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PUBLISHERS’ NOTE

Awmone the papers of the late John Wesley Young there
was found an unfinished manuscript on Analytic Ge-
ometry. As Professor Young was one of America’s
leading mathematicians, it seemed fitting that the man-
uscript be completed and published as a final tribute to
his contribution to the field of Mathematics. At the
time of his death, Professor Young was Editor-in-Chief
of the Houghton Mifflin Company Mathematical Series.
We therefore asked two mathematicians, who were close
friends of Professor Young, to complete the manuseript.
These men are Professor Tomlinson Fort of Lehigh
University, a man well known for his research work in
Mathematics and his ability as a teacher, and Dr. Frank
Morgan, formerly on the faculty of Dartmouth College,
aman who in the past collaborated with Professor Young
in writing several books and original articles.
HouverToN MIrrLIN COMPANY






PREFACE

Tais text is designed to meet the requirements of the
course in freshman Analytic Geometry as given in an
Arts College or Engineering School. As many Arts
Colleges require in addition to Analytic Geometry ap-
proximately a month’s work in the calculus, a short
chapter on this subject has been appended.

It will be found that the proofs are rigorous, and ex-
ceptional cases have not been passed over. The exer-
cises, both numerical and analytical, are numerous and
well graded. Approximately the last one third of the
exercises in each group are problems to be assigned to
the better students. In the discussion of parametric
equations only curves which a student will encounter
in his Elementary Calculus and Mechanics have been
included.

Today many teachers prefer to use determinants where
possible and the solution of examples by determinants
has been included. However, if one wishes to omit
determinants, the continuity of the book is not broken.
Diameters, poles and polars have been treated under
Loci and not as separate topics.

In answer to many requests the subject matter has
been carefully restricted to those topiecs which most
colleges include in an elementary course, thus relieving
the instructor of the unpleasant task and necessity of
selecting the material and omitting large sections of the
text. 4

Special care has been taken to use type that is pleasing
to the eye and easily read by artificial light.
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CHAPTER I
INTRODUCTION

1, Analytic geometry, which is the study of geometry
by means of algebraic methods, was presented in the
first systematic way by the French mathematician René
Descartes (1637) in his La Géométrie. This correlation
between algebra and geometry marks one of the greatest
advances in the field of mathematics. It has enabled
mathematicians to give simple proofs for many geomet-
ric theorems which, until then, were difficult to prove,
and, in addition, to make possible the discovery of many
new theorems.

Before proceeding directly to the subject matter of
the course, it is advisable to review a few of the topics
of Elementary Mathematics which we shall have occa-
sion to use.

2. The general quadratic equation is
wr+br+c=0.

The two roots are

x_—b+\/b2—4ac o b Vb —dae
1= b 2 = :
2a 2a

The sum of the roots is

&+%=—E
a
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The product of the roots is

c
x1x2 == -
a

The character of the roots depends on the quantity
under the radical sign, namely, b* — 4 ac, which is called
the discriminant.

If b — 4 ac > 0 the roots are real and unequal;
b — 4 ac = 0 the roots are real and equal;
b® — 4 ac < 0 the roots are imaginary. .

Exercises

Without solving, find the nature, the sum, and the produet of
the roats of the following equations.

1 422-72+3=0. 242’ +424+1=0."
3222 +7z—11=0, 4.62°—3z+7=0.
S B 144P~2z—1=0. 6. 162 —8z+1=0.

Determine & so that the roots of the following equations are
equal.

T 2+ k49 =0. 8 2+ (k+1)z+16 = 0.
9. ke ~2(k+3) o +k+7=0.

10. (k+1) 2"~ Tk-1)z+8k+1=0.

U QREk-1)2'—(k+D e+ k-4 =0.

12. @k-1)2*—6ks+4k+5=0.

13. Determine  so that the roots of 3* = 4 z and z = 2 y+k
will be equal.  (Nofe: Eliminate = and place b* — 4 a¢ = 0.)

.
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14, Determine k so that the roots of z* + 9> = 25,3z +4y=Fk
will be equal.
15. Determine k so that the roots of 2* +y% = r*, y = ma + &
will be equal.
16. Determine  so that the roots of y* = 4 prand y = mz + &
will be equal.
3. Determinants. The expression Zl Zl which stands
2 U2
for aiby — asbi is called a determinant of order two.
The expression aybie
ag bz Co
as bs ¢
which stands for
b2 Co b1 C1 bl C1
a —
! b3 C3 b3 C3 + % bz Co

or uibacs + mbser + ashics — ashec; — aibscy — ashics
called a determinant of order three.

Similarly, the expression .
ay .bl b1 d1
as by ¢y d
(17 ba Cs da
Ay b4 Cy d4
which stands for
bs ¢y do byeidy bicid ‘ bieidy
a|bscsds| — ap|bscsds| + a bocady| — au|bycydsy
bscyds A bscydy bs cs dy

is called a determinant of order four.

is
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The same values of z and y will satisfy the equations
oz + by +ca=0,
ax + by + ¢ = 0,
@z + by + ¢ = 0,
when and only when

lar by 01|
[#7) bz Ca = 0.
Qa3 bs C3

The result of eliminating z, %, and 2 from three homo-
geneous equations

ar + b1y + R = O,
% + bay + ez = 0,
ar + bsy + ¢z = 0,

a1 b1 C1
Gz bsce
a3 bsc

This determinant is called the eliminant,

= 0.

Exercises
Evaluate:
1|2 4. 2. lab
7-3 Dq
314 61 41481
2 31 242
3-21 363
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5 6122 6. 4827
1211 3222
0121 4245
3210 5633

7. Eliminate 2 and y from the equations

4z+y+2=0,
3z+y—k=0,
22—y+3k=0.

8. Eliminate z and y from the equations
25— 2y+k=0,
z=y-1,
3z=2y+k
9. Eliminate 4, B, and C from the equations
Az+ By+C =0,
Az + By, +C =0,
Azy+ Bye+C = 0.
10. Eliminate A, B, C from the equations

(z*+y% + Az+ By + C = 0,

(@ + 1) + Az + By +C = 0,
(s +12Y) + Aza + Bys + C = 0,
(s’ +ys) + Azg + Bys + C = 0.

[Hint: The equations are homogeneous in 1, 4, B, and C.]



INTRODUCTION
4. The fundamental trigonometric functions are
v .

z
cosf=-, secl=
r

tan0=y:; (x#0), cot0=§ (y # 0).

The signs of the trigonometric functions in the four
quadrants are given in the following table.

quadrant | 1 | 2 | 3 | 4
sc?szcant Ll ol Bl
oot | |||
cotangent | T | = |+ -

Each function of — 6, 180° + 6, 360° =6 is equal
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in absolute value (but not always in sign) to the same
function of 8. -

Each function of 90° & 4, 270° + 6 is equal in ab-
solute value (but not always in sign) to the corresponding
co-function of 6.

Some important trigonometrie formulas are:

sin? 0 + cos? 8 = 1.

1 + tan®6 = sec®o.

i

sin 0
tanf = —.
cos ¢
sin (6; + 6) = sin 6, cos 8 = cos 6; sin b,.

cos (B, & 6) = cos 6; cos f; F sin 6; sin 6,.

tan 6; + tan 6,
1 = tan 6; tan 6,

tan (6 = 6y) =

sin2 8 = 2 sin 6 cos 6.

c0s28 =cos’f — sin’0 =2 cos?d —1 =1 - 2gin’a

2 tan 0
tan2 6 = :
ARE0 = tan?e
. 0 1 — cosf
—= 4
sm2
oS — = & 1+ cosf
2
tan = + 1 —cosf sin 6 1—cosé
2 1+4+cosf 14 cosé sin 8
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It is well to remember the values given in the fol-

lowing table.

»

0°| 30° | 45° | 60° 90°
sine 0| 1/2 |V2/2|V3/2 1
cosine | 1 | V3/2|V2/2| 1/2 0
tangent | 0 | 1 /\/§ 1 V'3 | no value

Exercises

. Find the sine, cosine, and tangent of 0°; 30°; 45° 60°;

90°; 120°; 135°; 150°; 180°; 210°; 225°% 240°; 270°;
300°; 315°; 330°; 360°

If tan 6 = =, and sinf is positive, find the wvalue of

4

sin—; cos—
2’ 2

.Iftanf = ~ — and sin is positive, find the value of

12

sin—3 cos —-
2’ 2

3 .
. Ifsin o = 5 and cos « is positive while cos § = —i% and

sin B is positive, find the value of tan (& + §); tan (a — B).

. 4 .
Ifsina= F and cos o s negative, find the value of sin 2 a;

(44
cos 2 a; tan 2 q; sin = ,cos2, ng



INTRODUCTION 9

6. Iftan 29 = gand 20 is in the first quadrant, find sin 26,

cos 20, sin 4, cos 6.

LI 6y = 90° = -
7. If 1 9 +02, prove tan 01 tan 02

8. Solve for tan 8, the equation
4 sin® — 5 sin 6 cos 6+ cos” 6 = 0.

[Hint: Divide by cos® 6.

b. Directed line-segments. If a point moves in a
straight line from A to B, we say it generates the seg-
ment A B, while if it moves in a straight line from B to
A we say it generates the segment BA. The numerical
measures of AB and BA are equal, but the directions
of the segments are opposite. Therefore we use signed
numbers to represent the segments. Thus, if AB=5
units, BA = — 5 units. It should be noted that in
general AB = — BA.

Often we wish merely the magnitude or length of a
directed segment AB in which case we write |AB|,
read “The absolute value of AB.” For example, if
AB= -5, then |AB|=|-5|=35 1If 4, B, C
are three points situated in any order on a straight line,
then

1 AB 4 BC = AC.

For, starting from 4 and moving to B and then to C is
evidently the same as starting at A and moving di-
rectly to C. The segment AC is called the sum of the
segments AB and BC.
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0 & = N

10.

Exercises

. If A, B, C are three points on a directed line, find the value of:

a) AB+ BC+ CA.
b) BA+ AC+ CB.

If A, B, C, D are four points on a directed line find the
value of:

. AB+ BC+CD. 3. AB—DC + BC.
. BA+CB+ DC. 5 |AB|+|BC|+]|c4l.
. AB+ BC + CA. 7. |- AB| +|BC|+|-¢D|.

. If AB=17, BD= -9, (D=1, what is the algebraic

value of AD? CB? AC?

.If AD=5, CB=-3, DC =1, what is the algebraic
value of AB? BD? CA?

If AC=1, CD= ~3, BD = — 4, what is the algebraic
value of DA? AB? BC?

6. Projection of a broken line. If the p

perpendicular from a point P to a line !

meets [ in @, the point @ is called the pro- I
jection of P on I. If P is on [, P isits Q
own projection. - Fie. 2

Suppose PyP, to be a directed segment and I any

arbitrarily chosen line. Let @, and Q, be

the projections of P, and P, respectively 1
on l. Then we define the projection of B
PyP; on 1 to be the directed segment Q,Q.

or

the signed number which represents A @ ¢

QQ:. Symbolically we write Fia. 3
@ Proj; PiPy = QiQ..
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Since @@, = — Q. it follows that
3) Proj, P,P; = — Proj, P,P:.
If there is no danger of confusion, the subseript showing
the line on which we are projecting, is usually omitted.

The following theorems concerning projection will be
found in most trigonometry texts:

Theorem 1. If P,, P,, P; are any three points in a
plane and [ is any directed line in the plane, the algebraic
sum of the projections of the segments PP, and PyPs
on [ is equal to the projection of the segment P,P; on L.

Theorem 2. If A and B are any two points on a
directed line p, and ¢ is any directed line in the same
plane with p, then we have both in magnitude and sign

4) Proj, AB = AB cos (¢gp),

where (gp) represents an angle through which ¢ may be
rotated in order to make its direction coincide Wlth the
direction of p.

Exercises

1. If segment Py P» is parallel to line I, what can you say about
the length of Proj; P1P;?

2. If segment Py P; or its prolongation is perpendicular to line’
l, what is the value of Proj, P1Py?

3. 1If PyP, =10, § = 30° and [ is di- B,
rected to the left, find Proj; P1P,. B&y 1

Fic. 4
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4. If |OP| =10, 6= 30°, find |ox|;
|ON|.

5. 1f |OP| = 20, 6= 150°, find Y

» |OM|; .
ol for P@
| §=150°
|
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THE POINT

7. Coordinates on a line. If on a directed line we
choose a point O and a unit of length, every other point

P on the line determines uniquely a .
directed segment OP, the algebraic 0 P
value of which is also determined. Fre. 7

This algebraic value is known as the coordinate of the
point P. The point O is called the origin.

It is customary to choose the positive direction on a
horizontal line to be the direction from left to right.

In establishing a system of coordinates on a line, the
positive direction, the origin O, and the unit of length
can be chosen arbitrarily, but when these have been
selected, the coordinate  of every point P on the line
is completely determined. Conversely, to every real
value of z corresponds one and only one point. The
system of coordinates is completely established by
choosing the origin for which x = 0 and the unit point
for which x = + 1.

If one is given a system of coordinates on a line with
points Py and P; on the line having coordinates z; and z;
respectively, t.e., OP; = x;, OP, = x,, then P; Py =
Xy — 7. FOI‘,P1P2=P10+0P2"—‘—0P1+0P2=
— 0t T =2~ 2

1. Locate on a horizontal line, on which the origin and the
unit point have been marked, the points whose coordinates

are the following numbers, 2, 5, — 3, — 7, 2/3, ‘/2—, V3,
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2. Each of the following pairs of numbers give the coordinates

of & pair of points on a horizontal line. Find the value of
the segment from the first point to the second and interpret
the sign.
a) 3,—4. -3 4 e) s+ 7,2+ 11
b) -3, —4 d) z,z+2. f—-170.

3. Each of the following sets of three numbers represents the

coordinates of three points 4, B, C on a line. Verify for
each set that AB+ BC = AC by finding the algebraic
values of the segments AB, BC, and AC.

0) 1,24 ¢ —1,6 -5
b) 2, 5,3 d) 12,5, - 1.

4. Given a system of coordinates on a line and points Py and

P, on the line with coordinates #; and z, respectively,
Prove that the coordinate of the mid-point of the segment
P1P2 is -% ($1+ 272).

5. Determine the coordinate of the mid-point of each of the

segments situated on a horizontal line, the coordinates
of whose end points are:

a) 2, 4. ¢) 6,-3.
b -1,7. d —=7,~4.
8. Coordinatesina plane. To Y
locate a point in a plane we make
use of two mutually perpendic- Y —— p
ular lines, OX and OY, on each }
of which a scale has been estab- 0 X
lished, such that the origin on

each scale is at the point of in-

tersection O of the two lines and Fi6. 8
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such that the positive direction on OY is obtained from
the positive direction of OX, by rotating OX through a
right angle in a counterclockwise direction. The units
of length on the two scales need not be equal but are
usually taken so.

If, now, P is any point in the plane and lines are
drawn through P parallel to 0Y and OX, these lines
will meet OX and OY in points M and N respectively.
The coordinate £ = OM of the point M in the co-
ordinate system on OX is called the x-coordinate or
abscissa of P; the coordinate y = ON = MP of the
point N in the coordinate system on OY is called the
y-coordinate or ordinate of P. The two numbers (z, y)
are called the coordinates of P referred to the axes OX
and OY. The latter are called the coordinate axes,
0X being the x-axis and OY the y-axis.

Any point P in the plane determines uniquely two
coordinates z and y. Conversely, to every pair of num-
bers,  and y, there corresponds a point P whose co-
ordinates are (z, ).

The coordinate axes OX and OY divide the plane
into four regions called quad-
rants numbered as in the
figure. These quadrants are
identical to those used in the
study of trigonometry. Points
on the axes are exceptional and 0
do not lie in any quadrant. It I v
will be noted that any point in
the first quadrant is character- Fre. 9
ized by the fact that both of its
coordinates are positive, while the coordinates of any

r

I I
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point in the third quadrant are both negative. A pointin
the second quadrant has its abscissa negative and its
ordinate positive, while a point in the fourth quadrant
has its abscissa positive and its ordinate negative.

Exercises
1. Plot the points (1, 2), (3, 5), (=2, 4), (2, = 4), (-1, - 3).
2. What is the ordinate of every point on the z-axis?
3. What is the abscissa of every point on the y-axis?
4. What are the coordinates of the origin?
5. In what quadrants are the abscissas positive? negative?
ordinates positive? negative?

6. In what quadrant is a point if its abscissa is negative and
its ordinate positive? If its abscissa is positive and its
ordinate negative?

7. Draw the quadrilateral whose vertices are (-4, — 1),
3, —-1), (3, 2), (—4, 2). Prove the quadrilateral has its
opposite sides equal.

8. The origin is the middle point of a line one of whose ex-
tremities is (3, 4). Find the eoordinates of the other ex-
tremity.

9. Find the coordinates of the point midway between the
origin and the point (6, 0).

10. The rectangle A BCD has its base AB ¥
horizontal. If the z-axis lies along

AB and the y-axisalong AD, find the p ¢
coordmatesofA B, C, DﬁAB—lO X
AD=3, 4 B

F16. 10
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13.

14,

15.
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Find the coordinates of the vertices of a square whose side
is 10 if the origin is at the center of the square and the axes
are parallel to the sides.

. The base of an equilateral triangle with side 10, coincides

with the z-axis; the center of the base is the origin. Find
the coordinates of the vertices. Two solutions.

Plot the points Py (3, 2), P2 (6, 6) and compute the dis-
tance PP,

[Hint: Draw horizontal and vertical lines through P; and
P, respectively, meeting at M. Find lengths P\M, MP,
and use the theorem of Pythagoras.]

Plot the points P; (0, 4), P; (6, 8) and compute the dis-
tance PP,

Plot the points P; (—4, 3), P, (6, — 1) and compute the
distance P 1P 9

9. Projections of a segment P,P; on the axes. Let

Py (21, y1) and P, (23, y») be any two points in the plane.

p Y

Fia. 11

Connect O to Py and P,. Then applying Theorem 1, §6,
Proj, P1Py = Proj, P,0 + Proj, OP,, = — Proj, OP; +
Proj, OP,.
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But, Pl‘sz OP, = &y, PI'sz OP, = 1.
(1) S PI'sz P1P2 =2 — 21

Likewise the projection of P.P; on any line parallel to
the z-axis and similarly directed is z, — z;.
In the same manner we can prove

(2) Proj, PiPy =y, — 1y,

and the projection of P1P; on any line parallel to the
y-axis and similarly directed is 5, ~ ¢y

Ezample. Given Py (3, 4), P,(~4, -7). TFind
PI'sz P1P2; PI'Oj,, PzPl; PI‘Ojl/ Ple; PI'ij P2P1.

Solution: Proj, P\Py= —4-3= ~1.
~ Proj, PPi=3-(-4)=71.

Proj, PiPy= -7 ~-4= —11.

Proj, P,Py =4 — (- 7) = 11.

10. The distance between two points. Given two
points Py (z1, y1) and P, (s, 3,) which determine the

Fic. 12

segment P,P;. To find the length d of this segment,
draw a line through P; parallel to the z-axis and a
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line through P parallel to the y-axis and let these lines

meet at M. ,
By the Pythagorean Theorem

@) (PiP,)* = (PiM)® + (MPy)".
But from the last article,
4) PM =2 — 2, MP; = o — Y.

In (3) PM and M P, represent merely magnitudes while
in (4) they represent magnitudes and directions. How-
ever, if we square the quantities in (4) the results are
the squares of the magnitudes and hence we are justified
in substituting these values in (3).

L PPy = (m— 1)+ (4 — )

(5) or d=V(t-n)+ -y

Ezample. - Find the distance between the points
(=2, 5) and (7, — 3).

Solution:
d=V(=2=7"+ (5+3)" = V8l + 64 = V145,

Exercises

1. Find the distance between each of the following pairs of
points: '

a) (2,4), (1,6).
b (=3,1), (4 -2).
¢) (—3,-5), (—6,2).
2. Find the distance between:
a) (a,b), (—a,—b).
b) (a+bdat+c), (a+e¢b+ec).
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. Find the length of the sides of the triangle whose vertices are

4 (5,1), B(0,10),C (7, 8). Is the triangle isosceles? right?

. Is the triangle A (—2, 1), B(2, 4), C (3, 1) equilateral?

isosceles? right?

. Show that the opposite sides of the quadrilateral (— 5, — 3),

(1, =11), (7, = 6), (1, 2) are equal and hence that the
figure is a parallelogram.

. Prove that the figure (3, 2), (0, 5), (—3,2), (0, =D isa

rhombus. Show that the diagonals are equal and hence
that the figure is a square.

. Find a point on the z-axis equidistant from (2, 4) and (6, 8).
. Find a poin® on the y-axis equidistant from (— 2, 4) and

(6, 8).

. Show that the points (5,4), (4,—3), (~2,5) are equidis- .

tant from (1, 1). What is the center and radius of the circle
on which the first three points are situated?

The segment A B is 13 units in length. The coordinates of
A are (4, —8) and the ordinate of B is—3. Find the
abscissa of B. Two solutions.

Prove that the points (6,4), (—1,2), (3,-2), (2,8) are
the vertices of a parallelogram.

12. What kind of a triangle has vertices at (6, — 2), (1, - 2),
(2,9
13. Express by an equation the fact that the square of the dis-

14,

15.

tance from the point (z, y) to the point (2, — 1) is 5.

Express by an equation the fact that the point (z, y) is
equidistant from (2, 4) and (6, 8).

Express by an equation the fact that the distance from
(&, y) to (2, 3) is twice the distance from (z, y) to (3, 4).
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16. Express by an equation the fact that the sum of the dlS-
tances from (z, y) to (— 2, 0) and (2,0) is 6.

17. Express by an equation the fact that the difference of the
distances from (z, y) to (2,0) and (— 2, 0) is 1.

11, Mid-point of segment. Let P (z, y) be the mid-
point of the segment connecting Py (2, 41) to Py (zs, 12).
Let the projections of P;, P, and P; on the z-axis be
M, M, and M,. Since the directed segment P; P equals

the directed segment PP, it v
follows that . 4 B
Proj, P,P = Proj, PP, }//:
or T—I =2 — 2. | i ?
ntsm " oM w o m X
Fie. 13

Similarly by projecting on the y-axis,
_nty
2
Therefore, the coordinates of the mid-point are

6) (ﬂ.‘.’.’;’ﬁ, R
2 2
Ezample. TFind the mid-point of the segment joining
4, — 8) to (— 3, 4).
4-3 1 -84+4 -4

Solution: rEy T Y=y = = -2
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12. The point dividing P.P, in a given ratio. If
three points P;, P, P, are collinear and P lies between P,
and Ps, it is said to divide the segment PP, internally

in the ratio %g—) » while if P lies without the segment it
2

. . PP
is said to divide the segment externally in the ratio ﬁ)—
2

Let P (z, y) be the point which divides the segment

. . o,
Py (z1, 11) to Py (25, ye) in an arbitrary ratio r—l’ 1.6.,

2
P1P ’l‘:]‘,
PP2 Te

The projections of P1P and PP, on the z-axis are in

. T
the same ratio as —-
Ty
Y
P,
. T — I _ sl P

|

A = T, !
Yo — % To B i : =
|

I

!

Solving for z, we have i

TiZy + 7oty
r= —

7+ 7y
r 7 Fre. 14
Similarly, y = Wa T
et
Hence the coordinates of the required point are
NnXs 4+ TeXy  NYs 4 Nl
(7) , :
Ih+1 41

In applying (7) it must be remembered that r, and 7,
need not be the exact lengths P,P and PP, but any
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numbers proportional to these lengths. Moreover,
is proportional to the segment nearest P; and ry to the
segment nearest Ps.

If r, = r, formulas (7) reduce to those for the mid-
point given in Art. 11.

If the point P is on the line P,P, extended, then
P divides P,P, externally, P.P and PP, have opposite

signs and the ratio ;5 is negative.
2 .

Ezample 1. Find the coordinates of the point which
divides the segment from (— 6, 3) to (3, 9) in the ratio
1:2. '

Solution: If P;is (— 6, 3), then Pyis (3,9) and n, = 1
and r, = 2,

WA +@H_=~-9_ 4

1+2
_0O+0® _15_,
1+2 " '

Ezample 2. Find the point which divides the line
from (8, 5) to (— 4, 7) externally in the ratio 3:2.
Solution: P, is (8, 5), Py is (— 4, 7). Either 7 or r

must be negative. Let r; = 3, thenn, = — 2.
Then s (3)(—4§+;—2) ®_=1-18__,

@O+ (=2 _2-10_

5.3 1 11.

y
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Exercises
. Find the coordinates of the mid-point of the segment
joining:
a) (8,4), (10,8).
b) (6,—4), (4,8).
¢ (—3,-2), 4.
d) (=2,7), (=5,0).

. Find the coordinates of the mid-points of the sides of the
triangle with vertices (2, —3), (-7,4), (3,6).

. Find the poinis of trisection of the segments in Ex. 1.

. Find the coordinates of the point which divides the line
from (8, 4) to (10, 8) internally in the ratio 3:2.

. Find the coordinates of the point which divides the seg-
ment from (— 2, 3) to (4, 7) externally in the ratio 3:7.

. Find the coordinates of the point which divides the seg-

ment from (4, 7) to (— 3, 2) externally in the ratio 4:5.

. In what ratio does the point (3, — 2) divide the segment

connecting (5, —4) to (- 1, 2)?

. The mid-point of a line is (2, 3) and one extremity is (— 4, 2).

Find the coordinates of the other extremity.

. The segment A B is produced to P so that BP = 2 AB in

length. If A is(2,4) and Bis (- 3, 2), find the coordinates
of P,

Find the point of intersection of the medians of the triangle
A@&T), BB,2), C@,5).

[ Hint: Find M the mid-point of AB. Find P which divides
CM in ratio 2:1.]
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11. Find the point of intersection of the medians of the triangle
(3,4), (6,2, (10,8).

12. Find the point of intersection of the medians of the triangle
(12; 6): (6: 8)1 (4; - 10) V

13. The segment Py (4, — 9), Py (— 4, o) is divided by P (z, 7)
so that PyP: PP, = 4:5. Find z and ys.

14, If (z— R+ (y — k)* = 100, how far is it from the point
(z, v) to the point (h, k)?

15. The segment P; (— 4, y1), Py (z,, 17) is bisected by P (1, 10).
Find z, and y;.

16. Three vertices of a parallelogram named in order are
A(—4, 2), B(—2, —4), C(6, 3). Find the fourth
vertex D. How many parallelograms are there if the

~ points are not taken in the order named?

13. Angle of inclination and slope of line joining two
points. The smallest angle through which the positive
half of the z-axis, 0X, must be turned counter-clockwise
in order to bring it parallel to the given line P,P, is called
the angle of inclination of P.P,.

X

Fic. 15

Any given line PP, will either cut the z-axis or be
parallel to it.
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If line cuts the z-axis, the angle of inclination 6, will
always be less than 180° while if P;P; is parallel to the
z-axis the angle of inclination is either 0° or 180°.

In place of the angle of inclination it is often more con-
venient to use the tangent of the angle which is called
the slope of the line and is designated by the letter m.

Thus, m = tan 6.

Now tan 6= i{j;

Yo — Y1

Ty — I

® m=2=P.
X2 — X1

Fi1e. 16

1f we had taken the segment P, P,we should have obtained

m =L hich is equal to (8), which demonstrates,
1 — o

thatm is the same no matter which way the line is directed.

The student should make clear to himself the signifi-
cance of the term “slope of a line.” It is a number
which measures the “steepness” of the line; the greater
the numerical value of the slope, the “steeper” is the
line. If the slope is a positive number, a point moves
upward as it travels from left to right on the line; if the
slope is a negative number, the point moves downward
as it travels from left to right on the line.

If the slope is zero, the line is parallel to the z-axis
and conversely.

Since tan ¢ is undefined when 6 = 90°, a line per-
pendicular to the z-axis has no slope. Care should be
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taken not to confuse the statement ‘“has no slope” with
the statement ““the slope is zero.”

If points P, and P, determine a line parallel to the
y-axis, it should be noted that z, = z; and formula (8)
has no meaning.

Ezample 1. Construct the line through the point
P (3,4) with a slope equal to 3. Y

Solution: Lay off a horizontal R1
segment PM of two units to the P4 S
right of P and from the end
point M of this segment lay off ]

a vertical segment M R upward 5 X
of one unit. The line PR isthe
required line, since tan 6 = 4. Tia 17

Example 2. Construct the ¥
line through the point P (3, 4) 2 M
whose slope is — 3. P3,4) 1

Solution: Lay off a horizontal R

segment PM of two units as
before; lay off a vertical seg-
ment MR downward, equal to
one unit. PR is the desired
line, since Fra. 18

t 9_._]M_R_ 1 &
MU PMTT® M&m
M

If the segment PM had been

laid off to the left two units

and the segment MR upward ’
one unit, the result would have ol X
been the same.
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Exercises

Find the slope of the lines joining the following pairs of
points:

1 (21 4)¢ (41 2) 2. (2! 1): (— 37 4)
3. ('— 4: 7)7 (2; 4’) 4 (— 17 4)) (6: - 2)
5. (_ 2, - 3), (4: - 3). 6. (7’ 1)7 (7! - 4)

Show that the following sets of points are collinear, 7.e., are
on g straight line.

7.(0,0), 2,3), (4 086). 8 (0,0), (1,—2), (—2,4).
9. 0,0, 21, (-4,-2).

10. (1,4), (2,3), 4 1).

11 (0,0), (-1,-2), (3,6).

2.3, 0, 3,49, 3-2. 18 &7, (=37, 7.

(
1

Determine % so that the three points in each of the following
sets shall be collinear.

14. (17 - 1): (3: 1); (h: 4) 15. (27 1)1 (4) 3)) (0: h)'
16. (07 2), (17 1)) (h7 3) 17. (11 - 1): (—' 2, 5)) (2: h)~
18. (4,6), (=3,8), ()

Construct the line through the point P with the slope m,
given,

19. P(4,3),m =7-2-. 20. P(-2,2),m=3.
21, P(—4,3),m=-% 22. P (4,2),m= —5,
23. P(4,2),m=0. . © 24 P(-23),m=-1}
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14, Slopes of parallel and Y
perpendicular lines. If two
lines are parallel their angles
of inclination are equal. Since
6, = 6,, tan 6, = tan 6, and
©) m = m,. —t ALy

Hence, if two lines are /
parallel, and have slopes, the Fre. 20
slopes are equal. Conversely,
if the slopes of two lines are equal, the lines are parallel.
If 6, = 6, = 90°'the lines are paralle]l but have no slopes.
Conversely, if two lines have no slopes they are parallel.

I2

Suppose the angles of in-
clination of 7, and [, are 6,
and 6, respectively and
lz 1 ll.

NOW 02 = 900 + 01.
- tan6, = tan (90° + ;)

= — ¢of 01

1
tan 6,

‘ 1
(10) Hence my = — —-
m

That is to say, if two lines are perpendicular and have
slopes, these slopes are negative reciprocals of each
other.

Conversely, if the slopes of two lines are nega-
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tive reciprocals of each other, the lines are perpendicu-

lar.
If a line has a slope 0, it is parallel to the z-axis. Any

line perpendicular to this line is perpendicular to the
z-axis and has no slope.

Exercises
1. Find the slopes of the sides of the triangle with vertices
(5,7, 6,2), 3,5 and prove the triangle is a right
triangle.

2. Prove that the line through (-2, —4), (3, 3) is parallel
to the line through (1, — 2), (6, 5).

3. Prove that the line joining (6, 0) to (0, 4) is parallel to the
line joining (3, 0) to (0, 2) and twice as long.

4, Prove that the opposite sides of the quadrilateral (2, 8),
6,4), (38,—2), (~1,2) are parallel.

5. Prove that the figure (3,4), (2, 1), (1, 3), (4, 2) is &
rectangle. v

6. Prove that the line joining (4, 9) to (2, 5) is parallel to the
line joining (5, 2) to (6, 4) but is perpendicular to the line
joining (6, 2) to (8, 1).

7. Prove that the figure formed by joining the mid-points of
the sides of the quadrilateral (4, 6); (10, 8), (12,—6),
(=2, —4) in order, is a parallelogram.

8. Express by an equation the fact that the slope of the line
joining (2, ¥) to (4, 7) is 3.

9, Express by an equation the fact that the slope of the line
joining (z, y) to (2, 3) is equal to the slope of the line joining
2,3)t0 4 7).
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10. Express by an equation the fact that the slope of the line
joining (z, y) to (2, 3) is equal to the slope of the line joining
(, y) to (4, 7).

11, Three vertices of a parallelogram named in order are,
A(—4,2), B(—2,—4), C(8,3). Find the fourth vertex.
[Hing: Call the fourth vertex (z, ¥). Find an equation in
z and y by placing slope of DA = slope CB; find a second
equation in = and y by placing slope of DC = slope of 4B.
Solve these equations for z and .]

12, Three vertices of a parallelogram are A (— 2, 4), B (4, 6),
C (10,—2). Find the fourth vertex. Three solutions.

15. The proof of theorems of elementary geometry
by means of analytic geometry.

Ezample 1. Prove analytically that the diagonals
of a rectangle are equal.

Solution: Suppose PiP,P;P, to be any rectangle.
In order to use the methods of analytic geometry it is
necessary to establish a coordi- Y
nate system. Any pair of perpen- i
dicular lines could be used but the  p 0,5 P, (a,b)
work is simplified greatly by a
judicious choice. We shall take
the z-axis along P, P, and the y-
axis along PP, If the sides of Fie. 22
the rectangle are o and b, the ver-
tices are P1(0, 0), P;(a, 0), P;(a,b), P4(0,d).
Then

P1P3 Va 2 P2P4 Va2+b2 P1P3 P2P4
Example 2. Prove analytically that if two medians

0[R(0,0)  P,(a,0)"
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of a triangle are equal, the
triangle is isosceles.

Solution: Let the triangle 0,20
be P;P,P;. Let the z-axis M, (s0) M, (b,¢)
pass through P, P, and the
y-axis through P; perpen- p (34,0)0 P, (25,'(?)X
dicular to P;P.. The co-
ordinates* of the vertices 6. 23

can be taken as P:(2 g, 0),

P,(25,0), P;(0,20c).
Then mid-point M; is (b, ¢) and mid-point M, is (a, c).
By hypothesis Pi\M; = P, M,.

SVOh =20+ =V(2b-a)+c

Simplifying, a* = b*ora = =+ b. But a cannot equal
b. Why? If a = —b, OP, = — 0P, or P,0 = OP,,
i.e., the altitude from P; bisects the base and hence the
triangle is isosceles.

Ezample 3. Prove analytically that the diagonals of
a parallelogram bisect each other.

Y
4

" By(b,0) Py(a+b,c)

BEOO B0 X

(@]

Fre. 24

*We have used 2a, 2, 2¢, in this case rather than a, b, ¢, 50 as to avoid frac-
tions for the coordinates of the mid-points,
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Solution: Let P,P,P;P; be any parallelogram. Let
the z-axis pass through. PP, and y-axis through P;
perpendicular to P;P,. We can take the coordinates
of P; and P; as (0, 0), and (a, 0) respectively. Call the
coordinates of Py, (b, ¢). Since PPy = P,P, = q, and
since the distance of P, from the y-axis is b, the abscissa
of Pyis a +b. But P,P;is parallel to P,P, and hence
the ordinate of P;isc. Therefore, the coordinates of Ps
are (@ + b, ¢).

The coordinates of the mid-point of both P,P; and
P,P, are

(a +b ¢
2 2
and hence the diagonals bisect each other.

Exercises

1, Prove analytically that the line joining the mid-points of
two sides of a triangle is equal to half the third side and
parallel to it.

2. Prove analytically that the line joining the mid-point of the
hypotenuse of a right triangle to the vertex of the right
angle is equal to half the hypotenuse.

3. Prove analytically that the line joining the mid-points of
the non-parallel sides of a trapezoid is equal to half the
sum of the parallel sides.

4, Prove analytically that the diagonals of a square are per-
pendicular to each other.

Prove analytically that the line joining the mid-points of
two opposite sides of a paralielogram is parallel to the
other two sides and equal to each of them.

o
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11.

12,

13.

14.

15.

16.

17,
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. Prove analytically that the lines joining the mid-points of

the sides of a square taken in order form a square.

. Prove analytically that the medians to the legs of an isos-

celes triangle are equal.

. Prove analytically that every point in the perpendicular

bisector of a line segment is equidistant from the ends of
the segment.

. Prove analytically that if the diagonals of a parallelogram

are equal, the figure is a rectangle.

Prove analytically that the lines joining the mid-points of
the opposite sides of a quadrilateral bisect each other.

Prove analytically that the lines joining in order the mid-
points of the sides of any quadrilateral form a parallelogram.

Prove analytically that in any quadrilateral the lines join-
ing the mid-points of a pair of opposite sides and the mid-
points of the diagonals bisect each other.

In the parallelogram ABCD, P and @ trisect AC. Prove
analytically that BP = DQ.

Prove analytically that if each half of the diagonals of a
parallelogram is bisected and the mid-points are connected
in order, that the figure formed is a parallelogram.

In the parallelogram ABCD, E and F bisect AD and BC
respectively.  Prove analytically that BFEA is a paral-
lelogram,

In the parallelogram P, Py P3Py, M is the mid-point of P, P,
Prove analytically that P;M and diagonal P,P, trisect
each other, '

Prove analytically that if the square of the longest side of
a triangle is equal to the sum of the squares of the other
two sides, the triangle is a right triangle.
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19.

20.
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If D is the mid-point of the side BC of triangle A BC, prove
analytically

—2 —a —2 ——2
AB + AC =2AD +2BD.
Prove analytically that in any quadrilateral the sum of the
squares of the sides is equal to the sum of the squares of

the diagonals plus four times the square of the distance
between the mid-points of the diagonals.

Prove analytically that the lines joining the vertices of a
triangle to the mid-points of the opposite sides meet in a
point and trisect each other. -

In triangle A BC, the medians A D and BE meet at O; prove

analytically that the length of the line joining the mid-
points B and 8 of A0 and BO is equal to the length of DE.
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EQUATION OF A LOCUS
LOCUS OF AN EQUATION

16. Equation of a locus. By the locus* of a point
is meant the totality of points which satisfy a given
geometric condition.

If the position of the point is determined by means
of coordinates, the geometric condition governing its
position is then expressed by an equation which is satis-
fied by the coordinates of all points on the locus and is
not satisfied by the coordinates of points not on the
locus. This equation is called the equation of the locus
of the point P.

Ezample 1. Find the equation of the locus of a point
3 units to the right of the y-axis.

Solution: The required equation is z = 3, for the
equation is satisfied by the coordinates of every point
3 units to the right of the y-axis and is not satisfied by
the coordinates of any other point.

Ezxample 2. Find the equa- e
tion of the locus of points P(z,y)
equidistant from the points ' i 36,4
whose coordinates are (2, 2) / -
and (6, 4). ie2)
Solution: Let the given 0 >X
points be A and B and let P
(z, y) be the point whose locus
we desire. The given geo- Fra. 25
metric condition is
(1) PA = PB.

* In this book the word curve means locus.
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Then
VEe-2'+@u-2"=V(E-6"+ @ -4}

P—dot+4ty—4dy+4=
?— 122436+ 4* — 8y + 16,

or —4zx+4~4y+4=-122+436— 8y 4+ 16,
 8ztdy-—44=0, |
2 224+ y—-11=0.

That is, if the coordinates of the point P satisfy (1),
they satisfy (2). Conversely, if (z, y) satisfy (2), by
retracing our steps, we see they satisfy (1).

Hence the equation of the locus of P is
2¢4+y-11=0.

Ezample3. TFind the equa- Y
tion of the locus of a point such
that the sum of its distances /1\:: (%,3)
from (3, 0) and (— 3, 0) is 10. o \‘;
Solution: Let F and F' be re- FI-3,000| ~ FGO) -
spectively the points (3, 0),
(_ 3: O); and P (x) ?/) any
point on the required locus. Fre. 26
(3) Then PF + PF’ = 10.
V-3 +y'+Vie+3)+ ¢ = 10,
or =3 +y"=10—-V(z+3)°"+ 4.
Squaring both members,
-6z +94y =
100 -20V(z+8)°+4y" +2°+62+9+ 42

X
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Collecting terms,

20V (z+3)"+ ¢y =12z + 100,
or 5V(c+3)+y =3z 25

Squaring, )

25 2% + 150 ¢ + 225 + 25 y* = 92”4 150 z + 625.
Simplifying,
“) 16 2* + 25 4* = 400.

