangent to the ellipse and circle; thus we obtain the
following result: if an ellipse and a circle have a common.
tangent and a common chord, the tangent and the chord make
equal angles with the major axis of the ellipse.

‘We may conceive that the three points P, @, and ¢ move
up to coincidence. The circle in this case is called the circle
of curvature of the ellipse at the point of coincidence. We do
not discuss the properties of the circle of curvature in the
present work; but we may remark that we have obtained the
following result: the tangent at any point of an ellipse and the
chord drawn from the point to the otherr intersection of the

therefore
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ellipse and the circle of curvature at the point make equal
angles with the major axis of the ellipse,

Similar remarks may be made in connexion with Art. 157.

EXAMPLES.

1. CPand CD are conjugate semi-diameters; given the
co-ordinates of P (<, ¥/), find the equation to PD.’

2. If straight lines drawn through any point of an ellipse
to the extremities of any diameter meet the conjugate CD at
the points M, NN, prove that CM. CN = CD".

3. CP, OD are two conjugate semi-diameters; CP’, CD'
are two other conjugate diameters: shew that the area of the
triangle PCP’ is equal to the area of the triangle DCD'.

4. Normals at Pand D, the extremities of semi-conjugate
diameters, meet at K: find the equation to KC, and shew that
K is perpendicular to PD. ' .

5. Inan ellipse the rectangle contained by the perpen-
dicular from the centre upon the tangent, and the part of the

corresponding normal intercepted between the axes, is equal
to the difference of the squares of the semi-axes, '

6. Shew that the locus of the intersection of the perpen-
dicular from the centre on a tangent to the ellipse is the curve
which has for its equation 7*=a’cos’§+ b'sin’ §, the centre
being the origin.

7. From A the vertex of an ellipse draw a straight line
ARQ to @ the middle point of HP meeting SP at X: shew
that the locus of R is an ellipse, and also the locus of Q.

8. Find the polar equation to the ellipse, the vertex being
the origin and the major axis the initial line.

9. If any chord 4 Q meet the minor axis produced at &,
and CP be a semi-diameter parallel to 4Q, then

AQ.AR=2CP" .

10. A circle is described upon 44’ the major axis of an
ellipse as diameter; P is any point in the circle; AP, AP

|
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are joined cutting the ellipse at points Q and ¢ respectively:
shew that :
AP AP _d4¥
A4Q T 4qg b
11. TIf circles be described on two semi-conjugate diame-
ters of an ellipse as diameters, the locus of their intersection
is the curve defined by the equation 2 (#* + )" = a’2* + b~

12. CP, CD are conjugate semi-diameters; CQ is per-
pendicular to PD: find the locus of Q.

138. Find the points where the ellipse a(1—e")=r+-re cosf
cuts the straight ine a (1 —¢’) =7sin 0+ r (1 +e¢) cos 6.

14. Write down the polar equations to the four tangents
at the ends of the latera recta ; also the equations to the tan-
gents at the ends of the minor axis: the focus being the pole.

15. Determine the locus of the intersection of tangents
drawn at two points P, @, which are taken so that the sum
of the angles ASP, A5@Q, is constant.

16. If PSp be a focal chord of an ellipse, and along the
straight line SP there be set off SQ a mean proportional be-
tween SP and Sp, the locus of @ will be an ellipse having
the same excentricity as the original ellipse.

17. Two ellipses have a common focus and their major
axes are equal in length and situated in the same straight
line; find the polar co-ordinates of the points of inter-
section.

18. From an external point two tangents are drawn to
an ellipse; find between what limits the ratio of the length
of one tangent to the length of the other lies.

19. TP, T'Q are two tangents to an ellipse, and CP, CQ,
are the radii from the centre respectively parallel to these
tangents, prove that P'Q’ is parallel to PQ.

20. From a point O whose co-ordinates are h, k a straight -
line is drawn meeting the ellipse at P and p; and CD is the
parallel semi-conjugate diameter: shew that

OP.Op W ¥
—r —etrt
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. 21, When the angle between the radius vector from the
Jocus and the tangent is least, the radius vector =a.

22. When the angle between the radius vector from the

. . a’+b°\3
centre and the tangent is least, the radius vector = 5 ) .
23. PT, pt are tangents at the extremities of any diameter
Pp of an ellipse ; any other diameter meets PT at T, and its
conjugate meets pt at ¢; also any tangent meets PT at 7" and
pt at t': shew that PT:PT" : pt’ : pt.

24. From the ends P, D, of conjugate diameters in an
ellipse, draw straight lines parallel to any tangent line ; and
from the centre C draw any straight line cutting these stralght
lines and the tangent at points p, d, ¢, respectively : then will

Cp*+ Cd* = Ct.

25. If tangents be drawn from different points of an ellipse
of lengths equal to n times the semi-conjugate diameter at
each point, then the locus of their extremities will be a con-
centiic ellipse with semi-axes equal to

ax/(n*+1) and b 4/(n*+1).

26. Apply the equation to the tangent in Art. 171 to find
the locus of the intersection of tangents at the extremities of
conjugate diameters.

27.  If from a point (', 3) of an ellipse a chord be drawn
parallel to a fixed straight line, shew that the length of this
Y sin(&—¢)
cos
the tangent at (2, y) to the axis, and a the inclination of the
fixed straight line to the axis.

28. If through any point P of an ellipse two chords PQ,
PR, be drawn parallel to two fixed straight lines and making
ang}es a and 3 respectively with the tangent at F, shew that
the ratio P@ cosec a : PR cosecf is constant.

29. A parabola is touched af the extremities of the latus
rectum by an ellipse of given magnitude : find the latus rectun
of the parabola.

chord varies as , where ¢ is the inclination of
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80. The perpendicular from the centre on a straight line

joining the ends of perpendicular diameters of an ellipse is of
constant length. :

31. Chords are dra.wn tbrouoh the end of an axis of an
ellipse : find the locus of their middle points.

-82. Chords of an ellipse are drawn through a.ny fixed
point: find the locus of their middle points.

33. ~Two focal chords are drawn in an ellipse at right
“angles to each other: find their position when the rectangle

contained by them has respectively its greatest and least
value.

34, In an ellipse if PP’ and Q¢ be focal chords at nght
angles to each other

1 é¢ 1-¢ 1 1
P‘ 8Q.8Q' " 4c* b’U"

35. PSp, QSq, are focal chords; suppose 7 the point
where the stralght lines PQ, pq meet : shew that 7'Sis equally
inclined to the focal chords, and that 7' is on the directrix
corresponding to 8.

36. If », 6 be the polar co-ordinates of a point P, shew

_ b _14ecosd

387. Perpendiculars are drawn from P and D the ex-
tremities of any pair of conjugate diameters on the diameter

y=xztana: shew that the sum of the squares of the perpen-
diculars is a® sin® a + b* cos*a.

88. The excentric angles of two points P and @ are ¢ and
¢’ respectively; shew that the area of the parallelogram.
formed by the tangents at the extremities of the diameters

through P and @ is - ::b ;ﬁ) s shew also that the area is

least when P and @ are the extremities of conJugate dla-
meters. .
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39. Shew that the equation to the locus of the middle
points of all chords of the same length (2¢) in an ellipse is

ay'+b'' 2 o A
CaprtatatE—1=0

40. Chords of an ellipse are drawn at right angles to one
another through a point O whose co-ordinates are h, k; if
CP, CQ be the radii drawn from the centre parallel to
the chords, and E, F the middle points of the chords,

shew that
R or_K ¥
o togT AT

'41. Given the co-ordinates of P, find thbse of the inter-
section of the tangents at P and D. (See Fig. to Art. 192)

42. Shew that the equation .
&y _(z(2'—ay)  y(ay' +b) *
as bs-l—-{ a’b + a,b’ —1}

represents the tangents at P and D, supposing «’, 3’ the co-
ordinates of P. (See Fig. to Art. 192.)

43. If CP, CD be any conjugate semi-diameters of an
ellipse APBDA’, and BP, BD be joined and also 4D, A'P,
these latter intersecting at O, shew that BDOP is a parallel-
ogram.

44. Shew that the area of the parallelogram in the preced-
ing Example = ay’ + bz’ — ab, where &', y' are the co-ordinates
of P; and find the greatest value of this area.

45. If a straight line be drawn from the focus of an ellipse
to make a given angle.a with the tangent, shew that the locus
of its intersection with the tangent will be a circle which
‘touches or falls entirely without the ellipse according as cos«
is less or greater than the excentricity of the ellipse.

46. In an ellipse 8Q, HQ, drawn perpendicular toa pair
of conjugate diameters, intersect at Q : prove that the locus of
. Q is a concentric ellipse. :
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47. Two ellipses have their foci coincident ; a tangent to
one of them intersects at right angles a tangent to the other:
shew that the locus of the point of intersection is a circle
having the same centre as the ellipses.

48. TFind what is represented by the equation «*+ 3 =¢*
when the axes are oblique.

49. Shew that when the ellipse is referred to any pair of
conjugate diameters as axes, the condition that y =ma and
Lo g

y =m'z may represent conjugate diameters is mm' = — Pl

50. The ellipse being referred to equal conjugate diame-
ters, find the equation to the normal at any point. '

51. From any point P perpendiculars PM, PN are drawn
on the equal conjugate diameters : shew that the normal at P
bisects MN,

52. An ellipse intersects the side PQ of a triangle at »
and #’, the side QR at p and p’, and the side RP at ¢ and ¢';
shew that '

. Pr.Pr.Qp.Qp .Rq. Ry =Pq.Pq.Qr. Qr. Rp. By'.

Shew also that a similar result is true for a polygon ; and
shew what it becomes when the ellipse fouches the sides.
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CHAPTER XI
THE HYPERBOLA.

209. To find the equation to the hyperbola.

The hyperbola is the locus of a point which moves so that
its distance from a fixed point bears a constant ratio to its
distance from a fixed straight line, the ratio being greater
than unity.

Y

A

Let H be the fixed point, YY" the fixed straight line. Draw
HO perpendicular to YY’; take O as the origin, OH as the
direction of the axis of @, OY as that of the axis of .

: Let Pbe a point on the locus ; join HP, draw PM parallel
to 0Y and PN parallel to OX. Let OH=p, and let e be the
~ ratio of HP to PN. Let z, y be the co-ordinates of P.

By definition HP=¢PN; therefore HP® =¢PN*; there- |
fore PM* + HM* = ¢'PN’, that is, y* + (z — p)* = €'2", ‘
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This is the equation to the hyperbola with the assumed
origin and axes.

-210. To find -where the hyperbola meets the axis
of z we put y=0 in the equation to the hyperbola ; thus

(x — p)* = €'a*; therefore —p =+ ex; therefore = 7o ; x
Since e is greater than umty, —eisa negatlve quantity.

Let 04' = f i 04 = i + , the former being measured

to the left of 0 then 4’ and 4 are points on the hyperbola.
A and A’ are called the vertices of the hyperbola, and C

the gomt midway between 4 and A’ is called the centre of
the hyperbola.

" 211. We shall obtain a simpler form of the equation to
the hyperbola by transferring the origin to 4 or C.

I. Suppose the origin at 4,

Since 04 = —1—_—*_—, we put z=2 +1—_r;_—é and substitute
this value in the equation y* + (z—p)'=
i ordn)orit)
T el
théx;efore v+ :c" - ii_;_%’ = e (w;' + 11_:_—'2) ;

therefore y*=2pes’ + (¢'—1) 2™
=(@-1) {%w”}.

=P P _2
The distance 4’4 —1+l+c o l,wewﬂldenote

this by 2a ; hence the equation becomes y*=(¢'—1) (2ax’+2").
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‘We may suppress the accent, if we remember that the
origin is at the vertex 4, and thus write the equation

¥'=(¢—1) a8+).creerrrreennnns (1).

II. Suppose the origin at C.

Since C4 =a, we put #=2'— a and substitute this value
in (1) ; thus

¥'=(¢-1) {2a (#' —a) + (@ - )} = ('~ 1) (a" - o).

‘We may supﬂress the accent, if we remember that the
origin is now at the centre C, and thus write the equation

P= (0 =1) @ =0, @)

In (2) suppose =0, then y*=—(¢' — 1) a*; this gives an
impossible value to y, and thus the curve does not cut the
axis of y. We shall however denote (¢’—1)a’ by ¥, and
measure off the ordinates CB and CB' each equal to b, as we
shall find these ordinates useful hereafter.

Thus (1) may be written

B
y’:;, (2ax+2%) ceveriiniinnnannnn (3),
b (
f-—-?(x'—a’)' oooooooooooooooooooo (4),
or, more symmetrically,
s y’ 2.3 78 27,2
21_,'_55=1’ or, a'y'—=b'2' = —a'b’......... (3).

212, Since AH =¢04 and 04 =T% , we have

=12 == -

04 P e—1

= =—0_a

"1+e¢ e
CH=CA+AH=qa+ (e—1) a=eca,
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00=GA—0A=a—i%la=g,

=a(e’—l).

and OH=p p

213. We may now ascertain the form of the hyperbola.
Take the equation referred to the centre as origin,

- Ty — .

For every value of « less than a, y is impossible. When
x=a, y=0. For every value of & greater than a there

are two values of y equal in magnitude but of opposite si
Hence if P be a goir?t in the curve on one sidepl())(f)' the algx?s
of , there is a point P’ on the other side of the axis, such
that P’M=PM. Hence the curve is symmetrical with re-
sgejt to the axis of , and it extends indefinitely to the right
of 4.

If we ascribe to @ any negative value we obtain for y
the same pair of values as when we ascribed to « the cor-
responding positive value. Hence the portion of the curve
to the left of the axig of y is similar to the portion to the
right of it, : :
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As the equation (1) may be put in the form

we see that the axis of y alsé divides the curve symmetrically.
Thus the curve consists of two similar branches each extend-
ing indefinitely. '

The straight line EX is the directrix, H is the correspond-
ing focus. Since the curve is symmetrical with respect to the
straight line BCB', it follows that if we take CS= CH and
CE'= CE, and draw E'K’ at right angles to CE’, the point
S and the straight line £'K’ will form respectively a second
focus and directrix, by means of which the curve might have
been generated.

214. The point C is called the centre of the hyperbola,
because every chord of the hyperbola which passes through C
is bisected at C. This is shewn in the same manner as the
corresponding proposition in the ellipse. (See Art. 163.)

215. We have drawn the curve concave towards the axis
of = ; the following proposition will justify the figure.

The ordinate of any point of the curve which lies between
a vertex and a fixed point of the curve on the same branch
as the vertex is greater than the corresponding ordinate of the
straight line joining that vertex and tE: fixed point.

* Let A be the vertex and take it for the origin ; let P be
the fixed point; &', ¥ its co-ordinates. Then the equation
2

to the hyperbola is (Art. 211) 3= %, (2ax + 2*).

~ The equation to AP is y='%: z, ory=%,\/(z—?+l) z,
since («/, y') is on the hyperbola.

Let « denote any abscissa less than &/, then since the
ordinate of the curve is :—; 4/(2a.i + &) or % \/ (2;“+ 1) , and

that of the straight line i ;. » /(57 + 1), it ia obvious ta
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the ordinate of the curve is greater than that of the straight
line.

A_l’l points may be said to be outside the curve for which

i z-,-, + 1 is positive ; and all points may be said to be inside

the curte for which %’;’ - %:+ 1 is negative. It is easy to see

that according to this definition a point is outside the curve
when no straight line can be drawn from the point to a focus
_ without cutting the curve. A very instructive mode of obtain-
ing this result is that exemplified in Art. 54: the expression

A

i %: + 1 is negative when the point (z, ) is a focus, vanishes

when (z, y) is on the curve, does not vanish in any other case,
and is positive when & =0 for all values of y. Hence we
infer that the expression is negative for every point which can
be joined to a focus by a straight line that does not cut the
curve, and positive in every other case. '

Similar remarks might be made in connexion with Art. 127,

Suppose @ a point outside the'curve; join @ with the
nearer focus, which we will denote by H; and let QH cut the
curve at P. Let S be the other focus. Join §@Q, SP. Then
8@ is less than SP+ PQ by Euclid, 1. 20 ; therefore SQ — HQ
i8 less than SP + PQ — HQ), that is less than SP— HP. Thus
the difference of the focal distances of any povnt outside an hyper-
bola s less than the transverse axis: see Art. 218. Similarly
we may shew that the difference of the focal distances of any
point inside an hyperbola is greater than the transverse awis.

216. AA’ and BB are called axes of the hyperbola. The
axis 44’ which if produced passes through the foci, is called
the transverse axis, and BB’ the conjugate axis. We do not,
as in the case of the ellipse, use the terms major and minor
axis, because since b=a /(¢'—1) (Art. 211), and e is greater
than unity, b may be greater or less than a.

The ratio which the distance of any point on the hyper-
bola from the focus bears to the distance of the same point
from the corresponding directrix is called the excentricity of
the hyperbola, We have denoted it by the symbol e.

T.C.S. 13
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To find the latus rectum (see Art. 128) we put == CH,
that is, = ae, in equation (1) of Art. 213 ; thus

g tEE=D b
bﬂ

az - a: ’
b ) 2
therefore LH =2’ and the latus rectum = -

Since b*=a’(¢*—1); therefore 5* + a*=a’¢*; that is,

CB + CA*= CH?;
therefore AB= CH.

217. The equation to the hyperbola may be derived from
the equation to the ellipse by writing — &* for 4. 'We shall
find that the hyperbola %m many properties similar to those
which have béen proved for the ellipse; and as the demon-
strations are similar to those which have been given, we shall
in some cases not repeat them for the hyperbola, but refer to
the corresponding Articles in the Chapters on the ellipse.

218.  To express the. focal distances of amy point of the
hyperbola in terms of the abscissa of the point. '

J I

8 ji? o H M b e

Let S be one focus, E'K’ the corresponding directrix ; H
the other focus, EK the corresponding directrix. Let P be s
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point on the hyperbola; @, y its co-ordinates, the centre
being the origin. Join SP, HP, and draw PNN' parallel to
the transverse axis, and PM perpendicular to it. Then

8P=ePN'=¢(CM+ 0E')=e(w+§)=ex+a,

HP = PN = ¢ (CH~ 0E)=e(w-§) —er—a

Hence SP — HP=2a; that is, the difference of the focal.
distances of any point on the hyperbola is equal to the trans-
verse axis.

Let z, y be the co-ordinates of any point ¢. Then
S@=@+ae)+y =(ex+a)+y'—(¢—1) (a*—a")
: [
=é (z+ g) +y’—;, (@' —a).

Therefore the focal distance of any point not on the curve
bears to the distance of the point from the corresponding di-,
rectrix a ratio which is greater or less than ¢ according as the’
point is outside or inside the curve.

2
219. The equation 3 =¢% (#"—a") may be written

¥=2 @) @+

PM* _BC'
AM.ZM " 4C

Hence (see figure to Art. 213),

Tangent and Normal to an Hyperbola.

220. To find the equation to the tangent at any point of
an hyperbola. :

By a process similar to that in Art. 170, it-will be found
that the equation to the tangent at the point (2, %) is

, b
y=y=gy (@—2)
or ayy — bax’' = — a'b".

These equations may be derived from the corresponding
equations with respect to the ellipse by writing — b* for "

13—2
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221. The equation to the tangent to the hyperbola
may also be written in the form y = ma + 4/(m'a® —b"); (see
Art. 171). Conversely every straight line whose equation is
of this form, is a tangent to the hyperbola.

. 222. It may be shewn as in the case of the circle that a
tangent to an hyperbola meets it at only one point. Also if a
straight line meet an hyperbola at only one point, it is in
general the tangent to the hyperbola at that point. For sup-
pose the equation to an hyperbola to be a'y* — b%* = —a't’,
and the equation to a straight line y =ma+¢. Then to de-
termine the abscisse of the points of intersection, we have the
equation a* (ma + ¢)* — ¥'* = — a'*, or

(a'm® — V%) 2" + 2a™mex + a* (¢ + %) = 0.
This equation has always two roots, except

(1) when a‘m**= (a'm*—b*) a* (c*+ b°), or ¢* =m'a’~?',
and consequently the straight line is a tangent ;

(2) when a*m’—b*=0; the equation then reduces to one
of the first degree, and therefore has but one root. Thusa
straight line which meets the hyperbola at only one point is
the tangent at that point unless the inclination of the straight

line to the transverse -axis be + tan“g .

223. ' The tangents at the vertices 4 and A4’ are parallel
to the axis ofy. (See Art. 17Z)

224. To find the equation to the normal at any point of
an hyperbola. (See Art. 173.)

It will be found.»t'hat the equation to the normal at
(@ §) isy—y =— 5% (@—a).

This may also be written in the form

(See Art. 174.)
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225. We shall now deduce some properties of the hyper-
bola from the preceding Articles.

Y

Let «, y' be the co-ordinates of P; let PT be the tangent
at P, P@ the normal at P; PM, PN perpendiculars on the
axes.

The equation to the tangent at Pis ayy’ — b%ea’ =— a'b"
Let y=0, then =2, hence CT=S4; |
et y=0, then #="7, hence CT'=57:;
therefore CM.CT= CA*
Similarly CN.CI'= CB"
226. Asin Art. 176, we may shew that
2
0@ =0H, md C&' =7 PM.

227. Asin Art. 177, we may shew that

s J S .7
pe=UT, pan=27,

where SP=1r, HP=r.
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. Also the result established in Art. 176 respecting normals
at the ends of a focal chord holds for the hyperbola.

 228. The tangent at any point bisects the angle between
the focal distances of that pownt. ‘ ,
For in the manner given in Art. 178, we may shew that
the angle SPG’ =the angle HP@G; and therefore since PT
is perpendicular to G'@, the angle T'PS = the angle T'PH.

Or we may prove the result thus, CG = e*z’ (Art. 226);
therefore 8SG=¢'z' +ae, HG =’ —ae. Also SP=ex' +a,
HP=ex' —g; hence

. 8G 8P

HG™ HP’

therefore by Euclid, v1. 8, P& bisects the angle between HP

and SP produced, that is, the angle SPG’=the angle HPG.

229. To find the locus of the intersection of the tangent at
any point with the perpendicular on it from the focus.

It may be proved as in Art. 180, that the required locus is
the circle described on the transverse axis as diameter.

230. Let p denote the perpendicular from H on the

tangent at P, and p' the perpendicular from §; then, asin
2, 2.7

Art. 181, it may be shewn that p' = é;, p* =2r1; therefore

br

20+17r"

The result established in the latter part of Art. 181 holds
also for the hyperbola.

231. From any external point two tangents can be drauwn
to an hyperbola.

pp' =b. Since ' =2a +r, we have p* =

Let A, k be the co-ordinates of the external point, then as .

in Art. 182, we shall obtain the following equation for deter-
mining the abscisse of the points of contact of the tangents
and hyperbola, z* (a'k* — b°h*) + 2a°6%ha — a* (b* + &%) = 0.
The roots of this quadratic will be possible if
a'b'h® +a* (B° + &) (a°K* — b°hY) is positive ;
that is, if X'a® — b°A* +.a%" is positive, . ¢
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But if (h, k) be an external point the last expression s
positive, and therefore two tangents can be drawn to the
hyperbola from an external point.

The product of the two values of 2’ given by the above
4 /32
quadratic is — %,é,b—_-*-—b,k};z; this product is therefore positive
or negative accotding as a’* — 5°h* is negative or positive ;
that is, the two tangents meet the same branch or different
branches according as a’k* — b°h® is negative or positive.

The case in which a’4* —b%h* =0 requires to be noticed.
Here one root‘of 2t:he uadratic equation becomes infinite, and
the other is a—g;l;—) ; see Algebra, Chapter XXII
. 24°6°h '

In this case the point (%, ) falls on a certain straight line
called an asymptote, which we shall consider hereafter; see
Art. 255. The asymptote itself may then count as one of the
two tangents from the point (k, k). If 2=0 and k=0 the
point (h, k) is the origin; in this case the two asymptotes
may count as the two tangents from the point (%, k).

~ 232. Tangents are drawn to an hyperbola from a given
external point; to find the equation to the chord of contact.

Let &, & be the co-ordinates of the external point; then
the equation to the chord of contact is :

a'ky — Phe=—a’b". (See Art. 183.)

233. Through any fized point chords are drawn fo an
hyperbola, and tangents to the hyperbola are drawn at the
extremities of each chord ; the locus of the intersection of the
tangents 18 a straight line.

Let h, k be the co-ordinates of the point through which
the chords are drawn, then the equation to the locus of the
/intersection of the tangents is -

a’ky — hz = — a’b". (See Art. 184.)
234. If from any point in a straight line a pair\ of tan-

gents be drawn to an hyperbola, the chords of contact will all
pass through a fixed point. (See Art, 185.) : .
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The student should observe the different interpretations
that can be assigned to the equation a’ky — b'hz =— a'b’.

The statements in Art. 103 with respect to the circle may
all be applied to the hyperbola.

235. Some interesting geometrical investigations relating
to tangents to an hyperbola from an external point may be
noticed. '

To draw two tangents to an hyperbola from an external
point.

The first method given in Art. 186 may be applied with-
out any change.

In applying the seécond method we shall have to distin-
guish between the two cases which present themselves in
Art. 231 ; the distinction between the two cases will be more
fully appreciated by the student after he has read the next
Chapter. If the external point be between a branch of the
curve and the adjacent portions of the asymptotes, the two
tangents both touch that branch of the curve: if the external

- point be so situated that we cannot pass from the point to the
curve without crossing an asymptote, the two tangents touch
different branches of the curve.

The student can easily construet the figures required in
the process we shall now give.

I. Suppose the external point to be between a branch of
the curve, and the adjacent portions of the asymptotes. Let 0
denote the external point, H the nearer focus, S the farther
focus. With centre S and radius equal to 2a describe a circle;
with centre O and radius OH describe another circle cutting
the former at @ and ¢. Join S@ and Sg, and produce these
straight lines to meet the curve at 2 and p. Join OP and Op;
these are the required tangents from O.

The demonstration is like that in Art.186; and we can shew
that OP and Op subtend equal angles at H, and also at S,

II. Suppose the external point so situated that we can-
not pass from the point to the curve without crossing an
asymptote. Let O denote the external point, H the nearer
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focus, § the farther focus. With centre § and radius equal
to 2a describe a circle ; with centre O and radius OH describe

another circle cutting the former at @ and ¢, the angle HSQ
" being less than the angle HSg. Join SQ and produce it to
meet the curve at P; also join ¢S and produce it to meet the

curve at p. Join OP and Op; these are the required tan-
gents from O.

The demonstration is like that in Art. 186.

From the triangles 08Q and 0.8g we have the angle 08y
equal to the angle 0SQ. Thus the angle OSp is the supple-
ment of the angle OS@Q; so that the angles subtended at S by
the tangent Op and the tangent OP are supplementary.

Also the angle OHp=the angle 0¢8=the angle 0QS
= the supplement of the angle O QP = the supplement of the
angle OHP; so that the anI%les subtended at A by the tan-
gent Op and the tangent OP are supplementary.

The straight line which bisects the angle between the jfocal

distances of an external point s equally tnclined to the two
tangents from that point.

In I. we have
angle SOQ + twice angle QOP +angle SOg
' + twice angle p OH =360";
therefore angle SOQ + angle QOP + angle p OH=180",
that is, angle SOP+ angle pOH=180°;

thus the angle pOH is the supplement of the angle SOP,
that is, equal to the angle between SO and PO produced.

In IL. we have
angle pOq = angle p OH =angle p 0 Q + twice angle POH,
angle SOg=angle §OQ =angle 8Op + angle p0Q;
therefore by subtraction
angle SOp = twice angle POH — angle SOp,
therefore angle SOp = angle POH.

The student should observe the extension thus given to
the result in Art, 228.
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EXAMPLES,

1. Find the equation to an hyperbola of given transverse
axis whose vertex bisects the distance between the centre and
the focus.

2. If the ordinate MP of an hyperbola be produced to ¢
so that MQ = SP, find the locus of Q.

3. Any chord AP through the vertex of an hyperbola is
divided at @ so that 4AQ : QP :: AC* : BC® and QM is
drawn to the foot of the ordinate MP; from @ a straight line
is drawn at right angles to QM meeting the transverse axis
at O: shew that 40 : 4’0 = AC*: B(".

4. PQ is a chord of an ellipse at right angles to the
major axis AA4'; PA, QA' are produced to meet at B: shew
that the locus of B is an hyperbola having the same axes as
the ellipse.

5. If a circle be described passing through any point P
of a given hyperbola and the extremities of the transverse
axis, and the ordinate MP be produced to meet the circle at
@, shew that the locus of Q is an hyperbola whose conjugate
axis is a third proportional to the conjugate and transverse
axes of the original hyperbola.

« 6. Find the locus of a point such that if from it a pairof
tangents be drawn to an ellipse the product of the perpen-
diculars dropped from the foci upon tEe chord of contact will
be constant.

7. If an ellipse and an hyperbola have the same foci
their tangents at the points of intersection are at right angles.
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CHAPTER XIL

. THE HYPERBOLA CONTINUED.

Driameters.

236. 7o find the length of a straight line drawn from any
point in a given direction to meet an hyperbola.

Let &, 4/ be the co-ordinates of the point from which the
straight line is drawn; @, y the co-ordinates of the point to
which the straight line is drawn; 6 the inclination of the
straight line to the axis of «; » the length of the straight
line; then (Art. 27) @=4'+rcosf, y=y +rsiné.

If (z, y) be on the hyperbola these values may be substi-
tuted in the equation @’y — b’ =— a'b*; thus

@ (¥ +rsin ) —b° (2’ +rcos )*=—a't*;
therefore #* (a”sin® @ — b* cos® 6) + 2r (a®y/ sin 6 — b’z cos 6)
+ a’y" — %+ a0 = 0.
From this quadratic two values of » can be found which

are the lengths of the two straight lines that can be drawn
from (#/, y’) in the given direction to the hyperbola.

237. To find the diameter of a given system of parallel
chords in an hyperbola. (See definition in Art. 148.).

Let @ be the inclination of the chords to the transverse axis
of the hyperbola; let , 5/ be the co-ordinates of the middle
point of any one of the chords; the equation which deter-
mines the lengths of the straight lines drawn from (2, y) to
the curve is (Art. 236)

* (@’ sin® @ — b* cos® ) + 2r (a"y sin @ — b’z cos 6) :
+a%y? =2+ a'B*=0 .....cuueuns (1).

Since («/, ") is the middle point of the chord, the values of
r furnished by this equation must be equal in magnitude and
opposite in sign ; hence the co-efficient of » must vanish ; thus

@’y sin 0 — b’ cos§=0, or y'§%cot0.w' ......... @.
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Considering «’ and ' as variable this is the equation to &
straight line passing through the origin, that is, through the
centre of the hyperbola.

Hence every diameter passes through the centre.

Also every straight line passing through the centre is a
diameter, that is, bisects some system of parallel chords. For
by giving to 6 a suitable value the equation (2) may be made
to represent any straight line passing through the centre. If
@' be the inclination to the axis of z of the diameter which
bisects all the chords inclined at an angle ,0, we have from (2)

. 2
tan 9’=§—,cot0; therefore tan0ta.n0’=g,.
a* a

238. If one diameter bisect all chords parallel to a second
diameter, the second diameter uill bisect all chords parallel to
the first.

Let 6, and 6, be the respective inclinations of the two
diameters to the transverse axis of the hyperbola. Since the
first bisects all the chords parallel to the second, we have

2

tan 6, tan 6, = % . And thisis also the only condition that must

hold in order that the second may bisect the chords parallel
to the first.

The definition in Art. 191 holds for the hyperbola.

239. Every straight line passing through the centre of an
ellipse meets that ellipse; this is evident from the figure, or
it may be proved analytically. But in the case of an hyper-
bola this proposition is not true, as we proceed to shew.

240. To find the points of intersection of an hyperbola
with a straight line passing through its centre.

Let the equation to the straight line be y=ma.

