UNIVERSAL
LIBRARY

OU_148625

AdVdalT
1VSHIAINN






COORDINATE GEOMETRY

WITH VECTORS AND
TENSORS






COORDINATE GEOMETRY

WITH VECTORS AND
TENSORS

BY

E. A. MAXWELL

FELLOW OF QUEENS’ COLLEGE, CAMBRIDGE

OXFORD
AT THE CLARENDON PRESS



Ozford University Press, Amen House, London E.C.4

GLASGOW NEW YORK TORONTO MELBOURNE WELLINGTON
BOMBAY CALCUTTA MADRAS KARACHI LAHORE DACCA
CAPE TOWN SALISBURY NAIROBI IBADAN ACCRA
KUALA LUMPUR HONG KONG

© Ozford University Press 1958

FIRST PUBLISHED 1958
REPRINTED LITHOGRAPHICALLY IN GREAT BRIT.
AT THE UNIVERSITY PRESS, OXFORD
FROM SHEETS OF THE FIRST EDITION
1962



PREFACE

I am grateful for help received in the preparation of this book.
Dr. W. L. Ferrar suggested a number of improvements which I
gladly accepted, and my pupils D. H. Smith and P. E. Smith
gave valuable help in the working of the Examples. Many of
these Examples are taken from various papers set in the Univer-
sity of Cambridge ; I am grateful for permission to use them.

My thanks are particularly due to the Staff of the Clarendon
Press for their never-failing skill and care.

E. A M.

2 June 1958






INTRODUCTION

THE detailed study of three-dimensional coordinate geometry
is at present unfashionable. This book aims to give a course
representing the minimum that a generally educated young
mathematician will need if he is to handle problems as they
arise later with any degree of understanding. The pruning has
been rigorous, and not everyone will agree with the selection.
The fact that more remains than others may approve reflects
the natural preferences of the author.

I have tried to establish an understanding of coordinate
methods before introducing vectors. I believe that the beginner
is often confused when presented with vectors without any back-
ground to display their advantages, and ‘ordinary’ coordinate
solid geometry is, in any case, a subject interesting in its own
rights.

The chapter on tensors took me long to write, and I hope it
will be found helpful. It can be delayed for some time if neces-
sary, but experience seems to indicate that tensors are found hard
at first and that an early introduction may remove some of the
terrors which come when they are applied to physical problems
in the later courses. The discussion on the general quadric, with
which the book concludes, has been adapted to suit both those
who study tensors at once and those who delay.
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1

COORDINATES, DIRECTION COSINES,
PROJECTION

1. Coordinates

THE purpose of this book is to discuss, with the help of algebra,
the properties of geometrical figures in space. The first step
is to explain how algebraic symbols are used to specify the
position of a point.

The diagram (Fig. 1) may be regarded for the moment as
representing a corner of a room with z
the plane OXY as floor and the 174 p
planes 0X Z, OY Z as adjacent walls.
The position of any object is deter- /| A
mined when its distances from these Y
three planes are known; conversely, /
itsdistancesfromtheplanesaredeter- /
mined when the position is known.

Suppose, more abstractly, that N
0YZ, OZX, OXY are three mutu- 0
ally perpendicular planes meeting
in pairs in the mutually perpendi-
cular lines OX, 0Y, OZ. In the diagram, the plane XOY is
conceived as ‘horizontal’ with OX running ‘straight across the
paper’ after the manner familiar in plane coordinate geometry;
0Y, perpendicular to OX, is visualized as running ‘into’ the
paper; and OZ, perpendicular to both, is ‘vertical’.

The position of any point P is defined by the three distances,
called COORDINATES:

z, the distance from the plane YOZ,
y’ » » ”» ZOX’
2, ’ ’ ’ X0yY.

The point is denoted by the symbol P(z,y, z), or simply (z, ¥, 2).
The planes YOZ, ZOX, X OY are called the COORDINATE PLANES

6086 B
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Fia. 1



2 COORDINATES

and their intersections OX, OY, OZ the COORDINATE AXES; the

point O is called the ORIGIN.
IrLustrRATION. The diagram (Fig. 2) represents a cube
OABCO'A’B'C’ whose sides are all

Z A o’ 4 units in length. Referred to
coordinate axes 0X, OY, OZ lying
C B’ along the sides 04, OB, OC, the
v coordinates of the vertices are

B 0' 0 (0’ 0’ 0)’
0 X A (4,0, 0): B (O; 4, 0), C (O; 0» 4)’
A 47 (0,4,4), B (4,0,4), C' (4,4,0),

0 (4,4,4).

EXAMPLES

The following examples all refer to the diagram of Fig. 1

1. The lengths of OL, OM, ON are 2, 3, 5 units respectively. Write
down the coordinates of each of the points O, L, M, N, P, L', M’, N',

Write down also the coordinates of the middle points of OL, LM’,
M’'P, PN’, N°M, MO.

2. The coordinates of P are (1,4,3). Write down the coordinates of
L, M,N,L,M', N’

3. The coordinates of the middle point of OP are (1,2,4). Write
down the coordinates of L', M’, N'.

4. The point @ (1,5, 2) is taken on OP such that 0Q = }OP. Write
down the coordinates of P, L', M’, N’.

5. The coordinates of P satisfy the equation

z4+2y+32 = 1.
Prove that the coordinates of the middle point of OP satisfy the
equation 9 +4y46z = 1.

6. The coordinates of the middle point of OP satisfy the equation
¥ +y?+22 = 8.
Prove that the coordinates of P satisfy the equation
z24y3+23 = 32,
7. The coordinates of P are (3,2,1). Write down the relation satis-

fied by the coordinates of any point in the plane PM’N’, and the two
relations satisfied by the coordinates of any point on the line PL’,



2. Sign

The extension to negative values of the coordinates is closely
analogous to what js already familiar in plane coordinate geo-
metry. Inthe diagram (Fig. 3) the coordinate axes OX, 0Y, 0Z

Z
Y
’ X
X 0
Y'
Zl
F1g. 3

are produced beyond O to X', Y’, Z’. The coordinates of a
point P (z,y,z) are subjected to the rules:

x is positive (negative) if P is on the same side of the plane
YO0Z as X (X');

y is positive (negative) if P is on the same side of the plane
Z0OX as Y (Y');

z is positive (negative) if P is on the same side of the plane
XO0Y as Z (Z').

3. Right-handed axes

We have incorporated in passing a fundamentally important
convention about the axes themselves. Suppose that the lines
X'0OX, Y'OY are drawn in a horizontal plane occupying the
position customary in plane coordinate geometry (Fig. 4). There
are then two possibilities for the line Z’0Z: it may be drawn
with Z vertically ‘upwards’ or with Z vertically ‘downwards’.
We agree to adhere to the former. The axes then form what
is called a RIGHT-HANDED SET. The reader should check that
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the axes shown in Fig. 3 (with OY regarded as running ‘into’
the paper) are subject to the convention:

¥ A right-handed cork-screw turning from

OY to OZ drives from O to X ; turning from

x OZ to OX drives from O to Y ; and turning
from OX to OY drives from O to Z.

Y’ In contrast, the lines 0X’, OY, OZ form a

Fic. 4 LEFT-HANDED SET in the sense that a (right-

handed) cork-screw turning from OY to OZ

pulls from X’ to O; turning from OZ to OX’ pulls from Y to O; and
turning from OX’ to OY pulls from Z to O.

4. Sense on a line
It is often convenient to assign a direction of ‘motion’ along
a line AB. To do so, we distinguish be-
tween the line regarded as described
from A to B and the line regarded as
Fic. 5 described from B to A. When necessary,
we use the notation:

A_ﬁ for the line described from 4 to B,

A B

B_;l for the line described from B to 4.

One of these directions may be called positive and the other
negative. In particular, the positive senses for lines parallel to

—> —> —>
the axes are defined to be X'X, Y'Y, Z'Z.
The distinction in direction is called SENSE on the line.
The following theorem is elementary, but of basic importance:

If C is any point collinear with two points A, B, then
—> —> —>
AB = AC+CB.
The left-hand side is the distance from 4 to B in a definite
sense; the right-hand side covers the same total distance in the

same sense, but in two stages.
It is also worthy of remark that, if P is any point on the

—_—
axis X'0OX, then (with the convention X'X positive) the z-
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coordinate of P satisfies the relation
QR
x = OP.
Analogous results hold for Y'OY and Z'0Z.

5. Distance parallel to an axis

Let A, B be two given points whose join is parallel to, say,
the axis X'OX. Suppose that their z-coordinates are z,, x,,
and that the line A B meets the plane YOZ in U. Then

Thus AB=AU+UB
= —UA+UB
== ——xl—{—x2,

—_—
so that AB = z,—x,.

The corresponding (sensed) distances for directions parallel
to the other axes are

Yo—Y, for direction Y'OY,
23—2, . Z'0Z.

6. The distance between two given points

To prove that the distance between two points A (xy,Yy,2,),
B (x5, Y, 25) 18 given by the formula

AB? = (,—%3)*+(y1—Y2)* +(2,—2)%

Through 4, B draw planes parallel to the coordinate planes
80 as to obtain the ‘box’ A PQRBP’'Q’' R’ shown in the diagram
(Fig. 6). The distance of P from the plane YO0Z is equal to
that of B, so that the z-coordinates of P, B are equal. Thus

—_
AP = z,—=,.

— —>
Similarly AQ = y,—,, AR = 23—z,.
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By two applications of the theorem of Pythagoras,
AB? = AR'*| R'B?

= AP?} PR'?+ R'B?
= AP*+AQ*+4 A R?
= (Z3— %)) 2+ (Ya—¥1)*+ (22— 21)%
2 __aB
Nl
7] Bee---140 :
i e i
] I A% __Jn
H Lo e
i -7 -
L
A®=--
Y
0 >. ¢
Fia. 6

Note. The result is true even when the line 4B is parallel to a
coordinate plane or to a coordinate axis. The modifications in the proof
may casily be supplied.

ILLusTrATION. To find the condition that the point P (z,y, z)
should be at a distance of 13 units from the point A (—3,4,12).

The formula gives the relation

AP? = (z+3)*+(y—4)*+(2—12)2,

so that (x+3)2+(y—4)2+(2—12)2 = 169,
or 224 y%4-224 62 —8y—24z = 0.
EXAMPLES

1. Find the lengths of the six edges of the tetrahedron whose vertices
are the points (0,0, 0), (6,8,10), (2, —3,7), (—5, 3, 0).

2. Find the equation of the locus of a point P (z,y,z) which is equi-
distant from the two fixed points 4 (3, 5,7), B(2, —4, 6).

3. Find the equation of the locus of a point P (z,¥,z) which moves
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so that its distances from the fixed points 4(2,0,4), B(1, —3, —5) are
connected by the relations

(i) PA*+PB*— ABs, (i) PA*—PB? = 5,
(iliy PA = 2PB.

7. Translation of the axes

When setting up a coordinate system we may, in the first
instance, select the axes in many ways, but it often becomes
convenient in the course of sub-
sequent work to transfer calcula- W
tions to some alternative system. 7Z v
Such a process is called a TRANS-
FORMATION. J U

Consider the special case in
which the origin is transferred to
a point O’ while the new axes,
denoted by O'U, OV, O'W,
remain parallel to OX, OY, OZ.
The coordinates of O’, referred to O X
the original axes, may be denoted Fig. 7
by (£,7,0).

Suppose that the coordinates of a point P are (x,y,z) re-
ferred to the axes 0X, OY, OZ and (u, v, w) referred to O'U,

O'V, O'W. Then, from the relations AP — x,—x,, and so on,
given in § 6 (p. 5),

x—_—u—{—f} or u:x—g}

Yy = v+ v=y—n

2 = wt+{ w=2z—{
These relations are used to transfer the coordinates from either
set of axes to the other.

8. Projection on a line

Let p be a given line. The PROJECTION of a point 4 on the
line p is defined to be the foot of the perpendicular from 4 to p;
call this point A’. If 4, B are two given points, then the PrRo-

JECTION of the (sensed) segment AB on p is defined to be the
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segment A7>B' joining A’ and B', the feet of the perpendiculars from
A and B to p.
Consider now a ‘broken line’
B ABCD (Fig. 8). Let A’, B', C", D’
be the feet of the perpendiculars
from A, B, C, D to p. Then (p. 4)

D —> —> — —>
A'D' = A'B'+B'C'4-C'D’,

—_
A B D C7 P so that the projection of AP on p
18 the sum of the projections of

F16. 8 —_— —> —_

AB-+BC+CD on p.

9. The angle between two skew lines

The angle between two SKEW (that is, non-intersecting) lines
is the angle between two lines through a point, one parallel to
each of the given lines. This con-

B ception is ambiguous in that it
/ determines one or other of two
A P

supplementary angles, but the
Q~~--_ -<1< ambiguity is usually unimpor-

0 Q tant. For the sake of precision,
4 however, we give an exact defini-
D tion to be used if required:

— e
Fig. 9 Let AB, CD be two sensed
skew lines. The angle between

—> -
AB, CD is defined as follows:

Take any point O in space; through O draw the ray 0_;’
parallel to AB in the sense A_Ei’, and the ray 622 parallel to

— —> —> —>

CD in the sense CD. The angle between AB and CD is defined
to be the angle POQ); this angle may be acute or obtuse, but we
restrict it, for convenience, to be not greater than =. It is
independent of the position of O.

Note that the angle between AB and D_E' (being the angle
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between OP and OQ’, where O—b' is opposite in sense to 0_6) is
the supplement of the angle between A_23 and Cﬁ) (Fig. 9).

10. Direction cosines

The direction of a given line p is the same as that of a parallel
line p’ through the origin. In order to describe the latter, take
an arbitrary point P on p’, and
complete the box shown in the Z P
diagram (Fig. 10) by drawing P
planes through P parallel to the
coordinate planes. The angles
between OP and the axes are a7 M
POX, POY, POZ, and the cosines / Y

of these angles are called the NG
DIRECTION COSINES of p. It is //Al

-
N

customary to use the lettersl, m, n

(or the Greek letters A, u, v) for L
direction cosines, so that Fie. 10
l = cos POX = _g{g,
m = cos POY = %J;)—[ ,
n = cos POZ = —g—%

These definitions have contained the implicit, and simplify-
ing, assumption that the angles POX, POY, POZ are all acute.
More generally, suppose that a sense is assigned along the line
OP. 1t is usually immaterial which of the two available senses

is selected, but, for precision, let 6;’ be positive when P is on
the same side of the plane XOY as Z. Let L be the projection
(p. 7) of P on OX. The DIRECTION COSINE ! is now defined

by the relation —> >
Il = OL/OP.
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Similarly, m = O_EI / 0“;,’
— >
n = ON/|OP.
These three relations give complete precision.

—> . .
The convention that OP is ‘upwards’ implies that » is always
positive during its operation; we shall, indeed, sometimes refer
to ‘the n-positive convention’.

z
.p L'
I,
M N v
1
M
' X
X7 0
Y z
Fi1a. 11

Nore. Too much emphasis should not be placed on the

convention determining the sense of 0_15; the agreement is
merely one that can be invoked to settle doubtful cases. If,
however, it becomes necessary, the two further considerations
must also be kept in mind:

(i) If n = 0, so that the line is parallel to the plane XOY,
take P on the same side of the plane ZOX as Y. Then m is
always positive.

(ii) If m = n = 0, so that the line is parallel to the axis

X'0X, take its sense to be that of X’OX. Then [ is always
positive; in fact, I = 1.

CoroLLARIES. (i) If P(x,y,2) is the point such that 0_I>’ =r
and the direction cosines of 57—’ are (I, m,n), then

x=1Ilr, y=mr, z=nr.

— —
For x = OL = 1.OP = Ir; similarly y, z.
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(il) If P (2, ¥y,24), Q (3, Y3, 25) are two points such that P—Zg =7
and the direction cosines of P_b are (I,m,n), then
z, = x,+lr, y, = y,+mr, z,=z,+nr.

This is merely the result of applying a translation of the axes
(p. 7) to Corollary (i).

11. Given the direction cosines, to determine the direc-
tion

A line is uniquely determined in direction when its direction
cosines are given. It is, in fact, possible to construct the line
through the origin having given direction cosines I, m, n:

Cn the coordinate axes mark off O_}J =1, Ofl =m, 0—Z>V =n,
paying attention to signs. The diagram (Fig. 11) illustrates the
case when ! is negative and m, n are positive. Complete the
box as shown, by drawing planes through L, M, N parallel to
YOZ, ZOX, XOY. The diagonal OP of this box is in the

direction (I, m, n).

'12. The formula 2+ m24n2 = 1
It is an immediate consequence of the theorem of Pythagoras
that, for the box OLMNPL'M'N’' defined in § 10 (p. 9),

OP? = OL24+0M2}+ON?,
—> —>
whatever the senses of OL, OM, ON. Hence
OL®* OM?* ON?
ot or T op

= 1.

B4m?4n? =

This formula is very important. It solves the problem, to
find actual direction cosines when their ratios are known. Suppose,
for example, that they are proportional to three numbers q, b, ¢,
so that they are equal to

ka, kb, kc
for some value of k. Since then
k2a? -} k2b24-k2c? = 1,
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. . +1
it follows that k= W—{—-—b2+02)’

and the actual direction cosines are thus

+a +b +c
J@ i 1) Y@+t @bt
In problems where the ‘n-positive’ convention (p. 10) is
being used, that choice of sign must be taken which makes
+-c/J(a®+b2+c?) positive; for example, if a =3, b = —4,
c= —12,then k= 4%, andsol = —f, m=4, n=}
When the direction of a line is specified by three numbers
a, b, ¢ the sum of whose squares is not equal to unity, the
numbers are called DIRECTION RATIOS of the line.

13. The length of a projection
Let ABbea given segment of a straight line, and ; some

other given (sensed) line. Draw 4A4’, BB’ perpendicular to ;
B

AA( B”

p’
AI .B’ p
(@)
B
B"m a4
B’ A’ —>pP
(®)
Fia. 12

. . — -> _—
Then the projection of AB on p is A’B’. The angle § between
—>
AB and its projection is found (p. 8) by drawing through 4

>
the line p’ parallel to ; [In Fig. 12 (a), 8 is acute; in Fig. 12(b),
it is obtuse.]
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Draw B’'B” perpendicular to p’. Then A’B’ is perpendicular
to both B’ B" and B’B, so that p, which is A’ B’, is perpendicular
to the plane BB’B". But p’ is parallel to p, so that p’, which
is AB”, is also perpendicular to the plane BB’B”"; in particular,
AB’" is perpendicular to BB".

In Fig. 12 (a), it therefore follows that cos§ = AB"/A B, and
in Fig. 12(b), that cos@ = —AB"/AB. Hence in either figure,

with sensed lines, —-> >
cos§ = AB"/AB

— A'B'/AB.

L. —_ —> >
Thus the projection A’ B’ of the segment AB on the line p i3 given

by the relation —— —>
A'B’ = ABcos?,

—> >
where 0 is the angle between A B and p.

COROLLARIES. (i) The numerical value of A’'B’ is equal to
the numerical value of ABcosf. This result is often all that is
wanted.

(ii) Since A’B’ = AB’, it follows that the projections of AB
on all parallel lines are equal.

14. Projection of a segment of a coordinate axis upon the
direction (I, m, n)

Let OP be the line through the origin with given direction
cosines (I,m,n). Take two points A, B on the axis X'OX so

—_—
named, as we can, that A B is positive, and let their projections
on OP be A’, B'. Then (p. 10), with the ‘n-positive’ convention,

—> — —>
OA’' = OAcosA'OX =1 0A,
—> —> —
OB = OBcos BOX =1 0B,

so that, on subtracting,
—>

—_—
A’'B' =1 AB.
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-0 . o, .
If 1 is positive (negative), then A’ B’ is positive (negative) so
that A’'B’ is ‘upwards’ (‘downwards’).

V/

Fi1a. 13
Similar results hold for the other axes. The ‘n-positive’ con-
vention implies that, if C', D are two points on Z’0Z such that
- - o, . . —> -+ . .
CD is positive, then the projection C'D’ = n CD is necessarily
‘upwards’.
15. The projection formula

To prove that the length of the projection of the segment joining
the points A (xy,9y,2,) B(Z,, Yy, 25) upon a line with direction

(0] X
Fia. 14

cosines (I, m,n) is
l(xz“zl)+m(ya—y1)+n(z2“”zl)-
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Through 4, B draw planes parallel to the coordinate planes to
obtain the ‘box’ APQRBP’'Q’ R’ shown in the diagram (Fig. 14).

The projection of AB on the given line (not shown in the dia-
gram) is (p. 8) the sum of the projections on it of
—> —> —>
AP+ PQ'+@'B.
PO O .
Also, by § 14, the projections of AP, P@’, Q' B are respectively

lzy—1,), m(Yo— %), n(2,—2,).

—_—
Hence the projection of AB is
Uzp—21)+m(Ys—Yy) +1(23—21).

16. The angle between two lines
To prove that the angle between two lines with direction cosines
I, m,n), (A, n, v) is 0, where
cos§ = I\ +mp-+nv.

Let OP, OQ be the lines
through the origin with direc- 2
tion cosines (I,m,n), (A, p,v),

and let (7}3 = r. Then (p. 10),
if P is the point (2,,¥,,7,),

2, =1Ir, y,=mr, 2z =nr
By the projection formula (p.
14), the length of OF’, the

—
projection of OP on 0¢, is ¥ia. 15
given by the relation

-)l
OP = x; Aty ptz v
= r(IA+mp+nv).
—> —
But (p. 13) OP' = OPcosf = rcosé.
Hence cosf = I\+mpu-+nv.
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17. The condition for perpendicularity

It follows at once from the preceding paragraph that, if the two
directions (I, m,n), (A, u, v) are perpendicular (so that cosf = 0),

then D4mp+nv = 0.
The converse result is also true.

EXAMPLES

1. If 4=(1,0,0), B=(0,1,0), C=(0,0,1), find the direction
cosines of the lines BC, CA, AB and the length of the projection of
ABon AC.

2. Prove that the points 4 = (4,3,2), B = (8,7,8), C = (10,7,4),
D = (6, 3,(ﬂ are the vertices of a parallelogram ABCD, and find the
ingle between the sides 4B, AD and the angle between the diagonals
AC, BD.

3. The vertices of a triangle are

A4 =(1,2,3), B =(586,5), C =(4,6,15).
Find the lengths of the sides A B, AC and the projection of AB on AC.

4. Find the acute angle between the lines whose direction ratios are
(—2,2,—1) and (12, — 15, 16).

5. Find the coordinates of the two points at a distance of 5 units from
the point (3, 3, 3) along the line whose direction ratios are (—9, 12, 20).

6. Prove that the line joining the points (1, 1,2), (6,5, —5) is per-
pendicular to the line joining the points (0, 3, 2), (4, 5, 6).

7. If A = (0,0,0) and B = (3,4, 12), find the projection of AB on a
line whose direction ratios are (2,2, —1).

8. Prove that, as # and ¢ vary, the point

(14 3sinfcos¢, 2+ 3sinfsing, 3cosh)
remains at a constant distance from the point (1,2, 0).

9. Prove that, if the line joining the points (—2, —1, —2) and (2, 1, 2)
subtends a right angle at the point (z,¥,2), then 2?+3y% 422 = 0.

10. If A = (a,b,¢), B = (—a, —b, —¢), C = (x,y,z), prove that

CA*4-CB* = 204%4200C3.

11. The point P (z,y,z) lies on the right circular cone, of angle }u
and with vertex the origin, whose axis is the line through the origin with
direction cosines (4, §, —§). Prove that

27(x3+y2+2%) = 4(z+2y—22)%

12. The point P (x,y,z) lies on the right circular cone, of angle {w
and with vertex the origin, whose axis is the line through the origin with
direction ratios (2, —5,4). Prove that

45(x2+y?4-2) = 4(2x—by+42)%



II
THE STRAIGHT LINE AND THE PLANE

1. The distance formula

LET 4 (a,b,¢) be a given point and (I,m,n) a given direction;
and let P (z,y,z) be the point distant r = AP from A along the
line through A4 parallel to the given direction. Then (p. 11)
the coordinates of P may be expressed in terms of r as a parameter
by means of the formulae

r=a+lr, y=>b+tmr, z=ctnr.

These formulae express x, y, z by means of a distance. The
next paragraph gives an alternative expression by means of a
ratio.

2. The ratio formula
To prove that, if P (x,y,2) is the point on the straight line

—
joining two points A (xy,9y, 2,), B(2s, s, 25) such that AP|PB — k,

then 2 = &, +k, o — Y1 +ky, 2 o ﬁ+k22.
T 14k I N 1+k
v/
B
S
y
r
Y
A

(/] . 4

Fia. 16

Suppose that the direction cosines of the line 4 B are (I, m, n).
6086 C
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—> —>
Let AP = r, PB = s, so that r/s = k. Then (§ 1)
x—x, =1Ir, y—y, =mr, z2—2z, = nr,

Ty—x =18, Y,—y =ms, 2,—=z=ns.

Hence o0 _T g,
Z,—x 8
so that r—x, = k(zy—zx),
or 2(14+-k) = z,+kx,.
Hence = :El—l_—:_—k];x-’
Similarly y_ U thy,
1+k
2 = zl+k22.
1+%

An alternative statement of the same result is that the coords-
nates of the points of the line AB may be expressed in the form
T = A +pxy, Y = Atpys, 2= Agtpz,
where the parameters A, p. are connected by the relation A-p = 1,

3. The equations of a straight line

The work of the preceding paragraphs establishes two PARA-
METRIC FORMS for the coordinates of the points on a straight
line:

(i) If the line is through the point A (a,b,c) with direction
cosines (l,m,n), then

x=a+lr, y=>b+mr, z=ctunr,
where the parameter r i3 the length A—i’.
(i) If the line joins the two.points A (x,,Y,,2,), B (% ¥a,2,),

then 2 — Z,+kzg - Y1 +ky, 2 — 2y 4-kz,
1+k 1+k Itk

i
where the parameter k is the ratio AP|PB.
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Note that this second parametric representation may also be
expressed in the form

T = pry+qry, Y =pYtaYs 2= P21,
where p, ¢ vary from point to point of the line, subject to the

condition ptq=1.

These representations may be re-cast to give EQUATIONS FOR
THE STRAIGHT LINE; that is, equations connecting the coordi-
nates of its points:

(1) From the first form, it follows that the coordinates of the
points of the straight line satisfy the two equations

z—a y—b z—c
I~ m  n’

These equations are suitable for a line passing through a given
point (a, b, c) in a given direction (I, m,n).

(ii) From the second form, we have, on returning to its
derivation, the equations (p. 18)

z—z, =Ir,
Z,—x = ls,

or, adding, x2a—2, = l(r+3),
T—x, T

so that

2,—x, r+s

with analogous results for the coordinates y and z. This slight
variant gives EQUATIONS OF THE STRAIGHT LINE in the form in
which they are usually exhibited:

T4 _ Y=V _ A
Ta—%; Y2~ Y1 T
the value of each ratio being r/(r+-s).
These equations are suitable for a line passing through two
given points (xy,Yy,2,), (%3, Y2, %)

Note. The two forms of equations are very important, but it is often
better to use the parametric forms for the coordinates instead.
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EXAMPLES

1. The coordinates of a point 4 are (3, —1,2) referred to axes 0OX,
0Y, 0Z. Find the coordinates of the middle point @ of OA4, and of the
point R on OA such that O—Fi’ = 5/?()).

2. Find the coordinates of the points of trisection of the line joining
the points (2,1, 5), (—3,2, —1).

3. Find the coordinates of the extremities of the line of which the
points (9, 6,3) and (—1, 2, —3) are the points of trisection.

4. The coordinates of the points 4, B are (2,1,0), (—1,3,7) respec-

—> >
tively. Find the coordinates of the point P such that AP/PB = 5,

and of the point @ such that Az/(ﬁ = —3B5.

6. Prove that the line joining the points (2, 4, 3), (4, 10, 7) meets the
line joining the points (2, —1, 6), (5, —7,17).

6. Find the coordinates of the points in which the line joining the
points (—2,3,7), (6, —1, 2) meets the coordinate planes.

7. Desargues’ theorem. The two triangles ABC, A’B’C’ are so related
that A4’, BB’, CC’ pass through the origin O. Prove that the points
of intersection (BC, B’C’), (CA,C’A’), (AB, A’B’) are collinear.

4. The equation of a plane
Suppose that a given plane meets the axes of coordinates in
points 4, B, C, and denote by P the foot of the perpendicular
from the origin to the plane.

—_

Y Let OP be of length p, and let
c B its direction cosines be (I, m, n).
p Q With the convention of signs
that » is positive, the value of p

/]

will be positive (negative) if OP
is ‘upwards’ (‘downwards’).

X If @ (x,9,2) is an arbitrary
point of the plane, the projec-

—
tion of OQ on the line OP is

o A
Fia. 17
—_
equal to OP. Hence (p. 15)

le+my+nz = p.

This equation, satisfied by the coordinates of all points lying
in the plane, is called the EQUATION OF THE PLANE.
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Conversely, if the coordinates of a point Q (z, y, z) are subject
to the relation lx+my+nz = p,
then the projection of 0?2 on the fixed direction (I, m,n) has
constant magnitude p, so that @ lies in a fixed plane to which
the direction (l,m,n) is perpendicular.

Any line perpendicular to a plane is said to be NORMAL to it.
The derivation of the equation shows that the normals to the
plane lx+my+nz = p have direction cosines (I, m,n).

The equation may be cast into an alternative form:

The plane meets the line OX, given by y = z = 0, where

lx = p,
—_
so that 04 = p/l.
— —>
Similarly, OB = p/m, 0oC = p/n.

— > —>
The position of the plane is determined when 04, OB, OC are
known; write
— —> —>
OA =a, OB=0b, 0C=c,
8o that l =pla, m =p/b, n=plc.
The equation of the plane is thus

pr Py P*_
a b+c—p’

T Y. 2 .
or a+b+c

This alternative form of equation, in terms of the constants
a, b, ¢, is known as INTERCEPT FORM. (Its use presupposes that
the plane does not pass through the origin.)

5. The general linear equation
The form of the GENERAL LINEAR EQUATION in z, v, z is
ar+by+cz+d = 0,
where a, b, ¢, d are constants. For precision of statement
suppose that ¢ is positive, multiplying throughout by —1 to
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that end if necessary. Divide by +4/(a?+b%-+c?), and write
a _1 b
e R e R
c d
-—_ =n, - = — P
J(@*4-b%+c?) Ja2+b*+c?)
The equation then assumes the form (with I24-m?+n? = 1)
lx+my-+nz = p.

Thus (§ 4) the general linear equation represents a PLANE, whose
—_—
normals have direction cosines (I, m,n) and whose distance OP

from the origin is equal to p.
The constants a, b, c of this general form are the DIRECTION

RATIOS (p. 12) of the normals to the plane.
JLLUSTRATION. To indicate the position of the plane
x4 2y—22—6 = 0.

Z
Y
B

0 A X
P

C

z'

F1a. 18

With positive coefficient for z, the equation is
—x—2y+22 = —6,
Divide by +4/(12+422422) = 3. Thus
—le—fy = —2.

If OP is drawn perpendicular to the plane, the direction cosines
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of OP are (—4%, —#%,%). The length of the perpendicular from
the origin is —2, so that P lies ‘below’ the origin.
The plane meets the axes OX, OY, OZ in points 4, B, C,

-— —> -
where 04 = 6, OB = 3, OC = —3.

6. The length of the perpendicular from a given point to
a plane

To prove that, if N is the foot of the perpendicular from the
point Q (x,,¥,,2,) to the plane

lx4+my+4nz = p
(where I, m, n are actual direction cosines, n positive), then
J\Tb = lz,+my,+nz,—p.
/]

()

Fi1c. 19

Suppose that N is the point (u,v, w), where, since N is in the

plane, lu+mv+nw = p.

—_
If NQ = r, then (p. 17)

z,—u=1Ir, y—v=mr, z—w=nr

so that u = x,—lr, v=y,—mr, w=z—nr.

Hence l(xy—Ilr)+m(y,—mr)+n(z,—nr) = p.

Also, since 1, m, n are actual direction cosines,
B4m24n? =1,

so that lz, +my,+nz,—r = p,

or r = la,+my,+nz,—p.
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The modifications to be made in the proof when » = 0, or
when m = n = 0, are obvious. Compare p. 10.

ILLUSTRATION. To find the lengths of the perpendiculars from
the points A(1,2,3), B(—6,0,0) to the plane z-+y-+2z = 0.

The equation of the plane is

(1/v3)x+(1/¥3)y+(1/43)z = 0.
Hence the length of the perpendicular from A4 is
(1/3). 14 (1/¥3).24+(1/43).3 = +2v3.

The point A4 is therefore ‘above’ the plane, distant 2v3 units
from it.

The length of the perpendicular from B is

(1/93)(—6)+(1/43).0+(1/43).0 = —2V3.

The point B is therefore ‘below’ the plane, distant 2v3 units
from it.

JLLUSTRATION (THE CASE n = 0). To jind the lengths of the
perpendiculars from the points A (1,2,3), B(5,0,0) to the plane
3r—4y = 5.

The equation is written with positive coefficient for » in the

form —3x+4_/+5 =0,
or, after division by \/{(—3)2-42},
(—2+ty+1 =0

Hence the length of the perpendicular from A4 is

(—3).1+4.24+1 = +2.
The point A4 is therefore on the ‘Y’ side of the plane, distant
2 units from it.
The length of the perpendicular from B is
(—8).5+4.0+1 = —
The point B is therefore on the ‘Y’ side of the plane, distant
2 units from it.

7. The plane through three given points

To find the equation of the plane determined by the points
(21, Y1, 21), (T2, Y20 23), (%3, Y3, 25)-
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The equation is of the form
axr +by +cz +d =0,
where ax,+by,+cz,+d = 0,
axy+by,+cz,+d = 0,
ax;+bys+cz3+d = 0.

If desired, the last three equations can be solved for the ratios
a:b:c:d and the equation of the plane is then determined. It
is better, however, to eliminate the ratios a:b:c:d from the
four equations so as to obtain the equation of the plane in the
DETERMINANTAL form

x y =z 1|=0
T o 1
Ty, Yy 23 1
Ty Y3 23 1

This is a convenient point at which to introduce some nota-
tion that will be wanted later. The equation, when expanded
in terms of the first row, is

Y oz lle—|z, 2z ly+|z, n lz—|2 ¥ z|=0,

Yo 2 1 Ty 2y 1 T, Yo 1 Ty Yz 22

Ys 23 1 r3 23 1 T3 ys 1 T3 Y3 23

or Ax+By+Cz = D,

where

A=ly, 2 1|, B=|z =z 1|, C=|z, y, 1|,

Y2 2o 1 zy %y 1 T2 Y2 |
Ys 23 1 z3 23 1 3 ys 1

D=|x, y z|
Ty Y2 %
T3 Y3 23
If A is defined by the identity
A? = A%4 B%4-C?,
then the direction cosines of the normal to the plane are
(numerically) A/A, BJA, CJA.




