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INTRODUCfION

The application of algebra to a study of the properties of
geometrical figures played an important role in the development
of geometry and grew into an independent branch of science­
the analytical geometry. The rise of analytical geometry is
associated with the discovery of its basic method, the method
of coordinates.

By coordinates of a point we mean the numbers that determine
its position on a given line or a given surface or in space.
Thus, the position of a point on the earth's surface will be
known, if we know its' geographical coordinates - the latitude
and the longitude.

In order to find the coordinates of a point, one must know
the reference points from which measurements are carried out.
In case of geographical coordinates, the equator and the zero
meridian are reference points.

If reference points are given and the method of using them
for finding the coordinates of a point is indicated, we say that
a system of coordinates is given.

Description of geometrical figures through equations (see Sec. 4)
is a characteristic feature of the method of coordinates and allows
the use of algebraic means for carrying out geometrical studies
and for solving geometrical problems.

By imparting algebraic character to geometrical studies, the
method of coordinates transfers to geometry the most important
feature of algebra - the uniformity of methods for solving
problems. While in arithmetic and elementary geometry one has to
look for, as a rule, a special way for solving every problem in algebra
and analytical geometry, the solution to all the problems is
found according to a common plan, which can be easily applied
to any problem. It can be said that analytical geometry occupies
the same position with respect to elementary geometry as algebra
with respect to arithmetic. The main importance of the method of
coordinates lies in that for solving problems it conveys to geometry
methods that originally belong to algebra and hence have much in
common. The reader must, however, be cautioned against a complete
rejection of application of elementary geometry, since in several
cases it helps us to get elegant solutions that are much simpler
than those obtained through the method of coordinates. Another
salient feature of the method of coordinates lies in the fact
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that its application saves us from the need to rush to a visual
representation of complex spatial configurations.

In practical applications of the concept of coordinates, the
coordinates of an object taken arbitrarily as a point may be
given only approximately. The given coordinates of an object mean
that the point described by these coordinates is either one of
the points of this object, or is very close to it.

The size and aim of the book has forced us to restrict our­
selves to an account of the basic facts about the method of
coordinates and its simplest applications. Considerable attention
has been devoted to a description of geometrical figures through
equations, which presents considerable difficulties for beginners.
Elucidation of this question is accompanied by comprehensively
solved problems.
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Sec. 1. Coordinates
of a point

on a straight line

The most elementary case of introducing coordinates is connected
with the determination of the position of a point on a straight
line. We shall begin a description of the method of coordinates
with a consideration of this case.

We mark two arbitrary, but different, points 0 and E on a straight
line (Fig. 1) and take an intercept 0 E as a unit of length *.

We shall consider that every point on the straight line OE
corresponds to a number called the coordinate of the given point
and determined in the following way: the coordinate of point P
on the straight line 0 E is a positive number equal to the
length of the intercept OP, if the point P is on the same side
of the point 0 as the point E; the coordinate of point P on the
straight line OE is a negative number equal in absolute value
to the length of the intercept OP if points P and E lie on

o I"
o E

Fig.

different sides of the point 0; the coordinate of point 0 is equal
to zero.

If these conditions are satisfied, the straight line 0 E is called
the numerical axis or the axis of coordinates. The point 0
is called the originofcoordinates.The part of numerical axis containing
points with positive coordinates is called its positive part; that
containing points with negative coordinates is called its negative
part.

Each point on a given numerical axis has a definite coordinate;
moreover, the coordinates of two different points on one and the
same numerical axis are different. On the other hand, every real
number is the coordinate of a definite ,point on the given numerical
axis. For example, the coordinate of the point E is +1, and the
number - 1 is the coordinate of a point symmetrical to E

with respect to O. Notation E(l), A ( -2 i), B(x), C(Xl), D(x 2),

• The points D and E may be chosen so that the intercept DE
is equal to an already given unit of length, e. g. 1 cm.
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etc. means that the numbers 1, -2j, X, Xl> X2 are the coordinates

of points 'E, A, B, C, D, respectively.
The direction, corresponding to the deviation along the numerical

axis from the point 0 towards the point E is called the direction
of numerical axis;' it: is usually indicated by an arrow (Fig. 1).

Sec. 2. Coordinates
of a Point
in a Plane

We construct two mutually perpendicular numerical axes Ox
and Oy in a plane so that their point of intersection is the
origin of coordinates for both of them (Fig. 2). We shall call
the axes Ox and Oy the x-axis and y-axis, respectively, and
the plane in which they are situated - plane Oxy·". We shall
consider that the unit of length for both coordinate axes is the same.

The axes Ox and Oy divide the plane Oxy in four quadrants,
the order of numbering the quadrants with respect to the direction
of coordinate axes is shown in Fig. 2.

Let us consider an arbitrary point P in the plain Oxy and
Px and Pyas the feet of perpendiculars drawn from this point
on the axes Ox and Oy, respectively, i. e. its rectangular pro­
jections on these axes (Fig. 3). We shall denote the coordinate

Y

II

o
III IV

x

Y,

o

p

Fig. 2 Fig. 3

of point P x on the axis Ox by x and the coordinate of point
Py on the axis Oy by y. The numbers x and yare called
coordinates of the point P, which is denoted in the following

* Axes Ox and Oy are also called axes of coordinates or coordinate
axes.
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way: P(x; y). Coordinates of this type are called rectangular
Cartesian coordinates*.

Thus,. the determination of coordinates of a point P in a plane
leads to a determination of coordinates of two points (Px and
Py) on numerical axes.

The coordinate x of the point P" is called the abscissaof the point P.
The coordinate y of the point Py is called the ordinate of the
point P. If the point P lies on the axis Ox, then its ordinate is equal
to zero; if the point P lies on the axis Oy, then its abscissa is
equal to zero. Both coordinates of the point 0 are equal to zero.

In Fig. 4 are shown the signs of coordinates of a point
depending on the quadrant in which it lies; on the left side
is shown the sign of abscissa, on the right side, the sign of
ordinate.

y

-+ ++
o x

+-

Fig. 4

Let us show how to locate a point P if its coordinates x
and yare known. We plot the point P" by locating it on the
axis Ox corresponding to its abscissa x and the point P, by
locating it on the axis Oy corresponding to its ordinate y
(see Fig. 3). We draw a perpendicular to the axis Ox through PX'

and a perpendicular to the axis Oy through Py. These perpendi­
culars intersect at the desired point P.