- Substitute this value of y in the equation to the hyperbola
a'y’ — b%* =— a'h’ ; then we have for determining the abscisss
of the points of inf;elg'section the equation (a'm*—b*) ' = —a’b*;
therefore 2* = bé-z’—m‘ . Hence the values of « are impossible

if a’m?* is greater than 3*. Thus a straight line drawn through
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the centre of an hyperbola will not meet the curve if it makes

with the transverse axis on either side of it an angle greater

than tan™ g .

241. It is convenient for the sake of enunciating many
properties of the hyperbola to introduce the following im-
portant definition,

DeEFINITION. The conjugate hyperbola is an hyperbola
having for its transverse and conjugate axes the conjugate
and transverse axes of the original hyperbola respectively.

242, To {ind the equation to the hyperbola conjugate to

a given hyperbola.
Y
Wv
' s A ) Al H X

’

) —

Let AA', BB be the transverse and conjugate axes respec-
tively of the given hyperbola; then BB’ is the transverse
axis of the conjugate hyperbola, and 44’ is its conjugate
axis. Let P be a point in the given hyperbola, @ a point in
the conjugate hyperbola. Draw PM, QN perpendicular to
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OX, CY respectively. The equation to the given hyperbolais
2
¥ =5 (@~ a); therefore PM'=CD (CM?— 04").  Honee

2
QN’=%%—,(CN‘— CB’), since @ is a point on an hyper-

bola having CB, CA for its semi-transverse and semi-conju-
gate axes respectively. Thus if z, y denote the co-ordinates

k']
of @, we have w’=%,(y’—b’), -y ..#—‘11._ |

v >
This, therefore, is the equation tc;k the conjugate hyperbola;
we observe that it may be deduced from the equation to the
given hyperbola by writing — a* for a* and — b* for b*,
The foci of the conjugate hyperbola will be on the straight
line BCB' at a distance from C= 4B (Art. 216); that is, at
the same distance from Cas § and H.

243. Every straight line drawn through the centre of an
hyperbola meets the hyperbola or the conjugate hyperbola, except
the two straight lines inclined to the transverse axis of the

hyperbola at an angle = tan™ % .

Let the equation to the straight line be

Y=mMmz ...... veveenrssssnesns crrenens (1).

To find the abscisse of the points of intersection of (1)
with the given hyperbola, we have, as in Art. 240, the
equation

lbi
o= 20
b — a'm?
Similarly to find the points of intersection of (1) with the
conjugate hyperbola, we have the equation
a'’
T am =B
2
If m* be less than ‘%, (2) gives possible values, and (3)

. 2
impossible values for «; if m® be greater than % , (2) gives




CONJUGATE DIAMETERS. 207

. 2
impossible values, and (3) possible values for z; if m*= 2

(2) and (8) make « infinite. Thus the two stra,ight lines that
can be drawn at an inclination tan”g to the transverse axis

of the given hyperbola meet neither curve; and every other
straight line meets one of the curves.

244. Of two conjugate diameters one meets the original
hyperbola, and the other the conjugate hyperbola.

Let the equations to the two diameters be

! ’ ’
y=mw, y=ma:;
2 4

then, by Art. 238, mm'= % ; therefore m'm”= et

2 2
Hence if m® is less than -b—-, , m" is greater than b—,; thus
a g a

the first diameter meets the original hyperbola, and the
second the conjugate hyperbola. If m' is greater than
] 2

—, m™ is less than —; thus the first diameter meets the
a a

conjugate hyperbola, and the second the original hyperbola.

245. We proceed now to some properties connected with
conjugate diameters. When we speak of the extremities of a
diameter we mean the points where that diameter intersects
the original hyperbola or the conjugate hyperbola.

We may remark that the original hyperbola bears the
same relation to the conjugate hyperbola as the conjugate
hyperbola bears to the original hyperbola. Thus the defini-
tion may be given as follows: two hyperbolas are called con-
jugate when each has for its transverse axis the conjugate
axis of the other.

Also if a straight line bisect all parallel chords terminated
by one of the hyperbolas it bisects all the chords of the same
system which are terminated by tht;: other hyperbola. For the

equation (Art. 237) tan ftan @ = I;—', remains unchanged when
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we write —a‘ for a* and — b* for 3%, that is, when we
from the original hyperbola to the conjugate (Art. 242).

Both curves are comprised in the equation
(a%y* — b'2")* = a'b".

246. The tangent at either extremity of any diameter is
parallel to the chords which that diameter bisects. See Art. 190,

247.  Ghven the co-ordinates of one extremity of a diameter,
to find those of each extremity of the conjugate diameter.

Let ACA', BCB be the axes of an hyperbola; PCP),
DCD a pair of conjugate diameters. Let a', 4 be the
given co-ordinates of }’

; then the equation to CP is

Since the conjugate diameter DD'is parallel to the tangent
at P, the equation to DI is
bz’
y=ﬁ¢....... .............. (@)
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‘We must combine (2) with the equation to the conjugate
hyperbola to find the co-ordinates of D and D'. Substitute

. . 4 12
from (2) in a%%*— b'2* = a'%’; then o' ba ot - b’ = a’b*;

a‘y®
therefore (0’2" — a'y”) o* = a'y;
A0y 2y 1+
therefore a*= TR therefore z = + 3

. therefore from (2), y =+ %v .

In the figure the abscissa of D is positive, and that of D'

negative; hence the upper sign applies to D, and the lower
sign to D',

248.  The difference of the squares on two conjugate semi-
diameters 1s constant.

Let &, y’ be the co-ordina.tes’of.P; fhen, by the preceding
’ '3
Article, CP*— CD* =2+ y*— ey _ow :

OO ST N S N S T
_bs b'ag/ + 9 a’b:c —a— B

Hence the difference of the squares on two conjugate semi-
diameters is equal to the difference of the squares on the semi-
axes. :

Moreover

2
'O =a"+y " —a'+ b’=w”+‘% 2% —a’)—a'+ b
2
=" (1 +%)—a’=e’a:”¥- a'= SP . HP by Art. 218.

249. The area of the parallelogram formed by tangents at
the ends of conjugate diameters is constant.

Let PCP', DOD be the conjugate diameters (see figure to
Art. 247). The area of the parallelogram formed by tangents
at P, D, P', D, is 4CP. CD sin PCD, or 4p . CD, where p
denotes the perpendicular from C on the tangent at P. Let

T. C. S, 14
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Z',y' be the co-ordinates of P; then the equation to the

s 7/

2
tangent at P is y= 3—,—:, w—%. Hence (Art. 47)

b

_ vy _ a'h*
p= \/ (1 b‘ws T N(ay? + b
t+om)
@y
2, " 2 4, 1% 4
A0d 0D= (Y475 ) =1,
therefore 4p . CD = 4ab.

Hence the area of any parallelogram formed by tangents at
the ends of conjugate diameters 1s equal to the area of the
rectangle formed by tangents at the ends of the axes,

250. Let a',b" denote the lengths of two conjugate semi-
diameters; « the angle between them; by the preceding
Article, a'b’'sin a=ab. By making P move along the by-
perbola from 4 we can make CP or o' as great as we please.
Also since a™— 5™ is constant, b’ increases with a’. Thus
sin a can be made as small as we please, that is, CP and (D
can be brought as near to coincidence as we please. The
limiting position towardsi which they tend is easily found; for

from Art. 237, mnd = 2— : thus the limit to which m andm |

approach as OP and CD approach to coincidence is + %.

251. From Art. 249 we have
. ﬁ _ a’bﬂ
PEorT oP—avp
This gives a relation between p the perpendicular from the

centre on the tangent at any point P, and the distance €Pof
that point from the centre. '

Asin Art, 196 p.P@=0, p.PG =d"

(Art. 248)

|
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. Also if ¢ denote the angle which the perpendicular makes
with the transverse axis, we may shew as in Art. 196 that

) p'=a’(1—¢'sin’ ¢).
252. To find the equatidn to the hyperbola referred to @
pair of conjugate diameters as axes. -

Let CP, CD be two conjugate semidiameters (see figure to
Art. 247), take CP as the new axis of @, CD as that of y;
let PCA=a, DCA=PB. Let z, y be the co-ordinates of
any point of the hyperbola referred to the original axes;
@, y' the co-ordinates of the same point referred to the new
axes; then (Art. 84)

z=a'cosa+y cosB, y==zsina+y sinB.
Substitute these values in the equation a* — bz* = — a'b*;
then a?(z'sina+y sin B)' —b* («' cosa+ 3 cos B)*=—a'h®,
or o' (a*sin® @ — b* cos® @) + 3™ (a* sin’ B — b* cos® B)
+ 22"y (a’sin asin B — b’ cos a cos B) = —a’b".

But sinceb ’C'P and CD are conjugate semidiameters,

ta.nata.nﬁ=;,; hence the coefficient of a'y’ vanishes, and

the equation becomes
«” (a’sin’a — 4* cos® a) + y* (a* sin* B — b* cos’ B) = —a'd’,
In this equation suppose y' =0, then
e~ 'b? _ ab*
a'sina—b’cos*a b'cos’a—a’sin’a’
This is the value of OP? which we shall denote by ™. If
we put &' =0 in the above equation, we obtain
. - 'tbt
. y=a sin’B—-b’oos’B'»

Now since we have supposed that the new axis of z meets

the curve, we know thut the new axis of y will not meet the,

—a'*
curve (a:&rt. 244), so th?.t T A= Foos

5 is not a positive

14—2
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quantity; we shall denote it by —4". Hence the equa-
tion to the hyperbola referred to conjugate diameters is

'S ]

%_F =1, or, suppressing the accents on the variables,
Z_¥_q
o el

Also the equation to the conjugate hyperbola referred to
the same axes is Bl < ke 1L

The equation to the tangent to the hyp'erbola. will be of the
same form whether the axes be rectangular or the oblique
system formed by a pair of conjugate diameters. (See Art.
200.) :

. 253. Tangents at the extremities of any chord of an hyper-
bola meet on the diameter which bisects that chord. (See Art.

201%)

254, I f a chord and diameter of an hyperbola are parallel,
the supplemental chord s parallel to the conjugate diameter.
(See Arts, 202, 203.)

Asymptotes.

255, The properties of the hyperbola hitherto given have
been similar to those of the ellipse ; we havé now to consider
some properties peculiar to the hyperbola.

2
Let the equation to the hyperbola be 3= 27 (a* —a*), and
let OL be the straight line which has for its equationy =%—z .

" Let MPQ be an ordinate meeting the hyperbola at P and
the straight line CL at @; then if CM be denoted by z,

b bz
PM=EQ/(‘”’-“"): QM=_0,—;

b " b a? _ ab
thus PQ=C {e—v (&=} =G o= = srve=a)"

* If then the straight line #PQ be supposed'to move parallel

3
[



* ° ASYMPTOTES. ~ " ~ ) 213

to itself from 4, the distance PQ continually diminishes, and
by taking CM large enough we may make P @ as small as we

i ¢

please. The straight line CL is called an asymptote of the
curve.. - - - : -

Similarly the straight line CL/, which has for its equa-

tion y= _Tm , is an asymptote.

Thus the equation g-%: =0 includes both asymptotes.-
We may-take the following definition.

DEFINITION. An asymptote is a straight line the dis-
tance of which from a point of a curve diminishes without limit
- as the point in the curve moves to an infinite distance from
the origin. .

The distance of P from CL is PQsin PQC; and as we
have seen that P @ diminishes without limit as P moves away
from the origin, CL i8 an asymptote according to the definition.
here given.

. 256. In the same manner we may shew that CL is an-
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asymptote to the conjugate hyperbola. For let MP be pro-
ducecf to meet the conjugate hyperbola at ', then (Art. 242)
U=ty +a);
V@ +a)+z’

Hence as CM is increased indefinitely P'Q is diminished
indefinitely ; therefore CL is an asymptote tothe conjugate
hyperbola.

257. The equation to the tangent to the hyperbola at the

therefore P'Q= g W@+ a")

point («, ¥) is a’yy — b'zx’ =— a'b";
therefore y=b’—‘”'$— b—:=.b. _"”"”_._.E,
ay ¥y a'VE'-a) y
bz b

If &’ and 3 are increased indefinitely the limiting form to
which the above equation approaches is y = f . Thus the

tangent to the hyperbola approaches continually to coincidence
with an asymptote when the point of contact moves away in-
definitely from the origin.

258. It appears from Art. 243 that every straight line
drawn through the centre of an hyperbola must meet the
hyperbola or its conjugate, unless its direction coincides with
that of one of the asymptotes. And from Art. 250 it appesrs
that as conjugate diameters increase indefinitely they approach
to coincidence with one of the asymptotes.

259. The straight line joining the ends of conjugate dia-
meters 18 parallel to one asymptote and bisected by the other.

Let &, 4/ be the co-ordinates of any point P on the hyper-
bola (see figure to Art. 247); then the co-ordinates of J,
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the extrem'ity of the conjugate diameter, are (Art. 247)
‘_1%/_ and -b—:- . Hence the equation to DP is

, bx
, YT
y-y =—pp (a—2),
m—._—
b
. __0b
that is, y—y=-,@-2);

and therefore DP is parallel to the asymptote y =— %2 .
Also the co-ordinates of the middle point of DP are

(Art. 10)
17, a 1/, bx
2(= +%) and (7 +5);
. ay’ + b’ qy' + ba’
tba.!; is, 55— and raakE

These co-ordinates satisfy the equation y= 67:0; therefore
the asymptote y = Z—w bisects PD.

Since the diagonals of a parallelogram bisect each other,
and PD is one diagonal of the parallelogram of which CP
and CD are adjacent sides, the other diagonal coincides with
the asymptote, that is, the tangents at P and D meet on the
- asymptote. -

260. The equation to the hyperbola referred to conjugate
diameters as axes is
' o
Er’ - bi,' = 1 ........................ (1).

Hence the equations to the asymptotes referred to these
axes are
. b'z . b’z ]

yﬂzr"y=—?n. ....................... (2)-
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For we may shew as in Art. 243 that the straight lines
denoted by (2) are the only straight lines through the centre
which meet neither (1) nor its conjugate. Hence these straight
lines are the asymptotes by Art. 258.

Or the same conclusion may be obtained thus : the original
equation to the hypérbola is z—: - % =1, ‘and that to the two

asymptotes :4:— ‘:”b—: =0. If by substituting for # and y their

values in terms of the new co-ordinates #’ and y/, and sup-
pressing accents on the variables, the former equation is

reduced to o Z; =1, the latter must become, by the same
T
substitution, i gr: =0,

261. To find the equation to the hyperbola referred to the
asymptotes as axes. .

Let CX, CY be the original axes; CX’, OY" the new
axes, so that CX’' and CY’ are inclined to CX on opposite

gides of it at an angle a such that tan a =§. Let , y be

the co-ordinates of a point P referred to the old axes; ',y
the co-ordinates of the same point referred to the new axes.
Draw PM’' parallel to CY’, and PM and M'N each parallel
to CY. Then

2=CM=CN+NM=(z'+y)cosa
So y=PM=(y —a')sina.

a . b .
| Also cosa =7(;,_+—b’5, s Sina== m H substitute these
values in the equation ay® — b%*=—a'd*;
then  a'B'(y — &) —a'0' (y +2)'=—a'%" (a' +5), -

X ] 2
or - w'y'éazb,‘

|
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a4+ b
.

or, suppressing the accents, ay =

’
The equation to the conjugate hyperboia referred to the

2 L]
same axes is (Art. 242) a:y=—a Ib .

262. To find the equation to the tangent at any point of an
kyperbola when the curve 18 referred to its asymptotes as axes.

Let ', 4 be the co-ordinates of the point; 2", " the co-
ordinates of an adjacent point on the curve. The equdtion to
the secant through these points is I

Since (z, ') and (2", ") are points on the hyperbolé
By =1@+5), Y =i +8);
therefore z"y" = o'y’ '

U

Hence (1) inay be written y —y' =%—_—z,- (x- =),
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=Y (o
or y—y e (x—2).

Now in the limit " =4; hence the equation to the tan-
gent at the point (, ¥') is

,,_y'=_;’§(z—w') eeenreareenaes @)
This equation may be simplified ; multiply by ', thus
al + b’

y‘”r + wy’ — 2z'yr = 3 .

268. To find where the tangent at (<, ;/') n’xeets the axis
of z put y=0 in the equation yz’ +zy = 9——-2'-—& ;
' 2 g N
thus x= a—+—,b— = _2_.’27!/_ =27,
2 Y
Similarly to find where the tangent cuts the axis of y put
- . a+5 22y ,
=0 in the equation; thus y= S = = 2y.

Thus the product of the intercepts =4a’y’=a+5". The

area of the triangle contained between the tangent at any

int and the asymptotes is equal to the product of the
ntercepts into half the sine of the included angle

=3} (a*+0")sin 22 =(a" + §*) sina cosa =ab,
and is therefore constant.

Since the tangent at (', y') cuts off intercepts 22, 2y/, from
the axes of 2 ang y respectively, the portion of the tangent at
any point intercepted between the asymptotes is bisected at
the point of contact.

Polar Equation.

264. To find the polar equation to the hyperbola, the
focus being the pole.

Let HP=r, AHP =0; (see figure to Art. 209);
then HP=ePN, by definition ;
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that is, HP=¢(OH+ HM);
or r=a(¢—1)+er cos (m—0), (Art. 212);
therefore r(l+ecosf)=a(e—1),
_a(e-1)
and -—m..........n.u.....us. (1).

If we denote fhe angle XHPby 0, then we have as before
HP=¢(OH+ HM);

thus r=a(e—1)+ercosb,
_e@-1)
and il pewvwy KX (2).

We may also proceed thus: in the figure to Art. 218
suppose SP=7r and PSH=0: then SP=ePN,

that is, SP=¢(SM—-SE");
or r=ercosf—a(’—1);
therefore r(ecosf—1)=a(’—1),
_a(ef-1) .
and r—m..., ....................... (3).

265. As in Art. 205 it may be shewn that the polar
equation to a chord subtending at the focus an angle 23 is

!
r=ecos€+secﬁcos(d—€)’

a—f and a+ B being respectively the vectorial angles of the
straight lines which join the focus to the ends of the chord,
and / the semi-latus rectum,

Hence the polar equation to the tangent is
l
"= ecosO+cos(a—0)" )
266. The polar equation to the hyperbola, the centre
being the pole,Il):(Art. 206)
7* (o' sin”® 0 — b* cos® ) =— a'D"
Arts. 207, 208 are applicable to the Hyperbola.
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267. It will be a good exercise to trace the form.of the
hyperbola from any of the polar equations of Art. 264. Take
for example the equation (1); suppose §=0, then r=a(e—1);
we must therefore- measure off the length a(e—1) on the initial
line from the pole H, and thus obtain the point 4 as one of
the points of the curve.: - , : :

T
2

cos @ is negative when @ is greater than % and r continues to

increase. Let & be'such an angle that 1 +e cos a=0, that is,

As 6 increases from 0 to - we see from (i) that r increases;

CoS @ =.— % , then the. nearer 6 approaches to a the greater

becomes, and by taking @ near enough to a, we may make r
as great as we please. Thus as € increases from 0 to a that
portion of the curve is traced out which begins at 4 and passes
on through P to an indefinite distance from the origin.

When 6 is greater ‘than a, r is negative; and is at first in-
definitely great and diminishes as ¢ increases from a to .
Since = s negative we measure it in the direction opposite to

i

"

that we should wse if it were positive. Thus as @ increases
- from a to .7 that portion of the curve is traced out which
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begins at an indefinite distance from C in the lower left-hand
quadrant, and passes on through @ to 4. HA' is found by

putting @ = in (1); then r becomes —a (e + 1) therefore
HA'is in length =a (¢ +1).

As @ increases from 7 to 27 —a, r.continues negative and
numerically increases, and may be made as great as we please
by taking 6 sufficiently near to 2 —a. Thus the branch of
the curve is traced out which begins at 4’ and passes on
through ¢ to an indefinite distance,

As 0 increases from 27 — a to 27, 7 is again positive, and
is at first indefinitely great and then diminishes. Thus the
portion of the curve is traced out which begins at an indefi-
nitely great distance from Cin the lower right-hand quadrant
and passes on through P’ to 4.

The asymptotes CL and CL’ are inclined to the transverse
axis at an angle of which the tangent is %; hence we liavq

a 1 ’ " 1 .
cos LCA =J@ T e and cos LOA =— =3 that is,
LCA'=a. Thus as 0 approaches the value a the radius
vector approaches to a position parallel to CL. Similarly as
6 approaches the value 2 —a the radius vector approaches
toa pOBlthn parallel to CL'.

Equilateral or Rectangular Hyperbola.

268. If in the equation to the elhpse @'y’ + b'a’ = a'b’,
we suppose b=a, we obtain &' + y* = a’, which is the equatlon
to a circle; so that the circle may be considered a particular
case of the ellipse, If in the equation to the hyperbola.

— b2’ =— a'b* we suppose b=a, we have y' —2'=—a’,
We thus obtain an hyperbola which is called the equilateral
hyperbola from the equality of the axes. "Since the angle

between the asymptotes, which = 2 tan™ Il becomes a right

angle when b =a, the equilateral hyperbola, is also called the
rectangular hyperbola. =
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The peculiar properties of the rectangular hyperbola can
be deduced from those of the ordinary hyperbola by making
b=a. Thus since b*=a’ (¢’ —1) we have ¢'~1=1, there-
fore e =4/2. The equation to the tangent is (Art. 220)

vy —ax’ =—a"
- From Art, 227 PG = PG =(rr).

The equation to the conjugate hyperbola is, by Art. 242,
y* — o*=a" Thus the conjugate hyperbola is the same curve
as the original hyperbola, though differently situated.

By Art. 248, CP= OD, and therefore by Art. 259, CP
and CD are equally inclined to the asymptotes.

EXAMPLES.

1. The radius of a circle which touches an hyperbola and
its asymptotes is equal to that part of the latus rectum which
is intercepted between the curve and asymptote.

2. A straight line drawn through one of the vertices of an
hyperbola and terminated by two straight lines drawn through
the other vertex parallel to the asymptotes will be bisected at
the other point where it cuts the hyperbola.

3. If a straight line be drawn from the focus of an hy-
perbola the part intercepted between the curve and the
—.iﬂf—, where 6 and a are the angles made
sin a + sin 6
Tespectively by the straight line and asymptote with the axis.

asymptote =

4. PQ is one of a series of chords inclined at a constant
angle to the diameter 4B of a circle: find the locus of the
point of intersection of 4P and BQ.

5. Pis apoint in a branch of an hyperbola, P’ is a point
in a branch of its conjugate, CP, CP’, {gfng conjugate semi-
diameters. If S, S’ be the interior foci of the two branches,
prove that the difference of SPand S'P’ is equal to the dif-
ference of AC and BC. . '
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6. If z, y be co-ordinates of any point of an hyperbola,
shew that we may assume z=a secf, y =b tan 6,

7. A straight line is drawn parallel to the axis of y meet~
ing the hyperbolag - %—:=1’ and its conjugate, at points P, Q:

shew that the normals at P and @ intersect each other on the
axis of . Shew also that the tangents at P and @ intersect
on the curve whose equation is y* (a’y’ — b’2’) = 48°",

8. Tangents to an hyperbola are drawn from any point in
one of the branches of the conjugate: shew that the chord of
contact will touch the other branch of the conjugate.

Find the equation to the radii from the centre to the points
of contact of the two tangents, and if these radii are at right
angles, shew that the co-ordinates of the point from which the
tangents are drawn are

b 2a b 2b - a
@ a + b’ ? a +b" ‘
'\
%9. .Two tangents to a parabola include an angle a: shew

t the locus of their point of intersection is an hyperbola
h the same focus and directrix.

“(10 Shew under what limitation the proposition in Exam=
30 of Chapter X. is true for the hyperbola.

- 11. The ratio of the sines of the angles made by a diameter
of an _hyperbola with the asymptotes 1s equal to the ratio of
the sines of the angles made by the conjugate diameter.

12. With two conjugate diameters of an ellipse as asymp-
totes a pair of conjugate hyperbolas is constructed : prove that
if one hyperbola touch the ellipse the other will do so like-
wise: prove also that the diameters drawn through the points
of contact are conjugate to each other,
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CHAPTER XIIL
GENERAL EQUATION OF THE SECOND DEGREE.

269 WE shall now shew that every locus represented
by an equation of the second degree is one of those which
we have already discussed, that is, is one of the following :
‘a point, a straight line, two straight lines, a circle, a parabola,
an ellipse, or an hyperbola.

The general equation of the second degree may be written
ar’+bxy +cy'+detey+f=0;

we shall suppose the axes rectangular; if the axes were
oblique we might transform the equation to one referred to
rectangular axes, and as such a transformation cannot affect
the degree of the equation (Art. 87), the transformed equa.tlon
will still be of the form given above.

If the curve passes through the origin f=0; if the curve
does not pass through the origin £ is not =0, we may there-
fore divide by fand thus the equation will take the form

ad? +bzy+cy+do+ey+1=0.
270. We shall begin by investigating the possibility of

removing from the equatlon the terms involving the first
power of the variables.

Transfer the origin of co-ordinates to the point (%, k) by
putting z=2a'+k, y=y +%, and substituting these va.lues
of z and y in the equation

a:v'+bwy+cy +da:+ey+f—- ......... 1);
thus we obtain ‘
ax® + b’y +cy™* + (2ah + bk + d) 2’ + (2ck + bh+ €)Y
Y ),
where f =ah* +bhk +ck* +dh + ek +fuueeennenn. (3).
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Now, if possible, let such values be assigned to % and % as
will make the coefficients of #' and y' vanish; that is, let

2ah +bk+d=0, and 2ck+bh+e=0;
_2d—be , 2ae—bd
S b —dac’ T b —4ac”

It will therefore be possible to assign suitable values to &
and %, provided b* — 4ac be not = 0.

‘We shall see that the loci represented by the general equa-
tion of the second degree may be separated into two classes,
those which have a centre, and those which in general have
not a centre, and that in the former case b®— 4ac is not zero,
and in the latter case it is zero. We shall first consider the
case in which b*—4ac is not zero, and consequently the values
found above for 4 and & are finite.

Equation (2) thus becomes
ax® + b2’y + ey’ +f =0.cerniiinniinnnnne (4).

Now if (4) is satisfied by any values ,, , of the variables,

it is also satisfied by the values —«,, —%,. Hence the new

origin of co-ordinates is the centre of the locus represented
by (1).

Thus if 5°— 4ac be not =0, the locus represented by (1)
has a centre, and its co-ordinates are %2 and %, the values of
which are given above. '

The value of ' may be found by substituting the values of
h and % in (3) ; the process may be facilitated thus: we have

20k +0k+d=0, 2ck+bh+e=0;

multiply the first of these equations by %, and the second by
k, and add; thus 2ah’+ 2ck* + 2bkh + dh + ek =0,

or 2f'—dh—ek —2f=0;

dh+ek _ . cd'+ae'—bed
g St g

We shall retain f* for shortness.
T.C. 8. 15

thus h k

therefore f'=f+
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271. We may suppress the accents on the variables in
equation (4) of the preceding Article and write it

az® + by + oy +f =0 .euevnennnen. (5).

This equation we shall further simplify by changing the
directions of the axes. (Art. 81.)

Put ¢=a" cos 0~y sinf, y=2a'8in 0 +y' cos §, and sub-
stitute in (5); thus

™ (@ cos® 0 + ¢ sin’ 6 + b sin 6 cos 6)
. o +y(a Bin’0+ccos’0.—b sin 6 cos 6)
+'y {2 (c—a) sin 6 cos @+ b (cos® @ —sin® )} + f' = 0...(6).
Equate the coefficient of 'y’ to zero; thus
2 (c—a) sin 6 cos 6 + b (cos® 6 — sin® 6) =0,

or (c—a)sin20 4+ b cos 20 =0;
b
therefore tan 26 = G (7).

Since 0 can always be found so as to satisfy (7), the term
involving 'y’ can be removed from.(6), and the equation
becomes

2" (@ cos®d + ¢ sin® 6 + b sin @ cos 6)
+y? (asin’ @+ ¢ cos’d— b sin 6 cos ) +f =0,
or AZ?+ By +f =0 covvrrrrrrnnnncennn, 8),
where A =1%{a+c+ (a—c) cos 20 + b sin 26},
B=3%{a+c— (a—c) cos 20 — b sin 26}.

Since tan20=—2_
a—c¢
_ a—c . on_ b
cos 20 = m, and sin 26 _—_——-—-A\/{b’ T (a—.c),} .

Hence A=4}[a+c+ B+ (a—c)}],
B=}[a+o— B+ (a0}
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We may suppress the accents on the variables in (8) and
write it — 2 a2 = Byr=1, |
fFoof
(1) If 4, B, and f' have the same sign, the locus is im-
possible.

(2) If 4 and B have the same sign and f* have the con-
trary sign, the locus is an ellipse of which the semi-axes are
respectively

J (_fz'), and \/ (-J%). (Art. 160,

The locus is of course a circle if 4 = B,

(3) If A and B have different signs, the locus is an
hyperbola. (Art. 211.)

We have supposed in these three cases that f’ is not =0;
if f'=0, and 4 and B have the same sign the locus is the
origin; if f’=0, and 4 and B have different signs the locus
consists of two straight lines represented by

y=i«/(——g)w.. |

From the values of 4 and B we see that
(@+c)=b—(a—c)' _4ac-¥
AB= ) R

Hence 4 and B have the same sign or different signs
according as 4 — 4ac is negative or positive.

272." Hence we have the following summary of the results
of the preceding Articles of this Chapter. The equation

ax’ +bey+cy'+dr+ey+f=0

represents an ellipse if 5" — 4ac be negative, subject to three
exceptions in which it represents respectively a circle, a point,
and an impossible locus. If b* — 4ac be positive, the equation
represents an hyperbola subject to one exception when it
represents two intersecting straight lines.

273. We may notice that the equation found in Art. 271,
15—2
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tan 260 =—‘;_b_—c, has an infinite number of solutions; for if 2«

be one value of 20 which satisfies the equation, then if
20 = 2a + nm, where n is any integer, the equation will be
" satisfied. But these different solutions will all give the same
position for the axes. For the values of @ are comprised in

the expréssion a+ 71275, and by ascribing different values to
n we obtain a series of angles each differing from a by a
multiple of '%, and the only changes that will arise from

selecting different values of n are that the axis of « in one
case may occupy the position of the axis of y in another and
vice versd, or the positive and negative directions of the axes
may be interchanged.

The radical in the value of cos 20 and of sin 26 in Art. 271
may have either sign ; but the sign must be the same in both

in order that the relation tan 26 = Ei—c may hold.

274. It appears from the former part of Art. 271, that by
turning the axes through an angle 6 the equation

ax’ +bxy + cy* +f =0
becomes az? + ¥2'y + cy*+f =0,
where o' =}{a+c+ (a—c) cos 26 + b sin 26},
b’ = (c— a) sin 260 + b cos 26, '
¢’=%{a+c—(a—c)cos 20— sin 26}.
Hence a+c=a+c; and
b —4d'd' = {(c—a) sin 20 + b cos 26}*
' —(a+c)'+ {(a— c) cos 260 + sin 26}*
= (@ —¢)*+ 8" — (a+c)' =8 — dac.

Thus the expression *— 4ac has the same value whetherit
be formed from the coefficients of the general equation of the
second degree before or after the axes have been shifted.

The same remark applies to the expression a +c.
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Hence we conclude that if the curve represented by the
general equation ax’+bzy +cy’+ dz+ey+f=0 be a rect-
angular hyperbola, a+¢=0; for if the curve were referred -
to 1ts transverse and conjugate diameters as axes this relation
would hold, and therefore, as we have just seen, it must
always hold whatever be the axes.

275. We have next to consider the case in which 4* — 4ac
is zero. We cannot now as in Art. 270 remove the terms
involving the first power of the variables from the general
equation, but we can still simplify the equation as in Art. 271,
by changing the direction of the axes.

Let the equation be _

ai’ +bxy + oy’ +detey+f=0............ 1);
put x=a'cos@—y'sinf, y=a'sinb+y cosd,
then (1) becomes

" (@ cos* @ + ¢ sin’ 0 + b sin 6 cos 6)
+ 3™ (asin® @ + ¢ cos® @ — b sin @ cos )
+&'y {2 (c—a) sin 0 cos 8 + b (cos® @ — sin® 6)}

+4' (dcos@+esinf)+y (ecos @ —dsinf) +f=0...... (2).