26 THE STRAIGHT LINE AND THE PLANE II

COROLLARY. The length of the perpendicular from an arbitrary
point (4, Yy, 2,) to the plane is the numerical value of
% Yy, % 1|+A.
Zy Ya 2z 1
ry Y3 23 1
Ty Yo 2 1
In fact, the equation of the plane is, with ‘direction cosine’
coefficients,

(4/A)z+(B/A)y+(C/A)e—(D/A) = O,

being precisely the same, by definition, as

z y z 1|+-A=0.

z Hh u 1

g Y2 2z 1

T3 Y3 2z 1
The length of the perpendicular is found by writing (x4, ¥, 2,)
for (z,y,2) in the left-hand side of the first equation, and,
consequently, in the left-hand side of the second equation also.

Rearrangement of the order of the rows, which does not affect
the numerical value, then gives the quoted formula.

8. The points of an arbitrary plane

Suppose that 4 (z,¥y,21), B (Xa, Y2, 25), C (%5,Ya,23) are three
given non-collinear points. The position of a point P (z,y, z) of
the plane A BC may be specified as follows:

(i) Let L (£, 7,{) be the point of BC such that
—> —>
BL/LC
has the given value u.
(ii) Let P be the point of AL such that

—_ >
AP|PL
has the given value v.
_ Tytuxg
Then (p. 18) &= Tru’
x, +vé

and x =

14v
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Hence V(g ux,)
x1+._l__iT
T =
14
= A%+ piy+vieg,
say, where
A= 1 - W
[ A e 1§ s L v 1§ e

Moreover, A, p, v satisfy the relation

Adp+v = 1.

Hence the coordinates of the points of the plane ABC may be
expressed in the form

% = Ay +pay+vag, Y = Ay +pye+vys,
z = Azy+pzp+vz,,

where the parameters X, u, v are connected by the relation

Adptv =1

EXAMPLES

1. Find the coordinates of the three points in which the plane through
the points (2, 5, 1), (3, —2, 8), (1,4, —3) meets the axes of coordinates.

2. Prove that the coordinates (z, ¥, z) of any point in the plane through
the three points (a, 0, 0), (0,b,0), (0, 0, ¢) satisfy the equation

r, Y, %2 _
a+b+c 1

3. Prove that the plane through the points (2,7, 5), (4,2,1), (2,3,2)
passes through the origin.

4. Find the coordinates of the point in which the line joining the
origin to the point (—1, —2,3) meets the plane through the points
(4,1,2), (3,6,7), (1,1,1).

5. Find the coordinates of the point in which the line joining the
points (0,1,2), (2,1,0) meets the plane through the points (0,0,0),
(5,3,7), (—2,6,1).

8. Find the lengths of the perpendiculars from the points (0,0,0),
(1,2,3), (3, —2,1) to the planes

(i) 2x—y+2z=09,
(ii) Sx+4y—12z = 26,
(iii) 12z2—3y—4z = —52.
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7. Find the equations of the faces of the tetrahedron whose vertices
are the points (0, 3, 5), (2,0, —2), (3,7,0), (1,2,3).

Find also the coordinates of the points in which the line joining the
origin to the point (3, —4, 12) meets these planes.

8. Find the altitudes of the triangle whose vertices are the points
(0,0,1), (3,4,6), (—2,3,1), and verify that these altitudes are con-
current.

9. Find the point of intersection of the altitudes of the triangle whose
vertices are the points (0,0,0), (1,1, 1), (a,b,c).

9. The planes through a straight line

Two planes meet in a straight line, and their equations
consequently determine the points of that line. Thus the Two
EQUATIONS TO DETERMINE A STRAIGHT LINE may be taken in
the general form

{ a,x+b,y+c,24d, =0,
a,x+b,y+coz+d, = 0.
This choice of two equations is not unique. The equation
a,2+b y+c z+d+HAayz+byy+cyz+dy) = 0
also represents, for any value of A, a plane through the line;
for (i) it is linear in z, ¥, z and therefore represents some plane,
and (ii) it is satisfied by the coordinates of all points for which
a,x+b,y+c,2+d, =0, a,x+b,y+c,2+4dy, =0

simultaneously.

By varying the value of A, the equations of all planes through
the straight line may be found.

NoTaTioN. It is often convenient to use a single symbol,
say L, to denote the expression ax-by-cz+d; thus

L = ax+by+c2+d.
Then the equation L=0
represents a plane. If, further,
L, = a,x+b,y+c,2+dy, L, = a,z+byy+c,2+d,,
then what has just been proved is that the equation
L1+AL2 = 0

represents a plane passing through the line of intersection of the
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The system of planes through a given line is often called a
PENCIL.

Note. The single parameter A is sometimes replaced by its
‘homogeneous’ equivalent u/A, and the equation of the pencil
is then taken in the form

AL +pL, = 0.
In strict accuracy, this has the advantage of including the plane
L, = 0, whereas the form L,+AL, = 0 does not. But this
advantage is often lost when the extra symbol complicates the
working.

10. The intersection of three planes
(Extensions of the work of this paragraph are basically im-
portant, and the results are worthy of close attention. The
detailed analysis is, perhaps, less necessary yet.)
Consider the points common to three given planes
L, = a,2+b y+c,2+d, = 0,
L, = ayx+byy+cyz4-dy = 0,
Ly, = ayz+byy+czz+d; = 0.
The planes are normally expected to intersect in one point,
whose coordinates are found by solving the three equations;
but exceptions occur. Before the general discussion, three
particular examples will indicate where the trouble arises.

(i) THE PLANES

L, = 22+3y+ 42—9 =0,
x4+ y— 8246 =0,
L, = 5z+6y—122+1 = 0.

5
|

Eliminatef z:
M, =2L,+L,= bx4 Ty—12=0,
M, = 3L,+L; = 11lx+15y—26 = 0.
Eliminate y:
16M,—TM, = (15— 17)z—(180—182) = 0,
or —22+2 = 0.

t The new names M,, M, are inserted for convenience of reference.
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Hence r=1,
so that y=1, z=1.
The three planes thus meet in the unique point
(1,1,1) (Fig. 20).
(i) THE PLANES
L, = 22+43y+ 42— 9 =0,
Ly= z+4+ y— 8+ 6 =0,
Ly = 5x+46y—20z+12 = 0.
Eliminate z:
M =2L+L,= 52+ Ty—12 =0,

M, = 5L+ L, = 152+21y—33 = 0.

F1a. 20

The two equations M; = 0, M, = 0 are, however, incompatible,
for they require BTy = 12

bx+Ty = 11,
which is impossible.
Hence the equations are insoluble, and so the three planes
have no common point.
Geometrically, the three planes
are so related that the line of inter-
section of any two of them is parallel
to the third; thus the three lines of
intersection are all parallel (Fig. 21).
Fia. 21 (iii) THE PLANES
L, = 2x+3y+ 42—9 =0,
Ly,= z+ y— 8246 = 0,

Ly = 52+ 6y—202+4+9 = 0.
Eliminate z:

M, =2L,+L,= bx+ Ty—12 = 0,
M, = 5L,+ Ly = 162+21y—36 = 0.

The two equations M, = 0, M, = 0 are, however, identical,
and so the process of elimination cannot be carried further,
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There is, in fact, an identical relation
3M,—M, = 0,
or L,4+3L,—L; = 0,
which shows that every point of the line L, = 0, L, = 0 lies
(p. 28) in the plane L = 0. Thus the three equations have an

infinite number of solutions.
The expression of L,, L, in the forms

L, = 2(x—1)+3(y—1)+-4(z—1) = 0,
L,= (x—1)+ (y—1)—8(z—1) =10
gives, on solution, the equalities
z—1 y—1 2z2—1,
—28 20 —1’
thus, setting each of these ratios equal
to A, the three planes have in common the
line (Fig. 22) whose points are expressed Fia. 22
parametrically in the form

x=1—-28\ y=14+201, z=1-A

Returning to the general equations, denote by A the de-

terminant
A=la, b ¢}
a; by c,
ag by cg

and by 4,, B,,..., C; the cofactors of a,, b;,..., ¢5. It is assumed
that the nine cofactors are not all zero, otherwise the planes
would be parallel (or coincident) and the solution trivial; in
particular, it is convenient to make the assumption

Multiply the given equations by 4,, 4,, A; and add, using the
standard formulae in the theory of determinants,

Aa,+Aya,+Aga; = A,
Ay b+ Ayby+Ayby = 0,
Ay Aycat+Agc = 0.
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Thus Ar+(A,d,+A,d,+4,d;) = 0,
or Axr = —|d;, b, ¢

d; b, ¢

ds by ¢4

There are now two possibilities:
(i) THE DETERMINANT A IS NOT ZERO.
On dividing by A, the solution is

x=—A1Yd, b ¢l
d, by, c,
d; by ¢
Similarly,
y=—A"Ya, d, ¢l z=—A"Ya, b d,l]
a, dy ¢, a, b, d,
a; dy cq a; by d,

Hence when A # 0, the three planes meet in a unique point.
(ii) THE DETERMINANT A IS ZERO.
There are, again, two possibilities:
(@) The determinant

d, b ¢
dy by ¢
dy by ¢4

18 not zero.

There is then no solution for the equation for x, and so the
three planes have no common point.

(b) The determinant

d, b ¢
dy by ¢,
dy by ¢4

18 zero.

The equation is then satisfied by any value of z, say by x = A.
To follow the solution‘further, return to the original equa-
tions, taking (to conform with the agreement A, # 0) the
second and third:
boy+eyz = —(ayA+d,),
bsy+cgz = —(azA+-d,).
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Eliminate z:
(b2 c3—b3 o)y = cy(agA+dy)—cg(azA-+d,).
Eliminate y:
(b c3—bg Cg)z = by(ay A+dy)—by(ag A+-dy).
Since A; = bycg—bzc, 5~ 0, the values of y, z are determined in
terms of the parameter A.

Hence the three planes have an infinity of common points; that
18, they have a line tn common.

Note. The restriction 4, # 0 merely ensures that the com-
mon line is not parallel to the x-axis, in which case the analysis
becomes a little more complicated. Asthe line cannot be parallel
to all three axes at once, the restriction is not of an essential
nature.

11. The planes through the line
(z—a)fl = (y—b)/m = (z—c)/n
To prove that the equation of any plane through the line

z—a y—b z—c
l m n
may be expressed in the form
A(x—a)+ B(y—b)+C(z—c) = 0,
where the constants A, B, C are subject to the condition
Al4+Bm-+Cn = 0.
The plane is required to satisfy the two conditions:
(i) it contains the point (a,b,c),
(ii) its normals are perpendicular to the line of direction
(I, m,n) lying in it.
From the first condition, the equation can be expressed in
theform  4(z—a)+ Bly—b)+Ce—0) = 0,
where 4, B, C are constants; from the second condition, the
two directions defined by (4, B,C) and (I,m,n) are perpen-
dicular, so that Al+Bm+Cn = 0.

RO8O D
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The ratios 4: B:C in any particular example must be deter-
mined, where necessary, by some further condition on the plane.
ILLUSTRATION. 7o find the equation of the plane through the line
z—2 y—3

il
3 5 7
and passing through the point (1, —2, 3).

Any plane through the line is
A(z—2)+ B(y—3)+Cz = 0,
where 3445B4-7C = 0.
If the plane passes through (1, —2, 3), then
—A—5B+3C = 0.
Solving the last two equations for the ratios 4: B: C,
A B C

25 —8 —5

so that the plane is
25(x—2)—8(y—3)—5z = 0,
or 256x—8y— 5z = 26.

Alternatively, determinantal elimination of the ratios 4: B: C
gives the equation in the form

r—2 y—3 z|=0.

3 5 17
-1 -5 3
EXAMPLES

1. Find the equation of the plane through tho points (a, 0, 0), (0,5, 0),
(0,0,¢c).

2. Find the equation of each plane which cuts the axis OX at a
(positive or ncgative) distance 2 units from O, which cuts OY at a
distance 3 units from O, and which cuts OZ at a distance 4 units from O.

3. Determine which of the points (0, —2,2), (3, —2,4), (1,3,5),
2,1, -1), (0,0,3), (4,2,2), (—1,—-2,-3), (1,3,1), (2,0,4) are on the
same side of the plane 2r+3y-+4z = 5 as the point (0, 1, 2).

4. Find the distance of each of the points (1, 2, 3), (— 1, 2, 3), (1, —2, 3),
(1,2, —3) from the plane z+y+2z = 1, from the planc x+y+2z = 0,
and from tho plane x+y = 0.
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5. Find the point of intersection of the planes

x4+ 2y+ z = 4,
3z — Yy— z = l,
r+Ty—2z = 6.

6. Find the equation of the plane through the point (3,7, 1) parallel
to the plane z+2y—2z = 3,

7. Find the equation of the plane through the point (1, —1,2) per-
pendicular to a line whose direction ratios are (1, —1, 2).

8. Find the equation of the two plancs at a distance of 3 units from
the origin and which pass through the two ponts (2, 0, 5), (0, 2, 5).

9. Find the throe points in the plane 2 = 0 which lio on a line of inter-
section of two of the three planes

r+y—2z2=06, 2x4tyt4z=4, —3y+5z=0.

10. Find the locus of a point which moves so that its distances from
the planes 2x+y+2z = 3, 2r—2y—z = 5 aro (numerically) equal.

11. Prove that the lincs

4(1,2,—1), B(3,5,3) and A4'(3,7,2), B'(—1,1, —6)
arc parallel.

12. Prove that the points (2,1, 0), 3,3,3), (8,6,9), (7,4,6) are the
vertices of a parallelogram.

13. Find equations for the sides of the triangle whose vertices aro
(1,-17,2), (5,3,0), (2,1, 6).

14. The vertices of a triangle are 4 (1,2, —3) B(5, 0,2), C(3,4,1).
Find the equations of the medians of tho triangle, and the coordinates
of the centroid.

15. The vertices of a tetrahedron aro (zy,v,,2,), (22 Y3, 23)s (T Ys» Z5),
(Z4s Y4 24). Find the equations of each of tho threo lines joining the
middle points of opposite sides, and prove that those lines are con-
current. Also prove the latter result more simply.

16. Prove that the line common to the planes x+2y—3z4-4 = 0,
z+y+z—6 = 0 passes through the point (1,2, 3), and obtain tho equa-
tions of the line n the form (x—1)/l = (y—2)/m = (z—3)/n.

17. Obtain the equations of the line common to the planes

z+3y—z—1 =0, z+4y+2—6 =0
in the form (x—x,)/1 = (y—y,)/m = (z—z,)/n.
18. Obtain the equations of the line common to the planes
2x—3y+2z =0, S5r+4y+3z—12 =0
in the form (x—z,)/l = (y—y)/m = (z—2z,)/n.
19. Find the direction cosines of the line common to the planes
z—y+2243 =0, brx+y—2z4+4 = 0.

20. Find the diroction cosines of each side of the triangle whose
vertices are the points (0, 5,1), (2,3,7), (—1,4, —3).
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21, Find the equation of the plane through the points (2,1,5),
(3, —2,4), (1, —3,3). .

22. Find the coordinates of the point common to the three planes
y+2z = 3,2+4+2xr = 3, x42y = 12.

23. Prove that every point common to the two planes

3x—4y+72+4+2 =0, z+y—224+3 =0
also belongs to the plane x—6y+11z—4 = 0,

24. Find the coordinates of the point in which the line joining the
points (1,1, 1), (3,2, 1) meets the plane z—3y = 0.

256. Prove that, for all values of %, the equation z-+y+2+%k(z—3) = 0
represents a plane through the line common to the planes x+y+2 = 0,
z—3 = 0. Prove also that, conversely, the equation of any plane which
passes through the line common to these two planes can be written in
that form. i

26. Find the equation of the plane, through the line of intersection
of the planes 2rx+4y+z—1 =0 and x—y—2z+6 = 0, which passes
through the origin.

27. Prove that the line common to the two planes z+y+k(z—3) = 0,
2x—3y-+2+k'(x—4) = 0 meets the line common to the planesz+y = 0,
2—3 = 0 and also the line common to the planes 2x—3y+z = 0,
z—4 = 0.

28. Find the three points in which the line, common to the plane
through the points (0,1, 2), (2,1,0), (1,0,1) and the plane through the
points (1,1,1), (1,2,3), (2,3, —4), meets the coordinate planes.

12. The common perpendicular of two skew lines
Let the equations of two given skew lines be

x—a, y—b, z2—¢
L m, ny

z—a, y—b, z—c,,
l, ~— my . my’

P(,y%)
for the moment, adopt the ‘n-

positive’ convention. The point
A, v P, A, (a,,by,¢,) lies on the first line
Fio. 23 and the point 4, (a,, b,, ¢,) on the

second. Suppose that the com-

mon perpendicular of the two lines meets them in P, P, (Fig. 23).

(i) THE ANGLEBETWEEN THE LINES. The angle between the
lines is 6, where (p. 15)

cosf =l l,+m, my+n, n,.
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It is useful to note that
sin?2f = 1—cos?d
= (§+mi+n3)(B+m5+n3)— (4 l-+my my+ny 0,)?
= (myng—myny)?+ (g ly—ny 1)+ (1 mp—lymy)?,
on reduction. The value of sin§ is (since 4 lies in the interval
0, =) the positive square root of this expression.
(i) THE DIRECTION COSINES OF P, F,. Suppose that the dirce-
tion cosines of P, P, are (A, p,v). Then, by perpendicularity,
LA+myptnv =0,
LA+myptn,v = 0.
Hence A = s = d R
myng—man,  nyly—myly  Limy—Ilym,
so that the direction ratios are
(myng—mymy, nyly—ngly, Ly my—lymy).
It follows from (i) that the direction cosines are found by
dividing the ratios by sinf. [If the ‘positive n’ convention is
being used, the division may be by —sin#.]

(iii) THE LENGTH oF P, P,. Since P, P, is the projection of
A, A, on the direction (A, u, v), its length is (p. 14) the numerical
value of Nay—ag)+p(by—bg) +v(er—cy),
or

(@y—ay)(my ng—myny)+(by—by)(ny la—m5 1))+
+(e;—¢5)( mz"‘lzml).

sin 6
This expression may be exhibited more compactly in the de-
terminantal form
a,—a, by—b, c,—c,
I my ny
ly my g
J{(myng—my )24 (0 ly—ng 1)+ (lymy— L my)?
(v) THE EQUATIONS FOR P, P,. Let P(x,y,z) be any point of
P, P,. Draw A,V perpendicular to 4, F,. Then (p. 14)

—_— — . .
A, P, = projection of 4, P on the direction (I;, my,n,)

= l(x—a,y)+m,(y—b,)+n(z2—¢y),
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and V?’z = projection of 4, P on the direction (I;, m,, n,)
= ly(x—a,)+my(y—by)+ny(z—cy).

But 5 S

VP, = projection of 4, P, on the line 4, F,

= f—l—;PZcos() (p. 13).

Hence
ly(x—ay)+my(y—by)+ny(z—cy)

= {li(x—ay)+my(y—by)+ny(z—c) )}y Lo +-my my+ny ny).
Similarly
Ly (x —ag)+my(y—bg)+n,(2—c,)

= {lo(@—ay)+my(y—by) +ny(z—co)}(ly lp+my my4-ny my).
These two equations determine the line P, P,.

An ALTERNATIVE FORM FOR THE EQUATIONS may be obtained

as follows :
Any plane through the line 4, P, is (p. 33)

p(@—a,)+q(y—>b,)+r(z—c,) = 0,
where ply+gmy+rn, = 0.
If p, ¢, r are chosen so that
PAtqutry = 0,

then the normal (p,q,7) to the plane is perpendicular to the
line P, P, of direction cosines (A,u,v), so that the plane also
contains P, F,. Eliminating p:q:r, the equation of one plane
through the line P, P, is found in the form

x—a, y—b, z—c,|=0.

L my Lo
A n v
Similarly a second plane through the line is
x~—a, y—b, z—c,| =0,
Ly my Ny
A I v

and these two equations taken together form equations for the
line.
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CoroLrLaRY. It follows from (iii), or is easily proved inde-
pendently, that the condition for the two lines

r—a, _y—b, z2—c¢,

)
A m ny

a,—a, b,—b, c¢;—c,| = 0.
L my o1
I, my g

They then lie in the plane
Az —ay)+p(y—b,)+v(z—ec,) = 0,

or x—a, y—b, z—c,|=0.
A my ny
ly mg Ny

13. Convenient equations for two skew lines
To prove that the equations of two given skew lines can be taken

tn the form y = ma, 2 =c

and Yy = —mz, 2= —c¢.

We begin with a somewhat more general treatment, which
is sometimes useful.

Let AB, CD be the two given lines. Draw their common
perpendicular PQ. Take any point O on P@Q as origin, and the

line PQ as the axis OZ; suppose that 0—;’ = p, 522 = ¢q. The
axes OX, OY are then (in the first instance) any two perpen-
dicular lines through O, each perpendicular to OZ.

The line A B lies entirely in the plane z = p; moreover, the
plane OZA through AB is given by an equation of the form
ax+Py = 0, since it passes through OZ. Hence A B is given

by the equations
ax+By = 0, z=0p.
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Similarly, CD ts given by the equations
yx+8y = 0, z=q.

To simplify these equations to the form quoted initially,
consider two modifications:

(i) Take O to be the middle point of PQ; then we may write
O_ﬁ = C, 0_6 = —¢C.

A\:

v/}
:L\B
C
N
Q
'~ ~

(0] X
Fic. 24
(zoAB)
X
(4]
(zocp)
Fic. 25

(ii) Take the planes ZOX, ZOY as those which bisect the
angles between the planes ZOA4 B, ZOCD; the diagram (Fig.
25) then shows the section in the plane XOY. If the angle
between the planes’is 20, then one of the planes, say ZOAB
has equation y = xtan,

and the other has equation

y = —xtané.
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Writing m for tan#6, the equations are

Yy = ma, z=c¢ for AB,
and Yy = —mx, z= —c¢ for CD.

CororLrLARY. If the given lines AB, CD are perpendicular,
their equations may be taken in the still simpler form
x =0, z=¢c

and y =0, 2= —c.

14. Triads of mutually perpendicular lines

The axes OX, OY, OZ form an example of three straight
lines each of which is perpendicular to the two others. Suppose,
more generally, that p,, p,, p; are

three mutually perpendicular P2
lines meeting in the origin 0, P3
and let their direction cosines be P4
(yy my, my), (L, Mg, my), (L3, Mg, 7g),
where
Bt+mi+ni =1,
Bt-mytnd = 1, S
B4+mi+nk = 1. Fic. 26
Denote by A the determinant
A=l m mnl,
lp mg my
ly my my

and recall the formula (expansion of A by the first row)
A = lj(mynyg—mymy)+my(nyly—ng L) +my(ly mg—Lymy).
Since the lines are perpendicular in pairs,
lyly+mymg+nyng = 0,
I, +mgm,+ngn, = 0,
Ll,+mymy+n,n, = 0.

(i) We prove first that the value of A is £1:
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By direct multiplication of determinants,

A=l my m|X|l, U, §]|=
I, my my my my My
Iy my my ny Ny 7Ny
B+mitnl, Li,+mymy+nyny,, Lls+myms+n,n,
Ll+mymy+nyny,  1j+mi+ni, lyly+mymy+-nyny
Iyl +mgmitngny, lily+mygmytngn,, I+mi+n}
=|1 0 0]=1,
01 0
0 0 1
so that A= 41.
To resolve the ambiguity in the sign of A, observe first that,
-> > > —> > —>

in the particular case when p,, p,, p, are the axes 0X, 0Y, O
respectively, with direction cosines (1,0,0), (0,1,0), (0,0,1),

the value of A is 41. If one pair, say O_I)’ and 0—2, is inter-
changed, the value of A is —1. In the first case, the lines form
a right-handed set (p. 3), in the second, a left-handed set.

Suppose, then, that }—):, ]-):, ;3 are in general position, forming
a right-handed set in that order. Imagine their direction cosines
to vary continuously, by very small steps, until ;1 falls along
—> - — . -
OX and p, along OY. Since the set is right-handed, p; falls
automatically along OZ. The value of A changes during this
motion by small steps only, if at all; but its value is restricted
to be 4+1 or —1, so that small steps are excluded. Hence

A = +1 for a right-handed set.
Similarly A = —1 for a left-handed set.

(ii) We obtain next NINE RELATIONS, of which a typical one is
Mmyng—mgny = Al
where A = +1, as above.
Solve the two equations
Lil,4+mymy+n,ny, =0,

Lls+mymg+n,ng =0
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for the ratios I,:m,:n,. Thus

L my 7

MyNg—MyNy  Noly—nyly  lymz—Iymy

(The denominators are not all zero, otherwise the lines p,, p,
would coincide.)

If each of these ratios is denoted temporarily by 1/k, so that
MyNy—mMgny = ki,

and so on, the formula of expansion for A (p. 41) gives the

relation A =1, kly+my . km,+n, . kn,
= k(Z4+m2+n?),
80 that k=A.

There are thus NINE RELATIONS,
myng—mgny, = Al;, nyly—mngly = Am,y, lymg—Ilymy, = An,,
MyN —my Ny = Aly, ngly—n ly = Amy, lymy—1,my = An,,
Mmyng—myny = Aly, nyly—nyly = Am,y, i my—Il,m; = An,.
(ili) We obtain finally six alternative orthogonality relations:

Suppose that the lines p,, p,, p; are regarded as a system of
coordinate axes OU, OV, OW. The cosines of the angles
between OX and OU, OV, OW are [, l,, 1,, so that, referred
to the new axes, the direction cosines of OX are (I,,1,,1);
similarly the direction cosines of OY, OZ are (m,m,, my),
(ny, ny,ny). Since OX, OY, OZ are mutually orthogonal, there
are SIX RELATIONS Bt B4 B=1,

mi4mi+md =1,

ni+ ni+ni =1,
myny+myny+mygng = 0,
ny i+ nyly+ nyly =0,
lymy+ lymy+ lymg = 0.

15. Rotation of axes

To find the formulae for a transformation of axes, without change
of origin, from OX, OY, OZ to a right-handed triad OU, OV, OW
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whose direction cosines, referred to OX, OY, OZ are (l,,m,,n,),
(lzy my, my), (I3, Mg, Mg).

Let a point P have coordinates (x, y, z) referred to OX, OY,
OZ and (u,v,w) referred to OU, OV, OW. Since u, v, w are the
projections of OP on OU, OV, OW, we have (p. 14) the

relations w =l ztmytn,z,

v=lLxt+myy+mn,z,
w = lgx+myy-+mn,z.

Further, the direction cosines of OX, OY, OZ with respect
to OU, OV, OW are (l,,1,,13), (my, my, my), (nq, ny, m5). Hence,
by similar argument,

x= Lut Lvt+lw,
Y = myut+myv-t+myw,
2= nu+t nyvtnzw.

These equations serve to express u, v, w in terms of z, ¥, z;
and z, ¥, z in terms of u, v, w.

The two sets of formulae may be recollected with the help
of the scheme:

x|y | =z
w |l |m |
v |l | my| n,
w |l | mg| ng

16. The area of a triangle

We begin with a lemma:

To prove that, if a triangle A BC is projected orthogonally into
a triangle A'B'C’ in a plane inclined at an angle 0 to the plane
ABC, then the areas of the triangles are connected by the relation

AA'B'C' = AA BC cos®.

We may, without loss of generality, take the plane of pro-
jection to pass through A4, so that 4, A’ coincide. Let AX be
the common line of the two planes. Since BB’, CC’ are both
perpendicular to the plane A B'C’, they are parallel and there-
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fore coplanar. Hence BC, B'C’ meet in a point U of the
common line AX.

If BP is drawn perpendicular
to AX, then, since BB’ (perpen-
dicular to the plane B'A X)is also
perpendicular to 4X, it follows
that 4X is perpendicular to the
plane containing BP and BB’, so
that B’P is perpendicular to 4 X.
Thus £2B'PB =0, the angle
between the planes. Hence

AB'AU = }B'P.AU

= }(BPcos0).AU

= 3} BP.AU cos?

= ABAU cosé.
Similarly, AC’AU = ACAU cos@.
Thus AAB'C’ = AB'AU—AC AU

= (ABAU—ACAU)cosf

= AABC cosf.

If U were between B and C, then it would also be between
B’ and (', so that the proof would hold as before, save that
subtraction would be replaced by addition.

The primary problem can now be undertaken:

To find an expression for the area of the triangle whose vertices
are the points P (2y,Y1,2,), @ (%3 Ys,23), B (3, Y3, 23)-

The projections on the plane z = 0 of the vertices P, @, R
have in that plane coordinates P’(x,,¥,), @ (X2, ¥a), B'(%3,Ys),
and it is a familiar theorem of plane geometry that (apart,
possibly, from sign)

AP'QR =}z, yy 1|
Ty Yo 1
3 Yy 1
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In the notation used before (p. 25)
AP'Q'R" 7.
Now the direction cosines of the normal to the plane PQR

are (p. 25)
A/J(A*+ B2+ C?), B/J(42+B*+C?), C[\(4*4 B*4-C?),

z R
Q
P /Y
Q’
R ;
0 P X

F1a. 28

so that the cosine of the angle between the planes PQR, P'Q’'R’
is C/,/(A%+ B?+4-C?). Hence, by the Lemma,
1C = {C/(42+ B2+ CY}APQR,

and sot the area of the triangle PQR is

L(A%+ B*4-C?),
or Yy 2 14|z & 1P| 2 o 1 3
2((ys 2, 1 29 ¥y 1 z, Yy 1
Ys 23 1 zg %3 1 23 Y3 1

CoroLLARY. Let R coincide with the origin O. Then the

area of the triangle OPQ is
I 22— Y2202+ (21 22— 2,21+ (X1 Yo — 2, 91)%)-

17. The volume of a tetrahedron
To find the volume of the tetrahedron whose vertices are

P(x,y1,2), Q (%, Y2 2), R(%3,Y3 %), 8 (24, Yar24)-

t If C =0, use projection on z = 0 or y = 0 instead.
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It has been proved (p. 26) that the length of the perpen-
dicular from the point § to the plane PQR is
P=|2 Yy 7 1|+=\(424B2-0?),
Zy Y2 % 1
T3 Yz 2z 1
Ty Yo 2 1
and also (p. 46) that the area of the triangle PQR is
APQR = },/(A%4 B2} C?).
Hence the volume of the tetrahedron is
4 base X altitude
= }pAPQR
=3%l® y oz 1
Ty Yy 2 1
Ty Ys 2z 1
Ty Yo 2 1
18. Oblique axes
It is not always necessary to choose coordinate axes which
are mutually perpendicular; for many problems they are better

Fia. 29

OBLIQUE. If OX, OY, OZ are three concurrent lines, the co-
ordinates of a point P may then be defined from the ‘box’
OLMNPL'M'N’, obtained (Fig. 29) by drawing the planes
through P parallel to the coordinate planes. Thus

—> —> —>
x = 0L, y=O0M, 2= ON.
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The distinction between left-handed and right-handed axes
loses its point, and there is no advantage to be gained by any
‘n-positive’ convention.

Many of the formulae (but not those involving the use of
the theorem of Pythagoras) remain true for oblique axes; for
example, the equation

ax+by+ecz' 7 =0
represents a plane, and the equations
T—% _Y~Y%h _ A
l m n
represent a straight line—though the interpretation of 7, m, n as
cosines is no longer valid.

The illustration which follows shows how oblique axes may

be used to simplify equations.

ILLUSTRATION. (i) A convenient form for the equations of three
straight lines.

Let AA’, BB’, CC’ be three given skew lines. Through 44’
draw the plane parallel to BB’ and
the plane parallel to CC’; by con-
structing planes similarly through
BB’ and through CC’, complete the
(non-rectangular) ‘box’ shown in
the diagram (Fig. 30). Take the
centre of the ‘box’ as origin O, and
the axes OX, OY, OZ parallel to

—> — —
AA’, BB, CC' respectively. The
Fra. 30 equations of the planes may then be
exhibited according to the scheme:
A'CC’', x—a = 0; AB'B, x+a = 0;
B'AA', y—b = 0; BC'C, y+b = 0;
C'BB’, z—c¢ = 0; CA’4, z+4c=0.
The equations of the three lines are therefore given by the
scheme: AA: y—b=0, z+c=0;
BB': z—c=0, z+a=0;
cC': z—a=0, y+b=0.
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Note. This result includes by implication a possible form for the
equations of two given skew lines. An alternative, and more usual, form
will be found on p. 39.

(ii) 7o determine whether there 13 a line meeting each of three
given skew lines so that the portion intercepted between two of the
given lines 18 bisected by the third.

Let the equations of the three given lines be

AA': y—b=0, 2z+4c=0;

BB': z—c¢c =0, z+a=0;

CcC': z—a=0, y+b=0.
The coordinates of a point of the line A4’ can be taken in the
form P(£,b, —c); in like manner points @(—a,,c), R(a, —b,{)
can be taken on BB’, CC’ respectively. If P is the middle
point of @R, then

¢ = H—a+ta), b=1Ln—b), —c=1i(C+i),
so that £=0, n=23b, (= —3c.
There is therefore precisely one line meeting each of the three
given lines so that the portion intercepted between BB’ and
CC' is bisected by AA’. The line joins the points (—a, 3b,¢),
(a, —b, —3c), and is bisected at the point (0,6, —c).
MISCELLANEOUS EXAMPLES

1. Find the equation of the plane which is perpendicular to the plane
3x—4y+9 = 0 ard passes through its line of intersection with the
plane Tx—y—1%z+16 = 0, and prove that the perpendicular distance
of the point (3,2, 1) from this line of intersection is ~/5.

2. Find the equation of the plane which contains the point (4,1,1)
and passes through the straight line common to the two planes

z+4+2y+z=1 and 3zr+y+2z=3.

Show that the plane passing through (4,1,1) and perpendicular to
the line common to the two planes given above has the equation

3x+y—56z = 8.

Hence, or otherwise, show that the straight line drawn from (4,1,1)

to be perpendicular to the common straight line above can be expressed

in the form z—4 y—1 z—1
3~ 1 27
3. Find the volume of the tetrahedron formed by the four planes
z=0, y=0, z=0, z4+3y+2z=286.
4. If the coordinate plane z = 0 is horizontal, find the direction
cosines of a line of greatest slope on the plane lz+my+nz = 0.
6086 E
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6. Find the equation of the plane containing the point (3,9, 14) and
the line y=1lz—3, z=16z+4.

By dropping the perpendicular from the point @ (10, —2, 17), or other-
wise, find the point of the plane nearest to @, and find the distance
between the plane and Q.

6. Find the point of intersection of the planes

3x— y— bz =6,
—z+6y— 3z =12,
—x—9y+252 = —16.

The planes intersect in pairs to give three lines through the common
point; find the equations of the line through this point which is equally
inclined to the three lines of intersection.

7. Find the equations of all the lines through the origin which make
equal angles with the three lines

z—y =x—2 =0,
z+y =x--2=20,
z+y =x+2 0.

8. Points 4, B, C are chosen, one on each of the coordinate axes of a
rectangular cartesian system, in such a way that the lines joining them to
agiven point P (a, b, c), not on any of the coordinate planes, are mutually
perpendicular. Find the coordinates of 4, B, C and prove that the plane
ABC bisects at right angles the line joining P to the origin.