That is, if the coordinates of a point P satisfy (3)
they satisfy (4). Conversely, if the coordinates of a
point satisfy (4), by retracing our steps, and remember-
ing that when we extract the square root that there are
two signs, we have the four equations

+VE -3 y +V(z+3)*+ 4 = 10.
These four equations can be denoted as follows:

Q) ++ b + -
9 -+ d - -

We wish to show that a) is the only one of the four
equations which is true. Equations b) and c¢) state
that the difference of the distances PF and PF’ is equal
to 10 and hence greater than FF’ which is 6. This is
absurd, for the difference of two sides of a triangle is
less than the third side. - Equation d) is false for the
left hand member is always negative and hence can
never equal the positive quantity 10. Hence, if the
coordinates of a point satisfy (4), they satisfy a) which
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is the same as (3). Therefore the equation of the locus is

00 =1 & o

16 2* + 25 y* = 400.
]7'

N

Fic. 26a.

Exercises

. What is the equation of the locus of a point which moves

4 units to the left of the y-axis?

. What is the equation of the locus of & point which moves

3 units below the z-axis?

. Find the equation of the locus of points in the first and

third quadrants, three times as far from the z-axis as from
the y-axis.

. Find the equation of the locus of points in quadrants two

and four, five times as far from the y-axis as from the z-axis.

Find the equation of the locus of a point:

. Equidistant from (4, 6) and (8, 10).
. Equidistant from (2 a, 2 b) and (4 b, 4 a).
. If its distance from (- 4, 6) is 5.

. If its distance from (a, b) is @.
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. If its distance from (4, 0) is equal to its distance from the

y-axis.

If its distance from (0, — 2) is equal to its distance from the
2-axis.

If the difference of the squares of its distances from (2, 0)
and (6, 0) is 4.

. If the sum of the squares of its distances from (2, 0) and

(6, 0) is 16.

If the ratio of its distance from (2, 3) to its distance to
(4, 6) is 2.

If the ratio of its distance from (4, 5) to its distance to
(3, 6) is 5.

If it is twice as far from (3, 0) as from (— 2, 4).
If it is three times as far from (4, 0) as from (0, 4).

If the sum of its distances from (2, 0) and (— 2, 0) is equal
to 10.

If the difference of its distances from (2, 0) and (— 2, 0) is 3.

If the sum of its distances from (3, 0) and (— 3, 0) is equal
to 10.

If the difference of its distances from (3, 0) and (— 3, 0) is
equal to 5.

17. The locus of an equation. We have seen that if
a system of coordinate axes is set up, then to every pair
of real numbers (z, ) there corresponds a point in the
plane. If x and y are variables connected by an equa-
tion, then this equation will in general be satisfied by
an infinite number of pairs of values of z and y, each
pair of values being the coordinates of a point. These
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points are not, however, scattered indiscriminately
over the plane, but usually lie on a curve whose form
will vary according to the equation under consideration.
This curve is called the locus of the given equation. An
important problem of Analytic Geometry is to deter-
mine the locus of a given equation.

18. Plotting the locus of an equation. If we assign
a series of values to one coordinate, say x, we can then
determine the corresponding value of the other coordi-
nate y. By this process we can determine the coordi-
nates of a series of points which are situated on the
required graph or eurve. If we plot a sufficient number
of these points and draw a smooth curve through them,
we have an approximation of the required curve. By
choosing a sufficiently large number of points close to
each other, this approximation will vary but slightly
from the required curve. The following examples will
illustrate the method.

Ezample 1. Plot the locusof y = z + 1.

Solution: Assigning values to z and computing the
corresponding values of y, we construet the table

z|-8|-2]-1]0|1]2]3]4

yl—-2/-1] ol 1]2|3]|4]|5

Plotting these points we see Y
they appear to lie on a straight
line, but we cannot conclude /
that this is the case. However, %

in §33 we shall prove that / 0
they are actually on a straight

line.

F1a. 27
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Ezxample 2. Plot the locus of 2* — 3* = 4.
Solution: Solving for y, we have y = +

It is evident that y is imaginary for values of  greater
than — 2 and less than 2. Making a tabular repre-

sentation we have

o|£2|+3 | +4|£5]x6

y| 0 |x£22| 35| 46 |56
Plotting these points and draw-

ing a smooth curve through them,
we see they appear to determine
a two-branched curve.

Exercises

Y

N/

Plot the loci of the following equations:

Lz=4
Ly=3

7. my = 0.

10. 2z+y=0.
12. 2z -y =5.
14. 2243y =12
16. y=—32%
18. z = ¢~

20, ¥ +9° = 4.
2. 2+ =0

24, 927 + 4% = 36.

2.z=0.
5-y=—3o
8-23"‘1/:"-0.

3.52=0.

6. y=0.

9. z+y=0.
1. 3z4+y=4
18.2z—y=0.
16. y=24%
1. y=32"—4.
19.z=3y" -4
21, 2’ +y* =25,
23. 427+ 4’ = 36.

25, 2' — 12 = 9.
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2. 2’ — 1y’ = 25. 27. o* — % = 36.
28, zy = 4. 29, zy = — 2.
30.y=-—a;2. Lary+y=4
32 zy—2z=28. 3. y=1"

19, Discussion of an equation. The process of de-
termining a locus by plotting points is a satisfactory
method in simple examples, but when the equation is
complicated, the method is usually too laborious and
tedious. It may often be shortened by considering the
following four properties of the curve:

a) Intercepts.

b) Symmetry.
¢) The range of values of the variables.

d) Asymptotes.

20. Intercepts. The z-intercepts of a curve are the
abscissas of the points where the curve meets the z-axis,
while the y-intercepts are the ordinates of the points
‘where the curve meets the y-axis. Hence to find the
intercepts of a locus whose equation is given, we proceed
as follows:

L. a-intercepts. Place y = 0 and solve the resulting
equation for .

IL. y-intercepts. Place z = 0 and solve the resulting
equation for y.
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Ezample. Find the intercepts of 4 2* + 94* = 36.
Solution: Placingy = 0, we have 4 2° = 36 orz = + 3.

", z-intercepts are =+ 3.
Placing z = 0 we have 9y° = 36 or y = =+ 2.

. y-intercepts are + 2.

Exercises
Tind the intercepts of:
L2+ =0 2./ =4z+4 .27 -y =4
4 =24"-8 bzty=12 6. y—2=0.
7. 1y = 4. 8. - =21 9.2+ =27
10, ' = 4. 2 =8y+22 12 ¢ —zy—4=0.

21, Symmetry. Two points A and A4’ are said to
be symmetric with respect to a

line I, if [ is the perpendicular IA

bisector of the segment AA’. !
A curve is symmetric with re- 0

spect to a line I, if the curve] is 4

made up of pairs of points sym- F1e. 29
metric with respect to I.

Two points 4 and A’ are said to be symmetric to a
third point O, if the point O is
the mid-point of the segment /-\/
AA’. A curve is symmetric
with respect to a given point if it \4)0\
is made up of pairs of points which 16
are symmetric with respect to the given point,

o~




L

- cally this means the sym-

- (z, — y) are on the curve.

IL

III.
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If replacing y by — y does not change the equa-
tion of a locus, the locus is symmetric with re-
spect to the x-axis.

For, if z and y are a pair of numbers satisfying
the given equation, then -

by hypothesis z and — y N
also satisfy. Geometri- \(x_y/

Ietric points (z, y) and —3 >X

Therefore, every point on 7 5™\
the curve has its symmet- '
rie point also on the curve. Frc. 31

If replacing x by — x does not change the equa-
tion of a locus, the locus is symmetric with respect
to the y-axis.

If replacing x by — x and y by -y does not
change the equation of a locus, the locus is
symmetric with respect to the origin.

The proofs of rules IT and IIT are left to the student.

(=)

Y

Y
P

() — X

) §
e X
0 ("'50, _y)

F1a. 32 F1a. 33




46

LOCUS OF AN EQUATION

Ezample. Test for symmetry the locus 4 2* — 3 = 4.
Solution:

L

IL.

III.

Replacing y by — y we have
42— (—y)'=4dordzs’ -y =4

Hence the curve is symmet-

ric with respect to the z-axis. Y

Replacing z by — 2, we have

4(—2) —y’=4
or 4z —y'=4. - 0 >X

Hence the curve is symmet-
rie with respect to the y-axis.

Replacing z by — 2z, y by
— ¥, we have Fie. 34
4(—a) = (-y)'=4
or 42" — P =4,
Hence the curve is symmetric with respect to the
origin,

Exercises

Test for symmetry the loci of the followiﬁg equations:

Lz=y. 2. ' =4z,

8.2 +4=09, 4 2+ 4y = 36,
5. 2% — 44" = 36, 6. y=2"

Ty =4 84 —2s+1=0.
9.2 +3y-2=0. 10. 2y = 5.

1L 2y = -5 12 zy+ ¢ -2l = 6.
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18, —2ay = 4. U f=d+22-1
' Te+1
15. £y = 5. 16. y 91

22, The range of values of the variable. There are
often intervals in which there is no curve. These in-
tervals can often be determined:

1) By solving the equation for y, and determining
between what values of z the values of y are
imaginary.

2) By solving for z and determining for what values
of y the values of » are imaginary.

Exzample 1. Determine if there are any excluded
regions for the curve whose equation is 4 2* — y* = 36.
Sketch the curve.

Solution: Solving for y, we have

y= %2V —-3)(x+3).

In order for y to be real, (z — 3) (x + 3) must either
be zero or positive. Therefore, there is no curve be-
tween z = 3and z = — 3.

Solving for z, we have

T = %336 + ¢~

Since 36 + 3 is positive for every

real value of 7, there are no ex-
cluded values of y. A tabular rep-
resentation is

2| £3] x4 ]i5[ +6
y| 0 |£2V7| 28] +6V3 Fie. 35
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Noting that the curve is symmetric with respect to the
z-axis, y-axis, and the origin, the graph is readily con-
structed.

Ezample 2. Determine if there are any excluded
regions for the curve whose equation is
2 2 —_
v '+ 2*—4z+3=0. Sketch the curve.

Solution: Solving for y, we have
y=x=VE-18 -2).

In order for y to be real, (x — 1) (3 — z) must either
be zero or positive. There-
fore the curve is situated
only between z = 1 and z = 3.

Solving for z, we have

r=2xVQA0-yd+y.
In order for 2 to be real,
(1 —y) (1 +y) must either be
zero or positive. Therefore
the curve is situated only be-
tween y = land y = — 1.
Making out a table of values
s [1] 15 | 2] 25 |3
y ] 0 li\/}glillim\ 0

and noting that the curve is symmetric with respect to
the z-axis the graph is readily constructed.

Exercises

Determine any excluded regions for the following loci and
sketch the curves:

1 y‘2= 41, 2. 1 =y.
3 y'=—4uz. 4. 2'= -3y
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5 2 +4* = 16. 6. 2"+ 41 = 36.
7.z2—y2=4. 8 2z~y=4

9, 2’ =4y+4, 10. 22+ +22=0.
1L = 2% 12, ' = 2%,

§<4 23. Asymptotes. If an open branch curve is thought
of as generated by a point and if when the generating
point recedes indefinitely along that branch the curve
approaches coincidence with a fixed straight line, then
the fixed line is called an asymptote of the curve.

We shall consider only asymptotes parallel to the co-
ordinate axes. The following example will illustrate
the method of determining asymptotes.

Ezxample. Sketch the locus of the equation

Solution:

1.Ifz=0,y= -2 If y=0 there is no corre-
sponding value of . Hence there is a y-intercept
of — 2 and no z-intercept.

2. If we replace z by — z the equation is left un-
changed. Hence the curve is symmetric with re-
spect to the y-axis. The curve is not symmetric
with respect to the z-axis or origin. Why?

3. Factoring the denominator, we have

8 8

Y50 -1 @-2@+2)
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There is a value of y corresponding to every value of
z, except £ = 2and x = — 2. Suppose z is a little less
than 2 and is allowed to increase and approach 2 as a
limit; y then increases negatively without limit; that is,
as a point moves indefinitely down along the curve, the
curve approaches coincidence with the line z = 2.

If z is slightly greater than 2 and is allowed to de-
crease and approach 2 as a limit, y increases positively
without limit; that is, as a point moves indefinitely far
up along the curve, the curve approaches coincidence
with the line = 2.

The line =2 is therefore an asymptote. From
symmetry we see z = — 2 is also an asymptote.

Solving the equation for z, we have

2ty Y

()
Values of y for which -2-—-;}_-1/

r= 42

is negative must be excluded.

For the fraction to be nega- ) —X
tive, the numerator and de-
nominator must have oppo-
site signs. This is true in
the interval
Fre. 37
—-2<y<0

and hence in this interval there is no curve.
Moreover, reasoning as we did for the vertical asymp-
totes, we find that the line with equation

y=0
is an asymptote.
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To find vertical asymptotes, solve the equa-

tion for y in terms of x and factor the denominator. To
every factor x — g, there corresponds a vertical asymp-
tote whose equation is x = a.

To find horizontal asymptotes, solve the equation for

x in terms of y and factor the denominator.

To every

factor y — b, there corresponds a horizontal asymptote
whose equation is y = b.

Exercises

Discuss and plot the loci of the following equations:

1
3.
5.
7.
9.
11.
13.
15,
17.
19.
21
23.
25.

Y=

y =z

B’ +y' =25

-y =4

V' =4-1z
y—-2y=4
f@—m=i
y-1)(x-2) 4
y=2 1
y'=@-1) (-2 @-3).
y—-1>=4
y—z+yz =0
y@x=2)(x-3)=z+3.

2

4,
6.
8.

.y2=:c.

zy = 4.

'+ 49" 36
yP=z-4.

i -2 =0

Loy —3y+2=0
Y @-3)+2=0.
aly-)y-2)=4
.y2=:1:3.

Lyt —ayt 0.

cy=1"=(z-3)"
P+ =1
26.

P @ -1)=1
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94, Condition that a point lie on curve. Since the
equation of a curve is an equation which connects the
coordinates (z, y) of a variable point, it follows that
a point lies on a given curve if and only if its coordinates
satisfy the equation of the curve. For example, since
z =4, y=3 satisfies 2” + y* = 25, the point (4, 3)
lies on the curve represented by the given equation,
while the point (2, 1) is not on the eurve since its co-
ordinates do not satisfy the given equation.

25. Points of intersection of two loci. If two loci,
whose equations are given, meet in a point whose co-
ordinates are (z;, ¥:) then 2, ¢, satisfies both equations.
Conversely, if two equations are satisfied by 2, ; it
follows that the point (1, y:) must lie on both loci.
Therefore, to find the points of intersection of two loci,
solve their equations simultaneously.

If the equations have no real common solution, the
curves do not intersect.

Ezample. Find the points of intersection of 2° = 4y
andy —3z+5=0.

Solution: From the second equation, y = 32 — 5.
Substituting the value of y in the first equation, we have

=432z -75),

or 2= 122420 =0. Hence (z — 10) (z — 2) = 0,
and z =10, z=2. The corresponding values of y
found from the linear equation are 25 and 1.

.+ The points of intersection are (10, 25), (2, 1).
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Exercises

1. Determine if the points (2, 1), (=1, 3), (4, 6) lie on the
curves whose equations are:

4 =0 2’4y’ =5 -y +8=0; y'=0a

Find the points of intersection of the following pairs of loci
Plot the curves and verify your solution.

2.2z—-y=1, y—-z=0,
3z+2y=5. 3r+4y-7=0.

44 =4z, 5. o’ +4° = 25,
y—z—1=0. 42°+36y" = 144.

6.y =8z, T. 2+ 4 = 25,
2e+y=8. 244y =T

8 2"~y =7, 9, 2 +4° = 25,
y—2z+5=0. 2~y =1L

10. 27+ 4% = 5, 11, 228+ 4% = 5,
Ty = 2. :c2+2y2=1.

12, z*+4 = 2% 13. 327+ 47 =9,
=2y 2 -yt =3

26. Product of two or more equations. Given two or
more equations with their second members zero. If the
product of the first members be equated to zero, the locus of
the mew equation is the combined loct of the given equations.

If all the terms of an equation are transposed to the
left-hand side, we often use a single letter to represent
the expression in ¢ and y. If the expression is repre-
sented by u, the equation is u = 0.

Suppose there are two given equations and let us repre-
sent them by w = 0 and v = 0. The new equation is
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then wv = 0. It is evident that the coordinates of
every point which causes either u or v to vanish will
satisfy the equation uv = 0. Moreover, the coordinates
of no other point can satisfy uv = 0. Therefore, the
locus of the equation uy = 0 is the loci of the two equa-
tions 4 = 0 and v = 0.

xr

Ezample 1. Sketch the locus of

\ 2
7t — yz = (. \i%\\:a . /// //C?,
Solution: /8 \/ ¥
P-yt=@ty G-y =0 |\
z—y=0 z+y=0, g A
whose graphs are given in Fig. 38. Tra. 38

Hence the required locus consists
of two lines through the origin and bisecting the angles
formed by the axes.

Ezample 2. Sketch the locus of
4oyt —4z=0. Xa=0

Solution:

2,2 4
Pty — 4y = +y1—4=0

z(@+y —4) =0 0 "X
Lz=0, 224+y4—-4=0, ’

whose graphs are given in Fig 39..
Hence the required locus con- Fie. 39
sists of the y-axis and a circle

center at O and radius of 2.
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Exercises

Determine the loci of the following equations:

1

b RSB

© 0 e oo W

2y = 0.

yz—x2= 0.

.2z432°=0.
L2y + 5y =0.
L4+t — 9z =0

327 —ay—5z=0.

o'y = oy’

L @) - 18 @ +yH) +36=0.
L@y -0 P —4a) = 0.
vzt —32+2=0.

L@ -22) (z+y—2)=0.

L (x—3y+1) (:c+‘2y)= 0.

55



CHAPTER IV
THE STRAIGHT LINE

27. The point-slope form. In the last chapter we
stated that a very important problem of analytic geom-
etry is to learn how to plot a curve when its equation is
given. A second important problem is, given a curve,
to find its equation with respect to a given set of co-
ordinate axes. We shall now consider the simplest case
of this problem, namely, where the given curve is a
straight line. ,

Let the given line pass through a fixed point Py (i, 1)
and have a given slope m. Since v
the line has a slope we know it N
is not parallel to the y-axis. Let o Play)
P (z, y) be a variable point on
the given line. Then, equating

slopes, we have / 0

Yy—h
-1

(1) Yy=h=m(x-x). Fic. 40

Pl (wl’%)
>X

=m or

This equation is satisfied by the coordinates of every
point on the line and by no other points, since the ratio
Yy—U
equal m.

Equation (1) is called the point-slope equation of a
straight line. It enables us to write the equation of the

formed for a point (z, y) not on the line, does not
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line passing through any given point and having any
given slope.

Ezample. Find the equation of the straight line
passing through (1, — 2) and having a slope of — 3.
Solution: = =1, y1=—2, m= - 3.
Substituting in y — 41 = m (¢ — 21), we have
Y + 2 -3 (15 - 1):

or 3z+y—-1=0.

28. Slope-intercept form. As a special case of the
last article, suppose the given y
point is on the y-axis and has the r
coordinates (0, b). The equa-
tion of the line is then 4
y—b=m(x—-0) or

(2) y=mx+b.

(0,8)

\ W
'OQ
. ¥
b

The equation of every straight
line, except those parallel to the
y-axis, can be written in this form. Fic. 41
From this form we note that if
the equation of a line is solved for y, the coefficient
of x is the slope. :

Ezample 1. Find the slope of the line whose equation
is 3z 4+2y~-7=0.

z+

Solution: Solving for y we havey = —

ARV
b | ~X

» The slope is —.g-
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Ezample 2. Find the equation of the straight line
through (2, 3) and perpendicular to 2z — 3y + 6 = 0.
Solution: The slope of the given line is %.

. By § 14 the slope of the required line is — $.

Since the line passes through (2, 3) its equation is
y—8=—3@—-2ord3zrx+2y—-12=0.

Exercises
Find the equations of the following straight lines:
. Through (1, 4) with slope 2.
. Through (-1, — 3) with slope — 2.
. Through (0, — 4) with slope 4.
. Through (1, 5) and making an angle of 45° with the z-axis.
. Through the origin and with an inclination of 60°.
. With y-intercept 4 and slope — 1.

o B T B NG R T S

. ‘With y-intereept — 1 and slope £.
8. With y-intercept b and slope %

9. Through (2, — 3) and having an angle of inclination of 135°,

10. Through points (3, 4), (=2, 5). [Hint: First find the slope
and then apply formula 1.]

11. Through points (2, — 4), (6, 7).
12. Through points (— 2, — 3), (—4, —5).

Find the slopes of the following lines:
B.4z+y=1. 14 -3z+2y=1.



15.
17,

18.

19,
20

-

21,

22.

24,

25.

26.

27,
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2z—-3y=28. 16. az+ by = c.
2pz—-3qy—r=0.

Ty¥_
Sti=1

zeosat+ysina=p.

Prove that the equation of a line passing through the origin
with slope m is y = maz.
Which of the following straight lines are parallel and which
are perpendicular?

a) 2z—y+3=0. b) 2z+y+4=0.

0 z+2y—7=0. d)z—2y+8=0.

e) 4z—2y+5=0. ) z—2y+4=0.

g 2z+4y—-9=0. B 2z-y+8=0.
Find the equation of the straight line through 6, - 2)

a) parallel to4dz—3y="T.
b) perpendicularto4z—3y="T.

. Find the equation of the straight line through (3, 6)

a) parallel to 22+ 5y = 3.
b) perpendicularto —2z+5y =T.
Find the equation of the straight line through (a, b):
a) parallel to Az+ By+C = 0.
b) perpendicular to Az + By + C = 0.

Find the equation of the straight line through (6, 5):

a) parallel to the z-axis.

b) perpendicular to the line through (3,4), (— 4,5).
Prove that the points (1, 2), (3,8), (—1,—4)are collinear.

Prove that the points (1, —3), (2, —1), (=2, —9) are
collinear.
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28. Find the fourth vertex of & parallelogram three of whose
vertices are (2, 1), (4,3), (3,7). (Three solutions)

29. Three vertices of a parallelogram are (-3, 1), (6, —3),
(2, 3). Find the fourth vertex if it lies in the second

quadrant.

30. The vertices of a triangle are (6, 2), (8, —3), (-3, 5).
Find the equations of the lines through the vertices parallel
to the opposite sides.

31. The vertices of a triangle are (6,2), (—4,3), (2,4). Find
the equations of the lines through the vertices perpendicular
to the opposite sides. Prove these lines are concurrent,

29. Two-point form. If two points P; (21, 41) and
Py (23, y) are given on a line not parallel to the y-axis,

the slope of the line is m = Zg — zl. Therefore, the
2 T A
equation of the line from (1) is
Y-
3) y-p= _ (-n)

If (3) is cleared of fractions we obtain zy, — zy, — yz,
+ yxy 4+ Typ — zy; which may be written in the
determinant form

‘xy1
Xyl =0
XYl

Ezample. Find the equation of the line through

(1: - 2): ('— 2: 3)°
342
-2-1

S
3

Solution: The slope m =
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The equation is y+2=— -; (x —1),

or Sz+4+3y+1=0.

(If we had written the equation of the line through
(— 2, 3) with slope — %, the same equation would have
been obtained. Let the student verify this statement.)

Exercises

Write the equations of the lines through the following pairs of
points:

1. (7,2) and (3, — 4). 2. (1,3) and (2, 4).

3. (~2,3) and (4, — 1). 4 (-1,—1) and (2, 6).
5. The origin and (4, 5). 6. The origin and (— 1, 4).
7. The origin and (—2, —1). 8. (g, b) and (b, a).

9. (g, 0) and (0, b). 10. (p, ¢) and (m, ).

30. Intercept form. Suppose a line cuts the axes in
the points 4 (g, 0), and B (0, b), where neither o nor b
is zero, then 04 = q is the z-intercept and OB = b is

the y-intercept. The slope of this . Y
lineism = — %and its equation is B(0,b)
A0
— s — a,
y— b= z Ol X

If we divide both members of
this equation by b, the equation
can be written in the form T, 42
Xy

4) E+b= 1, (ab#0)
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which is called the intercept form of the equation of a
straight line.

Ezample 1. Find the equation of the straight line
whose z-intercept is 4 and whose y-intercept is — 2.
Solution: ¢ =4, b= — 2. .. Therequired equationis

., Y _
4+_2 1.

Ezample 2. Write in intercept form the equation
20 -3y—-5=0.

Solution: Transposing the constant term, we have
2z —3y=>5. Dividing by 5

20 3y_,
5 5 ’
z Y
or -+ <=1
This equation is in form (4) anda =3, b= — 3.
Exercises

Write the equation of each of the lines whose intercepts are
given below. The z-intercept in each case is given first.

123 2 -1,-2 3.1 4%
4 34,20, 5.2a+0,b-2aq.
Write in intercept form the following equations:
6.2z ~-3y=16. CT.33+2y=12
8. 428y =25 9. -3z+2y=1T.
10. Ifa 11119 bas intercepts a and b, and the perpendicular from
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the origin to the line is of length p, and the angle of inclina~
tion of p is @, prove that the equation of the line is

zcos o+ ysina=7p.

31. Lines parallel to the axes. Since a line parallel
to the y-axis does not have a slope, the point-slope form
and slope-intercept form do not apply. Moreover, since
the line has no y-intercept, the intercept form does not
apply. However, the equation of any line parallel to
the y-axis is of the form

(5) ‘ x=a

where ¢ is a constant and equal to the abscissa of any

point of the line. Thus the equation of the line through

the point (— 2, 7) and parallel to the y-axisis z = — 2.
Similarly, the equation of any line parallel to the

z-axis is of the form

(6) y= b:

where b is a constant and equal to the ordinate of any

point on the line. In this case the slope is zero so that

the point-slope and slope-intercept form can be used.

Since the line has no z-intercept, the intercept form
cannot be used.

Exercises
1. Find the equation of the y-axis.

2. Find the equation of the z-axis.

3. Find the equation of the line through (2, — 1) parallel to
the y-axis.

4. Find the equation of the line through (2, — 1) parallel to
the z-axis.
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5. Find the equations of the two lines passing through (a, a)
forming with the coordinate axes a square.

6. Find the equation of the line through (6, 7) perpendicular
to the z-axis; y-axis.

32. Normal form. Let AB be any straight line with
0Q the perpendicular from
the origin upon it. The di-
rection 0Q will be taken as
the positive direction of the
perpendicular. If the length
of 0Q is p, and its angle of in-
clination is &, the equation of
AB in terms of p and « is
called the normal form of the
straight line. Let P (z,y) be
any point on AB. From Theorem 1, § 6, the projection
of the broken line OM P on 0Q is equal to the projection
of OP on 0Q, that is

ProjogOM 4 Projog M P = Projy,0P.
From Theorem 2, § 6, the projection of OM on 04, i.e.,
ProjogOM = OM cos a = z cos a.
The projection of MP on 0Q, i.e., ProjoMP =

Fra. 43

MP cos\g—oz) = MPsina = ysin a.
The projection of OP on 09, 7.e., ProjsqOP = p.
) Soxcosatysinag=p

is the desired equation,
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Hence the coordinates of any point P on the line AB
must satisfy equation (7). It is left as an exercise for
the student to prove conversely,
that if the coordinates of a point
satisfy equation (7), the point is on

the line AB. o
As previously stated we shall as- X oy

sume the positive direction of p to 0
be from the origin towards the

line. If the line passes -through

the origin, p = 0 and « is taken Fre. 44
to be less than 180°.

Y

Exercises
1. The perpendicular from the origin to a Jine is 4 and the

perpendicular makes an angle of i—r with the z-axis; find
the equation of the line.

2. A line is 10 units from the origin and makes an angle of
120° with the z-axis; find its equation.

8. If @ = 45°, find p in order for the linez cos ¢ + ysin e = p
to pass through the point (3, 4).

4. A line passes through (—8, —6) and the perpendicular
from the origin to the line makes an angle of 225° with the
z-axis; find the equation of the line.

5. Two parallel lines are on the same side of the origin. Do
they have the same angle o?

6. Two parallel lines are on opposite sides of the origin. Do
they have the same angle a:?

7. A line of slope 1 passes through the origin. Find « and p.
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8. In the equation z cos o + y sin @ = p, p increases while a
remains constant. What is the effect upon the line? If
« varies while p remains constant, what is the effect?

33. The general equation of the first degree. Any
line drawn in the plane will either cut the y-axis or be
parallel to it. If it cuts the y-axis its equation is of
the form y = mx + b, where m is its slope and b its
y-intercept. If the line is parallel to the y-axis its equa-
tion is of the form z = a, where g is its z-intercept,
Hence we have the

Theorem: The equation of every straight line is an equa~
tion of the first degree in x and y.

The most general equation of the first degree in z and
y is of the form

®) Az + By +C =0,

where A, B, and C are constants. ,

The question now arises, is this always the equation
of a straight line, no matter what the numbers 4, B, or
C may be?

We can assume that A and B are not both zero; for
if they were, the equation would no longer contain either
z or y and so would not be of the first degree. We shall
consider the two cases: @) B 0; b) B = (.

a) If B # 0, we can solve the equation for y:
A C

y: -—-—Ex—_B..

Comparison with (2) shows that this is the equation of
& line whose slope is — % and whose y-intercept is — %

Such g line exists.
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b) If B = 0, the equation is of the form 4z + C = 0.
Since we know that in this case A # 0, we can write
this equation in the form

¢

——

A

This is the equation of a straight line parallel to the
Y-axis.

Theorem: Every equation of thé form Az + By +
C = 0 (in which A and B are not both zero) is the equation

: 4
of a straight line. If B 5 0, 1ts slopeis — 3 and its y-inter-

ceptis — %; if B = 0, 1t is parallel to the y-axis; if A = 0,

it 1s parallel to the z-axis; if C =0, it passes through the
origin.

The student should prove the last two statements of
the theorem.

34, Reduction of Ax + By + C = 0 to special forms.
1. Slope-intercept form.
Suppose B # 0. Then, solving for y, we have

A -C
i
This is in the form y = mx 4+ b, where
__A G
m="F "T7B

If B = 0, the equation cannot be reduced to the
slope-intercept form. Why? The line in this
case is parallel to the y-axis.
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2. Intercept form.
Suppose 4, B, and C are not 0. It is left as an
exercise to show the equation can be written

z y
— 4 ——==1.
—C'+—-O
A B
. L. r Y
This equation is in the form ¢;+ by = 1 where
C C
TTw T3

If either 4, B, or Cis 0, the equation cannot be
written in intercept form. Why? The line in
this case is either parallel to an axis or passes
through the origin.

3. Normal form.
Since sin’ @ + cos’ a = 1, it is evident that we
must multiply all the coefficients of

Azr+By+C=0

by a number &, so chosen that (kA4)? + (kB)* = 1.
This condition will be satisfied if

1
k= .
+ A /AZ + BZ'
Hence to reduce Az + By + C' = 0 to the nor-
mal form, divide every term by
+ VA* 4+ B’ giving
A B
==t - y+ ¢ === 0.
+VA*+ B +VA'+ B +VA*+ B
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The sign of the radical is chosen as follows:

L. If C #0, then since p >0, the sign of the
radieal must be chosen opposite to that of C.

2. If C =0, then since a < 180° sin a > 0, the

sign of the radical must be chosen the same as B.
Since 4 and B cannot both be zero, A? 4+ B?
cannot be zero and hence every equation of a line
can be reduced to the normal form.

Ezample. Reduce the equation 5 z — 12 y+39=0,
a) to slope form, b) intercept form, ¢) normal form.

Solution: @) Solving for y, we have

| y=+Lyz+ {5

b) The intercepts are a = — 32 b = 29,
- The desired equation is

z Y
~—-——§5&+ﬁ=l.

[See Ex. 2, § 30.]
¢) Dividing each term by —V5’ + 12? = — 13
gives -—Hr+Ey-3=0

Exercises

Reduce the following equations to a) the intercept form,
b) the slope-intercept form, ¢) the normal form.

1L 4x-3y+7=0. 2 3z+4y—~-5=0.
35x—4y+1=0. 4 z=3y-5.
b.2z—y=0. 6. pr+qy=0 p>0, ¢<0.
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7. Find the equations of the lines through (8, 2) and at a dis-
tance of /34 units from the origin.

8. Find the equations of the lines parallel to 4z -3y =17
and at a distance of 2 units from it.

9. Find the equations of the lines parallelto5 2+ 12y -7 =0
and at a distance of 4 units from it.

10. Find in normal form the equation of the line passing through
(3, 4) and perpendicular to the line connecting the point
to the origin.

35. General theory of parallels and perpendiculars.

Theorem 1. Two lines are parallel if their equations
differ or may be made to differ only in their constant terms.
Consider the two lines whose equations are

) Az+ By+C =0,
(100  kAz+kBy+C' =0. (k=0)

~ Since % # 0, the last equation can be written in the
form

7

(1) Az+By+ K=, WhereK=%-
If B s (, the slope of each of the lines (9) and (11)

.4 . . |
s =2 that is to say, the lines are parallel.

If B = 0, then 4 cannot be zero (Why?) and the lines
are parallel to the y-axis and hence parallel to each
other.
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Theorem 2. Two lines are perpendicular if the co-
efficients of © and y in the equation of the first line are
equal to or can be made equal fo the coefficients of — ¥
and x, respectively, in the equation of the second line.

Consider the two lines whose equations are

(12) Az 4+ By+C =0,
(13) kBr —kAy +C'=0, Ek#=0.

Since & # 0, the last equation can be written in the
form

’

(4 Br—Ay+K=0 where K = %

If B # 0 and A 5 0, the slopes of lines (12) and (14)
A B . .

are — 5 and 7 respectively. Hence the lines are per-
pendicular. If B =0, A cannot be zero. Why?
The equation of the first line is Az + C = 0, which is
the equation of a line perpendicular to the z-axis. The
equation of the second line is — Ay + K = 0, which is
the equation of a line perpendicular to the y-axis.
Hence the two lines are perpendicular to each other.
The case A = 0, B # 0 is left as an exercise.

Ezample 1. Find the equation of the straight line
through (3, 1) parallelto 2z — 3y = T.

Solution: Any line parallel to the given line is of the
form

2z -3y = k.
We wish the line that passes through (3, 1). There-
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fore the coordinates of the point must satisfy the equa-~
tion. Hence

6 ~3=Fkork=3.
Therefore the required equationis 2z — 3y = 3.

Ezample 2. Find the equation of the straight line
through (3, 1) perpendicular to 5z — 2y = 7.

Solution: Any line perpendicular to the given line is
of the form

2¢+5y =k

We wish the line that passes through (3, 1). There-
fore the coordinates of the point must satisfy the equa-
tion. Hence

6+5=Fkork=11
Hence the required equation is
2z 4+ 5y =11

Exercises
Using the method of § 35 find the equation of the line through:

1. (1, 4) parallel to 22+ 3y = 7.

2, (2,7) parallel to3z— 5y = 6.

3. (—2,8 parallel to 6z — 2y = 1.

4. (4, 7) perpendicular to 2z +3y = 7.

5. (6, 4) perpendicular to 8z — 9y = 4.

6. (— 2, — 3) perpendicular to 2y — 3z = 6.

7. Find the equation of the line parallel to 3 z+ 4 y = 7 with
z-intercept 7.
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8. Find the equation of the line perpendlcular todz+4y="7
with y-intercept 8.

9. Find the equation of the line perpendicularto5z— 6y = 3
with z-intercept 3.

10. Find the equation of the line perpendicularto5z— 6y = 3
with y-intercept 5/2.

11, Find the equation of the line perpendicularto 2z —3 y = 12
and passing through the point midway between the two
points in which the given line meets the coordinate axes.

36. Concurrent lines. If two or more lines meet in
a point they are said to be concurrent. Hence, the co-
ordinates of the point of intersection of any two of the
lines must satisfy the equations of the other lines.

Let the equations of three concurrent lines be

Alx + Bﬂj + Cl = 0,
(15) .Agx + Bzy + Cz = 0,
Asz + Bsy + Cs = 0.

Since the lines are concurrent, the three equations have
a single solution. Hence, from § 3

4, B,C
(16) A, B, Cy| = 0.
A3 By Cy
One should note that, conversely, if the determi-

nant (16) is zero, the three lines (15) are not necessa-
rily concurrent. For, if the determinant is zero and

Ay = Kidy = KzAa, B, = K\B, = KzBs,
the lines are parallel.
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Ezample. Determine % so that z+2y — 8 = 0,
42—y ~3=0, kx +y + 7= 0 are concurrent.

Solution:

Method I. Solvingz +2y —3=0, 42—y -3 =0
simultaneously, we find 2 =1, y = 1. Substituting
these valuesinkz +y + 7= O, wehave k + 1 + 7 = ¢
ork= —8.

Method II. By determinants, we have

1 2-3
4-1-3/=0,
E 1 7

which expanded gives & = — 8.

Exercises

1. Are the following lines concurrent, 2z +y—7 =,
3s+4y+6=0, 25—y~7=0?

2. Find % so that 3z—y—2=), 2z+y+1=0,
kz+y + 3 = 0 are concurrent.

3. Do the following lines form a triangle, 3244y = -2,
T+3y—2=0, 2z4+5y—11=(?

4. Find % so that the following lines are concurrent
hx—y=-4 2:+3y= -k 2+2y=-3.

5. Prove that the following lines are concurrent -
z— y—2=0,
3z+ y—2=0,
4z+7y+3=0,
6r—2y~-8=0,.
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37. The angle between two lines. Let [ and I, be
two lines intersecting at P with slopes m; = tan «,
me = tan B respectively. The smallest positive angle 6
through which ; must be revolved about P so as to co-
incide with I, is called the angle from I; to & There
are two cases which must be

considered, namely « < 8 and Y 4
a>p. 1 g
P
Casel. a<f

6=8—a A
s tan 6 = tan (8 — a), 70 \

tan 8 — tan «

1+ tan § tan « Fie. 45
Case 2. a>
v L
180° —6=a—B. 4 l
2
- tan (180° — 6) = tan (a — B). o
tan « — tan 8 5 Me
— = ) —X
tan 0 1 4 tan a tan B /O/ /
tan 0 = tan § — tan «
or anv= 1+ tan ctan B Tic. 45 a

Hence in either case

my—-m )

aw B 0=,

As special cases of this formula we obtain fohe familiar
conditions for parallelism and perpendicularity. If the
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lines are parallel, § = 0° or 180°; since tan 6 is zero in
either case, my — m; = 0 or my = my. If the lines are
perpendicular, § = 90° or 270°. But in either case cot 6

. 1
is zero; therefore 1 4+ mymy = 0 or my = — —-
m2

In deriving formula (17) we assumed each line had a
slope, that is to say, neither line is perpendicular to the
z-axis. If such is not the case, the angle can be readily
found without the use of a formula.

Ezample 1. Find the tangent of the angle measured
from 22 +3y~6=0t3zr—-4y+12=0.

Solution: m=—32 m=4%
~ (2
Lotanf= S o 1L
v ® @

If we wish to find the angle 6, we can obtain it from a
table of Trigonometric Functions.

Ezample2. Find the angle Y

fromz=3toz+y=>5. \
Solution: & = 90° 4 4. g
o tan a = tan (90 + 6y \<

= — cot 6.
tan a is the slope of \ .
T+y=0>51e,tana= —1. - . \90 \-}
. —1= —cotd,

orcot 8 = 1, and 6 = 45°,

Fic. 46

Ezample 3. Find the equation of the line through
(2, 3) and making an angle of 60° measured from the
line whose equationis z — 2y = 4,



THE STRAIGHT LINE 77

Solution: We have tan § = tan 60° = V'3 and m; = %
The slope m, of the desired line
is obtained from the relation,

v

j
_1 2.3)
tan § = V3 = S [

1 + ’é‘mg {f 60° /
->X
9 m, 0 /
2+ m ///f
. I
This gives Fro 47
2\/§+m2\/—=2m2—1,
and '
Vi }
m=2V§+1—2 3+12+v§=5v§+&

2-v3  2-v3 2+3
Hence the desired equation is

y—3=(5V3+8)(z-2.

Exercises
Find the tangent of the angle from the first line to the second.

.3zx+4y=6, 6z~Ty=1.

z+y=1, z+2y=1

z—y=1 2z-3y=>5.

a—by=c¢ 2a-by=d.