Now let tan 20 = ;b:—c , then the coefficient of &y in (2)

vanishes, and as in Art. 271 the coefficients of #” and y" are
}[a+cty{(@—c)*+8}]. One of these coefficients must
ac —b* . .
e which, by
hypothesis, =0; suppose the coefficient of =0, thus, by
suppressing accents on the variables, (2) may be written

Cy'+Dx+Ey+f=0..cccceevenee (3).
If D be not =0, this may be written

AN E f
¢(y+3g) == 2(e~50p+ 1)
and thus the locus is a parabola. (Art. 125.)
If D=0, then (3) represents two parallel straight lines, or

therefore vanish since their product is
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one straight line, or an impossible locus, according as E* is
greater, equal to, or less than 4Cf.

Hence if 3" — 4ac =0 the equation
az’ +bry +cy’ +dx+ ey +f=0
represents a parabola subject to three exceptions, in which it
represents respectively two parallel straight lines, one straight
line, and an impossible locus.
By combining this result with those stated in Art. 272,

we have a complete account of -the general equation of the
second degree. '

276. We have shewn in Art. 270, that when 5*— 4ac is
not =0, the general equation of the second degree represents
a central curve; we shall now prove that when 5'—4ac=0
the curve has not a centre except when the locus consists of
two parallel straight lines.

If a curve of the second degree have the origin of co-ordinates
for ts centre, no term involving the first power of either of the
variables alone can exist in the equation.

For if possible suppose that the origin of co-ordinates is
the centre of the curve

ax’+bxy+cyt +dzt+ey+f=0............ (1),
and let 2, y, be the co-ordinates of a point on the curve, and
therefore — z,, — y, co-ordinates of another point on the curve;
substitute successively in (1), then

ax," +ba,y, + cy,' +dz, + ey, +f=0,
* a“"”x"l'bxlyx_"'cyx’_dwl_eyx'i'f:0;
therefore, by subtraction,
‘ 2 (da,+ €y,) =0.ceuvienireniannnnes (2).

Now unless d and e both vanish, (2) can only be true when
(z,, y,) lies on the straight line de+ey=0. But the centre
of a curve is a point which bisects every chord passing through
it ; hence the origin of co-ordinates cannot be the centre of
the curve (1) unless both d and e vanish.

277. Suppose then that we have an equation
ad’+brytey+det+ey+f=0............ 1),
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in which 4* —4ac=0. Here a and ¢ cannot both be zero, for
then 4 would also be zero, and (1) would not be an equation
of the second degree; we shall suppose that & is not zero.
Now if the curve denoted by (1) had a centre, and we took
that centre as the origin of go-ordinates, the terms involving
the first power of « and y would vanish by Art: 276. But from
Arts. 270 and 274 it follows that when &* — 4ac = 0, we cannot
tn general make these terms vanish by changing the origin or
the axes. The only exception that can arise is when the nume-
rators in the values of 4 and % in Art. 270 vanish, so that the
values of % and % become indeterminate, and the two equations
for determining them reduce to one ; see Algebra, Chapter xv.

We have then 2ae—bd =0, so that e=-é—‘i . Hence, by sub-

stituting for ¢ and ¢, the equation (1) becomes

by* bd
az'+bmy+—4'% +dw+§&y+f=0.

thatis, a (ac + %)’ +d (w + %) =0 e @).

Equation (2) will furnish two values of w+g—‘1{z, so that if

these values are possible the locus consists of two parallel
straight lines. In this case any point on the straight line
which is parallel to these two and midway between them will
be a centre. - -

Thus the result enunciated in the beginning of Art. 276
is demonstrated. . -

278. We may observe that relations similar to those
obtained in Art. 274 hold when the axes of co-ordinates are
oblique. For suppose the equation az’+ bay+cy’+f =0
to be referred to rectangular axes, and let the axes be trans-
formed into an oblique system inclined at an angle w; sup-
Ppose moreover that the new axis of # coincides with the old
axis of . We have then to put (Art. 84)

=2 +ycosw, y=ysinew;
substitute these values in the above equation and it becomes
arwlﬂ+ b'd?’y' + cly's +fr = 0,
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where a=a,
b'=2acosw+ bsin o,
¢ =acos'w + bsin wcos w +csin’w;

thus b* —4d'c’ = (b* — dac) sin’ o,
and a+c—bcosw=(a+c)sin'w;
so that b——ﬂ—-b’ 4ac,

sin’
and a +c—b’cosm_a+c

sin’* @

Therefore, by means of Art. 274, we conclude that for
any system of axes, recta.ngular or oblique, the expressions
b*—4a'd d+c—bcosw

d — remain unchanged when the
sin’ @ sin’ @

axes are changed.

These results are very important, because as we have seen,
the curve will in general be an ellipse,” parabola, or hyper-
bola according as the former expression is negative, zero, or
positive ; and a rectangular hyperbola if the latter expression
be zero.

These results may be obtained by another method, which
will be found instructive. Suppose that the axes of x and y
are inclined at an angle A ; and let us determine the points of
intersection of the curve

ax’ + by + Y’ =Geeererreniinnennnn. (1),

and the circle
2+ 2y cos Aty =1 (2).

Combining (1) and (2) we obtain
g (& + 2y cos A + y*) = #* (ax® + by + ¢y ;
that is (9 —7"a) 2* + (29 cos A —1"b) xy + (9 — r’c) ¥ = 0.
This is a quadratic equation for ﬁndmg g, Solving the

quadratic we find that the expression under the radical
sign is
7 (* — 4ac) — 4r°g (bcos A — a —¢) — 4g”sin* A
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If this expression vanishes the two values of g are equal ;

this indicates that the circle (2) touches the curve (1): and
hence we may draw the important inference that the squares
of the semi-axes of the curve (1) are numerically equal to
the values of 7* given by the equation

b* — dac becosh—a—c
4 2
P N e —49 =0......... (4).

Now suppose the axes of co-ordinates transformed into .
another system inclined at the angle A', and let (1) become

aIwI’ + b,‘”'y' + cly'l =g ;
then the quadratic equation '
b* — 4a'c’ b’ cos\' —a'—¢
] ——————. — —_—

sin* A/ iy sin* A/
has the same geometrical meaning as (4), and the roots will
therefore be the same. - Hence (4) and (5) must coincide,

and therefore -
b'—dac _b*—4a'cd

TN = EmEN e (6),
becosh—a—c bcosN—a' —c
and Y = AT e 7).

In fact if we divide — 4¢” by either member of (6) we obtain
the numerical value of the product of the squares of the semi-
axes of the curve. Similarly if we divide 4g times either
member of (7) by the corresponding member of (6) we obtain
the numerical value of the sum or of the difference of the
squares of the semi-axes, according as the curve is an ellipse
or an hyperbola.

279. We shall now shew how to trace a curve of the
" second degree from its equation without transformation of
co-ordinates; the axes may be supposed oblique or rect-

angular. ’
Let the equation be
ax’ +bxy +cy’ +dz+ey+f=0............... (1).
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Solve the equation with respect to y; thus

y=="20 1 - (ot o — o (a2’ + do 4 /)P

__bzte 1 {(6*—4ac) 2 + 2 (be—2¢d) z+¢*— 4cf }3...(2)

2c ~—2c
!_4! . i
=ax+/3i{ 4c,ac(z+2px+,g)} ......................... 3),
_ b e = be—2d = &—4ef
vhere a=—g;, B=—g P=p_dac’ 9= Fdas’
b*— 4dac

I. Suppose ' — 4ac negative, and write — u for %
thus (3) becomes
y=az 4B+ {—p@+2z+ QP e, (4).
Now 2*+2px+g=(z+p)'+g—p*; if then g—p* be
sitive, the quantity under the radical is negative and the
g::us impossible ; if ¢ —p*=0, the locus is the point deter-
mined by 2 =—p, y=ax+ B; if ¢ —p® be negative, we may

ut (z+ 2-l—- —pt= x4+ +~/ 3 _ + _~/ 2
z (w(—'v) 1(2— 3)g suplgposg; alroxd thslzg (4)%;; be Wl'itt(ezl; 2}

y=aw+Bt{—p—7) @-d.... e (5).

Since (z—¢)(« — ) is positive, except when z lies between
«v and 8, the values of y in (5) are real only so long as « lies
between ¢ and 8. Moreover y is always finite, and thus the
curve represented by (5) is limited in every direction.

Since we know from our previous investigations that (5)
must represent one of the curves enumerated in Art. 269, it
follows that it must represent an ellipse.

From the form of equation. (5) we see that the chords
parallel to the axis of y are bisected by the straight line
Y=aZ+Biieireiriiniinininnnes (6).

For let there be two points on the curve (5) having the
common abscissa #,, and the ordinates ', 4", respectively; and
let y, be the corresponding ordinate of (6),
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then y,=az,+ B,

Y=oz +B+{=u(e,—) (o~ O,
Y =as,+B—{~p(6,—9) (@~ .
Thus ¥, =% (3" +y"); and therefore the point (z,, y,) lies
midway between the points (z,, ¥') and (z,, ¥").

In the figure D CD' represents the straight line y=ax+8;
the absciss® of D’ and D are o and 8 respectively ; supposing
3 greater than . The centre C is midway between [’ and
D; its abscissa is therefore 4 (y+8). The equation to the
curve will give the ordinates of IV, D, G', @. Since G& is’
parallel to the chords which D'D bisects, DD’ and G@ are
conjugate diameters. GG is a known D(;ua,ntity since the
ordinates of G and G’ are known. DD’ is also a known
quantity since the absciss® and ordinates of D and I are
known. The angle between G'G’ and DI is known from
the equation to DI ; the axes of the ellipse may therefore be
found (Arts. 193, 195).
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b* —4ac

II. Suppose 3*—4ac positive ; put u for i thus

equation (3) becomes
y=az+ B+ u@+ 2+ g e .

Now 2*+2pz+¢= (z+p)*+ g —p*; if then ¢ — p* be posi-
tive, the quantity under the radical is always positive, what-
ever positive or negative value be assigned to . The curve
therefore extends to infinity. Also it may be shewn as before,
that the straight line y =ax + 8 is a diameter of the curve ;
but it never meets the curve, because the quantity «*+ 2pz+g
or (x+ p)*+ g — p* cannot vanish., Hence the curve consists
of two unconnected branches extending to infinity, and is
therefore an hyperbola.

If g—p'=0, (7) becomes y =az+ B + /u(z +p).
The locus now consists of two intersecting straight lines.

If ¢—p® be negative we may as before write (7) in the

form y=az+B + {p(z-1v) (z— 8)}*. Hence # may have
any value, positive or negative, except those betweenyand 8 ;
thus the curve consists of two unconnected branches extending
to infinity, and is therefore an hyperbola.

We shall be assisted in drawing an example of this case
by ascertaining the position of the asymptotes.

The equation to the curve is

| y=az+Bt{p (@ + 2+
therefore y=ax+Bia;4/,u.(l+g£+% 4.

Expand by the Binomial Theorem; thus

2

y=aw+Binp{1 +§(;p+z—,)+&c.}

=az+ B + /p (x+p) +&ec.

The tgrms included in the &c. involve negative powers of
z, and may therefore be made as small as we please by suf-
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ficiently increasing « ; hence from the nature of an asymptote
the required equations to the asymptotes are

y=az+B+u(z+p), and y=az+B—yu(z+p).

Hence we can draw the asymptotes, and therefore the axes, .
for they bisect the angles {etween the asymptotes. The
intersection of the asymptotes is the centre, and thus the
situation and form of the hyperbola are known.

‘We may observe that the tangent of the angle between
the asymptotes is, by Art. 41,

a+yp— (a—x/#), that is — 2VH

1+d—p T+d—5 :
substitute for a and u their values Qnd we obtain _"/(b;; :a") .
The expression ¢—p*= (6" — 4¢f) (b* — dac) — (be—2cd)*

(b*— dac)* ’
this vanishes' when (¢’ — 4cf) (b° — 4ac) — (be — 2¢d)’ =0, and
therefore when (5* — 4ac) f+ ae’ + cd® — bed = 0 ; so that if this
relation holds the locus represented by (1) consists of two
intersecting straight lines.

We have  hitherto supposed that ¢ is not zero, and as'
b* — 4ac cannot be negative if ¢ be zero, it was not necessary
to advert to the possibility of ¢ being zero while considering
the first case. But as ¢ may be zero consistently with b*—4ac
being positive, we must now examine the consequences of
SUppOSINg ¢ zero. :

The equation (1) may be solved with respect to « instead
of with respect to 4. Hence it will be found on investigation
that the results hitherto obtained, when b*— 4ac is positive,
are certainly true provided that a and ¢ are not both zero; the
latter case requires further examination. Suppose then a =0
and ¢=0; thus (1) becomes bzy + dz+ey + f=0; by chang-
ing the origin this can be put in the form b’y +f’ =0,

where f’ = i ; de; the curve is therefore an hyperbola with

the new axes for its asymptotes, except when bf— de = 0, and
then it becomes two intersecting straight lines. When a=0
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and ¢ =0, the expression (b*— 4ac) f+ ae® + cd® — bed reduces
to & (bf — de) ; thus we conclude that when b* — 4ac is positive
the equation (1) always represents an hyperbola, except when
(8*— 4ac) f+ ae’ + cd’ — bed =0, and then it represents two in-
tersecting straight lines. ‘

III. Suppose b*—4ac = 0, then (2) becomes

_ _bzt+e 1 _ ' _ 3
¥=="3 i20{2(be 2cd) x + €' — 4of 1,

which may be written y=az+ 8 + '2% (Pz+ )

. b e
where a=—g, B——2_c’

p'=2(be—2cd), ¢ =6 —4cf.

If p’ be positive, the expression under the radical is posi-
tive or negative, according as x is algebraically greater or less

than — L, ; if P be negative, the statement must be reversed.

In both cases the curve extends to infinity in one direction
only and is therefore a parabola.

The straight line y =ax+ B is a diameter, bisecting all
ordinates parallel to the axis of y, and meeting the parabola

at the point for which 2 =— % .

If p'=0, the equation becomes y=az+8 + %%—; this

equation represents two parallel straight lines if ¢’ is positive,
and one straight line if ¢'=0; if ¢’ is negative, the locus is
impossible.

‘We have hitherto supposed in considering the third case
that ¢ is not zero; if ¢=0, then b=0, since 0*—4ac=0;
hence @ and ¢ cannot both be zero, for the equation (1) is
supposed to be of the second degree. As before, we may
solve equation (1) with respect to , and thus determine the
peculiarities which occur when ¢=0. We have found for
example when ¢ is not zero, that the locus will consist of
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two parallel straight lines, when be — 2¢d =0, and ¢’ — 4¢f is
positive ; in like manner, if @ be not zero, we can shew that
the locus will consist of two parallel straight lines when
bd —2ae =0, and d*—4af is positive. By means of the re-
lation 5*—4ac=0, it is easily shewn that the second form
of the conditions coincides with the first when & and ¢ are
both different from zero: When a =0 the first is the neces-
sary form of the conditions, but we see that the second form
will then also hold. When ¢ =0 the second is the necessary -
form, though the first will then also hold. Hence we shall
include every case by stating that both forms of the conditions
must hold.

Similarly the conditions under which the locus will con-
sist of one straight line, or will be impossible, may be in-
vestigated.

280. 'We will recapitulate the results of the present
Chapter with respect to the locus of the equation

ax’ + bry +cy’ + de+ey + f=0.

I If ' — 4ac be negative, the locus is an ellipse admitting
of the following varieties: - ‘

1) e= d, and Eb& = cosine of the angle between the axes;
locus a circle (Art. 104).

(2)1 (€' — 4cf) (8* — 4ac) — (be — 2¢d)* positive; locus im-

possible: '
(3) (€' —4cf) (* —4ac) — (be — 2¢d)*=0; locus a point.

IL. If b*— 4ac be positive, the locus is an hyperbola, .
except when (4°— 4ac) f+ae® + cd’— bde =0, and then it con-
sists of two intersecting straight lines.

III. If 8*— 4ac =0, the locus is a parabola, except when
be—2c¢d=0, and bd — 2ae =0; and then it consists -of two
parallel straight lines, or of one straight line, oris impossible,
according as €' —4¢f and d'— 4af are positive, zero, or
negative.



249 EXAMPLES, CHAPTER XIII

EXAMPLES.

1. Find the centre of the curve
& — day + 49* — 2az + 4ay = 0.
‘2. Find the centre of the ellipse

by (1 —"E/)-i-ca:(l —%’)=my.

3. Find what is represented by aa’+2bzy+cy’=1,
when &' = ac.

4. Find the locus of the centre of a circle inscribed in a
sector of a given circle, one of the bounding radii of the
sector remaining fixed.

5. In the side 4B of a triangle ABC, any point P is
taken, and PQ is drawn perpendicular to AC: find -the
10(318 C?It; the point of intersection of the straight lines BQ
an \

6. DE is any chord parallel to the major axis 44" of
an ellipse whose centre is C'; and 4D and CF intersect at P:
shew that the locus of P is an hyperbola, and find the
direction of its asymptotes.

7. Tangents to two concentric ellipses, the directions of
whose axes coincide, are drawn from a point P, and the
chords of contact intersect at : if the point P always lies
on a straight line, shew that the locus of @ will be a rect-
angular hyperbola. -

8. Find what form the result in the preceding Example
takes when two of the axes whose directions are coincident
are equal.

9. Prove that an hyperbola may be described by the
intersection of two straight lines which move parallel to
themselves while the product of their distances from a fixed
point remains constant.
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10. Two straight lines are drawn from the focus of an
ellipse including a constant angle ; tangents are drawn to the
ellipse at the points where the straight lines meet the ellipse :
find the locus of the intersection of the tangents. :

11. Find the latus rectum of the parabola (y — )’ = az.

12. Shew that the product of the semi-axes of the ellipse
Y — 4wy +55'=21is 2.

13. Find the angle between the asymptotes of the hyper;-
bola zy =ba' +c.

14. Find the equation to a parabola which touches the
axis of « at a distance a, and cuts the axis of y at distances
B, B from the origin.

15. If two points be taken in each of two rectangular
axes, 80 as to satisfy the condition that a rectangular hyper-
bola may pass through all the four, shew that the position of
the hyperbola is indeterminate, and that its centre describes
a circle which passes through the origin and bisects all the
straight lines which join the points two and two.

16. Two straight lines of given lengths coincide with
and move along two fixed axes in such a manner that a circle
may always be drawn through their extremities; find the
locus of the centre of the circle, and shew that it is an equi-
lateral hyperbola.

17. A variable ellipse always touches a given ellipse,
and has a common focus with it; find the locus of its other
focus, (1) when the major axis is given, (2) when the minor
axis is given.

18. Draw the curve y* — 5zy + 62" — 14z + 5y + 4 =0.
19. Draw the curve 2*+4* — 3 (z + ) — zy=0.
'20. Find the nature and position of 'the curve
y* — 8ay + 252" + 6cy — 42cz + 9¢* = 0.

21. The equation to a conic section is az® + 2bzy+ cy*=1"
shew that the equation to its axes is zy (@ —c) =b (2'— 3.

T.C. 8. 16
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99. The locus of the vertices of all similar triangles whose
bases are parallel chords of a parabola will in general be

another parabola; but if any one of the triangles touch the
parabola with its sides, the locus becomes a straight line.

- 98. A series of circles pass through a given point O,
have their centres in a straight line 04, and meet another
straight line BC. Let M be the point at which one of the
circles meets the straight line 04 again, and let N be either
of the points at which this circle meets BC. From M and
N straight lines are drawn parallel to BC' and OA respec-
tively, intersecting at P; shew that the locus of P is an
hyperbola which becomes a parabola when the two- straight
lines are at right angles. ,

24. The chord of contact of two tangents to a parabola
subtends an angle B at the vertex; shew that the locus of
their point of intersection is an hyperbola whose asymptotes
are inclined to the axis of the parabola at an angle ¢ such
that tan ¢ =} tan B,

25. Determine the locus of the middle points of the
chords of the curve ax’ + 2bxy + cy* + 2ex+ 2fy + g =0, which
are parallel to the straight line 2 sin 6 —y cos § =0 ; and hence
find the position of the principal axes of the curve.

26. Shew that the equation (2* —a*)*+ (3° —a")’=a" re-
presents two ellipses. :

27. AB and AC are given in position, and BC is of
eonstant length : shew that if PB and PC be drawn making

any constant angle with AB and 4C the locus of P is an
ellipse. )

©28. A number of parabolas whose axes are parallel have
a common tangent at a given point: shew that if parallel
* tangents be drawn to all the parabolas the points of contact
will lie on a straight line passing through the given point.

_29. If on one of the longer sides of a rectangle as major
-axis an ellipse be described which passes through the inter-
section of the diagonals, and straight lines be drawn from
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any point of that part of the ellipse which is external to
the rectangle to the ektremities of the remote side, they will
divide the major axis into segments which are in geometrical
progression,

30. . A series of ellipses have their equal conjugate dia-
meters of the same magnitude, one of them being common
to all while the other varies in position: shew that tangents
drawn from any point in ‘the fixed diameter produced will
touch the ellipses at points situated on a circle.

31. TP, TQ are tangents to a central conic section, and
the chord PQ is produced to meet the directrices at B and
R’ : shew that '

RP.RP: RQ.RQ = TP*: TQ.

| 32. In any conic section if PQ, PR make equal angles
with a fixed chord PK, and QR be joined, shew that QR
will pass through a fixed point for all positions of P, PR.

-

16—2



(244 )

CHAPTER XIV.
MISCELLANEOUS PROPOSITIONS.

281. 'WE shall give in this Chapter some miscellaneous
propositions for the most part applicable to all the conic
sections.

To find the equation to a conic section, the origin and azes
being unrestricted in position. :
Let a, b be the co-ordinates of the focus; and let the
equation to the directrix be Az + By+ C=0. The distance
of any point (z, gé) from the focus is {(z—a)*+ (y—b)*}}, and
the distance of the same point from the directrix is
‘ Az+By+ C
VB
Let e be the excentricity of the conic section ; then if (z, y)
be a point on the curve, we have, by definition,

ooyt B0,
therefore (2 —a)t+ (y—b)’=e’(AZ:'+B§;'_ CF o (2.

We see from (1) that the distance of any point on a conic
section from the focus can be expressed in terms of the first
power of the co-ordinates of that point whatever be the origin
and axes. This is usually expressed by saying the distance
of any point from the focus is a linear function of the co-ordi-
nates of the point.

282. It will be seen by examining the equations to the
conic sections given in the preceding Chapters that any conic
section may be represented by the equation y*=mx + nz’.
The origin is a vertex of the curve and the axis of  an
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axis of the curve; m is the latus rectum ; in the parabola
n=0; n is negatlve in the ellipse and positive in the hy-

perbola.. In the circle m is the diameter of the circle and
n=-1.

283. To find the equation to the tangent at any point of
a curve of the second degree.

Let the equation to the curve be

ar’ + bey+cy' +dz+ey+f=0............ ),

the-axes being oblique or rectangular.

Let &/, 3 be the co-ordinates of the point,

2", y” the co-ordinates of an adjacent point on the curve.

The equation to the secant through these points is

y-y =37 @) e, ).

Since (2, y') and (2", y”) are on the curve,
az’® + ba'y +cy? +da' + ey +f=0,
az” + 52"y’ + ¢y +dz" + ey’ +f=0
therefore a (2" — .'c") +b @Y - 2Y)+ec(@" -y
+d(2"-a)+e(y" —y)=0,
or (¢ = &) {a (" + ) +by" +d}
+w“wﬂd¢+w+h4d=m
therefore y __‘Z :g,, ::,; '_';_bl‘:{z,ii .
Hence (2) may be written v
a a:"+a:)+by"+d( - ). ,
c(y"+y)+bx +e ‘

Now in the limit 2" =2’ and y" =3'; hence the equation
to the tangent at the point (/, )

gy =— 2aw+by+d( —2).

2y +bx +e

y-y=-
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This equation: m;ay be simplified ; we have by reduction -
Y (2cy’ +ba' + €) + x (2ax’ + by’ +d) ‘ -
=y (2cy + bz’ +¢) + ' (202 + by' + d)
=2 (az” + b2’y + ¢y + d' +ey +f)—da’ —ey — 2f;
therefore : C
"y 2cy +bz' +€) + x (2aa' + by’ + d) + da’ + ey’ +2f=0.
If f=0, the curve passes throﬁgh the origin, and the equa-~
tion to the tangent at that point becomes y = — % a, which we

see does not involve the coefficients of %, 4%, or'zy, in the
-equation to the curve,.

The equation to the tangent at any point of (1) may also
be found in the following manner :

Let «, 3’ be the co-ordinates of one point on the curve ;
and &”, y” the co-ordinates of another point on the curve.,

The equation to the secant through these points may be
written .

a(@—2a) (@-a")+b(z-2)(y-y")+e(y-y)(y-¥")
=az’+bxy + ¢y’ +dx+ey+f.
For it is obvious that this equation is really of the first
degree in @ and y, and therefore represents some straight line.
Moreover the equation is satisfied when z =4, and y=1y';
and also when z=2", and y=y". Therefore the equation
represents. the straight line passing through the points (&, 3')
and (z”’ yll). . .
Now suppose z” =2, and 4" =%'; then the secant becomes
the tangent at the point (2, ¥'), and the equation becomes

a(z—a)+b(@-a)y—y)+ec(y—y) '
' =ar’+bzy+cy' +dxtey+f:
and by simplifying we obtain the same form as before.

284. The equation to the normal at the point (', ¥
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when the curve is expressed by equation (1) of the precedmg
Article and the axes are rectangular, will be K
, 2y + b2 +e
y-¥= 2aac+by+d( - ). :
285. It may be shewn as in Art. 183, that if from a
point (%, k) two tangents be drawn to the curve expressed by
equation (1) of Art. 283, the equation to the chord of contact
is y (2ck + bh +e) +a:(2ak+bk+d) +dh + ek + 2f=0.
286. All chords of a conic section which subtend a right
angle at a given point of the curve intersect on the normal at
that point.

Take the given point of the curve as the origin of a sys-

tem of rectangular axes, and let the equation to ' the curve be
ar’ +bay+cy' +de+ey=0............... (1).

The axis of # meets the curve at the points found by

making y=0 in the above equation, that is, at the points

=0, and z=— o Simiiarly the axis of y meets the curve
at the origin and also at the point for which y=— % o

Hence the equa.tlon -—- + _3/__ 1,

a c
or q +—~+ ) R | SO (2)

represents the chord joining the points of intersection of the
axes and curve.

Also the equation to the normal to the curve at the origin
is by Art. 284,

dHence (2) and (3) meet at the point whose co-ordinates are
- —e
ato’ ate’ and yhose distance from the origin is thcre-

N(d*+ e’).

fore Py
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_ Now change the directions of the axes preserving the same
origin ; the equation (1) will then become '

alzl! + blmlyl + cly /3 + d'lwl +e'yl = O.
Also it appears from Arts. 274 and 275, that
d+c=a+c, and d*+e*=d*+¢".

Hence the normal at the origin will meet the new chord
at the same distance from the origin as it met the original
chord, that is, will meet it n the same povnt. Since this is
true whatever be the directions of the axes, it follows that all
the chords intersect at the same point.

287. By comparing Arts. 154, 204, and 264, we see that
the polar equation to any conic section, the focus being the

pole and the initial line the axis, is =
! = half the latus rectum.

We shall use this in proving the following proposition :

The semi-latus rectum of any conic section 18 an harmonzc
mean between the segments Ynade by the focus of any focal chord
of that conic section. '

Let A'SP = 0, see figure to Art. 158;

l
therefore SP= THocos0"

.Suppose PS produced to meet the curve again at P’;

TToc0sd’ where

' l
therefore SP' = T¥eoos@+0)’
1 1 1+4+ecosf 1—écosf 2
- therefore b’t’+ 5P = 7 + 7 =7

which proves the proposition. .

_288. The polar equation to the tangent to a conic sec-
tion, the focus being the pole and the initial line the axis, is
(Art. 205)

. . _
qecos O+cos(@a—0).cuueeenennnnnnnn. 1),

where a is the argular co-ordinate of the poirit of contact.
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Similarly the polar equation to the tangent at the point
whose angular co-ordinate is S, is -

é=00080+008(ﬂ—0) .................. 2.

At the point where these tangents meet, we have,
cos (a—0) =cos (B —6).

Now we cannot have a— 6 = 8—0, since « and B are by
supposition different ; we therefore take a— 6= 6 — 8, there-
a+ B

2 .

Thus the two tangents (1) and (2) meet at the point whose

fore 0 =

angular co-ordinate is 7

For example, suppose the conic section an ellipse; let
ASP=gq, ASQ =P, and let the tangents at P and @ meet -
at T

then

that is, the two tangents drawn from any point to an ellipse
subtend equal angles at either focus.
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Similarly the two tangents drawn from any point to a
parabola subtend equal angles at the focus.

With respect to the hyperbola we have to distinguish two
cases. We have shewn in Art. 231, that from any point
included between the asymptotes and the curve, two tangents
can be drawn both meeting the same branch of the curve, but
from any point included within the supplemental angles of
the asymptotes two tangents can be drawn meeting different
branches of the curve.

If now the two tangents from a point meet the same branch
of an hyperbola, it may be shewn as in the case of the ellipse,
that they subtend equal angles at either focus. We will
consider the case in which the tangents meet different
branches.

Let T be a point from which tangents TP, TQ are drawn
to different branches of an hyperbola.

Let ASP=qa; and let the angle which QS produced
through S makes with A4S be 8; then 8 is an angle greater
than 7, and 48Q =8 —m.

Thus the equations to 7P and T'Q w1ll be respectively

. »'-l’;=’ec030+cos (2-6), é=e¢os€+cos B-0).
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At the point T where they meet, we have
cos (g — 6) = cos (8 — 6).
a+pB a+B
2 2

We may therefore take 6 = , that is, we have

as the angle whlch T8 produced makes with 48; thus

AST_W,—?—;-@ ,

therefore 7SP== - B—a TSQ = B—

2 b
therefore TSP+ TSQ=m;

that is, the angle which one tangent subtends at either focus
is the supplement of the angle which the other tangent sub-
tends at the same focus.

289. We have given in Art. 120 the definitions of a pole
and polar with respect to a given circle, The same defini-
tions are used generally substituting conic section for circte.
If then the equation to the curve be

az’ + bry + ¢y’ + dw+ ey +f=0,
the equation to the polar of (¢, ¥) is (Art. 283)
z (20’ + by’ +d) +y (2cy’ + b2’ +e) + do’ + ey’ +2f = 0.
The equation just given always represents a straight line
at a finite distance from the origin except when both
207’ + by +d=0, and 2cy +ba’+e=0.

But if 2" and 3 satisfy these relations they are the co-ordi-
nates of the centre of the curve; see Arts. 270 and 276.
Hence strictly speaking there is ho polar corresponding to the
centre of a conic section ; this fact 1s frequently expressed by
saying that the polar of the centre 1s the strarght line at mﬁmty
See page 74.

290. If one straight line pass through the pole of another
strarght line, the second straight hne will pass through the pole
of the first straight line. :



252 : POLE AND POLAR.

Let («, ') be the pole of the first straight line, and
therefore the equation to the first straight line
z (202’ + by’ +d) +y (2cy + bz’ + ¢) + da’ + ey’ +2f=0...(1).

Let (2", ") be the pole of the second straight line, and
therefore the equation to the second straight line

z (202" + by"+ d) + y (2cy"+ b+ €) + d”’ +ey"+ 2f =0...(2).
Since (1) passes through (z”, y") we have
2" (2ax' + by’ + d) + y" (2cy + bz’ + €)+ do’ + ey +2f=0,
that is, :
z' (2ax" + by” +d) +y (2cy"+b" + €) +dx” + ey” +2f=0;
hence (2) passes through (', 3").
291. The intersection of two straight lines is the pole of

the straight line which joins the poles of those straight lines.
See Art. 122. .