The above plotting may be modified in the following way
(Fig. 5): we locate the point PX' by drawing a perpendicular to
the axis Ox and cutting ofT an intercept PxP on. the perpendicular
equal in length to the .absolute value of the coordinate y, moreover,
it is cut ofT from the point Px upward if~y > 0 and downward,

• After the famous XVII century philosopher and mathematician
Rene Descartes.
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if y < 0 *. H y = 0, the point P coincides with the point P x.

On the basis of the last construction, it may be said that
the coordinates of a point indicate one of the ways leading

y

p

o

Fig. 5

x

from the ongm of coordinates to the given point: knowing the
abscissa x of the point P, we find the part OPx of this way,
while the ordinate y of the point P gives us its second part PxP.

We shall mention, by the way, that the idea of coordinates
is not a conception of mathematicians: it has been borrowed
from practice and in its primitive form, the coordinate system
is used even by people not acquainted with mathematics. We recall,
for example, a fragment from a poem "Who can be happy and free in
Russia?" by the famous XIX century Russian poet N. Nekrasov:

"Go straight down the road,
Count the poles until thirty.
Then enter the forest
And walk for a verst.

By then you'll have come
To a smooth little lawn
With two pine-trees upon it.
Beneath these two pine-trees
Lies buried a casket
Which you must discover." **

• To be more precise, the point P and the positive part of the
axis Oy must lie on the same side of axis Ox if y > 0, and on
different sides if y < O. In future, we shall not give a detailed description,
assuming that the positive part of the axis Ox is on the right side
of its negative part, the positive part of the axis Oy is right above
its negative part.

•• Translated by Juliet M. Soskice.
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Fig. 6

Here 30 and 1 are the coordinates of the lawn (in the
sense that they define the coordinates of an object - see
Inroduction); a verst has been taken as the unit of length
(Fig. 6).

Sec. 3.
Basic Problems

Usually, the solution of a complex problem boils down to
the solution of a number of simple problems; some of which,
encountered more frequently and noted for their extreme simplicity,
are' called basic. In this section we shall consider two basic
geometry problems: the determination of distance between two
points, and the determination of the area of a triangle whose
vertices are given. Since in analytical geometry a point is defined
by its coordinates, the solution to the given problems lies in
finding the formulae giving the required quantities through the co-
ordinates of the given points. "

PRO B L E M 1. Find the distance between two given points.
Let the points A (Xl; YI) and B (X2; Y2) be given in the

plane Oxy. We draw perpendiculars AA x and BBx from these points'
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on the axis Ox and perpendiculars AAy and BBy on the axis
Oy (Fig. 7). We denote the length of the intercept AB by d.

Let the straight lines AA y and BBx intersect at the point C.

1------fL----tC

B. x

Fig. 7

y

o

c

AL-_......--.B

Fig. 8

Since the triangle ABC is rectangular, we have

d = AB = VAC2 + CB2.

Taking into account, that

OAx = Xb OBx =:= X2, OAy = Yb OBy = Y2,

AC = AxBx = OBx - OAx =. X2 - Xb

CB = AyBy = OBy - OAy = Y2 - Yh

we get from (1):

(1)

(2)

It can be proved that this formula is valid for .any position of the
points A and B.

PRO B L E M 2. Determine the area of. a triangle from the
coordinates of its vertices.

Let the points A (Xl; YI), B (X2; Y2), C (X3; Y3) be the three
vertices of the triangle. We draw perpendiculars AA b BB b CC I
from these points to the axis Ox (Fig. 8). It is obvious that
the area S of the triangle ABC may be expressed in terms of
the area of the trapeziums AAlBlB, AA IC l C, CClBlB:

S = area AAlC l C + area CClBlB - area AAIBlB.

Since

AAl = Yb BB l = Y2, CC l = Y3,

AlBl = X2 - Xb AlCl = X3 - Xb ClB l = X2 - X3,

14



we have
1

area AAICIC = "2 (YI + Y3)(X3 - Xl),

Hence,

S = i [(YI + Y3)(X3 - Xl) + J
+ (Y2 + Y3)(X2 - X3) - (YI + Y2)(X2 - Xl)

whence after simplification we get

S = i [XI(Y2 - Y3) + X2(Y3 - YI) + X3(YI - Y2)]. (3)

We observe that formula (3) is valid, .accurate to the sign *,
for any positions of the vertices of the triangle, although this
is not obvious from the above deduction.

Sec. 4. Equatiolli
of Geometrical

Figures
We mark in a plane a finite or infinite number of points.

These marked points form a plane geometrical figure. This figure
may be defined if we can tell the points marked by us in the
plane.

The indicated points may be marked by a pencil or in ink,
what we exactly do, while describing, for example, a circle with
a compass and drawing a straight line with a ruler **. It is
possible to tell which of the points are marked, by using the
notion of the loci, what we exactly do, while defining a circle as
a locus of the points 'in a plane situated at a given distance
from a given point. Finally, for this purpose, we may adopt an

* That is, the value S found. by formula (3) may be negative, but
its absolute value equals the value of the area of the triangle.

** Strictly speaking, we mark not the points, but that part of the
paper which may be considered as carrying the points of interest.
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original approach which is used in analytical geometry, and consists
in the following.

We construct axes Ox and Oy in rectangular Cartesian co­
ordinates in a plane. An equation is then given which contains
the quantities x and y _or one of these quantities * and only
those points are chosen :whose coordinates x and y satisfy the
given equation. The points thus singled out form a certain
figure; the given equation is called the equation of this figure.

Thus, an equation in analytical geometry acts as a sieve,
rejecting the points not needed by us and retaining the points
which form the figure of interest.

Note that in the equation of a figure, quantities x and yare
called variables, since they, generally speaking, vary as we pass
from one point in the figure to another (of course, if the figure contains
not less than two points). In addition to variables x and y, an equation
may contain constant quantities also, moreover, some or all of
them may be denoted by letters.

We write an equation with variables x and y in a general
form

[ix; y) = o. (4)

Here f(x, y)** denotes a mathematical expression containing the
quantities x and y or at least one of them.

In accordance with the aforesaid, we shall consider that
equation (4) defines a certain figure as a set of points whose
rectangular Cartesian coordinates satisfy this equation.

From this basic position of analytical geometry, it is not
difficult to draw the following conclusion: A given point P
belongs to the figure F defined by equation (4) if its coordinates
satisfy equation (4), otherwise the point P does not belong to the
figure F.

Let us consider some simple examples.
Example 1. Equation

y-x=o

* In terminology adopted in algebra, such an equation is called
an equation with two unknowns (or with one unknown if only one of the
quantities x or y enters into the equation).

** Read as "function f of x and y". Other letters such as F, <p:
F (x, y), <p (x, y), etc. may be used in place of f Some examples

of expressions indicated like this are: y - x, x2 + y2 - 4, x sin y, x + y ,
x-y

etc.