2z-3y=0, z=4 6.3z+y="7 z2=—2
t=3, 2c—-y=4 8.y=4, r+y=_8.
y=15 2z—~y=4 10, z2=17, y=5

- B L R A
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Find the equation of the line through P, making an angle 4
measured from line /, when:

1L P=(6,-5), 0=45° l=2z+y=1
12. P=(-3,2), §=135°% 1=8z—-2y=4
13.P=(6,2), 0=60° [=2z—-y="1.

a b a1l %Y
14.P=(—2-7 —-2—), 6 = tan a: l= =1,

15. Find the equations of the lines through (2, 3) forming with
2z —y = 4 an isosceles triangle each of whose base angles
contains 45°,

16. Find the equations of the lines through (8, — 5) forming
with 22 — y = 4 an equilateral triangle.

Find the slopes of the lines bisecting the angles formed by the
following pairs of lines:

17.32-4y=4, 42+3y—-1=0.
18.32+2y~6=0, 32—2y+5=0.
19.42~y+1=0, z4+4y-3 =0,

20. Find the tangents of the exterior angles of the triangle
formed by the lines whose equations are 24—y — 1 = 0,
3z+y+10=0, y=2,

MISCELLANEOUS EXERCISES
1. Find the intercepts which the line through (2, —4) and
(3, 2) makes on the axes.

2. What relation exists, if any, between the following pairs of
lines?
a) 3z—y =4, 6z—2y=5;
b) 2z+3y=~7, -3z+2y 11
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) y=4z+8, y=-4zx+8;
dy=32-2 y=-3z-2.

Show that the three points (0,7), (2,~1), and (3,~5)
are collinear, .., lie on the same line.

Show that the three points (3 a,0), (0,35), and (a,2b)
are collinear,

. What must be the value of a in order that x — 2y + 1 = 0,

32+2y—5=0,and az —4y+7 = 0 be concurrent?

. In what ratio does the line joining the points (2, 3) and

(5, 4) divide the segment from (3, 4) to (5, 2)?

. Prove that the three points (m, n), (n,m), (—m,2m+ n)

are collinear.

. Find the condition that (¢, d), (d, ¢), and (2¢, = d) be

collinear, provided ¢ d.

. Find by two methods the equation of the line through (3, 1)

parallel to the line whose equationis 3z~ 2y —5 = 0.

Find by two methods the equation of the line through
(1, — 3) parallel to the line joining (— 2, 3) and (3, 4).

Find by two methods the equation of the line through
(-2, 3) perpendicular to 4z — 3y = 7.

Find by two methods the equation of the line through (2, 0)
perpendicular to 3z + 2y = 5. :

. The intercepts of a straight line through (4 1, 4) are equal.

Find its equation. [Hint: In the intercept form let b = a
and then determine o so that the line passes through the
given point.] '

Find the equation of the line through (6, — 5) whose -
intercept is twice the y-intercept.
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15.

18.

17

18.

19.

20,

21

THE STRAIGHT LINE

One side of an isosceles right triangle lies along the z-axis
and the vertex of the right angle is at (~ 2, 4). Find the
equations of the other two sides and the coordinates of the
other two vertices.

Find the equations of the medians of the triangle whose
vertices are (6, 8), (4,10), (—2,6) and show that they

gre coneurrent.

Find the equations of the medians of the triangle whose
vertices are (6, 8), (2, 8), (4,—4) and show that they
are concurrent.

Find the equations of the altitudes of the triangle in Ex. 16
and show that they are concurrent.

Find the equations of the altitudes of the triangle in Ex. 17
and show that they are concurrent. '

Find the equations of the perpendicular bisectors of the
sides of the triangle in Ex. 16 and show that they are
coneurrent.

Find the equations of the perpendicular bisectors of the
sides of the triangle in Ex. 17 and show that they are
concurrent,

. One side of an equilateral triangle is along the z-axis and

the opposite vertex is at (3, 6). Find the equations of the
other two sides and the coordinates of the other two vertices.
[Hint: The inclinations of the other two sides can be
chosen 60° and 120°, respectively.]

In each of the following cases find the tangent of the angle
from the first line to the second:

23.
24.

2z—y—6=0, 22+3y—-12=0.
4g-5y+10=0, 4+y—-4=0.
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25.3z—-2y+8=0, 2z+3y—-9=0.
2. 2z+y+2=0, 3z—-2y—-7=0,

27. Find the equation of the line through the point (2, — 1) and
making an angle of 45° with the line y = 2 2.

38. Distance from a line to a point. Let the given
line AB have the equation z cos & + ¥ sin & = p and
the given point P, the coordinates (1, 4:1). We wish to

é\ Y
\ A
A NP,
! G
NF \(\;'\
N
G \\ \\R E

o
R
//
//
/r
M

B D
Fia. 48 Fia. 49

find the distance GP;, measured from 4 B to P;. Through
P, draw a line CD parallel to AB. Its equation is

zcosf +ysinf = py,

where § = « or 180° + a. Hence, the equation of CD
iszecosa+ysina= & p. If CD ison the same side
of the origin as AB, p; is positive, while if it is on the
opposite side of the origin from A B, p is negative.

In all cases

GP,= EF = OF — 0E = p, — p.
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Sinee P; (zy, 1) is on CD, its coordinates must satisfy
the equation of CD, 1.e.,

zeose+ysine=p

GPi=p—p=mcosatyisina p.

Hence to find the distance from a line to a point reduce
the equation of the line to the normal form with all terms
transposed to the left-hand member; substitule the coordi-
nates of the given point in the left member. The result is the
required distance.

Thus, if the given equation is Az + By + C = 0 and
the given point is (z1, 41),

Az By1

- +
d i\/A2+B2+:E"/A2+B2 i"/A2+Bz
or .
(18) d_AX1+By1+C.

e

The sign of the radical is chosen opposite to the sign
of C if C 5 0 and the same as the sign of B if C = 0.

39. Sides of a line. In deriving formula (18) the
distance was measured from the line to the point. Hence
if two points P, and P; are on the same side of a line,
the distances dy and d, have the same sign, while if they
are on opposite sides of the line, the distances d; and d,
have opposite signs.

The direction 0@ was chosen as positive (§32) and
henceif € 5 0, formula (18) will be positive if P; and the
origin are on opposite sides of the line and negative if P,
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and the origin are on the same side of the line. Therefore,
the side of the line on which the origin lies is called the
negative side and the other side, the positive side.

Y Y
\ p R \ Q
t/ (B
AN +

B ¥ Z

o/ ‘\7 0 \
p:/
F1a. 50 F1g. 51

If the line passes through the origin, .., C = 0,
formula (18) will give a positive value for d if P; is
above the line and a negative value if P; is below the line.

Ezample 1. Find the distance from the line
22 — 3y = 5 to the point (— 2, 1).
Solution: Aﬁplying formula (18) we have

j=2E=9-3m -5 12
Vit V13

Since d is negative the given point and the origin are
on the same side of the line.

Ezample 2. Find the length of the altitude drawn
from the vertex A in the triangle whose vertices are
A (3) 4): B (— 2, 5): C (_ 4, - 4)

Solution: In order to find the distance from the line BC
to the point A, we must know the equation of BC. The
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slope of BC is ¥ and its equation is y + 4 = § (z + 4)
or9z ~2y+28=0. Hence

_9@) -2+ 47

T VB4 Vs

An altitude of a triangle is an unsigned number,

d

-, altitude = ;—;-\/gg

Ezample 3. Find the equations of the bisectors of
the angles between the lines 3z —4y + 12 =0 and
51412y ~ 60 = 0.

Solution: First draw the lines. From plane geometry
we know that the bisector of an angle-is the locus of
points equidistant from the sides of the angle. Let
P (z, y) be any point on bisector (1). From inspec-
tion we see P is either on the positive side or negative
side of both lines. Therefore we have d; = dy, or

3z —4y+12 b5r412y —60
-5 13
or 8z +y—18=0.



THE STRAIGHT LINE 85

If P is on bisector (2) it is on the positive side of one
line and on the negative side of the other. Therefore

3x—-4y+12__5x+12y—60

h= =y or 13
or To~ 56y + 228 = 0.
Exercises

In each of the following examples find the distance of the
given point from the given line:

1L (2,4, 3z-4y+12=0.
2 (-1,—-2), 4z2+3y—-8=0.
3.(-3,4),-2z+y—8=0.

In each of the following examples find the lengths of the
altitudes of the triangle whose vertices are the given points:

420, (-1,3), (-2,—-4).
5 (0,4), (4,-1), (1,-3).

6. (—1,-2), (-3,1), @ -3).
7. 0,3), (5,0), (3,6).

In each of the following cases find the distance between the
two given parallel lines:

8 3zx+4y—-12=0, 6z+8y—48=0.
9.52—-12y+13=0, 52—-12y+26 = 0.

10 2z2—-y+4=0, 42—-2y+5=0. s
L z24+y-3=0, z2+y+7=0.
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13,

14,

15.

16.

17,

18.

19,

20.
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. Prove that the distance between any two parallel lines

whose equations are az +by +¢=0and ax+ by + ¢’ = 0

(c=¢)
is in absolute value equal to-

Find the coordinates of the two points on the z-axis
which are a distance 4 from the line whose equation is
2z+3y—4=0

Find the coordinates of the two points on the y-axis

which are a distance 2 from the line whose equation is
3z+4y—12=0.

Find the coordinate of the point on the z-axis which is
equidistant from the points (2, 6) and (— 3, 4).

Find the equation of a line parallel to the line whose equa~
tion is 3z+4y—10= 0 and at a distance 2 from it.
(Two solutions.)

Find the equation of a line parallel to the line whose equa-
tion is £+ y — 1= 0 and at a distance 3 from it. (Two
solutions.)

Derive the formula for the distance of a point (21, y1) from
the line Az + By + C = 0 by finding the intersection of the
perpendicular through the given point and the given line, and
then using the formula for the distance between two points.

A straight line moves so that the sum of the reciprocals of
its intercepts on the axes is constant. Prove that the line
passes through a fixed point. :

Find the equations of the bisectors of the acute angles
formed by the following lines:

o) 3z+4y—-T7=0, 424+3y—-12=0.
b) 52+12y-T7=0, 1224+5y+20=0.
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21. Find the equations of the bisectors of the obtuse angles
formed by the following lines:

a) 22+3y~-7=0, 3z4+2y+10=0.
b) 3z —4y-8=0, 52+ 12y-20=0.

22. Find the equations of the bisectors of the angles of the fol-
lowing triangles and prove that they are concurrent:
a)3z+y—-2=0, 2-3y—6=0, z+3y+12=0.
b) 2+4=0, y—-6=0, y+z=0.

23. The equations of the sides of a triangle are 52+ 12y —
12=0, 52—12y=0 and 1224+5y+30=0. Show
that the bisector of the interior angle at the vertex formed
by the first two lines and the bisectors of the exterior angles
at the other vertices are concurrent.

24. Find the locus of a point the ratio of whose distances from
the lines 32—4y—12=0 and 52+ 12y—24=0
is 12:7.

. Y
40. Area of a triangle. Let a P,

triangle be determined by the '

points Py (21, 1), Pa(zs, %), B

P; (x5, 95). Draw the perpendic- P

ular P8 to the side P;P,. Then -

Area of A = § PPy X PsS. 0
From § 10 it follows that
PiPy=V (2~ o)+ (1 — 0" Fre. 53

From § 29 it follows that the equation of PP, can be

written in the form

(Y2 — )& — (@ — 1)y — TYs + 2t = 0.
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Therefore, from § 38 it follows that
(e — ) @5 — (2 — @) Y5 ~ Tl + Ty
V(22 — 3)* + (2 — )’
Hence the area 4 of the triangle is
A= x5~ 1) 25— @~ 2) Ys — T2 + 2]
which simplifies to
(19) A= 23 [(&1 — 2) ys + (@2 — 25) 11 + (5 — @) 3.
In determinant notation this formula may be written

PsS =

Tyl
A=+t iyl
CL'ayal

Since we are interested only in the numerical value of
the area, the sign is chosen to make A positive.

The following scheme makes it easy to remember
formula (19). Write the coordinates of
the vertices in two vertical columns, repeat-
ing the coordinates of the first vertex.
First, multiply each z by the y in the next
row and add the products which gives
T1Ys + T2Ys + 2. Second, multiply each
y by the z in the next row and add the
products which gives yizs + 127 + Ys21
Third, the area is equal to =+ 4 the difference between
the first and second sums, the sign to be chosen to give
A a positive value.

Example. Find the area of the triangle whose ver-
tices are

(27 3); (" 3; 4)) (1’ 2)'
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Solution: Write the coordinates of the
'vertices in two vertical columns, repeat-
ing the first vertex. Performing the y,
first step deseribed above, we have
8 — 6 4 3 = 5; the second step gives
—9+44+4=—1. Hence

A=3(+1)=3.

Exercises
Find the area of the following triangles:

c(2,4), (1,0, 3,2).

. (1,0), 40), (5 2).

. (e, a), (¢, d), (—b, —b).

. (0,1), (-1,-1), (235).

. (0,-p), 4,m=1p), (mm’=p).

. Find the area of the quadrﬂdteral (3,4), (-2,1), (3,0,
(-2, —4).

7. Find the area of the pentagon (0,0), (1,0), (4,2), 3,7),

(=2,1).

8. Prove the following points collinear by proving that the area
of the triangle whose vertices are the given point is zero:

» d) (OJ - 2)) (21 4)1 ("' 1; - 5)
b) p+9, (—¢0, (=190
¢) (a,b+¢), (b,c+a), (c,a+b).

9. Prove that the area of the triangle whose vertices are (8, 6),
(-2, 4), (4,—4) is four times the area of the triangle
formed by joining the middle points of the sides. :

S v > 0 B
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10. Given the quadrilateral 4 (0, 0), B (2,0), C (6,8), D (4, 6).
Prove that the area of the quadrilateral formed by joining
in order, the middle points of the quadrilateral ABCD is
equal to one half the area of ABCD.

11. Prove that the points Py (21, %1), Pa (23, v2), Ps (23, y3)

1 1
are collinear when and only when 23921 = 0.
I3 Y3 1

12. By making use of Ex. 11, prove that the points (1, 5),
(-2, —16), (0, —2) are collinear.

41, Pencil of lines.
(20) Given: A + By + Gy = 0,
(21) : Azx + Bzy + Cz = 0,

the equations of two straight lines. If these lines inter-
sect, the equation

(22) (Ax+ By + Cy) +k(4dsr + By +C) = 0

is the equation of a straight line through their point of
intersection; because, 1. — it is an equation of the first
degree and therefore is the equation of a straight line
and 2.—it is satisfied by the coordinates of the point
of intersection * of the lines whose equations are (20)
and (21). For different values of % (called the param-
eter) equation (22) is the equation of different lines
of a system of straight lines, which consists of all ** lines

* If the lines (20), (21) are parallel, line (22) is parallel to each of them. Why?

** Line (20) is included in the system for the value % = 0; line (21) is also re-
garded as belonging to the system, although it does not correspond to a value
of k. If we replace (22) by k1 (Aiz+ By + C1) + e (Asz+ By +Cy) =6
this difficulty is avoided and the line whose equation is (21) is obtained by let-
ting £y = 0 and kg = 1.
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through the intersection of the lines whose equations
are (20) and (21) (or of a system of parallel lines).
Such a system is called a pencil of lines. Some line
of the pencil passes through any point we may wish to
specify. For, if (21, y1) be the coordinates of any such
point not on the line whose equation is (21), the value
of k is determined by substituting these coordinates in
(22) and solving for k.

Ezample 1. TFind the equation of the line through
the point (2, — 3) and the intersection of
2z +3y—-5=0and4z-5y+1=0.
Solution: The equation of the pencil of lines through
the intersection of the two lines is
Qr+3y—-5+k@dr—-5y+1)=0.

We wish the line of the system which passes through the
point (2, — 3) and therefore the coordinates of this
point must satisfy the equation.

Hence —10+k24=0,

or = 75
Therefore 22z +3y —5) +1s @z —5y+1) =0.
Simplifying, we have 4z 4y — 5= 0.

Ezample 2. Find the equation of the line through the
intersectionof2z + 3y — 5 = 0and4z — 5y +1=0
and perpendicular to the line3z —y + 3 = 0.

Solution: The equation of the system of lines through
the intersection of the two lines is

Qz+3y—-5+k{4z—-5y+1)=0,
or 2+4k)z+B-5ky+ (k-5 =0.
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. . 2445
The slope of any line of the system 1s — 35k

The slope of the line3z —y + 3= 01is 3.

Since these lines are to be perpendicular, we have

244k 1
3—05k 3
or k=_ﬁ

. The equation of the desired line is
2z+38y—5~HF@z-5y+1) =0
or z+3y—4=0.

The student may think that the last two examples
could have been solved with less labor, by first finding
the coordinates of the point of intersection of the given
lines. In this particular case, this may be true, in view
of the fact that these coordinates are simple numbers,
viz. (1, 1). But the method described here often saves
much time and furthermore it involves a valuable gen-
eral principle of analytic geometry.

Exercises

In each of the following examples find the equation of the
line through the intersection of the given lines and satisfying
the additional condition given. Use the method of § 41.

1l 4z+5y—12=0, 3z—2y—6=0, and passing through
the origin.

2.324+7y—1=0, 62+2y—8=0, and passing through
the point (3, — 1).
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b6z+8y—~2=0, 4z-y-3=0, and passing through

the point (2, 1).

- 2+6y~6=0, 52—2y—-10=0, and parallel to

z—2y+4=0.

v4r—-y—-2=0, 42+3y-2=0, and parallel to

2z4+3y—17=0.

v2=y+7=0, 22-y+3=0, and parallel to

Jz—y—8=0.

+82-2y+8=0, 42-5y+10=0, and perpendicular

torx—2y+4=0.

v 42-y—2=0, +y+3=0, and perpendicular to

22+y~-T=0.

.2+y—3=0, x—y+1=0, and perpendicular to the

-8,

t—y+4=0, 22-3y+6 =0, and having an z-inter-
cept equal to 2.

2z4+3y—-T7=0, 3z—y+2=0, and havinga y-inter-
cept equal to 3.

22—y—T7=0, =2=y—3, and intersection of
z4+y+7=0, 42+3y—-2=0. '

42. Two (or more) straight lines. In § 26 we saw

that an equation of the form
23) (4iz+ By + Cy) (dsz + By +C)=0

is satisfied by the coordinates (z, y) of every point on
either of the straight lines whose equations are

(24) Az + By+Ci=0 and
(25) Agx + Bzy + Cz = O,
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and by no others, and that the locus of (23), therefore,
consists of the two straight lines whose equations are
(24) and (25).

An equation of the second degree in z and y may then
have two straight lines as its locus. This will be the
case when the right-hand member is zero, and the left-
hand member can be factored into two real expressions

of the first degree.
Thus a quadratic equation in z alone,
(26) Az’ + Dz + C =0,

will, in general, have for its locus two straight lines
parallel to the y-axis whose equations are z = z; and
T = 2y, provided the roots z;, 7, of the equation are real
and distinet. For example, the equation

' —32—-4=0

has for its locus the two parallel linesz = 4andz = — 1.
If z, = z,, there is but one line, although the situation
is frequently described by saying that the two lines
coincide. If the roots are imaginary there is no locus.

Similarly, a quadratic equation in y alone will, in
general, have for its locus two lines parallel to the z-axis,
provided its roots are real and distinct.

A homogeneous quadratic equation in' z and y, that
is to say one in which every term is of the second degree
in z and ¥,

@ Az* + Fzy 4+ By* = 0,

can be written as an equation in Y of the form

BL+F-Y+ 4=y,
z T
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which is quadratic in terms of y if B # 0.
T

If this has two real distinet roots m; and ms, equation
(27) has for its locus the two lines through the origin,

y = mz and y = my2.
If B = 0 equation (27) takes the form
t(Az+Fy)=0

which has for its locus the lines whose equations are
z=0and Az + Fy = 0.

Example. Plot the locus of e
' —bay+ 62 =0. o

. . . $
Solution: The given equation S/
can be written as

(y—32) @y —22)=0. 0

Hence the locus is the two
lines whose equations are

>X

y=3zandy = 2z. T1a. 54

Exereises

Determine, when it exists, the locus of each of the following
equations:

1 d4+2-6=0. 2 & +4zy+4y/=0.
8.2 —6z+9=0. 4y = 3zy+22"=0.
5.’ —44'~52=0. 6. 2'+4z-5=0.

T. 88 +4zy+4° = 0. 8.2 —z+1=0.

9. 2’ — 21y =0. 10. zy = 0.
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11, Prove that the equation Az’+ Fzy+ By =0 has for
its locus two distinet straight lines if F'—44AB> 0, two
coincident straight lines if #* — 4 AB = 0, and the origin
only, if F*— 4 AB<0.

12. Prove that z*— 2y~ 32 —-2¢"+3y+2=0 represents
two straight lines. [Hint: Solve the equation for y.]

13. Prove that 6y"+y— '+ 2y—22—1=0 represents
two straight lines. Find the angle between them.

43. Geometric theorems. The methods of this
chapter can readily be applied to the solution of geomet-
ric theorems. For example, prove that the medians
of a triangle are concurrent.

C(0,¢)

0l A(q,0) F(2$2,0) B(b,0)

Fre. 55

Solution: We first choose the axes of coordinates so
as to simplify the work. Given any triangle ABC, we
can choose the z-axis to lie along one side of the triangle,
AB say, and the y-axis to be the line through ¢ perpen-
dicular to AB. The coordinates of the vertices then as-
sume the form 4 (s, 0); B (,0), € (0,c). The coordi-
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nates of the mid-points of the sides are then as indicated in
the figure, namely,

D g-g) E(gf F(eEd,
The equation of AD is
¢
y-0= ° @-o
—a

which, when simplified, gives

AD: cx + (2‘a —by—ca=0.
Similarly we find

BE: cx+ (2b—a)y —cb=0.

CF: 2cz+ (a+by—-(a+bc=0.

To find the point of intersection of AD and BE, we solve
their equations simultaneously. Subtracting the left
hand members eliminates z and gives

3@=by=cla—10).

Since a # b (why?), we conclude that y = g- If this

value of y be substituted in either of the two equations,
we get 2 = % (e + b). The coordinates of the point of
intersection of AD and BE are

(a+b ¢\
3 3
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To show that CF also passes through this point, we
substitute these coordinates in the equation of CF.
This gives
a+b
3

which is an identity. Our theorem is then proved.

We could have avoided the computation of the co-
ordinates of the points of intersection, by observing that
by adding the equations of AD and BE, we obtain the
equation of CF. This proves that the three lines belong
to the same pencil; and since they are not parallel they
are concurrent.

2¢

+m+w§-m+wc=a

PROBLEMS

1. Prove the theorem of § 43 by Y
using the choice of axes indi-
cated in the adjoining figure, C(b,¢c)
40,0, B(a,0), Cb0¢)
a#0, ¢#0. '

0[40,0)  B(a o

Fra. 56

2. Prove that the altitudes of any triangle meet in a point.
Use the axes and notation of §43; it will be found that the
altitudes meet in the point '

-3

3. Prove that the perpendicular bisectors of the sides of any
triangle meet in a point. Use the axes and notation of § 43;
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it will be found that the coordinates of the desired point are

iz_‘lj ab+ ¢
2’ 2¢

. Prove that in any triangle the point of intersection of the

medians, the point of intersection of the altitudes, and the
point of intersection of the perpendicular bisectors of the
sides lie on the same line. In what ratio does the first point
divide the segment joining the other two? (Use the re-
sults of § 43 and Exs. 2 and 3.)

. Prove that in a trapezoid the diagonals and the line joining

the mid-points of the parallel sides are concurrent.

Prove that in any parallelogram ABCD the vertex D, the
mid-point of 4B, and a point of trisection of the diagonal
AC are collinear.

. Prove that in a trapezoid the non-parallel sides and the

line joining the mid-points of the parallel sides are con-
current.

. Prove that the altitudes on the legs of an isosceles triangle

are equal.

. Prove that the three altitudes of an equilateral triangle

10.

11

are equal.

Prove that the sum of the absolute distances of any point
within an equilateral triangle from the sides of the triangle
is equal to an altitude of the triangle.

If the equations of the sides of a triangle are
az+by+ =0,
%+ by + ¢ = 0,
a5 + by + 63 = 0,
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prove that the area of the triangle is

[ar (Bacs — bscs) + az (bacr — bacs) + as (brco — byey)] )
2 (albz - azbl) (a2bs — 0352) (asby — albs)-
12. Prove that in parallelogram 4 BCD the vertex D, the point

which divides AB in the ratio 1:m, and the point which
divides AC in the ratio 1:m + 1 are collinear.

MISCELLANEOUS EXERCISES
1. Find the equation of the line through (2, —3) parallel to
the line through (2, 3), (—4, 1).
r2. Find the coordinates of the vertices of the triangle the equa-
tions of whosesidesarez+y =2, 22—~y=1, 3z+y=0.
3. A diagonal of a square joins the points (2,3) and (4, 6).
Find the coordinates of the other vertices.

4. The base of an equilateral triangle is the segment joining
(2,0) to (6,0). Find the third vertex.

5. A line has equal intercepts and passes through (3, 4).
Find its equation. ‘

6. Find the 'equation of the line perpendicular to 2z —y = §
and bisecting the segment joining (—2,4) and (4, 6).

7. Find the distance from (5, — 6) to the line whose inter-
ceptsarea = — 2, b= 3.

8. Given the triangle 4 (2, 0), B (6,4), C (4, — 6):
a) Find the equation of AB.
b) Find the length of the altitude from C.
¢) Find the length of AB.

d) Using (b) and (c) find the area of the triangle.
e) Check (d) using the formula for area (§ 40).
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f) Find the equations of the medians.

g) Prove that the medians are concurrent.

1) Find the equations of the altitudes.

1) Prove that the altitudes are concurrent.

7) Find the equations of the perpendicular bisectors of
the sides.

k) Prove that the perpendicular bisectors of the sides
are concurrent.

. Same as Ex. 8 but for the triangle 4 (- 2, 4), B (4, 6),

C (6, - 8).

Prove that the acute angle between Az 4 By + 1= 0 and
(A4+B)z—-(A~B)y+ K=0is45°

Prove that the equation of the line through (z, y1) parallel
toAe+ By+C=0isA(z—z)+B@y—y) =0.

Prove that the equation of the line through (zy, 71) perpen-
dicularto Az + By 4+ C = 0isB(x~ ) — A (y — 1) = 0.

Prove that the tangent of the angle from
A+ By +Ci=0to Asz+ By + G2 =0

A1By — AsBy
A4 + BB,

Find the slopes of the lines bisecting the angles formed by
two lines whose slopes are 1 and 7.

is

Find the equation of the line through (2, 1) and forming
in the first quadrant, with the coordinate axes, a triangle
of area 4.

11
Prove that all lines g + % = 1 pass through the point (5’ 5)

!

2,
b

i 4
a
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Three vertices of a parallelogram are (— 6, 0), (4, 4),
(2, 5). TFind the fourth vertex; three solutions.

Find the point on the line 42 —3y —2 =0 which is
equidistant from the points (4, 2) and (10, 4).

Find % so that kz+ 3y = 7 will pass through the inter-
section of 7z —8y =3 and3y—5=0.

Prove that the lines y = mz + b pass through a common
point if m = b. What are the coordinates of this point?

The center of a circle is at (4, 3) and the circle is tangent
to5z+ 13y —1=0. Find the radius of the circle.

The center of a circle lies on y —22 = 0. If the circle
passes through (4, 6), (10, 8), find the coordinates of the

‘center of the circle.

«23,

24,

25.

26.

27.

28,

Find the equations of the two lines passing through (3, 0)
such that perpendiculars drawn to them from (-6, — 6)
are of length 3.

Find the equation of the line through the intersection of
y=—2z+5and y =7z — 4 whose angle of inclination
is 45°.

Find the center and radius of the circle circumseribed
about the triangle (=2, —2)," (4, 10), (6, 4).

Find the equations of the sides of the square, if the co-
ordinates of two opposite vertices are (4, 4), (10, 8).

The vertex of the right angle of a right isosceles triangle is
at (4,3). The opposite side lies on the liney = 32+ 6.
Find the equations of the other two sides.

Given the equation Az+ By+ C = 0. Find the relation
among the coefficients so that: ’

a) the y-intercept is 7.
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b) the slope is 3.
¢) the given line is parallel to 2z — 5y = 7.
d) the line is parallel to the z-axis.
¢) the line is parallel to the y-axis.
f) the line passes through (3, — 2).
29. Find the equations of the lines through the origin and

through the points of trisections of the segment of the line
2z + 3y = 12 which is intercepted between the axes.

30. A perpendicular from the origin meets a line at (— 2, 5).
Find the equation of the line.

31. For what values of k& will the lines ¥z +y +7 = 0 and
42+ ky + 3 = 0 be parallel?



CHAPTER V
THE CIRCLE

44, The center-radius equation. Let the point
P (z, ) lie on the circle with ¥

center C (h, k) and radius 7.
Plz,y)
Then CP=r,
or
M V-R+ G-k =r
Hence 0 X
@ -+ -hk=r. Fre. 57

Moreover, whenever the coor-

dinates of a point P satisfy (2) they also satisfy (1) which
is simply an equality between the positive square roots
of the members of (2). Hence, if # and y are the co-
ordinates of a point on the circle, equation (2) is satisfied.
Moreover, it is not satisfied by the coordinates of a point
not on the circle. Therefore, (2) is the equation of the
circle. If the center is at the origin, h =k = 0, and
the equation becomes '

@) f+yt=r

Example. Find the equation of the circle with center
at (— 2, 1) and radius 3. :
Solution: h = — 2, k=1,r = 3.

.. The equationis (z +2)* + (y — 1)* = 9,
or Pyt +dr—2y—4=0.
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Exercises

Find the equations of the following circles:

1.
2.
3
4
5.
6
7
8
9

10.
11
12,
13,

14,

15,
1e.
17,
18,
19.
20.

Center at (3, 4), radius = 5.
Center at (0, 0), radius = 6,

. Center at (4, — 1), radius = 3.
. Center at (0, 0), radius = 5.

Center at (@, — a), radius = a.

. Center at (a, @), radius = a Vg,

. Diameter, the segment from (4,2) to (10, 6).

. Diameter, the segment from (— 4, 6) to (6, — 2).
. Diameter, the segment from (0,0) to (2a, 2a).

Center at (3,4) and touching the z-axis.
Center at (— 2,4) and touching the y-axis.
Center at (g, @) and touching both axes.

Touching the y-axis at the origin and radius = 2. (Two
solutions.)

Touching the z-axis at (3, 0) and radius =2. (Two
solutions.)

Center at (2, 1) and tangentto 3z+4y=1.
Center at (— 2, 5) and tangentto 5z~ 12y = 3.
Center at (@, ) and tangent to az — by = 1.
Center on y = z and tangent to the z-axis at (4, 0).
Center on 3y = z and tangent to y-axis at (0, 3).

Center at the intersection of 4z —y =3 and 22 +y =3
and radius of 4.
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45. The general equation. If the equation
@—h+ G-k =r
is expanded it becomes
P4y =2k —2ky+ R +E —r"=0.
This is of the form
(3) L4y +Dx+Ey+C=0,

where D, E, and C are constants. The question now
arises, is every equation of the form (3) the equation of
a circle? ,

Let us arrange the terms of (3) as follows:

4+ Dz +y+EB =-C

We complete the square of the first group of two terms
by adding (3 D) and the second group by adding (3 E)*
This gives

2 2 2
x2+Dx+-]3—+y2+Ey+g—= —0+p,—+-€'7—,
or
2 2 2 2 _
@ <x_+€)+(y+—§-)=D+E 0

This has the form (z — k)* + (y — k)* = %, and has
a circle for its locus with center at (— 4D, — 3 B),
and radius 3 V. D* + E*— 4 C, provided the right-hand
member of the equation is positive. If the right-hand
member is negative, no (real) numbers z, y can satisfy
the equation, since the sum of the squares of two real
numbers cannot equal a negative number; in this case
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the equation has no locus. If the right-hand member
of (4) is zero, the point (— ¥ D, — 4 E) is the only point
whose coordinates satisfy the equation and therefore the
locus is a single point.

The result of our discussion can be stated as follows:
Thelocusof z* + 4>+ Dz + Ey + C = 0is

a) A circle, if D"+ B* —4C>0. Center at
(=4 D, — % E), radius, $ VD' + E* — 4 (.

b) A point, it D* + B — 4C = 0. Point is
(_%D:—%E)'

¢) Nolocus, if D* + E* —4 (0 <0.

Exercises

Determine what is the locus of each of the following equations.
Use the method of completing the squares; do not merely sub-
stitute in the formulas derived in the text. Whenever the locus
is a cirele, find its center, radius, and draw its graph.

Lo +y-6s+8y=0.

2 o'+ +4r—-2y+5=0.
8. '+ ~2z—6y+17=0.
422+ + 10— 24y =0.
. o'+ —4z-12=0.
8.z’ +y —6z—7=0.

7. 2+y +1=0.

8. z'+y -3z—5y—-%=0.
9,25 +2 —4x—-8y+5=0.
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10. 32°+3y* +42-2y+7=0.

11. Az*+ Ay*+ Dz + Ey+ C = 0. Discuss completely.
Find the equation of the circle which satisfies each of the

following conditions:

12. Center at (1, 2) and passing through the point (4, 6).

13. Centerat (—2,3) and passing through the point (1, — 2).

14. Center at (— 1, 4) and passing through the origin.

15. Center at (0, 2) and tangent to the z-axis.

16. Center on the line 2 = 3 and tangent to both axes.

17. Centerat (1, — 2) and tangent to thelinez+y -2 = 0.

18. Passing through the points (1, —2) and (3,2) and with

center on the y-axis.

19. Passing through the points (2, 1) and (4, 3) and with
center on the linex —y + 1= 0.

46. The circle through three points. Three points,
if they do not lie on the same straight line, determine
one and only one circle. We note that the center-radius
equation (2), and the general equation (3), both con-
tain three arbitrary constants, A, k, r in the former case
and D, E, C in the latter. The requirement that the
coordinates of a given point satisfy either of these
equations gives an equation connecting the constants.
For example, suppose the coordinates of the three
points to be (21, y1), (22, ¥2), (s, ¥s), we then have,
using equation (3), the three equations

' + '+ Dz + By + C = 0,
x22+y22+sz+Eyz+C=0,
x32+y32+Dms+Eys+C'=0,
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from which the values of the constants D, E, and € can
be found, provided, of course, that the three points are
not collinear.

If we consider the expression z* + ¢ as (2% + 1% 1,
we can then consider the last three equations and equa~
tion (3) as a system of homogeneous linear equations
in the quantities, 1, D, E, and C. If we eliminate these
quantities by § 3, we have as the equation of the circle,

@+ z oy 1

@ +yh) wop 1
© @ +w) » oy 1 =0

(x32+y32) oy 1

If this determinant is expanded, the coefficient of
4yl
1 1
T2 Yo 1]
T3 Ys 1

Since the three points are not collinear, the value of this
determinant is not zero. If the three points are col-
linear, the value of this determinant is zero and the
original determinant will give the equation of the
straight line through the three given points.

Ezample. Find the equation of the circle through
the points Py (2,2), P.(—5,1), P; (4, — 2).
Solution: The general equation of a circle is
2 +y*+ D+ Ey+C=0.

Since by hypothesis this circle is to pass through the
points P;, P,, and Pj, the coordinates of these points
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must satisfy the equation. This gives the three con-
ditions:
444+2D+2E4+C=0,
2%5+1-5D+ E+C=0,
16 +4+4D-2E+C=0,
2D4+2E4+C= =38,
or 5D—- E - (=26,
4D—-2E+C= —20.
Solving these equations, we have
D=2 E=4, (= -20.
The desired equation is then
4y +22+4y—-20=0.

This problem could also have been solved as follows.
The equations of the perpendicular bisectors of the chords
PP, and P,Psare Tz +y=—-9and 3z —y= —1
respectively. These lines meet in the point €' (- 1, — 2)
which is the center of the required circle. The radius
of the required circle is the distance CP; or 5. There-
fore the required equation is (z + 1)® + (y 4 2)? = 25
ooz +y*+22+4y-20=0.

If we use determinants the equation ean be written as

@+y) =z oy 1

8 2 2 1_0
26 -5 1 1 "
20 4 -2 1

which expanded gives #* + 3> + 22 4+ 4y — 20 = 0.
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Exercises

Find the equations of the circles through the following sets
of three points. Draw the corresponding figures:

1 (1,0, 0,-1), 0,0. 2 (1,0, (-1,-2), (1,-2).
3. (1: 6)1 (2: 5): (— 6) - 1) 4, (1: 3)) (l: 1): (— 2; 3)

5. Find the equation of the cirele circumseribing the triangle
formed by the coordinate axes and the line 2z +3y = 6.

6. Find the equation of the circle circumseribing the triangle
the equations of whose sides are

t+y—-1=02-y+2=0, 2z+y+3=0.

-1, Determine if the points (2, 0), (0, 4), (2, 2), (1, 1) lie on
a circle.

47. A pencil of circles. Given the equations of two
circles:

(6) zt 4+ 94+ Dz + Ey+ Ci=0and
(7) $2+y2+D2$+E2y+02=0.

If the second equation be multiplied by any constant
% and added to the first equation, we obtain

(8) $2+y2+D1x+E1y+Cl
k@ +y+ D+ By +C) =0,

or

© Q+k2+A+Ey+Di+ED)z
+(E1+kE2)y+C1+kC2=0.

Equation (9) represents in general the equation of a
circle for every value of k except k = — 1, and is called
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a pencil of circles. A general discussion of the properties
of the pencil of circles is beyond the scope of this text.
If the two circles intersect in two points and k ¢ — 1,
then locus (9) is a pencil of circles passing through the
two points of intersection; if ¥ = — 1, equation (9) is
the equation of the common chord.

Ezample 1. Find the equation of the common chord
of the circles

2?4+ +3r-5y=0,
4y +r—4y+1=0.

Solution: Eliminating 2* and y*, we have the equation
of the common chord.

n2r—y—-1=0.

Ezample 2. Find the coordinates of the points of
intersection of

P +y’+3z-5y=0and 2’ +y’+z—4y+1=0.
Solution: The equation of the common chord is
22—y —1=0.

Solving for y, we have y = 2z — 1. Substituting in
the first equation, we have

4+ Qr-1)"+32-5Q2z—-1)=0
or 528 —11z4+6=0.
Hence, (x~1)(3z-6=0orz=12=2%

Substituting these values of # in the equation of the
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first degree, we find the coordinates of the points of in-
tersection to be (1,1), (§ I).

Example 3. Find the equation of the circle through
the intersection of the circles whose equations are

x2+y2;}-3x—5y=0
and 4y +r—4y+1=0,

and the point (— 1, 2).
Solution: The equation of the pencil of circles through
the points of intersection of the given circles is

@4y +3z=5y)+EkE+y+r—4y+1) =0
We desire the circle of the pencil that passes through
(-1,2).

(1 +4-3 1W0)+k1+4-1-841)=0,
or k= -4

Hence,

@ +y" +3z~5y) — (z +y +z—-4y+1) =0,
0rs1mphfymgwehave5x +5y -2 —1Ty+8=0
as the equation of the desired circle.

Exercises

Find the equation of the common chord in each of the fol-
lowing examples:

L2+ =4 224+ -2y=0.
2 24224+ +Ty—-1=0, 2+ +4y—2=0.
.20 —4z+y—6y—2=0, ' ~6z+y -2y-3=0
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Find the coordinates of the points of intersection of each
of the following pairs of loci:

4,

10.

11.

12,

2+ —4z+6y+3=0,
3z—y—-3=0.

L'yt - 224y —12=0,

z—2y+5=0.

L2ttt -4y —6=0,

£+y+20—-4=0.

Ly +3s—6y—1=0,

gy’ =13,

L2yt =17,

4z+y=17. Interpret the result.

Lty - 62— 129+ 25 =0,

2 +4' = 5. Interpret the result.

Fmd the equation of the circle through the intersections of
4y +e-2y—1=0and 2’ +4*+22—-4=0 and
(@) the origin; (b) the point (0, 3); (¢) with its center on the
linez = 2.

Find the equation of the circle through the intersections of
o' +y'=5and 2¢+y~4=0 and the origin.
(Note: the circle can be obtained from

Py - 5+kQe+y—4)=0. Why?)

What is the difference between the following pencils of
circles?

a) @ +4*+ Dx+By +F) + k(@ +47+ Doz + By +Fy) =0,
b) k (z2+y2+D1a;+Ely+F1) + (x2+y2+ Dyz+ By +Fo) =0,
0) ky(@’+y*+ D+ By + F1) + ka(2’ + y*+ Dy + By + F) = 0.
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48. Tangents. Point-of-contactform. Let P; (21, y1)
be the point where the tangent Y
‘touches the circle 2* + ¢* = r%.
We wish tofind the equation of f Bz, %)
the tangent at P;. We know v

that the tangent is perpendi- X
cular to theradius OP;. Since \OJ N\
the slope of the radiusis %, the

1

T
slope of the tangent is — ?7 Fra. 58
1

The equation of the tangent is, therefore,

x
Yy—h= “—1(93—-’61):
N

or ne 4y =’ + oy’ =1

the latter equality being due to the fact that the point
(21, 1) is on the circle and consequently z,* + y,* = 7%
Hence we have: ‘

The equation of the tangent to the circle x* + y* = r*
at the point (xy, y1) is
(10) ux+yy=r.