292. If a quadrilateral ABCD be inscribed in a conic
section, of the three points E, F, G, each 18 the pole of the
straight line joining the other two.

B A K

- Let E be the origin; - £4, ED the directions of the axes
of z and y; and let the equation to the conic section be

az’ + bry + ¢y’ + dz + ey + f = O...........e. 1)..-
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Also suppose
: EA=h,  EB=F,
ED = k, E 0 = k',
The equation to 4C is %+% =1 iiiiiirniiinninan. @;
 the “equation to BD is %,+ % =1 civereiiiniinnnnnne, 3);
the equation to 4D is 7 +7c’! =1 i, 4);
the equation to OB is ; F =1 e (3).
From (2) and (3) it follows that the equation
' 1 1 1,1
a:(i-‘-l-‘l-?)+y(z+z,)=2 ............... (6)

represents some straight line passing through.G. But from
(4) and (3) it follows that (6) represents some straight line
passing through F. Hence (6) must be the equation to F'G.

Slg;pose in (1) that y=0; then we have the quadratic
ez’ +dz+f=0; and the roots of this equation are & and %';

hence h+h'=—é, hK =jf; therefore l+-1,= —i. Simi-
a a h'h J
1 e

1
Iarly, Z+F=—7.
Hence (6) becomes dz + ey + 2f =0.

But this, by Art. 289, is the equation to the polar of the
origin ; therefore F'G is the polar of . Similarly E( is the
polar of . Hence, by Art. 291, G is the pole of EF. :

293. To determine the form of the general equation-to a
conic section when the axes are tangents. -

Let ax’ +bry+cy'+dz+ ey +f=0............ (1)
be the equation to the conic section. . . ¥

To find where the curve meets the axis of z, put .y-—.-O
in the above equation; thus az’+dx +f=0.
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If the axis of « is a tangent to the curve it must meet the
curve at only one point (see Art. 171); hence the roots of the
above quadratic must be equal ; therefore

B =4af ceuuniirrinnnniinnennnnnne. (2).
_ Similarly that the axis of y may be a tangent to (1) we
must have
Ee=4Cf it (3)-

Substitute the values of @ and ¢ from (2) and (3), then (1)
becomes d’2’ + 4dfz + 'y’ + 4efy + 4bfwcy + 4f* =

or (dz+ey +2f )+ (4hf — 2de) oy = 0,
2bf—de
or (2f f +1) g zy=0.
pap d__1 e__ 1 2f—ds

2—f=__};’ 27-‘:-];’ 2fs =M

thus we obtain for the required equation

z. 9 4 -
(k+lc 1) +pxy =0.

By putting successively « and y =0, we see that % is the
distance from the origin to the point where the curve meets
the axis of z, and % 1s the distance from the origin to the
point where the curve meets the axis of y.

If it be required to determine & conic section which touches
two given straight lines at given. points, and also passes
through another given point, we may assume the last written
equation to represent it, so that the straight lines to be touched
are taken as the axes of #and y; then by putting the co-ordi-
nates of the additional given point in the equation we find a
single value for . Thus there is only one conic section
satisfying the data.

294. Suppose the equation

z 2
(ﬁ+%—1)+pxy-—- .................. (1)
to represent a parabola. Then, by Art. 280,

2 2 4
(ﬁc""")'—'ﬁ?’
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herefore u=0, or p=—
t p=0, or p hlc

If y¢ -0, (1) becomes h+ e 1=0; this equa,i:ion repre-

sents the straaght line joining the points of contact of (1)
with the axes

If ,u=—Fk,we have from (1),
2 Y _q) 2tey :
(-h+,c 1) =T s @);

Y 119 /().
therefore Z+E—1—i2\/(kk) 3

erefore % T 2\ Y _q.
therefore lz+2\/ (hk)+ Z=15

therefore «/ '% F

" We may write this

«/% + \/-’-’=1 ....................... ®),

remembering. that the radicals may be positive or negative.
Thus (3) is “the equation to a parabola referred to two tan-
gents as axes.

295. We may notice the form of the e:luatlon to the
tangent to the parabola

\/h V5 o S ().

The equation to the secant through («,y') and (z",y") is

y-y= y =t 4 z @=2).
Since (¢, y') and (2", y") are on the parabola, we have

%-F\/‘%él’ and

A
V%=1
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'\/‘1’” _ ’Q/z' _ N/]/" - «/3/' .

therefore Jh = T
and Y —3/ VU =VY NYHNY __WE VY Y
B A T A
Hence the equation to the secant may be written
e Nk VY NY
LRV VR~ (==

Hence we have for the equation to the tangent at (2, y')

__N(ky)
y-y=- V) (z—2),

’ ’

@ k/4 x

-'l — —_— =
A N IR O )

Similar Curves.

296. DEerFINITION. Two curves are said to be similar
and similarly situated when a radius vector drawn from some
fixed point in any direction to the first curve bears a constant
ratio to the radius vector drawn from some ﬁxed point in a
parallel direction to the second curve.

Two curves are said to be similar when a radius vector
drawn from some fixed point in any direction to the first curve
bears a constant ratio to the radius vector drawn from some
‘fixed point to the second curve in a direction inclined at a
constant angle to the former.

The two fixed points are called centres of similarity.

297. 1If two curves are similar, so that a pair of centres of
similarity exists, then an mﬁmte number of pairs of centres of
similarity can be found. .

For, supsaose 0, O’ to denote one pair of centres of simz-
larity ; and let OP, O be radii vectores of the first curve,
and OP, 0Q the corresponding radii vectores of the second
curve, so that the angle PO = the angle P 0'¢, and

(5) ﬁ. 0&87 Suppose ahy 1?omlt s @ake?; and joined to O;
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then make the angle P'O'S = the angle POS, the angles
being measured in the same direction, and take 0§’ so that
(())% = %—i : then S and S’ shall be centres of similarity.
For join 8P, SQ, 8'P, 8'(Q ; then the triangles SOP,
S'O’P' are similar; and so ‘also are the triangles S0Q,
S'0'Q. Hence it easily follows that the angle QSP= Q'S P,

SP _ 8¢Q e .
ayd that SE=EQ’ and thus the proposition is established.

- 298. AU parabolas are similar curves,

Let 4a be the latus rectum of a parabola, and 4a’ the latus
rectum of a second parabola. The polar equations of these
curves, the foci being the respective poles, are

r=_—— 2a _ r'-— ._20L,__
“14cos@’ °  1+4cosf°

_Hence, if 6=46, we have;,=£, . Thus any two para-
bolas are similar, and the foci are centres of similarity.
299. To find the conditions which must hold in order
that the curves
ax’ +bxy+ey’ +dr+ey+f=0..cenuu.n. @,
az'+bey+cy+de+ey+f=0............ 2),
may be similar and similarly situated. o
Suppose (k, k), (¥, k') the respective centres of similarity ;
for 2 and y in (1) put %+ rcos @, and % + r sin @ respectively ;
we shall thus obtain a quadratic in » which may be written.
L+ Mr+ N=0...cccocenrirnrnnnns (3).

For # and y in (2) put &'+ 7' cosf, and %' + 7' sin @ re-
spectively ; we shall thus obtain a quadratic in 7' which may
be written -

L+ M7+ N =0...cuuueenn.n. (4).

Now that the curves may be similar and similarly situated,
we must always have ' =\r, where \ is some constant quan~
tity ; thus (4) becomes '

NL7 + xM’r N =0ueiinieeiennnnn. ().
T. C. 8. 17
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Since (3) or (3) will give the values of 7, these equations

must be sdentical ; thus
L M N _

| L NI et (6).

Since neither N nor N’ involves 8, we deduce as a neces-
sary condition that %:, must be constant whatever § may be.
Put for L and L' their values; then
acos’d+ bsin 0 cos 6+ csin® 0 _ _ .
adcos0+bsmbcosf+oend constant = 8ay.....(7) ;
therefore (a—pa’)cos® @+ (b— ub’) sin 6 cos 8 +(c—puc')sin’8=0.

Since this is to be true whatever @ may be, it follows that

. Hence we have arrived at (8) as necessary conditions, in
order that (1) and (2) may be similar and similarly situated.
We have still to ascertain whether these are sufficient to
ensure the similarity. The direct method would be to exa-
mine if 4, k, &', ¥ can be so chosen as to make (6) hold; but
the following method is more simple. The equations (1) and
(2), by means of (8), may be written :

a’ +bey +ey' +de+ey+f=0,
az’ + bxy +cy’ +p (dz + €'y +f) = 0.

- I Suppose b*—4ac=0; then each curve is in general a
parabola, and therefore the curves are similar ; also their dia-~
meters are parallel so that the curves are similarly situated.
See Art. 279. This conclusion is subject to the exceptions
that may arise when either locus instead of a parabola, be-
comes one or two straight lines, or impossible.

- II. Suppose 3 — 4ac not =0. We may then by changing
the origin of co-ordinates for each curve reduce the equations
30 the form

ax’® + bxy +cy' +f, =0,
ax’ + by + ¢yt + f,=0.
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_ By expressing these equations in polar co-ordinates, they
give

=acos0+bsn0oos I om0’

'8 » _.f;

T = acos0 +bemnbd cosl +can'l

Thus, if =€, we have ’—1:,= constant. Hence the curves

are in general similar and similarly situated. This conclusion
i8 subject to the exceptions that may arise when either locus
instead of a curve becomes two straight lines, or a point, or
impossible. '

300. Next, suppose we require the curves (1) and (2) of
Art. 299 to be similar without the limitation of being stmai-
larly situated. For x and y in (1) we put respectively

kh+1rcosé, k+ rsin 6.
For  and y in (2) we put respectively
h+7cos(@+a), K +17'sin(0+a),
where « is some constant angle at present undetermined. Pro-~

gt:ed a8 in Article 299 ; instead of equation (7) we shall now
ve

a cos® @ + bsin 0 cos 6 + csin’
a’cos® (0 + a) + b'sin (0 + a) cos (6 + a) + ¢’ sin* (0 + a)
= & constant = u say.

This may be written
acos'd+bsin fcos 6+ csin®d .
Acos’0+Bsinfcosf+Csin’d 1

where
A =a cos’a+c sin*aq+ b sinacos a,
B=2(c—da')sinacosa+ b (cos'a—sin*a),
C=a'sin*a+c cos’a—b sina cosa
* 3That the curves may be similar we must have
4 B_C

a b ¢’ .,:
17—2
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L]

Hence each of theso ratios must equal ‘ii f’; ,
therefor 5;’ = (_4'*'_62’;
S (et
B b2
therefore - @10y = GO
. AC_(4+0),
And w0 = o
. AC ac
tberefoyt:a @z O = @i
Hence B'—44C b —4ac
’ A+C)f  (a+0o)f
But - A+ C=ad +c, .
and | B'—4AC0=0b"—4d?, (Art. 274);
"br'—da'd B —4dac
therefore

B ) N R .
This relation must therefore hold, in order that the given
curves may be similar. : .

From the results obtained in Art. 278 it is easy to derive
an instructive verification of the condition of similarity just
demonstrated. It will be seen that similar conic sections
have the same excentricity. : :

Area of a Polygon.

801, In Art. 11 we have given an expression for the
area of a triangle in terms of the co-ordinates of its angular
points : we shall now investigate the corresponding expression
for the area of any polygon. :

Let the angular points of the polygon taken in order be
(z, 4,)s (@4, Ya)s -+ (%, Ya) ; take any point (z, y) within the
po‘lygon and draw straight lines to the angular points of the
polygon, thus dividing the polygon into triangles having a
common vertex at (z, y). Then by Art. 11 the numerical
values of the areas of these triangles are respectively

[
[
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%{w (.73—;'/1)""?1 (‘y.fya)""ws(yx*y)‘} " .
;{x (3/3"%)"'% (y—y,) -i-:t'.(}/, "3/)} ’

ooooooooooooooooooooooooooooooooooooooooooooo

%{” Un=Yas) + ary (7 = ¥0) + Tu Yy — y)} ,
l{w (=) + 2. (y—9,) +2, (y,-y)}.

Let us assume, for the present, that the sum of these.ex-
pressions will give the area. By addition = and y dlsappear,
and we obtain

3{n ) e, G+ 0= +
B AR c«/ﬂ—w}.

By multiplying out this expression may be writtexi thus:
; {.r,y’l — XY+ XYy — T Yy +.eee

+ TuYns = Tarslu T BY0 “'..3/1} .
The expression may also be written thué:
% {y, (@ =)+, (27— =) + 3 (7~ 2) + ...

IARCEEETICEr) }

302. We now proceed to examine the admissibility of
the assumption made in the preceding Article. Suppose that
the polygon has no re-entrant angle. We must then shew
that the expressions for the areas of the triangles used in the
preceding Article are all of the same sign ; for unless this is
the case we do not obtain a correct numerical value of the
area of the polygon by adding these expressions. The required
result may be obtained by the aid of a principle Whlch we
have already applied’; 'sea Arts. 54 and 215,
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Consider the expression given for ‘the area of the first
triangle in the preceding Article. The expression.will retain
the same sign for all positions of (z, y) which are on the same
side of the straight line passing through (z,, y,) and (z,, ¥,).
Similarly the expression given for the area of the second
triangle in the preceding Article will retain the same sign
for all positions of (z, y) which are on the same side of the
straight line passing through (z,, y,) and (z,, y,). Thus if
the two expressions have the same sign for one position of
(, y) within the polygon, they will have the same sign for
all such positions. ﬁut by trial we can ascertain that the

two expressions have the same sign when z= % (z,+ =,) and
y =,12 (y,+y,) : the two expressions will in fact be found then

to coincide. Thus the two expressions have the same sign
for all positions of (2, y) within the polygon. - Similarly the
expressions for the areas of the second and third triangles
have the same sign. And so on. Thus the assumption
made in the preceding Article is justified.

303. We will now briefly illustrate the method by which
it may be shewn that the expressions obtained in Art. 301 for
the area of a polygon hold even when the polygon has re-

entrant angles.
| y A
b

bd

C

) z

Suppose, for example, we have a quadrilateral figure

ABCD, with a re-entrant angle at B. Through B draw a

straight line parallel to the axis of «, and take a point b on

this straight line, such that 4bCD is a quadrilateral figure
without a re-entrant angle.

~ Let the co-ordinates of 4 be ,, y,; let those of B be
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2, ¥,; and so on. Let the abscissa of b be 2. . Then we
know-that the area of 45CD is numerically expressed by

3o (=9 2090 + 290 + 2 5=}

Now as 2 increases this expression becomes algebraically
greater since y, —y, is positive; and as x increases we see
from the figure that the area increases: hence it follows that
the expression is positive. Put z=a;+ %, so that h= Bb.
The expression then becomes - : :

% {w_x (¥.=9) + 2, (4= %) + 2,0~ ) + 2, (y.—.%)}
+ %h (yx-:’/a);

and as %h (y,—y,) is obviously equal to the area of ABCBH,

it follows that the other part of the expression is equal to the
area of ABCD. '

304. Although the results given in Art. 301 are not of
great importance, yet the reasoning in Arts. 302 and 303 is
very instructive. The method of Art. 303 may be applied.
whatever be the form of the figure, with slight modifications
which do not affect the principle.

Homologous Triangles.

305. In Art. 76 we have spoken of homologous triangles ;
we will here give another property relating to such triangles.

Suppose ABC, A'B'C', A"B"C" three triangles such
that any two of them are homologous ; and suppose moreover
that 4B, A'B’, A" B” meet at a point: then the three centres
of homology will lie on a straight line.

For consider the triangles 44’4” and BB'B’. By sup-
position AB, A'B’, and A4"B" meet at a point: therefore, by
Art. 76, the intersections of corresponding sides of the triangles
lie on a straight line; that is the intersection of 44’ and BB,
of A’A" and B'B’, and of 4“4 and B”B lie on a straight
line, :
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And conversely if the three centres of homology lié on a
straight line the sides 4B, 4'B, A" B’ meet at a point; so
also do BC, B'C', B'C"; and C4, C'4’, C"A4", This also
follows from Art. 76. ' C

306. It may be easily shewn that if we take the equa-
tions to the sides of two triangles as in Art. 76, then the
equations

Tu+mv+nw=0, lu+m"v+nrw=0, lu+mv+n"w=0

will determine a third triangle such that any two of the
triangles are homologous, and that any three corresponding
sides- meet at a point.

EXAMPLES.

1. Straight lines are drawn through a fixed point: shew
that the locus of the middle points of the portions of them
intercepted between two fixed straight lines is an hyperbola
whose asymptotes are parallel to those fixed straight lines.

2. Through any point P of an ellipse QPQ’ is drawn
parallel to the axis major, and PQ and PQ’ each made equal
to the focal distance SP: find the loci of Q and Q'

3. In the given straight lines 4 P, 4 Q) are taken variable
points p, ¢, such that Ap : pP:: Qg : ¢A4: shew that the
locus of the point of intersection og Pg and @p is an ellipse
which touches the given straight lines at the points P, Q.

4. TP, TQ are two tangents to a parabola, P, @ being
the points of contact; a third tangent cuts these at p, ¢
Tp  Tgq _

TPt TQ =1
5. TP, TQ are equal tangents to a parabola, P, Q being

the points of contact; if PT, QT be both cut by a third
tangent, shew that their alternate segments will be equal.

respectively : shew that

. 6. From a point Oare drawn two straight lines to touch
a parabola at the points P and @Q; another straight line
touches the parabola at R and intersects OP, 0@ at Sand 7°:



EXAMPLES. CHAPTER XIV. 265

if ¥ be the intersection of the straight lines joining PT, @S,
crosswise, 0, B, V are on the same straight line.

7. From an external point two tangents are drawn to an
ellipse: shew that an ellipse similar and similarly situated
will pass' through the external point, the points of contact,
and the centre of the given ellipse. :

8. A and B are two similar, similarly situated, and con-
centric ellipses; Cis a third ellipse similar to 4 and B, its
centre being on the circumference of B, and its axes parallel
to those of 4 or B: shew that the chord of intersection of A4
and C is parallel to the tangent to B at the centre of C.

9. The straight line joining any point with the inter-
section of the polar of that point with a directrix subtends a
right angle at the corresponding focus.

10. If normals be drawn to an ellipse from a given point,
the points where they cut the curve will lie on a rectangular
hyperbola which passes through the given point and has'its
asymptotes parallel to the axes of the ellipsc.

. 11. If CM, MP are the abscissa and ordinate of any
point P, on the circumference of a circle,-and M@ is taken
equal to MP and inclined to it at a constant angle, the locus
of the point @ is an ellipse. S

12.- Having given the equation to a conic section
az’ + 2bzy+ y* + f=0,

find the locus of the intersection of normals drawn at the
extremities of each pair of ordinates to the same abscissa.

13. Any two points P,  are taken in two fixed straight
lines in one plane such that the straight line PQ is always
parallel to a given straight line; P, @ are severally joined
with two fixed points H, R; find the locus of the intersection
of PH and QR.

14, The tangent at any point P of a circle meets the tan-
gent at a fixed point 4 at 7, and 7' is joined with B the
extremity of the diameter passing through 4 : shew that the
locus of the point of intersection of AP and BT, is an ellipse.
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15. The polar equation to a conic section from the focus
being %— ¢ cos =0, shew that the equation to a straight line
which cuts it at the points for which § = a and B respectively,

is -]Z—c cos =b cos (G—iﬁ) secg—-—le.
r 2 2

16. Chords are drawn in a conic section so as to subtend

a constant angle at the focus: prove that the locus of the foot

of the perpendicular dropped from the focus upon the chord

is a circle, except in a particular case when it becomes a
straight line. >

17. If SP, SQ be focal distances of a conic section in-

cluding a constant angle; shew that PQ touches a confocal
conic.

18. Having giveﬁ two fixed points through which a conic
section is to pass, and the directrix, find the locus of the
corresponding focus.

19. The focus and directrix of an ellipse are given;
through the former a straight line is drawn making with the
latter an angle whose sine is the excentricity of the ellipse.
Find the locus of the points where this straight line meets the
curve, the excentricity being variable.

20. A series of conic sections is described having a com-
mon focus and directrix, and in each curve a point 1s taken
whose distance from the focus varies inversely as the latus
rectum: find the locus of these points.

21. Two conic sections have a common focus S through

which any radius vector is drawn meeting the curves at P, @,

- respectively. Shew that the locus of the point of intersection
of the tangents at P, @, is a straight line.

Shew that this straight line passes through the intersection
of the directrices of the conic sections, and that the sines of
the angles which it makes with these straight lines are in-
versely proportional to the corresponding excentricities.

22. A straight line is drawn cutting an ellipse at the
points P, p; let @ be either of the points at which the same

straight line meets a similar, similarly situated, and concentric.
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ellipse : shew that if the straight line moves parallel to itself,
PQ. @p is constant.

23. In two straight lines OX, OY, which intersect at O,
take O4=a, OB=05; shew that the centres of all the conic
sections which touch the straight lines at 4 and B lie on the
straight line ay = ba.

24. About two equal ellipses whose centres coincide, and
whose major axes are inclined to each other at a given angle
an ellipse is circumscribed ; if 4 and B be the semi-axes of
the circumscribing ellipse, @ and b the semi-axes of the equal
ellipses, and 2a the inclination of their major axes, then will

a’b’ + A’B* = (A" + B'a’) cos’ a + (A%’ + B’ sin’a.
Hence shew that about the two equal ellipses a similar
ellipse may be circumscribed.

25. Two similar ellipses have a common centre and touch
each other; if » be the ratio of their linear magnitudes, m
the ratio of the major to the minor axis in either, and a the
inclination of their major axes, prove that

ine= (13- (o-1).

26. Two tangents (a, b) to a parabola intersect at Pat an
angle w, and a circle is described between these tangents and
the curve: shew that the distance of its centre from P is

ab
(a+b) sec§+ 2 4/(ab) tang

27. If two chords at right angles be drawn through a
fixed point to meet a curve of the second degree, shew that
1%.+ 1—2,1—;; is constant, where R and r are the segments of one
chord made by the fixed point, and R’ and those of the

other.

28. The equation to the locus of the foci of all parabolas
whose chords of contact with axes inclined at an angle a cut
off a triangle of constant area is =k 4/{sin 0 sin (a — 6)}.
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. +29. A parabola slides between two rectanoular axes, ﬁnd
the curve traced out by the focus.

©80. A parabola. slides between two rectangular axes, find
the curve traced out by the vertex

31. Successive circles are drawn each touching the pre-
ceding one externally and each having double contact with a
given parabola: shew that their radii form an arithmetical
progression whose common difference is the latus rectum.

32. A system of e]llpses is represented by the equation
in rectangular co-ordinates aa®+ 2cxy + by’ =n (a +b), where
a, b, ¢ are variable and n constant: shew that every parallel-
ogram constructed on a pair of perpendicular diameters as
diagonals will circumscribe a certain fixed circle,

-33. If from any point in the tangent to a conic section a
perpendlcula.r be dropped upon the straxght, line joining the
facus and the point of contact, prove that the distance of the
point in the tangent from the directrix i is to.the:distance of the
foot of the perpendlcular from the focus aslistoe

34. Upon a glven strawht hne as latus rectum, let any
number of conic: sections be drawn, and from :the focus let
two straight lines be drawn intersecting them all; then the
chords of all the intercepted arcs will, if produced, pass
through a single point.

35. A straight line of constant length moves so that its
ends always lie on two given straight lines: find the locus
traced out by a pointin the straight line whlch d1v1des itin a
glven ratio,

36. In any conic section if » and " be focal dlstances at
right angles to each other, and ! be half the latus rectum, then

2
(l — 1) + (1, — 1) is constant.
r 1 ol

87. Two conic sections equal in every respect are placed
with their axes at right angles and with a common focus S;
SP, SQ being radii vectores of the ene and the other at right
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angles to.each. other, find the locus of the 1ntersect10n of the
tangents at Pand Q.

Also find the locus when SPQ is a stralght line.

38 8 and H are the, foci of an ellipse, and round 8, H, as
focus and centre, another ellipse is described, having its minor
axis equal to the latus rectum of the former. Throuo'h any
point P in the first draw SP @ to meet the second ; it is re-
quired to find the locus. of» t.he intersection of HP and- the
ordinate QM.

39. A and B are the centres of two equal circles; AP,
BQ, radii of these circles at right angles. If AB'= 2AP’
the straight line PQ always passes through one of the ‘points
of intersection of the circles.

- 40. Tangents are drawn to a conic section at the points P,
R ; another tangent is drawn at an intermediate point @, and
meets the other tangents at M, N : shew that the angle MSN
is half the angle PSR S bemg a focus.

41. Ina parabola the angle between any two tangents is
half the angle subtended at the focus by the chord of contact.

42. If two equal ellipses. have the same centre, shew
that their points of intersection are at the extremities of
diameters at ncrht angles to one another.

43. Given a focus and two tangents to a conic section,
shew that the chord of contact passes through a fixed point.

*44. A circle is described upon the minor axis of an ellipse
as diameter: find the locus of the pole with respect to the
ellipse of a tangent to the circle.

45. In a parabola two focal chords PSp, @8y, are drawn:
shew that'a focal chord parallel to P @ will meet pg produced
on the tangent at the vertex.

46. If from the vertex of a parabola a pair of chords be
drawn at right angles to each other, and on them a rectangle
be completed, prove that the locus of the further angle is an-
other parabola, ,
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47. From a point P in the circumference of an ellipse
chords PQ, PR are drawn at right angles; express the co-
ordinates of the point of intersection of QR with the normal
at P in terms of the co-ordinates of . Shew that as P moves
along the ellipse this point of intersection will describe the

i a:’+y’_ a'-—b’)' '
ellipse b’_(a’+b" .

48. Shew that the locus of the centre of an equilateral
hyperbola described about a given equilateral triangle is the
circle inscribed in the triangle.

49. Two equal parabolas have the same axis and vertex,
but are turned in opposite directions ; chords of one parabola
are tangents to the other : shew that the locus of the middle
points of the chords is a parabola whose latus rectum is one-
third of that of the given parabola. :

50. The co-ordinates of the focus of the parabola whose
equation when referred to two tangents inclined at an angle

wis\/(5)+/(§)=1, aro
, ab® ' and a*h
a*+ b+ 2ab cos @’ at+ b+ 2abcose”

51. If as’+ 2bzy + cy* + 2d'z + 2¢'y + d =0 be the equa-
tion to a parabola, the axis of the parabola will be given by

the equation (a+b) (w + a—%’) +(®+c) (y +a—i—c) =0,

52. Two equal parabolas have the same focus and their
axes are at right angles to each other, and a normal to one of
them is perpendicular to a normal to the other; prove that
the locus of the intersection of such normals is a parabola.

53. Find the locus of the intersection of two normals in
an ellipse which are at right angles.

54. Normals are drawn at the extremities of the conju-
- gate diameters of an ellipse, and by their intersections form .
a parallelogram. If ¢ denote the excentric angle of an ex-
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tremity of one of the conjugate diameters, shew that the area
— ]
of the parallelogram is %If)— sin® ¢ cos' ¢.

55. Through the four angular points of a given square a
circle is drawn, and also a series of curves of the second
order, and common tangents to the circle and each curve are
drawn. Find the locus of the points of contact of each curve
with its tangent.

. 56. From any point T"outside an ellipse two tangents 7'P
and 7'Q are drawn to the ellipse: shew that a circle can be
described with 7" as centre so as to touch SP, HP, SQ, HQ,
or these straight lines produced.

If # and y are 1’;h.e co;ordina.tes of T, shew that the radius
—_nd
of the circle is @y + I;x’ a’) .

57, If from a point three radii vectores are drawn to a
circle, and from the same point in the same directions three
radii vectores are drawn to another circle, and the correspond-
ing radii are in a constant ratio, that point is a centre of simi-
litude of the circles.

58. Tangents are drawn to the parabola (1 +cosf)=1
at three points for which @ is equal to a, B, oy respectively:
shew that the equation to the circle which passes round the
triangle formed by the tangents is

2 oo cos Y = con (9222 17)
rcos2cos2cosz—2oos(0 ) .

Hence shew that the circle which passes through the
intersections of three tangents to a parabola will pass through
the focus.
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CHAPTER XV.
ABRIDGED NOTATION.

307. Through five pomts no three of wlnch are in one
straight line, one conic section and only one can be drawn.

Let the axis of z pass through two of the five points, and
the axis of y through two of the remaining three points. Let
the distances of the first two points from the origin be &, A,,
respectively, and those of the second two points k,, k,, re-
spectively ; also let h, k be the co-ordinates of the rema.mmg
point. Suppose (Art. 269)

az’ +bey +cy' +drt+ey+1=0...... ... 1)

to be the equation to a conic section passing through the five
points. Since the curve passes through the pomts (R,, 0)
(hyy 0), we have from (1)

ah2+dh +1=0...oorerrrererereres (2),..
‘ahl+dh,+1=0.cc.cceevrnniinnin. (3).
Similarly, since the curve.passes through (0, k,) (o, &),
we have . _
ckr+ek,+1=0...ccccccinnnrnnnnnn. (4),
ek + ek, +1=0............. S ().
Lastly, since the curve passes through (k, k), we have
ak + bkl + kit + dh + ek +1=0............... (6).
1 h+h
From (2) and (3) we find a= i d'=-—lT,’:"
1 k+k,

From (4) and (5) we find c=k,k,’ e=- 7cT;
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then from (6) we can determine the value of 5. Since no
three of the five given points are in the same straight line,
none of the quantities &, &, k,, k,, %, %, -can be zero; hence
the values of the coefficients a, b, ¢, d, ¢ are all finite. If
-we substitute these values in (1), we obtain the equation to a
conic section passing through the five given points. As each
of the quantities a, b, ¢, d, ¢, has only one value, only one
conic section can be made to pass through the five given
points. ‘

308. The investigation of the preceding Article may still
be applied when three of the given points are on one straight
line ; the point (&, k) for instance may be supposed to lie on
the straight line joining (0, £,) and (%, 0); the conic section
in this case cannot be an ellipse, parabola, or hyperbola, since
these curves cannot be cut by a straight line in more than two
points ; the conic section must therefore reduce to two straight

‘lines, namely the straight line joining the three points already
specified, and the straight line joining the-other two points.
It, however, four of the given points are on one straight line,
the method of the preceding Article is inapplicable; it is
obvious that more than one pair of straight lines can then be
made to pass through the five points.

309. We shall now give some useful forms of the equa-
tions to conic sections passing through the angular points of a
triangle or touching its sides. .

Let u=0, v=0, w =0 be the equations to three straight
lines which meet and form a triangle; the equation

low+mwu+nuv=0.................. D),

where I, m, n are constants, will represent a conic section
described round the triangle; also by giving suitable values
to I, m, n, the above equation may be made to represent any
conic section described round the triangle. This we proceed
to demonstrate.

"I The eciua.tion (1) is of the second degree in the variables
x and y, which occur in the expressions u, v, w; hence (1)
must represent a conic section.

II. The equation (1) is satisfied by the values of 2 and
T.C.8, 18
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v, which make simultaneously v =0, w=0; the conic section
therefore passes through the intersection of the straight lines
represented by v=0 and w=0. Similarly the conic section
‘passes through the interseetion of w=0 and 4=0, and also
‘through the intersection of 4 =0 and v=0. Hence the conic
section represented by (1) is described round the triangle
formed by the intersection of the straight lines represented
by u=0,v=0, w=0.

III. By giving suitable values to [, m, n, the equation
'(1) will represent any conic section described round the tri-
angle. For let 8 denote a given conic section described round
the triangle ; take two points on §; suppose 4,, k, the co-ordi-
nates of one of these points, and A, k, those of the other. If
we first substitute %, and %, for  and y respectively in (1), and
then substitute A, and k,, we have two equations from which
we can find the values of %‘ and %; suppose ? =p and %=q.
Bubstitute these values in (1), which becomes

vw+pwu+ quu=0......ccc0uurunennnn ®;

this is therefore the equation to a conic section which has
five points in common with S, namely, the three angular
points of the triangle and the points (h,, %)), (&, ’2:1 The
.conic section (2) must therefore coincide with S by Art. 307.
Hence the assertion is proved.