16



or, in other words

y=x (5)

defines a straight line which is a bisector of the angle formed
by the positive parts of the coordinate axes (Fig. 9).

Actually, the point P(x; y) on this straight line is equidistant
from the axes of coordinates, its distances from the axes Ox
and Oy are equal to y and x, respectively, if the line is in the
first quadrant and to - y and - x, respectively, if it is in the
III quadrant. In both cases, the coordinates of the point P
satisfy equation (5). On the other hand, the coordinates of a
point not lying on the above-mentioned straight line cannot be
equal to each other.

In a similar way, we convince ourselves that the equation

Y= -x

defines a straight line which bisects the angle adjacent to the one
formed by the positive parts of the coordinate axes (Fig. 10).

y

Fig. 9

EXAMPLE 2. Equation

x

y=b

Fig. 10

x

(6)

defines a straight line parallel to the axis Ox. This straight
line lies above the axis Ox if b > 0, below the axis Ox if b < 0
and coincides with the axis Ox if b = O.

Note that equation (6) does not contain a variable x; it
means that it does not impose any restrictions on the value of x;
the value of x may be arbitrary. "

Let us consider in detail the case, when b = 0, i. e., consider the
equation

y =0. (7)

17



This equation shows that of all the points in the plane we
must single out those and only those points whose distance
from the axis Ox is equal to zero, i. e. the points lying on
the axis Ox. Consequently, equation (7) defines the axis Ox.

EXAMPLE 3. Equation

x=a

defines a straight line parallel to the axis Oy. This straight
line coincides with the axis 0 y if a = O.

EXAMPLE 4. Let the point M (a; b) be the centre of a circle of
radius r (Fig. 11). We take any point P (x; y) lying on this circle.

y

O~---~.-t

Fig. 11

x

Since the length of the intercept MP is equal to r, we have
from formula (2),

whence

(8)

(9)

Consequently, equation (8) is the equation of a circle with radius r,
with its centre at the point with coordinates a, b. If, in particular,
the centre of the circle coincides with the origin of the coordinates,
then a = b = 0 and equation (8) takes the form

x 2 + y2 = r2.

Let us consider, for example, the equation

x 2 + y2 = 25,
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x y

0 +5
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±2 ± V2i ~4·6
±3 ±4
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±5 0

which may be written in the form

y = ± V25 - x2
• (10)

Y,~ ~~
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",.cr- --,
,~

",

/ ~,,,

/ ~, ~
I ~",. \
~",. -

if' 0 -x
\ J
\ I
~ ./

~>...... ~
v

Let us find a few points whose coordinates satisfy this equa­
tion, and plot them; first of all, we compile a table. In its
left column, we shall write arbitrarily chosen values of x, in the
right - the corresponding values of the quantity y calculated from
formula (10).

The table gives the coordinates of the points belonging to the
circle defined by equation (9). These points are plotted in Fig. 12.

c

Fig. 12

We could have obtained more points on the given circle, if we
had given the variable x not only integral but also fractional
values, for example, ±0.1, ±0.2, etc.

We observe that both coordinates .of any point in a plane
are real numbers, Therefore in the given example, there is no point in
finding y if x < - 5 or x > +5, since in these cases y will have
imaginary values,
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Sec. 5. Equation
of a Straight Line

Let us consider an equation of the first degree with variables
x and Y or with one of th..~se variables. Obviously, on simplification
such an equation may be expressed in the following form

Ax+ By+ C =0, (11)

where A, Band C are constants. Moreover, at least one of the
quantities, A and B, is not equal to zero. We assume that A i= o.

Let us show that equation (11) represents a straight line.
As a basis of the proof, we shall take the obvious fact that
the area of a triangle is equal to zero if and only if all its
vertices lie on the same straight line.

Let us give two different values YI and Y2 to the variable Y
and find from equation (11) the corresponding values Xl and· X2
of the variable x. This may be obtained since the coefficient
of X in equation (11) is different from zero. The points L(XI; YI)
and M (X2; Y2) belong to the figure (11)·. These are different points
since YI :F Y2. Let us consider another arbitrary point N (X3' Y3).
Substituting successively the coordinates of the points L M, N
in the expression Ax + By + C and calculating its value, we
obtain three identities:

AXI + BYl + C = 0,

AX2 + BY2 + C = 0,

AX3 + BY3 + C = a.

Right-hand sides of first two identities are equal to zero since
the coordinates of the points Land M satisfy equation (11).
We denote the right-hand side of the third identity by a,
a number which is equal to zero if the point N belongs to the
figure (11) and not equal to zero otherwise.

We multiply both sides of the first identity by Y2 - Y3' of the
second by Y3 - Yh and of the third by Yl - Y2 and add up the
equations obtained. As a result, we obtain the following relation
in which the coefficient of A, in view of formula (3), is equal to

*' In pla-ce of "figure defined by the equation f(x; y) = 0", we often
say for the sake of brevity "figure f(x, y) = 0", or simply indicate the
number of the equation which defines the given figure.
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2S where S is the area of the triangle LMN:

2A· S + B (YIY2 - YIY3 + Y2Y3 - YIY2 + YIY3 - Y2Y3) +
+ C(Y2 - Y3 + Y3 - YI + YI - .Y2) = a(Y1 - Y2)·

From this after obvious simplifications we get

2A·S = a(Y1 - Y2) (12)

where, as has been mentioned above, A:I= 0, YI - Y2 :1= O. If the
point N belongs to the figure (11), then a = 0, in which case we
conclude from equation (12) that S is also equal to zero.
Consequently, the point N lies on the straight line 1M. We
suppose now that N is any arbitrary point on the straight
line 1M, then S = O. In this case it follows from equation (12)
that a also equals zero, consequently, the point N belongs to the
figure (11).

Thus, each point on the figure (11) lies on the straight line
LM and each point on the straight line LM belongs to the
figure (11). Hence, equation (11) defines a straight line, Q.E.D.

Let us now show that, conversely, the equation of any straight.
line can be written in the form (11). Let points P (Xl; YI) and
Q(X2; Y2) lie on a given straight line. The equation

(x - XI)(Y2 - YI) - (y - YI)(X2 - Xl) = 0 (13)

is of the first degree, hence it defines a straight line. This
straight line is PQ since the coordinates of the points P and Q
satisfy equation (13).

From the above, it follows that construction of a figure
defined by an equation of the first degree is not difficult. Since
this figure is, as shown above, a straight line, it is sufficient
to find just two of its points, locate them and draw a straight
line passing through them.