-1t is left as an exercise for the student to show that
by the same method, the equation of the tangent to the
circle (x — £)* + (y — k)* = 7% at (x5, y1) can be written
in the form

@@= G@=h+ -k G-F=r
If the equation of the circle is
?+y+Dx+Ey+C=0,
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we know from § 45 that

D E
h-——éﬁ ]G-—'—E’ r=

.. The equation of the tangent at Py (21, 1) is

o B oo

D'+ E' - 4C.

(S

D'+ E —4C
4
or simplified,

“lrtn\ Y fy+
(11) x1x+y1y+£_( 2 1>+E(y2y1)+0=0.
—\ 2.

Exercises

Find the equation of the tangent to each of the following
circles at the point indicated. In each case verify that the
given point is on the cirele.

L+ =25at4,-3). 2 &+y’'=13at(-2~3)
3.7+ =498t (0,7). 4 2'+y =254t (3,4).

5 o'+t =4lat (5, 4).

6.2 +y'+4z+6y+3=0at (-5 —4).

7. 255 4+24 - 524+ 3y =0at (0,0).

8. 'ty —2z+4y=20at {92

9. z— 1"+ (y+2)°"=20at (3, 2).

10. @—a)*+ (y—b)*=d’+ b at (24, 20).
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MISCELLANEOUS EXERCISES

Find the coordinates of the center and the length of the radius
of each of the following circles:

L2+ -8z+6y-2=0.
22284+ 2y +5z-3y—1=0.

3.2 +2@+b)z+y’+2(@—b)y=4ab
4 2 +y —az="

Find the equation of the circle through:
5. (2,0), (0,2), (2,4).
6. (5, 1), (2,3), (0,1).
7.(6,7), (1,3), (3,2).

Find the equation of the circle:
¢8. Center at (3, —2), tangentto3z+4y+4=0.
9. Center at (— 6, 5), tangentto 52— 12y —3 = 0.
10. Center on the y-axis and passing through (4, 6) and (6, 10)
11, Center on the z-axis and passing through (6, 4) and (8, — 4).
12. Whose diameter is the segment (— 2, 3), (5, — 2).
13. Passing through (6, 2), (Q, 0) and ceﬁter om2z~-y+5=0.

~14. Passing through (2, 1) and tangent to the coordinate axes.
Two solutions.

15. Passing through (2, 2) and (4, 2) with radius 3. Two
solutions.

16, Prove that the points (6,2), (—1,—5), (0,2) and (3,3)
lie on & eirele.
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17. Prove that thepoints (0,0), (0,4), (6,0) and (5,—1) lie
on & circle.

18. Find the equations of the two circles with centers on
3y = 5z — 8 and tangent to the coordinate axes.

19. Find the equation of the circle passing through the origin
and having x-intercept a, y-intercept — b.

920. Find the equation of the circle inscribed in the triangle
formed by the coordinate axes and the line 3z + 4y = 12.
The angle between two curves. Orthogonality.

If two curves meet at a point P, the acute angle between the
tangents to the curves at P is called the angle between the
curves at P. If the tangents are perpendicular to each other,
the curves are said to be orthogonal. :

21, Prove that if the circles _
@ +y'+ D+ By + € =0,
'+ '+ Doz + By + C = 0,

intersect orthogonally, the sum of the squares of the radii
is equal to the square of the distance between the centers and

D\Do+ BBy = 2C, + 2 Co.
22. Prove that the circles
25+ 2y +4z—6y=19,
d+ ¥ —dz+iy= 2
are orthogonal.
23. Tind the relation among the constants in order that
Az + By + C = 0 be orthogonal to
4+ +Dr+Ey+F=0.
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25.

26.

27.

28

29,

30.
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Is there a circle orthogonal to each of the following circles?

@ +y' =6,
Pty -4y=0,
d+yP+6e=0

GEOMETRIC PROBLEMS

On CA, the radius of a circle with center C, a circle is con-
structed with CA as a diameter. Prove analytically that
any chord of the given circle drawn through A is hisected
by the second circle.

Prove analytically that every angle inscribed in a semi-
circle is a right angle.

Prove analytically that the circle through the mid-points
of the sides of a triangle passes through the feet of the
altitudes and also through the points halfway between
the vertices and the point of intersection of the altitudes.
This circle is called the nine point circle.

If the coordinates (zy, y1) of an external point Py be substi-
tuted for z, y in the equation z* + 3> + Dz + By + ¢ = 0,
prove that z;* + yi® + Dzy + By, + C is the square of the
length of the segment of the tangent drawn to the circle
from Py,

Prove analytically that if a perpendicularZPA is drawn from
a point P of  cirle to a diameter BC, PA = B4 - AC.

Prove analytically that a radius perpendicular to a chord
of a circle bisects the chord.

Prove analytically that the mid-point of an are of a circle
is equidistant from the chord of the arc and a tangent drawn
at one end of the arc.
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32,

33.

34,

35.

36.

37,

38.
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LOCUS PROBLEMS

TFind the locus of & point such that the sum of the squares
of its distances from two fixed points is constant.

Find the locus of a point which moves so that the sum of
the squares of its distances from the sides of a given square
is constant,.

A line is drawn through each of two fixed points 4 and B
forming at P a constant angle .. Find the equation of the
locus of P.

A point moves so that its distance from g fixed point A4 is
always equal to k times its distance from another fixed
point B, Show that the path generated is a circle if £ 5 1.

A line rotating about a fixed point O meets a fixed line in
a point Q. Find the locus of a point P on OQ such that
0Q - OP is constant.

Find the locus of a point such that the square of its dis-
tance from the base of an isosceles triangle is equal to the
product of its distances from the other two sides.

Find the locus of a point such that the length of a tangent
drawn from it to one of two given circles is k times the
length of a tangent drawn from it to the other circle.



CHAPTER VI
CONICS

49. A conic section or conic is any plane section of
a right circular cone.* It is evident that the shape of a
conic will depend upon the position of the cutting plane.
For example, if the plane is parallel to the base of the
cone and does not pass through the vertex of the cone,

A
VA=,

Circle Two coincident lines
Frc. 59 Fre. 60

we have a circle. If the plane passes through the vertex,
we obtain either a point, two distinet straight lines, or one
line. In the last case, the plane is tangent to the cone
and it is frequently said that the section is two coincident
lines.

If the cutting plane is parallel to a
tangent plane, the section is called a
parabola.

It stiould be noted that the cutting
plane can intersect only one nappe of
the cone and that the curve is open and Parabola
contains but one branch. Fie. 61

* See Morgan, Foberg, Breckenridge, Solid Geometry, pages 579-583.
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If the cutting plane is not parallel to
an element and cuts only one nappe, the
section is called an ellipse. It should be
noted that the curve is closed. The orbits
of the earth and other planets are approxi-

mately ellipses.

Ellipse
Fia. 62
If the cutting plane intersects both
nappes, and does not pass through the
vertex, the section is called a hyper-
bola. This curve contains two branches
both of which are open.
If the vertex of the cone recedes in-
definitely, the cone approaches a cylin-
der and the section may be
1) a circle,
2) an ellipse,
3) two parallel lines, Hyperbola
4) two coincident lines. Fra. 63

It was from the above point of view that the Greek
mathematicians, especially Apollonius, 200 ®.c.,. first
studied the properties of these curves. In the present
chapter we shall study the parabola, the ellipse, and
the hyperbola by analytic methods. "It can be shown
that the definitions which follow lead to the curves just
defined geometrically.*

* See Young and Morgan, Mathematical Analysis, pages 370-375.
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50. A parabola is the locus of a point in a plane equi-
distant from a fixed point F in the
plane called the focus, and a fixed
line D in the plane (not passing 2 p
through the focus), called the direc-
trix. Hence in Fig. 64, PF = PD.
The ratio PF : PD is called the
eccentricity. Since these lengths
are equal, the eccentricity of a pa-
rabola is always one.

Fic. 64

61, Construction of a parabola. If a line be drawn
through the focus perpendic- Y
ular to the directrix meeting l
the latter in D, the mid-point
V of DF is a point of the pa-
rabola since it is equidistant
from D and F. It is called the
vertex of the parabola. Any Y, x
number of other points of the b V. F :
parabola can be constructed E
as follows. Draw a line I . |
parallel to the directrix meet- !
|
I

i
I
|
|
|
|
1
1
|
1

ing the line through D and F in { ’
a point M and then with F as Fic. 65

a center and DM as a radius
describe an arc cutting I in P and P’. The points P, P’
are points of the parabola (why?). By drawing other
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lines I, any number of additional points of the parabola
can be found. This method of construction shows that
the parabola is symmetric with respect to the line DF,
which is called the axis of the parabola; the line through
the vertex V parallel to the directrix meets the curve in
point V only and is a tangent to the curve. Moreover,
we see that the parabola lies entirely on that side of this
line on which the focus lies.

Exercises
1. Construet a parabola given the directrix and the vertex.
2. Construct a parabola given the focus and the vertex.
3. Construct a parabola given the axis, focus, and a point on

the curve.

52, The equation of the parabola: Vertex at origin,

The form of the equation of v
a curve depends upon where
we take the axes. The equation X f(m, ¥)

may be much simpler for one
choice of axes than for others,
and if the equation is to be use-
ful we wish it to be as simple
as possible. The equation of
the parabola is particularly
simple if the line joining the
vertex to the focus F is taken
as the z-axis and the vertex is
taken as the origin 0. If we Fre. 66
designate the distance OF by p, '

the coordinates of F are (p, 0). The directrix is now

D 0 F(p,0) -
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parallel to the y-axis and P units from it on the other side
from the foeus, so that its equation is

rz4+p=0.

If P (z, y) is any variable point on the curve and the
line through P parallel to the z-axis meets the directrix
in K the definition of the curve states that

KP =FP.

But KP =z +p,and FP = V(z — p)° + ¥’. Equat-
ing these values, we obtain ’

) tp=Vi-p'+y,

which is true when, and only when, the point (z, ¢) is
on the parabola. The coordinates of a point which
satisfy (1) also satisfy

) @+p)’=(@-p+y
which reduces to
(3) ¥’ = 4pz.

Conversely, any point (, y) which satisfies (3) must
satisfy (1) and hence must lie on the parabola. For,
(3) is equivalent to (2) and from (2) we conclude that
either

) Ve-p'+y=z+p,
or

(5) Ve-p'+ = - @ +9).

If p> 0, (3) shows that, in order for Y to be a real num-
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ber, we must have z 2 0, and, in order to have a point
in the plane, y must be a real number, but if (5) were
true for z = 0 we would have a positive number equal
to a negative number which is impossible; hence (5) is
impossible and (4) is equivalent to (1).

Hence, the equation of the parabola with focus at
(p, 0) and vertex at the origin is

3) v =4px.
The equation of the directrix is
x=-p.

It is left as an exercise for the student to show that if
the vertex be taken at (0, 0) and the focus at (— p, 0)
the equation of the parabola is

(6) y'= —4pz,

]

and the equation of the directrix is 2 = p. Fig. 67.

7 Y

F(—p,0) F1(0,p)

Fia. 67 Fre. 68
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If the vertex be taken at (0, 0) and the focus at
(0, p), the equation of the parabola is

(7) "= 4py, Y
and the equation of the directrix
is y=-0p Fig. 68, . _______ L. ¥=p_

If the vertex be taken at . ¥

(0, 0) and the focus at (0, — p), 0
the equation of the parabola is FH0,~2)

(8) x2 =—4 vy,
and the equation of the directrix
is y =7p. Fig. 69. Fia. 69

53. The latus rectum. The chord of a parabola
drawn through the focus perpendicular to the axis of
the curve is called the latus rectum of the parabola; the
length of this chord is also called by the same name.
If the equation of the curve is taken as y® = 4 pz, the
focus is at (p, 0), the equation of the line through the
focus perpendicular to the axis of the curve (the z-axis
in this case) is # = p. THhis line cuts the curve in points
for which > = 4p - p = 4 p’, i.e., for which y = &+ 2 p.
The length of the latus rectum of the parabola y* = 4 pz
is 4 P, t.e., the length of the latus rectum of a parabola is
four times the distance from the vertex to the focus, or
twice the distance of the foeus from the directrix.

Exercises

For each of the following parabolas, find the coordinates of
the vertex and the focus, the equation of the directrix, and the
length of the latus rectum. Sketch the curve.

Ly =4z 2. = -4z 3. 2" =4y.
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4 o= -4y 5 4 = 16z 6.4'=—162z.
7. 2' = 16y. 8 2t =~ 167 9.3y°-7z=0
10. 3574+ 72=0. 1L 327-7Ty=0. 123 +7y=0.

Derive the equations of the following parabolas using the
definition of a parabola and not by substituting in a formula:

13. Vertex at origin, focus at (3, 0).
14. Vertex at origin, focus at (— 3, 0).
15. Vertex at origin, focus at (0, 5).
A6. Vertex at origin, focus at (0, — 5).

17, _By means of the method given in § 51, draw the parabola
with focus 4 units from the directrix.

18, In the adjacent figure, right
triangle ABC is so arranged
that side BC' will slide along B
the y-axis. A string of length
CA has one end fastened at
A and the other end at the
point F. A pencil is pressed
against the side CA of the tri-
angle holding the string taut.~ o » X
Show that the pencil will de-
scribe a parabola as the tri-
angle slides up along the y-axis.

Fr1a. 70

19. If P1 (21, y1) is any point on the parabola y* = 4 pz, prove
that PiF' = 2+ p. This distance is called the focal radius
of P1.

Find the equations of the following parabolas:

20. Vertex at (0, 0), focus at (4, 0).
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22.
. Vertex at (4, 0), directrix the y-axis.

. Vertex at (0, — 4), directrix the z-axis.
25.

26.

27,

28.

29

30.

3L
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Vertex at (0, 0), directrix3y+4=10.
Vertex at (0, 0), directrix 2y — 3 = 0.

If the z-axis is chosen as in § 52 but the y-axis coincides

with the directrix, prove that the equation of the parabola is
Y =4pz—4p.

If the z-axis is chosen as in § 52 but the y-axis is taken

through the focus, prove that the equation of the parabola is
y2 =4pr+4 p2.

Find the equation of the parabola, vertex at the origin,

axis coinciding with the z-axis, and passing through the

point (3, 5).

Find the equation of the parabola, vertex at the origin,

axis of curve coinciding with the y-axis, and passing through

the point (— 2, — 3).

A parabola opens out along the negative half of the z-axis.

Itsfocusisat (—3,0) and itslatus rectumis 12. Find the
equation of the parabola.

Prove that every parabola whose axis is parallel to the
y-axis has an equation of the form

y=az’+bz+e,

_ where @, b, and ¢ are constants and a > 0. [Hint: Find

the equation of the parabola whose directrix is y = & and
whose focus is (m, &+ 2 p) or (m, k — 2 p).]
N iw

Find the equation of the parabola, whose axis is parallel
to the y-axis and which passes through the points (0, 0)
(1,1) (2,4). (SeeEx.30.)
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Find the coordinates of the points of intersection of:

2. y'=4z, y—-z—-1=0.

33. 2= 16y, 3y—2z+5=0.

4. " =8z y=z+2

35.7°~8y=0, 2z—y—8=0.

54. An ellipse is the locus of a point in a plane such
that the sum of its distances from two fixed points in
the plane is a constant greater than the distance between
the two fixed points. Each of the
fixed points is called a focus (plural, P
focz). /\

If the foci are Fy, Fy and P is any
point on the ellipse, the definition £% B
requires that F.P + F,P = con- Fre. 71
stant greater than FyF,.

The general shape of the curve is readily determlned
In fact, a simple mechanical
device enables us to draw it. B p
Let two tacks be stuck in
the paper at points Fy and F, " /
and the ends of a string tied to 4.t 5 ¢ :
them. Draw the string tight
with a peneil point as indicated K B
in the figure. If the pencil be Fre. 7la
made to move on the paper,
keeping the string tight, it will describe a curve for
which F1P + F,P is constant, namely, the length of the
string; it will therefore, by definition, deseribe an ellipse.

We immediately conclude from the method of con-
struction that the ellipse is & smooth loop which is

4,

N
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symmetrical with respect to the line F.F; joining the
foci, and also with respect to the perpendicular bisector
of FoF1. The curve cuts FyF; in two points 4; and As,
called vertices, and it cuts the other axis of symmetry
in two points B; and B,.
" The undirected segment 4,4, is called the major axis
of the ellipse, the undirected segment B, B; the minor axis,
and the intersection of the two axes is called the center.
Let FoF, = 2 ¢ and FyP + F,P = 2 a where ¢ > c.
When the point P describing the ellipse is at A;, the
sum FyA; + FiA; = 2a. When P is at A,, the sum
F:A, + P14, = 2. '

Hence F\ A, = F:4,.
Therefore
FzP + FlP = F2A1 + FlAt_;‘: F2Al + FzAz = A2A1
= the major axis = 2 a.
That is to say, the semi-major axis is C4; = CA, =g

If the minor axis B, B, is denoted by 2 b, then the semi-
minor axis is CB;=CB,=b. e

Since CF, = ¢, we have
F2B1 + F1B1=2F1B1=2Cb,

or FiB=a, ﬂ \

and CFy" = FiB," — CB, _4:[ F: %T‘ LsX
or -

9 I=d-v \\‘/

an important relation,
which shows incidentally Fre. 72
*that a > b, since b > 0.
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The ratio ¢ is called the eccentricity of the ellipsé.
a

Eccentricity can be used as a measure of the deviation
of an ellipse from a circular form. Since ¢ < a, the

ratio 2 is less than 1.

Hence we have

(10) eccentricity e = 2,

(11) e<1.
From (9) ¢ = Va* — b,

12) .. e= Ve -V _ = (9)2
1] a

A circle is the limiting case of an ellipse whose foci
approach each other while the major axis remains con-
stant. Hence b approaches ¢, and e approaches 0. A
circle is often called an ellipse of eccentricity 0.

55, Geometric construction. If the vertices and
foci of an ellipse are given, g,
points on the ellipse are easily
determined. Take any ar-

bitrary point P between Fi 4, Fy P F 4
and Fb,. With F; as a center

and PA; as a radius describe w
arcs above and below the given ",

line. With F, as a center and Fre. 73

P4, as a radius deseribe arcs ‘
above and below the given line intersecting the first set

» \c
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of arcs in points H; and H,. These points are on the
required ellipse since

H1F1+ H1F2= PA1+P.A2=20,

Moreover, four points can be determined for each posi-
tion of P by merely reversing the roles of F; and F,.

Exercises

1. The major axis of an ellipse is 10 in. and the minor axis is
6in. Find the distance between the foci.

2. Construet 12 points on the ellipse for which ¢ = 2and a = 6.
3. Construct the ellipse whose semi-axes are 2 cm. and 3 cm.

4, The semi-major axis of an ellipse is 6 em. and the eccen-
tricity is 4. Find the minor axis and the distance between
the foei.

5. The eccentricity of an ellipse is € and the distance between
the foci is 12 em. Find the semi-axes.

6. What is the eccentricity of an ellipse whose major axis is
twice its minor axis?

T. The foci of an ellipse are at (2= 3, 0) and one vertex is at
(5,0). Find the eccentricity and semi-minor axis.

56. The equation of the Y
ellipse.* Center at origin.
If we choose the majer axis
of the ellipse to lie along the Plz,y)

z-axis with the center at the ori-
gin, the equation of the ellipse /

: . 2 ~>X
can be derived as follows: (=60 0 ©0)

Let P (z, y) be any point
on the ellipse and let the focl
be F;(—¢, 0), Fi (c, 0). Fic. T4

* See Ex. 3, p. 37.
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From the definition of an ellipse

(13) ~ PF,+ PF,=2a.
Hence

\/(x—c)2+y2+\/(x+c)2+y2= 2q.
Transposing the second radical and squaring, we have

@ F' =40 40Vt "+ + ot o4
(14) or aViE+o)'+y =+
Squaring again, we have
@@+ 0+ % =t + 2 g% + e,

or (@" = ) 2* + o%? = a? (o* - .
But o’ —ct=p
b2x2 + a2y2 —_ aZbZ’
xZ y2
Y-t
(15) or . + ®

- We have shown that if the coordinates of a point satisfy
(13) they satisfy (15).  We must now show that if the
coordinates of a point satisfy (15) they satisfy (13) and
hence the point is on the ellipse. Assuming the coordi-
nates of a point satisfy (15), we have, by retracing our
steps and remembering that when we extraet the square
root there are two signs, the four equations,

=Ve -0y Ve T 124
These four eqﬁations can be denoted as follows:
(@ + + ® - +
© + - @ - -
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We wish to show that (a) is the only one of the four
equations which is true.

Equations (b) and (c) state that the difference of the
distances PF; and PF, is equal to 2 a and hence greater
than the third side of the triangle PF.F,, namely 2 c.
This is absurd, for the difference of two sides of a triangle
is always less than the third side.

Equation (d) is false, for the left-hand member is al-
ways negative and hence can never equal the positive
number 2 a. Hence if the coordinates of a point satisfy
(15) they satisfy (@) which is the same as (13).

Hence the equation of the required locus is

2 2
:x-i + :y—‘) =1,

=]

57. Focal radii. The segments PF; and PF,, where
P is any point on the ellipse, are called the focal radii
of the point P.

Y

P(a,y)

NG

F16. 75

From equation (14) we have,

'V(x+6)2+yé=a+%x-
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But e =

(16) .. PER,=V(E+c'+y'=a+er

If, in deriving the standard equation we had trans-
posed the first radical and squared, we would have

eV - +y'=a —c.
(17) Hence PFi= V(z —¢)* + 4’ = a—(—jx=a—ex.

ISR

Exercises

1. Find the equation of the ellipse, whose semi-axes are 3 in.
and 2 in.

2. What is the eccentricity of the ellipse of Ex. 1?

3. Find the coordinates of the foci, the eccentricity, and sketch
the ellipse whose equation is 16 2* + 25 3* = 400,

4. Same as Ex. 3, for the ellipse whose equation is
42"+ 25 4% = 100.
5. If the foci of an ellipse are at 0, —¢), (0,¢), the semsi-

major azis is @ and the semi-minor awis is b, prove that the
2 9

equation, of the ellipse is -;%+ Z—g: 1, where b + ¢’ = @
6. Sketch the following ellipses, and on the figure mark the
coordinates of the foci and vertices:
(@ 42°+9¢9"= 36. () 942+ 44 = 36.
©) 252" +4y" =100,  (d) 44+ 25 y* = 100.
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58. Directrices. Latus rectum. From relations
(16) and (17) we have

7= a — er,
ry =@ + ex.
Y
ds d,
Qs P &
F1a. 76

If we write the first of these in the formr, = e (g - :c) )
and denote by d; the line whose equation is z = %: then

Z— — 2z is the distance PQ; from P to the line d; and
r = F1P= 6’PQ1.
Similarly, 7, = F,P = ¢ k;j” + :L‘): which shows that if

d» denotes the line whose equation is 2z = —~ S; the
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distance 7y = FoP = e-Q,P, where QP is the distance
from d, to P.

The lines d; and d, are called the directrices of the
ellipse; each directrix being associated with one of the
foei, d, with F; and d, with F,. In fact, the symmetry
of the curve assures the existence of two directrices,
after the existence of one has been established.

What we have proved can be stated as follows:

If P is a variable point on the ellipse, the focal radius
to either focus is equal to the eccentricity times the dis-
tance of P from the associated directrix, i.e.,

F1P=e'PQ1;F2P=e'P02.

This property of an ellipse is often used to define the
ellipse.

The chord drawn through a focus perpendicular to
the major axis is called the latus rectum and its length
is also called by the same name.

If the equation of the ellipse is b%* 4 a’® = a’b? the
equation of the line through the focus (¢, 0) perpendicular
to the major axis is £ = ¢. It meets the curve in points
whose ordinates are given by

be? + oy = a2

a’t’ = b b (a* - Y

Y= . .
a a
But from (9), o’ —c* = b
4 b2

Hence 2=—or = 4 —.
v=aoy a

2

(18) .. The length of the latus rectum is 20
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Example. Given the ellipse whose equation is

41+ 9y* = 36.
Find: »

a) The semi-axes.

b) The coordinates of the foci and the vertices.
¢) The eccentricity.

d) The equations of the directrices.

¢) The length of the latus rectum and the coordinates
of its end points.

f) A sketch of the curve.

Solution: Writing the equation in standard form we
have

aal=9, ’=4. - a=3,b=2.
Semi-major axis = 3, semi-minor axis = 2.
b P=a®—b=9—-4=5 = V5.
The coordinates of the foci are, (— V5, 0), (V5, 0).
The coordinates of the vertices are, (= 3,0), (3,0).

c) e= ‘- Y_g
‘ a 3
¥ d) The distance from the center to the directrix is
a_ 9 9
PR - 5 5,
5 e
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. The equations of the directrices are
9
= - g'\/g, r= 5\/5.

20" 8
¢) The length of the latus rectum = 7 "3

The coordinates of the end points of the latus rec-
tum are ("" \/5) %); ("" \/5) - %')7 (\/-5_3 %)’
(V5 -4

b))
Y
z=—gv/5— z=%f5—
(_ ﬁ,%) ( ,‘3’) :
(—s,o) =v50| (50 \eo X
F, O/l/ 1
(V5,4
Fia. 77
Exercises
For the following ellipses find:

a) The semi-axes. b) The coordinates of the foci

and the vertices.
¢) The eccentricity. d) The equations of the di-
rectrices,
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¢) The length of the latus rectum and the coordinates of the
end points.

f) Sketeh of curve.

1. 22 +44 =16 2. 92’4254 = 225
3. 4274+ ¢ =36 4, 92" +16y° = 144,
5. 427 +3y = 1L 6. 122+ 5,5 = 23.
T. 425+ o' =16. 8 252+ 9y° = 225.
9, 2*+4y" =36 10. 162°+ 94% = 144
11. 327 +44' = 0. 12. 100 z* + 2255* = 324.

13. Find the focal radii for the point (3,2) for the ellipse whose
equation is 2* + 4 4* = 25.

14, Find the equation of the ellipse whose vertices are the
points (—3,0), (3,0) and which passes through the point
(21 1)' i

15. Find the equation of the ellipse whose vertices are the
points (0, —4), (0,4) and which passes through the point
2, 3). '

16. Find the equation of the ellipse whose foci are the points
(—=3,0), (3,0) and whose minor axis is 8.

17. Find the equation of the ellipse whose foci are at the points
(—3,0), (3,0) and whose major axis is twice the minor
axis.

18. Find the equation of the ellipse, foeiat (— 3, 0), (3,0), and
eccentricity 2.

19, Find the equation of the ellipse, verticesat (0, — 5), (0, 5),
and eccentricity 4.

20. Find the equation of the ellipse, fociat (— 2,0), (2, 0), latus
rectum 6.
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21, Find the equation of the ellipse whose eccentricity is 4, and

22.

23.

25,

26.

the equations of whose directrices are 2 = 4, z = —4.
Find the equation of the ellipse whose eccentricity is £ and
the equation of whose directrices arey = 5, y = — 5.

Find the coordinates of the points of intersection of
2+ =25 21 +y*=41. Sketch the curves.

. Find the coordinates of the points of intersection of

2+ 1y’ =16, 42"+ 4" = 16. Sketch the curves.

Find the equation of the ellipse whose center is at (0, 0)
and which pass through the points (— 2, — 2), (—3,1).

If b approaches a as a limit, what curve does the ellipse
approach as a limit? What is the limit of ¢? of ¢? of
2
20, o
a e

59. A hyperbola is the locus of a point in a plane such

that the difference of its distances in either order from
two fixed points in the plane, called foci, is a positive
constant less than the distance between the foci.

F16. 78
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If the foci are F,, Fy, the moving point P, and if the
constant be denoted by 2 a, the definition requires that

PFz'—PF1=2a,
or PF, — PF, = 2q.

If we denote the length of the segment FiF. by 2 ¢ then
2 ¢> 2 a by the definition of a hyperbola. This agrees
with the plane geometry theorem, “The length of any
side of a plane triangle is greater than the difference of
the lengths of the other two sides.”

The following simple mechanical device makes it pos-
sible for us to draw a hyperbola. Place pegs or thumb
tacks at the foci F; and F,. Pass a string over F, and

F16.79

around F; and let the ends be held together at H. If a
pencil be tied to the string at P and if the string be kept
taut by the pencil, then if the ends be pulled in or let
out together, PF, — PFis constant and hence P describes
a hyperbola.’ ‘
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60. Geometric construction of a hyperbola. Iet

Y
P
B,
AN F 9y
5 .
B,
PI
Fia. 80

Fy, F, be the foci and draw the line through them. Let
0 be the mid-point of F.F, and let 4,, A5 be the two
points on the line through F; and F, on either side of 0
at a distance o from 0. The point 4, is then a point of
the hyperbola, for AiFy = ¢ — a and A,F, = ¢ + g, so
that AiFy — A\Fy =20, Similarly, 4, is a point on
the locus. Now let  be any point to the right of F; on
the line through F; and F,. Then A, — AQ =
A4y =2a. If then, with F, as center and AQ as
radius a circle be described, and with F, as center and
4:Q as a radius another cirele be described, the two
circles will intersect in P and P’, which are points on the
hyperbola. With the same radii and interchanging the
centers F; and F, two more points can be found. From
every position of Q we thus get four points of our curve ;
by choosing various positions for Q any desired number
of points of the hyperbola can be located.

This construction shows that the hyperbola consists
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of two branches, each symmetric with respect to the
line F,F,, and each the reflection of the other in the
perpendicular bisector, ByB; of F.Fi. The hyperbola
as a whole is then symmetric with respect to both of
these lines, which are appropriately called axes of the
curve. The line through F, and F; cuts the curve in
the two vertices A4; and A,. The undirected segment
4,4, is called the transverse axis of the curve. It is
of length 2 a. The other line of symmetry B,B; has
no point in common with the curve. However, the
term conjugate axis will be applied to the undirected
segment B.B;. The points B; and B, are so located
that OF, = OA, + OB: and B,0 = 0B,. We shall
denote the length of B0 = OBy, by b.

\
. |
R4, 0| A\F

Fire. 81

(19) Therefore c’=a+b.

From (19) it follows that b may be less than, equal to,
or greater than a.

The ratio 2 is called the eccentricity of the hyperbola.
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Since ¢ > a, the eccentricity is always greater than one.

Hence,
(20) eccentricity e = é,
(21) e>1.

Exercises

1. The transverse axis of a hyperbola is 10 in. and the con-
jugate axis is 12 in. Find the distance between the foci.

2. Construct 12 points on the hyperbola for which ¢ = 6,
a=4

3. The semi-transverse axis of a hyperbola is 6 ¢m. and the
eccentricity is §. Find the conjugate axis and the dis-
tance between the foci.

4. The eccentricity of a hyperbola is § and the distance be-
tween the foci is 10 em. Find the semi-axes.

5. What is the eccentricity of a hyperbola whose transverse
axis is equal to its conjugate axis?

6. The foci of a hyperbola are at (4 3, 0) and one vertex is at
(2,0). Find the eccentricity and the semi-conjugate axis.

61. The equation of the hyperbola. Center at origin.
The center is at (0, 0) and let the foci be F; (c, 0),
Fy(—¢0).

Let P (z, y) be any point on the hyperbola From
the definition of a hyperbola

(22) PF PFz 2 a,

or
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(23) PF, — PF,=2aq.
Algebraically, we have
Ve -+ =Va+ei+y'=2a or
Ve+'+7-Vie-0o'+4 =2

If we clear these equations of radicals as we did in
the case of the ellipse, § 56, we have, recalling that

b= ¢~ a,

X}

PRI

g

(24) —h=1

If the coordinates of a point P (z, y) satisfy (24) we
must show they satisfy either (22) or (23). Assuming
the coordinates of a point satisfy (24) we have, by re-
tracing our steps and remembering that when we ex-
tract the square root that there are two signs, the four
equations

Ve +o)'+y Ve -0 '+ 1P =2a

These four equations can be denoted as follows:

9+ - )~ +

9+ + D - -
Equations a) and b) are precisely equations (22) and
(23). Equation c) is false, for it says the sum of the two
sides PF, and PF, of triangle PF.F, is equal to 2 g,
which by hypothesis is less than 2 ¢, the third side of
the triangle, or in other words, we have the sum of two

sides of a triangle less than the third side, which is im-
possible. Equation d) is false, for it says the sum of two
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negative numbers is equal to a positive number. Hence,
if the coordinates of a point satisfy (24) they satisfy (a)
or (b) which is the same as (22) or (23). Therefore the
equation of the required locus is

oy

21?:

2

1

Q

62. Focal Radii. The segments PF, and PF,, where
P is any point on the ellipse, are called the focal radii
of the point P.
Proceeding as in the case of the ellipse, § 57, we have,
when P is a point on the right-hand branch,
PF. s = € + a,
PF 1= €X — a.

When P is a point on the left-hand branch,
PF, = a — ex,

PF,= —q —ex.

Exercises

1. Find the equation of the hyperbola whose semi-axes are
3 in. and 4 in. :

2. What is the eccentricity of the hyperbola in Ex. 1?

3. Find the coordinates of the foci, the'eccentricity, and
sketch the curve, of the hyperbola whose equation is
16 2° — 25 3% = 400.

4. Same as Ex. 3, for the hyperbola whose equation is
42"~ 254" = 100.



CONICS 149

$. If the foci of o hyperbola are at (0, —¢), (0, c), the semi-

magor axis 1s d, and the semi-conjugate axis 1s b, prove that
2 2

the equation of the hyperbola-zsy— - g— =1, where ¢’ = a* + b%.

6. Sketch the hyperbolas with the followmg equations:
a) 427-9y" = 36.
b) 945 —44 = 36.
¢) 25yt — 44 = 100,
d) 49°— o= 16
63. Directrices. Latus rectum. Proceeding as we

did in the case of the ellipse (§ 57), the focal radii r;, and
75 can be written

) a
n=e —a=¢({T— |
(4

(25) 7’2=6m+a=6.[z+e:

F )4, 0] Al

Fia. 82
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But = ~  is the distance QP of P from the line 4,
. a a. .
whose equation is z — -= 0;and = + s the distance

Q2P of P from the line d» whose equation is z + g = 0.

Equations (25) then state
rn= F1P = e'Q1P,
(26) Ty = FgP = €'Q2P.

The lines d; and d; are called the directrices of the
hyperbola, each directrix being associated with one of
the foci; d, with Fy, and d; with F,. From the derivation
equations (25) hold only when 7, >y, that is to say,
when 2z > 0. But the symmetry of the curve with re-
spect to the y-axis insures that the relations hold on
the other branch of the hyperbola, namely, when z < 0.
What we have proved can be stated as follows:

If P is a variable point on a hyperbola, the focal radius
to either focus is equal to the eccentricity times the
distance of P from the associated directrix; i.e., FlP =
e- le and F 2P e QgP

The chord of the hyperbola drawn through a foeus
perpendicular to the transverse axis or its length is
called the latus rectum. It is left to the student to

2

. . 2
show that its length is —£~'

64. The asymptotes. We are already familiar in a
general way with the shape of 4 hyperbola We know
it consists of two branches, and that it is symmetric
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with respect to two perpendicular lines. There is one
feature of the shape of this curve which requires more
careful consideration. Let the equation of the curve

Y
9
d.z.xQ /&f
9§ b@
g p,
0 X
Fic. 83

be b*z* — a’y® = a’® and let us consider the line OP,.
joining the center O to a point P; (z;, y,) on the curve.
The slope m; of OP; is y,/x;. Since P, is on the curve,

@n bz — oy’ = o’
or

.
n = e (@ — d),

from which
¥ b_z.(l - =
x12—a2 ’
so that
2
m = g}-——' :i:'lz 1—2-2'
I a Ty

To fix ideas, let us now suppose that P; is in the first
quadrant, and that Py recedes indefinitely on that branch
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of the curve. The slope m; of OP; is positive, and as 2,

increases indefinitely the value of m; approaches more
2

b . a
and more nearly the value — since =3 becomes more and
a 1

more nearly equal to zero. The line OP; then approaches
a limiting position of the line whose slope is b/a and
whose equation is

(28) bz — ay = 0.

Similarly, if P; is on the part of the eurve in the
second quadrant and recedes indefinitely in this quad-
rant, the line OP,; approaches a limiting position whose
slope is — b/a and whose equation is

(29) bs + ay = 0.

The two lines (28) and (29) have a special relation te
‘the hyperbola. Let d; and d; denote the distances of
P; from these lines. Then

dl _ bx1 - Oy d bx1 + ay1
= =
@ + v V& +b
Y '
A
Q
/d\)’//
Wyp
dy
0 =X
é.
%
%
So

Fic. 84
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The product of these distances is

by —ay botap  bVal-dy’ o
(30) dib= : SR I R B

from (27). As P; moves on the curve, the product dids
remains constant. Now let P; lie in the first quadrant
and move out along the curve. It now surely recedes
indefinitely from the line bz 4 ay = 0 which lies in the
second and fourth quadrants. When P; recedes in-
definitely from this line it approaches more and more

closely the line bz — ay = 0. More precisely, if the
272 2

Za—ga-_—*_-zg)— be denoted by %%, we have d; = .
Hence, by letting P; recede far enough, that is, by mak-
ing d; sufficiently large, d. can be made as small as we
please. We get an exactly similar situation if P; moves
out on the hyperbola in any of the other quadrants.

If a fixed straight line is so related to an infinite
branch of a curve that as a point on the curve recedes
indefinitely along the infinite branch, the distance of P
from the line approaches zero, the line is called an
asymptote* of the curve.

A hyperbola has two asymptotes.

We have also proved that the product of the distances
of any point on a hyperbola from its asymptotes is
constant.

constant

2 2
It should be noted that the asymptotes of % - % =1
' a
2 2

have as equations the factors of g;— %5, placed equal

to 0.
*See § 23.



154 CONICS

65. Construction of the asymptotes. Through the
extremities of the major and minor axes, draw lines
parallel to the other axis, thus forming a rectangle. The
diagonals of the rectangle, produced, are the asymptotes,

.. b
since they pass through the origin and have slopes =+ .

-
<

VFIG. 85
Since (see Fig. 85) 04, = a A:M = b, it follows that
OM = ¢, since from § 60, a +b2 = ¢

. We can locate the foci by drawing a circle, center O,
radius ¢, and finding the points where it meets 4,4,
prolonged.

Example Given the hyperbola whose equation is
4z’ -9y’ = 36. Find:

a) The semi-axes.

b) The coordinates of the foci and the vertices.

¢) The eccentricity.
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d) The equations of the directrices.
¢) The equations of the asymptotes.

f) The length of the latus rectum and the coordinates
of the end points.

g) Sketch of curve.
Solution: Writing the equation in standard form
we have

xz y2

T Vo

9 4
Q) =9 =4 . a=3 b=2 .
D) =a+b =13 ¢c=VI3.

Coordinates of foci are (— V13,0), (V13,0).
Coordinates of vertices are (— 3,0), (3, 0).

¢ V13
€) e=—=——:
a 3
d) Distance from center to direetrix is
a 9 9
Ve BY®
.. Equations of directrices are
LoV 9V
13 13

¢) The equations of the asymptotes are the factors
of 4 2* — 94 placed equal to 0.

22 -3y=0, 224+3y=0.
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2

2

2
/) The latus rectum = .

The coordinates of the end points are (— V13, %),

(- VI3, - ), (VI3,9), (V13 -9 |
g) Layoff OA; = 04, = 3,0B,= 0B, = 2 and con-

struct the rectangle and asymptotes as deseribed
in §65. The curve can then be readily sketched
by noting that A, and A, are the vertices.

Y

A
=2

Vvis

X))
17

-V1334)

=—-5VI3

Bl 8

A4,

(\/” 4+
151

~VE, -A)

810)

M“ 3,0) X

WE-H

R
|

%,
o

Fre. 86

Exercises
For the following hyperbolas find:
@) The semi-axes.
b) The coordinates of the foci and the vertices,
¢) The eceentricity.
d) The equations of the directrices.
e) The equations of the asymptotes.
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f) The length of the latus rectum and the coordinates of the
end points. ‘
g) Sketch of the curve.