‘We might replace one of the constants in (1) by unity,
Jbut we retain the more symmetrical form; (1) may be

written£+ﬂ+ Z1'—=0.
u v w

310. Equation (1) of the preceding Article may be written
w (lv+mu) + nuv="0.....ccooeuuvenn.. s

‘we will now determine where (1) meets the straight line
- represented by
lo+mu=0............ cerseserernnes (2).

* By combining (2) with (1) we deduce nuv=0; therefore
elther =0, or v=0; but by taking either of these suppo-
sitions and making use of (2), we see that the other suppo-
ition must also hold; hence the straight line (2) meets the
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curve (1) at only one point, namely, the point of intersection
of u=0and v=0.

Hence (2) is the tangent to (1) at this point. Similarly
mw + ny = 0 is the tangent to (1) at the point of intersection
of w=0 and v=0, and nu+lw=0 is the tangent at the point
of intersection of ¥ =0 and w=0.

311. The demonstration of the preceding Article isimper-
fect, because we know from Arts. 132, 222, that a straight line
parallel to the axis of a parabola or to either asymptote of an
hyperbola meets the curve at only one point, but is not the
tangent at that point. The proposition may however be esta-
blished in the following manner. Take the axis of # coinci-
dent with the straight line =0, so that » becomes gy, where
g is some constant; also take the axis of ¥ coincident with the
straight line v=0, so that v becomes gw, where p is some
constant. Suppose w= Ax+ By + C. Then (1) of the pre-
ceding Article becomes (4x+ By+ C) (lpx+mgqy) +npgay =0.
By Art. 283 the equation to the tangent at the origin, tzat is
at the intersection of #=0 and y =0, is lpz +mgy=0, or
W+ mu=0; which was to be proved,

312. Let each of the three tan%lents in Art. 310 be pro-
duced to meet the opposite side of the triangle formed by the
straight lines ¥ =0, v=0, w=0; then it may be shewn that
the three points of intersection lie on the straight line
J+o+2=0.
m’ n

The straight lines joining the angular points of the triangle
formed by the tangents with the angular points of the original
triangle respectively opposite to them, are represented by the
equatiohs'-lf——'—’-=0, 2_%_0, 2_%=0; these three

m m n n 1

straight lines meet at a point. Thus when a triangle is in-
scribed in a conic section the straight lines joining each point
with the pole of the opposite side meet at a point.

313. Let u=0, v=0, w=0 be the equations to three
straight lines, then the equation :
Auw*+ B+ Ow' + 24'vw + 2B'wu + 2C"uv =0
18—2
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will generally represent any assigned conic section, if the
constants 4, B, (, 4, B', C’ are properly determined.

For suppose we divide the equation by one of the constants
as (', there are then five independent constants left. Now
let S denote any assigned conic section ; take five points on §
and substitute the co-ordinates of the five points successively
in the above equation ; we shall thus have five equations for
determining the five constants. Suppose a, b, ¢, @', b' th
values thus determined, then the equation -

au? + 0o + cw® + 2a'vw + 2b'wu 4+ 2uv =0

represents a conic section which has five points in common
with S, and which therefore coincides with 8. (Art. 307.)

314. The method of the preceding Article, although im-
portant and instructive, is not satisfactory, because we have
not shewn that the five equations from which the constants
are to be determined are consistent and tndependent. There
may be exceptions to the theorem, and we therefore use the
word generally in the enunciation. If the three straight lines
meet at a point, then the curve denoted by the equation always
passes through that point, and the equation in this case will
not represent any assigned conic section. If the three straight
lines are parallel, %, v, w take the forms

letmy+p, le+my+p, le+my+p’,
and the equation takes the form
A (I +my)* + p (e +my) + v =0,
which represents two parallel straight lines, and thus will not
represent any assigned conic section. With these exceptions,
however, the theorem is universally true, as we shall now
shew by another demonstration.

Since the straight lines are not-all parallel, two of them
at least will meet; suppose u=0 and v=0 to be these two,
and take their directions for the axes of y and # respectively;
then u=0 becomes 2= 0,and v=0 becomes y=0; also w=0
may be written lz+my +n=0. We have then to shew that
the equation
Ax*+ By + C (le + my +n)*+ 24"y (Iz + my +n)

+2B'z (lx+ my +n) +2C2zy=0...... (1)
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will represent any assigned conic section by properly deter-
mining the constants 4, B, ...... Suppose

aw’+2b:cy+cy + 2dx 4+ 2e¢y + f=0......... 2

to be the equation to the assigned conic section. Arrange the
terms in (1) and equate the coefficients of the corresponding
terms in (1) and (2) ; thus

Cn*=Ff, An+ Cmn=¢, Bn+Cln=d, B+ Cm'+24'm=c,
Cim+4+A'l4+Bm+C'=b, A+ CFP+2Bl=a.

These equations determine successively C, 4, B, B, (", A.
As the given straight lines do not meet at a point, » is not
zero; hence the values found for C, 4, ... are all finite and
determinate. Thus (1 (1) is shewn to coincide with (2), and the
required theorem is demonstrated.

315. We will now investigate the equation to the tan-
gent at any point of the curve represented by

Au? + Bv*+ Cw® 4+ 24" vw + 2B'wu + 2C'uv = 0.

Let ', ¢/, w’ be the va,lues of %, v, w respectively at ‘one
point of the curve, and w”, v", w" their values at another point
of the curve. Then the equatlon to the straight line joining
these two points may be put in the form

Au-u)u—u)+B@w—2)(v—2")+ C(w—w) (w—w")
+24' (v—v)(w—w")+ 2B (w—w') (u—u") +2C'(u—u) (v—v")
= Aw'+ Bv'+ Cw'+ 24'vw + 2B'wu +2C'uv. .
For this equation is rea.lly of the first degree in the variables
u, v, and w, and therefore re esresents some stra.lght line; more-
over the equatlon is satlsﬁ at the point (u', v, w'), and also

at the point (u”, v", w"), and therefore it represents the straight
line which passes through these two points.

Now suppose the point (u”, v", w") to ,move along the
curve until it coincides with the pomt (', v, w) Then the
secant becomes ultimately the tangent at («', ¢/, »), and the
equation to this tangent is
Auu’ + Bov' + Cuww' + A" (vw' + wv') + B’ (wu' + uw")

+ C' (wv' +ou')=0.
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316. As zy)micular case of the preceding Article sup-

pose that A', B, and C’ are zero. Then the equation to the
curve is .
Au* + B+ Cw' =0 .cucuuerrrncrnnnnne @;
and the equation to the tangent at (v, ¢, ) is
Auv’ + Bov' + Cwow' =0.....ccuvvunn..... (2).

Hence we can find the condition which must hold in
order that a proposed straight line may touch the curve
denoted by (1). Let the equation to the proposed straight
line be '

MApy 4+ 210 =0.ceeeniiiiirnnncivennnns (3).

If (8) denotes the equation to the tangent at («, v/, w'),
we find by comparing (3) with (2) that
4d_ B _ O
A ou v
Let » denote the value of each of these fractions; then
,  Ar ,_ ur vr

u =z, '0=§, w =—0'.
These values must satisfy (1) since (v, ¥/, »’) is a point on
the curve; thus \
At ot YV
4t B + o= 0:
this is therefore the required condition.

317. The investigation of Art. 315 may be modified in
special cases by using a different form for the equation to the
secant. For example suppose that 4, B, and C are zero.
Then the equation to the curve is

A'vw + B'wu+ O'wy=0,
which may be also put in the form
4 B.C
PR v N 1).

The equation to the straight line which passes through
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the points (u,v, w) and («”, v", »") on the curve may be

put in the form
- Auw Bv Cw .

u: “Il + UI‘U” + wlwll - 00

For this e(}uation is of the first degree in the variables u, v, w,
and therefore represents some st.raight line; moreover the
equation is satisfied at the point («, ¢, »') and also at the:

n 4

point (u”,v", w"), and therefore it represents the straight line
which passes through these points. :

Therefore the equation to the tangent at («, ¢/, w") is
Au  Bv K Cw

W"‘?}T’— ?=0 .............. o---(2).

Hence we can find the condition which must hold in order
that a proposed straight line may touch the curve denoted
by (1). Let the equation to the proposed straight line be

M+ pr+vw=0.......... versesenne .(3).
.- If (3) denotes the equation to the tangent at («, v/, w'),
we find by comparing (3) with (2) that -
4 B 0

From these relations and (1) we obtain a8 the required
condition

' V(AN +/(B'p) +(Cv) =0. |

318. To empress the equation to a comic section which
touches the sides of a triangle.

Let u=0, v=0, w=0 be the equations to the sides of
a triangle; then any conic section may be represented by the
equation

Au’ + B + Cu? + 2A'vw0 + 2B'wu + 2C"uv =0......(1).

To find where this conic section meets the straight line u =0,
we must put ¥ =0; thus (1) becomes

« . B+ Out+24vw=0.............. ()
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Now from (2) we obtain by solution #wo values of —, say
v v . v
o=t and » =M The equation » = uw represents some
straight line passing through the intersection of v=0, and
w=0. Hence since (1) is satisfied by those values of = and
y which make simultaneously ¥ = 0 and v—u,w =0, the inter-
section of the straight lines ¥=0 and v—p,w=0 is a point
on (1). Similarly the intersection of =0 and v —pw=01is
a point on (1). Hence the straight line u=0 will meet (1)
at two points, and therefore will not be a tangent to it, unless
the straight lines » — 1 =0, and v—pw=0, coincide. Hence
that 4 =0 may fouch (1) we must have w, = p,, and therefore
A”=BC. S :

Similarly that ¥=0 may touch (1) we must have B"*=CA4;
and that w = 0 may touch (1) we must have C*= 4B. From
these three relations we see that 4, B, and C must have the
same sign, because the product of each two is positive. Also
the sign of 4, B, and C may be supposed positive, because
if each of them were negative we could change the sign of
every term in (1), and thus make the coefficients of u’ ¥,
and »' positive. We may therefore put

A=l B=m' C=n';

thus . : .
A=4+mn, B=%n, C=4tlin

Hence (1) becomes

P'u? + m™* + n'w® + 2mnvw + 2nlwyu + 2muv = 0......(8).

'We shall now examine the ambiguity of signs that appears
in this expression.

I. Suppose all the upper signs to be taken. The equa-
tion may then be written

. (lu 4+ mv + nw)* = 0.

This is the equation to a straight line, or rather to two
coincident straight lines.

II. Suppose the lower sign to be taken twice and the
upper sign once; we have then three cases,

(lu+my —nw)'=0, or (lu—my+nw)'=0,
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or (— lu+mv+nw)*=0.
Each equation represents two coincident straight lines.

ITI. Since then the forms in I. and II. represent straight
lines, we see by excluding these cases from (3), that if @ curve
of the second degree touch the straight lines

u=0, v=0, w=0,
its equation must take one of the forms
Pu? + w4+ n’w® — 2mnvw — 2nlwu — 2lmuv =0 ... (4),
Pu® + m** + n*w® — 2mnvw + 2nlwu + 2imuv=0... (5),
U'u® +m** + n*w® + 2mnvw — 2nlwu + 2muv=0... (6),
Pu® + m** + n*w® 4 2mnow + 2nlwu — 2muv =0 ... (7).

These four forms may also be written :
N(lu) + N(mv) + N/(nw) =0...... (8) from (4),
N(=W)+ /(my) + y(nw) =0...... 9) from (5),
N(@lu) + 4/ (—mv) + H(nw) =0...... (10) from (6),
V() + A/ (mv) +(=nw)=0...... (11) from (7),

which may be verified by transposing and squaring, so as to
put the equations in a rational form.

319. It is easy to.verify the proposition that the curve
represented by the equation :
v () + ¥/ (mv) + ¥/ (m0) =0
cannot cut the straight lines ¥=0, v=0, w=0. For sup-
pose the above equation satisfied by the co-ordinates of a
point ; then these co-ordinates must make lu, mv, and nw, all
positive, or all negative. Suppose lu is positive; then for any
point on the other side of w =0, the expression {u becomes
negative, and thus the co-ordinates of such a point will not
satisfy the equation unless both mv and nw are also negative.
But if the curve cuts the straight line =0, there will be
Eoints on both sides of u=0 lying on the curve, and it will
e possible to change the sign of » without changing the signs
of v and w. Hence the curve cannot cut the straight line
%=0. Similarly it cannot cut the straight lines v=10, w =0.
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The same mode of proof will shew that the curves repre-
sented by equations (9), (10), and (11), of the preceding Article
cannot cut the straight lines u=0,v=0, w=0.

320. The forms in equations (5), (6), and (7) of Art. 318
may be derived from (4) by changing the sign of one of the
constants. Thus, for example, (5) may be derived from (4)
by changing the sign of . In the following Article we shall
use (4) as the equation to a conic section touching the sides
of a tria%gle ; it will be found that we might have used (5), (6),
or (7). We shall see in a subsequent Article, a case in which
it is necessary to distinguish the forms. See Arts. 324, 325.

321. Equation (4) of Art. 318 may be written

(lu = mv)* + nw (nw — 2my — 3u) =0......... (1).
If we combine this with w =0, we deduce that
Ww—my=0............... ceeranns (2);

hence we can interpret the last equation; it represents a
straight line passing through the intersection of =0 and
v=0, and also through the point where the straight line w=0
meets the curve (1). It may be shewn as in Art. 310, that

nw —2mv — 2lu = 0......ccuuuee.... 3)

represents the tangeﬁt to (1) at the other point where (2)
meets it.

Similarly we can interpret
mo—nW=0.ccocverererrnrnines (4),
u—2nw0—2mv=0......ccc00cuvnnen. (3),
M0 — 1= 0urereeereeeeeeeanne (6),
my — 2l —2nw="0.....ouvinvumennnn. 7).

The intersection of (3) with w =0, of (5) with =0, and
of (7) with v=0 will lie on the straight line

lu+mv+ 2w =0,

The straight line Ju + mv =0 passes through the intersec-
tion of 4 =0, and v=0, and also through the intersection of
(8) with w=0; hence its position is known. S
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Similarly the equations mv+nw =0, and nw+ =0,
can be interpreted.

322. We will now. investigate the equation to the tan-
gent at any point of the curve represented by

ANu+Byo+C\w=0.................. ).

‘We might clear this equation of radicals and so obtain the
form already considered in Art. 315, and then express the
:ﬂuation to the tangent at any point. Or we may proceed

us:

The equation to the straight line passing through the
points (, v, w') and (u", v", w”) on the curve may be put in

the form
A (u—u) + B(v—1v) + C'(w—w').=
Vu' + Vu” Vv’ + Wi - le + le/
For this equation is of the first degree in the variables
u, v, w, and therefore represents some straight line ; moreover
the equation is satisfied at the point («, v', #") and also at the
point (v”, v”, w"), and therefore it represents the straight line
passing through these two points.

Now suppose the point (u”, v", w”) to move along the
curve until 1t coincides with the point (u, ¥, w"). Then the
secant becomes ultimately the tangent at («, v', w') ; and the
equation to this tangent is

0.

Aw—v) Bw-v) K Clw—-w)_
4/“' + 4/0' + le - OQ
. Au By Cw
that is W+W+W=O ......... (2).

_ Hence we can find the condition which must hold in order '
that a proposed straight line may touch the curve denoted by
(1). Let the equation to the proposed straight line be

M A pV 42w =0.0iirirrrreriencnnnss (3).
If (3) denotes the equation to the tangent at (v, ¢/, w') we
find by comparing (3) with (2) that
A B _C
AVE T aNT vy
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From these relations and (1) we obtain as the 'requifed
condition

A opooy

. 823. To find the equation to the circle described round a
triangle.

It will be convenient in this and the two following Articles
to use .the form zcosa +ysina—p=0 as the type of the
equation to a straight line ; we shall therefore put «, 8, ¢ for
u, v, w respectively (Art. 73).

Leta=0, 8=0, y=0 be the equations to the sides of
a triangle ; then, by Art. 309,

By +mya+naB=0 .ccceeeraennnnns @

will represent any conic section described round the triangle ;
hence by giving proper values to [, m, n, this equation may
be made to represent the circle which we know by geometry
can be described round the triangle. We might proceed
thus: in (1) write for a, B, 4 the expressions which they
represent, then equate the coefficient of @y to zero, and the
coefficient of o' to that of 3*; we shall thus have two equa-
tions for determining% and an—; and with the values thus
“obtained (1) will represent the required circle. We leave
this as an exercise for the student, and adopt another method.
The equation to the tangent to (1) at the intersection of
a=0, and B8 =0, is, by Art. 310,

Let 4, B, C denote the angles of the triangle opposite the
sides a=0, 8=0, y=0, respectively; by Kuclid, 1. 32,
the tangent denoted by (2) must make an angle 4 with the
straight line a =0, and an angle B with the straight line
B=0. Suppose the origin of co-ordinates within the triangle,
then the equation to the straight line passing through the in-
tersection of a=0 and 8=0, and making angles 4 and B
respectively with these straight lines, is

"asin B+ Bsin A=0.eerrirennns 3).
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~ Thus (2) must commde with (3); therefore we have
l sind . smB
Slmlla.rly

m _snB’ “snC’

Thus the equation to the circle described round the tri-
angle is

nysinA+ryasiﬁB+a/Ssin C=0.

324. To ﬁnd the equatzon to the circle inscribed in a
triangle. ,

Suppose the origin of co-ordinates within the triangle; then
for all points on the circle a, B, v are megative quantities
(see Art. 54). Now the equation to the circle must be of one
of the forms (8), (9), (10), (11) given in Art. 318 ; the first is
the only form apphca,ble, namely,

V() + ) + ) =0 e M,
which is equivalent to
V(=la) + y/(—mB) + ¥/ (—ny)=0......... (2).

The other forms are inapplicable, because they would
introduce impossible expressions. We have then to deter-
mine the values of l m, and n. If we put a=0 in (1), we

obtain B_n ; thus — 1s the ratio of the perpendiculars drawn

to the SldeS B=0, «y 0, respectively, from the point where
the circle meets the stralght line a=0. Let » be the radius
of the circle ; then we know from geometry that the perpen-

c
2 PR
a similar expression holds for the perpendicular on o= 0.

dicular from this point on 8=0 is 7 cot  sin C or 2r cos®

cos?

Her;cé 2= __? Slmlla.rly - 7008 2
o m cos’—g cos® =

Therefore the required equation is’

cos%dc}+cqs§4//3+cosg~/fy=0.
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825. To find the equation to the circle which touches one
side of a triangle and the other two sides produced.

Let the circle be required to touch the side opposite to
the angle 4 and the other two sides produced. Suppose
the origin within the triangle; then for all points comprised
between the side a =0 and the other sides produced, a is

ositive and B and v are negative. Hence by Art, 318, the
?orm of the equation to the circle must be

V(= o) + y/(mB) + ¥/ (ny) =0.

Hence, as before, by considering the point where the circle
meets the straight line @ =0, we have

cos® T — sin® o cos’é cos’é
n Ty "My 13 3
E—cos’"_B_sin'—?, n cos':'—r:—c—sin’—.
2 2 2 2

Hence the required equation is
cosf;—»,/(-—a) + sin§4/3+ sin gwy= 0.

Similarly the equations to the other two circles may be
written down.

826. The results in Arts. 312 and 321 which hold for
any conic section, will of course hold for a circle inscribed in,
or described about, a triangle respectively. We have only to
use the values of [, m, n, found in Arts. 328 ... 825.

327. Many applications have been made of the method
of abridged notation to express the equations to circles deter-
mined by various conditions. We will give some of these
applications as specimens, and the student will have no diffi-
cuﬁy in applying the same methods to other examples. -

328. If the equation to one circle, expressed in a rational
form, be denoted by §=0, the equation to any other circle
can be expressed in the form S+ Aa+ uB+ »y=0, by pro-
perly choosing the constants A, u, and ». This result follows
from the known form of the equation to a circle in the com-
mon co-ordinates ; see Arts, 88, 104, 110, Thus, to take the
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most general supposition, let the equations to two circles be
in common oblique co-ordinates

K (o' +2zy coso+3") + Lo+ My+ N=0,
k(@"+2zy coso+y") +lz + my+n =0,
Denote the first equation by §=0; then the second equa-
tion is equivalent to
S+ %(l:c+my+n) —~Lz—~My—N=0,

which we may denote by §+u=0. Here u is an expression
of the first degree in « and y, and so will be identical with
Az + pB + vy, if we determine A, u, and » suitably.

If §=0 and S+Ma2+puB+vy=0 be the equations to
two circles, Aa+puB+w»y=0 will be the equation to the
radical axis of the two circles; see Art. 110,

Since az+B8+ oy is a constant, by Art. 73, we may
instead of S+ (Aa+puB +wy) use

8+ (az+ B + cy) (la+mB + ny)
or 8+ (asinAd+ B sin B+ qsin O)(la+mpB + ny),
provided we properly determine the constants in each case,
329. To express the equation to the circle which passes
through the middle points of the sides of the triangle of reference.

Let a=0, 8=0, y=0 be the equations to the straight
lines which form the triangle of reference ; see Art.'78, Assume
for the required equation

By sin A + ¢z sin B +af sin 0
+ (asin A+ Bsin B+ ysin C)(la+mB +ny)=0;
see Arts. 323 and 328,
At the middle point of the side BC we have a=0, and
B _sin C

v sinB’
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substituting in the assumed equation we obtain

sin 4 sin C ,msm()’ )_
sin B +2s 6( nB +n)=0,
or . sind +2(msin C 4+ nsin B)=0.

But sin 4 = sin B cos '+ cos B sin C; thus
sin C (2m + cos B) + sin B (2n + cos C) =0.
In a similar manner we obtain two.analogous equations ;
and from the three equations we deduce

1 1 1
=—§cosA, m——écosB, n=—§cosC’.

Hence the required equation is
Bysin 4 + yasin B+afB sin O
- % (asin 4+Bsin B+ sinC) (acos 4+ B cos B+ cos C)=0.
The radical axis of this circle and the circle described
round the triangle of reference is therefore determined by
acos A+ B cos B+ cos C=0.
330. To express the equation to the circle which passes

through the feet of the perpendiculars from the angles of re-
JSerence on the opposite sides.

Assume for the required equation
By sin 4 + ya sin B+ of sin C
+ (asin 4 + Bsin B+ g sin C) (la+mpB +n'y)

At the foot of the perpendicular from 4 on BC we ha.ve

a=0, and B cz:g, substituting in the assumed equation
we obtam
sin 4 cos C | rcos C 'm cos C ) _
wos B +(co BsmB+sm0)( o5 B +n)=0,

or  s8in.d4cos Bcos C+sin 4 (mcos C+n cos B) =

therefore (m + % cos B) cos O+ (n + %cos 0) cos B=0,
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In a similar manner we obtain two analogous equations ;
and from the three equations we deduce

1 1 1
l——écosA, m=— écosB, n=— 5 cos C.

Hence the required equation is
By sin 4 + qasin B+af sin C
—-jlz (asin A48 sin B+« sin C)(acos A+ B cos B+rycos C) =0.

Thus the circle is the same as that considered in the pre-
ceding Article. :

331. Let O denote the intersection of the perpendiculars
from the angles of a triangle on the opposite sides. Then it
is known that the circle which passes through the six points
specified in the preceding two Articles also passes through’
the middle Points of 04, OB, and OC. The circle is called
the nine-points circle. See Appendiz to Euclid.

It is easy to shew that the circle which passes through
the six points specified in the preceding two Articles also
passes through the middle points of OA, 0B, and 0C. For
consider the triangle OBC. The perpendiculars from the
angular points on the opposite sides meet these sides respec-
tively at points which coincide with the feet of the perpen-
diculars from the angles 4, B, C on the opposite sides ; thus
we know that the circle considered in the preceding two
Articles passes through these points: hence it also passes
through the middle points of OB and OC, as well as through
the middle point of BC. Similarly the circle also passes
through the middle point of OA4.

0 is a centre of stmilitude of the circle described round
the triangle 4 BC and the nine-points circle of the triangle ;
see Art. 119, For, as we have just seen, the three radii
vectores drawn from O to the circumference of the former
circle, namely 04, OB, OC, are respectively doublé the radii
vectores drawn in the same direction to the latter circle ; and
it is easy to shew that the same ratio will hold for any cor-
responding radii vectores, '

T, C. 8, 19
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. 882, To investigate the conditions which must hold +n
order that the general equation of the second degree may re-
present a circle. ,

Let the equation be
Lot + MB*+ Ny + 2L By+ 2M'ya + 2N'a3 = 0.

Let A denote the area of the triangle of reference; then,
by Art. 73,

ax+bB8+cy=—2A;
therefore az*=— 2Aa— (bB + cy) a
éimila_»rly b8 =—2A8— (¢y + a2) B;
and oy’ =—2Ay— (a2 +bB) ¥.

Substitute for a*, 8% and ¢* in the general equation, and it
becomes '

(o2 -2 5,
+(or - -5)ab

b
La A MB . ny) _
f _2A<7+—b_+7 =0.
- Then, by Arts. 328 and 328, we see that the necessary and
sufficient conditions in order that this equation may represent
_ a circle are

opy M _Nb oyp Na_ILe o Lb Ma
b ¢ _ c _a _ a b
a - b - ) ’

that is, .
2L'bc— Mc*— No*=2M'ca — No* — Lc* =2N'ab — Lb* — Ma®.
333. To determine the radical axis of two circles repre-
sented by general equations.
Let the equations be
La* + MB* + Nof* + 2L'By + 2M'ya + 2N'a3 = 0,
la* + mB* + ny* + 2UBy + 2m'yz + 2n'af = 0.
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Since, by supposition, these equations ~represent circles
they may, by the preceding Article, be put in the form

}t (2L' - ]'—? - 1—?-’) (aBy + bya + caB)

, —oa (2 2B,
%(21'" mTc‘%) (@By + bya +caf)
—-2A (%+Zn§+"-;1)=o, -

Hence the equation to the radical axis is

a
8Thc —Mc—N& 2lbc— me —nb* *
Lasin Bsin C+ MBsin Csin A + Nysin 4 sin B
2L’ sin Bsin C— Msin® C — Nsin* B
_lasin B sin C+mBsin Csin A + nysin 4 sin B
- 20 sin B sin C—m sin® C—nsin® B ‘

334. The nine-points circle of a triangle touches the in-
scribed and escribed circles of that triangle.

The equation to the nine-points circle may be put in the
form :

a*sin 4 cos 4 + B*sin B cos B+ «*sin C cos C .
— By sin 4 —ya sin B— af sin C=0.
The equation to the inscribed circle is

cos%il,/a +cosg4//3+ cos gwy=0;

putting this in a rational form we obtain

a* cos* 3 + B cos* —2—+fy’ cos‘—2
B ,C C .4 4 B
— 2By cos g cos' g 21 cos 508’ 5 2283 cos g o8’y =0.

19—2
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The equation to the radical axis of these circles by
Art. 333 is

sin 4 sin Bsin € (2cos 4 + B cos B+ cos C)
sin A4 sin Bsin C + sin B cos Bsin* ( +sin Ccos Csin* B

woost 5 sin Bein C'+Boos*asin Csin A+ cos* Ssin 4 sin B

)] H
2cos'1§3 cos'% sin Bsin O+ cos‘g sin® C +cos‘g sin*B
that is,
acos 4 +B cos B+qcos C

4 B C
acos‘g ﬂcos‘§ rycos‘é)

sin 4 sin Bsin C( sid T s T o

4 B C ’
2008 9 Cos 9 cos )

Y
2

4. B.C acos“—g Bcos‘g qcos‘%
=dsmgshgen g \ma tmE twmo /-

This equation may be simplified by substituting for the
trigonometrical functions their known values in terms of the
_ sides; let & denote the half sum of the sides, then we obtain

or (acosA+BcosB+'ycosC)cos‘-;cos-gcos

(acosA+BcosB+vycosC){Z
c

A B
4 4 4
acos' B cos g Yo'y

= Snd +HnB + sin ' ;

therefore
2 { §
c ca
A
+7{cos C_2(sabc)}=0’
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alc—a)la-0D) +/3 (a.- b (b—-c¢) +'y(b—c) (c—a)

or bo o b Y
aa B8b e .
or b—¢Ti-a a—bno'
this may also be written thus
acos } A Bcosi B ycos} O =0

503 (B=0C) sn}(C—4d)  sm} @-DB)
Now the radical axis touches the inscribed circle; for it
may be shewn that the condition of tangency investigated in
Art. 322 is satisfied ; and as the radical axis touches one of
the circles the circles must touch, and the radical axis is the
common tangent at the point of contact.
Similarly we may shew that the nine-points circle touches
the escribed circles. '

335. If S=0 be the equation to a circle in a rational
form, the equation to any concentric circle will be of the form
8 —k=0, where k is some constant. Or, as az+58+cy is
a constant, we may put the equation in the form

_ S—1l(az+bB+cy) =0,
where [ is some constant.

For example, required the equation to a circle which is
concentric with the circle described round the triangle of
reference, and which touches the side . Assume for the
equation

aBy +byx+ciB —1(aa + b8 + cy)*=0.

At the point of contact with the side @ we have a=0;
thus aBy—1 (b8 + ¢y)'=0. This quadratic in % must then

have equal roots, so that 4I'b’¢* = (@ — 2lbc)*: thus = I‘Z& .

336. Let there be any quadrilateral, and let its sides be
represented by the equations
t=0, u=0, v=0, w=0,
then the equation
. tu + kvw =0,
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where k is a constant, represents a conic seetion circumscribing
the quadrilateral. For the equation represents a conic section
passing through the four points determined respectively by
t=0-and v=0, t=0 and w=0,
" 4=0and =0, =0 and w=0.

Also by giving a suitable value to &, the equation may be
made to represent any conic section passing through these
four points.

The above equation has the following geometrical inter-
pretation. If a.ng quadrilateral figure be inscribed in a conic
section, the product of the perpendiculars drawn from any
point of the curve on two opposite sides bears a constant ratio”
to the product of the perpendiculars on the other two sides.

‘We may observe that the term quadrilateral is often used
in analytical geometry in a wider sense than in ordinary
synthetical geometry. Thus, if we have four given points, we
may obtain three different quadrilaterals by connecting these
points in different ways. Take, for example, the figure in
Art. 75; and let 4, B, C, D be the given points. The three
different quadrilaterals are (1) the figure bounded by 4B,
BC, CD, DA ; (2) the figure bounded by AC, CD, DB, BA;
which in fact consists of the two triangles GAB and GCD;
(3) the figure bounded by AC, CB, BD, DA, which in fact
consists of the two triangles GBC and GDA.

Similarly, four given straight lines may be considered to
form three different quadrilaterals by their intersections. Take,
for example, the figure in Art. 75, and let the given straight
lines be EDC, EAB, AGC, BGD. The three different quad-
rilaterals are (1) the figure bounded by GC, CE, EB, BG;
(2) the figure bounded by G D, DE, EA, AG; (3) the figure
bounded by 4C, CD, DB, BA.

If four straight lines have for their equations
t=0, =0, v=0, w=0,

the conic sections passing through the angular points of the
three different quadrilaterals which these straight lines form,
may be denoted by the equations

tut+kvw=0, tv+kuw=0, tw+kuv=0.
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337. We shall next consider the equation wv —w*=0.
This represents a conic section which passes through the point
determined by «=0 and w=0, a.mf also through the point
determined by v =0 and w=0. Also each of the straight
lines =0 and v =0 touches the conic section where it meets
it; for if we combine u =0 with the above equation, we see
that w=0 also, that is, the straight line % =0, meets the
curve at only one point, namely, that point at which »=0
and w =0 intersect. Similarly the straight line v=0 touches
the curve. Thus w=0 and v= 0 represent two tangents to
the conic section, and % =0 represents the corresponding
chord of contact. ‘

‘We may also shew in the following way that the straight
line % =0 cannot cut the curve: for points on one side of the
straight line » =0, the expression u 1s positive, and for points
on the other'side of the straight line, negative; but w* is of
invariable sign; thus the straight line u =0 cannot cut the
curve.