9. Show that the line

I

is parallel to the plane
2z+3y—62+7 = 0,

and find the distance of the line from the plane.

10. Three vertices A, B, C of a cube have coordinates (2,9, 12),
(1,8,8), (—2,11,8) respectively. Find (i) the other vertex of the cube
lying in the plane 4 BC, (ii) the equation of the other face of the cube
passing through A4 B, (iii) the two possible positions of the centre of the

cube.
11. Find the equation of the surface traced out by lines which inter-

sect the two lines
y=12=—1 and z=—1,z2=1
and are perpendicular to the line
. r=4y=2z.
12. Find the equations of the straight line through the origin meeting

both of the straight lines

z+y+z= xz—2y+3z=286,
and 2x—y+z = 3x+3y—2z = 6,
and find the angles between that line and each of the two given lines.
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13. Find the equations of the image of the line
z—1 y z-—1

-1 2 1
in the plane z+y+2 = 4, and show that the cosine of the acute angle
between the line and its image is §.
14. Show that the following two lines intersect:

z—9 y—1 2-—18

3 5~ =17
x—b5 _ y—11 _ z+6
13 5 3 °

Find the equation of the plane containing these lines, and obtain also
the equations of the normal to the plane through the point of inter-
section of the two lines.

15. Find the equation of the plane parallel to and equidistant from

the two lines z+27 y—32 2—2
¢ ~ 3 T2
z—31 y+25 z+14
2 T 2 T =T
16. Prove that, if the lines
’ ’
are coplanar, then so are
z—a —b z—c z—a’ —b’ z—c
e e

l m n
parallel to the line ; = g: = s

18. Prove that, if the direction cosines of two lines through the
origin are (I, m,n), (I’,m’,n’), then the cosine of the angle between them
i8 4+ (W +mm’4nn’).

A right circular cone has its vertex at the origin, and its axis is the
line 2 = y = z. The generators all make an angle of }s with this line.
Prove that the coordinates of any point (z,y,z) of the cone satisfy the
equation d(z+y+2)? = 3zt +y2+22).

19. Show that, in general, one and only one straight line can be
drawn through a given point P, (2, %;,2,) to meet each of the lines

z=a, y=0 and =0, z= —a.

Find the direction ratios of this line, and obtain the locus of points

P, for which the line is parallel to a given plane
Az+By+C0z = 0.
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20. Prove that the lines
z—a+d y—a z—a—d

a—d o a+o6
z—b+c y—b z—b—c
d =¥r°_
o By ~— B Bty

are coplanar, and find the equation of the plane in which they lie.
21. Find the direction ratios of the orthogonal projection of the line
z—a_y=b_z=c
I m n
on the plane Ax+ By+Cz = 0.
Show that the orthogonal projections on that plane of two lines with
direction ratios (I, m,n), (I',m’,n’) are perpendicular if
(A3+4 B2+ C2)(W +mm’ +nn') = (Al+ Bm+ Cn)(AV'+ Bm'+ Cn’).
22. The plane z+2y—2=238
is rotated about its intersection with the nlane
br—2y+T7z = 17
through an angle of 60° in both directions. Find the equations of the
plane in its new positions.
23. Find the length and equations of the common perpendicular to

the two lines c+3 y—6 z
—4T 3 T2
r+2 Yy z= 7
and —:Z = i = 1 .
24. Find the coordinates of the mirror image of the point (p,q,r) in
the plano azx+by+cz+d = 0.

A ray from the origin is reflected successively in the planes
z+y—2z2+1=0,
rz—y+22—1=0,
and then passes again through the origin. Find the points at which it
meets the two planes.

25. Two perpendicular lines 04, OB, of lengths a, b respectively, lie
in a horizontal plane and vertical posts of heights &, k are erected at
A, B respectively. Prove that the plane through O and the tops of these
posts makes with the horizontal plane an angle 6, where

a®h?tan0 = a?k?+b%h?2.

26. The feet of the perpendiculars from a point P to the mutually
perpendicular coordinate planes OYZ, OZX, OXY are L, M, N. Show
that the line O P makes equal angles with the three planes OMN, ONL,

OLM, and that the plane OPL is equally inclined to the planes OLM,
OLN.
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27. A, B, C are the points (a,0,0), (0,b,0), (0,0,c), and M is the
foot of the perpendicular from the origin O to the plane ABC. Find
the coordinates of M and the length OM. By considering the volume
of the tetrahedron 04 BC, deduce that the area of the triangle 4 BC is

3J(b%c*+-ca?4-ahb?).

28. A point P lies in a plane which is parallel to each of two given
skew lines, and the perpendiculars from P to the lines are equal in
length, Prove that the locus of P is a rectangular hyperbola.

29. A straight line meets each of two fixed perpendicular non-inter-
secting straight lines so that the intercept on it is of constant length.
Find the locus of the middle point of the intercept.

30. Prove that in general just one line can be drawn meeting two
lines in space and parallel to a third.

31. A variable point P lies in a fixed plane and A, p are two skew
lines parallel to this plane. Prove that, if the perpendicular distances
of P from A, p are equal, the locus of P is a rectangular hyperbola whose
centre lies on the common normal of A, p.

32. Points P, P’ are taken, one on each of the lines

y=mr,z=c¢ and. y = —mx,z = —c,

such that PP’ subtends a right angle at the mid-point of their shortest
distance. Prove that the locus of the mid-point of PP’ is a hyperbola,
and that the line PP’ describes the quadric

(m2®—1)(y2—m3x?) 4 m2(22—c?) = 0.

33. Prove ‘hat by a suitable choice of (non-rectangular) coordinate
axes the equutions of a skew triad of lines can be written in the forms
{y—b=0, lz—c:O, {z—a::O,

z+c¢c =0, z+a = 0, y+b =0,
and that the lines lie on the surface
ayz+bzx+cxy+abe = 0.
Show that any line which meets each of these three lines is given by
any two of the equations
cBy—byz+bca = 0, ayz—cax+caf =0, boxr—afy-+aby =0,
where «:f8:y are parameters and
a—{—ﬁ—{-'y = 0.
34. Show that the transversals of the three skew lines
{y—mc =0, {z—m =0, { z—1b =0,
z+nb = 0, z+lc =0, y+ma =0
generate the surface
Ub+clyz+m(c+a)ex+n(a+bley+
+ mna(b— c)x+nlb(c— a)y +lmc(a—b)z+ 2lmnabe = 0.
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35. Prove that there is a transversal A to three skew lines I, m, n that
intersects ! in the mid-point of its intersections with m, n.

If 1 and v are similarly defined (the mid-points being the intersections
with m and n respectively), prove that ! intersects A in the mid-point
of its intersections with u, v.

36. The triangle with vertices (5, —4,3), (4, —1, —2), (10, —5,2) is
projected orthogonally on to the plane z—y = 3. Find the vertices and
the area of the new triangle.

37. Find the coordinates of the vertices of the tetrahedron formed by
the planes

z2=2, 3x+4y =13, 22+y—22=38, 6r{+2y+43z= 14,
and find the centre of the ¢nscribed sphere.

38. Prove that rectangular cartesian coordinates can be chosen so
that three given points have coordinates

A(a,0,0), B(0,5,0), C(0,0,c)
provided that ABC is not an obtuse-angled triangle.

Find then the coordinates of the orthocentre of the triangle A BC.

39. Three mutually perpendicular planes meet in O. The projections
on the three planes of a point P in general position are L, M, N. Prove
that the line OP makes the same angle with each of the planes OMN,
ONL, OLM.
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VECTORS

1. Suffix notation
IN this chapter we indicate coordinates by suffixes 1, 2, 3
instead of letters x, ¥, z. The axes are assumed to be orthogonal
and right-handed, and the coordinates of
a point X are denoted by (x;,x,, 73); the
coordinates of points 4, B,... are denoted
by (a;, @y, a3), (b, by, by),..., the letters a, b 2
identifying the points and the suffixes
1, 2, 3 the separate coordinates.

3

Similarly (l,,0,,1;) are used for the 0 1
direction cosines of a line [, and the
equation Fig. 31

A%+ 0y Xyt A%y = b

denotes a typical plane.
The axes will be named 01, 02, 03 (Fig. 31).

2. The summation convention
The formula (p. 15)
cosf = lymy+1lymy+13mg
for the angle between two lines with direction cosines (;, 7, 1),
(my, my, m3) is often abbreviated to the form

3
cosd = > lhm.
A=1

Further simplicity is gained by the use of the SUMMATION
CONVENTION, under which repeated Greek suffixes in a pro-
duct imply summation over the values 1, 2, 3. Thus the formula

for cos @ is cosf = lymy,.

Again, the plane @, 2;,+a; %3+ %3 = b

is )X\ = b.
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Not all writers insist on the repeated suffix of summation
being Greek; but, if it is not, some notation is required for a
repeated suffix which is not summed. (In the present notation,
Iymy means Iy m,+1l,my+l3m,, whereas I;m; is just a single
term.)

The repeated Greek suffix is called a DUMMY SUFFIX, and
may be given any other Greek name: for example,

l,\m,\ = l#m“ = lama,
each being the sum I, m;+1, my+Iym, in which A, p, « do not

appear.
Care must be taken during manipulation not to use as a dummy

any suffix already appearing in an algebraic expression. For
example, if Y = ayz,

meaning Y = @, T, +0y Ty 0323,
and if x; = byzy,
meaning x; = by 2)+bp251+bi325,

the expression for y in terms of z;, 2,, 23 is

Yy =a b/\p. 2w
the dummy suffixes A, u being summed independently over the
values 1, 2, 3. It is necessary to use the suffix x in the substitu-
tion @) = b), 2,, 88 A is already in use.

3. Vectors

By a VECTOR we mean a given magnitude in a given direction,
which can be represented by a displacement in space and which,
when so represented, is subject to the same mathematical laws
as if it were in fact a displacement. Many physical quantities
are vectors: for example, velocity, acceleration, force.

The word SCALAR is used for a number, such as volume, not
linked with direction.

In order to sét up an abstract theory of vectors, let X be
a typical point whose coordinates, referred to one particular set
of orthogonal axes 0(1,2,3), are (x,,Z,,%3) The NUMBER-
TRIPLET (I, Z,, ¥3), conceived as a single entity, is denoted by
the single symbol x. When the individual cOMPONENTS have
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to be emphasized, the more extended notation X(xy,,, ;) is
used.

The symbol X is called the COORDINATE, or POSITION, VECTOR
of the point X. It may be regarded in two complementary
ways:

(i) it gives the position of X;

(ii) it gives the displacement 0—5( of X from the origin O.

4. Transformation according to the vector rule

A vector is given by its magnitude and direction and is
subject to the same mathematical laws as displacement in space.
Suppose, then, that x is a displacement whose components for
a given set of right-handed orthogonal axes 01, 02, O3 are
(2, T3, 5), and for a second such set 01, 02, 03’ are (}, X3, X5).
Let the direction cosines of 0O1’, 02’, 03’ referred to O1, 02, 03
be (1,5, l3), (my, my, mg), (1, Ny, g). The two sets of components
are connected by the relations (p. 44) of which typical ones
are

x) = Loyl 24132, x, = I 2y +my 2h+n, 25

Since these formulae govern displacements, they must also
govern vectors. Hence, if u is a vector with components
(wy, g, ug) referred to 01, 02, O3 and components (w7, g, ug)
referred to 01/, 02’, 03', then these components obey the trans-
formation rule

’
wy = Lu+ Liugtlau,, uy = b uy+my ug-+n,y ug,
’
Uy = My UMy Uy M3 Us, Uy = lyuy+myup+nyus,
’
Uy = Ny Uyt Ny U+ N3 Us, uy = Lyuy+mgup-+nyUs.

We say that u(u,,u,;, u3) TRANSFORMS ACCORDING TO THE
VECTOR RULE.

These formulae suffer from an awkwardness that we overcome
by the use of a DOUBLE SUFFIX NOTATION for direction cosines.
Denote by Iy (1,5 =1,2,3)
the cosine of the angle between the axis Oi of the first system
and the axis Oj’ of the second.}

+ We occasionally use the notations (I, s 1,) and [;; close together, but no
confusion need arise.
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For example, L,y = cos(O1,03') = n,,
1, = cos(02,01’) =1,
ly; = c0s(02,02') = m,,
The law of transformation is then given by six equations, of
which

wy = by Uyl Us g ug,  uy = byl us U
are typical. More briefly, with the summation convention, the
RULE OF VECTOR TRANSFORMATION is

u; = l/\,‘uA, U, = lﬂu,\ (’I/ = 1, 2, 3),
the right-hand sides being summed, in each case, over the

values 1, 2, 3 of A.
Note, incidentally, the identities

=0 (v+#7)
and hily=1 (0 =j)}
=0 (@#j5)/)

5. The direction cosine vector

Suppose that a line L has direction cosines (l;, 1, 1;) referred
to axes 01, 02, 03 and (13, I3, l3) referred to 01, 02’, 03’. Then
I, is the cosine of the angle between L and the axis 0i’. But,
referred to 01, 02, 03, the direction cosines of L are (I;,1,,1;)
and the direction cosines of 0i’ are (Iy;,1y;,15;). Hence, by the
ordinary formula (p. 15) for the cosine of the angle between

two lines, l = RN NNES N

= lh’i lA'
Similarly, /; is the cosine of the angle between L and the
axis 0i. But, referred to 01’, 02’, 03’, the direction cosines of
L are (I{,1;,1;) and the direction cosines of Oi are (I, 1, l;3).

Hence , . ,
L= hlyg+hls+hls
= llA l’A.
Thus direction cosines transform according to the vector rule. The
three magnitudes 1, therefore define @ DIRECTION COSINE VECTOR 1.
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ILLUSTRATION. To express the nine orthogonality relations
(p- 42) in double suffix notation.
A typical relation is, say,
where, for right-handed axes, A = 4-1; thus
Limy—ml; = ng.
In double suffix notation, this is
by la—lialyy == s
Let us write 1, §, k for 1, 2, 3 in the first suffix of each direction
cosine, and p, ¢, r for 1, 2, 3 in the second: thus,
lt'p lJ'q"‘ liq ljp = Uy
If now 1, j, k is any permutation in cycric ORDER of 1, 2, 3
(thatis, 1,2,30r2,3,10r3,1,2)and p,q,ris, independently,
any permutation in cyclic order of 1, 2, 3, then the resulting
equation is one of the nine.
For example, with 4,5, k = 2,3,1and p, ¢, 7 = 3, 1, 2, the equation is
las l:u—ln bs = Lo
or nyly—Ilang = m,.
Thus the orthogonality relation is
lip lja'—liq ljp == lk‘"

6. The algebra of vectors
In order to manipulate vectors, some definitions must now

be given.
Let X, ¥, Z,... be vectors and a, b, c,... scalars. Then the
expression ax+by+cz+-...

18 defined to mean the vector W whose components (w,, Wy, Ws) are
formed according to the rule
w; = ax;+by+czi+t... .
[Note that, in the notation of § 4 (p. 58), with obvious

adaptations,
hwy = a(bh2)+bya)+-e

= ax;+byi+...

’
= Wy,
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and lawh = a(lnz)+b0agh)+--
= az;+by;+...
= w,..
Hence w transforms according to the vector rule.]
Three particular cases deserve special mention:
(i) The sum x-}y of two vectors X, y is the vector w for

which w; = xi+yi'
(ii) The DIFFERENCE X—Yy of two vectors X, y is the vector
w for which We = Lo
i Y-

(iii) The SCALAR MULTIPLE aX of the vector X by the scalar a
is the vector w for which
w; = ax;.
7. The parallelogram rule
Let x, y be two given vectors whose sum is

z = X-ty.
If X, Y, Z are the points whose coordinate vectors are X, y, z,
V/
Y,
X
o
Fia. 32

and if O is the origin, then the two segments XY, OZ have the
same middle point, of coordinate vectort

3(x+y).
Hence Z is the fourth vertex of the parallelogram of which OX,

OY are adjacent sides.
t Its components are }(z,+y,), 3(%s+Ys), 3@+ ¥s).
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In terms of the ‘displacement’ interpretation of vectors (p.
56), the sum Z = XY of two vectors X, y 18 represented by the

—> - —>
diagonal OZ of the parallelogram of which OX, OY are adjacent
sides.
Briefly, vectors are added according to the PARALLELOGRAM
RULE.
CoROLLARY. The vector y—X 18 tnterpreted by the line through

the origin equal and parallel to X?
ILLUSTRATION : THE CENTROID OF A TETRAHEDRON.
Let A BCD be a tetrahedron, and denote by L, M, N, P, Q, R

D
L M
B
A AR
Q P
C
F1c. 33

the middle points of the edges DA, DB, DC, BC, CA, AB.
Then, in terms of vectors referred to any arbitrary origin,

1 = {(a+d), = }(b+-c),
m = }(b+d), q = }(c+a),
n = }(c+d), r = §(a+b).
Thus n—m = q—r = }(c—b),
— —> —>
so that, as above, MN = RQ = }BC,
the three lines being parallel. Thus
MNQR
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is a parallelogram. Similarly
NLRP, LMPQ

are parallelograms. Hence the three lines LP, MQ, NR pass
through a point O at which each 1s bisected.
The last result may also be verified directly: the middle point

of LP s 31+p)
or i(a+b+c+d),
and this, by symmetry, is the same for the lines M@, NR also.

8. The scalar product of two vectors
Given two vectors X, y, the scalar number
o1 Y1+ Y2+ 23Ys
or, with the summation convention,
ZAYA
is called their scALAR PRODUCT and is denoted by the symbol
X.y. Since z)y, = y,x), the scalar product is also y.x. Thus
X.Yy=Y.X=2)Y)
The scalar product x.X is written x2, so that
x? = a+tai+al.
The positive square root
/(23 +af+af)
is called the MAGNITUDE of X, and is written |x| or . Note

this use of the symbol x for the magnitude of x; it will be used
without explicit remark.

Since X.(y+2) = 2)(ya+2) = Bt ana
=X.y+X.z,
it follows that scalar products obey the DISTRIBUTIVE LAW
) X.(y+2z) =x.y+x.z.
(ax). (by) = (az))(by)) = abxyyx
= abx.y,

Since

it follows that scalar factors of either vector may be taken ‘outside’
a scalar product.
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9. Distance and angle

In this and the following paragraphs there are gathered
together in vector form several results already established in
terms of cartesian coordinates.

(i) The relation x? = 2 taltal
shows that the distance OX of the point X from the origin O 13
given by the formula

0X? =x2 or OX = [x|.

COROLLARY. The DIRECTION COSINE VECTOR of the direction

0_5( 18 1, where 1 is given by the relation
X =zl

or 1=2z1x.

(ii) The relation

l.m=m.l=1m4lmy+1lymy
shows that the angle 6 between the two directions 1, m is given
by the formula (p. 15)
cosf =1.m=m.l
[Note that 1, m are vectors of unit magnitude.]

CoroLLARY. The two directtons 1, m are perpendicular if,

and only if, l.m =0 (orm.1=0)

(iii) A geometrical interpretation for the scalar product x.y
may be founded on a combination of (i), (ii). If I, m are the
direction cosines of OX, OY, then

X = zl, Yy = ym,
where z, y are the magnitudes of x, y; also
1.m = cosé,
where 0 is the angle between the lines. Thus
X.y = (21).(ym)
=zyl.m (p. 62)
= xycos .
Hence x.y is equal to 0X.0Y cos XOY.
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CoroLLARY. When y = 1, s0 that y = m, the above formula
becomes x.m = x-""8,
8o that (see p. 13) x.m is equal to the projection of OX on the

direction m.

(iv) THE DISTANCE BETWEEN TWO POINTS. The results of this
paragraph serve to verify what was perhaps already obvious,
that the length of the segment XY is given by the formula

XY? = (x—y)
In fact, (X—y)? = X.(X—y)—Y.(X—Y)
= x2—-2X.y+Yy?
= 2—2xy cos 042
= XY2
Thus (p. 61) XY = [x—y|.

ILLUSTRATION : THE PROJECTION OF A POINT ON A LINE. Let
P, with position vector p, be a given point, and [ a given line
through the origin with direction cosine vector 1. Let @, with
position vector q, be the projection of P on I.

Since ! passes through the origin, there is a scalar k such that

q = kL
Now P@Q is perpendicular to [, so that
(P—q).1=0,
or p.l=q.l=Fk.1=k%.
Hence q=(p.DL

The components of these vectors thus satisfy the relation
2; = (D)L,
= (LL)px

If we now define nine numbers a;; (for ¢, j =1, 2, 3 inde-
pendently) by the relation

a; = L;1;
then the projection of p on the line 1 is the point q, where

q; = AP
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Note the relation
apa;) = ( INUDN)
= (lilj)(l/\lA)
= l‘ lj,

since [}l = 1. Thus ana a
AGA = Gy e

10. The unit axes-vectors
The three vectors
i=(1,0,0), =(0,1,0), k= (0,0,1)
are called the UNIT AXES-VECTORS. They satisfy the relations
2=j=k2=1,
jk = ki = ij = 0.

Their importance lies in the fact that an arbitrary vector
X(x,, x5, ;) may be expressed in terms of them in the form

X = x4+, j+25k.

11. The straight line and the plane

The formulae obtained earlier in this book may be restated
concisely in vector form. It is understood that a point like 4
has corresponding coordinate vector a.

(i) THE DISTANCE FORMULA (p. 17).

The coordinate vector of a point X on the line through the
point A with direction cosine vector 1 is given by the formula

x = a+rl,
—_
where »r = AX.

(ii) THE RATIO FORMULA (p. 17).
If X is the point on the straight line A B such that

AX/XB =k,
then (14-k)x = a+kb.

(iii) THE EQUATION OF A PLANE (p. 20).
Let P be the foot of the perpendicular from the origin O to

the plane, so that 0_1>J is of (positive or negative) length p and
6086 b
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direction 1. Then the coordinates of a point X of the plane
satisfy the equation 1.x = p.

(iv) PARAMETRIC FORM FOR A PLANE (p. 26).

The coordinate vector of an arbitrary point X of the plane
ABC may be taken in the form

X = da+pub+-vc,
where the parameters A, p, v satisfy the relation
Adp+v =1

(V) THE PERPENDICULAR FROM A POINT TO A PLANE (p. 23).

If N is the foot of the perpendicular from the point @ to the
plane 1.x—p = 0, then

—
NQ =1.q—p.

JLLUSTRATION. THE ORTHOGONAL TETRAHEDRON. To prove
that, if in a tetrahedron ABCD the edges BD, CA are perpen-
dicular and the edges CD, AB are perpendicular, then the edges
AD, BC are also perpendicular.

Since BD, CA are perpendicular, it follows (p. 63) that

(d—b).(a—c) =0,

or d.a—d.c—a.b+b.c = 0.
Similarly d.b—d.a—b.c4+c.a = 0.
Adding, d.b—d.c—a.b+4c.a=0,
or (d—a).(b—c) = 0.

Hence AD, BC are perpendicular.

12. The vector product

In many applications of vectors, and especially in the physical
applications, there is associated with two given vectors x and y,
inclined at an angle § (0 < 6 < =), a third vector z determined
by the properties that it is

(i) of magnitude xysiné,
(ii) perpendicular to x and y,

(iii) in the sense such that a right-handed cork-screw, turning
from x towards y, drives along z.
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This is the vector which we now define and whose properties
we proceed to investigate. We approach it from a somewhat
different point of view, but recover these three basic properties
almost immediately, in § 13,

DeriNITION. Given two vectors X, y, their VECTOR PRODUCT,
written

XAY,
is defined to be the vector with components
(TeYs—T3 Y, T3Yy—T1Ys, T1Y2—T2Y)-
Thus, interchanging the roles of x and v,
XAY = —YAX.
Vector products obey the DISTRIBUTIVE LAW
XA(Y+2) =XAY + XAz,

since, for example, the first component on the left is
Zo(Y3+23) —3(Ya+2,),
or (7 Yg— 23 Yo) 1 (T3 23— 23 25).

Significant form may be given to the vector product by
writing it in terms of the unit axes-vectors i, j, k (p. 65).
Then, from the definition,

XAY = (T Y3— 23 Yo)i+ (T3 Y1 — 21 Y3)i+ (X, Y2 — T2 11K,

or, symbolically,

XAy = |z, z, x4)
Y1 Y2 Ys
i j k

It is worthy of remark that i, j, k themselves satisfy the
relations j/\kzi, k/\izj, i/\j-_—-"k.
The definition shows that the vector product of any vector with

ttself is zero, that 1s, XAX = 0.

The Corollary follows that, if the vectors X,y are parallel, so
that y = kx for some scalar k, then
xAy = 0.
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Before deriving the geometrical interpretation of the vector
product, we first define also the SCALAR TRIPLE PRODUCT,
written (Xyz), of three vectors x, y, z. This is the scalar number
whose value 13 the determinant

(xyz) =2, =z, x|
Y1 Y2 Y3
%21 2% 2%

Expansion in terms of the first row gives the identity

(Xyz) = 2,(Y3 23— Y3 25) +22(Y3 21— Y1 23) +2s(¥1 22— Y2 21)s
or (xyz) = X.(yAZ);
similarly (xXyz) =y.(ZAX) = Z.(XAY).
Note that the scalar triple product is unaffected by cyclic inter-
change of the vectors (this is what we have just proved), but that
it 18 changed in sign if two of the vectors are interchanged. For

example, (x2y) = X.(zAY)

=X.(—YAZ)
= —X.(YAZ)
= —(xyz).
A PHYSICAL INTERPRETATION for the scalar triple product is

afforded by the following result:
If V is the volume of the tetrahedron OXY Z, then (p. 46)

6V = |z, x, =,
Y1 Y2 Ys
2, 2y 24

= (Xyz)

numerically. (See also p. 70.)

Nore. When the constituent vectors are complicated, commas are
sometimes inscrted for clarity. Thus tho scalar triple product of x—a,

y—b,z—cis (x—a,y—b,z—c).

13. Geometrical interpretation of the vector product x Ay
(i) THE MAGNITUDE. By definition, the magnitude is (p. 62)

+x/{(x2y3_x3y2)2+(x3y1_x1 Y3)?+ (21 Y2 —2,41)%,
or (p. 46) 2A0XY,



13 VECTORS 69

so that the magnitude of XAy is xysin@, where x, y are the
magnitudes of X, y and 6 is the angle between them. Note that
z, y are positive, and that sin @ is also positive, since (p. 8) 0 lies
between 0 and 7.

(ii) THE DIRECTION. Since

X.(XAY) = (xxY) (p. 68)
=|x, x, x,
Ty Ty X3
Y1 Y2 Ys
= 0,

it follows (p. 63) that x Ay is perpendicular to x, and, similarly,
toy. Thus X Ay is in the direction perpendicular to both X and y.

(iii) THE SENSE. The actual sense of x Ay along the perpen-
dicular is still not determined, and a rule must be provided to

k
J
Y
< v
/ o6 X
Fic. 34

distinguish between the two possible cases. Imagine the points
X, Y to remain fixed, but the axes to move continuously about

O until i lies along 0_;(; then rotate the coordinate system about
OX until the plane Oij passes through OY in that sense for
which Y is on the ‘positive’ side of Oi. The position of the
coordinate system is then determined.
Now the position of Y, referred to these axes, is given by
the coordinate vector ym, where
m = (cos#, sinf, 0),
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and, in this position, the value of the vector product xAYy,
where x = (,0,0), y = (ycosf, ysinb, 0), is (0, 0,zysin ), so

that XAy = xysinfk.

Finally, observe that the vector.product has remained
constant throughout the rotation of the axes, a sudden change
of sense at any point being excluded by the continuity of the
motion. The sense may therefore be described by this final
position; and, since 0 is between 0 and = in the sense from Oi
to Oj (and on towards — Oi if 6 is obtuse), the rule is:

A right-handed cork-screw, turning from X towards y drives
Sforward in the sense X AY.

We have therefore established the three basic properties with
which we introduced the vector product on p. 66.

ILLUSTRATION. Geometrical derivation of the formula }(Xyz)
for the volume of the tetrahedron OXY Z. (Compare p. 68.)

The magnitude of the vector product y Azis 0Y.0Zsin YOZ,
which is twice the area of the triangle YOZ. If, then, u is the
unit vector perpendicular to the plane YOZ and in the same
sense as y A z, it follows that

YAz = 2uAYOZ.
(xyz) = x.(yA2)
= 2(x.u)AYOZ.
But the numerical value of x.u is the length of the projection
of OX in the direction of u; that is, 4-x.u is the length of the
perpendicular from X on to the plane YO0Z, say 4+x.u = p.
Thus, numerically,
(xyz) = 2pAYO0Z
= 2(3 volume OXY Z),

so that, numerically,
volume OXYZ = }(xyz).
JLLUSTRATION FROM MECHANICS. THE MOMENT OF A FORCE.

Suppose that a force F, with components F,, F,, F,, acts in a
straight line passing through the point with position vector

Hence
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X(%y, @y, 3). Then the MOMENT about the origin O of the force
is defined to be the vector

m=xAF.

Suppose that 1(1;,1,, ;) is the direction cosine vector of a line
L through O. Then the MOMENT about the line L of the force
is defined to be the component of m in the direction of L;

that is, my = (1.m)

= (IxF).
If 0 is the angle between x and F, then the magnitude of m

is xFsinf. But xsin§ is the length p of the perpendicular from
O on to the line of action of F. Hence

lm| = p|F|.

ILLUSTRATION. THE VECTOR PRODUCT AND THE VECTOR RULE
FOR TRANSFORMATION. It is instructive to verify that the vector
W =XAY

transforms according to the vector rule (p. 58).
Let 4, j, k be a cyclic permutation of the numbers 1, 2, 3.
Then, by definition of w,
W; = L3 Yp—%rY;
Under the transformation

’
. o = liawys
the expression for w; is

w,- = le x:\ lk,u x;‘—lk/\ x:\ lj# x;‘.
Consider a term 7,3, for given p, ¢; the coefficient is
Lip tka—big lip-
Consider also a term a;y},; the coefficient is
qu lkp - lip lkq'
If p, ¢ are equal, these coefficients are zero; if not, they are
equal and opposite, so that together they contribute to w; the

t ’ r 4 7
aamoudt (lip lkq—l:lq lkp)(xp Ya—% Yp)-
Suppose now that ¢ follows p in the cyclic order 1, 2, 3; this
does not affect the argument, since otherwise p, ¢ could be
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interchanged, thereby changing the signs of both brackets in
the last expression. Let r bé the third member of the cyclic
sequence p, ¢, 7. Then (p. 59)
.. Lip g bigtip = Uire
Also, by definition,
Yoty =
Giving p, q in turn the pairs of values 2, 3; 3, 1; 1, 2, the
total expression for w; appears in the form
w; = Ly w1l wh T wh
Similarly, w; = lw,.
Hence w = X Ay transforms according to the vector rule.

14. Linearly dependent vectors

A number of vectors X, y, z, w,... are said to be LINEARLY
DEPENDENT if there exists a relation

ax+4-by+4-cz+dw-+... = 0

(or more than one such relation) with the scalars a, b, ¢, d,...
not all zero.

If the relation holds only when a =b=c=d =... =0,
then the vectors are said to be LINEARLY INDEPENDENT.

We shall see that two, or three, vectors may be linearly
dependent, but that four must be.

(i) Two VECcTORS. If there exists a relation

ax--by = 0,
with a, b not zero, then
y = (—a/b)x,

so that the points X, Y lie in a line through O.

(ii) THREE VECTORS. If there exists a relation

ax-+by-+cz = 0,
with a, b, ¢ not zero, thent
—c a b

a—{-bz = a+bx+a+by’

t Ifa+b = 0, take b--¢ with x or c4-a with y instead. The three expressions
b+c¢, c+a, a4 b cannot all be zero.




14 VECTORS 73

8o that (p. 65) the point whose coordinate vector is

_°,
a-+b
lies on the line XY; that is, there is a point of the line OZ
which lies on XY, so that the points X, Y, Z lie in a plane
through O.

(This assumes that there is not a second linear relation con-
necting the vectors; if there were, then the points X, ¥, Z
would be collinear with O.)

The converse of this result is of interest as a preparation for
the consideration of four vectors. Suppose that X, Y, Z are
three points lying in a plane through O. Then OZ meets XY,
so that there exists a point whose coordinate vector can be
expressed in each of the forms

2z, gx—+-r y
q-+r

Hence there exists an identity
p(g+r)z = gx+ry,
which is of the linear form
ax-+by-+cz = 0.

CororLrarY. If, exceptionally,

a+b4c =0,
then the points X, Y, Z are collinear.

(iii) FOUR VECTORS. Let X, y, z, W be four vectors no three
of which are linearly dependent; then, by (ii), no three of the
points X, Y, Z, W lie in a plane through O, so that, in parti-
cular, OW meets the plane XY Z in a point. There exists
therefore a point whose coordinate vector can be expressed in
each of the forms

gx+ry+sz
P Tt
and so there exists an identity
P(g+r+8)W = gx+ry+sz
which is of the linear form
ax-+-by—+cz4dw = 0.
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Hence four vectors are necessarily connected by (at least) one linear
relation.
An alternative important statement is:

If x, y, z are linearly independent vectors, so that OX, OY,
OZ are not coplanar, then any other vector W can be expressed
tn terms of them in the form

W = ax-}+by-+cz.

15. The vector triple product
Given three vectors a, b, ¢, form the vector product

w=DbAc
and then the further product
aAanNw
or an(bac).

This is called the VECTOR TRIPLE PRODUCT OF a WITH b A C.
To establish the formula
aA(bAc) = (a.c)b—(a.b)c.
By definition,
bAc = (bycz—bscy, bye,—by ¢y, bycy—by0y),
so that, similarly, the first component of a A (b Ac) is
ay(by Ca—by 01)—as(by ¢y —by c).
Grouped in terms of b, and ¢, (the first components of b and c),
this is (agC+a5c3)by —(ay b, +a3b5)cy,
or, inserting and cancelling a term a, b, c,,
(a1 61105 ¢ +a5c5)by—(ay by +-a, b, +az by)ey,
or (a.c)b;—(a.b)c;.
A similar formula is obtained for the second and third com-

ponents, so that
aAn(bAac) = (a.c)b—(a.b)c.

Note. The position of the bracket is important; for
(aAb)Ac = —cA(anb)
= —{(c.b)a—(c.a)b}
= (a.c)b—(b.c)a.
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EXAMPLES
1. Prove that
(i) aA(bAc)+bA(cAa)+cA(aAb) =0,
(i) (uAV)A(bAc) = (uve)b— (uvb)c.