1. 9271647 = 144. 2. 162" —9y° = 144
3. 42794 =36 4 - =4

5. 252" — 1444° = 3600. 6. 4z°—9y =25
7. 164" — 2 = 16. 8 16¢y°— 92" = 144.
9. o' —42"=36 10. 9y - 252" = 225.
1. - F=16 12, 44'— 92 =25

13. Find the equation of the hyperbola, center at origin, trans-
verse axis = 8 along the z-axis, conjugate axis = 6.

14. Find the equation of the hyperbola, foci at (& 5,0). Con-
jugate axis = 8.

15. Find the equation of the hyperbola, center at origin, one
foeus at (5, 0), eccentricity = $.

16. Find the equation of the hyperbola whose vertices are
(+ 4, 0) and which passes through (5, 4).

17. Find the equation of the hyperbola whose foci are (+ 3, 0)
and whose conjugate axis is 4.

18. Find the equation of the hyperbola whose foci are (= 3, 0)
and whose transverse axis is twice its conjugate axis.

19. Find the equation of the hyperhbola, foci at (+ 3, 0), eccen-
tricity $.

20. Find the equation of the hyperbola, vertices at (0, & 5), ec-
centricity 4.

21, Find the equation of the hyperbola foci at (& 2, 0), latus
rectum = 6,
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22.

25.

26.

2.

66. Conjugate hyperbolas.

CONICS

Find the equation of the hyperbola, center at the origin,
whose eccentricity is § and z = 2 the equation of a di-
rectrix.

. Find the equation of the hyperbola, center at the origin,

whose eccentricity is § and y = 3 the equation of a directrix.

. Find the equation of the hyperhola whose asymptotes are

2z—y=0, 2z+y = 0and which passes through (3, 4).

Find the equation of the hyperbola whose asymptotes are
3z—y =0, 3z+y = 0and one of whose vertices is (4, 0).

Find the equation of the hyperbola whose asymptotes are
£—=3y=0, z+ 3y = 0and one of whose foci is (4, 0).

If the ratio of the conjugate axis to the transverse axis is £,
prove ¢’ = 1 + k.

A given hyperbola al-

ways determines another, its so-called conjugate hyper-
bola, the transverse axis of which is the conjugate axis of

Fia. 87

the given one, while its conjugate axis is the transverse axis
of the given one. Two conjugate hyperbolas have then
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the same asymptotes. If the equation of a hyperbola is
given, the equation of its conjugate is obtained by chang-
2 2

ing the sign of the constant. Thus, if z; - % = 11is the
) 7 ,yz
equation of the given hyperbola, ik Tl 1 is the

equation of the conjugate hyperbola.
The equations of the asymptotes for both hyperbolas
are

= 0.

SRS

L
b=

ST

+

o=

67. Equilateral or rectangular hyperbola. A hyper-
bola in which the transverse and conjugate axes are
equal is called equilateral. The condition b = a there~
fore gives as the equation of an equilateral hyperbola,
center at origin and transverse axis along the z-axis,

(31) 2t -yt =d%
Its conjugate hyperbola has the equation
2 —yt= —
while the equations of their common asymptotes are

given by
-yt =0.

The latter are at right angles to each other. Conversely,
the slopes m;, m, of the asymptotes of the hyperbola

z 2 b b
-5._—2=]_a,rem1=——y My = ——+ Iftheseareper—
o b a a

pendicular
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This gives b= a®. A hyperbola whose asymptotes
are perpendicular is called rectangular. We have just
seen that a rectangular hyperbola is equilateral, and
conversely.

If the asymptotes of a rectangular hyperbola are
taken as coordinate axes, the equation of the hyperbola
assumes an especially simple form. The distances,
dy, dy of a point P (z, y) from the asymptotes are now
z, ¥, respectively. Equation (30) gives in this case

a’v?

xy:az-l-bz’

or since b = g,

(32) Ty =

If the hyperbola lies in the first and third quadrants, zy
is positive; if the hyperbola lies in the second and fourth
quadrants, zy is negative. Hence, the equation of a
rectangular hyperbola re- v
ferred to its asymptotes as
coordinate axes is
02

1y = 5
if the curve is in the firstand — —~_0 >X
third quadrants; and is

w?—ﬁ

Fie. 88
if it is in the second and fourth quadrants.
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Find the equation of the hyperbola conjugate to each of

CONICS
Exercises
the following:
192 -164"+ 144 =0.
3. 2y = 10.

2y =4 -1).
4 zy=—"F

5. Find the equation of the hyperbola conjugate to the hyper-
bola whose asymptotes are 22—y =0 and 22+y =0
and which passes through the point (2, 6).

6. Find the equation of the hyperbola whose asymptotes are
the coordinate axes and which passes through the point
(=2, —4). What are the coordinates of its vertices?

7. A hyperbola has its axes lying along the coordinate axes
and passes through the points (2, 0) and (4, 4); find its

equation.

8. What is the eccentricity of an equilateral hyperbola?

68. Alternate definition of a conic. A conic is either
a circle or the locus of a point such that the ratio of its
distance from a fixed point in the plane, called the focus,

to its distance from a fixed
line in the plane not passing
through the focus, called the
directrix, is equal to a positive
constant & which is not zero.
Take the directrix as the
y-axis and the z-axis to be the
perpendicular to the y-axis
which passes through the fo-
cus. Let OF = p, and let

Y

D —7P(w,y)
X

0 F(p,0)

Frc. 89

P (z, y) be any point on the Iocus. Then
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But PF=V(z—-7p)'+1y’, PD=z.
Vi =)ty _

X

k.

Squaring and simplifying, we have
L=k +y" ~2pz+p' =0,

as the equation of the desired locus. From this equa-
tion we see that;

1. When k = 1, the locus is a parabola.
2. When % < 1, the locus is an ellipse.

3. When % > 1, the locus is a hyperbola.
In other words, our locus is the general equation of a
conic.

We shall now show that the constant £ is the eccen-
tricity. When £ = 1, it is evident from § 50 that the
eccentricity is k. When & <1, by completing the square
the equation can be written in the form

p 2
x_
( 1—k2> 2
¥ -1

rE + e
(1 —kY? 1 -k
. _ Dk Pk _ K
L. ¢ pk? ok
But the eccentricity = IR k.

It is left as an exercise for the student to prove that the
eccentricity is & when k> 1.
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MISCELLANEQUS EXERCISES

. Find the equation of the parabola, vertex at origin, axis of

curve along the y-axis, and passing through (3, 4).

. Show that the latus rectum of an ellipse is 20 V1-— ¢

and 24 (1 = ¢).

. Prove that the minor axis of an ellipse is 2 mean propor-

tional between the major axis and the latus rectum.

. Prove that in an ellipse the major axis is a mean propor-

tional between the distance between the foci and the dis-
tance between the directrices.

. Find the equation of the equilateral hyperbola whose foei

are (+ 3, 0).

. Find the equation of the equilateral hyperbola, center at

the origin, cutting the z-axis, and passing through (5, 3).

. Prove that 2*+ 33’ =24 and 32— y® = 12 have the

same foei.

. Prove that all of the hyperbolas of the system 4 2% — 9% = &

have the same asymptotes.
2 2

. Prove that the vertices of the hyperbola zg— ‘1—;—2 = 1 sub-

tend a right angle at the points (0, = b), when and only
when the hyperbola is rectangular.

Prove that in a hyperbola, an asymptote, the line through
a focus perpendicular to the asymptote and the directrix
corresponding to the focus are concurrent.

Prove that a line through the vertex of a parabola and
making with the axis of the curve an angle whose tangent
is 2, passes through an end of the latus rectum.



CHAPTER VII
TANGENTS

69. Consider any curve and a fixed point Pionit. Any
line through P; and some other point P, on the curve is
called a secant. If P, moves
along the curve toward Pj,
the secant will rotate about
Py, and as P, approaches P,
the secant will usually ap-
proach a limiting position,
which is defined to be the
tangent to the curve at Pi.

If P,P, does not approach
a limiting position the curve Fre. 90
has no tangent at P;.

In any particular case we find the slope of the secant
through P; and a second point P.. The limit of this
expression as P, approaches P; along the curve, pro-
vided such.a limit exists, is called the slope of the tan-
gent at P..  The slope of the tangent to the curve at any
point P is called the slope of the curve at P.

The method of finding the equation of the tangent
to a curve at a particular point will be illustrated by
several examples.

Ezample 1. Find the equation of the tangent to
y = 2% at (z;, yo).
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Solution: We must find the slope of the tangent at
(21, y1)- To this end we shall proceed as follows.
Let a secant through P; cut v

the curve in the point P,.
PlQ = h, QP2 = k, then the
coordinates of point P, are

(@ +hy +F).

In the first column we have
the analytic statement corre-
sponding to the like numbered- 5
statement in the second column. /|

Ly +k=(x +h)?

= x12+ 2hx1+h2
2. h = 1312.
3. k=2hx1-l-h2,

k

A = 2$1+h
4. m=2ux.

If

Fre. 91

1. Since P, is on the curve its

coordinates satisfy the given
equation.

. Since P, is on the curve its

coordinates satisfy the given
equation.

. Subtracting (2) from (1) énd

dividing by h, we have the
slope % of the secant PyP,.

. As P, approaches P; along
‘the curve, b and %k approach

zero. The limit of % as h

approaches zero,* is the slope
of the tangent line at P;.

. The equation of the tangent at P, is

y—1=2z(x— 2.
* The students should note that when % approaches zero, k does also.
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If we wish the equation of the tangent at a particular
point, say, (2,4) we have

m=2z =4
The equation of the tangent is, y — 4 = 4 (z — 2),
or y—4z+4=0.

Ezample 2. Find the equation of the tangent to
3z — 29 = 10 at the point (2, 1).

Solution: We shall first find the slope of the tangent
at any point (21, y1) as we did in Example 1.

Let P (23, 41) and Py (z1 + &, 41 + k) be two points
on the same branch of the curve.

L3 (a? +RP-20@+k)°=10, 1, Since P, is on the curve
32 +6aih -2l' SR -2y~ its coordinates satisfy
dyik - 25 =10. the given equation.

2. 32— 247 =10. 2. Since Py is on the curve
its coordinates satisfy
the given equation.

3. 8zh 3K —4yk -2 =0, 3. Subtracting (2)from (1),
hGz+34) —k(@y+2k)=0.  simplifying, dividing by

k
(6x1+3h)—}—b(4y1+2k)=‘0,

I_C__611+3h_
B 4y+2k

h, solving for %, we have

the slope of the secant
P,P,,
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PRPLL 4. As P, approaches P,
T dp 2y along the curve, h and &
approach zero.  The

K
limit of 7 8 happroaches

zero is the slope of the
tangent line at P,.

At the point (2, 1), m = 3.
Hence, the equation of the tangentisy — 1 = 3 (z — 2),
or y—3xz+5=0.
Ezample 3. Prove that the equation of the tangent to
y'=4pzat (@, y) isyy = 2p(x+ ).

Solution: Proceeding as in the last two examples we have

L (y+ k) =4p(z+ h),
2. v = 4 pzy.,
3. 2ky, + I = 4 ph,
k(2y1+k) =4ph:
k__ 4
h 21+ k
4. Hence m = ﬂ: 2_2
2?/1 i

Therefore the equation of the tangent is

2p
Yy—1h =—( — ),
0
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or gy — 1y = 2px — 21
From (2) yi = 4 pxy; therefore

yy — 4pr = 2pz — 2pm,

or vy = 2p@&+ ).

Exercises
Find the slope of the following curves at the point (z1, y1):

Ly =245 2y=0~3z+1
3.y =22"—z-1 4,/ =2z-1
5.2 —2y="1. 6. 24 +3y=8.

Find the equations of the tangents to the following curves at
the points indicated:

T.y=22" (1, 2. 8.y=32+1, (1,4).
1 3
Ly == . 10. y = 6, 3).
Sy= 2 %) Oy=__5 63
y=2—4g, (@, 0).

2. y=2-324+6z-1, (1,3).
13. If » is a positive integer, prove that the slope of the curve
y = ca™ at point (z1, 1) is ena™ 2,
70. Tangents to a conic. The following results are
given without proof.

I. The slope of the parabola y* = 4 pz at the point
(T, 1) is
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The equation of the tangent at (zy, y1) is
ny=2p(x+ x).

2

II. The slope of the ellipse "Z—;—I— %5 = 1 at the point

(z, 91) is
b2$1
m = — __
a ?/1

The equation of the tangent at (z, y) is

+"-’l-;22-1.

III. The slope of the hyperbola %—- ?—;—2-= 1 at the
point (z1, 41) is

The equation of the tangent at (21, ¥1) is
nx ny
2 B L
IV. The slope of the hyperbola zy = £ at the point
(1:1: yl) is
Y

m= —=
Ty

The equation of the tangent at (1, y,) is
Wt+ny=2 k.

These formulas for tangents are easily remembered
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if one notices that they can be obtained from the given
equation of the curve by replacing

z* by oz,
y* by yw,

z+ 2
2

z by

H

y+y1,

b
Z/yz

u hy w

the constant being left unchanged.

Exercises

Find the equation of the tangents to the following curves at
the points indicated.

La+4/ =2, 2,2. 24'=8z 2, 4).
3.5°=—4y, @-1. 42-49=5 (3 2.
5.0 +b=¢, (e, ). 6. A — By =0, (z, ).
T AP BP=C, (wyy). B8 ay=8, 4 9).

71. Normals. The normal at any point of a curve is
the line which is perpendicular to the tangent at that
point.

The equation of the normal can always be found by
writing the equation of the tangent and then writing
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the equation of the line perpendicular to the tangent
passing through the point of contact.

Ezample. Find the equation of the normal toy® = 4 px
at the point (zy, 41).
Solution: The equation of the tangent is

vy = 2p (x+ ).

= Slope of tangent = 29,
hn
The equation of the normalisy — g, = gy.l_ (@ — 7).
p
Exercises

Find the equations of the normals to:
1.4 =8zat 8 8).
2.4 227+ 14=0at (3, - 2).
3. 16 2° + 254" = 400 at (3, 18).

2 2

r Y

4 ;5-{- il 1 at (23, 11).
2 2

5.%—%=1at(z1,y1)

72. Subtangents; subnormals. The lengths of the
projections on the z-axis of the segments of the tangent
and normal included between the point of contact and
the point of intersection with the z-axis, are called the
subtangent and the subnormal.
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Prove for an ellipse, at the point (1, ¥1)

L X
/ Subtangent Subnormal
Fia. 92
2 2
a —n
subtangent = ’
I1
b2
subnormal = |- |-
a
For a hyperbola
2 2
a — I
subtangent = -
1

2
subnormal = > Zy] -

For a parabola

subtangent = |21, |,
subnormal =|2p |-

73. The tangent to a conic in terms of its slope. The
equation of any line with slope m may be written

y = mz+ k.

We now wish to determine the values of & for which
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the line will be tangent to the given conic. Every line of
the system will in general cut the conic in two points.
If the points are coincident, then the line is tangent.
Therefore we must solve the equation of the line with
the equation of the conic and impose upon the solution
the condition for equal roots. (See §2.)

Ezample 1. Find in terms of the slope m the equations
of the tangents to

2 2
Solution: The equation of any line with slope m is
y=mz+ k.
Solving with the given equation we have,
b’z* + a® (mx + k)* = a®?,
or
O+ a’'m®) 2* + 2 a’mkz + (a’k* — o’ = 0.

The condition for equal roots is that the diseriminant be
equal to zero. § 2. ‘
Therefore,

4 a*'m’k? — 4 (b2 + o*m?)(a’k* — %) = 0,
which when simplified and solved for &, gives,
k= +Vam®+ b
. The equations of the tangents are
y=mx+Vdm® + b

If @ = b = r, the ellipse is a circle of radius 7. Hence
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the equations of the tangents to the circle 2° + y* = 7?

are
y=mr rvm'+ L

It is left as an exercise to prove that the equations of the

2 2

T
tangents with slope m to the hyperbola i %5 =1 are

y=mx+Vm' - b

and to the parabola y* = 4 pz,
P

y=mx+ ;1‘ |
Ezample 2. Find the equations of the tangents to
4274 9y* = 36 parallel to3z —y=7.
Solution: The given equation is %‘-I— % =1 and
a=3,b=2. Theslope of the given line, and therefore

the slope of the required line, is m = 3.
Hence the equations of the tangents are from Ex. 1

y=3z+V(QE)'G)°+ 2}
or y=3x:l:\/8—5.

Ezample 3. Find the equations of the tangents from
(7, 1) to the circle 2* + y* = 25.

Solution: The equations of the tangents to the circle
in terms of slope m are

y=me+5Vm'4 1. 7
Since the tangents are to pass through the point (7, 1),
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the equations are satisfied by £ = 7, y = 1. Therefore

1=7m:i:5\/m,
or 1~Tm=x5Vm+1
Squaring and simplifying we have,
12m' = 7Tm—12 =0,
or m=1% -3
2. The equations of the required tangents are
y—1=%@-"7), ordz—3y—25=0,
y—1l=—%@-7), or3z+4y—25=0.

Exercises

Find the equations of the tangents to the following eurves,
satisfying the conditions stated:

1. i = 42, slope = 1.
2. 4" =8z, parallel to 22 — y = 0.
8. y* = — 4z, inclined at 6 = 135°.
4. y* = 16 z, perpendicular to 2z +y + 7 = 0.
5.« + 1" = 13 from (1, 5).
6. 4° = 4z from (- 1, 0).
7. 2* 4+ y* = 5 from (3, 1).
8. y* = 16 2, from (2, — 6).
9. y* = — 4z, from (3, — 2).
10. 4* = 2z, from (- 4, 1).

%, 1 parallel to z — y = 0.
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12. 92* — * = 9 perpendicular toz — 5y + 5 = 0.
13. z* 4+ y* = 20 from (6, 2).

U =4zat (1, -2).

15. 2* — 497 = 21 at (5, 1).

16. 92° — y® = 5 at points whose abscissas are 1.

T4. Construction of a tangent to a parabola. In
order to construct a straight line with a ruler, it is first
necessary to locate two points on the line which will in
turn fix the position of the ruler and hence permit the
drawing of the line. Consequently, in order to con-
struct the tangent to a parabola we must have some way
of locating a point on the tangent in addition to the
point of tangency.

Y

P,

- X

T, O M,

Fra. 93

oThe tangent yy =2p (x4 2) to the parabola
Yy~ = 4 pz at the point P; (2;, y;) meets the z-axis at the
point T; (— 2y, 0). This shows that 7,0 = OM,, where
M, is the foot of the perpendicular dropped from P; on
the axis of the curve. We have here a purely geometric
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property of the parabola, i.e., a property which is not
dependent on the coordinate axes:

If the tangent to a parabola at P; meets the axis of the
curve in T and the foot of the perpendicular to the axis
through P; meets the axis in M;, the vertex of the curve
bisects the segment T.M,.

This leads to a method for constructing the tangent
to a parabola at a given point P, if the axis and vertex of
the parabola are given. Let the student explain in
detail.

75. The focal property of a parabola. Let F be the
focus of the parabola, D, the point where the directrix
crosses the axis, and L, the point where the line through
P, paralle]l to the axis meets the directrix. From the
definition of the parabola, we have FP, = L,P; = DM,
But 710 = OM;. Since D,0 = OF, we have T\D; =
FM,, and therefore,

T1F= D1M1= L1P1= FPl.

F1c. 94
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Hence the quadrilateral T.FP1L; is a rhombus. Since
a diagonal of a rhombus bisects the angles to which it is
drawn, the tangent at any point P; of a parabola bisects
the angle between the focal radius FP; drawn to P,
and the line through P; parallel to the axis, i.e. 1 = £2.
Since £2 = /3, it follows that £1 = Z3.

~

R, N -
§

N

o

Fic. 95

The normal P;N; drawn to the parabola at P; bisects
the supplementary angle FP,K formed by the focal
radius and the line through P, parallel to the axis. If
the parabola is revolved about its axis, a surface is
generated, which if mirrored will have the property that
all light rays issuing from F are reflected by the surface
in the direction of the axis. We know from experiment-
ing with light that when a light ray strikes a mirror the
angle of incidence equals the angle of reflection, 4.e., the
angle at which it strikes equals the angle at which it is
reflected. Hence from the property which we have just
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proved for the parabola, a light ray issuing from F and
striking at P; will be reflected along P;K. This is the
principle underlying the parabolic reflectors familiar in
searchlights.

76. Construction of a tangent to an ellipse. Auxiliary

circles.  The tangent -x-i—c + ‘721—;7/ =1 to the ellipse
a
132 y2 0-2
;-}— 7 =1 meets the z-axis at T (——: O), a point
(al

depending only on z; and a. In other words, the tangents
to all ellipses, b°2” + a%® = a’b% at points with given

t

Fic. 96

abscissa z; and in which ¢ is constant, meet the z-axis
in the same point. One of these ellipses is the circle
with radius a. Hence to construet the tangent to an
ellipse at a given point Py, we need only draw the circle
with major axis as diameter, draw a line through P,
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perpendicular to this axis, meeting the circle in Q;; draw
the tangent to the circle at this point and find the inter-
section T’ of this tangent with the major axis produced;
the line P, T is then the desired tangent to the ellipse.
The circle drawn on the major axis of an ellipse as
diameter is called the major auxiliary circle of the ellipse;
similarly, the circle drawn on the minor axis of the el-
lipse as diameter is called the minor auxiliary circle.
The minor circle can he used equally well for the con-
struction of the tangent. Let the student explain.

T7. The focal property of an ellipse. We shall now
prove the following remarkable property of the ellipse.

The normal at any point P, of an ellipse bisects the
angle formed by the focal radii drawn from P;.

T

Pl(wli yl)
n 7
F, N, F1

Fi1c. 97

Denote by r,, 7 and n the focal radii and the normal
drawn from the point P (z, y:) on the ellipse
b’z* + a¥y® = o’



TANGENTS 181

We wish to prove that angle (r;n) = angle (nr;). There
are several ways of proving the theorem. The proof
below is not the shortest, but it is direct and offers a
good example of how a relatively complicated algebraic
expression will often simplify.

Since the coordinates of Fs are (~ ae, 0), the slope of

2
ry i8 9—:—1—??{}&; ; from §§ 70, 71 the slope of n is %%-
Hence (§ 37),
e
tan (ran) = b'oy m4ae  yi(a’n - a’e — b'n)
an (Tan) = L4 azylz b2x12+ a2y12+ b2a6$1

b2, (21 + ae)
_ i (a%’ntd') _ yid’e (et a) _aey
a’b’ + blaex; b'a (a + ez) b

In similar fashion we could calculate tan (nry); but since
71 is obtained from r, by simply changing the sign of ae,

wet and

we can conclude at once that tan (rin) = —

Y This proves the theorem.

hence that tan (nry) =

MISCELLANEOUS EXERCISES

1. Find the equations of the tangents to the -ellipse
42’ + 5y* = 20 which make an angle of 45° with the z-axis.

2. Find the equations of the tangents to the ellipse #° + 33° = 3
which are perpendicular to the linez ~ y + 1 = 0.

3. Find the points of intersection of the hyperbola
252" — 94" = 225 and the straight line 25 z + 12y = 0.
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Prove that the equation of the tangent to the ellipse
Az + By® = C at the point (21, 1) is Azyz + Byy = C.

5. Find the angle at which the line y = z cuts the hyperbola
44 - ¥ = 15.
6. Find the equations of the tangent and the normal to the

10.

11

13,

14,

15.

1e.

ellipse 4 2 + 3 = 5 at the point (1, — 1).

. Find the equatlons of the tangents from the point (1, — 1)

to the hyperbola z° — 3 = 5.

. What is the area of the triangle formed by the coordinate

axes and the tangent to the ellipse 5 z° + 2¢* = 13 at the
point (1, 2)?

. Find the equatxons of the tangents from the point (3, 2) to

the hyperbola z* — 2 ¢° = 5.

Find the equations of the tangents and normals to the el-
lipse 5 2° + 33" = 137 at the points whose ordinate is 2.

Find the equatlon of the “chord of the hyperbola,
25 %" — 16 y* = 400 which is bisected by the point (5, 3).

. Find the equatlon of the normal to the hyperbola

162" — 93" = 144 at the extremity of the latus rectum
which lies in the first quadrant.

Prove that the slopes of the tangents at the extremities of
a latus rectum of the hyperbola b%z* — a2y2‘= b’ are + ¢
where ¢ is the eccentricity.

Prove that the point (a sec ¢, b tan ¢) lies on the hyperbola
ba? —~ oy’ = a’b’, for all values of é.

Prove that the hyperbola 5%* — a%® = ¢ has no tan-
gents whose slopes lie between b/a and — b/a.

Find the equatlons of the tangents and normals to the el-
lipse 9 2* + 16 4* = 144 at the extremities of a latus rectum.
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18.

19.

20

2L

22,

25.

26.
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Finod the equations of the tangents to the ellipse
bz’ + o’y = a’b” at the extremities of a latus rectum and
prove that they meet on the corresponding directrix.

Find the equations of the tangents to the ellipse z*+ 4" = 20
from the point (6, 1).

Prove that the tangents drawn to the ellipse 2° + 3 3* = 12
from the point (0, 4) are perpendicular to each other.

Find the points on the ellipse b%* + a’* = o%? such that
the tangents drawn at these points have equal intercepts

on the axes. Prove also that the length of the perpendicular
: . V2 (@)
from the center to either of these tangents is m——w——=-

If e and ¢’ are the eccentricities of two conjugate hyperbolas,

1 1
prove that: 2 + Wi 1.

Prove that the foci of a hyperbola and those of its con-
jugate hyperbola lie on a circle.

. What is the eccentricity of a hyperbola in which the ver-

tices bisect the segments from the center to the foci?

. Prove that in a rectangular hyperbola the product of the

focal distances of any point P is equal to the square of the
distance of P; from the center.

If the normal at any point P of a rectangular hyperbola
meets the axes in Ny, Ny, prove that PNy = PN, = PC,
where C is the center.

Prove that the segment of any tangent to a hyperbola
between the point of contact and the directrix subtends
a right angle at the corresponding focus. Show how this
property can be used to construct the tangent at a given
point, if a focus and the corresponding directrix are given.
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27. Prove that the line joining a point P on a hyperbola to the
center and the line through a focus perpendicular to the
tangent at P meet on a directrix.

28. Prove that the vertices of a hyperbola subtend a right
angle at an extremity of the conjugate axis, if and only
if the hyperbola, is rectangular.

29. Prove that if any tangent to a hyperbola meets the tangents
at the vertices in M and N, then M, N, and the two foci lie

on a circle.

30. Prove that any ellipse and hyperbola which have the same
foci cut orthogonally.

31. Given the system of curves
v oY
f+k+w+k
where a7 b. For what values of & does the equation rep-
resent an ellipse, and for what values does it represent a

hyperbola? Show that all the ellipses and hyperbolas of
this system of curves have the same foci.

1,



CHAPTER VIII
TRANSFORMATION OF COORDINATES

18, Transformations. The coordinates of a point
are fixed if the point is referred to a given set of axes.
If the axes are changed, the coordinates of the point are
changed. Similarly the equation of a given curve is
changed if the axes of reference are changed.

The operation of changing the axes is called trans-
formation of coordinates. We shall consider two types
of transformations. If the new axes are respectively
paralle] to the old axes and pass through a new origin,
the transformation is called translation of axes. If the
origin is unchanged, but the azes are rotated through a
given angle, the transformation is called rotation of azes.

79. Translation of axes. Suppose the axes 0X and
0Y are translated so the new origin is at 0. If the
coordinates of 0, with respect to the original axes are

Y Y’
P(z,y)
(b k). ==~ P(5,y)
0. >
e
z X

F1e. 98
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(h, k), and the coordinates of any point P before and
after translation are (z, ) and (2, ') respectively, then
since

Proj, OP = Proj, 00" 4 Proj, 0'P,
z=h+2a.
Similarly, y=k+7y".

. Theorem 1. If z and y are the coordinates of any
point before translation to a new origin (h, k) and o' and '
are the coordinates of the same point after franslation,
then

x=x+h
y=y +k

Ezample 1. Find the coordinates of the point (4, — 5)
if the axes are translated to (— 2, 3).
Solution: 7=4, y= -5, h=~-2, k=3.

nh=2—92 —5=y+3

(1)

and z’ = 6, y=-28.
Ezample 2. Transform the equation
42+ 9y -8z -36y+4=0,

to axes parallel to the original axes, so that in the new
equation there shall be no terms in z and y.



TRANSFORMATION OF COORDINATES 187

Method I. Solution: The formulas of transformation
are

s=2+h y=y+h
Y

Fia. 99
where the values of & and k are to be determined. The
given equation becomes
4@ +R) I R -8 @ +h)—36 (@ +k) +4=0.
Expanding and collecting terms we have

427+ 9y?+ 2 8h—8) +y' (18k — 36) +
4R+ 9k —8h—36k+4) = 0.

By the conditions of the problem
8h—8=0, 18k —36=0,

from which it follows that k=1, & = 2.
Therefore the coordinates of the new origin are (1, 2)
and the new equation is

42”4 9y = 36,
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12 12

s’y
—t=—=1,
or 9+4

Method II. The given equation may be written in
the form

4G -20)+9@W —4y) = —4

Completing the squares of the terms in parentheses and
remembering that in order to balance the equation we
must add to the right-hand member the same quantity
we added to the left, we have

42 -2s+1D)+90  —4y+4)=—4+4-+36
4z —1)+9 @ 27 =36

-1 G-2*_
5 + 1 =1.

Placing ' =z — 1, %' =y — 2, our new equation is
xlz yrz
—4—=1
9 + 4
Ezample 3. Find the coordinates of the center, the
vertices, the foci, and the equations of the directrices of
the ellipse,

251+ 99> — 50z + 36y — 164 = 0.
Solution: 25 (z* — 22) + 9 (y* + 4 ) = 164,
25 (¢* — 25+ 1)+ 0 (4" + 4y + 4) = 164+ 25 4 36,
25 (z =1+ 9 (v + 2)* = 225,
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@-=1° @+2)?*
9 + 25

or 1.

F1e. 100

We can now conclude that the center is at (1, — 2) and

that the major axis is parallel to the y-axis. Moreover,
4

a 25 .
a=5 b=3, c=4, e=g,and-é=z—- Sketching

the ellipse we find from the figure that the coordinates of
the vertices are (1, 3) and (1, — 7), and the coordinates
“of the foci are (1, 2) and (1, — 6). The equations of the
33

1
directrices are y = 74z andy = — i

Theorem 2. If the equation
Az*+ By*+ Dz + Ey+C=0

has a locus it is an ellipse, a hyperbola, a parabola, two
straight lines or a single point.
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Outline of proof: Assume none of the coefficients is
zero. Then 4 can be taken positive (why?) and the
equation can be written

D\ E\* D' F
@) A(x—l-ﬁ-) +B<y-l—§—§> ——H-FZ-E-C.

Denote the right-hand member by E. The following

cases arise.

3

R<0 a hyperbola.
If B<0Oand { R =0} we have {two lines.
R>0] a hyperbola.
R<0 no locus.
If B>0and { R = 0} we have {a point.
E>0 an ellipse.

If A or Bis zero the method fails. If A =0 and
B # 0, D 5 0, the equation can be written

E '~ 4BC
Blutggl=-Dle=" ypp )

which is a parabola. Now consider the cases
A#0, B=0, E#0; A=0, D=0; B=0, E=0.

Exercises

1. What are the new coordinates of the points (2, 1), (- 3,4),
(5, = 5), (0, 0) if the origin is transferred to the point
(3, —2) the axes being parallel to the old axes?

2. Transform the equation z*+4z+4%—8 y+1=0 re-
ferred to new axes parallel to the old axes and meeting at
the point (— 2, 4).
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3. Transform the equation — 2”+y°+ 41 = 0 referred to
new axes paralle] to the old axes, and meeting at the point
(2,0). '

4, Transform the equation y’—8z-+4y—4 =0 referred
to new axes parallel to the old axes and meeting at the
point (4, — 5).

5. Prove that 2y + 22~y —7 =0 can be reduced to the
form zy = k by translation of axes,

For each of the following parabolas determine the coordinates
of the vertex, the coordinates of the focus, the equation of the
directrix, and sketch the curve.

6.4 —8y—22+18=0. Ty +2y—4z+5=0.
8.2 +6z~5y—16=0. 9 2°—8z+y+15=0.

10. 42 +4y=0. 11. 24 -8y—3z+11=0.
For each of the following loci determine the coordinates of

the center, the vertices, the foci, the equation of the directrices,
equations of asymptotes when they exist, and sketeh the curve.

12.42°+94 - 82— 18y - 23 =0.
13. 427 -8z+¢y'+2y+1=0.

14. 2527+ 94" — 502+ 36y — 164 = 0.
15. 162 — 9y + 32z + 54 5 — 209 = 0.
16. 427+ 8z +4y+4=0.

17. 92— 164" + 18— 96y — 279 = 0.
18. 922+ 49" +36z— 16y + 16 = 0.
19. 2" —y* +22-2y—-2=0.

20. 24— 4y + 122+ 16y -7 =0.
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80. Rotation of axes. Let us rotate the axes OX and
QY about the origin through the angle ¢ into the posi-
tions OX’, OY”. These two lines we shall use as a new
set of coordinate axes.

Y
YI
k\ P ’
AN
\ //=\y, /1X
\ SN
\\\ // m/}//>
N vl
N2 o
77
///O \
\
o~ \
\
\
Fra. 101

If z and y are the original coordinates of a point P,
#’ and ¥’ the new coordinates, and 6 the angle of rotation,

“) x=x"cos § — y sin G,
y=1x"sin 0 +y cos 6.

These equations can be derived in a variety of ways.
One method is to notice that

y ‘- .
- = 0
op o ( + @)
= gin 6 cos & + cos 4 sin a.
4 ’
But sin @ = J—and cos o = —

OP 0P
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Substituting we get the second equation of (2). The
first equation is obtained in precisely the same manner.
If we solve formulas (2) for 2’ and ¥/, we get

2’ =2 cos b+ ysinb,

3) ,

Yy = —zsinf+ y cos é.

Example. Find the equation of the locus of zy = 4
when referred to new axes obtained from the given axes
by rotating them through a positive angle of 45°.

Solution: Here 6 = 45°. Hence the equations of
transformation are

pe Ll L
V2 27’
1 ’ o
y=\/§x +\/§y
Substituting we get

1 1,
‘2’56’2—51/,‘:401'29/2—?/,2:8,

which is a rectangular hyperbola.

Exercises

1. Find the coordinates of the points (3, 2), (4, —5), (0, 2)
after the axes have been rotated through 30°; through 90°.

2. Transform the equation 2* + 3* = 25 by rotating the axes
through 60°.

3. Transform the equation z* + y* = 1* by rotating the axes
through an angle 6 and show that the form of the equation
is left unchanged.
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4,

Transform the equation zy = k by rotating the axes through
an angle of 45°.

. Transform the equation y +z = 0 by rotating the axes

through an angle of 135°.

. Transform the equation zy =y — 22+ 6 by translating

the axes so the new origin is at (1, — 2) and then rotate the
axes through 45°.

. Transform 8z°—4zy+5y°—36 =0 by rotating the

axes through an angle 6 where tan § = 2.

, Transform 42’ + 152y — 43" — 20 = 0 by rotating the

axes through an angle # such that § = tan™"$.

. Transform 2’ +4xy-+4° =10 by rotating the axes

through an angle 8 of 45°.

81. Theorem. The equation Az’ + Fzy + By*+

Dz + Ey+ C = 0 has for its locus an ellipse, a hyper-
bola, a parabola, two straight lines (which may coincide), o
single point or no locus.

Analysis: To prove this theorem we shall show that if

the axes are rotated through a properly chosen angle 6,
the given equation can be reduced to the form

A5+ By + D'z + E'y+ C=0. See Theorem 2,

§79.

Solution: If ‘we rotate the axes through an angle 6 by

means of formulas (2), the given equation becomes

A (z'cos8 —y sin)* 4+ F (2’ cos § — 4’ sin 6)

(' sin 6 + ' cos §) + B (2’ sin § + ¥ cos 4)*

+ D (2" cosf — y'sin 6) + E (2’ sin§ 4 4’ cosf)
+C=0.
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Expanding and collecting terms we have,

[A cos’6 + Fsinf cos§ 4 B sin? 6]z’
+[—2 Asinfcos 6+ F cos’ 6 — F sin® ¢
+ 2 Bsin 6 cos 6] 2'y" + [A sin6 — F sin 6 cos
+ B cos® 6]y + [D cos 6 - E sin 6] 2
+[— Dsing+ Ecosfly +C = 0.

We wish to choose 6, so that the coefficient of 2y’ is zero.
Hence it is necessary that

F (cos®6 ~ sin*6) + 2 B —24)sin6cosf =0,
4) or Feos26+ (B~ A)sin26=0.

If A is not equal to B this can be written in the more
convenient form.

F
) tan20_2—_—B- (4% B).

If F 5 0 we can write it in the form

cot2 6 = A%’f (F 0).

There are an infinite number of values of § which satisfy
this equation; a single one of these values will reduce the
equation so that it contains no zy term.

There is just one positive angle for § between 0° and
180° and it is customary to choose this angle.

Ezample. Determine through what angle the axes
must be rotated in order to remove the 2y term in the
equation 8 z* +4 zy + 54 — 36 = 0. Sketch the locus,

Solution: 4 =8, F=4 B=3.

tan 2 6 = S — =
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2 tan 4
But tan2g= > and
1—tan"@
Hene 2tan(i =éor2tan26+3tan0—2=0.
1 —tan"6 3
tanf =3, — 2.
We choose tan § = = sin 9 ! cos 6 2
s = - 1 = = = —
2 5 V5

2 L

1 2
Substituting 1 = —=2' - —= ¥,y = 4 —— 2
TV VR TV TR
in the given equation and simplifying, we have
92" 4 4y = 36.

The desired graph is obtained by plotting the curve with
respect to the new axes.
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Exercises

Determine the angle 8 through which the loei of the following
equations must be rotated in order that their new equations
shall contain no zy term. Determine in each case the new
equation and use it to draw the locus of the original equation.

1242+ —12=0.

Lt Fdzyt+ 4yt =36y

4 —4oy+ ) —6=0.

228 — 122y — 3y +42=0.

oy tyi-Trty=4.

.2 —2V3ay + 3y - 4V3z=0.

L4 2ay+yt -3 =4

Lot dayt+ oyt 62+ Ty =8

62+ day+ 9y +Viy+2V5z=10.

. Prove that the locus of zy = ¢ may be rotated about the ori-
gin 50 as to coincide with & — 3* = o*, provided o’ = & 2 c.

© 00 =1 O O Ix W N

[ury
(=]

82, Conic through five points. A circle can be passed
through any three points not in a straight line. To find
its equation we substitute the coordinates of the three
points successively in 2+ y*+ az + by +- ¢ =0, and
solve the resulting equations for a, b, and ¢. Similarly,
a parabola with vertical axis can be passed through three
points not in a straight line. Its equation is of the form
y=ar’+br+c We substitute and proceed as
before. In general the number of points through which
a locus can be passed is the same as the number of in-
dependent constants in its equation. Now the general
equation of the second degree contains six constants
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but these are not all independent, inasmuch as we can
always divide all the terms by one of them, for certainly
not ail the constants are zero. For example, if in the
general equation Az* + Fry 4+ By*+ De+ By +C =0
we divide by A, assuming it is not zero, we write
byttt det+ey+5=0,

in which case there are only five constants. The equa-
tion of any conic that contains an z” term can be written
in this form. We can now proceed exactly as in the case
of the circle, by substituting the coordinates of the five
points successively and solving the resulting equatlons
for b, ¢, d, e, and /.

SIMPLE EXERCISES
Find the equation of the conic through:
1 (L, 1, (0,0, (-3,4, (-1,2, 40.
2. 4,2), (6,3), (1,0, (,1), (-1,2).
3.(0,0, (-1,2, (O1,12),11).
4. (0,3), (1,0, (-1,-3), (21, (3-3).
5. Prove that the equation of the conic through (zi, y),
(@92, (@3, 95), (e, (2595 is
oy y oz oy 1

2 2
LTy Y1 %

2 2

Ty ToYa Y2 2y Yo
2 2
T3 Z3Ys Yz T3 Ys

2 2
Ty TaYfs Ys Ty Yy

o Y S S vy

2 2
T5 TsYs Ys Ty Ys

[Hint: Proof similar to § 46.]



CHAPTER IX
OTHER LOCI

83. In the past chapters we have found the equations
of certain simple loci. For example, in § 29, we found
the locus of a point such that the slope of the line con-
necting it with a given fixed point was constant; in § 52,
we found the locus of a point such that it was equally
distant from a given fixed point and a given line not
passing through the point; in § 16 and § 56, we found
the locus of a point such that the sum of its distances
from two fixed points was constant.

In these and other cases we simply expressed in al-
gebraic language, .e., by an equation, the law governing
the position of the given point whose locus we desired.
This equation is satisfied by the coordinates of every
point which satisfies the given conditions, and by no
other points; see § 16.