The geometrical interpretation of the above equation is as
follows. The product of the perpendiculars from any point of
a conic section on a pair of tangents bears a constant ratio to
the square of the perpendicular from the same point on the
chord of contact. '

338. We will now consider the equations’to a secant and
a tangent to the curve denoted by uv=1w"; the results for
this particular case are included in the general results of
Art. 315, but the investigation may be put in a different
form.

Let («, v', w') denote one point on the curve, and (v”, v", w")
another. The equation to any straight line passing through
the first point may be denoted by

uy’ —ww =N\ (ou' —ww'),
where A is a constant. For this equation is of the first degree
in u, v, w, and therefore represents some straight line ; and
the equation is obviously satisfied at the point («', ', w').
Suppose the straight line to pass also through the point
(v, v", w") ; then we have

"’

uw'y —w'w =\ (V'Y —w'w).
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Hence, by division,
wy —ww' v’ — ww'

7 I e 719

u'Y —w'w v —w'w

’ ’ ’ ’
. ©uy — ww v — ww

thatls, e —— S —y

w 7 2 v w " r

7V — W W — —wWw
5 v
vll v’

or F(uv’—ww’)+w (vu' — ww') = 0.

This equation then represents the secant passing through
the two given points. Hence the equation to the tangent at
the point (¥, v/, w') is .

uv’ + vu' — 2ww’ = 0.

Suppose %,:p/, then from the equation to the curve

o 1 .. o " "1
Praaint similarly if o = F then i Thus the equa-
tion to the secant may be written
1 /u ) 1.,
Sl=—=w)+ = (v —w)=0,
e ta (v’ —w)
or utppv—p+p)w=0;

and the equation to the tangent may be written
u+ p"y—2u'w=0,

339. Next take the equation I'«*+m'’=n'w". This
may be written (nw+ mv) (nw—mv)=10"u". Hence by
Art. 337 nw +mv=0 and nw—mv=0 are tangents to the
conic section represented by the equation, and =0 is the
equation to the corresponding chord of contact. Since these
two tangents meet at the point of intersection of v =0 and
w =0, it follows that this point is the pole of u = 0. :

Similarly we may write the equation in the form
(nw + lu) (nw — lu) =m™",

and infer that the point of intersection of u=0and w=290 is
the pole of v=0. :
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Hence it follows that the point of intersection of u =0 and
=0 is the pole of w=0. See Art. 291.

340. The following is a particular case of the preceding
Article, ' + 8*=n"". (See Art. 71.) Suppose the straight
lines @ =0, B8 =0, at right angles; then a’+ 8 is the square
of the distance of the point (2, y) from the intersection of
a=0 and 8=0. Hence the above equation represents a
conic section which has o =0 for its directrix, and the inter-
section of a=0 and 8=0 for its focus. The straight lines

—a=0 and ny+a=0 are tangents to the conic section,
touching it at the extremities of the focal chord 8=0; also
these tangents meet on the straight line o =0; hence, the
tangents at the extremities of any focal chord meet on the cor-
responding directriz. Also the above tangents meet on the
straight line a= 0, which by supposition is perpendicular to
B=0; hence, the straight Z;'ne which joins the focus to the
intersection of tangents at the extremities of a focal chord is
perpendicular to that focal chord.

341. If u=0 and v=0 be the equations to two conic
sections which meet at four points, then u + lv =0 will repre-
sent any conic section which passes through the four points
of intersection. This will be obvious after the proofs given
of similar propositions.

Also if w=0 and %' =0 be the equations to two straight
lines, u+ lww'=0 will represent any conic section passing
through the four points at which the lines w =0 and w"=0
meet the conic section u=0. '

Also uw+w*=0 will represent a conic section passing
through the points of intersection of the conic section u =0,
and the straight line w=0. This conic section will have the
same tangent as 4=0 at the points where vu=0 and w=0
intersect ; we might anticipate this would be the case from
observing the interpretation of the equation % + lww' =0, and
supposing the straight line w'=0 to approach the straight
line w=0, and ultimately to coincide with it. We may
prove it strictly by taking one of the points where u =0
meets w =0 for the origin, and the straight line w =0 for the
axis of z; thus » becomes of the form ) '

Az’ + Bzy + Cy* + Do + Ey,
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and we can see, by Art. 283, that

Axz* + Bry+ Cy*+ Dz + Ey =0
and . Az'+ Bxy+ Cy*'+ Dz + Ey +1ly*=0
have the same tangent at the origin.

Also by giving a suitable value to [ the equation » + lw* = 0
may be made to represent the two straight lines which touch
the conic section =0 at the points where it intersects the
straight line w=0.  This may be inferred from Art. 293 ;

the equation w =0 is equivalent to %+ % —1=0, and the

2
equation =0 is equivalent to (% + %-— 1) +pxy=0. Thus

by taking I=—1 we have u+lw'=puxy; and the equation
zy =0 denotes the two tangents to the conic section u=0 at
its points of intersection with the straight line w=0.

342. Pascal's Theorem. The three intersections of the
. opposite sides of any hezagon inscribed tn a conic section are
on one straight line.

Let r=0,8=0,t=0, u=0,v=0, w=0, be the equations
to the sides of a hexagon which is inscribed in the conic sec-
tion §=0. Let the hexagon be divided by a new straight
line ¢ =0 into two quadrilaterals, one of which has for its
sides the straight lines obtained by equating to zero succes-
sively, , s, t, ¢, and the other the straight lines obtained by
equating to zero successively, u, v, w, . Now we know that
if ‘@, b, I, m are appropriate constants, the equation to the
conic section may be written in the forms as¢p + brt =0 and
lvg + muw = 0 therefore asd + brt and lvgp + muw must each
be identical with §; therefore asp + brt =lvp + muw ; there-
fore (a8 — lv) ¢ = muw — brt.

‘The right-hand member of this equation vanishes when
u and 7 simultaneously vanish, and when % and # simulta-
neously vanish; also when w and r simultaneously vanish,
and when w and ¢ simultaneously vanish. Since the left-
hand member is identically equal to the right-hand, the left-
hand member must also vanish in these four cases; that is,
one of its two factors ¢ and as—Jlv must vanish in each of
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these four cases. By construction, ¢ =0 represents the

straight line joining the point determined by r=0 and w=0,
with the point determined by ¢ =0 and » =0 ; and thus we see
that as — lv =0 is the straight line joining the intersection of
% =0 and r=0 with that of {=0 and w=0. But the straight
line as —Ilv=0 obviously passes through the intersection of
8=0 and v=0; therefore the three points determined respec-
tively by u=0 and =0, =0 and w=0, =0 and v =0, lie
on a straight line.

It is to be observed that if six points be connected by
straight lines in different ways, as many as sixty figures can
be formed which may be called hezagons in an extended sense
of that word. Thus for six given points on a conic section
there will be sixty applications of Pascal’s Theorem.

343. Let s=0 be the equation to a conic section, and
u=0, v=0, w=0, equations to three straight lines; then
8—=1"'=0, s—m'=0, s —n*w’ =0, represent curves of the
second degree touching the proposed conic section. By pro-
perly choosing u, v, w, [, m, n, we may make each of the last
three equations represent a pair of straight lines touching
8=0. (See Art. 341.) Thus, if there be a hexagon circum-
scribed round the conic section s=0, the equations

8—-lu*=0...(1), s—m"*'=0...(2), s—n'w'=0...(3),
may be taken to represent the six sides of the hexagon.
By combining (1) and (2) we obtain
 8—Put— (s—m")=0, or (mv—lu) (mv+lu) =0...(4),

for the equation to a pair of straight lines which pass through
the intersections of (1) and (2).

Similarly (nw —mv) (nw +mv) =0....ocennnnnnn. (3)

represents a Ipair of straight lines which pass through the in-

tersections of (2) and (3). And
(le — nw) (luw+ nw) =0...ue..nee.ne. (6)

represents a pair of straight lines which pass through the in-
tersections of (3) and (1).

The six straight lines which we have obtained may be
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arranged in four groups, each cbntaining three straight lines
which meet at a point, namely,

my —lu=0, nw —mv =0, w—nw=0,
mv+ lu=0, nw + my = 0, lu—nw=0,
my+lu=0, nw —my =0, u+nw=0,
my —lu=0, nw + my =0, 4+ nw =0,

This result is consistent with Brianchon’s theorem; if @
hexagon be described about a conic section the three diagonals
which join oppostte angles meet at a point.

For suppose that a hexagon is described round a conic
section, and let its angular points be denoted by 4, B, C, D,
E, F. By properly choosing %, v, w, I, m, n, we may make
equation (1) denote the straight lines 4B and DE, equation

2) denote the straight lines BC and EF, and equation (3)
enote the straight lines CD and F4. We will now examine
what straight lines are determined by equations (4), (5), and
(6). Equation (4) determines the two straight lines which
pass through the intersections of the straight lines determined
by (1) and (2); and as the signs of  and m are at present in
our power we may take them so that mv — lu = 0 shall repre-
sent the straight line BE, and then mv + lu = 0 will represent
the straight line joining the point which is common to 4B and
EF with the point which is common to BC and DE. Simi-
larly as the sign of n is still in our power, we may take it
80 that nw — mv =0 shall represent the straight line CF, and
then nw + mv =0 will represent the straight line joining the
point which is common to BC and F4 with the point which
18 common to CD and EF. One of the two straight lines
represented by (6) is 4D, and the other is the straight line
joining the point which is common to DE and F4 with the
point which is common to CD and 4B; it is however not
obvious how we are in general to discriminate between these
"two straight lines. Thus the proof of Brianchon’s theorem
is not perfectly satisfactory, and accordingly we shall give
another proof by which the theorem is deduced from that
of Pascal.

Let the angular points of the hexagon be denoted as
before by the letters 4, B, C, D, E, F. Let the straight line
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be drawn which passes through the points of contact of the
conic section and the tangents 4B, BC; also let the straight
line be drawn which passes through the points of contact of
the conic section and the tangents DE, EF'; and let Pdenote
the point which is common to these two straight lines. Then
P 13 the pole of BE; see Arts. 103, 120, 289. In the same
way we may determine the pole of CF which we shall denote
by @, and the pole of AD which we shall denote by R. By
Pascal’s theorem P, @, and R lie on a straight line; hence’
CF, BE, and AD meet at a point, namely, at the pole of the
straight line PQR; see Art. 2Y1.

For further information on the subject of this Chapter
the student is referred to Salmon’s Conic Sections. »

EXAMPLES.

1. Shew that if a—c:a'—c :: b: ¥, a circle may be
described through the intersections of the two conic sections
ar’ + by + cy' +de+ey+ =0,

dat +bxy+cy' +dzc+ey+f=0.

Find also the condition that a parabola may be described
passing through the origin and the points of intersection of
these curves.

2. Two conic sections have their principal axes at right
angles: shew that a circle will pass through their points of
intersection.

3. The equations to two conic sections are

Ay + 2Bxy+ Co* + 24'2=0, ay'+2bxy+ ca® +2a'z=0.

Shew that the straight lines joining the origin with their
points of intersection will be at right angles to each other if

' @A+ C)=4 (a+¢).

4. An ellipse is described so as to touch the asymptotes

of an hyperbola: shew that two of the chords joining the
points of intersection of the ellipse and hyperbola are parallel,

-



302 EXAMPLES. CHAPTER XV.

5. If aB=c" be the equation to an hyperbola (Art. 71),
then aB =0, a*~B*=0, * —n’8* =0, are the respective equa~
‘tions to the asymptotes, the axes, and a pair of conjugate
diameters, » being any constant.

. 6. Thestraight lines which bisect the angles of a triangle,
meet the opposite sides at the points P, Q, R, respective%y :
find the equation to an ellipse described so as to touch the .
sides of the triangle in these points.

7. From any point two straight lines are drawn, one in-
clined at an angle a, the other at an angle ~27f+a, to the axis

of a parabola: shew that another parabola may be described
which shall pass through the four points of intersection,
whose axis is inclined at an angle 2a to that of the given
parabola.

8. Prove that the equation to the conic section which
passes -through the point (h, k), and touches the parabola
y*=Iz at the vertex and at an extremity of the latus rec=
tum, is (y*—Iz) (k — 2h)"'= (y — 2x)* (K" — IA).

Shew that it is an ellipse or hyperbola according as the
point (b, k) is within or without the parabola.

9. A conic section touches the sides of a triangle ABC at
the points a, , ¢; and the straight lines 4a, Bb, C, intersect
the conic section at @, ¥/, ¢’: shew that

(1) the straight lines da, Bb, Cc pass respectivel
“through the intersections of B¢’ and Cb, Ca’ and Ac’, Ab
and Bda/,

(2) the intersections of the straight lines ab and a'd’, be
and b'c¢’, ac and a'c), lie respectively on 4B, BC, CA.

10.. A conic section is described round a triangle ABC;
straight lines bisecting the angles of this triangle meet the
conic section at the points A', B’, €, respectively: express
the equations to 4'B, 4'C, 4'B..

11. Ifaconic section be described about any triangle, and

the points where the straight lines bisectinithe angles of the
triangle meet the conic section be joined, the intersection of
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the sides of the triangle so formed with the corresponding
sides of the original triangle lie on a straight line.

12. Interpret the equation

TrY ) (B4 Y- =0:

(a+b l)(af'l‘b/ 1)+[lva 0:
find how many parabolas can be drawn through four given
points.

18. If u=0, v=0, w=0 represent the sides of a tri-
angle, shew that ‘the sides of any triangle which has one
angle on each side of the former may be represented by

v

l+w=0,

-u+nv+—’£=0, '—‘+v+lw=0, mu +
m n

where [, m, n are constants.

Find also the relation which must hold between I, m, %, in -
order that the straight lines joining corresponding angles of
the two triangles may meet at a point.

. 14. Acircle and a rectangular hyperbola intersect at four
points, and one of their common chords is a diameter of the
hyperbola: shew that another of them is a diameter of the
circle. '

15. ACA4'is the major axis of an ellipse, P any point on
the circle described on the major axis, AP, A’P meet the
ellipse at @, @'; shew that the equation to Q@' is

(a® + &°) y sin 8 + 20z cos § — 2ab* =0,

21% ellipse being referred to its axes, and 6 being the angle
'P.

If an ordinate to P meet Q@ at R, the locus of R is an
ellipse. ’

16. The locus of a point such that the sum of the squares
.of the perpendiculars drawn from it to the sides of a given
triangle shall be constant, is an ellipse; and if the constant
be so chosen that the ellipse may touch the side opposite to
the angle 4 at D, then CD : BD : b*: c'.
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17. 'With the notation of Art. 323, shew that the equation
to the straight line through C and the centre of the circle is

acos B=SBcos 4.

18. Suppose in Art. 323 that D is the middle point of the
arc AB; then the equations to BD and 4D are respectively

asin C+ (sin 4 + sin B) =0;
Bsin C +q (sin 4+ sin B) =0.

19. In Art. 818, equation (4), if 4', B, C' be the points
of contact of the triangle and conic section, shew that the
equation to 4'B is lu + mv — nw=0.

20. In the figure of Art. 292, suppose u =0 the equation
to AC, v= 0 the equation to BD, and w =0 the equation to
EF, and that P'u* + m®*® — n’w" = 0 represents a conic section
passing through 4, B, C, D;.then express the equations to
the tangents at 4, B, C, D, and also to the straight lines
AB, BC, CD, DA. Shew also that the straight line FG
passes through the intersection of the tangents at 4 and B,
and of those at C and D. ‘

21. Express by the aid of Art. 323 the equation to the
circle described round the triangle formed by the straight lines .

a a a
.'/—m;w"'ﬁl» y—mr"""',;;;’ .'/-'mr’"'i';.-

Hence deduce the last proposition of Art. 146,

22. Give a geometrical interpretation of equation (lj in
Art. 310, and shew that it is a particular case of the theorem
in Art. 336.

23. Interpret the last equation in Art. 323: deduce the
following theorem ; if from any point of the circle which
circumscribes a triangle, perpendiculars are drawn on the
sides of the triangle, the feet of the perpendiculars lie on one
straight line.

24. If ellipses be inscribed in a triangle each with one
focus on a fixed straight line, the locus of the other focus is
a conic section passing through the angular points of the
triangle.
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25. Three conic sections are drawn touching respectively
each pair of the sides of a triangle at the an points where
they meet the third side, and each passing through the centre
of the inscribed circle: shew that the three tangents at their
common point meet the sides of the triangle which intersect
their respective conics at three points lying on a straight line.
Shew also that the common tangents to each pair of conics
- intersect the sides of the triangle which touch the several
pairs of conics at the above three points.

26. With the angular points of a triangle 4 BC as centres,
and the sides as asymptotes, three hyperbolas are described,
having 4', B, ' as their vertices respectively : prove that if

A4 asin—;2 = BB’ sin g= CC' sin g , the intersections of each
pair of hyperbolas lie on the axis of the third.

27. The necessary and sufficient condition in order that
the equation Iz*+mB" +ny* =0 may represent a rectangular
hyperbola is I +m +n = 0. '

28. Shew that +/(la) + +/(mB) + 4/ (ny) =0 represents in

gener?l an ellipse, parabola, or hyperbola according as

m

denote the lengths of the sides of the triangle formed by
Q=Q, B=0,y=0.

+E) 1s positive, zero, or negative; where a, b, ¢

29. Shew that [By+mya+naB =0 represents in general
an ellipse, parabola, or hyperbola according as

Pa’+ m’b* + n’c* — 2lmab — 2mnbe — 2nlca -
is negative, zero, or positive.
- 30. Express the equation to the circle which is con-

centric with the inscribed circle of the triangle of reference,
and passes through the angular point 4.

31. Find the fourth point of intersection of the conic
sections lvw + mwu + nuv = 0, and L'vw + m'wu + n'uy =0,

T.C. 8. 20
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32. Shew that the equation to the radical axis of the
circles inscribed in a triangle and circumscribed about it is

a cosec A cos* % + B cosec B cos* ’g+ « cosec C cos* g =0.
33. Find the equation to the diameter of the curve
1By + mrya +naB =0 which passes through the point of in-
tersection of the straight lines 8=0 and ¢y =0.

34. Find the equation to the tangent to the curve
v (l2) + ¥/ (mB) + 4/(ny) = 0, which is parallel to the straight
line y=0; and thence sheWBthat the centre of the curve is
a _ = 7
met+nb mna+ilc b+ma’

35. Employ the method of Art. 332, and the result given
in Example 29 to find the condition which determines whether
the general equation

La*+ MB* + Ny + 2L'By + 2M'y2+2NafS =0

represents an ellipse, parabola, or hyperbola.

determined by

36. A conic section passes round a triangle, and the
tangent to the curve at each angular point is parallel to the
opposite side of the triangle: shew that the curve is an
ellipse. ‘

37. OP, 0Q are tangents to an ellipse at P, @, and
asymptotes of an hyperbola; RS is a common chord parallel
to PQ: shew that if PR touches the hyperbola at B, Q8
touches it at S; also if PS, QR intersect at U, then OU
bisects PQ.

38. If ¢, u, v, w be linear functions of = and y, shew that
the equation to the tangent at the point (¢, «, v, w") to the
~ conic section given by tu = vw is‘tu'+ ut' = vw’ + wv'.

39. Ifa=0,8=0, v=0, & +-+Z=0} £+E+l=0’
a B v L% b, A a, b
oy + 5 + o= 0, be the.equations to the sides of a hexagon which
circumscribes a conic section, shew that

a, (b, = be,) +a, (b, — be,) + a, (be,—be,)=0.
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40. ABC is the triangle of reference; D, E, F are the
middle points of the sides: express the equations to the
straight lines which bisect the angles of the triangle DEF.

41. Express by means of abridged notation the equation
to the ellipse which touches the sides of a triangle at the
middle points of the sides.

42. From a point P two tangents are drawn to a conic
section meeting it at the points M and N respectively; the
straight line through P which bisects the angle MPN meets
the chord MN at @; any chord of the conic section is drawn
through @ : shew that the segments into which the chord is
divided by the point @ subtend equal angles at P.

Coga



( 308 )

CHAPTER XVI

SECTIONS OF A CONE. ANHARMONIC RATIO AND HARMONIC
PENCIL.

Sections of a Cone.

344. WE shall now shew that the curves which are
included under the name conic sections, can be obtained by
the intersection of a cone and a plane.

DEFINITION. A cone is a solid figure described by the
revolution of a right-angled triangle about one of the sides
containing the right angle, which remains fixed. The fixed
side is called the axis of the cone.

Yo

Let OH be the fixed side, and OHC the right-angled
triangle which revolves round OH. In order to obtain a
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cone such as is considered in ordinary synthetical geometry,
we should take only a finite straight line OC; but in analy-
tical geometry it is usual to suppose OC vndefinitely produced
both ways. A section of the cone made by a plane through
OH and OC will meet the cone in a straight line OB, which
is the position OC would occupy after revolving half way
round. Let a section of the cone be made by a plane per-
pendicular to the plane BOC; let APbe the section, 4 being
the point where the cutting plane meets OC; we have to find
the nature of this curve AP. Let a plane pass through any
point P of the curve, and be perpendicular to the axis OH ;
this plane will obviously meet the cone in a circle DPE,
having its diameter DE in the plane BOC. Let MP be the
straight line in which the plane of this circle meets the plane
section we are considering, M being in the straight line DE.
Since each of the planes which intersect in MP is perpen-
dicular to the plane BOC, MPis perpendicular to that plane,
and therefore to every straight line in that plane.

Draw AF parallel to ED, and ML garallel to OB; join
AM. Let AM =2, MP=y, OA=c, HOC=a, 0AM=0;
the angle A ML will be equal to the inclination of AM to OB,
that is, to m — 6 — 2a.

MD sin MAD sin @ asin 0
ow MA~ sn MDA~ cosa’ therefore M(D = cosa

" EM=FL=FA—-AL=2csina—AL;

AL _sin AML _sin (r—6—2a)
A~ sin ALM ™ .('n )
s1n

N

_ 3 +a
therefore AL = @ sin (64 29) ,
cosa

@ sin (0 + 2a)

therefore EM =2¢csina— o5 a

But, from a property of the circle, MP'=EM.MD;
zsin 0 { . zsin (0 + 21)}
2csing—~—F7——"¢.

therefore =
3 ere y cos a cos @
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If we compare this equation with that in Art. 282, we see
that the section is an ellipse, hyperbola, or parabola, accord-
. sin 0 sin (6 + 2a) . . "
ing as — cota 8 negative, positive, or zero, that
is, according as 6+ 2az is less than m, greater than =, or
equal to . :

Hence if AM is parallel to OB the section is a parabola,
if AM produced through M meets OB the section is an ellipse,
if A M produced through 4 meets OB produced through O the
gection is an hyperbola. ‘

If ¢ =0 the section is a point if 6+ 2« is less than =, two
straight lines if 6 + 2a is greater than r, and one straight line
if @+ 2a =w. The section is also a straight line whatever ¢
may be, if 6 =0 or .

The equation above obtained may be written

_ sin #sin (04 22) (2csina cosa .
3{'— cos’a {Ein (0 + 2a) a:-_-a:’},

suppose 6+2xz to be less than 7, so that the curve is an
ellipse; then by comparing this equation with the equation
2

P = %, (2az — «*), we have

2csinacosa b _sin @ sin (6 4 22)

2a="n @+2a)° @ cos’ @
_ csin2a ,_C'sin’a sin 6
Thus 2= @+ DT em@+2)
Also e=1— b _ cos®a—{sin’ (f +a)—sin"a} _cos’(f +a)
T a cos’a T cos’q

If we suppose in the figure on page 308 that AM is pro-
duced to meet the cone again at 4’, then 2a=44', as might
have been anticipated ; also b may be shewn to be a mean
proportional between the perpendiculars from 4 and 4" on
the axis OH. Similar results may be obtained when the
curve is an hyperbola.

345. An ellipse of given excentricity can always be ob-
tained from a given cone by properly choosing the cutting
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plane. For we have the equation cos® (6 + a) = ¢’ cos®a, in
which « and e are given, ¢ being less than unity. Now it is
manifest that there must exist a value of 6 between 0 and

er—a which satisfies this equation, and also a value of 4

between 72_:- —a and 7 — 2a.

From a given cone we cannot obtain an hyperbola of
given excentricity unless the given quantities are such that
e* cos’ @ is not greater than unity.

846. Art. 344 admits of great extension.

We may first give a more general definition of a cone.
If a straight line move so as always to pass through a fixed
point and a fixed curve the surface generated is called a cone.
The fixed point is called the vertex, and the fixed curve the
directrix. : .

If a cone be formed with any conic section as directriz
any plane section of the cone will be a conic section.

The demonstration will be similar to that in Art. 344.
Let O be the vertex, and instead of the circle with BC as a
diameter let there be any conic section for directrix. The
plane EPD is to be taken parallel to the plane of the direc-
trix, so that the curve EPD will be a similar conic section.
The plane OBC may be any fixed plane passing through the
vertex, so that it will not be necessarily perpendicular to the

lane EPD. Now an equation of the second degree will hold

etween MP and MD, because the curve EPD is a conic
section ; and MD bears a constant ratio to AM; therefore an
equation of the seeond degree holds between MP and A M.
And MP is always parallel to a fixed direction. Therefore
the curve AP is a conic section,

347. 1In consequence of the extension of the definition
of a cone it is necessary to have a special name for the par-
ticular cone considered in Art. 344; and accordingly it is
called a right circular cone. The word circular indicates
that the directrix is a circle ; and the word right indicates
that the straight line drawn from the vertex to the centre of
the directrix is at right angles to the plane of the directrix.
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An oblique circular cone is a cone in which the directrix
is a circle, but the straight line drawn from the vertex to the
centre of the directrix is not at right angles to the plane of
the directrix.

‘When the word cone occurs in mathematics the student
will often have to determine from the context whether the
word is used in the general sense of Art. 346, or is used as an
abbreviation for right circular cone.

348. The case of an oblique circular cone deserves sepa-
rate consideration. .

Let O be the vertex of the cone; EPD a section parallel
to the plane of the directrix, which is therefore a circle.

(0] Q

E

P

Let AP be a section made by any plane. Let Pp be the
intersection of these two planes; and ED that diameter of
the base which bisects Pp. Let M be the point of bisection,
and MA the intersection of the plane PAp and the plane
EOD. Then MP is always parallel to a fixed direction, but
is not necessarily at right angles to AM.

Proceeding as in Art. 344 we have MP*=EM.MD.
Now EM=FA—AL. Also the ratio of AL to AM is con-
stant, and so is that of MD to AM. Thus finally we obtain
MP*=\.AM —u. AM? where A and u are constants, which
involve F4 and the sines and cosines of the angles MAD,
MDA, AML.

It is easy to shew that in a certain special case the section
is a circle. Suppose the plane OED perpendicular to the
plane of the directrix; and suppose the plane M AP perpen-
dicular to the plane OED: then MP is at right angles to
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AM. Let AM produced meet OF at A'; then the section
will be a circle provided MP* = AM. MA', that is provided
AM.MA'=EM.MD. This requires the triangles A MD and
A'ME to be similar; thus the angle 4D must be equal to
the angle MEA', and the angle MDA equal to the angle
MA'E. Such a section of an oblique circular cone is called a
sub-contrary section. :

349. Conversely, suppose we have a given conic section,
and we require to form an oblique circular cone which shall
contain the conic section.

Refer the conic section to axes consisting of a diameter
and the tangent at its extremity. The angle between these
axes will determine the angle AMP of the preceding figure.
Then A and p will have known values, so that we have two
equations for finding four unknown quantities, namely, F'4
and the angles MAD, MDA, AML. Hence the problem is
indeterminate ; and will remain indeterminate even if one
condition is introduced.

Such a condition, for example, might be the following :
let M A produced meet at @ the plane through O parallel to
the plane of the directrix; and let 4@ be required to have
a given value. :

Suppose AM produced to meet OF at 4’; then
0Q MD 0Q LA
A9~ ™ xo=ma’
0Q" MD.AL
A4Q.4¢  MA* »
The right-hand expression is what we have denoted by u;

thus when the conic section is given, and also 4@, it follows
that OQ is known.

therefore

Anharmonic Ratro and Harmonic Pepcil.

350. We will now give a short account of anharmonic
ratios and harmonic pencils, which are often used in investi-
gating and enunciating properties of the conic sections.
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Let there be four straight lines meeting at a point; then
if any straight line ADCB be drawn across the system,

%-:— %—g will be a constant ratio.

Q

A D C! B'

Suppose O the point where the straight lines meet ; then
AB _sin 40B AC _sin 400,
AO sinABO’ A0 sindCO’

AB s8in AOB sin 4C0

therefore A0 " sind0C sinABO°

DB _sin DOB sin DCO
DC sinDOC " sin DBO’
il_@_:_g_Bi_ginAOB_._sinDOB
AC” DC sindA0C sinDOC*

Similarly
therefore

Now suppose any other straight line A'D'C’B’ drawn
across the system, then since 4OB and A’OB’ are the same
angle, and so on for the other angles, we have

4B _DB_AB DB

407 DCTAC T D0

“which proves the proposition.
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Similarly we can prove that each of the following is a
constant ratio -
AB  CB

45 0B, AC  BC

| " %D 8D
851. DEFINITIONS. Any four straight lines meeting at
a point form a pencil.

A straight line drawn across a pencil is called a trans-

versal.
The four points at which the straight line meets the pencil
is called a range.
. AB DB AB OB
Any one of the c(?nsta.nt ratios 20 Do ADT 0D
40, B0
AD " BD
The pencil is called harmonic if AB. DC= AD.BC, that
is, if the rectangle formed by the whole straight line (4.B)
and the middle part (DC) is equal to the rectangle of the
other two parts (4.D), (BC).

is called an anharmonic ratio of the pencil.

352. The harmonic pencil is so called because it divides
any transversal harmonically. For since AB.DC=AD.BC,
:%15; =1'B;—g, that is, if we call 4B, AC, AD, the first, second,
and third quantities respectively, the first is to the third as
the difference of the first and second is to the difference of the
second and third.

When the pencil is harmonic one of the three constant
ratios of the pencil is equal to unity. :

‘We shall sometimes select one of the anharmonic ratios of
a pencil, and confine our attention to it, and shall then speak
of the selected ratio as the anharmonic ratio of the pencil.

. 353. Suppose 04, OB, 0C, OD form an harmonic pencil ;
if we take any new origin O, and join 0’4, OB, 0'C, 0'D,
these four straight lines form a new harmonic pencil ; for the
transversal ABCD is cut harmonically. - .
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354. The anharmonic ratio of a pencil is not altered if
the transversal meet the straight lines of the pencils produced,.
instead of the straight lines themselves.

A J)/ C B
/
D .

Suppose 04, OB, OC, OD to be a pencil, and let a
transversal A'B'C’D’ meet three straight lines of the pencil,
and the fourth 4 O produced at A'. The angles 4'OB, A OB
are supplemental; and so are 40D, 4'0D'; and so on.

Hence any anharmonic ratio formed on ABCD is equal to
the corresponding ratio formed on 4'B'C'D'.

355. Suppose AB. CD=AD.BC, sothat 04, OB, OC,
OD form an harmonic pencil. By the last proposition
Q’;_U_B_'—'A_'B;.G_B—lo
- AD " CD AD"CD ™’
therefore 0A4’, OB, 0C', OD' form an harmonic pencil.

Similarly 0C", 0B, 0A4', and DO produced through O
will form an harmonic pencil Thus from one harmonic
pencil by producing the straight lines through the vertex,
we can derive four other harmonic pencils.

356. The straight lines whose equations are a=0, 8= 0,
a—kB=0, a+ kB =0 form an harmonic pencil,

Let OM be the straight line a =0, ON the straight line
B= I(z/,SOP the straight line a— k8 =0, OQ the straight line
a+kB=0.
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Let a transversal meet the pencil at mpng; then (Art. 71)

sin POM _ ke sin QOM
sin PON ~ " sin QON’
sin POM sin QON _ _
therefore sin PON "sin QOM 1;
therefore (as in Art. 350) moar g,
pn gm
therefore pm.gn=pn.qm.