2. Prove that the line X = a7l meets the plane (m.xX) = p in the
point {mA(aAl)-+pl)/(1.m).

16. Expression of a vector in terms of three vector
products

Let x, y, z be three linearly independent vectors, so that
OX, 0Y, OZ are not coplanar. Then the common perpen-
diculars through O of the pairs (0Y, 0Z), (0Z, 0X), (0X, 0Y)
are not coplanar either, and so an arbitrary vector can be ex-
pressed in terms of the linearly independent vector products
YAZ,ZAX,XAY tn the form

W = ay AZ+bZ AX+-CXAY.
The scalars a, b, ¢ can be expressed conveniently as follows:
Form the scalar product of each side with x. Then
X. W =aX.(YyAZ)+bX.(Z AX)FcX.(XAY)

= a(xyz) (p. 68)
X. W

Hence a = ,
(xyz)

with similar results for b, c.
The vector w is therefore given by the relation

(xyz)w = (X.W)YAZH+ (Y. W)ZAX+(Z.W)XAY,

where, it should be remembered, the four expressions in brackets
are all scalars.

DEerFINITION. Given a set of three vectors X, y, z, the set of
vectors
P YAZ L _ZAX L, XAY

(xyz)’ (xyz)’ (xyz)

is said to be RECIPROCAL to the set X, y, Z.
The equation just proved is

W= (X.W)X'+4(y. W)y +(z.W)z'.

X

Il
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17. The plane through three given points
We prove first that the direction of the mormal to the plane
containing three points A, B, C is that of the vector
bac+cana+anb.
The plane contains the line 4 B, of direction b—a, and the line
AC, of direction c—a. The normal is thus in the direction

(b—a)A(c—a),
or bA(c—a)—anA(c—a),
or baAc—bAaa—aAc+taAna,
or bac+anb+4+canai0,
or bAac+cAna+anb.

Further, the magnitude of this vector is twice the area of the
triangle ABC. It was proved (p. 68) that the magnitude of
the product x Ay is 2A0XY; and (b—a) A (c—a) is the similar
expression referred to an initial point 4 instead of the origin O.

Finally, the equation of the plane ABC is

x.(bAc+cAara-+aAb) = (abc):
Since the normal is in the direction

bAac+cAra-taAab,
the equation of the plane is in the form (p. 66)
x.(bAc+chra+anb) =k

for some value of k. But the equation is to be satisfied when
X = a, and so

a.bAc+a.chata.anb =k,
or (abc)4+-0+0 = £,
so that k = (abc).
Hence the equation is

x.(bAc+cAa+aAb) = (abc).

18. Other forms for the equation of a plane
The following results are easily established and the proofs are
left as EXAMPLES.
(i) The equation of the plane through a point of position vector
a and parallel to two directions 1, m s
(x—a,l,m) = 0.
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(ii) The equation of the plane through two points of position
vectors a, b and parallel to the direction 1 1s

(x,b—a, 1) = (abl).

19. The common perpendicular of two lines

Let I be a line through a point a in the direction 1 and m
a line through a point b in the direction m.

The common perpendicular of the l
lines is in the direction of the vector

product Inm. If 1, m are (as we b
assume) unit vectors and 8 the angle ¢
between them, then the wunit vector d
in the direction of the common per- 0
pendicular is v
d = 1 Amcosec¥. m
¥16. 35

The length of the common perpendi-

cular, being the projection of the vector a—b, has magnitude

d, where d = (a—b).(1 Am)cosect
= (a—Db, 1, m)cosec 6.

CoRrOLLARY. If the two lines are coplunar, then d = 0, 80

that (compare p. 76)
(a—b,1,m) = 0.

An adaptation of this Corollary leads to equations for the
common perpendicular. Suppose that a typical point on this
line is x. Then the lines through a in the direction 1, and
through x in 1he direction d, are coplanar. Hence

(x—a,l,d) =0,
so that (x—a,l,1Am) = 0.
Thus two equations for the line are (p. 38)
(x—a,l,L1Am) =0,

(x—b,m,1Am) = 0.
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MISCELLANEOUS EXAMPLES

1. Prove that |[u?|v|? = (u.v):*+ |u AV

2. If b is not parallel to ¢, show that any vector a can be expressed
uniquely in the form

a =lb+mc+nb Ac,

where I, m, n are numbers, and determine I, m.

Show that b A (b Ac) is coplanar with b and ¢, and show with the aid
of a diagram that b A(b Ac) = (b.c)b—(b2)c.

3. The set of vectors by, by, by reciprocal to the set a,, a,, ay is defined

by b — a, Aag b. — a; Aa, b. — a, Aa,
17 (a,a,ay)’ ' (aa,8,)’ P (a,2,8,)
Show that (a,a,a;3) = (b, b,b;).

Axes parallel to a,, a,, a; are taken at a point 0, and a plane cuts
off intercepts proportional to a,/k;, a,/k,, a5/k; on the axes. Show that
this plane is perpendicular to the direction

hyby+hybythyb,.

4. The position vectors of two points 4, B are a, b respectively.

Write down the position vector of the point C on 4 B such that
AC/CB = M1.

Four points 4,, B,, 4,, B, are given in space; C,, C, arc points on

A, B,, A, B, respectively such that

4,0, 4,C, A

B, G,B, 1
Show that there exists a direction to which 4, 4,, B, B,, C,C, are all
orthogonal,

If 44, By, C; are points on 4, 4,, B, B,, C, C, respectively such that

4,4, B, B; C,Cy_p

show that 4,, B,, C, are collinear.

5. Expand the expressions

(IAm).(I1An),  (1AmM)A(1An).

Hence prove that the angle between two faces of a regular tetrahedron
is cos™1(}).

6. Prove the formula

(UAV)AW = (Uu.W)v—(V.W)u.
Solve for x the vector equation
xAa =b—x,

7. Given three non-coplanar vectors 1, m, n, show that there is a
unique vector 1’ perpendicular to m and to n and such that 1.1’ = 1,
and express it in terms of 1, m, n.
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Vectors m’, n’ are defined similarly. Show that any vector a can be
expressed uniquely in the form

a=a,l+a,m+a;n,
and determine the coefficients a,, a,, a4 in terms of a, I’, m’, n’. Show
also that a can be expressed uniquely in the form
a = a{l'4+-a;m’+azn’,
and determine a!, @), aj in terms of a, 1, m, n. Hence show that, for
any vectors a, b,
a.b = (a.l’)(b.1)4+(a.m’)(b.m)-+(c.n")(c.n)
= (a.1)(b.1)+(a.m)(b.m’)+4(c.n)(c.n’),
8. Four points 4, B, C, D have position vectors a, b, ¢, d. Prove
that the vector H(® Ac)+(cAa)+(aAb)}

has magnitude equal to the area of the triangle A BC and direction
perpendicular to its plane.

Prove also that the volume of the tetrahedron 4 BCD is (numerically)

}{(abc)—(bcd)—(cad)— (abd)}.

9. If a, b are given vectors, b being perpendicular to a, and ¥ is a

given scalar, show that the solution of the equations
a.x =k, aAx=Db
for an unknown vector X is unique, and find it.

Examine whether the solution is valid if b is not perpendicular to a.

10. Solve the following equation for A, u, v in terms of the three-
dimensional vectors a, b, ¢, d:

Aa+pb+4ve =d.

11. P is the foot of the perpendicular from a point B, with position
vector b, to the line r = a+4-At. Show that the equation of the line
BPis r = b4ut A{(a—b)At},
and find the position vector of P.

12. The position vectors of three points 4, B, C are 8, b, c. Find
the condition for the point D with position vectord = Aa+ub+vc to lie
in the plane 4 BC.

If AB, CD meet in E, and AC, BD in F, find the position vectors of
E, F. Show that the point of intersection of AD, EF has position
vector (Aa-+d)/(1+A).

13. Points P, @ have position vectors p, q respectively, and a plane
Q passes through the origin with normal along the vector n. Find the
position vectors u, v of the feet of the perpendiculars from P, Q to Q.
Express the angle subtended at the origin by the feet in terms of p, q, n.

Apply your formulae to the case

=(1,2,—-2), q=(52,2), n= 2,1, —-1),
and show that the angle is cos™'(—$).
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14. Show that the most general solution of the equation
xAa=D>b

is x = ta+(a Ab)/a?,
where ¢ is an arbitrary scalar.

15. Find the condition for the line whose vector equation is

r=a+tim

to be parallel to the plane r.n =p,
where r = (r,y,2), a is a constant vector, m, n are unit vectors, and
t, p are scalar constants.

Show that the condition is satisfied by the line

4l _y=2_2=3

and the plane 2x+3y—62+7 = 0,
and find the distance of the line from the plane.

16. The unit vectors a, b are perpendicular and the unit vector ¢ is
inclined at an anglo 8 to both a and b. Show that

¢ = a(a+b)+BaAb,

where a = cosf, f? = —cos 26.

The vector X satisfies the equation

x = a/Ab+cAx.
Show that 2x = aAb+cA(aAb)4(c.x)c
and hence obtain the solution
X = jo(l—fa—ja(l1+B7)b+(1—a*)Bc.

17. Vectors a, b, ¢, of magnitudes a, b, ¢, are such that a is perpen-
dicular to b and to c. Show that the equation of the plane through the
three points with position vectors a, b, ¢ is

‘a+(c2—b.c)b+(b2——b.c)c].r -1

a b2c*—(b.c)?
Hence, or otherwiso, find the equation of the plane through the points
(LL,1),(=1,2,—1), (=1, —1,2).
18. Prove that (bAc,cAa,aAb) = (abc)2.

19. Lines I, m, n are drawn in the faces DBC, DCA, DAB of a tetra-
hedron ABCD so that ! is perpendicular to D4, m is perpendicular to
DB and n is perpendicular to DC. Prove that I, m, n are coplanar.

20. Prove that the six planes, each through one edge of a tetrahedron
and bisecting the opposite edge, are concurrent.

21. Points 4, B, C have position vectors a, b, ¢, and O is the origin.
Prove that the volume of the tetrahedron OABC is

%abc/{ 1 cos AOB cos AOC

cos BOA 1 cos BOC
cosCOA cosCOB 1
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TENSORS; 8, AND ¢,

1. Introduction

. THE idea of a vector was explained in Chapter III. The basic
requirement is conformity to the rule of transformation
U = hyuy, ug = lLyu)
(either of which implies the other); the right-hand sides are
summed over the values 1, 2, 3 of A, and lﬁ denotes the cosine
of the angle between the axis Oi of the first coordinate system
and the axis Oj’ of the second.

The aim of this chapter is to enlarge the concept. But first
we develop a calculus somewhat wider than is really necessary,
limiting it later by an extension of the rule of transformation.
The arrays of which we speak are essentially matrices, but the
word matriz itself is . >t used, so that implications may be
avoided. In particular, we do not need a formula for the multi-
plication of two arrays; the place occupied by products in
matrix theory is, to a large extent, taken over by the summa-
tion convention.

2. Rectangular arrays
By a RECTANGULAR ARRAY we mean a set of mn numbers
arranged as a rectangle in the form

Q13 Qi Qy3 e Gy
Q31 App Ay .. Ayy

a a a Qa,

ml m2 m3 mn
‘A typical ELEMENT a;; appears in the ith row and the jth
‘eolumn, and the array itself consists of m rows and n columns.

For brevity, the array is denoted by the notation

(@)
A LINEAR COMBINATION of the arrays (a,)), (b;;), (¢4),... I8 an
6086 G
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array (hy;) whose typical element k; is connected with the
corresponding elements a;, by, ¢;;,... by a relation of the form
hi; = aag;+Bbsi+ye,+...,
where «, B, y,... are constants independent of ¢, j. In particular,
the suM (a;;+0b,;) of the two arrays (a;), (b;;) has typical
element a;;+b,;.
The existence of a linear combination implies that the arrays

all have the same number of rows and the same number of
columns.

TvrustraTION. If

(ay) = [z y 2, by)=(p q 1\

a b ¢ U v W

then 2(ay)—(b;) = (22—p 2y—q 2z—r).
2a—u 2b—v 2c—w

3. Some definitions

When m = n, the array (a;;), of m rogEs and columns, is said
to be SQUARE. W

We now assume, for the rest of this work, that

m=n=23,

so that a typical array has three rows and three columns. The
only exceptions will be connected with ‘vectors’ (where one of
m, n is 1 and the other is 3) and ‘scalars’ (where m = n = 1),
and the context will make clear what is happening.

An array (a;;) is said to be syMMETRIC if

@y; = Qj;
for all pairs of values of ¢, j; and SKEW-SYMMETRIC, Or ANTI-
SYMMETRIC, if ay = —ay;
for all pairs of values of 4, j. In the latter case, a;; = 0 for all
values of 4.

An arbitrary array can always be expressed as the sum of a
symmelric part and an antisymmetric part. For two numbers p, ¢
can always be written

p = Yutv), g=1@u—v)
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by taking u = p-q, v = p—q.
Th
us a;; = $(ay;+a;)+3a;—az)
= cij+dij’
say, where

¢y = Yayt+ay), dy = Hay—ay).
Hence, by definition of addition,
(@s;) = (¢45)+(dyy)-
But ¢ = Yaztay) = ¢y
and dy; = Haz—ay) = —dy,

so that (c;;) is symmetric and (d;;) is antisymmetric.

4. The symbol 5
The symbol 3,; is defined by the rule:
Sy=1 (i=3j)
=0 (t%£7).
Many formulae may be written concisely with its help.
Suppose, for example, that

(lll’ l21’ lal): (l12’ 1227 laz), (113’ l23’ l33)
are the direction cosines of three mutually perpendicular lines
OU, OV, OW; the first suffix names the coordinate and the
second the line. Then, for each line,

Bi+3+8=1 (=1,23),
or l/\i l/\‘ = 1.
Also for each pair of lines, by orthogonality,
Lilyytlysly+lly; =0 (0 #7),

or l/\i l,\j =0,
These two results are comprised in the single formula

hily = 8.

The alternative equations (p. 43) reversing the roles of OU,

OV, OW and the given axes are
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IMPORTANT. The value of 8y, 1s 3. For
O = 8131082133
= 3.
Note the RULE OF SUBSTITUTION :
If (py;) is an array of three rows and columns, then
Dix 8,;)\ = Pij>
for the left-hand side consists of three terms, of which two are
zero (A # j ) and one is p;;§;; (not summed), or p;;.

In particular S8 = 85
[The effect of multiplication by §,, is to substitute the suffix j.]

5. The symbol ¢;;;

The symbol ¢;;, is defined by the rule:

€;;x = 0if any two of 4, j, k are equal;

e = +1if4, 4, kare 1,2, 3,0r2,3,1,or3,1,2, so that the
numbers ¢, j, k occur in the cycLic orRDER 1, 2, 3, 1,...;

e = —1if4,j, kare3,2,1,0r2,1,3,or 1,3, 2, so that the
numbers ¢, j, k occur in the ANTICYCLIC order 3, 2, 1, 3, 2,....

For example,

€91 = 0, €5 = —1, €5 = +1

Thus €5k Sij =0
since the first factor is zero if ¢, j are equal and the second
factor is zero if 7, j are unequal. Hence, also,

Apk 3,\# =0

when summed over A and p.

6. Determinants

ReEMARK. The elementary properties of determinants are
assumed known, and have been used freely in earlier chapters.
The purpose of this brief introduction is to show how the symbol
€, can be incorporated into the general theory.

Consider the expression

e/\y.v ap,\ aq“ a,,,
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where (a;;) is a given array, and where p, g, 7 are given numbers
whose values are 1, 2, or 3 independently.
When p, ¢, r have the particular values 1, 2, 3 respectively,

the expression is
oy T2 Qo A3y

or, writing non-zero terms in full,
(11 Qg Cyy+ 0y Aoy Ay A3 Aoy Bgp—
— @3 Qgp A3y — Xy Aoy Q33— Ayy Bog A3.

This is called the DETERMINANT OF THE ARRAY (a;;), and is

written
las;l,

or, in full, Ay Gy Al
gy Qg Qg3
Uz A3y Qg3
Suppose, more generally, that p, ¢, r are distinct, and occur
in the cyclic order 1, 2, 3, 1,.... Then

Opy CpA Bgp Cry = €pyuy A1) Ay, A3y
the names of the dummy suffixes A, u, v on the left being moved
in cyclic order so that A comes with p, u comes with ¢, and

v comes with r.
If, however, p, ¢, r are distinct and occur in anticyclic order

3, 2, 1, 3,..., then (since €y, = —¢y,,)
Oy TpA Qgp Uy = —EQpp A Apy Agp
= T E€Quy Op) Ary gy

on interchanging the names A, p. But the numbers p, 7, q are
in cyclic order, so that, applying the preceding paragraph to the
right-hand side,
Qv ApA B By = €y 1A A2p A3y+
Finally, if p, q,  are not distinct, then
v UpA Ugu Ary = 0,

since interchange of the equal numbers (say ¢ and r) reverses
the sign of the expression by the preceding paragraph, while
also leaving it unaffected.
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To summarize,
v Tp) Ay Cpy = + [a'{jl (g, CYCHC order)
= —lay| (p, g, r anticyclic order)
=0 (p, ¢, r not all different).
Hence Ay Tpa O By = €pgr [Ty
Notes. (i) If we write, as a temporary notation,

ap =by, ag, =by,, a, =0,

then —
Euy Tpr Ogy Ary = €y, bl/\ bzp bav

=|by bz by
b2l b22 b23
b31 b32 b33

= apl a p2 aps .
aql aqz aqa
an App Q.3

(ii) If (cy) is the array defined by the relation
Ciyy = Qyy,
then
€] = €apyC1rCopCay
= EQuy B ApaGyg
= Oy Ogp U331y Agp Ay3+Agy Ayg Apg—

—Ogy Qgp 13— gy g A3z — A3y Agy Aoy
= Ia{j |

Thus the value of a determinant is unaltered if its rows and
columns are interchanged.

ILLUSTRATION. 7o prove that

8])1 sz 81)3 = ‘pqr'
8«1 8q2 qu
) 81 O Oy
The left-hand side is
€My Spa San 3,

= EPW'
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7. Expansion by cofactors
The expression
laij| = €)uy U2 Aoy A3,
may be evaluated by stages, in the form
€10 011 Qopy A3, €5y Q1o Ay, By €3, By3 Ay Agy
or Ay11(€1py Bop @3y) F01a(€2y, Aoy, B3,) +p5(€3,, Aoy, A3,)-
The coefficient of a,;, namely
€1uy T2y A3ys
is called the coFacTOR of a,; in |a,;|, and the above expression
for the determinant is called its EXPANSION IN TERMS OF THE

FIRST ROW. Similar expansions are used for the other rows, or
for columns.

For example, €14y B2, 03y = Ggp (a3 — g3 Qgg.

8. The product of two determinants

There are several alternative forms for the product of two
given determinants. A convenient one is given by the follow-
ing theorem:

If .

b= €uv bl/\ b2p. b3v

= €y N Ao A3y

are two given determinants, then their product may be written in

the form _
f C = €)uyC12Cop Cans

where the array (c;;) is defined by the relation
Cij = apby.
Consider the expression
v C1AC2p C3p = €y A1« ba)« aqg bﬁp. as, byv

= (ez\p.v bax bﬁp byv)ala (op Ay

= (€apy )14 2805,
¢ = beygy 14053,

= ba.

This method of multiplying is called MULTIPLICATION ACCORD~
ING TO THE MATRIX RULE.

by § 6. Hence
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Two alternative formulae may be derived quickly from the
fact (p. 86) that the value of a determinant is unaltered when
rows and columns are interchanged:

(a) ab =c,
where C = €3, C1ACau C3y
and Cij = apnby;

b) ab = c,
where € = €3, €11 C3, C3,
and ¢y = ay; by

ILLUSTRATION. To establish the formula

€ir€par = Bip 8jg—Bi4 81y
By the Illustration in § 6 (p. 86),

€iik €pgr — 81’1 31‘2 8153 8lp Slq 811' ’
81 85 Oj3|[8yy Oy 8y
8kl 81:2 8lc:«! Sap 83(1 83r

on interchanging rows and columns in the second determinant.
Now multiplication on the right gives (p. 87)

€ijk €pgr = 81’)\ 8/\p SiA 8:\q 81’)« 8/\r
308 Sadxg IS
3iadp Biadxg Siadx
=[8;, 8y &l

81’1) 89‘«1 8.1'1'

8kp Skq 8kr
Write Ay =8y 84| =—A4,

81'(1 8#
with similar notation for A,, = —A,,, A, = —A,,. Then, ex-

panding the determinant by the bottom row (p. 87),
€ijk €par = Okp Bgrt81q Brp+ir B g
" €imepar = Oxp Ba 83 Aap 0 Ay
= Bgpt+ Agpt344,

= Am

Hence

= 8 80— 8iq8jp-
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ILLUSTRATION. Given a vector u, to associate with it a skew-
symmetric array (u).
Consider the expression
u” = eijA uA.
When i = j, its value is zero. Otherwise, the only non-zero
term is €;;; uy, where k is different from both 1 and j.

If j follows 4 in the cyclic order 1, 2, 3 then ¢;;, = +1; if j
comes before i, then e, = —1. Hence (u;;) is the skew-

symmetric array
0 +ug —u\.
—u; 0 +u,
+uy, —u, \]
ILLUSTRATION. To express the orthogonality relation (p. 59)
Liplia—liglip = lir

(where 1, j, k and p, q, r both occur in cyclic order 1, 2, 3, 1,...)

in the form
f €xun li/\ lj,u. = €2 l/\m

where 1, j, n take independently any of the values 1, 2, 3.
Let I, m be the two numbers different from =, so named (as
we may) that I, m, n is the cyclic order. The non-zero terms

in €, lnl;, are
€imn ld ljm+€mln lim l;l = lil ljm_lim ljl'
The non-zero term in €, 1), is
€ijk Lin-

If + = j, each side of the proposed relation is zero.
If i 5 j, let k be the number different from each. When ¢, j, k
is the cyclic order, the orthogonality relation

la ljm'—lim ljl = lin
is obtained; when 1%, j, k are in anti-cyclic order, the ortho-

gonality relation is again obtained, save that the sign of each

side is changed.
The result therefore holds generally.
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9. Scalar and vector products

The symbol ¢;;, may be used to give a concise expression for
the vector product (p. 66) of two given vectors

u = (uy, Uy, Ug), V = (v, 05, 75).

For comparison, note that the scalar product u.v (p. 62)
can be written u.v = 8,10,
The corresponding expression for the vector product u A v is

UAV); = €, U Yy,
where u A v); denotes the ith component. 1f1, j, k are in cyclic
order, then the ith component on the right is
ef]k uj vk+€ikj uk 'vj = u] vk“‘uk vj,
agreeing with the definition on p. 67.

ILLusTRATION. To prove the formula for the scalar triple
product (p. 68)
u.(VAW) =|u, uy u,l
Uy Uy Y
w, Wy Wy
The left-hand side is
UNVAW)) = up€r,, v, W,
= e)‘I‘-V u) ’UF' w,,
which (p. 85) is equal to the determinant on the right.

ILLUSTRATION. To prove the formula for the vector triple
product (p. 74)
aA(bAac)= (a.c)b—(a.b)c.

The ¢th component of the left-hand side is
Eﬂpa,\(b N C)p = €;)p A €uvp bl‘ c,
= €p€pvp ay b“ C,.

For the summation with respect to p, we use the formula

. 88
(P ) €idp Cpuvp = 81’/.:. Sz\v—siv st\;u
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so that
€0\p €puvp TN b.c, = Sip narb,c,—8;,8),a) bp. c,
= (8;,0,)@n arc,)—(85,¢,) 8y, arb,)
= by(axcp)—ci(ar b))
= (a.c)b;—(a.b)c,,
which is the ith component of the right-hand side.

10. Tensors

An array (t;) is called a TENSOR when it has a certain law
of transformation, analogous to that given earlier (p. 58) for
vectors. Let O(1, 2, 3) be a given set of right-handed orthogonal
axes, and O(1’, 2, 3') a similar set referred to the same origin O,
and let I;; be the cosine of the angle between the axis Os of the
first set and the axis Oj’ of the second.

The law of transformation for vectors is

uy = lpwy,  up = hyuy.

The analogous LAW OF TENSOR TRANSFORMATION is defined
to be , ,
by = lia lju D tiy = I lp:f t/\;n

the repeated suffixes A, u being summed independently over the
values 1, 2, 3.

The direction cosines are subject to the orthogonality condi-
tion (p. 89
(p ) €un li)k ljy. = €45A Drn-

TLLUSTRATION. Before examining the significance of the re-
striction imposed by the law of tensor transformation, consider
as a particular example the angular momentum of a particle
of unit mass at the point (z,%,,2;), moving with velocity
(vy, v5,v5). By definition, the angular momentum is (hy, he, hg),

where
hy = x,v3— %37,
hy, = 230, —, V3,

h3 = xl 1)2—272 vl.
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Let an array (t;;) be defined by the formula (compare p. 89)

(ty) = 0 —x Z,\,
Z3 0 —x
—, z, 0

then h; = tyvy.

[For example, hy = 6 v+t v+ 837,

= —x30,+2,7;.]
The importance of (¢;;) lies in the fact that its elements are
Sfunctions of position for the particle. They are independent of
the velocity.

Consider next an alternative set of coordinate axes, also
right-handed and orthogonal. Referred to them, denote the
position of the particle by (z}) and its velocity by (v}). Using
precisely the same definitions as before, the angular momentum
is (k}), where

and where ()

B = tavh,

= 0 —x x5\ .
’ ’
T3 0 —x
’ ’
—Xy ; 0

The quantity («;) is a vector, and so, by the law of vector

transformation, z; = Iy ).

To prove that (¢;;) is a tensor, we must verify that it obeys the
law of tensor transformation

tij == lil\ lj[l. t:\"‘.
Since (p. 89) tii = —epy
it follows that, in terms of (x}),
so that, by the orthogonality relation in the form (p. 89)
by = €applialip,
the value of ¢ is given by

t‘- = —eaﬁy. lia lJB x;,_
= b ig(—e€apu®p)
=l ljﬂ tc,xﬂ'
Hence (t;;) transforms according to the tensor law.
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What has happened should be clearly understood. The array

(k) = 0 —x Z,
g 0 —x
—x, x, 0
can be evaluated in any set of rectangular cartesian coordi-

nates, but it does not automatically follow that the two sets
of numbers

’ ’

0 —x Za\ 0 —z Zy

’ ’

4 0 —ux T3 0 —x
—Z, 2, 0 — xy 0

will transform according to the rule
t,‘:j = l'l/\ lj}l t’A}L
even when (), (x}) satisfy the relation
X, = li/\ x:\
That is, transformation of the components of an array u
(assumed functions of z;) into corresponding components of an
array uY; according to the vector rule z; = ;) does not ensure
that the arrays necessarily satisfy the relation
g = Ul u¥,.
Only for a TENSOR is this true, and the law of transformation

must be established for any array before it can be treated as
a tensor.

ILLUSTRATION. The array (l;) 13 not a tensor.

The idea of a tensor may be emphasized by citing an array
which is not. Let three mutually perpendicular lines OU, OV,
OW have direction cosines (referred to axes 01, 02, 03)

(bll’ bZl’ bal)’ (b12’ b22’ b32)! (613’ b23’ b33)?
formed into an array (b;;). This array is not a tensor; that is
to say, when the direction cosines are calculated for another
set of coordinate axes and grouped similarly into an array (b;),

the relation by = Il ” b,

does not necessarily hold. To prove this, it is sufficient to
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consider the case when OU,.OV, OW are taken as the new axes
of coordinates, so that

Iy = by;.
The right-hand side of the proposed relation is then

birbjy, b,
But, referred to the new axes, the direction cosines of OU, OV,
OW are (1,0,0), (0,1,0),(0,0,1), so that

Hence b = 0
birbj, b, = babj
= & i
7 by

The law of tensor transformation therefore does not hold.

11. §,; as a tensor

To prove that 8;; is a tensor, transforming according to the

la ,
w 8 = Ly, S

(where &), = 1 when A = pu, and 8}, = 0 when A # ).
We have remarked (p. 83) the relation

8 = lalix
whose right-hand side is, by definition of 8),, equal to
Hence 811 = 8:\1"' ltA lj}l-'

A tensor whose respective components are the same for all
sets of coordinate systems is said to be 1soTROPIC.

12. The inertia tensor

The genesis of a tensor is well illustrated by the inertia tensor,
which we now derive.

Let a typical particle P of a rigid body have mass m and
position (z;). If the body rotates about the origin as a fixed
point with angular velocity (w;), it is known that P has velocity
(vy), where

’L‘l == (D2x3—w3x2, '02 = waxl—wlxa, va = wlxz'—wle.
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Thus V; = €y WA T
The angular momentum about O for the system of particles is
(k;), where (p. 92)
hy = 3 mep, 20,

summed over all the particles of the body.

We seek to express (k;) in terms of (w;) in the form
where (I;;) is a tensor whose components depend only on the
characteristics of the body, and not on w;.

Eliminate v; between the relations for 4; and v; given above,
renaming some of the dummy suffixes for convenience:

hi = z MeN, TAV)ps

where Vp = €,,,T,W,,
so that hi == z mei/\p Evy.p Zx x[l, w,
= Iiv Wy,

where the array (I;;) is given by the formula
L; =3 mep, €5, 02Ty
Summing first with respect to p, this is (p. 88)
= Y m(3;; )\ 2y —2; 7).
The expression (I;;) is called the INERTIA TENSOR WITH
RESPECT TO THE GIVEN ORIGIN for the rigid body. To summarize,
Iy = 3 m@ 22y —2; %)
=y MEp €1up TATy
= (3 mai+al) — I mxx, — 3 mT)\.
— S mayx, Y maitai) — 3 ma,z,
— 3 mayx, — 3 mrzx, D mx+ad)
The expressions
A=3maitad), B=Imadtad), =3 mlitad)
are called the MOMENTS OF INERTIA of the body about the axes
01, 02, 03, and the expressions
F =3 ma,z,, G=3maz, H=7Zmn,
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are called the PrRoDUCTS OF INERTIA of the body with respect
to the axes (02, 03), (03, 01), (01, 02).
We have still to prove that (I;;) is a tensor, transforming
according to the rule
Iij = li/\ lj;l. I:\p.
Consider first the term 8,1y 7).
We have proved (p. 94) that 3;, is itself a tensor, so that
Also z,z,, being the square of the distance of P from O, is
equal to 2 x,. Hence
8,"j x/\ xA = l‘lA lj“ 83# x:, 1‘:,.
Further, by direct substitution,
T x; = li,\x’)\lj#x;‘
Hence Iy = 3 m3yx\2p—x %))
= 3 m(lal, o —lal, 27,
= lnly, 2 m(), 2,7, —232,)
= Ipl, D,
The array (I;;) is therefore a tensor.
ILLusTRATION. To prove that the kinetic energy of the rigid

body s 3y, 0p e

1> my,v,

summed over all the particles of the body. Also (p. 95)

The kinetic energy is

'vp = €\

so that the kinetic energy is

WALy = €)qp WY T»

i‘ Z ms,\ap wT E#ﬂp w# xﬂ = % 2 'me,\ap Gmgp Z, xﬂ w) w“.
But (p. 95) I, = 3 Mergp €8, Lo Xp-
Hence the kinetic energy is

i, wyw,.
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13. ¢;;; as a tensor

In this brief survey, we have confined attention to tensors
(t;;) with two suffixes ¢, j. Further developments are possible,
but we restrict ourselves to proving, without further comment,
the theorem:

The array e, satisfies the equation
€ijr = la ljy. Liw €uve
From the orthogonality relation (p. 89) in the form
la ljy v = €i5p lpw
the right-hand side is €iipLov Uews
or (p. 83) €ijp 8,,,, = €1
ILLUSTRATION. Particles of mass m, 2m, 3m are placed respec-
tively at the points (3,0,0), (1,0,1), (5,3,1). To find the inertia
tensor referred to these axes.
By the formula a;; = > m(x?+423),
ayy = m.04+2m.143m.10 = 32m,
ayy = m.942m.2+4-3m.26 = 91m,
Azg =m.94+2m.143m.34 = 113m.
By the formula a;; = — > mx; 2,
—Qg3 = m.0+42m.043m.3 = 9m,
—ag, = m.04+2m.143m.5 = 1Tm,
—ay, = m.04+2m.04+3m .15 = 45m.
The tensor is thus
32m —45m —1Tm\.
(——45m 91m ——Qm)
—1Tm —9m 113m

MISCELLANEOUS EXAMPLES
1. Prove the identities
(i) S“VSVAS,\” = 3, (ll) 85,\8,\“8“} = 8“', (lll) NLS,\“ = 14.
2. Prove the identitics
(1) €nu€irg = 2845 (i) €€y = €
(iii) Auvey,, = 0.
6086 H
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3. Prove that €= —3%* 1 1],
P
B k1

and deduce that

€pk€per = | (1—p)2 (i—q)F (i—7)?|.
(=22 (G—9)? (j—r)?
(k—p)* (k—q)* (k—7)?
4. Prove that, if A=]|8; 3.l
811: 8.7'16

then A = 0 except when ¢ = k 7 j, and that its value then is —1.
5. Evaluate
() dnen, (i) 8,8y (i) €y €rye
6. Prove that, if (z;) is a v ector, then (z; z;) is a tensor.
7. An array is given by

@)=/ 10
(001)
1 0 0

for all systems of coordinate axes. Prove that it is not a tensor.

8. Particles of unit mass are situated at the eight vertices of a cube
of side two units, Find the components I;; of the inertia tensor referred
to a system of coordinates with origin at the centre and with axes
parallel to the edges.

9. A uniform circular disk of density p lies in the plane z = 0 and
occupies the circle #?+y*—2x = 0 in that plane. Find the inertia
tensor referred to those axes.

10. Particles of mass m, 2m, 3m are placed respectively at the points
(3,0,0), (0,5,0), (0,0,7). Prove that the inertia tensor referred to these

axes is 197m 0 0.
( 0 156m 0 )
0 0 59m

11. Given three functions u,, u,, ug of the variables x,, z,, z,, prove
that (a,,) is a tensor, where
L
a;; axj'
12. Prove the formulae
(i) (aAb).(cAd) = (a.c)(b.d)—(a.d)(.c),
(i) (a Ab) A(c Ad) = (cda)b—(bcd)a

= (dab)c—(abc)d,

where, for example, (abc) = a.(b Ac).
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THE SPHERE AND THE CIRCLE

1. The sphere
A SPHERE is a surface traced by a point whose distance from
a fixed point, the CENTRE, has a constant magnitude, the
RADIUS. For centre («, 8, y) and radius r, the equation is
(=) +(y—B)P+(—y)? = 7.
In vector notation, if x is the position vector of a point on
a sphere of centre a and radius r, then

(x—a)2 =172 or |x—a|=r.
Nore. The GENERAL QUADRATIC FORM in the variables z, y, z
contains three parts:
(i) a quadratic expression
ax?+by?+c2?+2fyz+2gzx -+ 2hxy,
(ii) a linear expression

2ux+2vy 42wz,
(iii) a constant d.

It is thus
ax?+by?+cz?+ 2fyz 4 2gzx -+ 2hay + 2ux+ 2vy + 2wz +-d.
The equation of the sphere, on expansion, is
22+ y2 22— 20— 2By — 2yz+ (o B2 +y2—1%) = 0.
Hence necessary conditions for the general quadratic equation to

represent a sphere are a=b=c,

f = g = h == 0,
Conversely, these conditions are also sufficient, provided also

that a % 0 and that
u?4v2+w2—da > 0.