Exercises
1. Find the equation of the locus of points which are equally
distant from two fixed points. Describe the locus.

2. Find the equation of the locus of points at a given distance
a from a fixed point. Describe the locus.

3. Find the equations of the locus of points which are equaily
distant from the coordinate axes.
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4. A point moves so as to be three times as far from the
point 4 as from the point B. Find the equation of its
locus.

5. A point moves so that the sum of the squares of its distances
from the vertices of a given square is constant. Find and
describe the equation of its locus. :

6. The distances of a moving point P from two fixed points
are in the ratio p :¢. Find the locus of P. What is the
locus if p = ¢?

7. Find the locus of a point which moves so that the sum of
the squares of its distances from the sides or sides produced
of a given square, is constant.

8. Find the locus of the center of a circle of radius r which
passes through a fixed point (21, 71).

9, Find the locus of the center of a circle 0£ radius » which
touches the circle (z — B)>+ (y — k) = R%, if R>r.

10, The base AB of A ABC is fixed in length and position,
Find the locus of the vertex C, if £ C = 90°.

84. Auxiliary variables. In many examples, it will
be found that the work can be greatly simplified by
introducing one or more new variables called auxiliary
variables. In such cases if P is the point whose locus
we desire, it is necessary that we find one more equation
connecting the auxtliary variables and the coordinates of
P, than there are auxiliary variables. From these equa-
tions, we must then eliminate the auxiliary variables.
The resulting equation will contain only the coordinates
of P and constants and will be the equation of a curve
which, or some part of which, is the desired locus.
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Ezample 1. A line of length A B, on which there is a
fixed point P moves so its ends are always in two per-
pendicular lines. Find the locus of P.

Solution: Take the two 1 lines as coordinate axes.
Let PA=a, PB=1b. Draw PM | OBand PS | OA.
Then £ SPA = £ OBP =4. Since we have introduced
an auxiliary variable 6, we must find two equations con-
necting «, y, and 6. These equations are

F16. 102

Eliminating 6, remembering sin® 6 + cos® § = 1, we
have

2 2 .
Y
4L=1,
a2 1..2{

. The required locus is an ellipse whose center is the
point of intersection of the two L lines and whose semi-
axes are ¢ and b.
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Ezample 2. Find the equation of the locus of the
mid-points of all lines joining any point P on the ellipse
4 2%+ 9 y* = 36, to the left-hand vertex.

Y

WP%)
V[ _-—TxI1)
(-3,0)&/ -X

F1c. 103

Solution: The coordinates of the left-hand vertex are
(=3, 0). Let the coordinates of the variable point be
(z1, 1) and the coordinates of the mid-point of VP,
X, ¥).

Since we have introduced two auxiliary variables z;
and y;, we must find three equations connecting these
variables with the variables X and ¥ and then eliminate
z; and y; from among the three equations.

From § 12 we have,

_$1—3
0 x-222,

_4,
2) Y——2

Since P is on the given ellipse we have
®) 4514 9yi = 36.
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Solving (1) and (2) for 2, and y; respectively, we have
n=2X+43,
n=27.
Substituting these values in (3) we have,
L@X+3+9@D) =36,

or 4X*+9Y*+ 12X =0, the equation of the de-
sired locus. This is the equation of an ellipse, center at
(— 3, 0), vertices at (— 3, 0) and (0, 0).

Ezample 3. Find the locus of the mid-points of the
chords of the ellipse 42°+ 9y®= 36, parallel to
2z —y="1.

Solution: The equation of any line parallel to the
given lineisy = 22+ k.

Y

4 ( wlwl,yl)
= X
\\‘OX' B

Py (2,9,

Fic. 104

To find the coordinates of the end points P; and P,
we solve these equations simultaneously, giving
42+ 922+ k) = 36,
or
40 2"+ 36 kz + (9 &* — 36) = 0.
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Let the coordinates of the mid-point of Py P; be (X, Y).

Then X=xli|~z2
2
36k 9k
But $1+2I2——z(')—'——10—° §2.
9k
X= ~ %

But the point (X, ¥) ison the liney = 2z + k.
Y=2X-+5E.

Eliminating & we have

2 .
Y¥=2X - 20X X as the equation of the locus,

but the locus is not the entire line but merely the seg-
ment AB. Fig. 104.

Exercises

1. Point P is not on line . Find the locus of the mid-points
of all the lines joining P to the points of L.

2. Find the locus of the mid-points of all chords drawn from
a fixed point P on a circle.

3. The base of a triangle is fixed in length and position. Find
the locus of the other vertex if one base angle is double the
other. '

4, Find the locus of the mid-points of all echords of a parabola
which pass through the vertex.
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. The base AB of a triangle is fixed and the ratio of the sides

AC and BC is constant. Find the locus of C.

. Given three points 4, B, and . If AB = 2a in length,

find the locus of C if angle ACB is constant.

, The base AB of a triangle ABC is fixed and tan A =

¥ tan B, k being a constant > 1. Find the locus of C.

. The base AB of a triangle 4 BC is fixed and the length of

the median drawn from 4 is constant. Find the locus of C.

. Prove that the locus of the eenter of a circle which touches

externally two given circles (of unequal radii) is a branch
of a hyperbola.

The hypotenuse of a right-angled triangle slides with its
extremities on two perpendicular lines. Find the locus
of the vertex of the right angle.

Tind the locus of the mid-points of all chords drawn through
a fixed point within a circle.

. Prove that the mid-points of any set of parallel chords of a

parabola lie on a line parallel to the axis.

. Find the locus of the mid-points of all chords of a hyperbola

which have a slope m.

A variable chord PQ of an ellipse is perpendicular to the
major axis. P is connected by a straight line with one
vertex and @ with the other. Find the locus of the point
of intersection of these lines.

A point P moves around on an ellipse. Perpendiculars are
dropped from each vertex of the ellipse to the line con-
necting P to the other vertex. Find the locus of the point
of intersection of these two perpendiculars.

A variable line is drawn parallel to the base AB of a fixed
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triangle 4 BC' meeting the side AC in D and the side CB
in E. Find the locus of the point of intersection of AE
and BE.

If I is the foot of the perpendicular dropped from a point
P of a hyperbola on the transverse axis and if /P be pro-
duced to @ so that M@ is equal to either of the focal dis-
tances of P, prove that the locus of @ is one or the other of
a pair of parallel straight lines.

If the slopes of the tangents drawn from a point P to the
hyperbola a’z* — a’y* = o’ are m; and s, find the locus
of P when mim, = ¢ (a constant).

PP’ is a double ordinate of an ellipse b%” + %’ = b
and the normal at P meets OP' in Q. Show that the locug
of Q is an ellipse.

. Prove that the locus of points from which perpendicular

tangents can be drawn to a parabola is the directrix of the
parabola. [Hiné: The slopes m; and m, of the tangents
drawn from a point (z, y) to the parabola y* = 4 pz are

the roots of the equationy = ma + n% orzm’ —ym+p =0,
Since the tangents are 1, mm; = — 1]

If a tangent to the parabola 3> = 4 pz meets the axis in T
and the tangent at the vertex O meets it in S and the rec-
tangle TOSQ is completed, prove that the locus of @ is the
parabola 4* + pz = 0.

Find the locus of the centers of circles which pass through a
fixed point and cut a fixed straight line in chords of con-
stant length.

. The base AB of A ABC is ﬁied in length and position,

while vertex C' moves on a line parallel to AB. Find the
locus of the point of intersection of the medians.
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The base AB of A ABC is fied in length and position
while vertex C moves on a line parallel to AB. Find the
locus of the point of intersection of the altitudes.

A variable tangent to a parabola meets the tangents at
the extremities of the latus rectum in points P; and Pi.
Find the locus of the mid-point of the segment P;P,.

26. Tangents to a parabola meet at an angle of 45°. Find the

27.

28.

3L

32,

locus of their point of intersection.

AB is a fixed chord of a circle and €' is a moving point on
the circle. Find the locus of the point of intersection of
the medians of the triangle ABC.

A line revolves about a point 4 and meets a fixed circle in
points Py and P,. Find the locus of P so situated on the
line that

AP AP, AP, AP

. Prove that the locus of a point from which perpendlcular

tangents can be drawn to the hyperbola a’* — a%? = o%°
is the circle 2%+ 3> = ¢’ — b%. It is called the director
circle. Tt reduces to a point (the center) when a = b and
there is no circle when o < b.

. Find the locus of the mid-points of the rectangles that ean

be inseribed in triangle A BC, if one side of the rectangle lies
along AB.

In the parabola 4* = 4 pz, find the locus of the mid-points of
a) all ordinates; b) all focal radii; ¢) all focal chords.

In an ellipse, find the locus of the foot of a perpendicular
dropped from a focus to a variable tangent.
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33. Find the locus of the center of a circle that passes through
the point whose coordinates are (0, 3), and is tangent in-
ternally to the circle whose equation is 2° + ¢* = 25,

34. A straight line of given length has its end points in two
fixed perpendicular lines and forms with these lines a tri-
angle of constant area *. Find the locus of the mid-point

of this line.

85. Diameters. A straight line passing through the
center of an ellipse or hyperbola is called a diameter of
the conic. Every diameter of an zllipse meets the curve
in two points; some of the diameters of a hyperbols
meet the curve in two points. These points are then
called the extremities of the diameter, and the distance
between them is called the length of the diameter. Any
line parallel to the axis of a parabola is called a diameter
of the parabola.

Theorem 1. The locus of the middle poinis of a set of
parallel chords of an ellipse (hyperbola) is o diameter of

the ellipse (hyperbola).
2

2
If the equation of the ellipse is % + % = landif mis

the slope of the parallel chords, the equation of any one
of them is
y = mz + k.

To find the coordinates of the end points P; and P, we
solve these equations simultaneously, giving

b’z + o’ (mx + k)? = a%?,
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or @ (' + a'm’) + 2 a’mkz + (4% — %% = 0.

AN
N,

7 & ()
!X’\ B
P 2 (wzlyz)
/
Fre. 105
If the coordinates of the mid-point of P, P, are (X, ¥),
X = T+ o
2
— 2 a’mk
But, from § 2, z; + 2, = .
a’mk
LX=—
b* + o’'m’
But (X, Y) satisfies y = mz + .
L Y=mX+E
- Eliminating & we have,
-
=

as the equation of the locus. This is the equation of
a straight line through the center and hence is a di-
ameter.
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It follows immediately that if the slope of the chords
L2
is m and the slope of the diameter is m/, m’ = — 2
m
or mm’ = — z.

Show for a hyperbola that mm’ = = .
a

The proof just given assumes the parallel chords have
a slope. It is left as an exercise to discuss the case in
which they have no slope.

Theorem 2. The locus of the middle points of a set of
parallel chords of a parabola is a diameter.

The proof of this theorem is left to the student.

If the equation of the parabola is 4* = 4 pz the equa-
tion of the locus is y = g_p if the chords have a slope m

m
and y = 0, if the chords have no slope.

86. Conjugate diameters. Theorem. If one di-
ameter bisects the chords parallel to a second, the second
diameter bisects the chords parallel to the first.

Diameters fulfilling the condition of this theorem are
called conjugate diameters.
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To prove the theorem we proceed as follows:
Let the slope of A B be m and the slope of CD be m’.
By hypothesis the diameter of slope m/, i.e., CD, bi-
sects the chords of slope m, i.e., chords parallel to 4 B.
Therefore by Theorem 1,
bZ . b?.
m’=—-v2 rorm=— ’
a’m a‘m
This equation says that the diameter of slope m, i.e.,
AB, bisects the chords of slope m/, i.e., chords parallel
to CD.
The proof just given assumes that both diameters have
a slope. The discussion of the case in which one diam-
eter has no slope is left as an exercise.

Exercises

1. Prove that every pair of conjugate diameters of a circle are
perpendicular to each other.

2. Why are there no conjugate diameters in the case of a
parabola?
2 2

3. In the hyperbola %—— %— =1, find the equations of the

conjugate diameters if the slopé of one diameter is 2.

2 2
4, In the ellipse %4— % = 1, find the equations of the con-

jugate diameters if the slope of one diameter is 4.

5. Find the equations of the conjugate diameters of the
hyperbola 2” — 44° = 10, one of which bisects the chord
whose equationis 3z — 2y = 4. ‘



212

10.

11.

13,

14.

OTHER LOCI

. Find the equation of the diameter of the parabola y* = 8z

which bisects all chords parallel to 2z +3y = &.
2

2
. In the ellipse 2-2 + %g = 1,if (21, y1) are the coordinates of

one extremity of a diameter, the coordinates of the other
extremity are (— 3, — %1); prove that the coordinates of
the extremities of the conjugate diameter are

Y AR a
2 2
bZ
of one extremity of a diameter, the coordinates of the other

extremity are (— 1, — ¥1); prove that the coordinates of
the extremities of the conjugate diameter are

ap ba) [ _a o _bw)
b’ a)’ b’ a

. In the hyperbola :~2 . 1,if (21, 1) are the coordinates

. Find the equation of a diameter of the ellipse z* + 41 = 73

if one end of its conjugate diameter is (3, 4).

Find the equation of a chord of the ellipse 4 2* + 9 y* = 36
through the point (1, 2) which is bisected by the diameter
Y=z

Tind the length of the diameter of the hyperbola
92 — 4y = 36 which is conjugate to the diametery = 2z,

. Find the equation of the chord of the parabola 3* 10z

which is bisected by the point (3, 2).

Prove that the tangents at the extremities of a diameter of
an ellipse are parallel to the conjugate diameter.

Prove that the sum of the squares of the lengths of any twe
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conjugate diameters of an ellipse is constant and equal to
the sum of the squares of the axes.

Prove that two conjugate diameters of a hyperbola are
never equal unless the hyperbola is rectangular and that
in this case they are always equal.

Prove that the product of the focal radii of any point of an
ellipse is equal to the square of half the diameter conjugate
to the diameter through the point.

Prove that the tangent at the end of a diameter of a parab-
ola is parallel to the system of chords which the diameter
bisects.

Prove that the straight lines drawn from any point on an

- equilateral hyperbola to the extremities of any diameter

19,

make equal angles with the asymptotes.

If P, and P, are the extremities of a pair of conjugate di-
ameters of an ellipse, prove that the normals at P; and P,
and the perpendicular from the center to PiP; are con-
current.

87. Harmonic division. If the four points P;, P,

Ay, A, are collinear and if the following equality is true,

P 1A2 P 1A1 Al
A,P, A4.P, 3
the four points are said Fre. 107

to

be harmonic and Ay, A,

are said to divide the segment P;P, harmonically.

This proportion can be written,

AP, AP
PyA, P4,
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Henee, if two points A;, 4. divide the segment PP,
harmonically, then conversely, the two peints P, P,
divide the segment A4, harmonieally.

Let the coordinates of Py and Py be (21, y1) and (25, 1)
respectively. 'Then the coordinates of 4, and 4, are

oy — T1%e _ Y — Nl
A1: xr = » Y=
Te — T Ta — 11
4 R ¢ e 20
2t = y=
r+ 1 r Tt

If we let the ratio ? = R, we have
2

A _n-fBn - Ry
1' YT -r YT 1-R¢

21 'I"sz y1+ Ry2
4, g="——=" y=

172" Y7 1+r

For any value of R, except R = + 1, these formulas
determine two points which divide the segment PP,
harmonically.

Exercises

1. Given P; (2, 3) and P; (6, 8). Find two points both in the
first quadrant which divide Py and P, harmonically.

2. Given P; (-2, 3) and Py (4, 3). Find two points, one in
the first quadrant and one in the second which divide P,P,
harmonically.



OTHER LOCI 215

88. Poles and polars. Let a secant revolve about a

—
-

Fra. 108

2 2
point P (21, 41) and cut the ellipse ZE + %; = 11in points

4; and 4;. Let P (X, ¥) be the point on the secant
such that P,P divides 4,4, harmonically. The locus
of Pis called the polar of P,.

From the last article the coordinates of

4 2+ BX  y 4 RY
L Are 1+R  1+4R
z — RX Y~ RY
A4, are (I—R’ l—R)
These points are on the ellipse and their coordinates

satisfy z—:-l— ?b/—:= 1. Substituting in the equation and
simplifying, we have

b (&4 RX)* + o® (jy + RY)? = o 1+ R)%

¥ (2 — RX)* + o’ (jy — RY)? = a®? (1-R)?:
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Subtracting the equations eliminates the auxiliary vari.
able R and we have

4 RV’n.X + 4 Ra*y,Y = 4 Rap’,

which simplifies to
X1 X U Y

Tt =l

which is the equation of a straight line, all or some part
of which is the desired locus. If P; is without the el-
lipse, the locus is the chord segment of this line, If P,
is within the ellipse, the locus is the entire line, If P, is
the center of the ellipse there is no locus.

It will be noted that the last equation is of the form
of the tangent equation § 70. If P, is on the curve the
polar is the tangent.

Similarly we can show that the polar of

2 2
r oy
ZTpE b
for the point (z;, 1) is
X1 X vy
@ et

and that the polar with respect to y* = 4 pz for the
point (zi, yy) is ’
yy=2p (x+ x).
Ezample 1. Find the polar of (2, — 1) with respect
to 22 + 497 = 20.
Solution: The polar of (z;, ¥1) is 21z + 4 yiy = 20.
~ Thepolarof (2, —1)is2z —4y =20

or z—2y=10.
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Ezample 2. Find the pole of 2z — 3y = 10 with
respect to 5z° 4+ 7y* = 8.

Solution: The pole of (w, 1) is 5mz + 7y = 8.
Since this line must eoincide with 2 z — 3y = 10, we have

Sbx _ _7_@ _ §_
2 -3 10
Therefore x; = -2—85, ‘yl = — g—
~ The pole is (%; -~ ;}-2—) .
Exercises

1, Find the equation of the polar of:
a) (2, — 5) with respect to 4z° + 3 * = 6.

b) (2, — 7) with respect to y* = 8 z.
¢) (-4, 1) with respect to 2’ + 3* = 4.
2. Find the pole of::
a) 3z — 2y = T with respect to 2* + 41> = 7.
b) 2z + 5y = 8 with respeet to y* = 8 z.
¢) 3z — Ty = 10 with respect to z* — 53° = 6.

3. Prove that if two points are so situated that P, lies on the
polar of Py, then Py conversely, lies on the polar of P.

4, Prove that the polar of P; with respect to an ellipse is
parallel to the tangent at the point where the diameter
through P; cuts the ellipse.
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. Prove that the polar of any point P; with respect to a

parabola is parallel to the tangent at the point where a
diameter through P; cuts the parabola.

. Prove that the line which joins any point to the center of

a circle, is perpendicular to the polar of the point with
respect to the circle.

. Prove that the radius of a circle is & mean proportional

between the distance from the center of the circle to any
point and the distance from the center to the polar of that

point.

. Prove that the polar of a focus of an ellipse is the corre-

sponding directrix.

. Prove that the polar of the focus of a parabola is the di-

rectrix.

Prove that the polars of the same point with respect to two
conjugate hyperbolas are parallel lines.

Prove that a focal chord of an ellipse is perpendicular to
the line that joins its pole to the focus.



CHAPTER X
POLAR COORDINATES

89. Polar coordinates. We shall now introduce a
new way of locating the position of a point in a plane.
Let OA be a directed line in the plane, which we shall
call the initial line or polar axis. It is customary to
draw this line horizontally and
direct it to the right. The
point O is called the pole or the
origin. Let any point in the
plane be P; draw line OP. ‘
The position of P is then fixed ¢ y:
if we know Z AOP = 6 and Fic. 109
the distance OP =r. The
two numbers r and 6 known as the radius vector and
the vectorial angle, respectively, are called the polar
coordinates of the point P.

The angle 8 is positive or negative according as to
whether it is generated by a counter-clockwise or clock-
wise Totation. “The positive direction on OP is the
direction into which OA is rotated by a rotation through
the angle 6.

The following figures represent the points whose polar
coordinates are (2, 45°), (-2, 45°), (2, —45°),
(=2, —45°.

P(2,45) P(-2,—45)

P (r,8)

45° A45°
\ 7 ] . N>
A = o SO v er -

P (~2,45) P (2,45 o
Fre. 110
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A given point P has an unlimited number of sets of
polar coordinates. If we confine ourselves to angles
whose absolute value is less than 360°, a point will in
general have four different sets of polar coordinates.

Thus (2,45°), (2, — 315%), (-2, —135%), (- 2,225°)
are the same point.

P (2,459 P(2,-815°) P(-2,~185) P(-2,225%
45 :'0 . 0 (O \
0 angi AL 4y A
-315° —185° s/
Fra. 111
Exercises

1. Plot the points whose polar coordinates are:

a) (4, 60°). b) (2, 30°). ¢ (= 2,45).

d) (3,-150°). ¢ (-2, -100°. f) (-2, - 180°,
g) (—3,120°. k) (-2, 270°). 3) (3, 360°).

7 (3, 240°). k) (—0,—400°. 1) (5,330°).

2. For each of the points in Exercise 1, find all sets of polar
coordinates for which || < 360°.

3. Where are all the points for which r = 4?
4. Where are all the points for which § = 30°?

5. Show that the points (r, 6) and (r, — ) are symmetric with
respect to the polar axis.

6. Show that the points (r, 8) and (— r, ) are symmetric with
respect to the pole.
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7. Show that the points (r, 8) and (r, 6 + 180°) are symmet-
ric with respect to the pole.

8. Use the law of cosines and find the distance between
(3, 45°) and (6, 105°).

9. Find the distance between (3, 30°) and (10, 90°).
10. Prove that the distance between (r, 6:) and (r, 6;) is
Vil +r -2 rire cos (B — Oy).

90. Graphs in polar coordinates. To plot a graph
in polar coordinates, we proceed by constructing a table
of corresponding values of § and r. The point corre-
sponding to each such pair of values is then plotted
and a curve is drawn through these points.

Ezample 1. Plot the graph of r = sin §.  The fol-
lowing table of values is readily constructed.
315°/330°]360°
7150/ .00

0 l 00 |30°]45°|50°| 900 ]120°|135°]150°’180°|210°
.00 |~.50

225°|2400) 2700 ]3000
- 71|~ 87|-1.00|~87

r 00|50 |71 |87 | 1.00] .87 | .71 | .50

A4S
SSaeun
SRR

240 & >
255" g70° 285
Fic. 112

In Fig. 112 the corresponding points are plotted and
a smooth curve is drawn through them. It should be
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noted that in this example each point is represented by
two pairs of corresponding values; for example (.71, 45°)
and (— .71, 225°) are the same point.

The curve appears to be a circle of diameter 1, and
tangent to the polar axis at the origin.

Exercises
Plot the graph of:
1. r=2sind. 2. r = 2 cosb.
3. r’ = sinf. 4. r* = cos 0.
5. r=2sind+5. 6. r=2cos0+5.

91. Locus of an equation. The locus of an equation
in polar coordinates is such that

1) Every point whose coordinates (r, 6) satisfy the
equation is on the locus or curve, and

2) A set of coordinates* of every point on the locus or
curve satisfies the equation.

As in rectangular coordinates, the amount of work is
often greatly simplified if one employs symmetry. The
following rules are obvious.

If a polar equation is left unchanged,

a) when 0 is replaced by — 6, the locus is symmetric
with respect to the polar axis.

b) when r is replaced by — r, the locus is symmetric
with respect to the pole.

* Not necessarily every set of coordinates. For example, the point

(2, 60°) = (— 2, 240°) is on the locus of r= 1+ 2 cos 6§, but the second set of
coordinates does not satisfy the equation. :
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¢) when 0 is replaced by 180° + 6, the locus is sym-
metric with respect to the pole.

d) when 0 is replaced by 180° — 6, the locus is sym-
metric with respect to the line through the pole
perpendicular to the polar axis.

One should always keep in mind that none of these
rules is a necessary condition for symmetry.

Ezample 1. Discuss and plot the locus of the equa-
tion r = 4 sin® 4.

Solution: The locus is symmetric with respect to the
pole, the polar axis and the line through the pole per-
pendicular to the polar axis.

If we plot points from 6 = 0° to § = 90° and employ
symmetry, we have the locus of Fig. 113.

§ | 0°|30°|45°|60°|90°
ri0 | 1]2]|3]|4

30°

315°

Fie. 113
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It is advisable to check the branches constructed by
symmetry, by substituting in the original equation the
coordinates of at least one point on each branch, for
by so doing, serious errors may be avoided.

Ezample2. Discuss and plot the locus of the equation
r=1+4 2 cos 6.

Solution: The curve is symmetric with respect to the
polar axis. If we plot points from § = 0° to § = 18(0°
and then employ symmetry, we obtain the complete
graph.

45°160°|90° | 120° | 135° | 150° | 180°

242 [ 1] 0 |-4|-7] -1

0° | 30°
7 I 3 {2.7

f

)

Fic. 114



Plot the locus of each of the following equatioﬂs, employing

POLAR COORDINATES

Examples

symmetry in each case.
Lr=4 |

3. 7" = 16.

5. 0 = — 45°
T.r=—4cosf.
9. r=—4sin6.
11, r= 1+ cosf.
13. r=1+sin 6.
15. r = 4 — cos 4.
1. r=4—sinf.
19. r=1-2sind.
21. r=1—2cosd.
23. ¥ = 9 cos’ 6.
25. +* = 25 5in 2.
27. r=4cos26.
29. r=4cos39.

4
31'r=1+cost9_
33 r= : :
1+sin6

3. r = 0 sin’ 2.

2

2.r=—-4.
4, 6 = 45°,
6. r =4 cosf.
8 r=4sinb.
10. r =1~ cosf.
12, r=1-sin8.
14, r =44 cosé.
16. r=4+sin 6.
18. r=1+4+2sin4.
20. r=1+2cos¥.
22, 7' = 9 sin’ 4.
24, 7 = 25 cos 26.
26, r=4sin 2 6.
28. r=45in34.
4
3. A "
4
BT= 1 sing
34, r =4 tané.
36, r =4 cot 6.

225
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92. Relation between rectangular and polar coordi~
nates. Take O the origin of a system of rectangular
axes as the pole, and the positive half of the 2-axis as the
polar axis of a system of polar coordinates.

Y
< P
%
7 Y
]
0 7 X
F1a. 115

Let (z, y) and (r, 6) be respectively the rectangular
and polar coordinates of any point P. Then 2/r = cos#,
y/r = sin 8.

Hence we have

)

x=rcos 6,
y=rsin 6.

It is here assumed that the coordinates of P are so
chosen that OP = r and angle XOP = 64. This is
always possible. If r is positive, z always has the sign
of cos 8 and y the sign of sin 6.

Conversely, if r is positive, we see from Fig. 115 that

)
\/a;z—-l-—y‘

) T
f = arctan (=), cos b = .
<$) Vit 4y

rt= 2+ ¢ sin =

@
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Ezample 1. Find the equation of 2? — y* = 4 in polar
coordinates.

Solution: Replacing « and y by their values from (1),
we have

r cos’f — r’sinf =4
rcos 26 = 4.

Ezample 2. Find a set of polar coordinates for the point
(-2, 2.

Solution: From (2) r = V4 + 4=2 V.
§ = arc tan (— 1).
6 = 135° and a set of polar coordinates are

@Vv?2, 135°).

Exercises

Transform the following equations into equations in rec-
tangular coordinates. In each case, state whether you think
the locus is easier to sketch from the polar or from the rectan-
gular equation. :

1. r=3. 2. rsin 6 = 5.

3. reosf = 4. 4.r2pos26=4.

5 r=40. 6. r = 2¢asecd tan 6.
. 1

7. r=4sin 246. 8.r=5-
1

9. 10. r=1-cosf.

r=1—cosﬁ'
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Transform the following equations into equations in polar
coordinates.

1 P+ =4 12, z+y = 10.

13 =4z 14. zy = 10.

15. 92" — 4 ¢* = 36. 16 ( +2°— 22" =22+ 42
17, 2 +4* = 3 axy 18. 2* = ¢* (2 - 2).

19. * = 2% 20. z cos @+ y sin @ = p.

93. Standard equations in polar coordinates.

The Straight Line. Let BC be any straight line with
ON = p, the perpendicular from O to the line, and «

Fre. 116

the angle which the perpendicular makes with the polar
axis. Let (r, §) be any point on the line. Then

ON

0P cos (f — o) or cos (a — 6).
But cos (f — ) = cos (¢ —8). Why? Therefore
(3) reos(f —a)=p

is the desired equation.
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Conversely if (3) is true, by retracing our steps the
point (r, 6) is seen to lie on the given line. Therefore
(3) is the equation of the desired locus.

There are two special cases which should be noted.
If the line is perpendicular to the polar axis its equation is

rcos §=p. Why?

If the line is parallel to the polar axis its equation is
rsin 6 =p. Why?

The circle. Let the given circle have its center at

P (r,0)

>A
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(¢, @), and radius equal to a. If P (r, §) is any point
on the circle, we have in A OCP, 0C =¢, OP =,
£ COP = =+ (f — ), depending upon the position of
the point P. Using the law of cosines and remembering
that cos ( — a) = cos (o — 6) we have

(4) =41 —2¢rcos (0 — ),

as the equation of the circle.
If the circle passes through the pole (c = = a), the

equation becomes
(5) r=+2acos (f — a).
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If in addition the center C is on the polar axis (a = 0°),
the locus passes through the pole (¢ = = a), and the
equation becomes

(6) r=+2acosf.

If the center is at the pole, (¢ = 0) the equation be-
comes

) r=4%a

Exercises

Sketch the following curves:

1.4=rcos<0—§)- 2.5=rcos(0—~13r)-

3.7=rcos(g—0)- 4. r=235.

5.r=~5. 6. r = 8 cos 6.
7.r=—8c:osv0. 8. r = 8sin 4.

. T
9, r=—8giné. 10.r=800s(0-—§)-

.11.r=8cos(6—jl—r)- 12. r = 8 (sin 6 + cos 6).

94, Polar equation of any conic. Let DD’ be the
directrix, F' the corresponding focus and e the eccentrie-
ity. Let the perpendicular through F to DD’ meet it
in M. Let the focus be the pole, MF = 2 p, and P (r, §)
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any point on the curve. If the perpendicular from P to

D
G P(r,6)
T
2p /A0
M F X
DI
F1c. 118

DD’ meets it in G, we then have from the definition of
a conic (§ 68)

PF = ¢PQ,
r=e(2p+rcosh),
2¢ep
8 =——"F
®) or T ecosd

which is the polar equation of a conic. If e < 1, it is the
equation of an ellipse; if e = 1, a parabola; if e> 1, a
hyperbola.

Exercises

1. Derive the polar eqﬁation of the ellipse assuming the right-
hand focus as the pole and the major axis as the polar axis.

2. Derive the polar equation of a hyperbola assuming the
right-hand focus as the pole and the transverse axis as the

polar axis,
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95. Special curves. Certain locus problems are
more readily solved by the use of polar conrdinates, as
the following examples will illustrate.

The Limacon. The Cardioid. Given a circle of di-
ameter ¢ and a fixed point O on it. On every line OM

Fi6. 119

through O meeting the circle again in M lay off constant
distances MP = MP' =) in opposite directions from
M. The locus of the points P and P’ thus obtained is
called the limacon of Pascal.

If the diameter OB (= a) through O is taken as the
initial line and O as the pole, we have OM = a cos §
and the coordinates (r, 8) of P are determined by

®) r=qcos -+ b

If we change 6 to 8 + =, r becomes — ¢ cos 6+ b,
which gives the point P’. Hence, (9) is the equation of
the locus of both P and P’. If 6 is increased by 2 «, we
get the same point as when we use 0 itself; the whole
curve is obtained by letting 6 vary from 0 to 2 «. If
0 be changed to — 6, we get the same value of r; the
_curve is, therefore, symmetric with respect to the initial
line. '
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If b>a, r is always positive, and decreases from

ba
Fra. 120

b+a to b — a as 6 increases from 0 to . (Fig. 120.)

>4

/

b

Fia. 121

If b<a,r is 0 when cos 8 = —C—(:- If 6 increases
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from 0 to 2 m, r decreases, becoming 0 and then negative,
reaching its smallest algebraic value b —a = — (a ~ b)
when § = w. The curve then crosses itself at 0. See
Fig. 121.

Finally, when b = a, r is 0 when 6 = =, but is never
negative. In this case the equation is

(10) r=a(l + cos f).

This special case of the limacon is called the cardioid.

_;A

b=q
F1a. 122

The spiral of Archimedes is the locus of a point such
that its radius vector is proportional to its veetorial
angle. Therefore its equation is

(11) r=Fké,

where % is a constant.*

* In this example, and in those that follow, it is usual to express the angle 0
in radians; but this is not necessary, since the same result can be obtained by
choosing a different value for  if 6 is expressed in degrees.
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The form of the equation shows that the locus passes
through the pole, and that the radius vector increases
without limit as the number of revolutions increases
without limit. Fig. 123 represents a portion of the locus

fork = 715-, with 6 expressed in degrees.

The hyperbolic or reciprocal spiral is the locus of a
point such that its radius veetor is inversely proportional
to its vectorial angle. The equation of the locus is

therefore
(12) r= '9 [

where k is a constant. Fig. 124 represents a portion of
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the graph for k = 70 and for positive values of § ex.
pressed in degrees.

The logarithmic spiral is the locus of a point such that
the logarithm of its radius vector is proportional to its
vectorial angle, i.e.,

(13) logr=Fk4,
where % is a constant. If the base of the system ot
90° 750

% n
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logarithms is b, the equation may be written in the form
r=b*. Tig. 125 represents a portion of this locus

when b = 3, for k = %6, with 8 expressed in degrees.

Exercises

1. Draw the parabolic spiral which is defined by the equation

r=F§. Take k=.1 with 6 in degrees and use only
positive values of r.
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. Draw the lituus which is defined by the equation »* = 1;
Take k=90 with 6 in degrees, and use only positive
values of r.

. Find by polar coordinates the locus of the center of a
circle which passes through a fised point O and has a radius
of 4.

. Find by polar coordinates the locus of the middle points
of all chords drawn through a fixed point on a circle.

. OA is a fixed diameter of a fixed circle. At A a tangent is
drawn, while about O a secant revolves which meets the
tangent in B and the circle in C. Find the locus of the
point P so situated on the segment OB that OP = CB.

. Through a fixed point O on a fixed circle a variable secant
OP is drawn, cutting the circlein 4. If AP = 3 04, find
the locus of P.

MISCELLANEOUS EXERCISES

. Show that the polar equation of the curve whose equation
is A2® 4 By* + C = 0 can be written in the form

P = -C
A cos’0 + B sind

. Show that the polar equation of the curve whose equation
is 2¥ — 4 = o’ can be written 1° cos 26 = o’

. Show that the cartesian equation of the lemniscate
#* = a® cos 20, can be written (z*+4%) = d’ (&® —¢").

. Transform to cartesian coordinates the equation

r sin® g = q. Determine the nature of the curve.
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5, Show that the equation 2+% = 1 can be written

_ ab
7“—asinﬁ+bcos0

6. Derive a formula for the area of a triangle OP,P; in polar
coordinates, O being the pole.

7. A comet moves in a parabolic orbit with the sun ag
focus. When the comet is 40,000,000 miles from the sun,
the line from the sun to the comet makes an angle of
7/3 with the axis. How near does the comet come to the
sun? .

8. An ellipse, which has a focus at the pole and its major axis
along the initial line, passes through the points (3, 7/3)
and (2, 7/2). What is its equation? Where is the second
focus?

9. The cissoid of Diocles. OB is a fixed diameter of a circls
and a variable line through O
meets the circle in M and the
tangent at B in N. Find in
polar coordinates the equation N

of the locus of P on ON, such ,
that PN = OM. M
0 rd

Fic. 126
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10. The conchoid of Nicomedes.  Given a fixed point O (the
pole) and a fixed line d (the
base) which does not pass
through O. A variable line
through O meets d in a point
M and from M a constant
distance b is laid off on OM in
both directions. Find in polar
coordinates the equation of the
locus of the two points thus
obtained.

'

Fia. 127



CHAPTER XI
PARAMETRIC EQUATIONS

96, Parametric equations. We have seen in the
discussion of locus problems, that as a point P (z, y)
moves along a given curve, not only do the z- and y-co-
ordinates of the point vary, but so do many other
quantities connected with this point, as for example the
angle § which OP makes with the z-axis. These other
variables are called in § 84 auxiliary variables or pa-
rameters. If the coordinates z and y of a point are
expressed in terms of a parameter, the equations are
called parametric equations.

Thus, if P (z, y) is any point on the circle whose center

(Lo
N

F1c. 128

is at the origin 0 and whose radius is r, then
03] x=rcos b,

y=rsin f,
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where 6 is the angle XOP; as 6 varies from 0° to 360°,
the point P traces the circle.

If 6 is eliminated between these equations (square and
add them) the resulting equation which we obtain,
namely, z° + y* = 7%, is the rectangular equation of the
cirele.

It is important to notice that any given curve may
have as many sets of parametric equations as we please.
For example

z=1 :x;—E x——t x—-—t—-
2 4 35

41

y=4t: y=2t7 Yy =1, y=§31

are parametric equations of the line whose rectangular
equation is y = 4 .

97. Parametric equations of an ellipse. Draw two
concentric circles having A,4; = 2a and ByB;=2b
as diameters. Let ORS be any half-line issuing from

Y
B,
s
R
4 0 A X
T,

Fie. 129
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the center O and meeting the circles in B and S. A line
through R parallel to 4.4, and a line through S parallel
to ByB, meet in a point P. The locus of P we shall
presently show is an ellipse. If angle XOS = 0, the
coordinates OM = z and MP = y of P, referred to 0X
and OY as axes, satisfy the relations,

2) x = a cos b,
y =bsin 6.
If 8 is eliminated between these equations we obtain
g—;-l— % = 1. Therefore equations (2) constitute a pair

of parametric equations of the ellipse. To every value
of 8 corresponds one point of the ellipse, the coordinates
for which are given by (2). As the parameter 6 varies
from 0° to 360° the point (z, ¥) traces out the entire
curve. The angle X0S = ¢ is called the eccentric
angle of the point P.

By drawing various lines ORS, any number of points
on the ellipse can be constructed.

Exercises

1, Show that = 2¢, y = 3 — 6¢ are parametric equations
of a straight line.

2. Show that z = pt’, y = 2 pt are parametric equations of
the parabola 3 = 4 pz.

: _ 20 _a(l—zz)
3. Showthat:v—1+z2: V=1

tions of a circle.

are parametric equa-
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4, Show that z = asec, y = b tan 6 are parametric equa-
tions of & hyperbola.

5. Find a paxr of parametnc equations for the rectangular
byperbola 2 — y* = d’.

6. Prove that ¢ = A cos6 + Bsinf, y = Asinf— Bcosé
‘are parametric equations of a circle.
3a 3o

7. Prove that z = el ey

of the curve z* + ¢* — 3 azy = 0.

are parametric equations

8. Prove that z = a cos’d, y = a sin’f are parametric equa-
tions of the curve &3 + y% = g8,
9. Find the equation of the tangent to
(0) 2" + a®y’ = o™, at 7, = acosfy, y; = bsinfy;
(b) b2 — a®y* = o™, atz = acosfy, 1 = bsinfy;
() o = 4pz, at 2 = pt’, 1 = 2 ph.

10. Find the point of intersection of the tangents to 4* = 4 pz
at (pts, 2 pty) and (pt3, 2 ph).

98. Graph of parametric equations. If one assigns
a series of values to the parameter and determines the
series of corresponding pairs of values of z and y, these
values can be interpreted as the coordinates of points
on the curve. If these points are plotted and a curve
is drawn through them, we have the graph of the curve
whose parametric equations were given.

Ezample. Draw the graph of the curve, a pair of
whose parametric equations are z = t, y = ¢* — L.
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Solution: Assigning values to ¢ and computing the
corresponding values of z and y, we form the table

tl—4l-3]-2]-1] o] 1|2]3] 4
z|—4|-3(—2/-1| 0|1 |2 |3]| 4
v 15| 8| 3] o|-1/0 | 3 |8 |15

Plotting these points we have the graph in Fig. 130.

-
b

N4

Fre. 130

99. Time as a parameter. If a point moves in a
plane, the point occupies a certain position (g, ), at
every instant of time {. This fact is denoted by saying
that  and y are funetions of the time .

Equations of this type arise frequently in mechanics
where one wishes to describe the motion of a body which
is subjected to various forces.