The same result will follow if we draw the transversal in
a different position. The harmonic pencil is so formed that
its outside straight lines are always one of the two a=0 and
B =0, and one of the two a—kB=0 and a+kB8=0.

357. The anharmonic ratio of the four straight lines
a=0, B=0, a—kB=0, a+kB=0, is Igc_

For as in the preceding Article we have
sinPOM=k " gin QOM_k,.
sin PON™ ™ sin QON ™’

therefore, by Art. 351, % expresses the anharmonic ratio.
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358. Article 856 will also hold if the equations to the
straight lines be ¥=0, v=0, u— kv =0, and »+ kv=0. For,
by Art. 57, we have u=\a, v=puf3, where A and i are con-
stant quantities; hence the equations u —kv=0 andu+kv=0"
may be written Aa —kuB =0 and Aa+ kuB =0, or a—k'B=0

and a+k'8=0, where k'= 1’5 . Hence Article 856 becomes
immediately applicable. -

859. The four straight lines EB, EC, EG, EF, in Art. 75.
form an harmonic pencil; for their equations are

u=0, w=0, li—nw=0, lu+nw=0.
By symmetry FB, FA, FG, FE, will also form an har-
monic pencil. 4
Also @D, GC, GF, GE form an harmonic pencil, for their
equations are respectively
lu—mv=0, mv—nw=0, lu—mv—(mv—nw)=0,
lu —mv+mv—nw=0.

860. A straight line drawn through the intersection of
two tangents to a conic section is divided harmonically by
the curve and the chord of contact.

Refer the curve to the tangents as axes ; its equation will
be of the form (Art. 293)

(%o+%_1)’+m=o .................. ).

Suppose a straight line drawn through the origin, and let
its equation be (Art. 27)

Thus the distances from the origin of the points of inter-
section of (1) and (2) will be the values of » found from the
equation

(Z%‘+"—Z:— )’+;dmr’=0, ,
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or

! 1y ‘
(Z”’%‘F) I S @),

If ' and 7" be the roots of the equation, we have
1,1 Il m
?*7‘2(7»‘“7) ..................... ().
Also the equation to the chord of contact is

&x
7'-y%--1=o ........................ (5).

Hence for the distance (r,) of the point of intersection of
(2) and (5) from the origin, we have the equation

br, mr, _ 1 I m
7‘— -I;—-—l, or ;!_h+75 .............. . (6).
2 1.1 L.
From (4) and (6) we ha.ve"—_=7-7 ol thus 7, is an har-

. 1
monic mean between " and r".

Since LMNO is divided harmonically, if from any point in
AB we draw straight lines to Z, N, and O, these straight lines

o

with 4 B form an harmonic pencil. A particular case is that
in which the point in 4B is the intersection of the tangents
at N and L, which we know will meet on 4B produced.
(See Arts. 103, 185.)
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361. Let 4, B, C, D be four points on a conic section,
" and P any fifth point. Let a denote the perpendicular from
P on AB, B the perpendicular from the same point on BC,
9 on CD, 8§ on DA. Then by Art. 336 we know that
wherever P may be, ay bears a constant ratio to 86. Now
AB . a = twice the area of the triangle PAB

=PA.PB.sin APB;

theref _PA.PB.sin APB
erefore a = 4B .

Similar values may be found for 8, ¢, 8. Thus

P4.PB.PC.PD

AB.CD

bears a constant ratio to
PA'gg'ig°PDsinBPO’.sinDPA;
therefore :;: ‘;;g :;: gll),g is constant, that is, the pencil

drawn from any point P to the four points 4, B, C, D, has a
constant anharmonic ratio,

sin APB .sin CPD

EXAMPLES.

1. Different elliptic sections of a right cone are taken
all perpendicular to one plane which contains the axis of the
cone: if the elliptic sections have equal major axes, shew that
the locus of the centres is an ellipse.

2. If two spheres be inscribed in a right cone so as to
touch the plane of any section, the points of contact of the
plane with the spheres will be the foci of the conic section,
and the intersections of this plane with the planes of contact
of the spheres and the cone will be the directrices of the conic
section.
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3. Find the locus of the foci of all the parabolas which
can be cut from a given cone.

4. Shew that a given hyperbola cannot be cut from a
given cone unless the vertical angle of the cone is greater than
the angle between the asymptotes of the hyperbola.

5. Shew that the latus rectum of any section of a given
cone varies as the perpendicular from the vertex of the cone
on the plane of section.

6. A conic section circumscribes a triangle, and at each
angular point the tangent, the two sides of the triangle, and
the perpendicular on the opposite side form an harmonic
pencil: determine the equation to the conic section.

7. If the equations to the three diagonals of a quadri-
Jateral be u=0, v=0, w=0, shew that the equations to the
four sides may be put in the form lu + mv + nw =0,
—lut+mv+aw=0, lu—mv+nw=0, lu+mv—nw=0.

T.C.8. - : 21
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CHAPTER XVIL
PROJECTIONS.

362. IN the preceding Chapters we have carried on our
investigations chiefly by the aid of co-ordinates; there are
various other methods by which we may discover and de-
monstrate theorems relating to the Conic Sections: we shall
now explain one of these, which is called the method of
projections.

363. There are two kinds of projection which may be
called respectively orthogonal projection and conical pro-
Jjection : we proceed to consider the former. :

364. DEFINITIONS. From any point let a perpendicular
be drawn on a fixed plane; the intersection of the perpen--
dicular with the plane is called the orthogonal projection of
the point on the plane. The plane on which the perpen-
dicular is drawn is called the plane of projection.

The orthogonal projection of any line straight or curved
is the locus of the orthogonal projection of every point in
that line.

365. We shall use the word projection as equivalent to
the term orthogonal projection, until the contrary is specified.

366. The projection of a straight line is in gemeral a
straight line. '

p_—°

P m

|

p r q
Let PQ be a straight line. From any point P in the |
straight line draw Pp perpendicular to the plane of projection, |
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meeting it at p. Let a plane pass through PQ and Pp, and
let its 1ntersection with the plane of projection be pg.

Then pq is a straight line, by Euclid, X1. 3: and we shall
shew that pg is the projection of PQ.

Take any point B in PQ; and in the plane QPp draw
Rr parallel to Pp, meeting pq at »: then Rr is perpendicular
to tﬁe plane of projection, by Euclid, X1. 8, so that 7 is the
projection of B.

If the given straight line be perpendicular to the plane of
projection, its projection is a point.

867. The length of the projection of a straight line is
equal to the length of the original straight line multiplied by
the cosine of the anmgle between the strarght line and 1ts pro-
Jection. _ '

Let PQ be a straight line, pqrits projection; draw Pm
parallel to pg meeting Qg at m. Then

) p9=Pm= PQ cos QPm.

And by the angle between PQ and pq is meant the angle
between one of these straight lines as P(Q), and any straight
line Pm parallel to the other. Thus @Pm is the angle be-
tween PQ and pq. .

368. The projections of parallel straight lines are them-~
selves parallel straight lines.

Let there be two parallel straight lines: denote them by
PQ and RS. Let p denote the projection of P, and r the
projection of R.

The plane QPp is parallel to the plane SRr, by Euclid,
xI. 15; the intersections of these planes with the plane of
projection are parallel by Euclid, X1. 16; and these inter-
sections are the projections of PQ and RS by Art. 366.

The angle between PQ and its projection is equal to the
angle between RS and its projection by Euclid, x1. 10.

369. Let the boundary of any plane figure be projected ;
then the area of the projected figure vs equal to the area of the.

21—2
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original figure multiplied by the cosine of the angle between
the two planes.

First, suppose the figure to be a triangle having one side
in the plane of projection.

Let ABC be the triangle, having the side 4B in the

C

A D B

plane of projection. Let ¢ be the Brojection of C. Draw
CD perpendicular to 45, and join c.D.

Cc is perpendicular both to Ac and Dc; thus
AD*=AC*— CD* = Ac*+ Cc*— (Dc* + Cc*) = Ac*— D¢t
therefore the angle 4.Dc is a right angle.

Now the area of ABc=%AB.Dc; and the area of

ABC= % AB.DQC: therefore
area of ABc _ Dc
area of ABC ~— DC
and CDc is the angle of inclination of the planes.
Next, suppose the figure to be any triangle.
Let ABC be any triangle. Let the plane of 4B C meet
(o}

=cos CDc;

a b
the plane of projection in the straight line ab. Let ¢ denote
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the angle between the planes. Join aB. Then, by the
former case,

area of projection of aCh = area of a Ob x cos vy,
area of projection of aBb = area of aBb x cosy;

therefore, by subtraction,
area of projection of a CB = area of aCB x cos .

This shews that the proposition is true for any triangle
which has' one angular point in the plane of projection.
Hence it is also true for the triangle a4B. And therefore,
by subtraction, it is true for the triangle 4ABC.

Next, suppose that the area is any plane rectilinear
figure. Then the figure may be decomposed into triangles,
and as the proposition is true for each triangle, it is true for
the whole figure.

Last, suppose that the area is bounded by curved lines.
We may inscribe any rectilinear polygon in this figure, and
the proposition will be true of the polygon ; and by suffi-
ciently increasing the number of sides of the polygon, and
diminishing the length of each side, the area of the polygon
can be made to differ as little as we please from the area of
the figure. Thus we may admit that the proposition is also
true for the area boundeg by the curved lines.

370. The projection of the tangent at any point of @ curve
ts the tangent at the corresponding point of the projection of
the curve. '

Let P and @ be two points on a curve; let p and ¢
be their projections. Then the straight line through p and ¢
is the projection of the straight line through P and Q. Let
@Q move along the curve to P; then the limiting position of
the secant through P and @ is the tangent at P to the curve:
and as ¢ moves to P along the curve, ¢ moves to p along the
- projection of the curve, and the limiting position of the secant
through p and ¢ is the tangent at p to the projection of the
curve.

871.  The projection of a circle is an ellipse.
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Let Obe the centre of a circle ; let BOB be that diameter
which is perpendicular to the intersection of the plane of the

CDh
N,

circle and the plane of projection. Let 4.4’ be the diameter
at right angles to BB’

Take any point P on the circumference of the circle, and
draw PM perpendicular to 44'. Then

CM*+ PM* = CP* = C4*
Now, suppose the projections of C, P, M to be denoted
by ¢, p, m respectively. Then cm is parallel and equal to

'M, and pm = PM cos «y, where ¢ is the angle of inclination
of PM to 1ts projection. Thus

sy, (pm)
4 (cm)* + costy =C4"
Let em=2, pm =y, CA =r: then

a,’-i-y’—’

—=r"
cos’ iy

Now ¢ is the same for every ordinate ; see Art. 368 ; and
cm and mp are at right angles by the reasoning in the first
part of Art. 369. Thus the above equation represents an ellipse
having r for the semi-axis major, and 7 cos ¢ for the semi-axis
minor.

The straight line ACA’ is either the line of intersection
of the plane of the circle and the plane of projection, or is
parallel to this line. In the former case m and M coincide,
and v is the angle of inclination of the two planes; in the
latter case y is equal to the angle of inclination of the two
planes by Euclid, x1. 10.
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It is obvious that the centre of the circle is projected into
the centre of the ellipse.

372. Conjugate diameters of an ellipse are the projections
%&meters of a circle which are at right angles to each
other.

For if diameters of a circle are at right angles to each
other, each diameter is parallel to the tangent at the extremity
of the other diameter.

Hence, by Arts. 368 and 370, the projection of each dia-
meter is parallel to the tangent to the projection of the
circle at the extremity of the other diameter. Therefore, by
Art. 191, the projections of diameters of the circle which are
at right angles to each other are conjugate diameters of the
ellipse. ’

373. The area bounded by two radii of a circle which
are at right angles to each other, and the corresponding arc
of the circle, is a quarter of the area of the circle. Therefore,
by Arts. 369 and 372, the area bounded by two conjugate semi-
diameters of an ellipse and the corresponding arc of the ellipse
18 one quarter of the area of the ellipse.

374. To find the area of an ellipse.

Let a and b be the major and minor semi-axes of the ellipse;
therefore, by Art. 371, the ellipse can be obtained by projection
from a circle of radius a; and the cosine of the angle between

the plane of the circle and the plane of the ellipse is . The
area of the circle is known to be ma'; see Trigonometry.
Hence, by Art. 369, the area of the ellipse is %x wa’,
that is mwabd.

375. It is now easy to see that certain properties may
be immediately inferred to belong to the ellipse from the fact
that they belong to the circle; for example, the results of
Arts. 182, 184, 185, and 194 may be thus obtained. Such
properties are called projective properties.

Also Art. 203 may be thus obtained ; for it is obvious by
Euclid, 111, 31, that if a chord and a diameter of a circle are
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parallel, the supplemental chord is parallel to the diameter
of the circle which is at right angles to the first.

376. Again, Art. 208 may be obtained by projection.
For by Euclid, 111 35, if two chords of a circle intersect, the
rectangles contained by their segments are equal. Denote
the chords by POp and QOg, so that PO x Op= Q0 x Oq.
Let CD be a radli)us parallel to OF, and CE a radius par-
allel to 0Q. Then as CD = CE, we have

POx Op QO0x0Oq

cD»r —  CE
Now when the circle is projected into an ellipse, since
PO is parallel to CD, the projection of PO bears to the
projection of CD the same ratio as PO bears to CD; and in
~ like manner the projection of Op bears to the projection of
CD the same ratio as Op bears to CD. A similar remark
applies to the projections of QO and CE, and to the pro-
jections of Og and CE. Hence the property of the ellipse

follows from that of the circle by projection.

377. It will be instructive for the student to apply the
method of projections to the following examples: 20, 88, 42,
50 of the Examples attached to Chapter Ix, and 2, 3, 9,
19, 23, 24, 25, 81, 32, 43, 52 of the Examples attached to
Chapter x.

378. We proceed to consider the other kind of projection
which is called conical projection, and sometimes perspective
projection. ' )

379. DEFINITIONS. The conical projection of any point
on a given plane is the intersection of the plane hy a straight
line drawn from a fixed origin through the point. The conical
projection of any line, straight or curved, 1s the locus of the
conical projections of every point in that line. Or we
may put the definition thus: if every point in a line, straight
or curved, be joined with a fixed origin, the assemblage of °
these joining straight lines will constitute a cone, and the
intersection of the cone with any given plane is called the
conical projection of the line on the plane. :
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* The fixed origin is called the vertex, the given plane
is called the plane of projection ; when the projected line lies
in a plane, that plane is called the original plane.

380. It is obvious from our definition that the shadow
formed on any plane by a figure when light falls on it from
a point, is the conical projection of the figure corresponding
to the point as vertex.

By the single word projection in the remainder of this
Chapter is to be understood conical projection.

381. The projection of a straight line is in general a
straight line.

_ For the projection of a straight line is the intersection of
two planes, namely, the plane of projection and the plane
passing through the given straight line and the vertex.

" If the given straight line passes through the vertex, its
projection on any plane not passing through the vertex is
a point. ,

382. The projection of the tangent to a curve at any point .
18 the tangent to the projection of the curve at the corresponding
pont.

This may be established in the manner of Art. 370.

383. Projections on parallel planes éf the same figure
with the same vertex are similar. -

Let O denote the vertex. Let P, @, R be the projections
of three points of a figure on any plane; p, ¢, » the pro-
jections of the same points respectively on a parallel plane.

Also the angle PQR = the angle pgr by Euclid, xr. 10.

In this way we can shew when the projections are recti-
linear figures that they are similar; and the proposition may
be extended to curvilinear figures in the manner exemplified
in Art. 369. .
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384. It follows from our definitions that if two plane
sections be made of a cone, each curve thus obtained may be
considered as the projection of the other. Now it appears
from Art. 349, that any conic section may be projected into
a circle by a suitable adjustment of the cone and the plane
of projection. And thus it will follow that certain pro-
perties may be inferred to be true for the conic sections
when they have been shewn to be true for the circle. Such
properties of a figure as may be inferred to be true for the
projection of the figure are called projective properties. It is
not possible to give a brief definition of these properties ;
it will be seen that they relate to the positions of points
and straight lines, and not to the magnitudes of lines.

385. For an example of projective properties we may
take the theory of poles and polars. Thus the properties
of Arts. 101 and 102 being demonstrated for a circle, may be
inferred to be true of any conic section by Arts. 382 and
384.

Again, Pascal’s Theorem and Brianchon’s Theorem might
be demonstrated for the circle, and then inferred to hold for
any conic section. Of course the method would be ad-
vantageous only in the case in which it would be easier to
demonstrate the property for the circle than for a conic sec-
tion generally.

386. But the great advantage of the method of pro-
jection arises from the fact that by properly choosing the
projecting cone and the plane of projection, we are able to
simplify the theorem we wish to establish by substituting
some particular case instead of the general enunciation : this
we shall now proceed to explain.

387. It is obvious from our definition that every point
has its projection unless it lies in a plane through the vertex
parallel to the plane of projection; and then the straight line
from the vertex through the point never meets the plane of
projection. Hence we may say that points in the plane
through the vertex parallel to the plane of projection have no
projections ; this is usually expressed by saying that such
points are projected to infinity. ‘
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The plane through the vertex parallel to the pEne of
projection may be called the vertez plane.

388. If two stratght lines intersect in the vertex plane
their projections are parallel straight lines.

The projections cannot meet because the point at which
the original lines meet is projected to infinity by Art. 387.

389. Conversely, if the projection of a point is at an
infinite distance, that point must be in the vertex plane. If
the projections of two or more points are at an infinite dis-
tance, those points must be in the vertex plane ; if the points
are known to be also in another plane, they must be in
the intersection of this plane and tEe vertex plane, so that
they must be in a straight line.

390. Any angle may be projected into an angle of as-
signed magnitude.

Let A denote the angular point; let a plane be drawn
parallel to the plane of projection meeting the straight lines
which form the angle at B and C. On BC in the plane
parallel to the plane of projection describe a segment of a °
circle containing an angle equal to the given angle. Join 4
with any point on this segment and take any point on the
joining straight line for the vertex. Then the angle BAC
will be projected into an angle of the assigned magnitude.

391. In the preceding investigation, the plane of pro-
jection may be any plane which does not coincide with the
lane of the angle, and is not parallel to it: we may, there-
Fore, take the plane of projection such that the corresponding
vertex plane shall pass through an assigned straight line,
that is, so that an assigned straight line shall be projected to
infinity. A
If we require a second angle to be also projected into
an angle of assigned magnitude, we must determine in the
manner employed a second segment of a circle; and when
these segments intersect, the point of intersection may be
taken as the vertex. .
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392.  Any quadrilateral may be projected into a parallelo-
gram having a given angle.

Draw the third diagonal of the quadrilateral; see Art. 75.
Take the plane of projection such that this straight line is
projected to infinity : then the projection of the quadrilateral
18 a parallelogram, for the opposite sides of the projection do
not meet.

393. As an example of the application of projections we
will take the following theorem: a quadrilateral is inscribed
in a conic section ; tangents are drawn at the angular points,
thus forming a second quadrilateral: the diagonals of both
quadrilaterals intersect at a point.

Project the figure so that the inscribed quadrilateral may
be a rectangle ; see Art. 392. The sides of a rectangle in-
scribed in a conic section are parallel to the axes. Hence,
by symmetry, the diagonals of this figure and of that formed
by the tangents at the angular points will intersect at a
point. ' ’

394. Any conic section may be projected into a circle, and
a given straight line in the plane of the conic which does not
antersect the conic section may be at the same time projected to
infinity.

This has been shewn in Art. 349.

395. The following demonstration of Pascal’s Theorem
has been given by the method of projections: Project the
conic into a circle, so that the quadrilateral formed by two
pairs of opposite sides may become a parallelogram ; see
Arts. 392 and 394: the theorem then reduces to a simple
property of the circle, namely, if a hexagon be inscribed
in a circle, and two pairs of opposite sides be parallel, so is
the third pair. This simple property may be established by
elementary geometry.

This demonstration is however not complete. For in
Art. 394, there is the limitation that the straight line which
is projected to infinity does not intersect the conic section, and
thus Pascal’s Theorem is only established for such figures as
conform to this restriction. Writers who use the method
of projections are accustomed to assume that theorems which
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are demonstrated under certain limitations will hold when
those limitations are removed. For example, a straight line
which really does not meet a curve, is called an ideal secant,
and treated in effect as if it did meet the curve. But it
would be beyond the scope of an elementary work like
the present to discuss the grounds on which the assumption
is based. '

EXAMPLES.

The following Examples may be treated by the method
of projections:

1. CP and CD are any two conjugate semi-diameters of
a given ellipse; tangents to the ellipse at P and /D meet
at T: shew that the triangle CPT is equal to the tri-
angle CDT.

2. CP and CD are any conjugate semi-diameters of a
given ellipse; K is any point in PD, and CL is the semi-
diameter parallel to PD: shew that the triangle KCL is of
constant area.

3. CP and CD are any conjugate semi-diameters of a
given ellipse; PQ is a chord drawn parallel to a fixed
straight line: shew that D@ will be parallel to a fixed
straight line.

4. If from the extremities of the axes of an ellipse any
four parallel straight lines be drawn, the points at which they
cut the curve will be the extremities of conjugate diameters.

5. CP and CQ are any two semi-diameters of an ellipse;
from P a straight line is drawn parallel to the conjugate to
CP, meeting CQ at M; from @ a straight line is drawn par-
allel to the conjugate to C(), meeting CP at N: shew that
the triangles C}’M and CQN are equal.

6. PQ is any diameter of an ellipse; R, S any two
points on the curve; let PR and @8, or these straight lines
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produced, meet at M, and PS and QR at 7': shew that TM
1s parallel to the diameter conjugate to PQ.

7. If parallelograms which circumscribe an ellipse have
their areas constantly equal to n times that on the major and
minor axes, all the angular points of the parallelograms lie
on two ellipses similar to the given one, and having their
. axes to those of the given ellipse as 4/(n’+n) + 4/(n"—n) to
unity. ,

8. If a parallelogram be inscribed in the inner of two
similar, concentric, and similarly situated ellipses, and its
sides be produced to meet the outer, and the adjacent points
of intersection belonging to each pair of parallel lines be
joined, shew that the quagrilateral figure formed by producing
these joining straight lines will be a parallelogram, having its
corners situated on a third ellipse, similar to the two former,
and independent of the original parallelogram.




ANSWERS TO THE EXAMPLES.

CHAPTER 1.

8, THE co-ordinates of D are } (x,+,) and 4 (y,+5,) The
co-ordinates of G are § (w, + z, +,) and } (v, + ¥, + ¥,)- .

10. Let » and 6 be the polar co-ordinates of C. Then the
angle AOC = the angle BOC; or 0 —6,=0,—0; thus 6=}(6,+6,).

Again, from the known expression for the area of a triangle
(see Trigonometry, Chapter xv1.), triangle AOB = 47, sin (9,—6,),
triangle 40C = 4ryrsin (6 —6,), triangle BOC =}, sin (6, 0).

Thus 7,7, sin (6, — 6,) =7 8in (§ — 6,) + r,rsin (9, — 6)

=r(r+r,)sind (6, 6);
therefore 7 (r, + r,) = 2rr, cos § (6, - 6).

CHAPTER IIL

1. (1) y+22=1. (2 x=2. () y=2 (4 z=0.
2. y—-4=-3(x-4), y-4=}(@x-4)
3. y-1=(J3-2)=, y- 1=-(~/3+2)w-
4. y=2z, y=-—=. 5. y= Jsz,a: 0. |
6. 90°, z=-14, y=3 7. 60°% 8. 45°
9. y==(x—a) . 10. y==. 11. 2,/2.

ab g z_y_11
12. m. 13. %——y=~——b. 14. a’ b, a— b.

15. (1) The origin. (2) Two straight lines, y == and y =—=.
(3) Two straight lines, =0 and +y=0. (4) Theaxes. (5) Im-
-possible. (6) Two straight lines, #=0 and y=a. 16. (1) Two
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straight lines, z=aand y =5. (2) The point(a, b). (3) The point
(0, ). 17. The straightlines y=x and y=32. 19. 4y= 5z,
and 3y+2x—-20=0. 20. Let a be the length of the side of
the hexagon; the equations are to 4B, y=0; AC, y/3==;
AD, y=2,/3; AE,z=0; AF,y+2,/3=0; BC,y=,/3 (z-a);
BD, x=a; BE, y+,/3(®—a)=0; BF, y, /3+xz—a=0; CD,
y+x,/3=2a,/3; CE, y.J3+x=3a; CF, 2y=a,/3; DE,
y=.3a; DF, y,/3-x=2a; EF, y—=z,/3=a,/3. 21, If
(zs ¥y (@ ¥)y (@ ys) be the angular points, the co-ordinates of
2 +x h+Y,,

2’ 2
similarly the co-ordinates of the point midway between the second
and third points are known ; and then the required equation can

the point midway between the first and second are

be found by Art. 35.  22. — t}tanw. ¢4 Z+¥oy,
2 =33 tangent of the angle between them 201: iubl,m. 29. The

points whose abscisse are a+ % J@* +b') and a— ‘—;.j(a' +b%).

¢
3L "/(l; " z,AC) 35. 90% 36. F(6)=0 gives a system

of straight lines through the origin; sin 3=0 gives the three
straight lines y=0, y=2 /3, y=-x,/3. 40, The second
pair of straight lines bisect the angles included by the first pair.
44, Let ABC be the triangle ; take 4 for the origin and straight
lines through 4 parallel to the two given straight lines as axes ;
let x,, ¥, be the co-ordinates of B, and z,, ¥, those of C. Then it
may be shewn that the equations to the three diagonals are

—y =T g) yoy=-Ys =Yg,
Y=y @) ¥ WG YN

from these equations it may be shewn that the three diagonals
meet at a point. 45. Take O as origin and use polar equations
to the given fixed straight lines. = 46. Let 2, be the abscissa of the
point of intersection of the two straight lines ; then the area of the
triangle is 4 (c; - ¢,) @;. 47. This may be solved by Art. 11.
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Or we may use the result of the preceding Example; for by draw-
ing a figure we shall obtain three triangles to which the preceding
Example applies, and the required area is the difference between
two of these triangles and the third. The result is
{ (cs ca)’ + (cl —0,)' + (c, cl)' }
2 (my—m,) * 2 (my—my) "~ 2(m,—m,)}’
which may also be written thus

= {er (my—my) + ¢, (m, — m,) + ¢, (m, — m,)} .
2 (my — my) (1m, —m) (my —m,)
That sign should be taken which gives a positive result. It will
be seen that the numerator vanishes if the three points of inter-
section of the straight lines lie on a straight line ; the denominator
vanishes if any two of the straight lines are parallel,

CHAPTER IV.

1 Z at ‘Z Z4 Z, 7. Since the required straight line is
parallel to that conmdered in Example 5, we may assume for its
equation a cos 4 — B cos B+ % =0, where & is some constant to be

determined. Now at the middle point of 4B, we have —a = % sin B,

—,8— sin 4 ; themfore—ﬁschosA+2smAcosB+k 0;

thus k isdetermined. 13. Assume for the equation Au+pv+vw=0;
then since ‘the straight line passes through the first point,
M +pm+vn=0, and since it passes through the second point,
M +pm’+vn'=0. TFrom these two equations find the ratios
of A, u, v; thus we obtain for the required equation

(mn’ ~m'n) u + (W = n'l) v+ (Im' = U'm) w=0.

14, ab(u—v)+c(b+a)w=0.

15. Assume for the required equatlon la +mB +ny=0; at the
centre of the inscribed circle a=B=1y; thus [+ m +n=0; “at the
centre of the circumscribed circle a, B3, y are proportional respec-
tively to cos 4, cos B, cos(C'; thus lcosA+moos.B+ncosC’ 0.
Hence the required result may be obtained,

T. C.8, A 22
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18, To CP, 2mv—nw=0; to DP, 2lu —2mv +nw=0;
to 4Q, lu—2mv +2nw=0; to B, lu—2mv=0.

26, Take a=0, B=0, y=0 to represent the sides of the
triangle 4’B'C"; then the equations to BC, C4, AB will be respec-
tively B+y=0, y+a=0,a+8=0, Then the equation to 44’
will be 8 —y=0, so that 44" is perpendicular to BC.

27.- The equation to 00’ is B—y=0; take B—~y—-Aa=0
for the equation to the straight line drawn through D. Then it will
be found that the equation to OF is 8—y—AX (e~ y)=0, and that
the equation to O'E is B—y—A (a+f8)=0. Thus at the point 2
we have 8 =--y. The same relation holds at the point ¢,

la +mB + ny
J(l’+m + 07— 2mncosA 2nd cos B — 2im cos C)

la+m/'B+nly
,J(t"'+m”‘+n —2m'n’ cos A — 2n'’ cos B — 2I'm/ cos C)°

28.

30. See Ex. 29 and page 72. 31. Denote the triangle
. ® sin P . . .
by PQR; the area is 2%;11——03.111—1-2- where p is the perpendicular

from P on QR. The length of this perpendicular is k:nown from
Example'30; and sin P, sin @, and sin £ are known from page 70.

32, aA+bp+cv=0, 33. IN+mp+nav=0,

34. 'We must have a—;\ﬁ _B ;B' identical with

a—a'__aa+bﬂ—(aa'+bﬁ').

A cv
this gives a\+Bu+ov=0, 35. We shall find thet 42 = %

. AC l+na +na
AF B triangle AEF Ube

dAB T+ ma’ 2™ tiangle ABC = (lo+ na) (BT ma)"

triangle DEF _ 2abe lmn
triangle ABC - (lc +na) (Ib+ma) (xb + mc) "

And

[




ANSWERS TO THE EXAMPLES. CHAPTERS IV. V. VI 339

37. Divido by '; thus woe have & quadratic in g: then

as in Art. 60 we obtain (F*— 4B) (D*~ BC) = (FD — BEY', that is
’ AD*+ BE* + CF*— ABC - 2DEF=0.

38. See Art. 9 and xir. of Art. 78: thus we get the first

form. Also (a,—a,)sind + (B,—B,) sin B + (y,—7,) sin €' =0;
transpose the last term and square ; thus we express (a, —a,) (8, - )3,)

in terms of (a,—a,)%, (8,—By)" and (y,—7,) and so obtain the
second form, To obtain the third form from the first we put

(:lm;,){(ﬁ‘ Bi)sin B+ (y,— y,)smC} for (w1 — a,)’, and make a

similar substitution for B.—By)"

CHAPTER V.
(@ +9)' =a* (="~ ¥). 3. Y=oy -3, |
4. y’'sin’a=4ax. 6. By Art. 83, we have

_sin(w—a) n_sin(m—ﬁ) e sina smB

y R= ’ ==

8in o sin o 8in w’ sine"

CHAPTER VI
1. (1) Co-ordinates of the centre 2 and — 2, radius 3.
(2) Co-ordinates of the centre — 3 and £, radius {.

2. The first straight line meets the circle at the points
(— 4, 3) and (3, —4); the second at the points (0, — 5) and (- 5, 0);
the third fouches it at the point (-4, — 3).

5. =@ +a")+y -y [y +y")+ 2"+ yy =0.

8. For determining the absciss® of the points of intersection
wo have 2* (1 +;§)+“%‘(b-k)x—2az+k'— 9% = 0; if the straight

line fouches the circle we must have (kb — ha)* + 2kh (ka+ hb)=—h'K".

9. 2+3=0. 14 2*+y"—ay—ho—ky=0.
15. Inclination of axes 120°; co-ordinates of the centre each =4;
radius =/A. 16. Inclination of axes 60°; co-ordinates of the

22—2
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oentre_each—h raadmsz—"/5 17, &+y +ay,/2-9=0.
. 1 N + & — 2hk cos m)
18. 2*+y'+ay+ax+y—-1=0, 19. Seme

2a w .
23. @+y'=a w+J3) r—_-:/gcps(o-E). 27. A circle.