For the equation may then be written
ax?4-ay?+az?+2ux+2vy+ 2wy +d = 0,
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or, after division by (non-zero) a,
u\?2 v\? w\?  ul4oi4w? d
S I R G o
If the right-hand side is positive, this equation ensures that the
variable point (z, ¥, z) is at constant distance
S o2t wt—da)a?)
from the fixed point (—u/a, —v/a, —w/a).
In practice the value of a is usually taken to be unity. We
have then shown that the equation

224y 224 2ux 420y + 2wz+-d = 0
represents a sphere of centre (—u, —v, —w) and radius
+ (v w2 —d).
The equation of the sphere of centre the origin and radius a is
22 +y? 422 = a?,
or, in vector notation, X2 = a2,
It may be remarked that the point P (z,,vy,,2,) lies inside the
sphere 2?2 +y2 4224 2ux 20y + 2wz +d = 0
if xi4-yi+23+ 2ux, + 20y, + 2wz, +d < 0
and outside if
r}+yi 423+ 2ux, + 20y, + 2wz, +-d > 0.
The point lies inside if its distance from the centre is less than
the radius; that is, if (squaring)
(@ +u)+ (9, +0)+ (2,4 w)? < w242 4wd—d,
or 23+ yi 234 2ux, + 2vy, -+ 2wz, +d < 0.
The ‘outside’ test is proved similarly.

2. The sphere with a given diameter

Let A (2,,y3,2,), B (3, y,, 2,) be two given points and P (z, y, z)
a variable point of the sphere on 4B as diameter. The angle
APB is a right angle, so that the direction ratios

(x—2y, Y—Y1,2—2,), (T—25, y—Y,,2—2,)
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represent perpendicular lines. Hence the equation of the sphere
on (X1, Yy,2,), (T3, Yy, 2;) as diameter is
(F—2,)(@—22)+ (Y —y1)Y—¥2) + (2 —2)(2—2;) = 0.
In vector notation, this is
(x—x,).(x—x,) = 0.

3. Joachimstal’s ratio equation
Let P (x,,¥;,21), @ (%3, Y3, 25) be two given points. The coordi-
nates of the point dividing the segment P’Z? in the (positive or
negative) ratio A:1 are (p. 17)
(x1+Ax2 Y11+, z1+)\z2)
142 > 142 2 142 )
To find a quadratic equation for the two values of A for which this
point lies on the sphere
22 4-y2 4224 2ux+ 20y 4 2wz+4-d = 0.
The following notation, which is typical of much that will occur
later, helps to make the statements more concise. Write

S = 22492224 2ux+ 2vy 42wz +-d,
S = x1x+?/1?/+Z1z+u(x+x1)+”(y+y1)+w(z+zl)+d,
8, = 22 +yi42842ux, + 20y, + 2wz, +d,
Sz = 2%+ ?/2+z1zz‘*‘“(%+x2)+v(y1+y2)+w(zl+22)+d-

Then 8,2 = Sy-
The equation of the sphere is thus
S=0,

and the conditions for P, @ to lie on it are
8y =0, Spp =0
respectively.
The point

(x1+)\x2 Y11+, Zx‘{’AZz)

142 7 1427 142

lies on the sphere if, on substituting its coordinates and then

multiplying by (1+42)3,

(%, AT 2+ (41 +AY2)* + (21 +225)° +
+2(1+A){u(x1+kx2)+”(y1+Ay2)+w(Z1+Azz)}+d(l +A)2 = 0.
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Arrange in powers of A and use the notation just defined:
Spe A24-281,A+8;, = 0.
This is the quadratic equation whose roots serve to determine the
two points where the line meets

N —Q the sphere.
M. The two points do not have

. real existence unless the roots
of the quadratic are real; that
is, unless

Sta—811 8 = 0.
When real, they are denoted

Fic. 36 by the letters M, N (Fig. 36).

In vector notation, the point
X, +Ax,
1+A
lies on the sphere (x—a)? = r?
if
{(x;—a)2—r2JA24-2{(x, —a). (X;—a)—rZ]A4+-{(X, —a):—7r%} = 0.
It is, however, very doubtful whether the language of vectors
is of much use here.

4. Tangency

A straight line is said to be a TANGENT to a sphere at a point
L (or to ToucH it at L) if it meets the sphere at L and at no
other point.

(i) THE TANGENT PLANE. In the notation of § 3, let the point
P (z,,%,,2,) be chosen to lie on the sphere, so that

S,; = 0.

The equation for A has thus one root zero; that is, one of the
two points of intersection of the line and the sphere is at P.
If, in addition, the line is chosen to be a tangent at P, there
can be (by definition) no root other than zero, so that the
second root of the quadratic equation is also zero. Hence
8,3 = 0. Thus the condition for @ (x,,Y,,2;) to lie on a tangent
line at P (xy,9,,2,) 18 Syg = 0.
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As @Q varies subject to this condition, its coordinates satisfy
the equation found by replacing z,, ¥,, z, by current coordi-
nates z, ¥, z, namely S, = 0. Thus the coordinates of any point
on any line touching the sphere at P (zy,,,2,) satisfy the equation

8, = 2y x+y, y+z 2t uletx)Foly+y) Hw(z4-2,)+d = 0,
or

(2, +u)x+ (Y +0)y + (2, Hw)z+ (uzy oy + w2 +d) = 0.

This is the equation of a plane, called the TANGENT PLANE
at P to the sphere. It contains all the tangent lines through P.

CoroLLARY. Thedirection ratios of the normal to the tangent
plane at P are (p. 21)

(4%, Y140, 2 w),
and these (p. 19) are also the direction ratios of the radius
joining P to the centre (—u, —v, —w). Hence the tangent plane
at P is perpendicular to the radius through P.

(i) THE TANGENT CONE. Suppose next that, in the work of
§ 3, the points P, @ do not lie on the sphere, but that the line
PQ is a tangent. The two points M, N (Fig. 36) then coincide,
so that Joachimstal’s equation has equal roots. The condition

for this is Sll‘ggz — sz.

If, then, P is regarded as given, while Q moves in such a way
that the line PQ always touches the sphere, the coordinates of
Q satisfy the relation found by replacing ,, ¥,, z; by the current
variables z, y, z, namely

8, 8 = Si.
The locus of Q is called the TANGENT CONE from P to the sphere,
80 that the coordinates (x, ¥, z) of any point @ on the tangent cone
from P (zy,y,,2,) satisfy the equation

8,8 = 82

For example, the tangent cone to the sphere
234yt 2% = a?
is (@1 +93+21— a4yl 2l —a?) = (2,2 + Y, y+22—a?);
and the tangent cone from the origin to the general sphere is
d(23+y*+ 28+ 2ux—+ 20y + 2wz +-d) = (uz+vy+wz+d)3,

or (uWi—d)a?+ (vi—dy?+ (wr—d)22+ 2vwyz 4 2wuzz+ 2uvzy = O.
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5. Pole and polar; harmonic separation

The interpretation of the relation S,, = 0 in terms of tan-
gency at P (z,,¥,,2,) when P is on the sphere (S, = 0) suggests
consideration of the relation S}, = 0 under the more general
condition §;, # 0.

Joachimstal’s equation

Syo A24+28,A+48, = 0
becomes, under the conditions S, = 0, S;; # 0,
Sy A24-8;, = 0,
and then the two values} of A are equal in magnitude but
opposite in sign. By definition of A, the two values are (p. 17)

—> —> —  —>
PM|MQ,  PN|NQ,
so that M and N divide I;a internally (A positive) and ex-

ternally (A negative) in the same ratio.
DEFINITION. Four points P, Q, M, N such that

PM/MQ = —PN/NQ,

—_
(so that M and N divide PQ internally and externally in the
same ratio) are said to form a HARMONIC RANGE. The points
M, N are called HARMONIC CONJUGATES with respect to P, Q.

CoroLLARY. If M, N are harmonic conjugates with respect to
P, Q, then P, Q are also harmonic conjugates with respect to
M,N:

" For the relation

e

is also PM|/PN = —MQ/NQ,

—_— —> —>  —>

or MP|PN = —MQ/QN.

We return to the main problem. Since the relation S, = 0
—-> > —> —

gives PM/MQ = — PN|NQ, it follows that the points P, Q are
t The (real) values of A exist only if S,,, Syy have opposite signs; that is

(p-.100), if one of the points P, Q is inside the sphere and the other outside.
But we do not wish to emphasize this aspect unduly.
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separated harmonically by the two points in which the line PQ
meets the sphere. Two points, such as P, Q, related to the
sphere in this way are said to be CONJUGATE with respect to it.
Thus the condition for the two points P (xy,Y,,2,), @ (%3, Y5, 2,) to
be conjugate with respect to the sphere 8 = 0 is

S, = 0.
Suppose now that the point P is regarded as given. Then

those points Q such that P, Q are conjugate with respect to the
sphere lie in the plane given by the equation
S, = 0.
This plane is called the POLAR PLANE of P with respect to the
sphere; also P is the POLE of its polar plane.
Note that, if P lies on the sphere, then the polar plane of P,
given by the equation §; = 0, is (p. 103) the tangent plane at P.
The relation (p. 101)
12 = Sy
shows that, if the polar plane of P passes through @ (so that
8,; = 0), then the polar plane of @ passes through P (since
Sy, = 0).

6. The segment theorem ; diameters
The work of this section is very similar to that of § 3 (p. 101),
but it deals with distances and directions instead of ratios.
Let P (z,,¥,,2,) be a given Q
point and (I,m,n) the direction N
cosines of a line through P. The
point @ (x,y,z) on this line, such

—_—
that PQ = r, satisfies the relations

= x,+lr, y=1y,+mr,
. 2= Ao Fia. 37

The line cuts the sphere in two
points M, N. To prove that the two values of r corresponding to

M, N satisfy the equation
r24-2r{(z; +-u)l+ (v, +-v)m+(z, +win}+8;,; = 0.
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Substitute the values of z, ¥, z into the equation of the
sphere; thus
(Ir+2,)%+... 4 2u(lr+2,)+...4+d = 0.
Arrange in powers of 7, remembering that i24-m?+n? = 1; thus
r24-2r{(z,+u)l+ (v, Fv)m+ (2, +w)n}+S;,; = 0.
This equation is called the r-EQUATION of the point P (x,, ¥;, %)
and the direction (I, m,n) for the sphere S.
In vector notation, the point x;-r1 lies on the sphere
(x—a)2 =k2, or |x—a|==*F,
if r2 421, (x—a)r+{(x,—a)?—k?} = 0.
THE RECTANGLE THEOREMS. It is important to remember that
the formulae now to be given pre-suppose that S is expressed in
a form such that the coefficients of a2, y?, 2% are unity.

(i) To prove that, if a variable line through a fixed point
T
P (x,,9,,2,) meets a given sphere in points M, N, then PM . PN
i8 constant.
The r-equation for the fixed point (z,¥,,7,) and (variable)
direction (I, m,n) is
2 { . Jr+8, =0,
—> —>
so that, if PM = r;, PN = r,, the product of the roots is given
by the formula Fire = S,
172 11>

T
thus PM.PN = 8,,.
But the right-hand side is independent of I, m, n and is there-
fore constant. N
Note that, if P is outside the sphere, PM, PN have the same
signs, so that their product is positive; if P is inside the sphere,

P_JTI, I;1>V have opposite signs so that their product is negative.
Hence the point P lies outside or inside the sphere according as
8, 18 positive or negative. (Compare p. 100.)

(ii)) To prove that, if P (z,,y,, 2,) lies outside the sphere 8 = 0,
then the length t of a tangent from P to the sphere is given by the
formula 8,

This is merely the formula 7,7, = S;; when r; = r, = ¢.
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D1AMETERS. Suppose next that P is the middle point of a

chord MN whose direction is (/,m,n). Then P_XI = —P_ﬁ,
and so the r-equation of P for that direction has roots which
are equal and opposite. The coefficient of

r thus vanishes, so that p
Uy +u)+m(y; +v)+n(z+w) = 0.

Hence, replacing z,, y;, z; by current

variables z, y, z, the middle points of chords

in the given direction (I,m,n) all lie in the
plane
lx+my+nz+ (lu+mov+nw) = 0.
This plane passes through the centre (—u, —v, —w) of the

sphere and is perpendicular to the given direction (I, m,n).
The condition

Uz, +u)+m(y,+v)+n(z,+w) = 0
is satisfied for all values of I, m, n when P (x,,,,2,) is at the
centre (—u, —v, —w) of the sphere; that is, all chords through
the centre of the sphere are bisected there.
There are many problems in which it is convenient to take
as a starting-point a circle of given centre drawn on the sphere.
The following theorem is useful:

Fia. 38

To prove that the equation of the plane cutling the sphere
S = 0 in a circle of centre P (x,,1,,2,) s

S = S

The centre of the sphere is A (—u, —v, —w), so that the direc-
tion ratios of AP are

(x1+u’ 3/1+v, 21+U))-
Hence the plane, being perpendicular to AP and passing
through P, is

(@1 4u)(T—2,)+ (Y, +0) Yy —y1) + (2 +w)(z—2,) = 0,
or
(z +u)r+(y, +v)y+ (2, +w)z
= (2 u)z,+ (Y +0)y1 1 (2, Fw)zy,
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or, adding ux, 4+ vy, +wz,+d to each side,
8, = 8.

IrLusTrRATION. To prove that the centre of a circle cut on the
sphere S by a plane through the given point P (x,,y,,2,) lies on
the sphere whose equation is

S =28,.

Suppose that the centre of a typical circle is Q (z,, ¥s, 23)-

Then the equation of the plane of the circle is

. 8y = Sy,
This passes through P if
Sz = Spp.

The locus of Q, found by replacing z,, ¥,, 2, by current coordi-

nates z, ¥, z, is therefore
=8
1 .

7. Orthogonal spheres
DEriniTION. Two intersecting spheres
S = 2 +y24-224-2ux+ 20y -+ 2wy 4-d = 0,
S = 224y +224-2u'z+ 20"y +-2w'z+d = 0
are called ORTHOGONAL (cutting AT RIGHT ANGLES) if the tan-

gent planes at a common point P (z,,%,,2,) are perpendicular.
To prove that the condition for S, S’ to be orthogonal is

2un’ 4 200"+ 2ww’ = d+d'.
The tangent planes
(@ we+ Foly+ (s tw)et... =0,
@+ )2+ (Y, +0" )y + (2 +w')e ... = 0
are perpendicular if and only if

(xyt+u)(@,+u') + (v +0) 1 +0') + (2 Fw) (2 +w') = 0,

or
2} +yi+2i+ (utu)e, +(v+0")y Hw+w')e +-
- +uu’ v’ +ww’ = 0.
Since P lies on each sphere,
3 +yi+2i4 2ux,+ 2vy,+ 2wz, + d = 0,
2}ty 4234 2u'z, 4+ 20"y, +2w'z, +d’ = 0.
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Add and divide by 2:
2ty i+ (utu)ey + (40" )y, + (wtw')z +- 3 (d+d') = 0.
The preceding equation of condition thus gives
wu' v’ +ww' = (d+d').

CoRrOLLARIES. (i) The tangent planes to two orthogonal spheres
are perpendicular at every common point. The condition

2uu’ + 200" 4- 20w’ = d-+d’

is, in fact, independent of the point P (x,,y,,?,) from which the
argument started.

(ii) If two orthogonal spheres, of radii a, b, have their centres
distant k apart, then

k? = a?--b2.
For
a? = utfv4wr—d, b2 = w2 4-v"2 4wt —-d’,
k? = (u—u')2 4 (v—2' )24 (w—w')?,
so that

a?+4-b2—k? = 2uu'+4 200" 4-2uw’ —d—d’
= 0.

(iii) If two spheres are orthogonal, then the centre of either lies
in the tangent plane to the other at any common point.

The tangent plane to S at P (x,,y,,2,) contains the centre
(—u', —v', —w’) of 8" if

— (2 Fuu’ — (Y + o) — (2w’ fux, vy, +wz, +-d = 0,
where 22+ y24-2i 4 2ux, +2vy, +2wz, +d = 0,

224 y24-2E 4 2u'x, 20"y, 2wz, +-d = 0.
Subtract the last two equations:
2(u—u')x, 4+ 2(v—v" )y, + 2(w—w')z; +d—d’ = 0.
Subtract from this the orthogonality relation
2uu’ 4 200"+ 2uw’' —d—d' = 0

and divide by 2:

(u—u')z, + (v—0")y; + (w—w')z; —uu’ — v’ —ww' +d = 0.
Rearranging, this is the required condition

— (2t u)u' —(y, + o)’ — (2, +ww' +ux, vy, +wz, +d = 0.



110 THE SPHERE AND THE CIRCLE A\’

Note. The results of these Corollaries are otherwise obvious, and
could have been used as a basis for the discussion. The treatment
actually used does, however, lay greater emphasis on the root con-
ception of orthogonality.

8. Pairs of spheres; circles

Let the equations of two given spheres be
S = 22+ y? 22+ 2ux 20y -+ 2wz+-d = 0,
S = 2+ y? 4224 2u'z+- 20"y + 2wz +d’ = 0,
of centres 4 (—u, —v, —w), A’ (—u’, —v', —w’).
Consider the equation
S—kS' = 0.
When £ = 1, this represents the plane
2(u—u" )+ 2(v—2")y+2(w—w')z4+d—d' = 0,
and we regard this case temporarily as excluded. When k + 1,
the equation, after division by 1—#, is
S, = 22+ y2+22 4 2u a4 20, y+ 2w, 24-d;, = 0,
where
u—ku v—kv' w—kw' d—kd’
Up = ———— Vp = —/——— Wy = ————» dk:T—T.

1—k 1—k’ 1—k
This equation represents a sphere of centre B (—uy, —v,, —w,).

Now the equation S—kS =0

is satisfied whenever,
S =0, S =0

simultaneously. Hence the sphere Sy (and the plane when k = 1)
passes through all the points, if any, common to the two given
spheres S, S’.

In particular, the curve common to two intersecting spheres lies
entirely in a plane. The intersection is therefore a CIRCLE.

Observe carefully that two equations are necessary to specify
a circle in space. A mnatural choice would be the equations of
the plane containing the circle and of a sphere through it.
Alternatively, the equations of two spheres might be selected,
the equation of the plane, if required, being obtained by the
process just described. If the equations U = 0, V = 0 repre-
sent either a plane and a sphere or two spheres, then all spheres

’
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through their circle of intersection are given by the equation
U—EkV = 0 for appropriate values of k.

ILLusTRATION. To find the equation of the sphere through the
origin and the circle

22 +y2+422+6x4-8y+10 = 0, 4x+3y+22+45 = 0.
The equation of any sphere through the circle is
22 4-y2 422+ 62+ 8y + 10— k(4x4-3y+22+5) = 0,
and it passes through the origin if
10—5k = 0,
or k=2.
Hence the equation is
224-y?4-22— 204 2y—4z = 0.

Note: The effective existence of the circle depends on
whether the plane cuts the sphere or not. A simple test to
settle this point is that the sphere cuts the plane provided that

the distance of its centre from the plane is less than its radius.
Consider, for example, the sphere

22+ y2+22+46x-+8y+10 = 0
and the plane 4x+3y+224+5 =0

of the preceding Illustration. The centre of the sphere is
(—3, —4,0), which is at a distance

—12-1245 10
+429 T V29
from the plane. Also the radius of the sphere is
J(9+16—10) = 15.
But 19/29 < #15,

and so the plane cuts the sphere.
Finally, to find the radius of the circle in which the plane

lx+my+nz+p =0
cuts the sphere

224 y2 4224 2ux+2vy+2wz+d = 0:
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If a is the radius of the circle, r the radius of the sphere, and
b the distance of the centre (—u, —v, —w) from the plane, then

a? — r2—p2
R =)
_ ([B4-mP+4-n?) (w202 wi—d)— (lu+-mv4-nw—p)?
N EFmetn?) '

CoRrOLLARY. The condition for the plane to touch the sphere is

(- n) (w0t wt—d) = (lu-tmo-tnw—p),

and the condition for the plane to intersect the sphere in a circle 18
(4-m2+n?) (w24 v24+w2—d) > (lu+mov+nw—p)

9. The radical plane
There is another way of interpreting the equation
S—kS' =0
considered in § 8. Denote by ¢, ¢’ the lengths of the tangents
from the point P (z,y, 2) to the spheres
S = a?4-y2 4224 2ux+ 2vy 4 2wz-+-d = 0,
S’ = a4 y?+4-224-2u'x+ 20"y + 2w'z+d’ = 0,
so that (p. 106) =23, 2 =48
Then the locus of a point which moves so that
t = ml
18 the sphere (plane if m = 1)
S = m2S'.
The plane is called the RADICAL PLANE of the two given spheres,
and the system of spheres defined by the equation
S = m28’
for varying m is called a coaxAL sySTEM. Each two spheres
selected from the coaxal system have the plane S = 8’ as their
radical plane.
The above statement gives the definition of the radical plane

in its most graphic form, but it needs modifying if, for example,
there are values of x, y, z for which 8 is negative (compare
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p- 100). To meet this difficulty, define the POWER of a point
P (x,,y,,2,) with respect to a sphere

S = 2+ y?+ 224 2ux+-2vy+-2wzd-d = 0
to be the function

Sy = x¥+yi 4224 2ux, 4 2vy, + 2wz, +d.
Then the RADICAL PLANE of two spheres S, S’ is the locus of a
point whose powers with respect to the spheres are equal.

The result may be extended. The RADICAL LINE of three
spheres 8, 8’, §” is the locus of a point whose powers with
respect to the three spheres are equal. The locus is given by
the two equations S =8 =8"
and is a straight line. [For example, it is the line of intersec-
tion of the two planes S—8’ = 0, §—S8” = 0, which, in the
general case, are not parallel.]

Similarly the rapICAL CENTRE of four spheres S, S, 8, §”
is that point (unique for general positions of the spheres, with
which alone we concern ourselves) whose powers with respect
to the four spheres are equal. The point is given by the three
equations S =8 = 8" — 8",

It follows easily (compare p. 109) that the sphere with centre
any point (i) on the radical plane of two spheres, (ii) on the
radical line of three, or (iii) at the radical centre of four, and having
its radius equal to the tangents from the point to the spheres, cuts
orthogonally each of the two, three, or four spheres.

10. Coaxal system ; simplified equation
The radical plane of the two spheres
S = x?+y? 4224 2ux+2vy+2wz+-d = 0,
S = x4y 422 2u'x+- 20"y +2w'z24+d = 0
is 2u—u' )+ 2(v—v" )y+2(w—w')z4-(d—d’) = 0,
and the direction cosines of its normals are
(u—u', v—20', w—w').
Hence the radical plane of two spheres is perpendicular to their

line of centres.
6086 I
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If, then, the line of centres is taken to be the axis y = z = 0,
the equations of the spheres appear in the simpler form

S = 2?+4-y?+-2242ux+d = 0,
S = 22 +y? 4224+ 2u'z+d = 0,
and the radical plane is
2(u—u')x4(d—d’) = 0.

Suppose, further, that the origin is chosen to be that point
where the line of centres meets the radical plane; then

d—d' = 0.
Hence the equations of the two given spheres may be reduced to
the simplified form
S = a2 +y2 4224 2ux+d = 0,
S = a?+y2+224-2u'z+d = 0.

The spheres of the coaxal system are then

x2+y2+22+2(@;_§u )x+d — 0
for varying A. Thus, writing
u—Auw' _
1—x

the equation for the spheres of a coaxal system may be expressed
in the form 2414224 2uz+d = 0
Jor varying p.

The radical plane is x=0.

This plane meets the spheres of the system, if at all, in the
circle z=0, vtz 4d = 0.

The circle exists if d is negative, but not if it is positive.
We confine our attention now to non-intersecting spheres,
for which d is positive; say d = a2. Then the spheres are

2* 4 y* 4224 2ux+a? = 0.
In particular, the two ‘spheres’ given by pu = —a and

p= o are (@Fap+y? 42 =0,
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and so reduce to the two points (a,0,0), (—a,0,0). They are
called the LIMITING POINTS of the coaxal system.

Consider next any sphere (if existing) which cuts each sphere
of the coaxal system orthogonally. Such a sphere has equation

x?+y?+22 4 2pr+-29y 4 2rz+w = 0,
where, for orthogonality (p. 108),
2pp—at—w = 0.

For this to be true for all values of u, we need the relations

p =0, w = —a?,
so that the equation of a typical sphere is

x?4-y2+224-2qy+2rz—a® = 0.

But this sphere passes through the two limiting points (+a, 0, 0).

Hence every sphere cutting the spheres of a coaxal system ortho-
gonally passes through the limiting points.

MISCELLANEOUS EXAMPLES

1. Find the equation of the sphere whose centre is the point (2,2, 1)
and which touches the plane 3x+4y+12z = 0.

The plane z = h cuts the sphere in a circle. Prove that the radius
of the circle is /{(3—A)(1+h)}, and deduce the equations of those
tangent planes to the sphere which are parallel to the plane z = 0.

2. Prove that the two circles

2+ y?+22—2x+3y+42—56 = 0, by+6z2+1 =0
and 23+ yl4-22—3xr—4y+562—6 = 0, z+2y—Tz2 =0
lie on the same sphere, and find its equation.

3. Find the equation of the sphere whose centre is the point (1,2, 3)
and which touches the plane given by the equation 3xr+2y+2+44 = 0.

Find also the radius of the circle in which the sphere is cut by the
plane z+y+2z = 0.

4. The line —_—— ==

intersects the sphere
x24-y34+23—20—6y+4z2—11 = 0

in the points P, P,. Find the coordinates of P,, F,, and obtain also the
equations of the line that passes through the centre of the sphere and
through the mid-point of P, F,.

5. Find the equation of the sphere with centre (3,0, 8) which cuts off
a chord of length 16 units on the line

2x+y—z =1, 4x—4y—5z = 29.
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6. Find the equations of the straight line through the point
P (18,23, —3) and the centre C of the sphero
S =2+ y*+22+8r—6y+ 142438 = 0.
Hence, or otherwise, find the equations of the spheres which have

their centres on the line PC, pass through P, and touch S.
7. A point P moves on the surface of a sphere
2+ y?+224+2x—4y+1 =0
in such a way that its distance from the point U (2,1, —3) is always 3.
Find the equation of the plane in which P always lies.

The line UP cuts the sphere again in Q. Find the equation of the
plane in which @ always lies, and the distance between these two planes.

8. Find the equation of the sphere whose centre is the origin and
whose radius is 5 units.

Find the range of values of A for which the plane

3x+4y+12z = A
cuts the sphere, and find the radius of the circle of intersection when
A = 39.
9. Find the centre and radius of the circle in which the spheres

2+ y2+4-22—8x—10y—4z—15 = 0,

2+ y?+2242x+10y+62z4+ 5 =0
intersect, and obtain the equation of the sphere on which this circle is
a great circle.

10. A sphere passes through the points (4,3,—2), (—1,—1,1),
(3,0, —2), (2,3,2). Find its equation.

Find the centre and radius of the scction of the sphere by the plane
z—y = 0 and the equations of the projection of this section on to the
plane z = 0.

11. A sphere has its centre at the point (0, —2, 1), and it touches the
plane which passes through the point (1, 1, 0) and the line

z—1 y+1 2z+1

1 4 1

Find the radius of the sphere and its point of contact with the plane.

12. Find the equation of the sphere through the points (1, —2,0),
0, —2, —1), (1, —1, —1), (1, —3, — 1), and show that the plane

z+y—z=20

passes through the centre of the sphere.

13. Find the equation of the sphere with centre (1, 2, 3) and radius 5.

Show that the plane 3x+4y+ 12z = 86 cuts the sphere in a circle
of radius 4, and find the equation of the parallel plane at the same
distance from the centre but on the opposite side.

14. Points 4, B, C, D have coordinates (3,5,2), (1,3,0), (3,4,1),
(—1,6, —1) respectively. Find the points in which the straight line
CD meets the sphere of which 4B is a diameter.
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15. Show that the spheres
2?4yt 422—20—22—2 = 0,
¥y 422 —8r—4y—22+4+20 = 0
do not intersect.
Obtain conditions for the plano

le+my+nz = d,
where P4m2+4nt =1,

to touch both spheres. Deduce that all such planes pass through one
or other of two fixed points collinear with the centres of the spheres,
and find the coordinates of these points.

16. Find the equation of the sphere through the origin O and the
Rdints 4 (a,0,0), B(0,b,0), C(0,0,c).

If U is the centre of this sphere, show that the sphere on OU as
diameter passes through the mid-points of the six edges of the tetra-
hedron OABC.

17. A is the point (0,0,1), P is a point of the sphere of unit radius
and centre the origin O, and @ is a point of the plane z = a —1, where
—1 < a < 1. If AP and OP are perpendicular to PQ and 0@ respec-
tively, show that the positions of P are confined to a certain circle on
the sphere and those of @ to the region exterior to the circle

#+y? = a¥(1—a)/(1+a)
in the plane.

18. Find the values of d for which the plane

3x—2y+z=d
touches the sphere
x?+y?4-22—2x—4y+22—8 = 0,

and obtain the coordinates of the points of contact.

19. The points 4, B, C, D have coordinates (5, —3,2), (6, —2,2),
(5, —2,3), (6, —3,3) respectively. Show that spheres may be centred
on these points so that each sphere touches the three others externally.

A plane (not intersecting the sphere about A4) is laid in contact with
the spheres about B, C, D. Find its distance from A4, and its equation.

Find the equation of the sphere through all four points.

20. Find the condition for the plane

le+my+nz = p
to cut the sphere
z?+y? 422+ 2ux + 2vy +2wz—c = 0
in a (real) circle.
Prove that the plane z+2y—2z =4

cuts the sphere 24 y2 422 —x+2—2 =0

in a circle of unit radius, and find the equation of the sphere which has
this circle as one of its great circles.
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21. Prove that the tangent lines from the origin of coordinates to
the sphere (x—a) +(y—b)+(z—c) = k?
are the generators of the cone given by the equation

(@b A — ) (@ 91 +27) = (aw-+by+cz)h.

22. Find the plane, the centre, and the radius of the circle common

to the two spheres Dyt +i—dz+1 = 0,
2 4yt422—4r—2y—1 = 0.
23. Find the length of the chord cut on the line
z—2y+3 =0, 20—2y—2+5=0

by the sphere 2?4 y?+28—2x43y—16 = 0.
24. Find the centre and radius of the circle common to the two
spheres 224 y?422—-3y—52—2 = 0,

z24-y¥ 422 —4x—5y—T2+12 = 0.

25. If n is a unit vector, show that the condition for the plane

n.r = p to touch the sphere (r—c)? = a? is
(p—n.c)? = ad.

A cone has its vertex at the origin and consists of tangents to a sphere
of radius a and centre b. Show that the position vectors r of points on
the cone satisfy the equation

(r.b)? = (b*—a?)r2.
26. Three planes have equations
rl=0, rm=0, r.n=020,
where 1, m, n are unit vectors. Give the conditions for a vector p to
be equally inclined to 1, m, n.

Find p when 1, m, n point in the directions (1, 2, 2), (2, 3, 6), (0, 3, 4).
Deduce that there is a cone of semi-vertical angle cos~1(1/4/26) touching
all three planes, and give the vector equation of this cone.

27. The position vector x of a point P at time ¢ satisfies the differen-

tial equation dx

-d?=WAx,

where W is a fixed vector. Show that Plies on a fixed sphere and also
in a fixed plane.

Deduce that P moves on a circle, and show that it describes the circle
with constant speed.



VI

THE CENTRAL QUADRICS

T ) . a2
HE central conics ﬁiﬁ =1

of plane geometry extend naturally to the surfaces

xz y2 22

atpta=!
in space of three dimensions. As in the plane, the character
of the surface depends significantly on the selection of the
alternative signs; but, equally, there are many properties
common to all the different types, and these may be explored
conveniently by grouping the surfaces under the comprehensive
equation A+ Byt 022 = 1.

The surfaces given by this equation are all called CENTRAL
QUADRICS.

1. The cone and the cylinder

Before studying the central quadrics, brief reference may be
made to two other types of surface:

(i) THE CONE. A surface traced out (generated) by straight
lines all passing through a fixed point is called a coNe. In
particular, a cone whose equation is of the second degree in
x, Y, z is called a QUADRIC CONE. The fixed point is called the
VERTEX of the cone.

The equation
ax?+by?+cz2+2fyz+2gzx+2hxy = 0,
where the left-hand side is homogeneous of degree 2 in z, v, z,

represents a quadric cone with vertex at the origin. It contains
the whole of each line
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through the origin for which the direction cosines (I, m,n)
satisfy the equation
al?+bm?+-cn?+2fmn+2gnl+2hlm = 0.
(ii) THE cYLINDER. A surface generated by straight lines all
parallel to a fixed direction is called a cYLINDER. In particular,

a cylinder whose equation is of degree 2 in z, y, z is called a
QUADRIC CYLINDER.

The equation
ax?+2hxy+by?+2g9x+2fy+c = 0
represents a quadric cylinder whose generating lines are parallel
to the z-axis. It contains the whole of each line parallel to the
z-axis and passing through a point of the conic

ax?+2hxy+-by?+2gx+2fy+c = 0

in the plane z=0.

ILLUSTRATION. THE ORTHOGONAL CONE. To prove that the
cone ax?4-by?+cz? 4 2fyz+2gzx+ 2hxy = 0
possesses triads of mutually orthogonal generators if

a-+tb+tc=0.

Let (A, 1, v) be the direction cosines of an arbitrary generator,
sothat a2t pu2 et 2fur+t 2 +2hAn — 0.
The plane perpendicular to this generator cuts the cone in two
further generators each perpendicular to it; the problem is to
find a condition for the two to be perpendicular to each other.

A line through the origin in direction (I, m, n) is perpendicular

and is a generator if

al*+4-bm2+-cn?+2fmn+2gnl+2hlm = 0.

These two equations have two sets of solutions (I;,m,,n,) and
(lg, mg, m3), giving the required lines. The ratios for m/n are
found by eliminating /; so multiply the second equation by A%
and substitute — (um-+vn) for Al:

a(pm-+vn)2—2X(gn-+hm)(um-+vn)+X2(bm? +2fmn+cn?) = 0.
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Hence
(ap?—2hAn+bA2)m2+(...)mn+(av?:—2gvA 4-cA?)n? = 0,
the coefficient of mn being irrelevant.
The product (m,m,/n,n,) of the two roots m,/n, and m,/n,

of this quadratic equation satisfies the relation
mymy  av?—2gvA+-cA?
namg  ap?—2hAu-+bA%

Lil,  bvr—2fuv+tcp?

nyny  api—2hAp-+-bA2

Similarly,
Hence

L l+mymy+n n,y
ny Ny

_ bl mamy
NNy MMy
(b —2fuv+-cp?)+(av®— 2gvA4-cA?) -+ (a2 — 2hApn+-bA%)
ap?—2hAp+bA? ’
But, since (A, u, v) is a generator,
—2fpr—2gvA —2hAp = aA*+bul+-cv?,
and so, after reduction,

Lil,+mymy+n,n, (a+b-4-c)(A2+pu2+v?)
g My T au—2hApn+bA*

+1

The denominators will, in general, be non-zero, so that the

condition I, I, +m, my-+n, n, = 0 is necessary and sufficient for

the condition a+b+c¢ = 0. That is, the three generators (A, u,v),

(I, my, my), (Lp, mg, my) are mutually orthogonal if and only if
a+b+4c = 0.