Let us consider, for example, the equation

X + Y = 5. (14)

It is not difficult to see that points P (5; 0) and Q(0; 5)
belong to the straight line (14). It is drawn on Fig. 13.

We shall consider one more example.
Let the equation

y=3 (15)

be given.
We assign two arbitrary values to the 'variable x, for example,

X = -1 and x = 2. In both cases Y = 3. Hence, points P( -1, 3)
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Fig. 13

and Q(2, 3) belong to the straight line (15). This straight line
.is parallel to the axis'Ox which could have been foreseen since equation
(15) is a special case of the equation y = b (see Example 2, Sec. 4)

Sec. 6. Method
of Coordinates

as a Means of Solving
Geometrical Problems

As an illustration to the application of the method of co­
ordinates we shall consider the solution of three problems. In each
of them, we shall be required to draw a circle which, from the
point of view of. analytical geometry, is equivalent to writing an
equation of the required circle or to a determination of its
radius and the coordinates of the centre.

We shall give two solutions to each problem, the first by the
method of coordinates and the second by means of elementary
geometry. The procedure of solving problems of the first type
is characterized by the fact that they follow a common plan
and are similar in idea, while the solutions of the second type
have much less in common and are based on the applications
of different theorems. This fact is of significant importance and
shows, albeit in some special examples, that the application of the
method of coordinates considerably simplifies the search for ways
leading to the solution of a problem.

PROBLEM 1. Plot a circle passing through points A (1; 1),
B (4; 0), C (5; 1).

First Solution. The equation of the required circle has the form

(x - a)2 + (y - b)2 = r2 (16)

[see formula (8)].
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Since points A, B, C lie on the required circle, their co..
ordinates satisfy equation (16). Substituting successively into this
equation .the coordinates of the given points, we obtain the
equalities

(1 - a)2 + (1 - b)2 = r2,

(4-a)2+b2=r2,

(5 - a)2 + (1 - b)2 = r2,

whence we get a = 3, b = 2, r = 0. Consequently, the required
circle is defined by the equation

(x - 3)2 + (y - 2)2 = 5.

Second Solution. We draw mid-perpendiculars * to intercepts AB
and BC. They intersect at the centre of the required circle.

PROBLEM 2. Through the points A (4, 1) and B(ll, 8) draw
a circle such that it touches the axis Ox.

First Solution. Obviously the required circle lies over the axis
Ox; and as it touches the axis Ox, the ordinate of its centre is
equal to its radius b = r. Hence, the equation of the required
circle is of the form

or
(x - a)2 + y2 - 2 ry = °

Substituting successively into this equation the coordinates of the
points A and B, we get the equations

(4 - a)2 + 1 - 2r = 0,

(11 - a)2 + 64 - 16r = 0,

whence al = 7, a2 = -1, b, = r1 = 5, b2 = r2 = 13. Thus, there
are two circles satisfying the conditions of the problem (Fig. 14):

(x - 7)2 + (y - 5)2 = 25

and

(x + 1)2 + (y - 13)2 = 169.

Second Solution. We draw a straight line AB. We denote by
C the point of its intersection with "the axis Ox. To the

* Mid-perpendicular to an intercept is a straight line passing through
its centre and perpendicular to it.
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intercepts CA and CB, we plot a geometric mean intercept and
cut ofT on either side of the point C equal intercepts CD
and CE along the axis Ox (Fig. 14).

Fig. 14

The circle passing through the points A, B, D satisfies the
condition of the problem. Actually, the intercept CD is the
tangent to this circle as the geometric mean between the secant
CB and external part CA. Similarly, we can make sure that
the circle passing through the points A, Band E satisfies the
condition of the problem.

PROBLEM 3. Through point A(2; 1) draw a circle touching
the coordinate axes.

First Solution. Obviously, the required circle lies in the first
quadrant; and, since it touches the axes Ox and Oy, the coordi­
nates of its centre are equal to its radius a = b = r. Hence, the
equation of the required circle is of the form

(x - r)2 + (y - r)2 = r2.

Substituting the coordinates of the point A into this equation,
we get

(2 - r)2 + (1 - r)2 = r'­

or, after simplification,

r2
- 6r + 5 = O.

Hence, r1 = 1, r2 = 5. Thus, we obtain two circles satisfying the
condition of the problem (Fig. 15):

(x - 1)2 + (y - 1)2 = 1
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and

(x - 5)2 + (y - 5)2 = 25.

Second Solution. We solve the problem by the similitude method.
We draw a straight line OA and plot in the first quadrant an
arbitrary circle, touching the axes Ox and Oy (shown dotted in
Fig. 15). Its centre S lies on the bisector of the quadrant
angle.

Let the straight line OA intersect the circle thus plotted at the
points M and N. We draw straight lines SM and SN, and

y
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/
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Fig. 15

through the point A we draw straight lines parallel to them and
intersecting the bisector OS at points P and Q, respectively:
AP II SM, AQ II SN. The points P and Q are the centres of the
required circles. The validity of plotting follows from the similitude
theorem.

Sec. 7. Some
Applicatioes

of the Method
of Coordinates

1. Finding the Common Points of Two Figures. Let us show
how to find common points of figures F and <1>, described by
the equations

f(x, y) = 0,

<p(x, y) = O.

(17)

(18)
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Let us suppose that P (Xl; Yl) is one of the required points.
Since it belongs to both the given figures, its coordinates satisfy
both equation (17) and" equation (18). Conversely, if we can find
such values Xl and Yl of the variables X and Y which satisfy
equation (17) as well as equation (18), then the point with co­
ordinates Xl and Yl will be a common point of the figures F
and <1>. Obviously, these values are determined by solving the
system of equations (17) and (18).

Thus, the geometrical method of finding common points of two
figures boils down to the algebraic method of solving the system
of two equations with two unknowns.

Thus, in order to find common points of two figures, it is
necessary to solve their equations simultaneously ; each solution gives
the coordinates of the common point of these figures.

F or example, solving simultaneously the equations

x2 + y2 = 25 (19)

and

X - 2y + 5 = 0, (20)

we find the coordinates of the points of intersection of the
circle (19) with the straight line (20).

From equafion (20) we find that X = 2y - 5. Herefrom and from
equation (19), we obtain

(2y - 5)2 + y2 = 25.

After simplification, we have

y2 - 4y = 0,

whence Yl = 0, Y2 = 4. Further, we find that ·Xl = - 5, X2 = 3.
Thus, the given circle and the straight line intersect at the
points P( -5; 0) and Q(3; 4) (see Fig. 12). It is not difficult
to check that the coordinates of the points P and Q satisfy
equation (19) as well as equation (20).