28, TUse the equation in Example 26. 29. TUsing polar
co-ordinates, we have :

r+ ,J(r’+a’—2mcos€)=J{r’+a’—2raeos(§- )},

2
reduce and we get {J3r—2a cos (0-—’(—;)} =0; thus the locus is

* the circle circumseribing the triangle.
30. sin’a+sin®B+sin’y+...=cos' a+cos* B +cos’y + ...
and sm2a.+sm2ﬁ+sm2-y+ =0.

32. If the perpendiculars are both on the same side of the
straight line the locus is a-circle ; if on different sides the locus
consists of two straight lines. 33. A circle. 34. A circle.
36. Solve the quadratic in ; it will be found that » = 2a cos §
or —asec§; thus the locus consists of a straight line and a circle.

38. Take the extremity of the diameter as the pole ; it will
follow from Example 37, that the tangent at P is represented by
the equation 2¢cos® a =7 cos (2a—§), and the tangent at @ by the
equation 2ccos’ B=7rcos(28—6). These tangents meet at 7, so

at that point we have pad (2a 6) _ cos (2/3 9, ; from this we shall
cos’a cos’ B

find tan 6= sin <g:0‘:) , 50 that if C' be the centre of the circle

csin <B +a) Hence we can shew that Cg — Ct = Ct— Cp.

2cosBeosa’

39 and 40. Assume o +y* + A + By + C = 0 for the required
equation, and substitute successively the co-ordinates of the given
points (z,, y.), (x,, ¥,) and (z,, y,). It will be found that the
values of 4, B, and C have for their common denominator
Y - XY+ aYy— 2y, + @y, — 2y, Then see Art. 36.

Ct=
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'CHAPTER VIL

3ab

4, z=y, and Y =3

5. Let y =max be the equation to one straight line ; then

8= %) ; therefore & (1 +m?) = (y, - mx,)* ;

this is a quadratic for finding m, and we may replace m by g
6. A%+ (%" + Bac + ACb* - 24Cac— Bb (dc + Ca)=0.
10. Let the given ratio be that of ¢ to p ; then the required
equations are % (la+mB +ny) == % (Va+m'B+n'y), where

PP =0+ m®+ n* — 2mn cos A — 2nl cos B — 2Im cos C,
Q@ =0"+m"*+n"* —2m'n cos 4 - 2n'l' cos B —2I'm’ cos C.
11. Let a and B be the inclinations to the axis-of z of the

straight lines represented by the given equation; and let 6 be
the inclination of one of the bisecting straight lines. Then

6=4(a+p), or ’§'+;(a+/3), g0 that 20=a+p, or =+a+f.
In both cases tan 20 = tan (a + 8), so that -

4.2tan0 - tana +tan B
1-tan*d 1l-tanatanf’

Now by the theory of quadratic equations tana +tanfB= -4

and tanatan 8= % . And as the equation to one of the required

Qyx B

straight lines is y = tan 6, we have finally F-a-A-C

B b

2 o=
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CHAPTER VIIL

1. y=2x 2. y'=bax -2z 3. The locus consists
of two parabolas of which the centre of the circle is the common
focus, and the directrices are the two tangents to the circle which
are parallel to the fixed diameter. 4. The second curve is
& parabola having its axis coinciding with the negative pari of
the axis of y ; the curves intersect at the origin and at the point
x=4a, y=—4a. 5. y=x+a. 6. tan'} 7. y+x=3a.
8. At the point (9a, — 6a) ; length 8a /2. 9. y=2a.,/3,
% = 3a. 11. The abscissa of the required point is 0 or 3a.
13. The curve is a parabola having its axis parallel to that of y,
and its vertex at the point =4, y=1. The straight line is a tan-
gent at the point x=1, y=0. = 20. " Abscissa of required point is

1 (7 + _/) ordmate (—— + y) length of chord —; (4a +y")*

2’ Locus on,a:-—2a Locus of @', 2*=ay". 23 Refer
the parabola to PT and the diameter at P as axes. See Art. 151.
25. See Art. 155. 27. Transform equation (1) of Art, 125
to polar co-ordinates, and we shall deduce 7 =24 0050 + /(cos 26) %(zos 20)

28. Use the result of the preceding Example.

29. r=2a sin 6 “/(— 08 20) 30. The locus-is a
cosd

parabola ; see Art. 147. - 32, Jz+Jy=./(a2J2).
33, (v-%)'-8ax J2=0. 34 o*+y'—x(a+2)-yy+ax'=0.
37. TUse the result.of Example 5, Chap. vL. - 41. The equation

to one tangent can be written y =m (x+ a) +%, -(see Example 40),

and that to the other y=—’%(x+a'< —a'm. By eliminating m

we have for the required locus z +a + @' = 0. 42, Take for the
equation to the chord ¥ =mx + n ; then to find the abscissa of the
middle point of the chord we must take kalf the sum of the roots

of the equation (ma + n)*=4ax; so that the abscissa is 2ammn
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‘Now since the chord touches the parabola y*=8a (z—c) the equa-
tion (mz + n)’ = 8a (z — ) must have equal roots ; by means of this

condition it can be shéwn that 2a ’—n:n " . 44. The equar

tion to the normal at a point (, ¥) is y—y -—.l’(m a:’) If
the normal is to pass thmugh a given point (h, k) we ha.ve
k— y’-———(h «); also & Za' Thus we obtain a cubic
equation for determmmg ¥, namely y”*+4a(2a—1%)y -8a*k=0.
By Chapter 111. of the Theory of Equations the sum of the roots
of this cubic equation is zero. The points of intersection of the
parabola with a circle (#—8)* + (y —c)*=1" are found by combining
the equations to the two curves. Thus we obtain

(Zy‘-: - b)’+ (y—c)y=r

which is an equation of the fourth degree in y. By the Z%heory
of Equations the sum of the roots is zero. If then three of the
roots coincide with those already shewn to have a sum equal to
zero, the fourth root is zero ; and the corresponding point is there-
fore the vertex of the parabola. 45. -The tangents of the
inclinations to the axis of z of the three normals that can be
drawn through a point (x, y) are determined by the equation

m’+m (2 —2) _-I-%=0. See Art. 135. Suppose m,, m,, m, the
roots of this cubic, then by Chapter 111. of the Theory of Equations

. @ v
m, +m,+m,=0, mm, +mm +mm, = 2—;, mymymy =~ ;
if two of the normals are at right angles we may put mm,=—1;
from these equations by eliminating m,, m,, and m,, we find
y'=a(x—3a). = 46. By the length is meant the length of the
common chord ; by the breadth is meant the distance between
the two tangents which are parallel to the common chord.

i — 4ah

. @
47, » W. 55. The Oq'll&tlon Yy=mx +.17‘ repre-
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sents a tangent to the parabola ; if this passes through the point
(h, k) we have k= mb+-— also m_ ":, where (x, ¥) is any

point on the tangent ; thus k-z ;: a(z_—kh) ; this will give

the first form of the equation. The second form may be deduced
from the first ; the student will see hereafter what suggested the
second form; see Arts. 341 and 343. 56. The equation
¥ = 4ax represents the parabola ; and the equation &y — 2ax = 2al
represents the chord of contact; hence it follows that the equa-
tion 4az (ky — 2ax) = 2ahy” represents some locus passing through
the intersection of the parabola and chord ; then see Art. 61.

m y=a ( —) If the equation to the third
1

57, x=
m

tangent is y=m2x+ '7 the required ordinate is
3

-t

1 1 1 1
(m m, m, mmm,

CHAPTER IX.
1. % . 2. y+exr=a; the intercept on the axis of
x=g; and the intercept on the axis of y=a. 3. y+a¢'=§.

4. The excentricity is determined by e*+e*=1. b. y=g (z+a);

y= b the straight lines are parallelif 2¢*=1. 6. y= a% (x; ae);

the abscissa of the point of intersection is 12:4:’

1 2a%— ax’ (1+¢)
d+e+e” T a(l+e)—2ex’
] b’

9. The co-ordinates of the point are z = mh) y Y= JTa T 5

7. y=—(1+e¢)(x—a); tan™

10, The coondinates of the point sre =7, ,,=7”§.
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19, Tt will be found that the circle falls entirely without the’
ellipse if the inclination of the two parallel straight lines to the
L ae

major axis be greater than tan™ 3" 22. 2eos¢+gsin¢=l.

25. The co-ordinates of the required poinf. are &= -3,

Y =_% ; the straight lines are parallel when ¢* +¢'=1.
28. a'+y’—x(ae+a/)-yy +aex’=0. 30. If the point (%, %)be
C . . 2a%
between the directrices, the sum of the perpendiculars is T@w5%) ;
if the point (, &) be not bet ween the directrices, the sum of the per-
2ab’he
M@+ 00’
according as A is positive or negative. 31. A circle having its
centre at the centre of the ellipse and radius =a + b.

32. y==wx+=,/(a®+b%). See Art.171. 34. Locusisthe
circle 2* + "= a® + b* ; this may be deduced from the second part
of Example 33. 35. See remark on Ex. 55 of Chap. viiL
42. The first part of this Example may be solved by finding the
equation to the straight line passing through the points of inter-
section of the two ellipses. 45. F+y =(a"+) (x+y)
46. Let A, k be the co-ordinates of an external point ; the equa-
tion to the corresponding chord of contact is aky + b%hz=a'b’;
the equation to the straight line through (&, %) perpendicular to
the chord is (y — k) b%h=a’% (x~h). We require that the latter
straight line shall be a tangent to the ellipse ; the necessary condi-
tion may be found by comparing this equation with the equation
y=mx + /(m'a® +°); thus we shall obtain for the condition
Ka® + B = Ik (a® — b°)". 48. o’ (y° + 2yk) + b° (2 + 22h) = 0.
51. Transferring the origin to the vertex of the ellipse the equa-
tion becomes '

y=m(w—a)+,,/(m’a’+ b’):mac-—ma+ma(1+l;;'>*
(1+e)e

m'a

pendiculars is = the upper or lower sign being taken

=ma:—-ma+ma{1+ }&, where ¢=(1—¢) a.
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Expand the square root by the Binomial Theorem; then ulti-
‘mately when e=1 and a is infinite, we have y = mz+%.

52, Anellipse.  53. The locus is an ellipse; if 4 be
the origin, 4B the axis of , each of the co-ordinates of the focus

IO
is equal to half the radius of the circle. 54 © ;:y . 55 Put

a cos ¢ for z and b sin ¢ for y in the preceding result (Art. 168); -

ea
TR
the ellipse, and @ the centre of the circle inscribed in the triangle
SPH ; then if y be the ordinate of P it may be shewn that the
. . . area of triangle SPH e .
radius of the circle which = semiperimeter go Ftriangle ~ 1 ‘Z’ 5’ this
is the ordinate of @.  Let =’ be the abscissa of P, then it may
be shewn that the abscissa of @ is ex’; thus it will be found that
the required locus is an ellipse. 58. Find the point at -which
SZ meets the normal at P; also find the point at which HZ’
meets the normal at P} it will then appear that the points coin-
cide. 60. See Example 12 of Chapter vir

then the greatest value is 57. Let P denote a point on

CHAPTER X.

1. b (b’ — ay) + ya (ay’ + bx) = a®b". 2. Refer the ellipse
to the diameter and its conjugate as axes. 3. See Art. 11.
8. r(asin® 0+ b° cos® 6) = 2ad* cos 6. 9 and 10. TUse the re-
sult of 8. 12. Result the same as that in Ex. 11. 13. They

intersect when 6=0 and when 6 =1§r . 14. The equations to

the tangents at the ends of the latera recta are (Art. 205)
r(ecosf+sinb)=a(l-¢); r(sinf—ecosf)=a(l +¢;
r(ecos §—sin 6) =a (1 —¢); r(8inf+ecosf)=—a(l+e).

The equations to the tangents at the ends of the minor axis are

rein@=>b; reinf=-b. 15. A straight line through S.

e+e

See Art. 205.  17. cosf=—-—, r=a(l+e). 18. Be
; 1+ ee
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tween % and % . 20, See Art. 208. 22. The sine of the -

angle between the radius vector from the centre and the tangent

is };’, where p* (a* + b*'—7") = a"0" by Art. 196 ; then the least value
IS

2
of % may be shewn to be when 2" =q® +d" 29. It may bhe

shewn  that the axis of the parabola must- coincide with one
of the axes of the ellipse, hence the latus rectum will be either

2a* .28 . .
NCET) or Nk 31. An ellipse. 32. An ellipse.
35. TUse the polar equations to PQ and pg; sep Art. 205.
38. Two of the sides of the parallelogram are determined by the

equations Ecos b+ ‘% singp==1, and the other two by the

equations scos ¢’+%sin ¢'=%1; see Example 22 of Chap. 1x.

It may be shewn that the diagonals of the parallelogram inter-
sect at the centre of the ellipse ; then if the centre of thé ellipse
be joined with two adjacent corners of the parallelogram the
triangle thus formed is one fourth of the parallelogram ; and

the area of the triangle is known by Example 7 of Chap. I.
41, The abscissa is = , and the ordinate %Y. :””l . 42, The

co-ordinates of the intersection of the tangents are found in
Ex. 41; call them 4 and £, then use tho second form given in

Ex. 35 of Chap. 1x. 44. The greatest value may
be found by substituting for &’ and y’ their values from Art. 168 ;
it is ‘ab (/2 -1). ’ 48. An ellipse referred to its

equal conjugate diameters. 51. This may be solved by means
of Ex. 50. Or we may take the usual axes; then if &', 3" be the

co-ordinates of P those of A will be “‘“’“ + %) on b(“”"+b?/)

b‘ b’ ,
those of & will be a(aa;+ by') and b(by' bc:x’) Hence the solu-

tion can be completed. 52. See Art. 208,
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CHAPTER XI.

1. y'-32"=-3a" 2. A straight line. 7. See
Arts, 178 and 228,

CHAPTER XIL

3. Let a straight line be drawn through the focus meeting the

hyperbola at P and p and the asymptotes at Q and ¢ ; then it may
_2a(e'-1) 2a sin’ @ _2asinasiné
be shewn that p = T—¢cos"§  cos’a—cos 0’ Qq_coa’a—oos'a ’
~ und the required length is half the - difference of Pp and ¢q.
4. Take the centre of the circle as the origin, 4B as the axis
of z, and a diameter parallel to PQ as the axis.of y; then the
locus is given by the equation y*=a'-a’ and is therefore a
rectangular hyperbola referred to conjugate diameters. 9. By
2

Example 53 of Chapter viL. we shall obtain tan a = "—'/Lkh ;:ah) ;
thus (% + a)* tan® a = &* — 4ak ; therefore (h + a)® sec’ a = k* + (h — a).
10. Both the diameters must meet the curve; it will be found
that this requires the conjugate axis to be greafer than the trans-
verse axis,

CHAPTER XIII.

1. The equation may be written (z — 2y) (x — 2y — 2a) =0, and
therefore represents two parallel straight lines; a straight line par-
allel to them, and midway between them, will be a line of centres.

2 h=2,%=5. 8 Twoperslld straightlines. 4. A
parabola. 5. An hyperbola if the angle 4 is less than ‘g,
an ellipse if it is greater than g, a straight line if it is equal to 7—; .
6. The equation to the hyperbola is a’* = a6 — 4ab' + 3b%* ; the
asymptotes are determined by the equations ay == (z—‘%a) b.J3.

{
!
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8. The locus is then a straight line which coincides with the
cqualaxes. 10. Use Art, 205 1L 232 13 Tan]

3
14, {ay+2 J(BB)} —2eBBx—a*(B+ B)y'+a’BB =0.

. 17. (1) ‘A circle about the other focus of the given ellipse as
centre ; (2) an ellipse about the other focus of the given ellipse
as focus, and having the same excentricity as the given ellipse.
18. The equation is (y—3z+ 1) (y—22+4)=0, and therefore
represents two straight lines. -24. TUse the result given in
Example 56 of Chap. viir, 26. The equation may be written

@+ + 2y J2~-a°) (& +y —xy /2 —a')=0.
27. Take AB and AC as axes of « and 7. Let the angle

PBA gand the angle PCA be each equal to a, and the angle
BAC=w. Letx and y be the co-ordinates of P; then

ysine P zsin o

.PB = 0 ) = 0 .
sina sina ,
And BC*=BP*+(CP'—2BP.CPcos BPC. 28. Take the

given point as the origin, the common tangent at that point as
the axis of y, and the diameter through that point as the axis of
2. Then the equation to the parabola will be of the form y*= 4cz,

and the equation to the other tangent y = mx + -’—-2 , where m is con-

stant for all the parabolas. ‘Whatever be the value of ¢ the point -
of contact is on the locus y*=4xm (y — mz), which is obtained
by eliminating ¢ ; that is on the locus (y - 2mac)’ 29. We'

may take for the equation to the ellipse * b (2aa: «’). Let

(2, ¥) be a point on it; then the equation to one of the straight
y + 2b 2bx

x ; put y=0, then z_y———-+ %

the length of one segment. The length of the segment at the

2b (2a - &) |
+2b

the length of the third segment 2+ 55 30. Take one of

lines is y +2b=

: this gives

other end of the major axis will be

; and therefore
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the ellipses, and refer it to its equal conjugate diameters as axes,
the axis of « being that. which passes through the fixed point.
Let C be the centre of the ellipse, P the point of contact of the
tangent from the fixed point, PM the ordinate of P: then’it
may be shewn that 3 is a fixed point and MP.a constant length.

_SP.HP SP PR
(m - HQbyArts 208 snd 193. Also i~ o,
HP PR : .
and 0= OF by Art. 158, 32. Refer the ellipse to rect-

angular axes with P as origin and PX as the axis of . The
equation will be of the form awx'+bdxy + ¢y’ +dc+ey=0. Then
the equations to P@Q and PR will be of the form y=mz and
y=—me. The equation to Q& can now be obtained ; it will be
found to be

w(ebm’—cdm'—da)+y(ea—bd+ecm’)+e'm’—d'=0.

This may be written in the form
{= (eb — cd) + yec + €*} m* —{wda + y (bd — ea) + d*} = 0,

so that the straight line always passes through the point de-
termined by x(eb— cd) +yec+¢'=0 and zda+ y (bd — ea) + &* = 0.
See Art. 77,

CHAPTER XIV.
2. Each locus is an ellipse. 4, 5, 6. Use the equation:
in Art. 294, 7. The equation to the elhpse is ‘E:+3b/:
the equa.tlon to the chord of contact is ?—f + = 1; hence the

equatlon 3;: ach_'_ %’: represents some locus passing through

the pomts of contawt. 10. The equation to the hyperbola
is (y - k) be = (z— A) ay. 12. Let 3/, ¥ denote the two ordi-
nates which correspond to the same abscissa z'; then

Y ==t + JO -0~ f), Y ==~ R - 0 f).
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The equations to the normals are, by Art. 284,
(-9 (a2 + by) = (¥ +<) (- &), and
Y=y (@ +by") = (y" + b)) (@~ @) ;
by addition (@ — &%) « (y + 2bx") +8/=0...(1) ;
by subtraction b .(y +0x)— (a-b°) & =z~
stherefore &' (1+2b°—a)=2—by....ccouvurerrrrnrnne (2).

Substitute the value of ' from (2) in (1) and the required equa-
tion will be obtained. The locus is an hyperbola. 13. Locus
a conic section, which passes through # and R, and through the
intersection of the fixed straight lines. 18. A circle baving its
centre on the straight line joining the twé points. 19. Two
loci, an ellipse, and a parabola. 20. A circle. 23. See
Art. 293. 26. Use the equation to the parabola given in
Art. 294, and the equation to the circle given in Example 21 to
Chap. vi. 29. rsin20=c.© 30. a3 +ytat=0® 32, Seeo
Example 30 to Chap. x. . 35. An ellipse. 37. In the first case
the locus is a circle ; in the second it is a straight line, 38, A

9,
circle having its centre at H, 44 22 4+¥%_1, 46, The
. at b
equation is ¥ = 4a (z — Sa). 50. The straight line 2— %: 0,

bisects the chord of contact, and is therefore parallel to the axis
of the parabola; if through the point (@, 0) a straight line be
drawn making the same angle with the tangent at that point
as the axis makes, the focus must be in this straight line :
y (@ +2bcosw) +b(x—a)=0 is the equation to this straight line.
Similarly we can draw a straight line through the point (0, )
which will also contain the focus.  52. 'We may take for the
equation to one normal y=mx—am-—am’, and for the other
x=my—am’—am™; also m'=~m, Then by addition y+x=m (x-y).
Substitute for m in the first equation and reduce ; thus we obtain
2a(x+y)=(x—y). 53, We have to eliminate m between

' - m (a® - b

‘ y—-m:c:—:/%;, and my+w=;/—(‘n(w—;2—,).
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"Square and add ; we shall obtain after reduction
(a* +b°) (a® - &) )
——— e .
a’b* (m - 'ln) +(a*+ )"

Also  (y—ma)* (a* + m'b") = (my + z)* (m"a® + b°);

by reduction we obtain
(o’ - bx") (m—}n) =— 2y (@ 4+ 5%).ceveenne. @)

From (1) and (2) -

(GQ + b') (x’ + y!) (GSyl + blw’)ﬂ = (a’ - b’)! (aﬂyﬂ — bﬂw ﬂ.

54, Suppose the figure in Art, 192 to represent the ellipse
and the conjugate diameters, Take the equation in Example 23
of Chapter 1x. for the equation to the normal at I, and an ana-
logous equation for the equation to the normal at D. Let @
denote the point of intersection of these normals, and 2, y its co-
ordinates. Then it will be found that

agr = (a® ~ ) sin ¢ cos ¢ (sin  — cos ),

by = (b"—a") sin ¢ cos ¢ (sin ¢ + cos ).
Similarly we can determine the. co-ordinates of the point of inter-
section of the normals at P’ and D ; denote this point by R. Then
express the area of the triangle CQR, which is ong-fourth of the
required area. '

y+a'=

55. Take the centre of the square as the origin, and the axes
parallel to the sides of the square. Then for the equation to the
circle take a +y*=2a% and for the equation to the conic take
y'—a’=\(2"—a’). The equation to the tangent to the circle at
the point (z,, #,) is 2%, +yy, =2a", The equation to the tangent
to the conic at the point (2, ¥) is yy' — Awa’ =a® (1—X). These
equations must represent the same straight line. Hence elimi-
nating A and «, and y, we shall arrive at an equation which deter-
mines the required locus. It will be found that this equation
may be written {(«” + &/* — 2a°)} {a* (x"* + y*) — 22" y*} =0,

56. The former part follows from Art. 288. For the latter
part proceed thus; Let a perpendicular be drawn from A on
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the tangent 7'¢Q, and let B denote the intersection of this per-
pendicular with SQ produced. Then SR=SQ+ QR=2a; and
TR=TH. We have to find the value of the perpendicular from
T on' SR; denote it by r; then 72a =twice the area of the tri-
angle 7.SR. Let T'S=c¢,, and TR or TH =c¢,; then by using the
known expression for the area of & triangle in terms of its sides,
we have 4ra = ,/(2¢,%," + 8a%,’ + 8a%c,' — ¢* — ¢, — 16a*). This will
lead to the required result. Or thus: Let ¢ denote the angle
between HP and T'P; then we shall have »= 7P sin ¢ = TP x bb])’
where -CD is conjugate to C'P; see Arts. 181 and 193, And it
8 8 k]

may be shewn by Art. 208 that (g%) =S+t

58. Determine the co-ordinates of the points of intersection
of the tangents by Art. 288 ; it will be seen that they satisfy the
given equation,

CHAPTER XYV.

6. Ja+, B+, Jy=0. 10. The equation to the conic sec-
tion being IBy +mya + naf =0, that to A'Bis (m +n)a+ly=0,
that to A'C is (m+n)a+18=0, and that to A'B is
(m +n)a+(l+n)B-ny=0. 13. Imn+1=0.

a a
g1, YT VT, m-m__ o
JAmd) JTm) JA+mh) J(1+m,) ’
or (1+1n.’)<y—’m-;ah>(y-m;v—%)(mz—mx)+--~=0-

24. Suppose the focus S is to lie on the straight line .
la+mB+ny=0. Let o, B, y denote the values of ‘a, B, y re-
spectively for the other focus H of one of the ellipses. Then, by’
Art. 18], aa’=Bf'=yy'= the square of the semi-axis minor. Hence,
substituting in the given equation we obtain é,'-t- % + ‘L;f, =0, that
is, I8y + my'a’ +na’@ =0. This shews that the locus of H is a
conic section pasging through the angular. points of the triangle.

T.C. 8, ' 23
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25. Tt will be found that the conic sections may be repre-
sented by the equations

M) By-a'=0, () ya-P'=0, (3 of-y'=0.
Now, (1) may be written 8(y + 8—2a) - (a— B)* =
(2) may be written y(a +y—28) - (B—-y)*=0,
(3) may be written « (B+a—2y) —(y—a) =
this shews that the tangents to the conic sections at the common
point are given by »
7+B‘2a=0’ a+y—-28=0, B+a—2y=0;
these three straight lines intersect respectively the straight lines
a=0, =0, y=0,
at three points which all lie on the straight line a + 8+ y=0,
Again, (1) may be written B (y + 4a + 48) — (a + 28)* =0, and (2)
may be written a (y+ 4a +48) — (8 + 2a)* =0; and this shews that
v+4a+48=0is a common tangent of (1) a.nd (2), and this com-

mon tangent meets y=0 at the point where 8 +a—2y=0 meets
it. And so on.

26. The equation to the first hyperbola is By = 44" sin®

similarly for the others. 27. See Art. 274.

28 and 29. These may be solved by taking oblique axes coin-
ciding with the sides of the triangle. For instance, consider 29.
We have aa+b0B+cy=—adsin C. Thus the equation may be
written cnaf — ({8 + ma) (absin €' +aa+58)=0; and taking CA
for the axis of , and OB for the axis of y, we have a=xsin C,
B=ysin C. Substitute for « and 8 and then to the equation in
@ and y we may apply the ordinary test; see Arts. 272 and 278.

’2-;

cos* 4 4
30. S=—:,-— (aa + 58 + cy)’, where S denotes a® cos* g+
see Art, 334.
3L u(mn'—m'n)=v (nl' —nl) =w (Im’ - I'm).
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32. Let 5;=0 be the equation to the inscribed circle, S, =0
the equation to the circumscribed circle, these equations not being
necessarily in their simplest forms ; see Art. 110. Then, if % be
a suitable constant, S, —%S,=0 will represent the straight line
required. In this way we shall have

A B c B c
2. .4 " 20 4Y 2 s U
aoos§+ﬁ'oos—2+7cos2 2ﬂycos~2cos2

~ 2ya. cos® g (:03”‘—24 - 203 cos® g cos’ 3

—% (Bysin A +ya sin B + af sin C)
=(aa + BB +cy) (la+ mB + ny),

where [, m, n, are to be found. Then by comparing like terms we
can find I, m, n. ' '

33. It may be shewn that the equation B :m7= 17;"“

represents a diameter ; for this equation represents a straight line
passing through the intersection of the tangents at A and B, and
through the middle point of 4B. Hence the centre of the conic

section is determined by B :m7= ly-;m= @a:lﬁ ; and then

the required equation can be found. It is

B _ Y
m(al—bm+cn) n(al+bm—cn)’

34. Assume for the required equation y = constant, that is
y=k (aa +b8 + cy). Then by applying the result of Art. 322 we
shall obtain for the required equation (i + ma) (aa + bB8) — naby =0.
36. It may be shewn that the equation to the conic section is

Eaz + ‘/_b“ + ? =0: then apply the condition given in Example 29.

37. The Example depends chiefly on the fact that a straight line
can be drawn through the intersection of PR and @5 so as to bisect
both @ and RS. 38. It may be shewn that the equation
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to the secant through the points (¢, %/, ¢, w') and (t’, w”, v, w")
is (t—t) (u—u")— (v —2) (w—w") = tu — vw ; from this we can ob-
tain the equation to the tangent. 39. Since the conic
section touches a=0, 8=0, and y=0, we may assume for its
equation ,/(la)+ \/(mB)+ \/(ny)=0; then apply the conditions
given in Art. 322 under which the conic section touches the other
sides. 40. It may be shewn that the expression for the
length of the perpendicular on DE from the point (e, 8, y) is -
asind + 5 :Eg ~752C " Hence the equation to the straight
line which bisects the angle EDF is
agin 4 +Bsin B—ysinC _asin4 —Bsin B+ysinC
2sin ¢ B 2sin B :

41. ,/(aa)+,/(bB)+ (ey)=0.  42. The equation to the conic
section may be taken to be a8 =4ky*; and the equation to the
straight line PQ will be a = 8=0. The equation to the chord
will be a—B=FKy. ~Thus % (a—pB)'=%"af will represent - the
straight lines joining P with the points of intersection of the chord
and the conic section. From the symmetrical form of the last
equation we infer that one straight line makes the same angle
with the straight line a=0 which the other makes with the

straight line 8 =0.

CHAPTER XVLI.

1. See Example 35 of Chapter x1v. 2. Suppose the conic
section to be an ellipse. Let .S denote the point of contact of the
plane with the sphere which is between the plane and the vertex
of the cone ; and let 4 denote the point of contact of the plane
with the sphere which is on the other side of the plane. Join any
point P of the conic section with § and H and with the vertex O :
then we shall shew that SP+ PH is constant. Since all tan-
gents to a sphere from a given point are of equal length, PS is
equal to that portion of PO which is between P and that
point of PO which is common to the smaller sphere and the cone.
Similarly PH is equal to that portion of OP produced which is
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between P and that point of OP produced which is common to
the larger sphere and the cone. Thus SP + PH is equal to the part
_of a generating line of the cone which is terminated by the two
spheres, and is therefore constant.

Next, let A be that vertex of the ellipse which is the nearer to
8. Let T be the point in OA where the cone is touched by the
smaller sphere, X the intersection of S4 produced with the plane
of contact of the smaller sphere and cone. Then AS and A7 are
equal, being tangents from 4 to the sphere. And with the

. AX cosa 1

notation of Art. 344 we have A7 " o (a 4 0) == There-

fore AX = ie'-g.
section with the directrix corresponding to S, In a similar man-
ner the other directrix is determined.

If the conic section is an hyperbola the demonstration remains
substantially the same. For the history of this theorem- see
Hutton's Course of Mathematics by T. 8. Davies, Vol. 11. page 208,

3. In Art. 344 if the section be a parabola, it will be found
that the latus rectum varies as O4. Hence so long as we keep to
sections perpendicular to the same plane OBC, the required locus
consists of two straight lines passing through 0. Thus on the
whole the locus is the surface of a certain right cone which has
the same axis and vertex as the given cone.

6. Bycosd +yacos B+aBcosC=0. 7. Take the figure of
Art. 292. Let w =0 denote AC, v=0 denote BD, w=0 denote
EF: then we may assume lu+mv=0 as the equation to F@,
and lu + mv + nw =0 as the equation to FA. Then by Arts. 358
and 359, the equation to FB is lu+mv—nw=0. It may now be
shewn that lu — mv + nw = 0 denotes £'C, and that mv + nw—lu=0
denotes £B.

Thus X is the intersection of the axis of the conic

CHAPTER XVIL

2. It is easily seen that the triangle KCL is the projection
of a triangle of constant area in a circle. Since the area of a
triangle is half the product of the base into the -perpendicular
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from the vertex on the base, the result may be put in this form :
the length of the perpendicular from C on PD varies inversely as
the semidiameter parallel to PD. 8. This is to be considered
in the first place with respect to concentric circles and rectangles.
Let C denote the centre of the circles, L a corner of the in-
scribed rectangle, so that L is on the circumference of the inner
circle. Let 7 be the radius of this circle, and R the radius of the
outer circle; let « and y be the co-ordinates of L, Draw through
L a straight line parallel to the axis of z meeting the outer
circumference at M, and a straight line parallel to the axis of y
meeting the outer circumference at N. Complete the rectangle
of which LM and LN are adjacent sides; and let P denote the
other corner of this rectangle. Then the abscissa of M is
J(£-y*), and the ordinate of N is ,/(R*=z"); and these are
the co-ordinates of P. Thus CP*=R'—2'+R'—y'=2R’—1*; so
that the locus of P is a concentric circle, the radius of which
is independent of the original rectangle.

THE END.
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