For example: Suppose a body is projected from the
point O (origin) in a vertical plane, at time ¢ = 0, with
an initial velocity », and making an angle o with the
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horizontal (z-axis). Then its position at the end of ¢
seconds, the resistance of the air being neglected, may

Y

h

X

Fra. 131

be determined as follows. The z or horizontal com-
ponent of the velocity is 4, cos «, and the y or vertical
component is v, sin a. If the resistance of the air is
neglected the distance traversed is the velocity multiplied
by the time, and hence we have, recalling the fact that
the distance passed over by a falling body is % ¢t*,

z = (v, cos a) t,
y= (vsin )t —%gt*

Exercises
Sketch the following curves from their parametric equations:
1.z =34, 9. z=3t+1, 3.x=t+1,
y="Tt y=2t—05. y =1t
4z=1+1, 5. 1=t 6. z=1,

y=t-1 y == y="t.
¢
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7. r=3sin6, 8. 7=4tan, 9. z=4y

¥ = 3 cosé. y = 4 secf. y=20-164
10. = * 42,

y=f—L

11. Prove that the equation of the path of the projectile in
§ 99 written in rectangular coordinates is

=2zt i sec’
y=ctana 27 C oL
12. Prove that the range of the projectile in Ex. 11 is

2
)
R="gn2a.
g

13. Find the locus of a point P on & cirele which rolls along a
fived line.  Outline of proof follows:

Take for the origin the point O where the moving point P
touches the fixed line. If 7 is the radius of the circle and the
angle PCD (Fig. 132) is § radians, then PD = r sin 6, DC =
r¢os § and OB = arc BP = 1§,

Y

>X

o~
s
=]

Frc. 132
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Now if P is denoted by the coordinates (x, y),
t=04=0B-AB=0B-PD=rf-rsinf=r(@—sinb),
y=AP=BC - DC=r~rcosf=r(l— cosd).
Therefore
x=71(f—sin 6),
y=r(l-cos b)),

are parametrie equations of the curve traced by the point P.
This curve is known as the cycloid.

14. Find the locus of a point P on a circle of radius a which rolls
on the inside of a circle of radius 4 a.  Qutline of proof:

Take the center of the fixed circle as the origin and let the
z-axis pass through a point M where the moving point P
touches the large circle.

e

Fie. 133

Let angle MOB = 6 radians. Now we have are PB = are
MB = 4 df and arc PB = a X angle PCB.
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Therefore
a X angle PCB = 4 af,
or angle PCB = 44.
But
£L0CD+ £ DCP+ L PCB=m.
Therefore
5-0+LDCP+4d=rm,
L6, £ DCP =7~ 36,

Now if the point P is denoted by (z, y) we have
z=0E=0D+DE= 0D+FP=000050+C’Psin(—g— 30)

=3acosf+acos30=4acos’s,*

y=E’P=DC’—FC=OC'sin6——CPcos(7—;—30)
=3asinf—asin30=4asin®0;*

That is
z=4acos’d, y=4asin®d.

This curve is called the four-cusped hypocycloid.

15. A circle of radius 7 rolls on the inside of a circle of radius a
Find the locus of a point P on the moving circle.

* Prove that cos 3 6= cos (204 6) = 4 cos30 — 3 cos 6,
sin 30=1sin (20 6) = 3 sin 0+ 4 sin®6.
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Ans. The hypoeycloid

z=(a—r) cosB+rcosa—:—rG,

._,.B’

y= (a—17)sin § —rsin

where 8 is the same as in Ex. 14.

16. A circle of radius 7 rolls on the outside of a circle of radius a.
Find the locus of a point P on the moving circle.

Ans. The epicycloid:

z=(a+7) cosli+rcosg'—yﬁ,

y=(a+7) sinO—-rsina—;I__-IO,

where  is the same as in Ex. 14.



CHAPTER XII
SOLID ANALYTIC GEOMETRY

100. Cartesian coordinates. Most of the problems
of analytic geometry in the plane have counterparts in
the geometry of three dimensions. At the same time,
geometry of three dimensions, when extensively studied,
is found to have many new complications.

Cartesian coordinates in three-dimensional space are
g ready generalization of cartesian coordinates in the
plane. We assume three straight lines called z, y and 2
axes, intersecting at a point. On each of these lines
there is a number scale, on each of which the zero point
is the point common to the three lines. In this course
we shall always assume the axes rectangular, that is,
each one is perpendicular to each of the others, and posi-
tive directions will be chosen as indicated in the figure
below.

The axes drawn as we have drawn them, and taken in
the eyclic order z y 2, form what is known as a left-handed

system.

Fic. 134
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The axes taken in pairs determine three planes known
as coordinate planes, namely, the xy-plane, the xz-plane
and the yz-plane. These planes divide the space into
eight parts called octants and frequently numbered as
follows. Mark as number I the octant whose bounding
edges are the positive directions on the z, ¥ and 2 axes.
Then proceed in a counter-clockwise sense, numbering
the other three octants above the zy-plane II, III, IV;
number V the octant directly below I and proceed in a
counter-clockwise direction until all are numbered.
Points lying in one of the coordinate planes will not be
thought of as in any octant. Let P be any point in

zZ

T

P

F16. 135

space. Through P pass planes perpendicular to the
z, y and z axes, meeting the axes in the points P,, P,
and P, respectively.

Then the coordinates of P are the algebraic values of
the directed line segments OP,, OP, and OP, We call
these respectively the z, y and 2z coordinates and shall
always give them in the order named. We represent
the point by (z, 4, 2). Now every point in space has a
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unique set of coordinates, and conversely every triple
of numbers (z, y, z) determines one and only one point
of which they are the coordinates. The student should
make this quite clear to himself.

Exercises

1. In what octant does a point lie, if all its coordinates are
positive? if z is positive, ¥ negative and z positive? if all
the coordinates are negative?

2. In each of the following cases draw a figure showing the
position of the point. The figure must be constructed so
as to give the appearance of three dimensions. (3, 4, 7),
(_ 2’ 4’ —2); (7) 9: "'3)7 (3: 6; 1)’ (— 1) "2: "'3):
(_ 8: 4’-: 2): (0, 07 2): (2; 07 0): (4; - 2; 6)'

3. What are the relative positions of the following eight points
(a: b, o), (a, b, — C), (a, = b, 0), (—' a, b, C)y (a; -b - C),
(- a, b: C); (— a, — b; c): ("' a, = bl - 6)?

101. Distance between two points. The distance
between two points P; and P, in terms of their coordi-

z
T

/O_ )

Y
F1a. 136
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nates is found by the Pythagorean theorem as in plane
analytic geometry. The distance d is the length PP,
of the diagonal of the rectangular parallelopiped which
has PiB = |22 — &1, | BC = |yo — 11 | and CP; = |2 — 2 |
respectively for lengths of its sides. Now

&= PP, = P.B'+ BC + (P,
1 ~d=V(-x)"+G -y + -2

102. Point of division. The problem of finding the
coordinates of a point which divides the line segment
joining two given points in a given ratio is solved by the
same method and leads to the formulas of the same form

Z
P,
I d
0 }R S T‘X
V4
4 /
Y Lfl\N
Fra. 137

as in the corresponding problem in two dimensions.
It is left as an exercise for the student to prove

_ T2X1 + nxe

- n+r ’
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_ + lee,
n+rn
1221 + 122
B n+rn

2)

103. Direction cosines. Consider any directed line
[ in space and draw a line l, through the origin parallel
toit. Let the directions of [ and [, be the same. The
positive angles made by the positive direction of [ re-
spectively with the positive directions on each of the
axes are called the direction angles of the directed line I,
Denote the angles made by l; with the X, ¥ and Z axes in
order by o, 8,v. Thencosa =\ cosf=p, cosSy=1
are called the direction cosines of the directed line I.

In much of solid analytic geometry lines are not di-
rected. However, we shall speak of direction angles and
direction cosines of the line. The angles «, 8, ¥ can be
replaced by 180° — @, 180° — 8 and 180° — vy respec-
tively and then ), , », must be replaced by — N\, — g, — »
respectively. It is frequently quite unnecessary to
specify which of these sets of direction angles is chosen,
but we must remember to be consistent in our usage in
a given problem. Convenient formulas for determining
direction cosines of a line are the following. Let P; and
P, be two points on the line and let d be the length of
the line segment P;P,. Then:

)\:COSCL:xz—xI

3) p:cosB:uy
d

Zy — Iy

v=Cosy=
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Two important theorems concerning direction cosines
are as follows.

Theorem 1. The sum of the squares of a set of direction
costnes for any line ts unity.
From formulas (3)

_@=n)'t e —y)’+ (- 2)*

N4t e
Substitute for d* from (1) and we have
) Mpptyri=1,

Theorem 2. Any three numbers a, b, ¢ (not all zero)
are proportional to the direction cosines of some line.

For, P (a, b, ¢) is a point, and the direction cosines of
the directed line OP are

a
vV + b+ cf’,.
(5) p=cosB= v )
¢
The direction cosines of OP are evidently proportional

to a, b, ¢, and they may be found by dividing ¢, b, and ¢,
respectively, by Va* + b+ ¢*

Exercises

Tind the distance between the pair of points and the direction
cosines of the line joining them in each of the following examples.

1. (1,23), 4 —16).
2. (7: -1,- 2), (—1,-4,3).

A=cosa=

v=Ccosy=
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3. (-1,-1,-1), (1,1,1).
4. (0,0,0), (6,3,2). 5. (0, 0, — 10), (10,0, 0)

6. What are the coordinates of the point which divides the
directed line segment from (1, 2, — 1) to (3, — 1, 4) into
two portions whose algebraic values are in the ratio 2 to 3?
—1to2?

7. N:p:r=3:2:1 where \, u, v are the direction cosines
of a line, what are the values of N, g, »?

8. Find the direction cosines of a line which is equally inclined
to all the axes.

9. Find the equation of the locus of points equidistant from
(= 1,2, 3) and (4, 6, 8).

10. Describe the locus of the equation
d+y =2

104. Orthogonal projection. It is advisable at this
point to review the notion of orthogonal projection,
inasmuch as it is very important in establishing some of
our formulas.

A point, P, is orthogonally projected onto a line [ if
a perpendicular from the point is drawn to the line.
The foot of this perpendicular, P, is called the orthogonal
projection of P on l.

The projection of a directed line segment P;P; on a
line is the directed segment P.P, on | where P, and P,
are the projections on I of P, and P, respectively. The
points P; and P, are frequently most easily located by
passing planes through P, and P, respectively, each
perpendicular to I.
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It is immediate from trigonometry that P,P, = P,P;
cos 6 where 6 is an angle between PP, and I.

Theorem: Given a broken line ABCD ...... N in
space. The sum of the projections on a line of the directed
straight line segments which constitute the broken line, is
algebraically equal to the projection of the straight line
segment AN on L.

The proof is a consequence of the definition of ad-
dition of directed line segments lying on a given line.
The accompanying figure is self-explanatory and quite
typical of any such situation.

Here
AB+ BC+ CD + DE + EF + FN = AN.
As a corollary to this theorem we have that, if the

broken line ABC .... N forms a closed polygon, its
projection on any line is zero.
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105. Angle between two lines. The angle between
two directed lines that do not meet, is defined to be the
angle between two directed lines drawn through any
point parallel to the given lines and having the same
directions. There is ambiguity as to what angle is
meant, inasmuch as if 6 is one possibility, — §is another,
27+ 6 is still another and so on. However, all these
angles have the same cosine and consequently there is
no uncertainty in the following formula.

Theorem: If the direction cosines of two directed lines 1,
and Iy are N, w, v, and N, po, v respectively, then the
cosine of the angle 0 between [, and 1, 18 given by the formula

(6) cos § = M\ + pips + v

Proof: Let ay, 81, v1 and a, B, 2 be the direction angles
of two directed lines /; and I, and 6 the angle between
them.

Draw lines I and ', through the origin and paralle] to
the given lines. The angle between I'; and I'; is 6.

v/

ll

1

"
N

1) M

L

>X

F16. 139
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Let P (z, y, 2) be any point on I. From § 104
Proj,; OP = Proj,, OMNP.
= OP cos 6= OM cos an+ MN cos B, + NP coS ¥z,
But,
OM = OP cos ey, MN = OP cos B, NP = OP cos m.
cos § = cos &y cos a 4 ¢os B; ¢os B + os v, €os 7,
(6) cos = My + pupts + vive.
We shall take 8 to be the smallest positive angle which
satisfies (6).
106. Perpendicular lines; parallel lines. As a corol-
lary to the last theorem we have
M + Mafie + v = 0

when and only when the lines are perpendicular. We
call this the condition for perpendicularity.
Conditions for parallelism are either

M=2N, m=mandy =, or
M= —N, m= —pmandy = — y, or
Mo + s + v = 1, 0r
)\]Ag + J15V1) + Wiy = — 1
107. Area of a triangle. There are more or less

elaborate formulas for the area of a triangle. However,
a simple formula and one easily applied is the following:

4= 7 T2 sin 0,
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where r, and 7. are the lengths of two sides and 6 is the
angle between them. We have developed formulas for
finding r,, 7 and 6 if the coordinates of the vertices are
given.

Exercises

1. By means of direction cosines prove that the points
<5y 21 - 3): (61 1: 4): (_ 27 - 3) 6) and (— 1’ - 4: 13) are
the vertices of a parallelogram.

2. By means of direction cosines prove that the points
6, —3,5), 8 2,2) and (4, — 8, 8) lie on a line.

3. Given points A (1,4, 3), B (-2, 7,-8), C (2, 1, 7).
Find the cosine of the acute angle from A B to A C.

4, Find direction cosines of a line that is perpendicular to two
lines whose direction cosines are proportional to 1, 2, 3
and — 2, 1, 4 respectively.

5. Find the rectangular components of a force of 25 Ib. acting
in & direction making 45° with OX and 60° with OY.

6. Find the area of the triangle whose vertices are (0, 0, 0),
1,1,1), 0,23).

7. Find the area of the triangle in Exercise 3.

108. Spherical coordinates. Any point P in space
determines (Fig. 140) the radius vector OP = r, the
angle ¢ between the radius vector and the z-axis, and
the angle 6 between the z-axis and the projection of
the radius vector on the zy-plane. The quantities
r, 8, ¢ are called the spherical coordinates of the point P,
the angle 9 the longitude and the angle ¢ is called the
colatitude.
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" Cunversely, any three numbers, 7, 6, ¢ determine in
space a point P whose spherical coordinates are (r, 6, ¢).

The equations of transformation from rectangular
to spherical coordinates are

x =7 cos  sin ¢,
y=rsin 0 sin ¢,
Z =T cos ¢.

The development of these formulas from Fig. 140 is left
48 an exercise.

P (rsey¢)
r
¢
M
0 5 / 5'e
Y N
Fra. 140

109. Cylindrical coordinates. Let P’ be the pro-
jection of P on the zy-plane. Let the polar coordinates
of P'be (r,6) and # the distance of P from the zy-plane.
The three numbers (r, 6, 2) are called the cylindrical
coordinates of P. Conversely, any three numbers
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r, 8, z, determine a point whose cylindrical coordinates
are (r, 0, ).

The equations of transformation from rectangular to
cylindrical coordinates are

x =1 cos 0,
y=rsin 6,
z=12

The development of these formulas from Fig. 141 is
left as an exercise.
Z
P(r,6,2)

Y /
PI
Fia. 141

Exercises

1, Find the rectangular coordinates of the points whose
spherical coordinates are as follows:

T T T 3T T 3T
(4:, 5’ Z), (10, Z: —4—-), (10, _Z’ —Z);
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. Find the spherical coordinates of the points whose rec-
tangular coordinatesare (1, 1,2); (1,1,1); (1, —2, 2);
(2: 21 - 2)-

. Find the rectangular coordinates of the points whose
cylindrical coordinates are (3, 30% 10); (4, 60°, — 2);
(8, — 150°, 4).

. Find the cylindrical coordinates of the points whose rec-
tangular coordinatesare (1,1,2); (1,1, —4); (2,—2,2).

. Find a formula for the distance between any two points in
terms of their spherical coordinates.

. If the earth is considered a sphere with radius 3962 miles,
what are the rectangular coordinates of a point on its
surface in latitude 40° 21’ North and longitude 76° 30’ West?
What is the distance from the polar axis?



CHAPTER XIIT
THE PLANE — STRAIGHT LINE

110. The locus of an equation. The notion of the
locus of an equation in three variables is entirely an-
alogous to the notion of the locus of an equation in
plane analytic geometry.

The locus of the equation consists of all those points-
and only those points whose coordinates satisfy the
equation.

Similarly: An equation of a locus is an equation which
is satisfied by the coordinates of all points of the locus
and by the coordinates of no other point.

It is not necessary for all three variables to occur in
an equation in order for us to speak of its locus in space.
For example, the equation £ = o is satisfied by the co-
ordinates of all points whose #-coordinate is o and by no
others. Hence z = a is the equation of the plane per-
pendicular to 0X and a distance a from 0, and is the
locus of these points. We shall see later that Az + By
+ C = 0, interpreted in three-dimensional geometry,
is the equation of a plane parallel to the z-axis, ete.

111, Theorem 1.  Every plane has an equation of the
first degree in 2, y, 2.

Proof: Let S be any plane and let OR be the perpendic-
ular from O meeting Sin §. The positive direction of
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OR will be taken from O to the plane. Let the direction
angles of OR be «, 8, v and let the length of 0Q be p.*

7
y. 4

Q
S /p/ P
M
o) 7 X

N

Y
Fic. 142

If P (z, y, 2) is any point in the plane, we have
Projoz OP = Projoz OM + Projor MN + Projoz NP.
Hence the equation

(1 x cos o+ y cos B+ z cos y = p,

is the equation of the plane, which proves that any
plane has an equation of the first degree.
Equation (1) is called the normal equation of the plane.

Theorem 2.  Every equation of the first degree in
z, y, and z 18 the equation of a plane.
Proof: Consider the equations

*If the plane passes through O we shall take the positive direction of OR
to be upward and hence cos v > O since v < 90°. If the plane passes through
the z-axis, OR lies in the zy-plane and cos ¥ = 0. In this case we shall direct
OR 50 that $< 90° and hence cos 8> 0. If the plane coincides with the yz-
plane, the positive direction on OR shall be taken as along 0X.
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@) Az+ By+Cz+ D=0
1) zeosa+ ycosB+zcosy —p=0.

Equation (1) represents a plane by Theorem 1. If
equation (2) represents a plane it should differ from
equation (1) only by a constant multiplier, say 4.

Hence

kA = cosa, kB = cos B, kC = cosvy, kD= — p.

But cos’a + cos’B + cos’y = 1, § 103.
Therefore 1
2 .2 R2 22 e
BA*+ B+ CP=1or k= i\/m.
Hence equation (2) represents a plane in which
_ A
(3) cosa = NTTFTC
_ B
cos B = N \/A2—+B——2+C2:
cosy = -D

sVIEFETCE T ivVIFEIC

112. The angle between two planes. The angle
between two planes is the same as the angle between
two lines perpendicular (normals) to the planes. If the
equations of the planes are 412 4+ By 4+ Biz+ D, = 0,
and Asx 4 Bsy 4+ Cy2 + D, = 0, the direction cosines
of their normals are

4; A,

y COSQg = = y
VA '+B + ¢ +V A"+ By + Cy

COoS o =
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c0s B = By 03 b = B,
g AT+ B+ T e VAITF B+ G
G Cs

0]

T evamEEe T avET R
If the angle between the normals is §, we have
4) Cos f=1 ' Aid: + B\B: + C,C: )
VA + B+ CT VA + BT+ 0
If the planes are perpendicular, cos # = 0 and
) A4, + BB, + C,C, = 0.

Conversely, if (5) is true, the planes are perpendicular.

113. Parallel planes. If two planes are parallel,
their normals are parallel. Let the equations of the
planes be ‘

zceosa +ycosB+zcosy =p,

zcosa + ycosp + zcosy = p.
Then either
cos & =cos &/, cos 8 =cos 8, cosy = cos ¥/, or

cosa = —cosa/, cosf = —cosB, cosy= — cos¥y.
Therefore, if the equations of the two planes are

A+ By + Cz+ D, =0,

4z + By + Cz+ Dy = 0,
they will be parallel, if and only if

Ay = kA, By=FkBy, Co=kC. (k#0)

Therefore any plane parallel to Az + By + Cz+ D=0
can be written in the form Az + By + Cz+ k= 0.
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Example 1. Find the equation of the plane passing
through the points

2,1,3), (1,3,2), (-1,2,4).
Solution: Method I. Let the equation of the plane be
Axz+ By+ Cz+ D = 0.

Since the plane contains the three given points we have
24+ B+3C+ D=0,
A+3B+2C+ D=0,
—A+2B+4C+ D=0

3 4 1

i =—-°D B=-_D,C=-2D.
Solving, 4 % D, % g D
3 4 1
Then —25Dx—--2—5Dy+5Dz—l-D—0,'
or 3z+4y+5z2—-25=0,

is the equation of the plane through the three points.
Method II. If we eliminate 4, B, C, and D from the
four equations,

Az+By+Ce+D=0, 24+B+3C+D=0o,
A+3B+20+ D=0, —A+2B+4C+ D=0,

we have
1
Ty 2

213
13 2
-1 2 4
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or 3z+4y+52—25=0 as the equation of the
plane. See Ex. 15, p. 272.

Example 2. Find the equation of the plane through
(3,2,1) parallel tod4z —3y+2=T.

Solution: The equation of any plane parallel to the
given plane is

4r-3y+z2=%F.

Substituting the coordinates of the point (3,2, 1) gives
- 7.
Hence the equation of the required plane is

4z —-3y+z="1.

Ezample 3. Find the equation of the plane passing
through (3, — 1, 2) and perpendicular to the planes
2z —3y+2=4andz+2y+32=5.

Solution: Let the equation of the desired plane be

Az + By + Czo—l- D=0.
Since the plane passes through (3, — 1, 2), we have
3A-B+2C+D=0.
From the conditions for perpendicularity we have
24-3B+ (=0, '

A+2B4+3C=0.
Solving we have
11 - 1
d=-3D ~u? =3
11 E 1
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or
as

llz+5y—-72—-14=0,

the equation of the desired plane.
For a solution by determinants see Ex. 17, p. 272,

Ezercises

1. Draw the planes whose equations are

aAy=3 bz=3 cz2=-2
d) 2z+y=4, ¢) 4x+3y+e=12

. What is the general equation of a plane passing through

the origin?

. What is the equation of the zy-plane? yz-plane? zz-plane”

. What are the intercepts on the axes of the planes whose

equations are:
a) 4z -3y+z=127 b) z—y+z+4=0?
0 z+y=0? d) Az+ By+Cz+ D= 0?

. Find three numbers proportional to the direction cosines of

the normal to the plane 3z+4y—52= 6. What are
the direction cosines?

. Find the equation of the plane through the points

a) (1,23), 101, 210);
b) (2; 2, 2): (2; 37 1); (11 - 1; 3);
9 (3,01, (1,03), 21,2).

. Find the equation of the plane through P and parallel to

a when

a) Pis(2,1,3)and ais3z—4y—22=7,
b Pis(—1,2,3)ande¢is2z+3y+2=15;
¢ Pis(l,-1,2)andeis52z—3y+ 72z =6.
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8. Find the equation of the plane passing through Py, P, and
perpendicular to o, when

a) Piis(1,1,1), P:is(—21,3), ais3z—4y+2=06;
b) Piis(—1,2,3), P:is(3,1,~2), ais2z+5y—2=17;
¢ Pis(3,2,1), Pis(1,0,5), aistz— y=3.
9. Find the equation of the plane passing through P and per-
pendicular to « and a; when
a) Pis(2,1,1), ais3z—y+z=4, ais2z+3y-z=35;
b) Pis(~1,2,3), ais2z+y-2=0, ais3z—2y+2z=17T,
¢) Pis(=10,2), aisd3z+y—z2=4, aisdz— y+z=
©10. If the z, y and 2 intercepts of a plane are a, b and ¢ re
spectively, prove the equation of the plane is

f+y+g=]_
a b ¢

11. Find the equation of the plane whose z, y and z intereepts
are respectively

a) 3,4,5; b) —2,3,—-7; ¢ 4-44

12. Find the cosine of the smallest angle between the planes

a and 8 when

a) aistz+ y— 2=6, fis3z-2y+ 2=7;

b) aisdz— y+6z=17 Pfis2z- y— z=3;

¢) ais3z+2y—52=4 Pis2z-3y+52z=28.
y 13. Prove that the distance from the plane Az+By+Cz+D=0
Ax1+By1+Cz1+D

s VAL + O

to the point (21, y1, 21)
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15.

16.

17.

18.
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Find the distance from the plane « to the point P when
a) aisdz—3y— z=4, Pis(423);
b) aisdbz—3y+22z=6, Pis(3,—1,2);
¢) ais2z+ y— z=4, Pis(235).
Prove that the equation of the plane passing through the
points Py (2, y1, 1), Pa (22, 42 22), P (33,43, 2) s
zyz1
zyral _
Ty Yo 2 1
T3 ys 2 1
Prove that the equation of the plane passing through the
points  (z1, y1, #1), (%2, y2, 22) and perpendicular to

A+ By+Cz+Di=0is
ry 2z 1
Ty al —0

Ty Yo 2 1
A1 B Ci 0

Prove that the equation of the plane passing through
(21, y1, 2) and perpendicular to the planes

A1Z+B1y+012+D1=0, A2x+B2y+sz+D2=0is
Ty 2 ll
1 Y1 &1 1 =0
A B 1 0 )
A; B, Cy 0

Prove that the planes
Aiz+By+C2+ D=0, A+ By+Cz+ D=0,
A+ By +Ce+Dy=0, A+ By+Cez+ D=0
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meet in a common point, if and only if,
'4, B, ¢, D

As By Cp D
=0,
4; B; 03 D3

Ay By C; Dy

114, Simultaneous linear equations. From algebra
we know that three simultaneous linear equations in
three unknowns have in general a single solution, but
may have an infinite number of solutions or no solutions.
Since each equation is the equation of a plane we can
prove this statement geometrically for the three planes
may assume the following positions.

Case 1. No two of the planes are parallel or coincident.

a) The three planes may intersect in a single point;
then there is a single solution of the three simultaneous
equations.

b) The three planes may intersect in a line; then there
is an infinite number of solutions.

¢) The three planes may intersect so that the three
lines of intersection are parallel; then there is no solution.

Case II.  Two of the planes are parallel but not coin-
cident.

In this case the three planes can have no point in
common and the equations have no solution.

Case IIL.  Two of the planes are coincident.

@) The third plane may be parallel to the coincident
planes, in which case there is no solution.



274 THE PLANE — STRAIGHT LINE

b) The third plane may intersect the coincident
planes, in which case there is an infinite number of
solutions.

¢) The third plane may coincide with the coincident
planes, in which case there is an infinite number of
solutions.

115. Pencil of planes. All those planes which have a
line in common are said to form a pencil of planes.
The line in which they intersect is called the axis of the

pencil.
If ‘
(6) Ag+ By+ Cz+ D=0
and
(7 A+ By + Cz+ Dy =0

are the equations of any two distinet planes of the peneil,
then

(8)
(Asz+ By + Ciz+ Dy) + k(Asz ot By + Coz+ Dy) =0,

is the equation of any other plane passing through the
given line.

116. Sheaf or bundle of planes. All the planes
which pass through a common point are said to form a
sheaf or bundle. The common point is called the center.

Let the following be the equations of three distinct
planes of the sheaf not belonging to the same pencil:

_A-lx + Bly + Cz+ D, = 0,
A+ By + Ciz+ Dy =0,
A3$ + B3y + 032+ D3 = (),
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Then the equation of the sheaf or bundle is

)

(A4 By + C#+ D)) + ki (Asx + By + Coz+ Dy) +
ky (Asx + By + (324 Ds) = 0,

where % and k. are constants whose values determine

the position of the particular plane of the sheaf or
bundle.

117. Equation factorable into first degree factors.
The locus of the equation

(10) (;‘11.1' + Bly + C1Z + Dl) (A‘i‘lx + B‘.!y + sz + D2)
..... (4,r+By+Cz+D,)=0

is the n planes whose equations are
..'1117 + Bly + Clz + D1 = 0,
AQI + Bzy + ng+ D2 = 0,

..........................

Az4+ By+ Ciz+ D, = 0.

This follows immediately from the fact that a product
is zero when and only when at least one of the factors
of the product is zero. There is no reason why some of
the factors of (10) should not be repeated. We then speak
of coincident planes in exactly the same sense in which
we speak of coincident roots of an equation.

Exercises

1. Find the equation of the plane that passes through the
intersection of e and 8 and the point P when

a) ais3z—2y—z=1, Bisdz+3y—z=4, Pis(l,1,1);
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b) aisdz+ y—2=3, Bis3z+2y—2z=4, Pis(3,2,1);
¢ aisTz— y—z=4, Bis2z4+ y—2=4, Pis(2,1,3).
2. Show that the planes whose equationsare 3z — 5y + 2= 0,
6r+y—2z—13=0, 1lly—2z=17 belong to the
same pencil.
3. Find the equation of the plane through the intersection of
4r—-3y—z=4, 5xz+y—22=7 and perpendicular
to the zy-plane.

4, Find the equation of the plane through the intersection of
the planes «, 8, ¥ and the points Py, P, when

a) @isd3z+y—2=3, Pis2z—y—2z=040,
yisdz—y—2z=2  P1is(2,1,3), Pis(—2,21).

b) ais2z+ y— 2=0, f s 3e+y+2=2
visdz—-3y-2z=4, Pis(2,1,1), Pis(-121).

118. Equations of a straight line.

a) The two simultaneous equations
Az 4+ By+ Ce+ D=0,
Ayx 4+ By + Cz+ Dy, = 0,

have a line as locus, namely, their line of intersection,
provided, of course, the two planes are not parallel or
coincident.

b) A given point and a given direction determine a
line. Let the given point be P;(z;, ¥, 2) and «,
B, v the given direction angles. If P (z, v, 2) is
any other point on the line, at a distance d from P;,
we have from § 103,

r—I 2 -2
s a=-"——, cosf= L

d

y—;—yi, cos v =
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Therefore we have

r — I Yy—1h 2—2
11 = =
(1) €os a cos 3 cos vy ’

x—xl_y—-yl_z-zl
A © v

or ,

which are called the symmetric equations of a straight

line. In these equations cos e, cos B, cos v can of course

be replaced by any three numbers proportional to them.
The equations of the line are

(12)

¢) Two distinet points Py (z1, 4, 21), P2 (25, 9o, 2)
determine a line. Any line through P; is of the form
T — %

a

But the direction zosines of P;P, are proportional to
Ty — Ty, Yo — Y1, 22 — 2. Hence the equations of the
line through the two points P; and P; are
ronh _Yy-h_z-n

Xo— X1 Yo=Y 22—12)

(13)

if no denominator is zero.
d) If ¢ denotes the variable distance of P:P, then

=1, y—(l,h___#, z2—2

¢ ¢

Therefore

x=x+ M
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(14) Y=y +pt
z =12, + ¥,

which are parametric equations of the line through the
point (21, ¥1, z1) with direction cosines A, g, ».

It should be noted that if the line is parallel to one of
the coordinate axes, forms (11), (12) and (13) cannot be
used, for some one of the denominators would be zero.
However, form (14) is valid under all conditions.

Example 1. Reduce to the symmetric form the
equations of the straight line,

3z+2y—2=4, z+3y+2z=05.

Solution: Eliminating 2 we have 4z + 5y = 9. Sim-
ilarly, eliminating « we have 7y + 42z = 11. Solving
these equations for y and equating the values found, we
have
_4rx-9 4z-11
-5 =7

-

or

s—§_y-0_z-%
-t 1 ~%
Hence the line passes through the point (4, 0, 14) and
has direction cosines proportional to — 5, 4, — 7.

Ezample 2. Find the equations of the line passing
through (3, 4, — 5) and perpendicular to the plane
S5r—2y+T72z=5. _

Solution: The required line is parallel to the per-
pendicular from the origin to the given plane and
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therefore the direction cosines are proportional to
5, — 2, 7. The required line then has the equations,
zt—-3_y—4_z2+5
5 -2 7

Exercises

1. Write the equations of the line passing through point P
with direction cosines proportional to g, b, ¢, when:

a) Pis(3,4,1), a=5, b=2 ¢=-2
b) Pis(—2,4,~-3), a=2, b=3, c¢=—5.
¢ Pis(2,0,1), a=-1, b=4, c=6

2. Find the equations of the lines passing through the follow-
ing pairs of points:

a) (3,4,5), (2,5 -1).
b) 4,6,5), (2,—1,4).
¢ (-232), 442).
3. Write in symmetric form the equations of the lines:
a) 3t4+2y—2z2=4, 2z—y+3z=25.
b) 3z—y+z=4, z+y+tz=4
¢) z2-2y—T72=3, 2z+y+z=3.

4. Find the equations of the line that passes through the point
P and is perpendicular to plane e, when:

a) Pis (2, -1, 3), aisdz—-3y+2z2=4
b) Pis(1,0,2), «is8z—2y—z=2.
¢) Pis(2,-1,0), aisbz+2y—Tz=—3.
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Find the equations of the line that passes through the point
{4, ~ 1, 3) and is parallel to the line

. Find in symmetric form the equations of the line that

passes through (7, —2, 4) and is parallel to the line
42~-3y—2=1, 2zx+4y+z=A5

. Find the equation of the plane through (2, =1, 4) and

perpendicular to the line

-7 =3 z+1
4 —_

are perpendicular to each other.

MISCELLANEOUS EXERCISES

. Find the intercepts of the planes which have the following

equations:

a) 3z+2y—5z=60.

b) Te—8y+3z=2

¢) x cos 60° + y sin 60° + 2 cos 45° = 10.
d) 2z-3y=4.

. What are the equations of the planes whose z, ¥, and z

intercepts are respectively

a) 1,4,5; b)3,-6,2; ¢4-1-1
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» Deseribe in words the location of the planes which have the

following equations:
+§=L B) 2043y +dz= 1.

zr—y=2 dz+y=-4 e)y=1

- Find the equation of the plane passing through the points

(3’ -1, 4)7 (21 L 5)7 (—' L3, 2)

5. Show that the following four points lie in a plane:

10.

(1) 1: - 11), (5: O: 9), (5r - 5) 25)y (O! 0) - 12)'

. What are the direction cosines of the normals to the plane

4r4+5y~3z+2=(?
What is the distance of this plane from the origin?

. What is the perpendicular distance of the point (— 1, 2, 3)

from the plane whose equation is

6r+5y—z=8?

» Are the points (6, 1, — 4) and (4, — 2, 3) on the same side

of the plane
2z24+3y—5z+1=0?

. Find the equation of the plane through (6, 2, 4) which is

perpendicular to the line drawn from the origin to that
point.

What is the equation of the plane through the point (1, - 2, 4)
parallel to the plane whose equation is

6rty—dz+2=0
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11. Which pair of the following planes are perpendicular?
a)Tz—8y+3z+ 2=0,
b) 2z—-3y+32z+10=0,
0 3z+ y— 2+ 4=0.
12. Reduce the equations of the following planes to the inter
cept form and to the normal form:
a) Te+ 6y~ z=4
b) 8z-10y+3z=8.

13. Write the equations of the planes equally inclined to the
axes and at a distance 4 from the origin.

14, What is the cosine of the acute angle between the planes
whose equations are:

dx+5y—6z2+1=0, z+y+z+4=0.

15. Find the equation of the plane through (1, 1, 1) and
(~ 1, 2, 3) and perpendicular to the plane whose equation
84z-5y+2z=12

16. If @, b, c are the intercepts of a plane and p its distance
from the origin, prove

1 1 1

- +=+3

17. Derive a formula. for the equation of the plane which is

the perpendicular bisector of the line segment joining

Py (z1, 1, 21) and Py (2, 3, ).  Apply your formula to a
numerical example of your own choosing.

18. If 4 is the angle between the two lines

x— - - - - -

1=y y1=z 2 a,ndx 352:.?/ 'y2=2 2
a b 4] @ by G
find cos 4.

)
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. A plane passes through the line of intersection of the planes

whose equations are:
2z-5y+1lz=4and z2—-6y+2z= -3,
and through the point (1, 0, 1).. What is its equation?

. A plane passes through the point of intersection of the

planes whose equations are:
2rx—-5y+1lz=4
z=6y+ z=-3
z+ y+ z=1],

and through the two points (1, 4, 2) and (— 1, 1, — 1).
What is its equation?

What is the locus of:
o) ' ~5z+6=0?
b) 2=yt =0?
O F+2zy+yt-2L-22-1=0?
d) y=z"?

. Do the planes which have the following equations pass

through the same straight line?
2z+5y+32z=0.
Ty—5z+4 =0.
z—y+42-2=0.

. If \, p, v are the direction cosines of the line of intersection

of A1Z+Bly+ 012+D1 = 0, A2$+Bgy+CQZ+D2 =(
prove that*

A i v
B202 C2A2 A2B2
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24. Prove that the equation of the plane through the point
(¥, ¥, z1) and parallel to the two lines whose direction
cosines are Ay, py, »; and Ag, us, v» respectively is

T—on Yy—%n -
)\1 M1 141 = (

A Ha 2

25. Determine if the following planes pass through a point:
z+2y—- z+3=0,
3z— y+2z+1=0,
2z-2y+32—-2=0,
z— y— 2z2+3=0.

26. Find the values of & for which the following planes are
perpendicular:

kx+3y+kz=4and k—1)z+ky+2=0.

27. For what values of D do the planes with the following
equations meet in a point?

Dr+2y— z+7=0,
3z— y+2z+1=0,
22— y+ z2-2=0,
z+ y— 2+D=0



CHAPTER XIV
QUADRIC SURFACES

119, A quadric surface is any surface whose equation
is of the second degree in z, 7, and 2. A quadric surface
is sometimes called a conicoid.

A sphere is the locus of a point whose distance from a
fixed point is constant. The fixed point is called the
center and the fixed distance the radius of the sphere.

The term radius is also applied to any directed line
segment from the center to a point of the sphere as well
as to the length of that segment.

Let the center be C (b, k, I) and P (z, y, 2) any point
on the sphere. By the definition of a sphere CP =1,

or P =1

Frg. 143



286 QUADRIC STRFACES

O S E-hR+y-R+E-)'=r
If the center is at the origin, (1) reduces to
@) e?+y+S=r"

If the sphere passes through the origin and has its center
on the X-axis, (1) reduces to

3) =2+t 2=0.

If equation (1) is expanded it will take the form

4 PP+l +ax+by+cz+d=0,

where a, b, ¢, and d are constants. Conversely, equation
(4) can be written

. 9 b+t —4d

() /D +b/DH o2y = T4
If ®+0b°+c—4d>0, (5) is the equation of a
sphere with center at (— a/2, — b/2, — ¢/2) and radius
IVE+HU 4 —4d T a4+ —4d=0,
equation (4) is satisfied by the coordinates of one point
only, namely (— a/2, — b/2, — ¢/2). If

A+ +d—-4d<0

there is no point whose coordinates satisfy the equation.

120. Essential constants. Equations (1) and 4)
each contains four constants. A sphere can usually be
made to fulfill four given conditions by properly choosing
these constants. The student must be on his guard,
however, against exceptional circumstances when there
is no sphere to fulfill the given conditions of the problem.
For example, to find the equation of the sphere through
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the four pOintS P]_ (.731, Y1y Zl), P2 (332, UYa, 22), P3 (xa, Y3 %),
and P, (x4, ¥s, 2 substitute the coordinates of the
points suceessively in (4) and solve the resulting equa-
tions for a, b, ¢, and d. This is a possible process in
general, although in exceptional cases the equations
may be inconsistent, as will appear when their solution
is attempted. Such a case will arise if the four points
lie on a line. :

Example. TFind the equation of the sphere through
14,1,1), 1,21), (1,1,2),and (2,1, 1).

Solution: The coordinates of the given points must
satisfy the equation

4+ + 2 tart+bytet+d=0.
This gives the equations
e+ b+ c+d= -3,
a+2b+ c+d= -6,
a+ b4+2c¢c+d= -8,
2a¢+ b+ c+d= —6.

Solving these equations we havea = — 3, b= — 3,
= — 3, d = 6. Hence the equation of the sphere is

P+ ¥+ -32-3y—32+6=0.

This problem can be solved also by determinants. See
Ex. 6, p. 288.
Exercises

1, Find the equations of the spheres which have the following
points as centers and whjch have the indicated radii:

a) (— 1: 312):T= 4; b) (778:—6)’T=2;
c) 4,3,—2),r=10; d) 0,0,1),r=1.
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2. Determine which of the following equations is the equation
of a sphere. For each sphere determine the coordinates of
the center and the length of the radius:

Q) £+ +S+20+4y+62+20=0.
b S+ 2s+4y+62+1=0.
o Z+2z+y +8 =0

A+ ++2z4+2y=0.

O P+ +S 204y +62+14=0.
f) 3 +3+37+52-6y+7z2=0.
9) 37 +2 +42' -z +y—2+2=0.