2. Application of the Method of Coordinates to Graphical
Solution of Equations. While we found above the coordinates of
common points of two figures by simultaneously solving. their
equations, we can, conversely, find the roots of two equations
with unknowns x and y as the coordinates of common points
of the figures defined by the given equations. These considerations
form the basis of different practically convenient methods of
graphical solutions of problems.

Graphical solution of equations usually gives approximate values
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of the roots with a low degree of accuracy which, nevertheless,
is sufficient in most cases for practical purposes.

Let us consider a couple of examples.
EXAMPLE 1. In order to solve a system. of equations of

the first degree

Ax+ By + C =0,

and

A1x + B1y + C1 = 0,

we draw the straight lines defined by these equations, and by
direct measurements find the coordinates of their common point
considering, of course, the signs of the coordinates. .

EXAMPLE 2. For a graphical solution of the cubic equation

x 3 + px + q = 0 (21)

we accurately draw on a graph paper the curve

y = x 3

called the cubic parabola, and draw the straight line

y = -px - q

(22)

(23)

having first plotted two of its points.
The abscissae of the common points of these lines will be

the roots of equation (21). Actually, denoting the coordinates of the
common point of the lines (22) and (23) by ~, 11, we note
that the equalities 11 = ~ 3 and 11 = - p~ - q will be identities.
Therefore, the equality resulting from them ~3 = - p~ - q or
~3 + p~ + q = 0 will also be an identity. Consequently, ~ is a
root of equation (21).

The above method permits the determination of only real
roots of cubic equations of type (21).

The most labour-consuming part of the solution lies in preparing
the graph with the cubic parabola y = x 3

, but then such a
drawing can be used several times, since several straight lines,
defined by the equations of type (23), can .be drawn on it and
consequently, one can solve many equations of the form (21).
Moreover, once we have equation (23) of a straight line, there is
no need to draw it; it is sufficient to find the coordinates of
two points"on it, plot these points on 1he graph, coincide the
edge of the ruler with these points and find the abscissae
of the points where the edge of the ruler meets the curve (22).
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Figure 16 gives a graphical solution of the equations

x 3
- x + 0.2 = 0 (24)

and

x 3 + 2x - 4 = 0 (25)

Here, in accordance with the above stated, the cubic parabola
y = x 3

, and the straight lines y = x - 0.2 and y = - 2x + 4 have

Fig. 16

been drawn. From the graph we find the approximate values
of the roots of equation (24): -1.07, +0.2, +0.9, and the
approximate value +1.2 of the· real root of equation (25).
Equation (25) has only one real root since the cubic parabola (22)
and the straight line y = - 2x + 4 have only one common point.

3. Some Instances of Analysis of the Figure Described by an
Equation. Generally speaking, study of the figure described by
an equation is a complex problem requinng the application of the
methods of higher mathematics. Howeyer, in certain cases, this
problem permits a simple solution. If, for example, a figure is
defined by an equation of the first degree, then, as we already
know, it represents a straight line. In the example given below,
we give a deduction of the equation of a parabola and study
some of its properties.
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A parabola is a curve whose points are equidistant from
a given point (focus) and a given straight line (directrix).

Let the focus F of the parabola have coordinates x = 0,
Y = a(a >"0), and let its directrix I be defined by the equation
Y = -a (Fig. 17). If P(x; y) is any arbitrary point on this

y

xx
a..----~

Q

Fig. 17

parabola and Q the foot of the perpendicular drawn from P to I,
then

FP~·QP. (26)

Obviously, QP = Y + a. Using formula (2), we find FP =
= Vx2 + (y - a)2 . Thus, the equality (26) may be written in the form

VX2 + (y - a)2 = y + a

whence we get

x2 + y2 _ 2ay + a2 = y2 + 2ay + a2

and after simplification

x 2 = 4ay. (27)

We shall consider some properties of the parabola (27). From
equation (27), we see that- y = 0 if x = 0 and y > 0 if x =I: O.
From this, we conclude that the parabola (27) passes through
the origin of coordinates and all its other points lie above the­
axis Ox.

The parabola (27) is symmetrical with respect to the axis Oy.
Actually, if point A (Xl; Yl) lies on the given parabola, then
the equality XI = 4aYl will become an identity, and hence the
equality (- Xl)2 = 4aYl will also be an identity. Consequently, the
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point B( -Xl; Y1), symmetrical to point A with respect to the
axis Oy, also lies on the given parabola. The axis of symmetry
of the parabola is usually called the axis of the parabola.

Let us consider the equation

Y = kx + m (28)

This is an equation of the first degree. Hence, it represents
a straight line. Let us find the abscissae of the points of
intersection of the parabola (27) with the line (28), omit Y from
equations (27) and (28) and determine x from the equation
thus obtained.

Substituting the expression kx + m for y in (27), we get

x 2 = 4a(kx + m)

or

whence

x 2
-J 4akx - 4am = 0 (29)

X = 2ka ± 2 Vk2a2 + am. (30)

The roots of equation (29) may be either real and different,
or imaginary, or real and equal. In the first case we get two
points of intersection, in the second, not a single one. Of maximum
interest is the third case, when both points of intersection coincide
and the straight line (28) will be a tangent to the parabola (27).
In this case k2a2 + am = 0, consequently, m = -k2a, and the
equation of the tangent assumes the form

y = kx - k2a. (31)

The coordinates of the point of contact M are found from
(30) and (27) or (31): X = 2ka, y = k2a.

We shall indicate a simple construction of a tangent to the
parabola. We shall denote by N the foot of the perpendicular
drawn from the point of contact M to the axis C1y (Fig. 18.).
We plot a point N r- symmetrical to N, with respect to the
origin of coordinates 0, and draw a straight line MN 1. The
point N 1 lies on the straight line (31), since its coordinates
x = 0, y = - k2a satisfy equation (31). Thus the straight lines (31)
and MN1 have two common points M and N 1• Consequently, the
straight line MN· is the required tangent.

This method is not valid for drawing a tangent at the point o.
Let us show that the axis Ox is the tangent to the parabola
at the point O. Solving simultaneously the equations x 2 = 4ay
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and y = 0, we find Xl = X2 = 0; hence both points of intersection
of the parabola (27) and the. axis Ox coincide with the peint o.

We shall also consider the plotting of a normal to the parabola,
i. e. a perpendicular to the tangent passing through the point of
contact. Let N 2 be the point of intersection of the normal
MN2 with the axis Oy (Fig. 18). From the right-angled triangle
MN1N2 we have: NN 1 ·NN2 = MN2

• Since MN = 2ka, NN1 =
=2k2a, then N N 2 = 2a. Having plotted the point N 2 in accordance
with the last"equality, we draw a straight line MN 2; it will be the
required normal.