Since (A, u,v) is any generator of the cone, the condition

a+b+4c = 0 implies the existence of an infinite number of such
triads.

ILLUSTRATION. THE EQUATION OF A CYLINDER. 7o find the
equation of a right circular cylinder of radius a whose axis s the
straight line through the origin in the direction (I, m,n).

Let P (z,y,2) be an arbitrary point of the cylinder, and draw
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PM perpendicular to the axis. Then, by the formula on p. 14,
if O is the origin,
OM? = (lx-+my-+nz)?.
Also OP? = z24-y2-+22,
But, by the theorem of Pythagoras,
OP*—O0OM? = PM? = a?,
s0 that the equation of the cylinder 13
22+ y2 22— (le+my+nz)? = a’

2. Notes on the particular central quadrics (p. 119)
(i) TaE ELLIPSOID. When 4, B, C are all positive, they may
be written in the form
A =1/a?, B=1/b? C=1/c¢
so that the equation is
232 y2 22
a2 T
The surface is called an ELLIPSOID.

When a, b, ¢ are equal, the surface is a SPHERE; when two
of them are equal, say b = ¢, the surface is an ELLIPSOID OF
REVOLUTION about the z-axis, being PROLATE if ¢ > b and
OBLATE if a < b.

The surface may be visualized as a somewhat distorted
sphere, or as a distortion of the surface obtained by rotating
an ellipse about one or other of its axes.

(ii) THE HYPERBOLOID OF ONE SHEET. When twoof 4, B,C
are positive and one negative, they may be written in, say, the

form A =1/}, B=1/b2, C=—1Jc,
so that the equation is

z? gyt 2

PR

The sutface is called a HYPERBOLOID OF ONE SHEET.
To visualize it, imagine the hyperbola

x2 22

a2
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rotated about the z-axis, forming a single ‘sheet’, infinite in

extent. This corresponds to the particular case
a2 g 22
atga="

and the more general surface may be conceived as a distortion.

(iii) THE HYPERBOLOID OF TWO SHEETS. When one of 4, B, C
is positive and two negative, they may be written in, say, the

form A =1/a®, B=—1/i, C=—1/c¢,
so that the equation is

The surface is called a HYPERBOLOID OF TWO SHEETS.
To visualize it, imagine the hyperbola
x2 22
at ¢t 1
rotated about the z-axis, forming two ‘sheets’, both infinite in
extent. This corresponds to the particular case

and the more general surface may be conceived as a distortion.

3. Joachimstal’s equation; tangency

The method used earlier for a sphere (pp. 101-5) can be
adapted to quadric surfaces in general and to the central
quadrics in particular. The statement of the argument may
now be more brief. We use the notation:

S = Ax?*+ By?*+Cz*—1,
S, = Ax,z+ By, y+Cz 2—1,
8y, = Ay 2,+ By, Y+ 022, —1,
8, = Axi+ Byi4C22—1.
Let P (x4, %1, 21), @ (%3, Y2, 25) be two given points. The coordi-
nates of the point dividing the line 156 in the ratio A/1 are

oA, Y HAY, 2z +Azz)
142 7 1427 1A )
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and this point lies on the quadric § = 0 if
Sy A2-4+28, A48, = 0.
This is a quadratic in A, and so an arbitrary line meets the surface
in two points. The two points do not have real existence unless
S2,—8,,8,, = 0. We denote them, when existing, by the letters
M, N. (Compare Fig. 36, p. 102.)
(i) TANGENT LINES. A straight line is called a TANGENT to
a quadrie, which it is said to ToucH, at a point L if it does not
meet it at any point other than L.

(ii) THE TANGENT PLANE. If the point P (x,, y,,2,)lies on the
quadric, then S. —0
1 —

and one root of the equation in A is zero. If the line PQ is a
tangent, the second root must be zero too, so that

S, = 0.
As @ varies, subject to this condition, its coordinates satisfy
the equation S —0
=

found by replacing x,, ¥,, 2, by the current variables z, y, z.
This is the equation of a plane, and so the tangent lines to the
quadric at the point P (x,,y,,2,) all lte in the plane

S, = Az, 2+ By, y+Cz 2—1 = 0.
This plane is called the TANGENT PLANE at P to the surface.

(iii) THE TANGENT coNE. If the given point P (z,,¥,,2,) does
not lie on the quadric, but if the line joining it to a point
@ (%5, Y2, 25), also not (in general) on the quadric, touches the
quadric elsewhere, then the equation in A has equal roots, so

that

& Su‘gzz = sz-
As @ varies, subject to this condition, its coordinates satisfy
the equation

This, from the nature of its derivation, represents a cone, and
it is, indeed, the quadric cone (p. 119)

(Ax2+ By?+ C23—1)(Ax%+ By?+ C22—1)
= (Axz,x+ By, y+Cz 2—1)%
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The cone is called the TANGENT CONE from P to the surface.
It meets the surface S =0

where S, =0,
that is, at the points where the quadric is cut by the plane
Ax,x+ By, y+Cz2z—1 = 0.

(iv) THE POLAR PLANE. Two points P (2;,¥;,2;), @ (%5, ¥, 22)
are said to be CONJUGATE with respect to the quadric S = 0
when the line joining them meets the quadric in two pcints
M, N such that P, Q are separated harmonically by M, N
(p. 104).

The condition for this is that the roots of the equation in A
should be equal in magnitude and opposite in sign; that is, that

Sy = Az, 2+ By, y,+Czy2,—1 = 0.
When P is given, the locus of a point @ conjugate to it is
called the POLAR PLANE of P, given by the equation

S, = Ax,x+ By, y+Cz2—1 = 0.

If P is on the quadric, then its polar plane is the tangent plane
at P. A point P is called the POLE of its polar plane.

4. Tangent planes and tangential equations
(i) To prove that the condition for the plane

lx+my+nz = p
to touch the quadric
Ax? 4+ By*+Cz* =1
. 2 m* w2
* atpto =
Suppose that the plane touches the quadric, the point of
contact being (z;,¥,,2,); then the tangent plane is (p. 124)
Ax,x+ By, y+Czz = 1.

Comparing the two forms of equation,

Ax,p =1, By;p=m, Czp=n.
But the point (x;, ¥;, 2;) lies on the quadric, so that
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or A(l/Ap)*+ B(m/Bp)*+C(n/Cp)* = 1,
Bom: ont
or It B +'CT = p=

Note, conversely, that (as is easy to prove) the planes
lz+my—+nz = p for which a relation
A’ B'm24C'n? = p?
18 satisfied all touch the quadric
2 egiget
The relation lf—;—{-m—l—;_{_"g = p2?
is called the TANGENTIAL EQUATION of the quadric
Ax?+ By?+Cz? = 1.
(ii) To prove that the pole of the plane
lx+my+nz=p
with respect to the quadric
Ax*+ By*4C2% =1
18 (I/Ap, m/Bp, n/Cp).
Suppose that the pole is (z,,¥;,2,). Then the polar plane is
Az, x4 By, y+Czz = 1,
and comparison of this with the given equation for the plane
gives the formulae
Ax,p=1 By,p=m, Czp=nmn,
so that xl:ALp’ yl_-—__l%), z1=_0'_"';),
(iii) To prove that two tangent planes can be drawn through an
arbitrary line.
If the line is given by the two equations
a, x+b; y+c,z+d; = 0,
a,z+byy+cyz4+dy = 0,
then any plane through it is
(@ +Aag)z+(by+Aby)y+ (¢ +Acy)z+(d,4-Ady) = 0.
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The plane touches the quadrie if

(@, +Aa,)? + (by+Aby)?
A B

This is a quadratic equation in A, whose two roots determine
the two tangent planes through the line.

+(c1+902)2 = (d,+2d,).

5. The normals to a central quadric

We begin with a lemma: to prove that the length of the per-
pendicular from the origin to the tangent plane at (x,,y,,z,) to the
quadric Ax®+ By*+Cz* = 1 18

(42234 Byl O+,
The tangent plane is
Az, 2+ By, y+Czz—1 = 0,

so that (p. 23) the length of the perpendicular from the origin

18
1
@z +(By )P 1 (C2)®)
or (A3 4 By + 0%+,

Denote this length by the symbol ;. The length of the per-
pendicular from the origin to the tangent at a general point
(z,¥,2) is denoted corrcspondingly by =.

DEFINITION. The NORMAL to a surfaceat a point P is defined
to be the straight line through P perpendicular to the tangent
plane there.

(For example, the normal to a sphere at a point P is the
radius through P.)

For the quadric

Ax?4 By?+4C22 =1,
the tangent plane is

Az, z+ By, y+Czz = 1,

with direction ratios (4x,, By,, Cz,). Hence the equations of the
normal are

T _ Y~ _ %

Az, By, Cz
Note that, if 7, is the length of the perpendicular from the
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origin on the tangent plane at (z,, y,, 2,) then the direction cosines
of the normal are
(A, my, Byym, Czymy).
One or two elementary properties of normals may be added:
To prove that six normals pass through a given point, and that
these six normals all lie on a quadric cone.
The normal at the point P, (x,, ¥,, 2,) is given by the equations
=% _Y=Y% _ 2%
Azx, By, Cz, ’
and it passes through the given point @ («, 8, y) provided that

a—T _ B—y: YA

Ax, By, Cz,
=,

say. Hence
w= Ay B I’fgx' = Tron

Now P, lies on the quadric, so that

Az} Byi+ 02 = 1,
or, after multiplying by (14 A4X)%(1+ BA)%(1+4CA)?,
Ao*(1+4 BA(1+4 CA)?+ BB*(1+4-CA)*(1+AA)*+

+Cy2 (1 AN(1+ B2

= (14-AAX)3(1+ BA)}(14+CA)2.

This equation is sextic in A, and each of its six roots gives one
set of values for z,, y,, 7;, so that six normals can be drawn

through Q.
To find the cone, write the equation of condition
B—yi _v—a
By, Cz,
in the form

B(y,—B+B)y—2) = Clzy—y+y)(B—w),
or . (B=O)y,—B)z,—y) = BB(y—2,)—Cy(B—w1)-
Similarly
(C—A)(z—y)(—a) = Cy(a—2z;)—Aa(y—2z),
(A—B)(z;—a)(y,—B) = Aa(B—y1)— Bf(a—=z,).
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Multiply by A«, BB, Cy and add:
A(B—C)a(y,—B)(z1—7)+
+B(C—A)B(zy—y)(x,—a)+
+C(A— B)y(x,—a)(y,—B) = 0.
Hence the point (z,,¥,, 2,) satisfies the equation
A(B—C)a(y—B)z—y)+
+B(C—A)Bz—y)z—a)+
+C(A—B)y(x—a)(y—p) = ©.
This equation represents a quadric cone with vertex at the

point @ («,8,v). In fact, the point (a+1Ir, B+mr, y+-nr)lies on
the surface for all values of r if (I, m, n) satisfies the equation

A(B—C)amn+ B(C—A)Bnl+ C(A— B)ylm = 0;
that is, the surface consists of a system of straight lines passing
through Q. Hence the equation of the cone is

> A(B—C)a(y—B)(z—y) = 0.

6. The r-equation

Let P (x,,¥,,2,) be a given point and (I,m,n) the direction
cosines of a line through P. If Q(x,y,z) is the point on this
line such that —

PQ=r,
then (p. 11)
x=ux,+lr, y=y,+mr, z=2z2+tnr
To find the two values of r for which Q lies on the quadric
= Ax?+4 By?*+Cz?*—1 = 0.
The point @ lies on the quadric if

Az, +Ir)*+ By, +mr)2+ C(z;+nr):2—1 = 0,
or

(Al2+ Bm2+ Cn2)r2+2(Ax, I+ By, m+ Cz n)r+
+(Aai+ Byi+C2i—1) = 0,
o (Al24 Bm? - Cn2)yr242(Ax, I+ By, m+Cz n)r4-8;, = 0.
This may be called the r-EQuAaTION of the point (x,,y,,z,)
and the direction (I, m, n) for the quadric S.
6086 K
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7. The plane section with given centre

To prove that, given a point P (x,,y,,2,), there 18 (in general)
a unique plane cutting the quadric in a conic with its centre at P,
the equation of the plane being

S, =8y
or Axy(x—=)+ By,(y—y,)+ Czy(2—2,) = 0.

Given P (ry,v,,2,), draw an arbitrary line through it in the
direction (I,m,n). This line meets the quadric in two points
whose distances from P are the roots of the equation (§ 6)

(A4 Bm?4 Cn®)r2+2(Az, 14 By, m+Cz, n)r+8;; = 0.

Choose I, m, » so that P is the middle point of the chord
joining these two points; the values of r in the quadratic equa-
tion are then equal and opposite, so that

Az, l+ By,m+Cz,n = 0.
This is the condition to which I, m, n are subjected.

If, now, U (x,y,2) is an arbitrary point of this chord, then
the direction ratios of UP are (x—a,, y—y,, 2—2,), so that

T—% Y~ _ 2%
l m n

Substituting in the equation of condition,

Axy(x—x,)+ By, (y—y,)+ Czy(2—2;) = 0.
This is the equation of a plane containing all chords having P
as middle point; that is, P is the centre of the section of the
given quadric by this plane.
THE CENTRE OF THE QUADRIC. The equation of condition is
satisfied automatically for all values of I, m, n in the particular

case when
2, =0, yy=0, 2z =0,

so that P is the origin of coordinates. Thus every chord through
the point O (0, 0, 0) is bisected there.

The point, if any, at which all chords of a quadric are bisected
is called the CENTRE of the quadric. Any chord through the
centre is called a DIAMETER. Any plane through the centre is
called a DIAMETRAL PLANE.
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8. Conjugate diameters
(i) To prove that the middle points of chords of the quadric
S = Ax*+ By?*+C22—1 = 0
in the direction (I, m,n) lie in the plane
Alx+ Bmy+Cnz = 0.

Let (x,,4,,2,) be the middle point of a chord in the direction
(I, m,n). Then (p. 130)

Alzx,+ Bmy,+Cnz, = 0.
The locus of the point is thus the plane
Alx+ Bmy+Cnz = 0.

This plane is called the diametral plane CONJUGATE to the
direction (I, m, n).

(ii) To prove that the centres of the sections of the quadric S
by planes parallel to the given diametral plane

ux+ovy+wz =0
all lie on the straight line
Ax By
v

u

Cz

w

If (z,,¥,,2,) is a centre, the corresponding plane is (p. 130)
Az, (x—2,)+ By (y—y1)+C2(2—2) = 0,
and so, since this is parallel to the given plane,
A _ By _ s
U v w
The locus of the point is thus the straight line
Ax By gz

u v w

This line is called the diameter CONJUGATE to the given
plane.

Note. Given a direction (I,m,n), the conjugate diametral

plane is, by (i), Alz-+ Bmy—+Cnz = 0,
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and the diameter conjugate to this plane is, by (ii),

Az _ By Cz
Al ~ Bm— On’
zT_ Yy

z
or _——= - = —.
l m n

This is the diameter in the given direction.

DerinITION. A diameter is called a PRINCIPAL DIAMETER
when it is perpendicular to the plane conjugate to it.
If such a diameter has direction cosines (I, m, n), the conjugate

plane is Alx + Bmy-+Cnz = 0,
and the direction cosines of the normals to it are
(AL, Bm, Cn).

For a principal diameter, this direction is the same as (I, m, n),
80 that there exists a number &, not zero, such that

Al = ki, Bm = km, Cn = kn.
To assess the significance of these equations, suppose first
that A, B, C are unequal.
Then two of I, m, » must be zero; otherwise, if, say, m, n
were not zero, we should have the contradiction
B=k=C.

Hence when A, B, C are unequal, there are three principal

directions, namely
(1,0,0), (0,1,0), (0,0,1)

and the principal diameters are the axes of coordinates.
Suppose next that B = C, but that A is different.
(i) If neither of m, n is zero, then
B=C =k,
so that, since 4 # £k, l=o0.

(ii) Ifis not zero, then
‘ A=k,
so that, since B, C £ k.
m=mn=0.

In the first case, the principal diameter may be any line in
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the plane x = 0; in the second case, the principal diameter is
the z-axis. The surface is, in fact, formed by the revolution
of an ellipse about the z-axis; the axis of revolution is one
principal diameter, and there is, further, an infinite set of
principal diameters all lying in the diametral plane perpen-
dicular to the axis.

Suppose next that A = B = C.

Then I, m, » may have arbitrary values. The surface is a
sphere, and all its diameters are principal diameters.

We now give a few PROPERTIES OF CONJUGATE DIAMETERS :

Let P, (z,,%;,2,) be a point on the quadric. The line OP, has
direction ratios (x,,¥;,2,) and so the direction of the conjugate
diametral plane is

L, = Az, x4 By,y+Cz,z = 0.

Thus the diametral plane of OP, is parallel to the tangent plane
at P,.
If P, (x,, 95, 2,) is another point of the quadric, the correspond-
ing conjugate plane is
L, = Az, x4+ By,y+Czz = 0.

Suppose now that P, is chosen to lie in the plane conjugate
to OF,. Then

Ly, = Az, 2,+ By, y,+ 022, = 0,
so that P, lies in the plane conjugate to OF,.
Take the point P, (5, Y3, 25) to be one of the intersections of

the quadric with the line of intersection of the planes L, = 0,
L, = 0. There are then the three relations

A%y 3+ By, Y3+ C223 = 0,
Azy 2+ By y, + 022, = 0,
Az, 2+ By, Yo+ 02,2 = 0.

These relations are completely symmetrical. The lines OF,,
OP,, OP, are so related that each lies in the diametral planes
conjugate to the other two, and each is the diameter conju-
gate to the plane containing the other two. They are called
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MUTUALLY CONJUGATE DIAMETERS. The fact that P, P, P, lie
on the quadric is expressed by the three equations

Axi+ Byi4Czt = 1,

Azi+Byi+Cz = 1,

Axl+ Byi+C22 = 1.

Consider, in particular, the ellipsoid
2 42
-

The six relations are

xz xa zz %3 _

+?/21/3+ 0,

xsxx yay1+zszl =0

xlx2+yly2+%= 0’
where
a2+ +
+ z’ =1,
i

The three triplets

oW A (T2 Y 22 Ts Ys %

a’b’c) \a’b’ a’b’ ¢
are thus the direction cosines of three mutually perpendicular
lines. They therefore satisfy the six further relations (p. 43)

Y121+Y223+Ys23 = 0,
2% +2, %3423 273 = 0,
2y Y112 Y +25y; = 0,
2} +a3+23 = a?,
yit+yitys = b2

23423422 = ¢

where-
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For example,

OPI+OPL+OP} = (i+u+a)+(eh-+ud +29) + (e 4+
= (@ +23+a3)+ Wity i)+ (34254 2d)
= a4-b24-c2.

Hence the value of OP}+OP}+OP% is constant for all sets of

mutually conjugate diameters.

9. Generators; first method

A surface containing an infinite system of straight lines ia
said to be GENERATED by them ; the lines themselves are called
GENERATORS. Elementary examples are the cone and the
cylinder. It is also easy to verify that the surface

Yz =x
contains the straight line

¥y = Az, Az =1

for all values of A, so that, as A varies, the line generates the
surface.

We proceed to examine the central quadric
Ax?+ By*+Cz2% = 1.

Let (x,,9,,2,) be an arbitrary point of the quadric, so that
Azi+ Byl +02 = 1,

and let x—xl = y—yl = o} =71
! m n

be an arbitrary line through it. The line meets the quadric
WhETO 4 (a, +Ir)2t Blyy+mr)2+Clzy +mr)? = 1,
so that r = 0 or else

2(Alx,+ Bmy, + Cnz,)+ (Al2+ Bm?+Cnt)r = 0.

If the line is a GENERATOR, this equation must be satisfied for
all values of r, so that

Alx,+ Bmy,+Cnz, = 0,
Al+ Bm2+Cn? = 0.
These two equations, solved simultaneously for the ratiosl:m:n,
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have two solutions, corresponding to fwo generators that can
be drawn through (z,,¥,, z;); but we have no assurance yet that
the quadratic on which the solution will depend has real roots.
This we now investigate.
The ratio m/n is found by eliminating ! from the two equa-

tions. Multiplying the second by Ax2, we have

(— Bmy, —Cnz,)?*+ A Bxim2+ACx3n? = 0,
or  B(Ax}+ By})m®+2BCy, z; mn+C(Ax 4 C22)mt = 0.
The two values so obtained for m/n are real and distinct pro-
vided that

BrC3 22— BC(Aad + Byd)(Axd+ C23) > 0,

or ABCx} (A2t + By Cz3) < 0,
or, since Ax2+- By? 4 Cz? = 1,
ABC < 0.

Hence either one or three of 4, B, C must be negative. We
must, however, exclude the possibility of three negative, since
Ax?+4By?4-C2? could never then be +1; hence one of 4, B, C
is negative and two positive. That is. the only ruled central
quadric (excluding cone or cylinder) is the hyperboloid of one
sheet.

10. Generators; second method

We take advantage of the result just proved, that the only
central quadric with real generators is the hyperboloid of one

sheet 2 gt 2

adtp—a=1

2 2 2
The form 1-r _Y_*

a? b2 2’

o (-

then shows that the two systems of lines

T _al¥L?
l+& - A(b+c)’

2\ y 2z
1) =2_°C
'\( a) b ¢
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z Yy oz

142 = p|f =

ta ’L(b c)’

N _Y,*
#(1_5) - b+c

and

are generators of the quadrics for all values of the parameters
A, u. They are called generators of the A-sSySTEM and the
U-SYSTEM respectively.
It is easy to verify, by attempts at actual solution, that two
generators of the same system have no point of intersection.
On the other hand, we prove that every A-generator has one
point in common with every u-generator:
At a common point we have the equations
1+ (zfa) _ 1—(@fa) _ (y/b)+fe) _ (y/b)—(zfe)
An 1 n A ’
zla  yb  zle 1
=1 pHd T p—d T Al
These relations therefore give the coordinates of the common
point, incidentally expressing the points of the hyperboloid of
one sheet in the PARAMETRIC FORM
r— (/\u—l)a’ _ QHM)b’ 2 — (B
An+1 Ap+-1 Aut1
This point is sometimes called THE POINT (A, u).

so that

11. Some elementary properties of generators

The basic properties with which we are concerned arise as
immediate consequences of results which the readcr may regard
as obvious from definition but which we shall also prove by
independent algebra:

(i) The tangent plane to a quadric at a point P conlains the
two generators through P.

2 2 2

The surface 2—2 %—%
may be expressed in parametric form
Au—1 y  pt+d oz p—A

, —_ Z_

Au+1" b A+l ¢ Autl’

=1

x
a.__
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The two generating lines through the point (A, ) are given by
A = constant and p = constant respectively, where

( )

A 1—3:‘ = y-——E'
p ’

(b) p constant, is the line

4 T " y_=
a (b 0)’
" n_Y | z

(l a) b ¢

If, then, P is the point (A,y,), the two generating lines
through it are defined by the relations
_ A=A, p=p
respectively.
Now the tangent plane at P is

chm—1 ¥y ) _Z A =1,
adpm+1 " bAm+1 cAp,+1

and it contains those points (A, ) of the quadric whose para-
meters satisfy the equation

Au—DAp—=1) | N +A)  @=NE—d)
Ae+1DA 1) Ae+DA py+1)  Au+ 1A py+1)
Hence, multiplying and rearranging,

(P’+A)(:u‘l+A1)—(#—_A)(#I_AI)
= Qa1 sy +1)— Qu— 1) py —1),

or 20y 22 = 20 +2A, y,,
or Ap—Apy —A p4-2Ay g = 0,
or A=) (u—py) = 0.

Hence either A has the constant value A, or  has the constant
value p,. That is, the section of the quadric by the tangent

plane at (A;,u,) consists of the two generators through that
point.
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(i) Every plane through a generator is a tangent plane to the
quadric.

A plane through, say, the A-generator
x Yy oz
1 - =~ -

*a /\(b + c)'

15 Y =
A( a) b ¢

w06 -

or, on rearranging,

ud P Y L ] Y
(4262 e+
The plane therefore contains the generator

142 = k(%_z),

c

k1% =Y %
( a) b +c
of the p-system. Since it contains a A-generator and a u-genera-
tor, it is the tangent plane at the point where these generators

meet.

(ili) Two tangent planes can be drawn through an arbitrary
line.

The arbitrary line meets the quadric in two points 4, B;
through 4 pass two generators B
A;, py, and through B pass two
generators A,, u,. Also A, u,,
being generators of opposite
systems, meet in a point P, and
A;, py meet in a point Q.

Now the plane PA B, contain-
ing A,, u,, is the tangent plane at
P; and the plane QA B, contain-
ing A;, iy, is the tangent plane at Q. There therefore exist cer-
tainly these two tangent planes through the line 4 B.

Fic. 39
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Further, there cannot be any other tangent planes through
A B; for the tangent plane at a point R would meet the quadric
in two generators which, meeting 4 B, could do so only at the
points A or B common to that line and the quadric. Hence the
point B must be P or Q.

12. Polar lines

Given two points 4 (z,, ¥, 2,), B (%,, s, 25), the coordinates of
any point P of the line 4 B may be expressed in the form

(5'71 +Az, yi Ay 2 +A22)_
1--A 7 14X 7 142
The polar plane of this point with respect to the quadric
S8 = Az?+ By*+C2*—1 =0
is, after multiplication by 142,
A(zy+Az5)x+ By, +My)y + C(z+Az,)z— (14+A) = 0,
or (Az,+ By, +Cz, —1)+A(Azy + By, +C2z,—1) = 0,

For all values of A this plane passes through the line given by
the equations S, =0, S, = 0.

Hence the polar planes of all points of a line 1 pass through a
line l'.

The line I’ is called the PoLAR LINE of [ with respect to the
quadric S.

The line I’ is defined by any two points of I. In particular,
since the polar plane of a point on a quadric is the tangent plane
there, the two lines AB, PQ (Fig. 39) defined in § 11 (iii) are
so related that PQ is the polar line of 4 B.

Moreover, it is easy to prove that the polar line of U is the
line 1 itself. Referring again to Fig. 39, we observe that the
polar plane of P is PA B and that the polar plane of Q is QA B.
These planes meet in the line A B, which is thus the polar line
of PQ.

Finally, a basic theorem should be recorded:

If U is an arbitrary point of a line | and V an arbitrary point
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of its polar line ', and if the line UV meets the quadric in M, N,
then the points M, N separate the points U, V harmonically.

The polar plane of U passes through I’ and so contains V.
Hence, by definition, U, V are conjugate with respect to the
quadric. They therefore (p. 125) separate M, N harmonically.

MISCELLANEOUS EXAMPLES

1. The feet of the perpendiculars from a variable point P to a skew
pair of lines are L, M. Prove that (i) if PL2*+ PM? js constant, the locus
of P is an ellipsoid, (ii) if LM is constant, the locus of P is a circular
cylinder.

2. P is a variable point on a fixed straight line and L, M are the feet
of the perpendiculars from P to two fixed perpendicular planes. Prove
that the locus of a point, which divides the segment LM in a given
ratio, is a straight line.

3. A pomt P moves so that the line joining the feet of the perpen-
diculars drawn from P to two skew lines [,, I, subtends a right angle
at the mid-point of the common perpendicular transversal ¢ of [, and I,.
Show that the locus of P is a hyperbolic cylinder whose axis is ¢.

4. Find the coordinates of thoe foot of the perpendicular from the
point (£,7, ) to the line

Find the equation of the locus of the point P such that the perpen-
dicular distances of P from the lines

y = ztan, z=2=¢

and y= —ztanf, z = —c
are in the ratio A:1.
5. A point P moves in space so that its distances from the two lines

z—a =0, y=20
and z =0, z—a =0
are equal. Show that the locus of P is the surface whose equation is
y3—2%?—2ax+2az = 0.
6. Show that the locus of mid-points of chords of the ellipsoid

parallel to the diameter S==L==C

is a plane w, and find its equation.
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Show that the locus of the centres of sections of the ellipsoid by planes
through the line z—a_ y—PB _z—y
I  m n
is an ellipse lying in w.
7. Prove that the line

z—acosf y—bsinf

asinf =~ —bsinf

k2
c

is a generator of the surface
a? oyt 2
PERN TP
Prove that the normals to this surface at all points of the generators

through (acosf, bsin@, 0) meet the plane z = 0 at points which lie in

in the plane axcosd  bysinf

a?+c? b2 42 -

8. Prove that one generator of each system on the hyperboloid
x? y! 23
AT T T
passes through any point of the surface, and show that the locus of
intersections of perpendicular generators is the intersection of the
hyperboloid with a sphere.
9. A regular octahedron has its vertices at the eight points (4%, 0, 0),
(0, %, 0), (0,0, +-k). Prove that each of the planes

z+y+z = +k

contains three edges of the octahedron, and that the other six edges lie
on the quadric
224y 22— 2yz — 2z — 22y = k3.

Prove that, if x+8+y = 0, the plane
x z
gty =
meets the quadric in a pair of parallel straight lines.
10. Find the equation of the surface generated by lines I which meet
the three given lines x = ytzta=0,
Yy =z+z+b =0,
z=2x+4+y+c = 0.
. Show that equations of the lines I are
ax+by+cz+A =0,
a(b+-c)xr+b(c+a)y+c(a+b)z+abe = A(x+y+2)
for different values of A.
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11. Find the equations of the two generators of the hyperboloid of
revolution 2 oyt 2
ata~a =1
which pass through the point (acos8, asin,0).

Show that the angle between these generators is independent of 6,
and determine the relation between ¢ and a if this angle is a right angle.

12. Prove that the coordinates of a point of the quadric

x? yd 28
@ bia T
may be expressed in terms of two variable parameters A, p in the form

z_lthe oy 1l oz A—p
a  Atp’ b Atu’ ¢ Atp’
(i) Prove that the curve on the quadric for which
A+ BA\4-Cu+D =0
is a conic, which is a parabola if
(B—C)*+4AD = 0.
(ii) Find the parameters of the points of the quadric

Yt 2t
which lie on the line
x+3 _ y+8 _ z—12
4 14 21
Hence, or otherwise, find any points of the quadric whose tangent
planes contain this line,
13. Find a common tangent plane of the three ellipsoids

z? oy 23
atpta=1b
ZII’ yﬂ zl
wtata="n
xﬁ y2 22
atatp =1

14. Prove that the common tangent planes of the three ellipsoids

22 y? 2?

atpta="l
x? y! 23
ptata ="
28 3 23
atatyp =1

touch a sphere of radius
Vi{i(a®+-b+c?)}
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and that the points of contact of the planes lie on a sphere of radius
J (a‘+b‘+c‘)
15. Find the equations of the normal to the ellipsoid
a? oyt 2
atpta=1
at the point (z,,y,,2,).

The normal at P cuts the plane z = 0 at 4, and the point Q is taken
such that AQ is parallel to the z-axis and AQ = AP. Prove that Q lies
on the surface 2 vt 22
d—atpgta =l

16. Show that the locus of the centres of the conics in which the
quadric ax’®+by?+-cz?+d = 0

is cut by a variable plane through the line

T T Tm T T
ax(z—f)+by(y—g)+caz—h) = 0,
alz+bmy+cnz = 0.

is the conic

Interpret this result geometrically when f = g = h = 0.
17. Find the coordinates of the centre of the conic in which the plane
le4+my+nz = p
outs the quadric ax34+by2+cz?+d = 0.
If this conic is a parabola, prove that
bcl24-cam?4-abn? = 0
and find the direction of its axis.

18. Prove that the locus of the foot of the perpendicular from any
point of the line

to the polar plane of the point with respect to the quadric
ax?+by?+c2?+d = 0
is a hyperbola having the line

as one asymptote.
.By finding the other asymptote, or otherwise, verify that the hyper-
bola is rectangular.
19. Prove that, if
w mm’  nnf
a’(b®—c9) = b (c*—a?)  cHa*—bY)’
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the lines I=L =1, Z=L 2
are principal axes of a section of the ellipsoid
xt oyt 2
atpta=1

20. Prove that the direction cosines of the outward normal to the
ellipsoid

xd yr 2%
atpta=1
at the point P (£, 7,{) are
(25,27, 28)
a?’ b’ c2/’
where p is the length of the perpendicular from the centre to the tangent
plane at P.
Prove also that, if ¢ is the length of the normal chord at p,
fn .,72 {2 1
atTpta= =1
g op 0 2
a ot = 5y

21. Prove that, in general, six normals to the quadric

pass through a given point.
If this point lies on the line

alb—c)x _blc—a)y c(a—b)z
l - om0 n ]
prove that the fect of the normals are on the curve of intersection of
the quadric and the cone
lyz+mzx+nxy = 0.
22. Find the equations of the normal to the quadric
axd+byl+cz? =1

at the point P(a,f,y) on the quadric.

Assuming a, b, ¢ all different and non-zero and P not to lie on a coordi-
nate planc, prove that, if the normal at P cuts the coordinate planes at
L, M, N, then LM:MN is independent of the position of P on the
quadric.

23. Prove that the normal to the quadric

at the point (z,,¥,,2,) meets the plane z = 0 in the point
{(a_c)xl (b—c)y, 0’
Ty T Ty .
a b
6086 L
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Prove that, for all values of A, the normals to

Y2 22
SIXte AT

that pass through a fixed point («, B,7) meet the plane z = 0 in points

of the conic (b—c)Bz+(c—a)ay+(a—blry = 0.

24. Show that the normals to an ellipsoid at all points of a section
parallel to one of the axes intersect the principal planes in a straight
line and two ellipses.

25. Prove that two normals to the ellipsoid

2 3 2
ateta=!
lie in the plane lz+my+nz =0
and that the line joining their feet has direction ratios
a}(b*—c)ymn, bc*—a)nl, c3(a?—b?)im.
26. Show that the tangent planes to the ellipsoid
yl
+ b’+
which are perpendicular to the plane
le+my+nz = 0
touch the ellipsoid at points in the plane

lx my nz

a’+ b? +

Show that in general two normals to the ellipsoid lie in a given plane.
Find the coordinates of the two points on the ellipsoid the normals at

which lie in the plane
by—cz = }(b%—c?).

27. Prove that, if w is the angle between the central radius to the
point P(a,B,y) of the ellipsoid
3 y? 23
ateita=
and the normal at P, then
1 2
tan'w = B")’g(b—g'—c_) +y’a ’(_’““;) ’ﬂ’( 3 2) .
28. Normals are drawn to the ellipsoid
yr 22
. atpta=1
at the points in which it is met by the plane
le+my+nz =
Show that the points in which they meet the plane = 0 lie on a conic.