Let us draw another straight line MM' parallel to the axis
Oy (Fig. 19). Since the distance from M to I is equal to

y

Fig. 18 Fig. 19

x

k2a + a, MF is also equal to k2a + a. On the other hand,
NlF = NlO + OF = k2a + a. Therefore MF = N 1F and triangle
FMN 1 is an isosceles triangle. Hence (see notation on Fig. 19),
e:« = -L y. Since the axis Oy and the straight line MM' are
parallel, L y = L~. Therefore,

e:« = L~ (32)

A concave mirror whose surface may be described by the rotation
of a parabola around its axis·, possesses, as can be seen from
equation (32), the following properties: it brings the rays parallel
to the axis to a focus, if a source of light is-at the focus, the rays
diverging from it will become parallel to the axis of the mirror

* Such a surface is called a paraboloid of rotation.
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upon reflection from its surface. Hence, it follows that the reflecting
surface of the mirrors of telescopes and projectors should be
given the form of a paraboloid of rotation.

Sec. 8. Polar
Coordinates

In analytical geometry, one makes use of not only rectangular
Cartesian coordinates, but also many other systems of coordinates.
Of widest application among these is the system of polar co­
ordinates which differs from others in its extreme simplicity. We
shall consider this system in the present section.

While choosing a system of coordinates, one must take into
account the nature of the figures to be studied and the problems to
be solved, since the success in solution depends, to a considerable
extent, on the correlation of the means of solution with the
data of the problem. In particular, for a number of problems,
the simplest solutions are obtained by using the system of
polar coordinates.

Let us go over to the definition of polar coordinates of a point.
Let the point 0 (pole) and semiaxis Ox (polar axis) passing

through 0 be given in a plane. Let us take any arbitrary point
P in the given plane, draw the intercept OP and consider the
length p of this intercept and the angle xOP = <p (Fig. 20).

Fig. 20

The quantities p and <p are called polar coordi!Ultes of the
point P, p is called the polar radius of this point, <p - its
polar angle. Not only the angle <p, but also the angle <p + 2k1t
where k is any arbitrary whole number, may be regarded as
the polar angle of the point P.·

Let us take the polar axis as the positive part of the axis
Ox of the rectangular Cartesian system in the plane under
consideration, and the point 0 as the origin of coordinates,
and draw PPx .L Ox (Fig. 21). If the point P lies in the first

• Throughout this book,-a radian is chosen as a measure of an angle.
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Fig. 21

quadrant, we get from the right-angled triangle OPPx

x = pcos <p, y = p sin <p (33)

where x and' yare the rectangular Cartesian coordinates of the
point P. It is easy to see that formulae (33) are also valid in
case when P is any 'point in the plane Oxy.

From the right-angled triangle OPPx we also find that

p = + VX2 + y2, tan o = y]«. (34)

Formulae (33) and (34) express the relation between the rectangular
Cartesian and the polar coordinates of a point.

Let us assume that the equation

!(<p, p) = 0

describes a certain figure as a set of points whose polar co­
ordinates satisfy this equation (cf. Sec. 4).

For example, equation

p = a<p (35)

where a is a constant positive number, defines an infinite line
called the Archimedean spiral (Fig. 22).

We draw the semiaxis OL from the point 0 and denote by
Ab A2 , A 3... , respectively, the points of its intersection with
the Archimedean spiral. If L xOL= 9 < 21t, then

OAt = a9,

OA2 = a(9 + 21t),
OA3 = a(9 + 41t), ....

Hence,

A tA2 = A2A 3 = ... = 21C~.

Thus, the distance between the neighbouring points of intersection
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(36)

Fig. 22

of the given line is a constant quantity independent of the
direction of the semiaxis 0 L.

From the equation of a figure in rectangular Cartesian coordinates,
one can get the equation of the same figure in polar coordinates
with the help of formulae (33); the reverse can be accomplished
by formulae (34).

For example, having written the equation of the Archimedean
spiral in the form

p
tan- = tan e

a
and using formulae (34), we get the following equation of this
curve in the rectangular Cartesian coordinates

tanVx2+y2 =L .
a x

A comparison of equations (35) and (36) shows that it is
preferable to use polar coordinates to study the Archimedean
spiral.

Let us consider one more example: Let two circles k and k'
be given, each with a diameter a; we denote their centres by M
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and M', respectively. If the circle k is stationary and k' rolls around
it without slipping, then the point P fixed on k' describes a
curve called a cardioid. In one of its positions, the point P
coincides with a certain point 0 on the circle k; we regard
the respective position of the circle k' as the starting position
(shown dotted in Fig. 23).

Let us find the equation of the cardioid in polar coordinates.
The point 0 divides the straight line MO into two semiaxes;
we take the one not containing the point M as the polar axis and
the point 0 as the pole.

Let us consider a position of the circle k' other than the
starting one and denote the point of contact between the circles
k and k' by N. Since k' rolls around k without slipping,
NO = NP. Hence, OP II MM' and LPM'M = LOMM' = LXOP =
= <po

Let us draw OQ II PM': Obviously OQ = PM' = ~a; therefore

the triangle MOQ is an isosceles one and MQ = 2 ~ a cos <p =

= a cos o. Further, p = OP = MM' - MQ = a - acos<p. Hence, the
equation of the cardioid has the form

p = a (1 - cos o). (37)

This curve is represented in Fig. 24.

Fig. 23 Fig. 24

x

Let us fix a point P (p, q» on the cardioid and consider a
point U moving along the cardioid (Fig. 24). Let OU = p',
L UOP =~, L OPU = u, Obviously, p' = a [1 - cos (<p - ~)] •
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If the point U, moving along the cardioid, comes indefinitely
close to the point P, then the straight line PU, rotating around
P, tends to a certain limiting position; this limiting position
of the straight line PU is the tangent to the cardioid at the
point P, and the limiting value of the angle Jl is the angle
between this tangent-and the polar radius OPe

Applying the sine theorem to the triangle OPU, we get

p' sinJ.l
p = sintu + ~)

or

1 - cos (<p - ~) sin Jl
1 - cos o = (sin u +~) .