VI THE CENTRAL QUADRICS 147

29. Find necessary and sufficient conditions for the points
Py(xpynz)y Bi(®s Y5 2s),  Py(2y Y3 2s)
to be the ends of mutually conjugate diameters of the ellipsoid
xl yl 23
aTpta
If the three diameters vary so that OP,, OP, lie respectively in the
fixed planes

= 1.

az Py, nz_,

¢t 7

By z
sl -

show that the locus of OF; is the cone
a¥Bz—y,y)(Baz—yay) + by  T— o, 2)(y3 T —ay 2) +
~+c¥oy .’/‘Bx z)(a,y—ﬂ,x) =0,
30. The extremities of conjugate diameters of the ellipsoid

x2 yﬁ 23
atpta=!
are A (x,,Y,,2,), B(%g Y3 23), C(Zs,Ys»23). Show that the area of the
projection of the triangle O BC on any coordinate plane is proportional
to the projection of OA4 on the corresponding axis.
Show that the pole P of the plane ABC is

(@) + 23+ 2y, Y1+ Ya+Ys 21123 +25)
and that the equations of the polar line of AP are
T=T YU EFTA
T3—x3  Ya—Ys 2372
31. Show that any set of three equal conjugate diameters of the
spheroid 2t yiad )
at e =
lie on a right circular cone, and that the cosine of the angle between
any two is (a®—b?)/(a®+- 2b%).
32. The equation of a central quadric S is
axd+byd+c2? = 1,
where a, b, ¢ are real and @ > b > ¢. Show that there are two systems
of real circles on S lying in planes parallel to
z\J(@—b)t2/(b—c) = 0.
The centres of the two circles through the point P(£,7,{) of S are
Q and R. Show that the coordinates of the middle point of QR are
c(a—b)¢ 0 a(b—c){}
bla—c) ' "’ bla—c) ]’
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33. Prove that the sum of the squares of three conjugate diameters
of the ellipsoid 2t oy 5
is constant, and that the volume of the parallelepiped formed by the
tangent planes at their extremities is also constant.

Hence, or otherwise, prove that the radius of a circular section at

a distance p from the centre is

o/ (1555

34. Show that the circular sections of the ellipsoid
2
—+35+5=1 (@a>b>0)

passing through the point (a, 0, 0) are both of radius r, where

r? b3 —c2?

b2 ati—er
356. Normals are drawn at all points of the circular sections of the
ellipsoid z oyt 2t
atpita
Prove that they meet the plane = 0 in the ellipse

N

ad—pr T gt 8

=1 (@>b>c).

= a®—b3,

36. Find the equation of the circular cylinder of radius a with its
axis along the line z/l = y/m = z/n.

Prove that the common points of two equal circular cylinders, whose
axes intersect at an angle 2«, lie on two ellipses of eccentricities cosx
and sina.

37. Find the equation of the surface generated by the lines joining
the pairs of points

{acos(0+), bsin(6+a), c}, {acos(f—a), bsin(f—a), —c},

where 0 is a parameter and « a constant.

Prove that the planes z = +h cut the surface in two equal ellipses
and that a variable generator of either system meets these ellipses in
points whose eccentric angles differ by 2 tan—{(ktan«)/c}.

38. Prove that the point

r = a(ﬁ"l"l)' Yy = B(a+l)n z+aB =0,
where «, B are parameters, lies on a quadric and that passing through
every point of the quadric there are two generators, of which one is
parallel to the plane x+2z = 0 and the other is parallel to the plane

y+z = 0.
Prove also that when « is constant the locus of the point is a generator.
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39. Prove that the equation of the surface generated by the family
of lines which are parallel to the plane

2¢+y =0
and which intersect the two lines
r=y+tz=1,
y=2z2+xr =2
is 2x2+y2 4 yz+ 2z + By — 122 — 6y— 42412 = 0.

Show that the surface contains another family of straight lines,
parallel to the plane z+y+z = 0.

40. The section of a fixed sphere by a variable plano p is projected
from a fixed point O of the sphere by a quadric cone. Prove that, if
this cone has sets of three mutually perpendicular generators, then the
plane p passes through a fixed point P.

If the cone has sets of three mutually perpendicular tangent planes,
prove that the plane p touches a fixed spheroid whose centre is at P
and whose axis of revolution lies along OP.

41. Chords M PN of a quadric

axd+-byt4c2® = 1
are drawn through the fixed point P (¢, 9, {) so that PM = APN. Show
that they lie on the cone
4Mad(§—=x)+bn(n—y)+cl(f—2)+
+QA—1)Xa€?+bn?+clP—1){a(§ —2)*+b(n—y)* +c({—2)*} = 0.

Discuss the special case A = 1.
42, Prove that the equations of the right circular cones which pass
through the rectangular axes Ox, Oy, Oz are

yztzxtay = 0.

Prove that the lines through a point P which are normal to the
quadric

lie on & quadric cone, and show that this cone is right circular if P lies
on one of the lines
(b—c)z = t(c—a)y = £(a—b)z.
43. Find the equation of the cone which projects the conic
ar®*+by*+c =0, z2=20

from the point P(f,g,hk).

If the conic is fixed and the sections of the cones by planes parallel
to y = 0 are circles, prove that the locus of P is a conic in the plane
z=0.
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44. Find the equation of the cone generated by lines passing through

the point (a, 0, c) and meeting the circle
¥ yr—rt =0, z=0.
Prove that any plane parallel to the plane
2cax+-(r*4-c*—at)z = 0

cuts the cone in a circle.

46. Find the equation of the cone generated by straight lines drawn
from the origin to cut the circle through the three points (1,0,0),
(0,2,0), (2,1, 1), and prove that the acute angle between the two straight

lines in which the plane z =2

cuts the cone is cos™1,/(5/14).

46. Find the equation of the cone which has its vertex at the origin
of coordinates and passes through the circle in which the plane z = a
cuts the sphere x*+y?*+(2—c)? = 3,

Prove that the circle in which this cone cuts the sphere again lies in

the plane (c*—7?)x+a) = 2caz.

47. Find the equation of the tangent cone from the point (0, 0,c) to

the sphere z*+4y*+22 = a3, in the form
(c?*—a?)(z*+y?) = a¥(z—c)%.

Show that the common points of this tangent cone and the tangent
cone from the point (0, 0,d) to the same sphere lie on two circles, whose
planes are given by

(c+d)(z*+a?)—2(a%+cd)z = 0.

Interpret this result geometrically when c+d = 0.

48. Find the condition that the plane = = 1 should cut the cone
ax?+by?+-cz? = 0 in a circle.

If this condition is satisfied, find the equation of the sphere through
this circle and the origin.



VII
THE PARABOLOIDS

TuE surfaces now to be considered are natural extensions of
the parabola y? = dax

in which the left-hand side is quadratic and the right-hand
side linear. They are given by the equations
2? oyt 22
a?>br - ¢’
or, in composite form,
Ax?4 By? = 2z.
We may assume that A is positive; otherwise we could multiply
the equation by —1 and change the sense of z.
The surfaces Azx?+ By? = 22
are called PARABOLOIDS.

1. Notes on the particular paraboloids
The surface Ax?+4 By? = 22

is cut by the planes x = constant and by the planes y = con-
stant in two systems of parabolas. The sections by the plane
z = constant require more attention.

(i) THE ELLIPTIC PARABOLOID. When 4, B are positive, they
may be written
A = c/a?, B = c/b?® (c positive)
so that the equation is
2? oy 22
a2 ¢
The surface is called an ELLIPTIC PARABOLOID.
When a = b, the surface is a figure of revolution formed by

rotating the parabola 2t 2

a?” ¢
about the z-axis. The general elliptic paraboloid may be
visualized as a distortion of this figure.
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If h is any posttive number, the plane
z= —h

does not meet the surface, since it is not possible for the positive
number 2y
PR
to be equal to the negative number
2h
-—c—-
On the other hand, the plane
z=nh
cuts the surface in an ellipse for all positive values of 2. The
ellipse projects orthogonally on the plane z = 0 to give the
ellipse 2yt %
a2 ¢
As h varies, this equation defines a system of similar and
similarly situated ellipses.

(ii) THE HYPERBOLIC PARABOLOID. When A is positive and
B negative, they may be written
A = c/a?, B = —c[b* (c positive)
so that the equation is
2_9_ 2%
a? b? c
The surface is called a HYPERBOLIC PARABOLOID.
If  is any positive number, the plane
z2=nh
cuts the surface in the hyperbola
2yt 2
at b ¢’
and the plane 2= —h
cuts it in the hyperbola
22 y2  2h
dE= T

z2=nh,
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These hyperbolas project orthogonally on the plane z = 0 to
give the two systems (for varying k)
x y: 2k
AR g
These hyperbolas all have the asymptotes
T,y A
- T = YU - = 0,
aT5=%  27h

but belong to opposite (‘conjugate’) systems according as the
positive or negative sign is taken; for positive sign they meet

S~ -
+

———
— -~

Fig. 40

the z-axis, and for negative sign they meet the y-axis. (Compare
the diagram, Fig. 40.)

The surface is usually described as ‘saddle-shaped’ and may
be visualized by considering the section, two straight lines, in
the plane z = 0 and then imagining the changes as the plane
of section moves, firstly upwards and secondly downwards.

2. Joachimstal’s equation ; tangency
Write 8 = Ax*+ By*—2z,
8, = Ax, 2+ By, y—(2+2,),
81y = Az, 23+ By, Yo —(21+2,),
8y = Aai+ Byi—2z,.
The point dividing the line 1;22 in the ratio A/1, where
P = (,41,21), @ = (22, Ya,29), 18

(x1+)\x2 Y11+Ays 2 +Azp
142 7 142 T 14X )
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and lies on the quadric if, on substituting, multiplying by
(14+2)%, and rearranging,
Sy A2+428,A+8;;, = 0.

The argument now follows that given (p. 124) for the central
quadrics, and the results may be summarized concisely:

(i) The line meets the quadric in two points (having real
existence only if 83,—8;;8,, = 0).

(ii) There is at an arbitrary point P (z,,¥,,2,) on the quadric
a TANGENT PLANE

S, = Az, 2+ By, y—(2+2,) = 0.

(iii) From an arbitrary point P (z,,%,,2,) not on the quadric
& TANGENT CONE 8,8 = 82
may be drawn.

(iv) Two points P (2,,¥;,2,), @ (%3, ¥s, 2) 8re CONJUGATE with
respect to the quadric if

B12 = Az, Zy+ By Ya— (21 +2,) = 0,
and the locus of points conjugate to P is the POLAR PLANE
8, = Az, 2+ By, y—(2+2,) = 0.

(v) The NORMAL at (x,,¥;,2,), being the line through it per-

pendicular to the tangent plane
Az 2+ By, y—(2+2) = 0,

T8 Y=Y _ 2%
Az, By, —1°

3. Tangent plane and tangential equations
(i) To prove that the condition for the plane

lx+my+nz =p
to touch the quadric Ax?4 By? = 2z
. 2 m?
zts Z+§ +2np = 0.

Suppose that the plane touches the quadric, the point of
contact being (x,,¥,,2,); then the tangent plane is

Az, 2+ By, y = z2+2,.
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Comparing the two forms of equation,
Ax;n = —1, Byyn= —m, zn= —p.
But the point (,,y,,2,) lies on the quadric, so that
Ax3+ By} = 22z,

or A(l/An)>+ B(m/Bn)? = 2(—p/n),
2 m? 9 0
or Z+~B-+ np = 0,

Conversely, the planes lx-+my-+nz = p for which the relation
1z m?
i + B +2np =0
18 satisfied all touch the quadric
Ax?+ By? = 2z.

The relati B.m . 0
e relation Z+§+ np =

is called the TANGENTIAL EQUATION of the quadric
Ax?4 By? = 22z.
(ii) To prove that the pole of the plane
le4+my+nz = p
with respect to the quadric
Az*+ By? = 2z
18 (—1l/An, —m/[Bn, —p/n).
Suppose that the pole is (x,,;,2,). Then the polar plane is
Az, 2+ By,y = 242,
and comparison of this with the given equation for the plane
gives the formulae
Ax,n = —l, By,n= —m, z;n= —p,
—1 —m

so that = =g zl=:%£.

4. The r-equation
Let P(z,,¥;,2,) be a given point and (/,m,n) the direction
cosines of a line through P. If @ (z,y, 2) is the point on this line

that
such tha I?Q —r
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then (p. 11)
x=ua,+lr, y=y,tmr, z=2z+nr.
To find the two values of r for which Q lies on the quadric
S = Aa?4 By?—2z = 0.
The point @ lies on the quadric if
A(z,+1r)*+ B(y,+mr):—2(z,+nr) = 0,
or (A4 Bm?)yr?2+2(Ax, 1+ By, m—n)r+S;; = 0.

This is the r-EQUATION of the point (z,,¥,,7,) and the direction
(!, m,n) for the quadric S.

5. The plane section with given centre

To prove that, given a point P (x,,y,,2,), there is (in general)
a unique plane cutting the quadric tn a conic with its centre at P,
the equation of the plane being

8 = Sy
or Az (x—2,)+ By, (y—y,)—(2—2,) = 0.

The condition for an arbitrary line through P having direc-
tion (I,m,n) to be bisected at P is (compare p. 130 and the pre-
ceding paragraph)

Az, l+By,m—n = 0.
If U (z,y,2) is an arbitrary point of that line, then

T—xy YY1 __ 2%
l m n ’

so that U lies in the plane whose equation is

Azy(x—x,)+ By, (y—y,)—(2—2,) = 0,
or, on reduction, S, = 8.

It should be observed that there is no point P (z,,,,2,) for
which this equation vanishes identically; the term —z, with
constant coefficient, precludes that possibility. In other words,
the paraboloids are quadrics which do not have centres. They are
called NON-CENTRAL quadrics.
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6. Conjugate diameters
(i) To prove that the middle points of chords of the quadric
S = Ax*+ By?—22 =0
in the direction (I, m,n) lie in the plane
Alx+ Bmy—n = 0.

Let (z,,¥,,2,) be the middle point of a chord in the direction
(I, m,n). Then (p. 156)

Az, l4+By,m—n = 0.
The locus of this point is the plane
Alx+ Bmy—n = 0.

This is called the diametral plane CONJUGATE to the direction
(I, m,n).

Note that the diametral plane corresponding to any direction
(I, m,n) is parallel to the z-axis.

(ii) To prove that the centres of the sections of the quadric S
by planes parallel to the given plane

ur+ovy+twz = 0

all lie on the straight line

r=_2 y=_2
- ~ Bw’

Aw’
If (2,,9,,2,) is the centre, the corresponding plane is (p. 156)
Az (x—2,)+ By, (y—y1)—(z—2) = 0,
and so, since this is parallel to the given plane,

Az, By, 1
v w

The locus of the point is thus the straight line
z = —ulAw, y = —v/Bw.

This line is called the diameter coNJUGATE to the given
plane. It is parallel to the z-axis.
Note that the point (z,,¥,,%,) does not exist if w = 0.
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7. Generators; first method
Let (2,,9;,2,) be an arbitrary point of the paraboloid

Az%4 By*—2z = 0,

so that Aax%+4 Byi—2z, = 0,
and let T4 _Y=%h _*"AH_,
l m n

be an arbitrary line through it. The line meets the quadric
Where 4 (g, +Ur)2+ Bly, +-mr)i—2(z, +nr) = 0,
so that » = 0 or
2(Alzx,+ Bmy,—n)+ (4124 Bm?) = 0.

If the line is a GENERATOR, this equation must be satisfied

for all values of r, so that
Alz,+ Bmy,—~n = 0,
AR+ Bm? = 0.

The second of these equations shows that the two coefficients

A, B must have opposite signs, so that, for (real) generators the
surface must be a HYPERBOLIC PARABOLOID. The equation of

the surface is thus (p. 152)

and the conditions are

a:? b ’
2 me2
a2 32_ 0.

Hence, easily,

l
a=Ib (@, faFy, /)’
so that the equations of the two generators through the point

(%, 1, 2,) are
T—% Y~ _ 2%

a  +b  cry/aTFyydb)
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These generators are parallel to the planes

Y
FL=0
respectively.

8. Generators; second method
The hyperbolic paraboloid
2 y: 2
a? bt ¢

may be written in the form

x  Y\[x 2
(aﬁ)(rz) iy

which shows that the two systems of lines

z. Yy

Ti9 -2
a b A
x Y\ _z
A(& b)_c

and

r_Y_
2 b
TN _?
'L(a+b)—c

are generators for all values of the parameters A, p. They are
called generators of the A-SYSTEM and p-SYSTEM respectively.

Two generators of the same system have no point of inter-
section, but every A-generator has one point in common with
every p-generator, given, on direct solution of the equations,
by the formulae

T = a(A‘*_I"')r y= b(A'—V')’ 2= 20A""'

This gives a PARAMETRIC FORM for the points of the hyperbolic
paraboloid.
The A-generators are parallel to the plane

z, Y _
a+b 0
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and the u-generators are parallel to the plane
z_Y_,

a b

MISCELLANEOUS EXAMPLES
1. Two generators of the paraboloid

pass through the point (£,0,{). Prove that the cosine of the angle
between them is (a—b+{)/(a+b+).
2. Prove that the perpendiculars from the origin (0,0,0) to the
generators of the paraboloid
x2? yi
IR

lie on two quadric cones.
3. The plane ¥y = Az cuts the quadric
i
T =7

in a parabola. Prove that the ends of the latus rectum lie, for all values
of A, on the cone

Y3422 = 42
4. A straight line meets each of the parabolas
y?=ax,z=0 and 2= —bz, y=0.
It is also parallel to one or other of the planes
yl 23
a b
Show that it lies on the paraboloid
3 2
£ g

5. A, B are two arbitrary points on a paraboloid, and the tangent
planes at A4, B meet in a line I. Show that the plane through I and the
middle point of 4 B is parallel to the axis of the paraboloid.

6. Prove that the line drawn perpendicular to thelinex = 0,y+2z = 0
from a point of the parabola y® = az, z = 0 lies on the hyperbolic
paraboloid y?—2z? = ax.

7. Prove that a line parallel to the plane y—z = 0 and meeting each
of the parabolas y? = z, z = 0 and z? = z, y = 0 lies on the quadric
(y—2)* = =.



VIII
THE GENERAL QUADRIC

THE most general equation of the second degree in the variables
z, ¥y, 2 may be written in the form
8 = ax?+ by?+c2?+ 2fyz+ 2g9zx + 2hxy + 2ux+ 2vy + 2wz+d = 0.
We shall require an abridged notation, of which the examples
which follow are typical:
S = aad+-by}+-c28+2fy, 2+ 292, 2y +2hxy Y, +
+ 2ux, 4 2vy, + 2wz, +d,
8y = ax, 34-by, Yy 2y 2, +-f(yy 22+ Y2 2,) +9(2y X +-252,) +
Ry Yoty Yy) Fu(@y +22) +0(Yy +Y2) +w(zy +20) +-d
= xy(axy+hYy+925+u) + Y, (hxy -+ 0y, +f2e +v) +
+2, (922 +fya+cza+w) + (uXp +-vy, + w2, +-d)
= zy(azy +hyy+92, +u) +yu (b, + by, +fz, )+
P “+25(g2y +fyy +oz +w) + (uxy +vy; +wz, +d)
= P>
S, = (az,+hy,+gz, +u)x+ (hx, +by, +fz, +v)y 4
+ (g, +fy, +c2, +w)z+ (uxy +vy, +wz, +-d).
The triplet (x;,¥,,2;) used in these definitions will often be
replaced by (I;,m;,n,). The context will make clear what is

meant.
We shall also have to use the determinants
A=|a h g ul D=]|a h g|
R b f v h b f
g9 f ¢ w g f ¢

w v w d
Tt is assumed throughout that the coefficients a, b, ¢, d, f, g, k,

u, v, w are all REAL.
Before dealing with the general quadric, we devote a section

to the homogeneous quadratic form
ax?4-by2+-c22+ 2fyz+ 2gzx+ 2haxy.

6086 M
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The direct manipulation is sometimes awkward, but consider-
able lightening can be obtained by use of the double suffix
notation described earlier for tensors. This we give as an
Appendix to Part I, and the reader who feels sufficiently
familiar with the use of the notation may proceed straight to
it if he prefers. (An alternative treatment, nearly equivalent,
is provided by the use of MATRICES.) One or two of the results
contained in the ‘ordinary’ treatment are, however, sufficiently
graphic to have an interest of their own.

Part 1

THE QUADRATIC FORM
ax?+-by?+cz?+2fyz+2gzx+2hxy

1. Preliminary remark
We write
F = ax?4-by?+cz?4 2fyz+ 2922+ 2hxy,
Q = 224y24-22,
and use notation F| F,, F,, Q,, Q,,, Q,, in the sense analogous

to that described for S.
The ultimate aim is to express F in the form

F = X242+ L2
by means of an orthogonal transformation (p. 43) which main-
tains the identity Q= &2pn24Le.

2. The characteristic equation
The equation
a—A h g |=0

A b—Xx f

g f  c=A
is called the CHARACTERISTIC EQUATION of the determinant D.
It is a cubie, with three roots, not necessarily distinct, known
variously as the CHARACTERISTIC ROOTS, LATENT ROOTS, Or
EIGENVALUES.
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There is a familiar theorem of algebra that, if

a, b, ¢|=0,
a, by c,
a; by ¢

then a triad (a, B, y) of numberst not all zero exists such that
aya+byB+cy =0,
ayatbyBtcyy =0,
agou+byB-rcyy = 0.
If the co-factors 4,, B,,..., C; are all zero, then
ay:by:c; = ay:byicy = ay:b,:c,,

and there is an infinite set of these triads, consisting of all
triads such that

a;a+b;B+c,y =0 (1 =1,2,3).
Otherwise the ratios «:f:y are unique.

In particular, if A; is any root of the characteristic equation,
then there exists at least one triad (I;, m;, n;) satisfying the
relations (@—A)lihm-+gn, = 0,

Rl (b—A)m;+fn, = 0,
gli+fm+-(c—A)n; = 0,
or, in more convenient form,
alt"*-h”li—‘}"gn»i = Ai li’
hli+bmi+fni = Aimi,
gly+-fm;4cn; = A;n,.

These three equations lead to a fundamental identity. Let

them be multiplied in order by any three numbers /), »¢;, n;.

Then ;
Fy = 2y
That is, if A; is any root of the characteristic equation and

(l;, my, ;) a corresponding triad, and if (I;,m;,n;) is any cther
arbitrary triad, then B, =)0,

)

t Correctly speaking, 1t is the two ratios «:B:y whose existence we assert.
Each of the numbers «, 8, y can be multiplied by any non-zero factor.
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The equation is also (p. 161) expressible in the form
F; = A,Qy.
Two important results follow quickly:

(i) If Ay, A, are unequal characteristic roots, and (l,, my,n,),
Iy, my, my) corresponding triads, then

F,=0, Q,, = 0.
(ii) The characteristic roots are all real.

From the characteristic root A,, we have

Frp = 4 Qp:
from the characteristic root A,, we have
Fy = 2,Q,,.

(i) If A, 5= A, then the two relations are incompatible, unless
F,=0 Q,=0.
(ii) If A, is a complex root, take A, to be its conjugate com-
plex A;. When A, is not real, A, # A, so that, as we have just
proved, Q, = 0.

Also, if (I;,m,,n,) corresponds to A,, then (I,,7,,%,)T is a triad
corresponding to A,. Hence the relation is

Q= L L +mym,+n, 7, = 0.
This is not possible (since the products I, [;, m, m,, n, 7, are real
and positive) unless /, = m, = n, = 0, which contradicts the
condition (p. 163) that these numbers can be chosen not all
zero. Hence A, must be real.

Note, in passing, that a cubic equation with real coefficients
cannot have two equal complex roots; for if A, were a repeated
complex root, so also would be A;, and the cubic equation
would have four roots.

For the work which follows, we shall usually regard [;, m,, n,
as defining a certain direction. It will then be convenient to
take values of the ratios [;:m;:n; which make them actual
direction cosines. When this is done, there is an identity

B4+mitn}=1,or Qu=1.

t The sign of ¢ is changed in each of A, {;, m,, n,.
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The relation ;l;4-m;m;4-n;n; = 0, or

Q;=0
then means that the two directions (I;,m;n;) and (I, my, ny)

are orthogonal.
For actual direction cosines, the fundamental identity (p.

163) Fyy = A0y

becomes F, =,

3. Orthogonal transformation of the characteristic equa-
tion

(The work in this section is more easily comprehended in
the briefer notation with double suffixes. These details are
given for the benefit of those who have not yet reached that
stage.)

Let (4;, my,7,), (Lz, Mo, My), (I3, M3, n3) be three mutually ortho-
gonal directions. Then, by direct multiplication of determi-
nants (p. 87), using «, B, y to denote a—A, b—A, c—A, we have
« b ogllly L
B fllm my, mg
g f vllm ng m

= | aly+-hmy+gn,, aly+-hmyt-gn,, alyt+hmyt-gng

Rly+Bmy+fry,  hly+Pmy-tfrg,  hlg+Pmg+fng

glh+fmityny,  glatfmatyns,  glstfmg+yn,

Further multiplication according to the same rule gives a rela-
tion which may be expressed concisely in the form

L m mlle & gllh I Iy | =|Fh Frie s s
ly my mpllh B fllmy my my F3 F3 F3s
Iy mg ngljg f viing 7 m F3, Fg 23 |

where F* = ox?-By?+y22+ 2fyz+2gzx+-2hxy.

In particular, if (I;,m;n,) are actual direction cosines, then

(p- 42) L, m n|=4l
lp, my my
ly; my my
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Also, with a—A, b—A, ¢c—A for «, B, y, definition of F}; gives
5= (@=L L+ 0—)m;m;+(c—A)n;n;+
+flm;n4m;n;) +g(n; U+n; 1) +h(L; my+1;m;)

= Fy;—My;
:ﬁ4<wﬂ
CE G
Hence
a—X h g9 |=|Fu—2 F, Fs
h b—A f Fy Fp—A Fys
9 f c=A Fy Fy Fyy—A

4. The orthogonal transformation of F
Let (l;,m;,n,), 1 = 1, 2, 3, be the direction cosines of three
mutually orthogonal directions, and consider the transforma-

tion (p. 44) 2= Lé+ Ln+ B¢,

Yy = myE4+mynt+myl,

z= mn {4+ nygn+mgl.

Then, under it,
F = ax®+by?+c2?+2fyz+2gzx -+ 2hxy
= a(ly é+ln+1l 02 4.+
+2f(my E+ma n+-mg O)(ny E4n 405 L) +-...
= By 2+ Fpp P+ Fy >+ 2Fp3 ql +2F;, [E4-2F,, €.
Similarly, Q= 2492403
(i) Suppose that the characteristic roots A,, A,, Ag are all different.
Then (p. 165) the corresponding directions are mutually ortho-

gonal. Take them for the three directions (I;, m;, n;) just used.
Also (p. 1656) we then have

Fy=X, Fy=0 (#j)
Hence F = ANE40n2 42,02,
so that ¥ is reduced to the sum of three squares (or, possibly,

less than three if one of A;. A,, A, is zero). The coefficients A,,
A;, Ag are the characteristic roots of the determinant D.

(ii) Suppose that the characteristic roots Ay, Ay, Ay are not all
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different. Let A, be any one of the characteristic roots, and
(Iy,my,m,) the corresponding direction cosines. The perpen-
dicular directions (l,, mq, 1), (I3, M4, n4) are undetermined, save
that each is perpendicular to (I;,m,,n,)—they are not other-
wise linked in any way to the characteristic roots. Then (p. 165)

Fn = ’\1’
and, for any triads (I, my, ny), (I3, M3, Ng),
Fl2 = )‘1912, Fla = A1Qm-

Since (1,,m4,7,), (I3, M4, 75) are chosen perpendicular to (I;, m,, n,),
it follows that Q,, = Q,4 = 0, so that, by the preceding equa-

tions, Fy =0, F,y = 0.
Hence, by direct substitution,
F = A £+ Fpy n?+ Fyg P+ 2Fp3 nd.
Now (p. 166) the characteristic equation can be taken in the

form Fy-A By By |=0,
F21 ‘14122'—‘A F23
‘F;‘ll 'F;m "F;SS'—”A

or, here, F,—A 0 0 = 0.
0 Fpo—X  Fyy
0 Faz Fss_)‘

The two roots other than A, = F,, are thus given by the
quadratic (Fye—N)(Fog—N)— Fiy = 0

or N — (Fyp+ Fyy)A+ (Fpp Fig— F3g) = 0.

If, as is allowable, we choose A, so that these are the two equal

roots (not excluding the possibility that they may also be equal

to A,), then
(F22+F33)2"‘4(F22F33—F§3) =0,

or (Fpo—Fy3)*+4F33 = 0.
Since all numbers are real,t it follows that
Fyy = Fy,
Fyy = 0.

t See the more detailed treatment on p. 174.
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The equation for A is thus
N—2F,, A+ F%, = 0,
so that Ay = Ay = Fyy = Fy,.
Hence, once again, the expression for F is
F o= MNE4h 00,

where, now, A, = A, (possibly also = A;).

ApPENDIX TO PaART I
1. The use of a double-suffix notation
The geometry of the quadratic form
ax?+by?+cz?+2fyz+2gzx 4 2hwy
is closely linked with the determinant

a h gl
hb f
g f ¢

This linkage can be emphasized by the use of a double suffix
notation, in which we write
@y =a, Gy =0>0, az =c,
Qg =gy = f, Qg = Gy3 =g, @y =ay =h.
The quadratic form is then (with z,, z,, z, for z, y, 2)
2
@y %3+ 0gp T3+ Agy T3+ (Bp3 40y )2p T3+
. . + (@51 +13)%3 %1+ (21221 )2, X5,
with determinant
Ay @iy Gyg |
Qg1 Qgp Qg
a3 Q33 Qg
We therefore make a fresh start, and consider the array
(ay) = [an a1 ay\.
g1 Qg3 Qg
A3 QAgy Ogg
The determinant | @y |
is called the DETERMINANT OF THE ARRAY, and the expression

a,\“ ) x“
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(whose detailed expansion appears above) is called the QUAD-
RATIC FORM ASSOCIATED WITH THE ARRAY.
The array is assumed SYMMETRICAL, so that

a,—, = aj,-,
and it is also assumed that all its elements are REAL.

2. The characteristic equation
The equation

ay—t Ay a3 | =0,
Qs Ay —1 Q23
a3y Agzp  Agz—t
or, briefly, | a;,—t3;; | = 0,

is called the CHARACTERISTIC EQUATION of the array (a;). The
left-hand side is the determinant of the array
(@;;— ;).

The three roots, not necessarily different, are called the CHARAC-
TERISTIC ROOTS, OF LATENT ROOTS, Oor EIGENVALUES of (a;;).

By a familiar theorem of algebra, a necessary and sufficient
condition for the vanishing of a determinant |c;;| is the
existence of an array (u;) = (u;, %y, u;) such that the three
equations cpuy =0 (i=1,2,3)
are satisfied simultaneously, where the numbers u,, u,, us are
not all zero. The numbers u,, u,, %; may be multiplied by
any non-zero factor, as only their ratios are significant.

Applied to the characteristic equation, this theorem shows
that, for every value of t such that

|ag;—y| =0,
a set of ratios exists such that
(ap—tdn)uy = 0,
or
apuy = B U
= tu,t-
COROLLARY. If (v;) = (vy,%,,%5) is any arbitrary array, then
A\, WAV, = tup vy,

In particular, A, Up Uy, = BUNU,,.
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When necessary, the characteristic roots will be distinguished
by suffixes, with the notation ¢, 1,, t;. The letter for a general
suffix will usually be selected from p, ¢, r. Thus a characteristic
array corresponding to ¢, will appear in the form (u,,, 45, %3,),

or (uip)'

In practice, a characteristic array will often be regarded as
a direction cosine vector (p. 58). The notation

(L)
will then be used (corresponding to ¢,), where
a,-,\l,\p = tp lip'
not summed for p. As usual (p. 58) the direction cosines are
subject to the relation
Lph, = 1.

We can now deduce easily the FUNDAMENTAL IDENTITY FOR

CHARACTERISTIC ROOTS, that

ay l,\ 1l =1t.

The left-hand side is
(a/\y. lpp)l/\p = (tp l)«p)l)kp
= tp(l/\p l/\p)

=,

3. Some properties associated with two distinct charac-
teristic roots
Let t,, t, be two distinct characteristic roots, and (Lip)y (Lig)
the corresponding direction cosines. We prove that:

(i) the directions (l,), (I;,) are orthogonal,
(ll) aM l/\p l"q = 0,
(iii) ¢, t, are necessarily real.

By §2, aiz\lz\p =1, lip’
so that @l = tpluplug

or, since @y, = a,,,
Ay lAp l’m =t, l,\p l,\q.
Similarly, O hplug = tehp g
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But these two equations are incompatible when t, # t, unless
each side is zero. Hence

(i) by by =0,
so that the direction cosines (l;,), (;,) are orthogonal;

(11) a,\F l,\p l“q = 0.

To prove that t,, ¢, are real, assume that, on the contrary,
t, is complex. Its conjugate complex Z, is then different from
t,, and may be taken as t, in the preceding work. If (1) is
the array associated with ¢, then its conjugate complex (/,,) is
the array associated with ¢, since the calculations in the two

cases are identical except for the sign to be given to ./(—1).
The relation I, 1, =0 just proved thus becomes

l/\pl)‘p =0,

which is impossible unless
lip =0,

contradicting the condition (p. 169) that [,,, ,,, I3, are not all
Zero.

s lip = wytvf(—1),
then I, = ui—v,(—1),
so that Loy = (ul4v3) 4 (U3 +v3) + (w3 4-23),

which cannot vanish unless w; = 0, v, = 0 for z = 1,2,3.]

4. The orthogonal transformation of a quadratic form

Let F =a,x\%,
be a given quadratic form, and consider the transformation
(p- 58) T, = lpx),
giving F = ay, 2 1,578
= (@), Do lup)®a 2B

This is the corresponding quadratic form in «j, and is asso-
ciated with the array (b,,), where

(bpg) = (ar. Uiy L)
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5. The orthogonal transformation associated with the
characteristic roots; roots all different
When the characteristic roots ¢,, #,, ¢; of (a,;) are all different,
they define (§ 3, (i)) three mutually orthogonal directions
(i), (Liz), (Lia)-

If these are taken as the direction cosine vectors (l;;) in the
transformation of § 4, then a), z)z, becomes

by, T x;‘,
where bpe = @y, Dy Lo
Now we have proved (p. 170) that, when p, q are different,
a)m lAp l’w = 0,
so that by =0 (p #9).
We have also proved (p. 170) that
a)‘#l,\p l,‘p = tp,
8o that bpp = tp-

Hence the quadratic form is expressed as a sum of squares in

xy, xy, 3 tn the form s s s
b+l Ty -t 2y,

where t,, t,, t3 are the distinct roots of the characteristic equation.