Subtracting from both sides of the last equality a unity, we get

or

cos<p - cos<pcos~ - sin<psin~ _
1 - cos<p -

_ sin Jl - sin Jlcos ~ - cos J.l sin.~
- sin(J.l+ ~)

cos <p (1 - cos~) - sin <p sin ~ _
1 - cos <p -

= sin Jl(1 - cos~) - cos Jlsin ~

(sin Jl + ~)

Dividing the numerators by sin ~ and assuming that

1 - cos~ _ tant, t
sinj, - -2-' we ge

cos <p tan %- sin <p

1 - cos o

sin!! tan %- COS!!

sintu + ~)

If the point U comes infinitely close to the point P, then ~
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and tan ~ approach zero in the limiting case and the preceding

equality assumes the form

cot) = cot u,

From here we find the limiting value of J.1, J.1 = ~ <po

Thus the tangent to the cardioid forms with the polar radius
of the point of contact an angle equal to half the polar angle
of the point of contact. .

We shall also show that the straight line PN, passing through
the point of contact N of the circles k and k' is the normal
to the cardioid at the point P(Fig. 23).Actually, L OPN = L PNM' =

= ~ - ~. Consequently, the tangent to the point P forms with

the straight line PN an angle ~ - ~ + i = ~ ·

Sec. 9. Examples
of Defining Figures

by Equatiolfi

Examples given in this section will help the reader get a
clear idea about the method of defining geometrical figures by
equations and will also- show that quite complicated figures may
be' described by relatively simple equations.

EXAMPLE 1. Let us consider the equation *

(38)

Obviously

~= 1 if a> 0,a

and

~ = -1 if a < O.
a

* The absolute value of quantity a is denoted lal.
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Therefore, the expression M + M, where x, yare the coordinates
x y

of a certain point P, is equal to 2 if the point P lies in the
first quadrant, is equal to zero if the point P lies in the II or IV
quadrant, and is equal to - 2 if the point P lies in the III
quadrant. Finally, this "expression is meaningless if the point P
lies on one of the coordinate axes, or coincides with the origin
of coordinates.

Consequently, equation (38) describes a part of the plane, namely,
the first quadrant of the plane Oxy; moreover, this part of the
plane does not contain any point lying on the axis Ox or
axis Oy (Fig. 25).

y

x

Fig. 25

EXAMPLE 2. Equation

(39)

should be considered separately tor each of the four quadrants
of the plane Oxy; it may then be written in a simpler form

(x - 1)2 + (y - 1)2 = 4 for I quadrant (40)

(x + 1)2 + (y - 1)2 = 4 for II quadrant (41)

(x + 1)2 + (y + 1)2 = 4 for III quadrant (42)

(x - 1)2 + (y + 1)2 = 4 for IV quadrant (43)

Equation (40) does not differ in its form from the equation
of a circle with radius 2 with the centre K (1, 1), but it describes
only that arc of the circle, which lies in the first quadrant, since
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for other quadrants we have found somewhat different equations.·
This arc and the arcs of other circles (41), (42), (43) lying in
II, III and IV quadrants, respectively, form the figore represented
by the equation (39) (Fig. 26).

y

x

Fig. 26

No point on the axis Ox and the axis Oy is contained in the

figure (39), since the expression .!li is meaningless if y = 0, and the
y

expression M is also meaningless if x = O.x .

EXAMPLE 3. Equation

[x] + Iyl = 2 (44)

should be considered separately for each of the four quadrants
of the plane Oxy. It may be written in the form

x + y = 2 for I quadrant,

- x + Y = 2 for II quadrant,

-x - y = 2 for III quadrant,

x - y = 2 for IV quadrant,

since lal = a if a ~ 0 and lal = -a if a ~ O. It is easy to see
that equation (44) describes the outline of the square ABeD,
including its vertices (Fig. 27).

EXAMPLE 4. Equation

y = Iylsinx (45)
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Fig. 27

becomes an identity in the following cases:
(1) if y = 0; the variable x in this case may have any arbitrary

value;
(2) if y is any arbitrary positive number and sin x = 1, and,

consequently, x = ~ + 2k1t where k is any whole number;

(3) if y is any arbitrary negative number and sin x = -1,

and, consequently, x = - ~ + 2k1t, where k is any whole number.

Therefore, the figure (45) consists of the axis Ox and an infinitely
large number of semiaxes of two kinds; the semiaxes of the
first kind originate from the points on the axis Ox with abscissae

~, ~ ± 21t, I ±41t,..., are perpendicular to the axis Ox and lie

above it; the semiaxes of the second type originate from the

points - ~, - ~ ±21t, - ~ ±41t, ..., are perpendicular to the

axis Ox and lie below it (Fig. 28).

Y,

- .
0 -x'

:::
2n

::--

Fig. 28

EXAMPLE 5. Equation
sin (p1t)=0
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is equivalent to an infinite number of equations p = 0, p = ± 1,
p = ±2, p = ± 3,..., and describes a pole and concentric circles
with, radii 1, 2, 3, ... having their centre at the pole (Fig. 29).

x

Fig. 29

Negative values of p are not to be considered since by
definition p ~ o.

EXAMPLE 6. By [a] we denote the highest integer which does
not exceed a*. For example, [2] = 2, [5.99] = 5, [-5.99] =
= -6, [1t] = 3, [VSO] = 7, [ -4] = -4, [-4.7] =" -5.

Let us consider the equation

Y=[~. (%)

If n ~ x < n + 1, where n is an integer, then y = n.
Therefore, equation (46) describes a figure, consisting of an infinite
number of intercepts, arranged like the steps of a staircase
(Fig. 30).

One of these intercepts lies on the axis Ox. The abscissa
of its extreme left point is equal to zero. Let us show that it does
not have any extreme right point.

Let us suppose that such a point P does exist and that
its abscissa is equal to p. Since [P] = 0, and obviously p ~ 0,

o< p < 1. We denote by q the number p + 1; P = 1 + ~, and

* The notation [a], which one frequently comes across in mathematical
literature, has the same meaning.
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Fig. 30

by Q represent the point on the axis Ox with an abscissa q.
Obviously p < q < 1 and [q] = O. Hence, the point Q belongs
to the same intercept of the figure (46) and is situated on the
right side of the point P which is contrary to our supposition.

Similarly, we can prove that any of the above mentioned
intercepts of the figure (46) has a left edge, but does not
have any extreme position on the right side.

EXAMPLE 7. The figure, described by the equation

[x] = [y]
consists of an infinite number of squares with their inner points
but without their top and right sides. Each of these squares 'has
a side equal to unity, their position is shown in Fig. 31.

Actually, if x and yare any arbitrary numbers satisfying

Fig. 31
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the inequalities

n~x<n+1 n~y<n+1

where n is an integer, [x] = [y] = n.
EXAMPLE 8. We have seen above that equations (39) and (44)

were simplified if we considered not the entire plane 0 xy, but
only one of its quadrants. We shall likewise apply the method
of dividing a plane into parts while considering the equation

{x - [x + ~ JY + {Y - [Y + ~Jr = 1~· (4"n
We divide the plane Oxy into squares with the help of straight

lines
1 3 5

(48)X= +--- x=+- X= ±2'."- 2' - 2'

1 3 5
(49)y= ±2' y= ±2' y= ±2''''

We consider one of these squares, for example, the square Q confined
by the lines

3 5 1 3
x=2' x=2' y=2' y=2·

The coordinates of any point within the square Q satisfy the
inequali ties

or
12<x+-<3
2 '

Therefore, within the square Q, that is, provided that only
such values of variables x and yare considered which are the
coordinates of points within the square Q, equation (47) takes the
form

1
(x - 2)2 + (y - 1)2 = 16. (50)

Equation (SO) describes a circle of radius ~, whose centre

M (2, 1) is also the centre of the square Q. The circle (50) lies
completely within Q, therefore the coordinates of any of its
points satisfy equation (47).
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Reasoning this way, we come to. the conclusion that the
figure (47) consists of an infinite number of circles, each has a

radius ~, and every point with integral coordinates is the centre

of one of these circles -(Fig. 32).

o

o

y

00

(1)0
Fig. 32

x

EXAMPLE 9. Equation

{$ - [x + ~ JY + {Y - [Y + ~ JY = 1~ (51)

differs from equation (47) only in its right-hand side. Therefore,
within the square Q which we have considered in the last
example, equation (51) takes the form

5(x - 2)2 + (y - 1)2 = 16.

Consequently, it describes a circle with radius 0/4, and with

centre M (2, 1) within Q. Since 1> ~, only that part of the

circle lies within the square Q, which is also a part of the
figure (51), since the points lying outside Q do not belong to the
figure (51). We recommend the reader to make sure that the
points of intersection of this circle with the sides of the square Q
also belong to the figure (51).

44



Similarly, we consider other squares, into which we have
divided the plane Oxy with the help of straight lines (48) and (49).

The figure (51) is shown in Fig. 33.

y

x

Fig. 33

For the reader, who has carefully studied the above examples,
it won't be difficult to plot figures described by the following
equations:

(1) y = Ix I;
(2) sirr' [nx) + sin? (Tty) = 0;

(3) sin(x + y) = 0;

(4) (x+lxI)2+(Y+IYI)2=4;

(5) {x - 2 I~Ir+ {Y - 2
1; 1r= 5;

(6) {x-I~lr+{y+ 1~lr=4;

(7) {x - 1:1 _I~Ir+ {y - 1:1 - I~Ir= 4.
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CONCLUSION

The idea about the possibility of a systematic application of
the method of coordinates in scientific research originated several
thousand years ago e , -. It is well known, for example, that the
ancient astronomers made use of a special system of coordinates
on an imaginary celestial sphere to determine the position' of the
brightest stars, made maps of the stellar sky, carried out extremely
precise observations of the movement of the sun, the moon and
the planets with respect to the immovable stars.

Later on, the system of geographical coordinates found wide"
applications for making a map of the earth's surface to determine
the position of ships in the high seas.

However, until XVII century, the method of coordinates found
limited practical applications. It was used, as a matter of fact,
only for indicating the location of a particular object - immovable
(hill, cape) or movable (ship, planet).

The method of coordinates found a new and extremely fruitful
application in the book Geometry by the famous French philosopher
and mathematician Rene Descartes, published in 1637.

Descartes explained the significance of the idea of a variable
quantity. While studying the most commonly used curves, Descartes
observed that the coordinates of a point moving along a given
curve are associated with a particular equation which completely
characterises this curve. Thus the method of studying curves
through their equations was established, thereby marking the
beginning of analytical geometry and facilitating the growth of
other mathematical sciences.

"The turning point in mathematics, - F. Engels wrote, - was
Descartes' variable magnitude. With that came motion and hence
dialectics in mathematics, and at once, too, of necessity the
differential and integral calculus, which moreover immediately
begins." *

The mathematical basis of analytical geometry lies in the
peculiar method of defining geometrical figures: a figure is given
by an equation. There are two possible means of explaining the
gist of this method.

Considering a point with variable coordinates x and y, inter-
related by a certain equation, we see that it moves in a plane
with a change in its coordinates, but the path traversed by it

• "Dialectics of. Nature", Progress Publishers, Six printing, Moscow,
1974, p. 258.
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won't be arbitrary since the given equation determines the
dependence between quantities x and y. In other words, an
equation plays the role of rails guiding the movement of a
point along a definite track. For example, the point P (1; 1) of the
curve

(52)

may shift over to a position P' (;; 3~) or P" (2; 8), but

equation (52) does not allow it to' move over to a position Q (2, 7).
It is possible, however, not to associate the description of a

figure by an equation with the concept of a moving point,
tracing this figure like a tracer bullet, leaving behind a lighted
trail, or like the pen of a seismograph, recording a curve
reflecting the vibrations of the earth's crust. An equation may
be seen as a means of selecting points constituting the figure
defined by this equation: only those points in the plane are
chosen whose coordinates satisfy the given equation.

The first concept owes its existence to Descartes, and is closely
linked with the idea of functional dependence: a curve, defined
by an equation, is treated as a graph of the function, and the
change in the argument and function depends on the shift of
the point describing the graph of the function.

The second concept is simpler in idea and easier to understand.
At the same time, it covers a wider range of figures*, and
Sec. 4 and partly Sees. 5-9 are devoted to the study of their
characteristic properties. Closer to this concept is the method of
describing figures by inequalities, to which we can only make a
passing reference here, limiting ourselves to the following example:
The points whose coordinates satisfy the inequality x 2 + y2 ~ 25,
belong to a circle with radius 5 and its centre at the origin
of coordinates, the points confined within this circumference
being included.

• Actually, only after a considerable and hardly justified generaliza­
tion of the idea of functional dependence can we consider that the
figures considered in Examples 1, 4, 7 of Sec. 9 are graphs of certain
functions. .
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translation and design of this book.
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The booklet deals with a fundamental method of analytical
geometry and its ability to describe geometrical figures
through equations. This method permits geometrical study
and solution of geometrical problems by algebraic means,
thus making a visual representation of complex spatial
configurations superfluous. Considerable attention has been
devoted to the question of representing geometrical figures
through equations, which is often difficult for those who
being to study the method of coordinates.
Detailed examples have been given to illustrate the
application of the method.
The booklet is intended for senior schoolchidlren and all
those interested in mathematics.
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