6. The orthogonal transformation; roots not all different
Let ¢, be any one of the characteristic roots, and

(la) = (L, layy s)
the corresponding direction cosines. Select any two perpendi-
cular directions (;,), (/;3) subject only to the condition (so far)
that each is perpendicular to (I;;). Then [),), = 3,,; in parti-

oular, l/\l lAz =0, In l)«s = 0.
Also (p. 170) Ol = 4.
Moreover (p. 170), @l =4y,

so that

GHplube = il
=0 (as above),
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and O liabs =ty s
= 0.
Now, with the substitution z; = [, z),
F =ay, )z,
= b, T,
where bpg = A, by lug-
The three relations just proved are thus
byy = ty; byg = by = 0; b3 = by = 0.
We prove next the basic theorem, that the two arrays (ay;),
(by;) have the same characteristic equation.
Since, as above, 8;; = I\;[),, it follows that
byy—13;; = ap, Dl —thly,
= A Dby = Dl
= l,\i(a,\#——tSI\#)lM-.
Hence, by the rule for the multiplication of determinants

(p. 87), by —184;] = il @y, — 34111,
= la;,—13;1,
since |l;;|2 = 1. The two equations
|bs;— 13| = 0,
la;;—td;,] =0

are therefore identical.
The characteristic equation is thus
by —t bys bs | =0,
by byp—t by
bg by,  byz—t
or t,—t 0 0 = 0.
0 byt by
0 bsa  byg—t
If we now decide to choose ¢, so that the other two are the
equal roots (though they may also be equal to ¢, in a special

case), the equation
bpp—t by | =0,

b32 baa"t
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or 12— (bgo+b3)t+ (byg by —b35) = O,
has equal roots. The condition for this is

(baa+b33)2—4(bsy bss—b3;) = 0,
or (bgp—bg3)2+4b%, = 0.
Now ¢, is real (otherwise, as in the remark on p. 164, there
would be a repeated root f;, which is impossible since ¢, would
have to be repeated too), so that (/;;) is real; and the two

direction cosines (l;,), (/;;) perpendicular to it are real also.
Hence, from the condition for equal roots, we have

b22"b33 = O; bza =0,
and so

(1) the characteristic roots are ¢;, by, b,3,
(ii) the quadratic form is
by )2+ by T+ by 27,
where b,, = b,,, each being ¢, = t;. Hence the quadratic form,
in terms of ¢, #,, t; as coefficients, is

Lt 2R F 2 (t, =),

or by X2t (o2 4 a5?).
It is possible for ¢, also to be equal to ¢, and ¢;,. The form is
then @+ ai?).

ILLusTRATION. The tnertia quadric

The MOMENT OF INERTIA of a body about an axis is defined as
2 mp®,
where p is the distance from the axis of a typical particle P of
mass m and where the summation is over all the particles of
the body.

Suppose that the axis passes through the origin, with direc-
tion cosines (a;) = (a,,a,,a;3), and that the position of P is
(x;) = (%,,7,,%5). Then (p. 64) the projection OP’ of OP on
the axis is given by OP' = a,z,.

Also OP? = x,x,.
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Hence p? = OP*—0OP"

= x,\x,\——a;\x,\a,# x”'

= (8/\;1. Z,Z,—%) x#)a,\ a,

since @)@y = 1 in the summation §,, aya,.
The moment of inertia I, about the axis is thus given by

Iy = 2 m@y,z,z,— 23 7,)0za,
= I,\Fa,\a#,

where (I;;) is the inertia tensor of the body for the origin O
(p. 94).

Hence the moment of inertia about the axis (a;) 1s given by the
formula I(a) = I/\p. ara,.
This result can be given an alternative form of expression:
The equation Loz, =1

represents a quadric, known as the INERTIA QUADRIC at O for
the body. The point distant » from O in the direction (a;) lies
on the quadric if its coordinates (ra;) satisfy the equation:
that is, if r2(I,\“ @ma,) =1,
so that Iy = 1/r%

Thus the moment of inertia about any axis s equal to 1/r%, where
r 15 the radius of the inertia quadric tn the direction of the axis.

For a genuinely three-dimensional body the value of I, is
always positive, so that the tnertia quadric is an ELLIPSOID.

By the general theory, the ellipsoid has three principal axes,
and these are known as the PRINCIPAL AXES OF INERTIA for
the body. The corresponding moments of inertia are called the
PRINCIPAL MOMENTS. They are the moments of inertia of the
body about the principal axes.

When two of the principal moments are equal, the ellipsoid is
one of revolution.

When three of the principal moments are equal, the ellipsoid
is a sphere. In this case, the moments of inertia of the body
about all lines through O are equal.
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MISCELLANEOUS EXAMPLES

1. Find the characteristic roots of

6 —2 0\.
0o -2 2

2. Prove that the equations
4r) —2y—25 = tx,,
-2+ 223424 = tx,,
—x, 41,4203 = tag
are soluble for values of z,, x,, x;, not all zero, for just three values of ¢,
Determine these valaes and the corresponding ratios for 2, : , : z,.
Show that, if (x4, 2y, #y,) is & solution corresponding to the value t,
then Ty, =0 (i j).
3. P is the point (x,,,, %), and P’ 1s the point (], z}, z}), where
7 = 3z, +2,— 225, ) = —4w,—x,+ T2, ) = 4z, + 2z, — 4z,
Show that if P’ lies on OP (where O is the origin), then P must lie on

one or other of three lines through O, and find these lines.
4. Show that the characteristic values of

31 0 4
(054)
4 4 3

are —1, 1, 3, and obtain the characteristic vectors.
5. A given transformation is x, = a,,,, where

(@) =1/2 —2 1\
(2 1 —2)
1 2 2

Find the three characteristic values (of which two form a complex con-
jugate pair) and construct characteristic vectors.

By considering the transformation law for the real and imaginary
parts of two conjugate characteristic vectors, or otherwise, show that
the transformation is a rotation about the real characteristic vector as
axis.

6. Given th&t l,\‘ l,\, = 8,”'
(from which it follows that I, l;, = §;;), show that
|lul = %1

Show that, in cases where the upper sign is valid,
2Ly = exus€apy bralup:
Hence, or otherwise, prove that
[ty =841 = O,
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and deduce that, in any orthogonal transformation of axes, points lying
on & certain line are transformed into themselves,

7. Prove that, if (I;;) is the array formed by the direction cosines of
three mutually orthogonal lines, then the characteristic equation

[lij—t8:;) =0

has the property that, if & is a root, so also is 1/k.
8. An array (a;;) has the property

A Ap; = 8”.

A non-zero vector (x;) = (x,,%,, ;) is not a characteristic vector of
(a;;). Prove that (x;+a;x,) and (x,—a,,z,) are independent charac-
teristic vectors of (a;;).

9. A homogeneous solid has the form of a right circular cylinder of
radius @ and height av3. A point P lies on one of the circular edges.
Show that the inertia quadric at P is a spheroid, the axis of which
passes through the centre of the cylinder.

10. A rigid body consists of four particles of masses m, 2m, 3m, 4m
situated respectively at the points (e,a,a), (e, —a, —a), (—a,a, —a),
(—a, —a,a). The particles are rigidly connected by a light framework.
Find the inertia tensor at the origin and hence show that the principal
moments of inertia are (20 + 2v5)ma?, 20ma?, (20— 2v5)ma?.

11. The edges at the corner O of a uniform cube are taken as rect-
angular axes. Prove that the equation of the inertia quadric at this
corner is of the form

4(x3+ 23+ xd)— 3(xy 23+ 242, + 2, T,) = constant.

12. Find the principal moments of inertia of a solid hemisphere of
mass M and radius a at its centre of mass.

With a point O on the circular rim as origin and with right-handed
rectangular axes Ox, a diameter, Oy, the tangent to the circular rim,
and Oz, perpendicular to the plane face and on the same side as the
centre of mass, calculate the moments and products of inertia at O.
Hence find the principal axes at O, and show that the moments of inertia
about them are 13Ma?, TMa?, $5Ma?.

13. For a chain of three uniform mutually perpendicular rods each
of mass m and length 2a, show that the equation of the inertia quadric
at the mass centre referred to axes parallel to the rods may be written
in the form

$ma?(5x® 4 6y?4- 322 —3yz+ 32zt 2y) = 1.

Deduce that one principal moment of inertia at the mass centre is

ma?, and find the others.

14. Find the lengths and direction cosines of the principal semi-axes
of the quadric surface

x4 3yr+ 652 —2yz — 222422y = 1.
6088 N
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15. Show that one of the characteristic roots of

2 0 2
(0 4 —2)
2 -2 3

i8 zero, and determine the others.

Find the axes, and state the form, of the surface

220+ 4y?+ 328 —dyz 4z = 12,
18. Prove that the equation
24yt 22 4 yz+ 2zt 2y = al

represents a quadric of revolution with axis * = y = 2, and verify that
the ‘polar’ axis is half the ‘equatorial’.

17. Prove that the equation

2+ yt—3—day = 1

represents a hyperboloid of one sheet.

18. Prove that the equation

yztzzxtay =1

represents a surface formed by the revolution of a hyperbola of eccen-
tricity 4/(3/2).

19. Prove that the equation

(cy—b2)*+(az—cx)? - (br—ay)® = 1

represents a right circular cylinder.

20. Prove that the lines meeting the three lines

r=0y=1 y=0,z=1; z=0,z=1

generate a quadric of revolution,

21. Prove that the equation

(y—2)*+2(z—2)—3(z—y)* = 1

represents a hyperbolic cylinder whose principal sections are rectangular
hyperbolas.

22. If a, b, ¢ are non-coplanar and za+yb-+zc is a characteristic

vector of (hy;) with characteristic value ¢, prove that a’—ta, b’—tb,
¢’—tc are coplanar, where, for example,

. a; = hu G).
Given that
a’.bAc+a.b’Acta.bAc’ = 6a.bAc,

a.b’Ac’+a’.bAc’+a’.b’Ac = 1la.bAc,
a’.b’Ac¢’ = 6a.b Ac,
prove that one of the characteristic values is unity, and find the others.
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ParT II

DIAMETERS, CENTRES; CLASSIFICATION

1. The segment equation

Consider now the general equation

S = ax®+-by®+cz?+2fyz+2gzx + 2hay +
+2uzx+2vy+2wz4-d = 0,

using the notation of § 1 (p. 162).

Let P(x,,¥;,2,) be a given point and (I, m,n) the direction
cosines of a line through P. If @ (x,v,z) is a point on this line
such that I?Q = r, then (p. 11)

x = a,-+lr, y=y,+mr, z=z-+nr
The point Q lies on the quadric if

a(z,+1r)2+...4+d = 0,

or
r2(al?+bm2-+cn?+2fmn+2gnl+ 2hlm)+-
+ 2r{(ax, +hy, +92, +u)l+ (hy +-by; +fz, +-v)m+
+ (g2, +fy ez +wm+8,, = 0.
This is a quadratic in » whose roots, when real, correspond to
the two values of 1322 for which Q lies on the surface. The

equation may be called the r-EQUATION of the point (xy,Y,,2,)
and the direction (I, m,n) for the quadric S.

2. The diametral plane; centres

The two roots of the r-equation are equal and opposite when

(ax, +hyy +gz, +w)l-+ (hx, +by, +fz, +vym +-
+ (92, +fyy +cz, +wn = 0,

and the point P (z,,%;,2,) is then the middle point of the chord
through it in the direction (I,m,n). If, in particular, (I, m,n) is
regarded as given, then P lies in the plane

(al+hm~+-gn)x4-(Rl+bm+fr)y+ (gl+fm—+-en)z+

+(ul+vm+twn) = 0.

0086 N2
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This is called the DIAMETRAL PLANE CONJUGATE TO THE DIREC-
TION (I,m,n).

Special interest attaches to the position, if any, of the point
P when its coordinates satisfy simultaneously the three equa-

tions az,+hy,+gz,+u = 0,
hx,+by,+fz;+v = 0,
gz, + fy,+cz,+w = 0.
The r-equation then has equal and opposite roots for all values
of (I,m,n); that is, every chord through P is bisected there.
Several cases may arise (compare p. 29):
(i) The solution of the three equations may be unique. The
point P is then called the CENTRE of the quadric; the quadric
is of CENTRAL type.

(ii) The three equations may be insoluble. The quadric is
then NON-CENTRAL.

(iii) The three equations may have an infinite number of
solutions. These may define points which lie on a straight line,
as when the quadric is a cylinder or two intersecting planes; or
in a plane, as when the quadric consists of two parallel (or
coincident) planes.

We examine these possibilities in more detail.

3. The general analysis

Suppose that the axes are rotated, without change of origin,
in the way described in Part I of this chapter. The equation of
the quadric then assumes the form

Ax fz‘*‘hzﬂz‘i‘/\a §2+20‘§+2B"7+2‘)’§+d =0,
where A,, A;, A; are the characteristic roots obtained before,
and a, B, y are constants whose values can be calculated as

required.t
The equations for the centre are
Al §+°‘ =0,
A;n+B =0,
Asl{+y = 0.
t In fact,

a = uly+ovm;+wn,, B = ulytvmgtwn,, y = uly+vmy+wn,.
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The argument maybe divided into sections according as the num-
ber of zeros in A}, A,, A3i8 0, 1, or 2. (When A, = A, = Ay = 0,
the quadric is not ‘genuine’.)

4. The cases when ), A,, A, are not zero

When A, A, A; are not zero, the three equations for the centre
can all be solved:

§=—aofd, 7= =By, L= —y/As.
The quadric is then CENTRAL.

Transfer the coordinate system to parallel axes through the
centre. The equation of the quadric then assumes the form

MEFX P+ 2 =3,
o B4R
where S = }‘_1_{_7\;_*_5‘;_(1,

(@) When 3 = 0, the quadric is a CONE.

(b) When & # 0, the quadric is an ELLIPSOID, HYPERBOLOID
OF ONE SHEET Or HYPERBOLOID OF TWO SHEETS according as
3, 2, or 1 of the numbers A, A,, A, have the same sign as 3.
[We regard as excluded, here and elsewhere, the cases in which
the equation of the quadric has no real solutions.]

The cases of EQUALITY AMONG A, A, A; may be noted briefly:

(@) When A, = A3 # A, the quadric is one of REVOLUTION
about the line n = { = 0.
(b) When A; = A, = Ay, the quadric is a SPHERE.

5. The cases when A\; = 0, A;, A3 # 0
(a) When « = 0, the equation of the quadric is
Ay 2423 (24287 +2yl+d = 0,

so that the surface is a CYLINDER ‘standing’ on the conic in
the plane ¢ = 0 given by that equation. There is a line of
centres given by the equations

A277+B = 0, Aac—{"'}’ = 0.
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(b) When « # 0, the equation
Méta=0 (4 =0)
is not soluble; the quadric is NON-CENTRAL. The equation of
the surface may be written in the form

Ao(1+B[A2)* +A5(E+/A5)* + 206+ (d—B2[A,—¥?[Ag) = O,
representing (p. 151) an ELLIPTIC PARABOLOID Or 3 HYPERBOLIC
PARABOLOID according as A,, A; have like or unlike signs.

When A, = A,, the paraboloid is one of REVOLUTION.

6. The cases when A, 7 0,2, = A; = 0
(@) When B = y = 0, the equation of the quadric is
)\1 £2+4-20f+d = 0,
representing two parallel planes, possibly coincident, each
parallel to the plane ¢ = 0.
(b) When B, y are not both zero, the equations
A;n+B =0,
Alt+y=0
cannot be solved simultaneously, so that the quadric is NON-
CENTRAL. The equation of the surface is then

A £24 206+ 2B+ 290 +d = 0.
Bn+vE = JB v,
yn—BL = J(B*++)),
so that £ = 0, " = 0, {’ = 0 are mutually orthogonal planes.
The equation becomes
A €2+206+24(B2+*) 7' +d = 0,
representing a PARABOLIC CYLINDER ‘standing’ on the parabola

in the plane (' = 0 given by that equation and having its
generators in the direction £ = ' = 0.

A =23 =0)

Write

7. Conditions in terms of the general equation

The conditions for the general equation to represent the
various types of quadric can all be obtained in terms of the
coefficients in that equation. It is doubtful whether there is
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great value in such analysis, and we do not pursue it. There
are, however, two basic conditions which are worthy of note:

(i) The characteristic equation
a—X h g

h b—X f

g f c=2A
may be written (with a change of sign) in the form

B —A(a+b+c)+Abc+ca+ab— f2—g2—h?)—
— (abc+2fgh—af 2—bg?—ch?) = 0.
Hence the product of the roots A;, Ay, A, is given by the formula
A A, Ay = abe+2fgh—af *—bg?—ch?
=D

in the notation given on p. 161.

It follows that in order for one (or more) of the values of Ay, A,,
2, to be zero, it is necessary and: sufficient that

D =0o.
Thus the discussions of §§ 5, 6 presuppose the condition D = 0.

=0

(i) The equations for the centre (if any) of the quadric are
(p. 180) az,+hy,+gz,+u = 0,
hx,+by,+ fz,+v = 0,
9%+ fyy ez, +w = 0.

When these conditions are satisfied, the value of 8, can be
written in the form

S = xl(ax1+hy1+gz1+u)+yl(hxl+byl+fz1-}—r)+
+21(gx1+f3/1+021+'w)+(ux1+”y1+wz1+d)
= ux,+vy, w2 +d,
so that ux, +vy, +wzy +(d—8,,) = 0.
Eliminate z,, ¥, 2, between this equation and the three equa-
tions from which we began:

a h g u = 0.
b f v

g f ¢ w

w v w d—8,



184 THE GENERAL QUADRIC VIHI

Thus a h g ul+le b ¢ 0 = 0,
h b f v h b f 0
g f ¢ w g f ¢ 0
u v w d v v w —8,

or (p. 161) A—DS;; = 0.

Note carefully that the argument has presupposed the exist-
ence of z,, ¥,, z;, 80 that this relation is established only for
central quadrics.

(a) The case D # 0. If the characteristic roots are not zero,
then A = 0 implies S;; = 0, in which case the centre lies on
the quadric and the surface is then a cone. Hence the condition
for the general equation of the second degree to represent a cone i3

A=0.
(b) The case D = 0. If D = 0, then, for a central quadric,
it follows that A = 0 also. The possibilities when D = 0 have

already been enumerated.
Thus a procedure for the analysis of the general equation is:

Evaluate D.
If D 5 0, the quadric is central, being a cone if A = 0.
If D = 0, apply the analysis of §§ 5, 6.

CoroLLARY. To prove that, referred to parallel axes through
the centre, the equation of a central quadric

S = ax®+4-by?+c22+ 2fyz -+ 29z -+ 2hay 4 2ux -+ 2vy 4 2wz+-d = 0
assumes the form
ax?+4-by?+c22+2fyz+-2gzx+ 2hay+A|/D = 0.

The new coordinates (z’,%’,2’) are connected with the old
by means of the relations

z=a'4m;, y=y'+y, =74z,
so that the equation is
a(x’'+x,)%+... = 0,
or ax't4-by'3+-c2'2-+-2fy’'2’ + 2yz'x’ + 2ha'y’ +8,; = 0,
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the terms of first degree in ', y’, 2’ vanishing since (z,,¥;,2,)
is the centre. But (p. 184)
S, = A/D,
so that, dropping dashes, the equation is
ax?4-by?+-c2?+-2fyz+2gzx+ 2hxy+A[D = 0.

EXAMPLES

1. Reduce to standard form the quadrics
(i) 222—4y3?+222+2yz—Szx+2xy—2x—y—2z = 0.

(1) 3x2-+y?43224 2204 2x—2y+62+3 = 0.

(ii1) 2224 2y%4 522+ 2yz+ 2zx+ 4y — 14— 14y — 162+ 26 = 0.

(iv) a2+4y?+2242yz—z2x+422y+x+y+42—6 = 0.

2. Prove that the equation

2?4 2y%+ 322+ 42z + 4y + 102+ 8y +10z+k = 0

represents a hyperboloid of one sheet if k£ < 14, a quadric cone if
k = 14, and a hyperboloid of two sheets if £ > 14.
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§1. 1. (0,0,0),(2,0,0),(0,3,0),(0,0,5),(2, 3, 5), (0, 3, 5), (2,0, 5), (2, 3,0).
(1,0,0), (2,0,23), (2,14, 5), (2,3,24), (1,3,0), (0,14,0).

2. (1,0,0), (0,4,0), (0,0,3), (0,4,3), (1,0,3), (1,4,0).
3. (0,4,8), (2,0,8), (2, 4, 0).
4. (4,20,8), (0,20, 8), (4,0,8), (4,20,0).
7.2=38;y=2,z=1.
§6. 1. ~/200, V62, V34, V146, V246, V/134.
2. 2x+18y+2z = 27.
3. (i) 22 +y?+22—3x+3y+2—18 = 0.
(i) 24+3y+92+10 = 0.
(iii) 3x2+3y?+322—4x+24y+48z+120 = 0.
§17. 1. (0, —1/v2,1/42), (— 1/42,0,1/42), (—1/42,1/42,0); 1/¥2.
2. }m; cos™Y3).
3. 6, 13; 4.
4. cos~1(1%).
5. (%’ '2_51’ 7)’ (gf" %’ - l)
7. %.
CHAPTER II1
§3. 1. (3, —3,1); (—15,5,—10).
2' (‘}’ %’ 3): (—%9 %, 1)-
3. (19,10,9), (—11, —2, —9).
4, (_%1'33'%5&)’ (-%’%ri})-
6. (Ov 2: 2‘,‘!)’ (4! 09 1of.a')r (16_0" —'151’0)-
§ 8. 1. (%%v Ov 0)’ (0, _‘53’ 0)’ (0, 07 ___%3.).
4. (%r %r _§)~
5. (33, 1,%D).
6. (l) 3,1, *3 (1i) 2, %;’ gg‘r (1“) 4, :-g) %g'-
7. 43x—11y4-17z = 52, z+3y—z =4, 13z —y+ 7z == 32,

3lx—Ty+9z = 44.
(3p, —4p, 12p), where p = o — i, S, e
8. Intersections of 12z +8y—172+17 = 0 with, respectively,
br+y+4z =4, 20—3y = —6, Jztdytdz= 10.
(a+b+c){(b a)(b—1)+(c—a)(c—1)}

9. 2(a?+b%+ct—bc—ca—ab) ; ete.
§11. 1. z/a+y/b+tz/c = 1.
2. +6x+4y4-3z = 12,
3. (3,—2,4), (1,3,5), (0,0,3), (4,2,2), (1,3,1), (2,0,4).

[
.

5/¥3, 3/v3, 1/¥3, 1/¥3;
6/N'3, 4/3, 2/v3, 0;
3/N2, 1/¥2, 1/¥2, 3/v2.
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ANSWERS
6. (1,1,1).
6. x+2y—2z = 16.
7. x—y+2z = 6.
8. 2x4-2y+2z =09, dr44y—T2z = —27.
9- (—‘2, 8, 0), ('11!" %» O)r (%’ %t 0)'

10. 4x—y+2—8 = 0, 3y+32-+2 = 0.
r—2 y—1 z—6

13. 3 = 3 = —§°
x—1 _y+T _ z—2

1 — 8 ~ g
*r—5 y—3 =z

4 ~ 10 T —2
rx—1 y—2 243

14, 2 =0 =3

x—b = —Y = 2—2,

x-—3_ y—4 z—1
0 2 T 1 °?
(3,2,0)

15. 2r—z,—ux, _ 2y —Y, — Y, - 2z—2z,—z, . ote.
Tyt xy—x,—2, Yat+Ys—Y1—Y, 23+23—2,—2,
Concur in

M, +xo 425+ 2,), %(:’/1+yz+ya+’.'/¢)’ (=, +25+2342()).

16 x—l__y—2_z—3

—5 " 4 1 °
z y—1 2-—-2

17. =TT =1
r—1 y—1 z—1

18 g ="5= —23°

19. (0, 2/v5,1/5).

20. (3/4110, —1/+110, 10/4/110Q), (1/418,1/418, 4/4/18),
(1/411, —1/411, 3/4/11).

21. 2x+4-3y— 72428 = 0.

22. (2,5, —1).

24, (—3,—1,1).

26. 13z+23y+45z = 0.

28. (Or ’_39 2), (%’ o, %)r (2, 5, 0)-

MISCELLANEOUS EXAMPLES

. dx+3y—122+4+7 = 0.
. x—3y = 1.

6.

- In[J(BB4-m2), mn/ (12 +m?), — (12 +m?).

- 10x—5y+3z = 27; (0, 8, 14); V134.

- (5,4,1); 2/56 = (y—1)/3 = z/1.

. y=z=0;z=x=0;z=y=0;m—y=y+z=0.



10.
11.
12.
13.
14.
15.
17.
19.
20.
21.
22.
23.
24.

217.
29.
36.
31.
38.

o O

A=

. (12)(m.n)—(1.m)(1.n), (Imn)L

. {(a.b)a+b+(a Ab)}/(1+(a2)}.

. Compare § 16.

. x = {ka—(a Ab)}/(a?), valid only if a.b = 0.

. A = (dbc)/(abc), ete.

. a—(a—b.t)t.

. Ap4y = 1; (d—pb)/(1—p), (d—ve)/(1—v).

. cosf = {(p.q)—(p.n)(@.n)}//{[(P*)— (P-n)’l(@*)—(q.n)*]}, taking

ANSWERS 189

. {(a?+b2+¢?)/2a, (a?+ b2+ c?)/2b, (a4t c2)/2c).

1.
(i) (—1,12,12), (ii) x—y = —7, (iii) (£~2,104++2, 10T 1/4/2).
24yztzetar—y+1 = 0.
z/1 = y/2 = z/3; cos™1(4/4133), cos~1(40/41834).
/1= (y—2)/(—2) = z—2.
z—2y—z+11 = 0; (x—18)/1 = (y—16)/(—2) = (=+3)/(—1).
26x—32y—22+50 = 0.
> (x—a)mv—nu) = 0.
(@2~ a), yy(z1+a), 22— a%); Aa(z—a)+ By(z+a)+ C(z*—a?) = 0.
z—2y+z = 0.
A(lA4+mB+nC)—I1(A%+ B%+ C?), etc.
4r—4y-+82 = 9, 8x+4y+4z = 41.
9; 322+ 34y+ 13z = 108, 4o+ 11y 52 = 27.
x = p—{2a(ap+bq+cr+d)/(a®+b2+c?)}, ete.;
('ler '—'!.éfr &)9 (”—%¢ —%! i)-
x = ab2%?/(b%?+c%al+ a??), ete.
Circle.
9/V2.
(— 8’ 28» 2)7 (%r 3! 2)v (7r - 2’ 2)’ ‘(%3', ‘}’7“"’ —}%); (2y 3’ l)-
Same as 27.

CHAPTER III
MISCELLANEOUS EXAMPLES

. (c?)(a.b)—(a.c)(b.c) m (b?)(a.c)—(a.b)(c.b)
(b?)(c?)—(b.c)* ’ = T ®%)(cH)—(b.cp

n?) = 1.

. (m.n) = 0; 1.
. x—2y—22+3 = 0.

CHAPTER 1V

MISCELLANEOUS EXAMPLES

. (i) 0, (ii) 3, (iii) 6.

16 0 0\,
(0 16 0)
0 o0 16
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9.

S O WD

20.

22.
23.
24.
26.

12,
13.

ANSWERS
{mp 0 0\.
0 $mp O
0 0 {mp
CHAPTER V
MISCELLANEOUS EXAMPLES

byt —dr—4y—2245=0;2 =3,z = —1.

calbyi 42— 22— 2y—22—6 = 0.

. X2yt 22— 2x—4y—6z = 0; V2.

- (L,3,3), (4,7, —2); (z—1)/3 = (y—3)/4 = (z+2)/5.
. 234y 22— 6xr—162—48 = 0.

. (+4)/11 = (y—3)/10 = (z47)/2.

(x—18)(x—11p-+4)+(y—23)(y—10p—3)+(z+3)(z—2p+7), where
p=+%

c 3x—y—32—2 =0, 3r—y—32+6 = 0; 8/V19.

.2 yt422 = 25; —65 < A < 65; 4.

< (1, —1,—1); V6; 224 y24-22—2x+ 2y + 22— 3 = 0.
.2yt 422 22— 6y +42—11 = 0; (1,1, —2), V17;

=0, 2y%+23—4y44z—11 = 0.

. (_i’ _%' i’)

.24yt 4+22— 204+ 4y 2245 = 0.

. 2yt 22— 2x—4y—6z—11 = 0; 3r+4y+4 12z = 8.

. (1,5,0), (33,34, %).

cltn—d = £2, dl+2m4+n—d = +1;(7,4,1), (3,4,1).
. 224yl 22—axr—by—cz = 0.

. (4,0,0), (—2,4, —2).

. (2/V3)+(1/v2), x+y+2z = 6++(3/2);

22+ y? 422 — 11z 45y — 52442 = 0.
(P 4-m2n?)(u+v2+wi+c) > (lutmvfnw-+p)?;
224 y? 422 —2x—2y+2z4+2 = 0.

2x+y—224+1 = 0; (§,3,%); V2.
17/3.

(1,2,3); 3.

(1/+/26, 3/+/26, 4/¥286); 26(r.p)? = 72,

CHAPTER VI

MISCELLANEOUS EXAMPLES

. & = a+l{l(€—a)+m(n—b)+n({—ec)}, ete.;

1422
—x

142
1-A?

x’sin’0+y’cos’0+xy( )sin 20+z’—-—2zc( )+c2 = 0.

. See § 8.
10.
11.

Sz 3 ax+3 a(b+c)r4abe = 0.

(xr—acosf)/asind = (y—asinb)/(—acosh) = +z/c.
a = c (if positive).

(ii) (—19 _*)’ (_*v 1); (_J" _2’%)°

The most obvious one is z+y+2z = \/(a?+b?+c?).



15.
17.

22.
26.
29.
36.

37.

43.
44.
45.
46.
417.

48.

i

12.

13.
14.

15.

22.

1.

SO AW -

ANSWERS 191

See § 5.

x = lp/aA, ete., where A = I*la+m?/b4-n?/c.

Direction having ratios (bcl, cam, abn).

See § 5.

(+a/v2,b/2,¢/2).

See § 8.

See § 1, at the end.

x? y? 2L, 2

$+b_2_§8m x = cos’a.

alhxe—fz)2+b(hy—gz)2+c(z—h)? = 0.

(cx—az)?+c*y?—r}(z—c)? = 0.

822 +4yz—zx—bxy = O.

(a2 —r?)xt 4 a%y?+ (az—cx)? = O,

There is only one circle, lying in the plane z = 0. The two cones
are, so to speak, parallel.

b ==c; 22+ y?+22+{(a—d)/b}x = 0.

CHAPTER VIII

PART I
MISCELLANEOUS EXAMPLES

. 4, 44+2V3,

¢ = 1, 2, 5; ratios (0,1, —1), (1,1,1), (—2,1,1).

. Direction ratios (1, —2,0), (1,1, 1), (5, —16,12).

. (?i- ‘5’ _§)’ (&, "‘%» i)’ (!‘r i" &)

. Values 1, }(14+2iv2); vectors (1/v2,0,1/42), (1, Fiv2, —1).
. (20'nw.2 0 —2ma2).

0 20ma? —4ma?
—2ma® —4ma? 20ma?
Inertia tensor:
Lmat 0 — §ma?\.
( 0 Ima? 0 )
— 3ma? 0 Zinas
Direction ratios (3,0, 1), (0,1,0), (1,0, —3).
4ma?, Llmad.
Direction ratios (1, —1,0), (1,1,1), (1,1, —2); lengths 1/v2, 1/V3,
1/4/6.
Ellii)t,ic cylinder, axis of ‘symmetry’ (—2,1,2); axes of elliptic
section through origin, (232, 1), (1, —2, 2).
2 and 3.
PART II
EXAMPLES
(i) 3z’'* —3y"? = 27,
(ii) z34-2y’3+42'2 =1,
(iil) 2'34+2y"? = 1,
(iv) «’2+3y"? = 22/,






INDEX

Angle, 8, 15; in vectors, 63.

Area of triangle, 44.

Array, 81.

— symmetric, skew-symmetric, 82.
Axes, 2.

— oblique, 47.

— right-handed, 3.

— rotation of, 43.

— translation of 7.

Centre, 130, 179.

Characteristic equation, 162, 169, 183.

— — orthogonal transformation of,
165, 173.

Circle, 110.

Coaxal system of spheres, 112, 113.

Cone, 119, 181, 184; orthogonal, 120;

tangent, 103, 124, 154.

Coordinates, 1.

Corkscrew, 4.

Cylinder, 120, 121, 181.

— parabolic, 182.

8;;, 83; as tensor, 94.

Determinants, 84.

— product, 87.

Diameter, conjugate, 131, 133, 157.

— principal, 132.

— of quadric, 130 ; of sphere, 107.

Diametral plane, 179.

— — conjugate to given direction,

180.

Direction cosine, 9; vector, 58.

Distance between two points, 5; in
vectors, 64.

— parallel to an axis, 5.

— formula, 17; in vectors, 65.

Double-suffix notation, 57, 168.

€;;x» 84; as tensor, 97.
Eigenvalues, 162, 169.
Ellipsoid, 122, 181.

Generators, 135, 158.

Harmonic range, 104.
Hyperboloid, of one sheet, 122, 181.
— of two sheets, 123, 181.

Inertia quadric, 174; tensor, 94.
Joachimstal, 101, 123, 153.

34+mi4nt = 1, 11.

Latent roots, 162, 169.

Limiting points, 115.

Linear equation, 21.

Lines, two skew, 39; three skew, 48;
mutually perpendicular, 1, 89.

Moment of force, 70.

n-positive convention, 10.
Normal, to plane 21; to quadric, 127,
1564,

Oblique axes, 47.

Origin, 2.

Orthogonal spheres, 108.
Orthogonality relations, 42, 59, 89.

Paraboloid, 151, 182.

— of revolution, 182.

Parallelogram rule for vectors, 60.

Perpendicular, to two lines, 36, 77.

— from point to plane, 23, 66.

Perpendicularity, 16.

Plane, equation, 20, 24, 26 ; .n vectors,
65, 76; special cases, 28, 29, 33,
76.

Polar lines, 140.

Pole and polar, 104, 125, 154.

Product, scalar, 62, 90.

— scalar triple, 68, 90.

— vector, 66, 90.

— vector triple, 74, 90.

Projection, length of, 12, 13.

— formula, 14.

— of point on line, in vectors, 64.

Quadratic form, 99, 162.

— — orthogonal transformation of,
166, 171,

Quadrie, central, 119, 180, 181, 184.

— general, 161.

— non-central, 156, 180, 182.

— of revolution, 181.

r-equation, 129, 165, 179.
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Radical plane, 112.

Ratio formula, 17, 65.

Reciprocal vectors, 75.

Rotation of axes, 43.

Rule of transformation, vector, 57;
tensor, 91.

Scalar product, 62, 90; triple product,
68, 90.

Section with given centre, 130, 156.

Segment theorem, 105.

Sense, 4.

Sign, 3.

Sphere, 99, 181.

Spheres, pairs of, 110.

— orthogonal, 108.

Straight line, 18, 65.
Summation convention, 55.

Tangency, 102, 124, 154.
Tangential equation, 125, 154,
Tensor, 91.

— inertia, 94.

Tetrahedron, centroid, 61.

— orthogonal, 66.

Translation of axes, 7.

Unit axes vectors, 65.
Vectors, Chapter III.

— definition and vector rule, 56-57.
Volume ot tetrahedron, 46, 70.
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