3. Find the equation of the sphere which has the points
(-1, 3,2) and (6, 7, 8) as ends of a diameter.

4, Find the equations of the spheres which have a radius » and
which are tangent to all the coordinate planes.

5. Find the equation of the sphere which has its center at
(1, 1, 1) and passes through (- 1, 4, 2).

6. If (1,41, 2), (22 00, %), (s, 93 %), (%, Ys, 24) are the
vertices of a tetrahedron, prove that the equation of the
circumseribed sphere is

@+t +Mey el
@+’ +ad) mma l
@+t o)y 1| =0.

@ +y’+a) mysz 1

(zd + yetad) zysa 1
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7. When possible find the equations of the spheres that pass
through the following points:

o) 1,L,1, (0,1,0, (200, (0,0 2);

b 1,L,1), (0,00, (4 -1,3), (-1,-1,-1);
0 (5,-1,2, 31,4, (786, (031);

d (1,49, 1,27, 253, (-1,3,8).

8. Show that the equation of the plane tangent to the sphere
2+ +2° = r’ at point (z3, 1, 21) is

oz + gy + 2 = 1

[Hint: The tangent plane is perpendicular to the radius
drawn to the given point.]

9. Show that the equation of the plane tangent to
@—h+ @G —=k+ (-0D° =" at point Py (21, 1, 2)
s @m-hHEeE-aw)+G-HNEy-yp+E-0)eE~2)=0

121. Cylinders. A surface generated by a straight
line moving parallel to a given line and always inter-
secting a given fixed curve is called a cylindrical surface
or a cylinder. An element of the cylinder is the gen-
erating line in any of its positions.

Any algebraic equation in two cartesian coordinates
is the equation in three-dimensional geometry of a eylin-
der whose elements are parallel to the axis of the third
variable while in two-dimensional geometry it represents
a curve. For example, 2* + y* = 9 in two-dimensional
geometry is the equation of a circle in the zy-plane.
However, in three-dimensional geometry the equation
is satisfied by the coordinates of any point P situated
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on a line meeting the circle at M and parallel to the 2
axis. Moreover, if MP moves parallel to the z-axis

P
g x
/ o
Y
Fic. 144

and continues to intersect the circle, the coordinates of
P continue to satisfy the equation 2° + y* = 9. Hence
the line M P traces a cylinder which is the locus of the
equation 2* + y° = 9.

If a plane is passed perpendicular to the axis of a
cylinder, the section is a curve equal and parallel to the
directing curve.

If a cylinder has its elements parallel to one of the
coordinate axes and always intersects a fixed curve in
space, the cylinder is called the projecting cylinder of
the curve.

Exercises
Deseribe the locus of each of the following equations:

Lo=5. 24+y'=4  3.y=2a
L7 =4 by=tn 5. 42°+ g = 36,
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7.y =z-1 8. z=471" 9.7 =¢"+1.
10 2 4+27=16 W 27-7=0. 12 F+n’=4

122, Symmetry, intercepts, traces, sections. The
following rules for symmetry are easily proved.

If a given equation is left unchanged by replacing
z, (), 2, by — 1z, (— y), — 2, the locus is by definition
symmetric with respect to the yz, (22), 2y, plane re-
spectively.

Intercepts of a surface on the axes are the segments
from the origin to where the surface cuts the axes. To
find the intercepts, place two of the variables equal to
zero and solve the resulting equation for the third
variable.

Traces of a surface are sections of the surface made
by the coordinate planes. To find the equations of the

Fia. 145

traces, place successively each variable in the equation
of the surface, equal to zero.
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A section of a surface is the curve formed by the
surface and a plane cutting it. For example, the equa-
tion of the surface and x = k, where £ is a constant, are
together a section, and the equations of the curve of
intersection of the surface and a plane parallel to the
yz-plane.

123. The ellipsoid. The locus of the equation

2 2
oy 2
Ftpte=h

is called an ellipsoid. It is symmetric with reference
to each of the coordinate planes and hence to the origin
which is consequently called its center. Its intercepts
on the positive directions of the axes are a, b, ¢, which
are called its semi-axes. Sections made by any plane
parallel to the coordinate axes are ellipses. For example,
the section made by the plane 2 = £k if the plane cuts
the ellipsoid, has the equations
2 2 2
Lil=1-5, .op
a b ¢
This is an ellipse if £* < ¢’, a point if k* = ¢ and there
is no locus if £*> ¢’ in which ease the plane does not
intersect the ellipsoid.
It may happen that all of the semi-axes are equal, 7.e.,
e =b = ¢, in which case the ellipsoid is a sphere. If
two of the semi-axes are equal, for example if b = ¢, the

ellipsoid is called an ellipsoid of revolution for it can be
2 2

generated by revolving the ellipse %—l— % =1, z=0,

about the z-axis.
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124. Surfaces of revolution. The surface generated
by revolving a plane curve about any line in its plane,
is called a surface of revolution. When the axis of
revolution, 7.e., the line about which the curve is re-
volved, is one of the coordinate axes, the equation of the
surface is readily found.

Example. The parabola y° = 4x, 2z = 0 is revolved
about the z-axis. Find the equation of the surface of
revolution.

Fic. 146

Solution: As the curve is revolved about the z-axis
any point P on this curve describes a circle, whose
center is on the z-axis and whose radius is the ordinate
MP. Therefore, for any position of P,

V' + =P
But MP =y’ =4z

y* 4 2° = 4 7, is the equation of the surface.
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Exercises

Find the equations of the surfaces generated by revolving
the following curves about the indicated axes.

142" 49y =36, z =0, z-axis.
2. 42"+ 9 =36, 2 =0, y-axis.
3.4 492 =36, y=0, z-axis.
4,427 +92° =36, y =0, zaxis.
5 4 = 4g, z =0, z-axis.
6. 7" =4y, z =0, y-axis.
7.8 -y =4, 2 = 0, z-axis.
8 ' -7 =16, z =0, y-ags.
9.7 =2r, y =0, -axis.
10. 5+ 25 =4, z =0, y-axis.
1y =25, z = 0, z-axis.
12.2 =3z, y = 0, z-axis.

13. When an ellipse is revolved about its major axis the ellipsoid
generated is called a prolate spheroid; when it is revolved
about its minor axis, an oblate spheroid. Which of the
spheroids in Examples 1, 2, 3, 4 are prolate? oblate?

14, Describe the locus of

2 2 2

LA AL
a)a2+b2+c2 0.

A AP
b)a2+b+02+1 0
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125. Elliptic paraboloid. The locus of the equation
2 2 Z

=z + Y

z= pERE /—’"
is called an elliptic para-
boloid. Itisevident that R
sections parallel to and o
above the zy-plane are
ellipses, and that sections s
parallel to the zz-plane >
or the yz-plane are para-- A
bolas. ¥

Fie. 147

-
.

126. Elliptic hyperboloid of one sheet. The locus
of the equation

is called an elliptic hy-
perboloid of one sheet.
Sections made by planes
parallel to the zy-plane
are ellipses, parallel to
either of the other
coordinate planes are
hyperbolas.
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127. Elliptic hyperboloid of two sheets. The locus
of the equation

(X3

2 2
oy 2
S R |

a b t ¢

is called an elliptic hyperboloid of two sheets. We can

rewrite the equation in the form

z2

x2 2
atE et
whereupon we observe that sections made by the
planes z = k are ellipses if ¢’ < k% a point if ¢* = k?
and that there is no section if ¢* > k%

In a similar way we see that sections made by planes
parallel to the zz-plane and to the yz-plane are hyper-
bolas.

7

>Ny

—

A

Fia. 149

128, The hyperbolic paraboloid. The locus of the

equation
2

Ty

4
z=—2_

a
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is called a hyperbolic paraboloid. Sections made by
the planes z = k are hyperbolas. The asymptotes of
each of these hyperbolas project orthogonally into the
same two lines in the zy-plane. Sections parallel to
the zz-plane and yz-plane are parabolas.

-

S S

t
I
i
t

Fia. 150

129. The cone. The locus of the equation
72 2 2 7
FAT AL

is called an elliptic cone. It
is symmetric with respect to
the three coordinate planes,
the three axes and the origin.
All three of its intercepts are
zero. Sections parallel to the
zy-plane are ellipses, while
those parallel to-thezz and yz ¢
planes are hyperbolas. The -
traces on the zz and yz planes
are respectively the pairs of
lines cx £a2=0, y=0; cy £bz=0, = 0. If any

—X

Fra. 151
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point P (z1, 41, z) is on the surface and is connected to
the origin O, then the line OP lies on the surface, for the
coordinates of any point on the line are (Azi, Ayi, Az;)
and they are seen to satisfy the given equation.

If @ = b, the cone is a cone of revolution.

130. Ruled surfaces. A surface which is such that
through every one of its points there is a straight line
which lies entirely on the surface, is called a ruled sur-
face.

Examples with which the student is already familiar
are planes, cylinders, and cones. It happens, how-
ever, that two of the quadric surfaces are also ruled sur-
faces.

Consider the equation of the elliptic hyperboloid of
one sheet, namely, equation

2 2

2
Yy oz
AR

p 1. This can be written

o ()6-9-0+30-)

Now consider the family of lines whose equations are

§+L”@+9’
a ¢ b

a ¢
where # is a parameter. By varying ¢ we get not one but
a system or family of lines. The family of lines obtained

LK

)

oI
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by giving all real values to ¢ plus the line whose equations
are

QI8
|
o in
]
L

®) y
1+5=0,

will be called the completed family.

Each member of this completed family lies on the
surface. For if equations (7) or (8) are satisfied it is
evident that (6) is satisfied.

We shall also show that one member of this completed
family passes through each point of the surface. Con-

sider a point P (z, y, 2) of the surface. If 1+ % #0

determine ¢ 50 as to satisfy the first of (7), substitute in
(6) and we obtain the second of (7), that is, both planes
whose equations are (7) pass through the point. If

1+ % =0, but g ;;é 0, determine ¢ to satisfy the

second of (7). Substitution in (6) now yields the first
of (7). Again both planes pass through the point. If
§—z= 0 and 1+%= 0 at the point then the line
whose equations are (8) passes through the point.

The factors of (6) can be paired in another way. We

write
4 _ g) |

£

@I&
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F16. 152

These equations define a second family of rulings in
every way analogous to the first and also lying on the
hyperboloid, one ruling through every point of the
surface.

Consider next the hyperbolie. paraboloid whose equa-
tion is

-

2
¥
2= —'55'

SWES
[

This ean be written

= ()3

We write the equations of two families of straight
lines,
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The first consists of lines whose equations are

Ty
== ~—Z
e b
The second consists of lines whose equations are
(
! 2=1 :E —_ :2
J a b
., ¥
i = - Z.
a T b

We have here a situation entirely analogous to the el-
liptic hyperboloid of one sheet. The student should go
through the reasoning in detail.

Exercises

Discuss the following surfaces. Sketch the surface, if pos-
sible, and if it has a center give its coordinates.

L 42+ 2547+ 16 2* = 100,

2 42" - 254"+ 16 22 = 100.

3. 42— 259"~ 16 22 = 100.

4, z=4x2—8y2.

5.2+ =2

6. (2z+3y—4z)(6x—4y+2z—1)=0.
T Bz+2y-z2+1)>=0.
82+ 432 +1=0,
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Diseuss in detail the rulings on the surfaces whose equations
are:
2 2 2
9. .x_ + :l_/_ — .z_- = 1.
9 16 25

2 2 2

Ty r

2
2

y2
1 o=2-L
TTET



CHAPTER XV
ELEMENTS OF CALCULUS — DERIVATIVES

131. Functions. We are already familiar with the
notion of a variable. In mathematics the term variable
simply means a letter which represents any one of a set
of numbers, which set we sometimes call the domain or
range of the variable.

If a variable y depends on another variable z for its
value in such a way that when 2 is assigned a particular
number of its range, the value of y is thereby deter-
mined, then y is said to be a function* of 2.

Consider the equation y = z*; here y is a function of z,
since the value of y is determined when the value of z
is given.

To say that y is a function of 2 usually means merely
that y is equal to some expression in z, although the
concept of function is much more general.

To express the fact that y is a function of z, we write
y = f (z) (read “y equals the f-function of 2,” or simply
“y equals f of £””). The notation is very convenient
when we are dealing with an unknown function of z, or.
when we wish to consider “any” function. Thus, the
symbols f (0), f (1), f (a), f (¢ + b) mean the values of
the function when z=0, 1, a, a+ b, respectively.
For example, if f(z) =2+1, f(0) =1, f(1) =2,
f@=d+1Lfla+b)=(@+b"+1

In different problems, f (z) may represent different

* More explicitly a single-valued function of z. If y has, in general, either
of two values it is called a double-valued function, ete,
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functions. However, if in the same problem several
functions oceur, we use different symbols to distinguish
them, such as f (z), F (z), ¢ (2), ete.

In the equation y = f (z), the variable z is called the
independent variable, and the variable y, the dependent
variable, and y is called an explicit function of z. If
f (z,y) = 0, then y is an implicit function of z and = is
an implicit function of y.

If z and y are thought of as rectangular coordinates
of a variable point, a function y = f (z) usually can be
represented by a curve whose equation is y = f (z).
This locus (curve) is called the graph of the function.

Conversely, whenever a locus is given by means of
its equation in rectangular coordinates z, y, the variable
y is thereby defined as a function of 2. This function
may be explicit, in which case the equation is solved
for y in terms of . Thus

y=mz+D,
y = 4pa’,
are examples of the equation of a straight line and of a

parabola, where y is an explicit function of x. In such
equations, on the other hand, as that of the circle

$2+ yz — a2’

y is an implicit function of z and z is an implicit func-
tion of y. Here we can solve for ¥ and obtain

y= xVa -1

In this case, to every value of z corresponds, in general,
two values of ¥, namely, + Vo’ — 2’ and — Va* — 2%

that is, y is a double-valued function of z. To express
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a function explicitly with respect to y or z, is by no
means always a simple or even a possible matter. In
other words, the equation defining the function may be
so complicated as to make explicit representation out
of the question.

Exercises
LIS =34~ 26df(0), S0, J(-1), 10,
2 B/ @)= fd (), 74, 7, [6+32), J(-2)

3.I1F (x)=2"+3z—-8, find F (0), F(-1), F(m),
F(z—1).

4, If Az+ By + C = 0, express ¥ as an explicit function of z.

: o

5 If z2 +5 i 1, express y as an explicit function of z.
PR

6. If 25 = 1, express y as an explicit function of z.

7. If f (z) = o7, show that f (z) - f (y) = f (z + »).

8. If f(z) = sin z, show that f(z+2m) = f(z), and that
J-2=~-1@).
9. If f (z) = log , show that f (a) + f (b) = f (ab).
2f(z) |
1-F @
J@-1® _a=b
1+f(@f(®d) 1+ab

L.Iffx) =] (— 7), the function is called even. Mention
four even functions.

10, If f (x) = tan «, show that f (2z) =

1. 1 () = = » show that
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13. If f (x) = — f (— z), the function is called odd. Mention
four odd functions.

14, Givenz’+4* = 25. Isy an explicit or implicit function
of z?

15. Give three examples illustrating an explicit function; an
implicit function.

132. Increments — Limits. When a variable changes
from one numerical value to another, the difference
found by subtracting the first value from the second is
called the increment of the variable. If the variable
is 7, we shall denote an increment of z by Az (read
delta z and not delta times z). Similarly, A y will denote
an increment of %, A f (z) an increment of f (), ete.

If P (z, y) is any point on the curve y = f (), then
the coordinates of a neighboring point P’ on the curve
may be denoted by (z + Az, y+ Ay).

Y
P'f(x+Az,y
Ay
Plz, y)

Az

>X

Fre. 153

The following four theorems concerning limits will
be assumed without proof. The letters u and » stand
for variables, the letter ¢ for a constant.
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Theorem 1. The limit of u + v vs the limit of w plus
the limit of v.

Theorem 2. The limit of cv 1s ¢ tvmes the limit of v.

Theorem 3. The limit of uv 1s the timit of u times the
limit of v. |

Theorem 4. The limit of % 18 the limat of u divided by
the limit of v, provided that the limit of v is not zero.

Ezample. Find the limit of (u’4 3u) as u ap-
proaches the limit 1.
Solution: Symbolically we note

Lim (W’ + 3u) = 4.

u—1

It is left as an exercise for the student to explain the
applications of Theorems 1 and 2.

Exercises

Find the limit, when it exists, of the following expressions.
In each case state which theorems on limits you used.

2
2
1 Lim @ +32-1). 2 Lim> 2%
z-+1 2-+0 Z
2
— 2 .
3 Lim S22 12, 4 Lim [2+3Az—-50 (Az)Y,
z—1 zr -1 Az—0
5.Lim4Ax 7(Ax). 6.Lim(2 Az) 4.
Az-0 A.’B Az—0 Ax .
1 1 4 4
A
T Im 2TPAT @ g itT T

Az-0 Az Az—0 Az
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133. The derivative. We now return to our problem
of determining the slope of the tangent to a curve, and

will formulate it more generally.
We assume that the equation of the curve is given in

If
P,(z,+A%,Y, +4y)
Ay
P(z,y,)
AT
->X
0
Fia. 154

the form y = f (z). We take a point Py (21, 41) on the
curve, so that we have

y1=f (2)

and we take a neighboring point P, (z, 4+ Az, 1+ Ay)
on the curve, so that we have

yit+Ay=f(n+Az).
o Ay =f<$1+ Ax) —f<$1).
Then,

slope of PP, = Ay
Az

and the slope of the tangent at P; is the limit approached
A
by A—z; as A z approaches 0. In symbols
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A
slope of tangent at P, = Lim 28,

1s-0A T
L/ @ F A2 = f (@)
Az—0 Afl;

The limit (when it exists), of the rafio %ﬂ as Az ap-

proaches zero, is called the derivative of y with respect to .
The derivative is designated by the symbol D,y:

AY il G+a —f()
Li .
ny A:I—E)Ax Az—>0 Ax

Sometimes the symbols %, y', I’ (z) are used.

Ezample 1. Find the derivative of y = 2* — 2z + 1.
Solution:

Ly+Ay=(@+Az~-2@+az)+1
y+Ay=1"4+32"Ac+ 328z +Az —22—2Az+1.
2.y =7 -2z +1.
3. Ay=32’Az+3zhz +Az —2Az

—2=34" +8zAz ‘Az ~—2.
Az

4. Li ——'=D,y=3x - 2.
Az—0A T

Example 2. Find the derivative of y* = z.
Solution 1. (y +Ay)’ =z + Az

y2+2yAy+.A_§/2=x+Ax.
2. ¢ =1z.
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3. 2yAy+B—yZ=Aa:.
AyQ2y+Ay) =Azx
Az
2y+A4y
Ay ___ 1
Ax 2y+Ay
Ay 1

4. Lim — =Dy =—-
AxlﬂAx y 2y

Ay

.

ISR

Ezxample 3. Find the derivative of y =

Solution 1. y+ Ay =x+2Aa;’

Exercises
Find the derivative of y in each of the following examples.
1Ly=2z 2. y=2o"+z 3.y=zx+5.
2

4 y=7" b.y=2"-3z 6. y=--
z
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1

T 9=
y z

. 8- = -‘L‘- . 2: .
y :c+x 99 =z
10.2°+y =5 1Ly =3z+1 1224 -4 =2

13. y =z 4 y=3-z 15.y=x2+£~

134. General theorems on derivatives. To determine
the derivative of a function from the definition would, in
the case of the more complicated functions, be not only
very tedious, but often very difficult. Fortunately, a
few simple general theorems or formulas enable us to
avoid such long computations and difficult limit evalua-
tions. We proceed to derive some of these theorems.

L. The derwative of a constant s zero. In symbols,
if y = ¢, where ¢ is a constant,

Dce=0.
Proof y+Ay=c
Y =c
Ay=10
by_y
Az
= Lim —2 =
Dzy Az]in(.) A ?
or Dy= D=0

IL. The derivative of a constant times any function is
the constant times the derivative of the function. In
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symbols, if ¥ = cu, where u is any function of z and ¢
is a constant,

D.cu= cD.u.
Proof y+Ay=cu+Au).
Y = cl.
Ay=—cAu.
Ay_ A%
Az Az
im=Y = cLimA—u

az—0A T Az—0A T
or, D,y = D,cu = cD,u.

III. The derivative of a sum of functions is equal to
the sum of the derivatives of the functions. In symbols, if

y=u-+o+...+w,
where 4, v,. . ., w are funztions of z,
D .(u+v+...+w)=Du+Dyv+...+Duw.
Proof: We have
y+Ay= w+Au)+ @+A0)+.. .+ w+Aw).

y = u + v +.. .+ w
Ay=Au+Av+...+Aw
Ay Au

Ay Aw
is Az Az Tia
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A Au Av

. By _ g . . Aw
—=Lm —+4Lim — 4, ..+ Lim—
AI;IEZ;A.'G Az—>0A$+Az-—)0A + +Az—>0Ax

or Dy=Du+Dp+...+ Duw.

IV. The derivative of 2™ is nz™~'. This is true for
any constant exponent n. We shall prove the theorem
at this point on the assumption that n is a positive
integer (whole number).

Proof: yt+Ay=(z+A2)"
Expanding by the binomial theorem, we have

n n— nin-—1 —

y+Ay=12"+ na 1A:c-{—-*—( )x"'2Ax2+
v

y=1"

n— nn—-1 I —— —n
Ay = nx 1Ax+“'(—2——)-$" Ae +. ..+ 47,

Ay _ ne" "t 4 nn—1) 2" "? Az + terms involving
Az 2 ;
higher powers of A z.
=n""'+ Az - E,

where E is the expression which remains after A 2 has
been taken out as a factor from all terms after thé first.
The limit approached by the right-hand member of this
relation, when A z —0, is na" %,

1

. A n—
S Dy = Lim2¥ = nr .
Az—0AZ
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Ezample. Giveny = 2°+ 32" — 22+ 1. Find Dy
and the slope of the curve at the point (1, 3)

Solution:

Dy = D2+ D,32°+ D, (—2z) + D, by II,
=D,*+3-Dax*-2D,xz+ D1, Dbyll,
=32+ 62 -2, by IV and I.

The slope of the curve at (1,3)is3 (1)*+ 6 (1) =2 =7.

We have here separated the steps so as to indicate the
successive application of theorems I to IV. The student

will find no difficulty in writing down the final result
immediately from the given polynomial.

Exercises

Write the derivatives of each of the following functions.
Find the value of the slope of the tangent to the corresponding
curve at the point indicated. '

Ly=2"—4z; (2 0.
2.y=12~-2z+8; (3, 6).
3.y=2-32>+6z~-1; (1, 3)
4Ly=z'—42+1; @ 1.
5.y=2'-102"+3; (1, —6).
6

. Find the values of z for which the slope of the tangent to
the curve y = 2° — 3z is zero. What is the slope of the
tangent at the origin? Locate the corresponding points
and use the information obtained to sketch the curve.

7. Find the values of = for which the tangents to the curve
y=21*~ 24+ 1 are parallel to the z-axis.

8. Find the equations of the tangent and the normal to the
curves of Exs. 1-5 at the points indicated.
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135. The derivative of a product. Let y = uy,
where u and v are two functions of z which have deriva-
tives. Let the changes in u, », and ¥ due to a change
AzinzbeAwu, Ay, and A y, respectively. We then have

yFAY= (utAw(+ A,
=w-+uAv+vAut+Au-Awn

Y = uv.
Ay=uAv+vAu+ Au-Av
Ay Ay Ay Avy
— = — . —_ Ay —-.
and Az Ax+”_ Ax+ v Az

In order to find the derivative 3" of y, we must find the
limit of both members of the equation as A z —>-0, 7.e.,

Ay . Av . Au
"= Lim — =4 - Lim — 4 » - Lim —
y az—0A 2 Az->0A$+ az0AZ t

A
Lim Ay - Lim ——.
Az—0 az—0A T

Of the limits in the right-hand side of this equation, the
first and last are by definition, the derivative, o', of »;
the second is equal to the derivative, u’, of u. Also in
the last term A u approaches 0, when A z —> 0. Hence
we have

y = w' + w,
or D, (wv) =uD, v+ vD,u.
It is well to remember this formula in words:
The derivative of the product of two functions is equal
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to the first function times the derivative of the second
plus the second times the derivative of the first.

Example. Find D,y given y = (z + 1) (z* — 1).
Solution: Dy = (x+ 1) -2z + (2* = 1) - 1,

=22"42z4+2° -1,
=32"4+2z~-1.

This is the same result as that obtained by multiplying
out the product and then finding the derivative, that is,
by finding the derivative of y = 2* + 2* — z — L.

136. The derivative of a quotient. Let y = Y where
1) .

u and v are functions of z, which have derivatives, and
let Az, Aw, Ay, and Ay have the same significance as
in the last article. We then have

u+Au
Ay =
y+Aay b+ Ay
_Y
y~v
ut+Au u
Ay_ - "
v+Av v
VAu —uAp
v(v+Av)
véﬁ Ay
and Ay Az YAz

Az v+ Av) |
Therefore, taking the limit of both sides of the equation
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as A z—>0, and remembering that as A z approaches
0, A v also approaches 0, we have
u_vDu—uDy

D —=
Xv v‘l

This formula also should be remembered in words:

The derivative of a quotient is the denominator times
the derivative of the numerator minus the numerator
times the derivative of the denominator all divided by
the square of the denominator.

T
le. Find Dy gi =
Ezample. Fin Yy given y &+ 1
Solution: In applying the formula it is good practice
to begin by writing the form of a fraction, with the
square of the given denominator in the denominator
and a blank numerator, thus,

Dy =

’

(x2+ 1)2
and then fill in the numerator:
_ @+ -2-22) 1-2°
- (x2_+_ 1)2 - (xz_l_ 1)2'

If the numerator of the fraction is constant, i.e.,
uw=¢, Dyu=0, andtheformula becomes

Dy

¢ c
Dxl_)= —;;va.
. 1, 1
For example, if y = 2 y=-g
1 2z 2
]f —_ /=___=__.
Yy xz’ ) s 7
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Exercises

Find the derivative of each of the following funetions:
Ly=(@@+0@Qz-1). 2y=E"-DE"+1).
3y=("+e+1)(z—1).
4y=@E" -2 +42-2) @+ 1)

2 +1 z—1
. 3 . 6_ = R
Sy=—, Y= e+
z —1 -
7. =5 80 =3
y 241 Y z

9. By the product formula verify that the derivative of

10,

11,

y=1'=z-zis 2z. Assuming the latter, prove that if
y=2=1"-2, y'=32" Could this method be used
to derive the formula D,z" = nz" ™, when n is a positive

integer?

Show that the formula D.cu = ¢D,u is a special case of
the general product formula.

1 k
Show that D, il £ 8 where k is a positive integer.

Hence show that D,2" = na"~ ', when n is a negative
integer.

137. The derivative of u”. If  is a function of z,

which has a derivative, what is the derivative of y = 4"?

If

we denote by A and Ay, the changes in % and y

respectively, brought about by a change Az in x, we
have at once the identity

Arx Au Az
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Ay Au
Dy= le = Lim — - Lim
=Y = Az-—*OAIE az-0A U A:—»OAIE
Since A w—>0, when A x—-0, we can write the first
factor on the right

Lim — Ay _ Lim

Az—0A U Au—)OAu
The last limit is, however, by definition, the derivative
of y = u", where u is considered as the independent vari-
able, and we know that this derivative is nu~' (n a
positive integer). Hence, we have

o ne~=1
Du"=nu"""D,u.

Ezample. Find the derivative of (z* + 1)°

Solution: We could expand this expression by the bi-
nomial theorem and then find the derivative of the re-
sulting polynomial. But the above formula enables us
to write down the desired result without this tedious
work. In this case u = 2’ + 1, D,u = 2z, and, there-
fore,

D (2 + 1) =50+ 1) 2z= 10z (2" 4 1)*

138. Implicit functions. One of the most useful
applications of the last formula is to be found in the
fact that it enables us to find the derivative of a funection
when this function is defined by an implicit relation be-
tween 2 and y.

Ezample 1. TFind D,y given 2° + 9* = o’
Solution: If we take the derivative of both sides of the
equation with respect to z, we get

D, (=" +y") = D¢,
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or D,z*+ D,y = D,d’,
or 2z4 2yD,y = 0.
We can solve this equation for D,y, and obtain
Dy=— z,
Y

a result with which we are already familiar. (See § 48.)

Ezample 2. Find D,y given 2° 4 y° — 3ay = 0.
Solution: By taking the derivative of each term with
respect to z we get
32+ 3y D,y —3@Dy+y-1) =0.
Solving this equation for D,y, we obtain
Dz == x: — y'
v —z
The slope of the tangent at any point (1, y1) on the
curve, for which 7,° — z; # 0, is then

2
Ty — Z/l_
2
h — I

139. The derivative of x" when n is any rational

constant. Let n = g where p, ¢ are positive integers;

4
then y = z" = 2¢.  If we raise both sides to the gth
power, we have

Y =1"
and, by taking the derivative of both sides,

p—1

gt Dy = pa® Y,
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P xp—l—p xp—l P x’p-l
or Dy==--—==g=- = -7 3
7Y q da-n g p~s
x
P
-=1 -
=2 g =t

which proves that the formula D" = nz"~' holds
also when 7 is any positive rational constant. If » is

any negative rational constant, n = —k, we have
n -k 1
y=z =2 = e
xk
k.’l?k—l —k-1 -1
and D,,y=—x2k =—k-z =ng" "N

The formula is then valid also when # is negative:

For any rational conmstant n, Dx" = nx"~%. Also,
more generally, for any function v and any rational con-
stant n, D" = nu"~* Du.

For example: V7 + 4 can be written (22 + 4)%.
Hence,

DVZFi=D,@+ 4 =L+ 4) T2 =

Exercises
Find the derivative of y in each of the following cases:
Ly=(2z+1)" 2. y=@"-1°
3. y= ('~ 1% 4 y=(B2-22-7°

5.y= (72'—8z—2)% 6.y =4z
T.42°+y =4, 8.5 -4y =4



322 DERIVATIVES

9. 2~y +2zy=0. 10, 2+ ¢’ - 22y - Tz =0,

1+ -3y -22-8y-7=0.

12, y = 23, 13.y= V&

4 y=Vi+T. 15.y= Vo' —62+8.

by ViTis =l

18.y= Qz+1) Vi +3.

19.y=Vr&+5 Viz+s.

2. y° = 6 o y= 3@
53—2 N3z 42

22, Prove, by finding the derivative of y, that the slope of the
tangent to the ellipse b%’+ %’ = '’ at the point
() 5~ 2

1 Y1 a2y1

93. Derive results for the hyperbola b’z — a*" = ¢’ analogous

to those found in Ex. 22.

24, Prove that the slope of the tangent to the conic
A7+ By + Dr+ By +C =0 at the point (1, ) is
_ 2 AIl + D
2B+ E
25. The derivative of the first derivative is called the second deriva-

tive and 4s denoted by the symbol DYy. Find DYy in Ex.
1-12.



CHAPTER XVI
APPLICATIONS OF THE DERIVATIVE

140, Tangents and normals. If the equation of a
curve is given in the form y = f (z), the slope m of the
tangent at the point P; (z;, 41) on the curve is the
value of the derivativef’ (z), whenz = x;,7.e.,m = f’ ().
Hence, the equation of the tangent at P; is

y=—n=f (%) (x - x),
and the equation of the normal at P; is

1
y—y1~—m(x—x1)~

Exercises

Find the equations of the tangent and the normal for each
of the following curves at the points indicated:

Ly=2~3zat(0,0);at (2 2.

2. " =2 at (1, 1); at (4, 8).

3.y=42at (1, 1).

.y =1ztat (2,4).

2ty —4z+4y+6=0at (1, - 1)
L2 +4y' - 42+ 16y —1T=0at (1, 1).

-] & o1 >

. Prove that the equation of the tangent to the curve
Az*+ By* + Dy + Ey+ C = 0 at the point (z;, 31) on the

.

curve, is
Ang+ Byy+3D(@z+z)+3 E@y+y) +C=0.
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141. Increasing and decreasing functions. If a
curve is defined by the equation y = f (), where f (z)

Y

Increasing functions

Fie. 155

is single-valued, continuous and differentiable, the de-
rivative D,y furnishes a simple method of determining
whether the curve is rising or falling, that is, whether

o 0\ ¥

Decreasing functions

Fi16. 156

the function is increasing or decreasing. It will be
noted, reading from left to right, that z increases, and
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that when the curve rises the slope is positive and that
when it falls the slope is negative. Therefore, when

D.y is +, y increases;
D.yis —, y decreases.

Ezample. For what values of z is y = 2°* — 27 z in-
creasing? decreasing?
Solution:
Dy=382"-27=3(@-3) (x+3).
The slope is positive for values of £ < — 3, negative
in the interval — 3 <z <3 and positive again when

z> 3. Therefore, the curve rises until z = — 3, falls
in the interval from # = — 3 to = 3 and rises there-
after.

Y

54

L.

\
of
“54

Fra. 157

Exercises

For what values of z are the following functions increasing?
decreasing?

Ly=7z-3. 2 y=1a+5.
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3
z
3.y=2-2Tz—-1 iy=§—f+L

by=2+200—15z-1 6 y=32'-o" -2 +7

1492. Turning points. Mazximum and minimum
points. A point at which a curve stops rising and be-

Y
A

Max. Point

Min. Point

Fie. 158

gins to fall is called a maximum point; a point at which
it stops falling and begins to rise, is called a minimum
point. In either case the point is called a turning point.
If D,y is continuous, D,y cannot change from positive
Y

=)

/N

Fre. 159
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to negative or vice versa without passing through the
value 0. Hence the abscissas of the turning points are
obtained from the equation D,y = 0. The tangents at
the turning points are horizontal.

A curve may also cease rising and begin to fall (or
vice versa) at a point where the tangent is vertical, as
shown in Fig. 159. Here also the slope of the tangent
changes from positive to negative (or vice versa), t.e.,
D,y changes sign. But D,y is not continuous at such
a point.

Exercises

For what values of z are the following functions increasing?
decreasing? Find the turning points.

Ly=6z—1 2. y=1"+5.

3.y=2"+4z+5. 4 y=2'-2Tz+6.

Boy=2'+22"-152+7. 6b.y=c'—24-222-7.
2z

7u—x—1. 8'21_50—-2'

143. Concavity. A curve is said to be concave
upward when its slope is increasing and concave down-

]/’
P concave R
Q Q
concave
p /SN
X
[0]
I II

Fic. 160
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ward when its slope is decreasing. Let us consider
curve I in Fig. 160. The slope at Pis —,atQitis 0, at
R it is +. Therefore, the slope is increasing and the
curve is concave upward. In Fig. II, the slope at P is
+,at Q it is 0, at R it is —. Therefore, the slope is
decreasing and the curve is concave downward.

Hence, a curve is

Concave upward when D2y > 0,

Concave downward when D2y < 0.

144. Points of inflection. A point at which a curve
changes from concave upward to concave downward or
vice versa, is called a point of inflection.

Such a point is a point at which Dy changes sign,
either from positive to negative, or from negative to
positive. If Dy is a continuous function of #, this can

Y

Fie. 161
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happen only when it passes through 0. Hence, when
Dy is continuous at a point of inflection, Dyy = 0.

The condition D2y = 0 is necessary but not sufficient
to assure us that the point is a point of inflection. It
is sufficient to know that D}y changes sign at the point;
that is, if D2y changes sign there is a point of inflection.
For example, consider the curve y = z°. We have
y =32% y’' =6z We note that y” =0, when
z = 0, and that y’ is positive for all positive values of z
and negative for all negative values of x; ¥ does then
change sign as ¢ passes through 0. The curve is con-
cave downward to the left of the y-axis and concave
upward to the right; it has a point of inflection at the
origin.

On the other hand, the curve y = z, gives y' = 4 2%,
y" = 122" We again have y”” = 0, when z = 0, but
y" is positive for all other values of z. The curve is
concave upward throughout; it does not have a point

Y

200
150

100

F16. 162
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of inflection at the origin, even though at that point
y' = 0.

145. Test for maxima or minima. The tangent is
horizontal at any point for which D,y = 0. Such a
point is either a maximum point, a minimum point or a
point of inflection with a horizontal tangent. If the point
is a maximum, the curve is concave downward; if the
point is & minimum, the curve is concave upward.
Therefore, we have the test:

D,y =0, D}y negative, a maximum point;
Dy =0, Dy positive, a minimum point.

A point for which Dy = 0 and Dy = 0, is usually a
point of inflection, but in exceptional cases it may be a
maximum or minimum point.

Ezxample. Trace the curve whose equation is
y=212'—3z.

Solution: We note first that
Dy =323,
Dy =6uz.

By placing D,y = 0 we obtain the so-called critical
values of z, 7.e., the abscissas of the points at which the
tangent to the curve is horizontal. Thus

3@-1)=0
or r= +1.
The corresponding values of y givé the critical points
(1, —2) and (-1, 2).
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Moreover, since z = 1 makes D2y positive, the point
(1, —2) is a minimum point; since z = — 1 makes
D2y negative, the point (— 1; 2) is a maximum point.

By placing D}y = 0 we find z = 0 and the correspond-
ing value of yis 0. Since Dy is negative to the left of
the origin and positive to the right, this point is a point
of inflection and the curve is concave downward at every
point to the left of the origin and concave upward at
every point to the right of the origin. The slope of the
inflectional tangent is — 3 and the equation of the in-
flectional tangent isy = — 3 .

The results obtained may be tabulated as follows:

z | y |Dy|Dy

-2 0| + |Min.
— 21 0| — |Max.
0|—3| 0 |Infl.

We shall now plot these three points and draw the
tangents at them.

——y==2
C(1,-2)

F1c. 163
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Since A is a maximum point the curve at that point
has the appearance of the curve 4 given in Fig. 164. At

Y

A

/{1\\0/

3 X

Fic. 164

the minimum point C, the curve has the appearance of
the curve C given in Fig. 164. At the left of the point B

Y

-

=)

N

F1c. 165

the curve is concave downward while at the right it is
concave upward. The curve, therefore, has the ap-
pearance of the curve given in Fig. 165.

It is now possible to draw the curve if we keep in
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mind the general appearance at each critical point.
However, we must still determine what the curve looks
like at the left of A and the right of C. To this end we
will plot the two points whose abscissas are £ = — 2
and z = 2. Our table now becomes

z | y | Dy| Dy

1{—-2| 0| 4+ | Min.

-1, 2| 0| —1|Max

0—-3 0| Infl

~2|—=2| 9|—12|Concave downward.
21 2| 9| 12|Concave upward.

The curve is

-12
=2( )

0 j
y=-2

(1,~2)

_LX

Fis. 166
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Exercises

Trace the following curves. In each case find the maximum
and minimum points, the points of inflection and draw the
horizontal tangents and the inflectional tangents.

JER A 2
1.y=§+—§—2x+1. 2.y—3 5 +6z+1.
3.y=2+3+1 4 y=2-32+1
5.y=7-32"-2" 6.y=4+2z+2" -2
Ty=2-2¢+z. 8.y=w—§—:c2+1‘

9.y=3+15z-2s"~2. 10.y=22"—>2"-3z+1.

146. Maxima and minima problems. The theory of
maxima and minima can be applied to many practical
problems. Some of these problems are quite involved,
but many can be solved with the small amount of caleu-
lus we have studied. The following examples will il-
lustrate the methods.

Ezample 1. From a square sheet
of cardboard 12 inches on a side,
equal squares are cut from the cor-
ners and the resulting projections
turned up to form a rectangular
box. What should be the dimen-
sions of the squares cut from the —~-i-—=-----==-=i---
corners in order that the resulting __ | !
box may have the maximum ca- Fic. 167
pacity?

Solution: Let z be the length of the side of the square

T 19-92 ¥
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to be cut out. The resulting box will have a square
base 12 — 2 z inches on a side; its depth will be z inches.
Its volume, V, which we wish to make a maximum, will
then be, in cubic inches,

V=(12-2z2=42(6 ~ )
=436z — 122>+ 2°).

Looked at as an algebraic formula, z might have any
value, but from the nature of our problem z cannot be
negative nor can it be greater than 6.

V' =4(36—24z+ 329
=12(12 - 82+ 2%
=12 (z — 6)(z — 2).

V'=12 (- 8+ 22).

The critical values of = are given by placing V' = 0;
this gives 2 = 6 or z = 2. The value z = 6 makes
V" = + 48 and so is not the value we seek. The value
z =2 makes V"’ = — 48 and hence £ = 2 must give
the desired maximum. The dimensions of the maxi-
mum box are therefore 8 in. by 8 in. by 2 in.; the maxi-

mum capacity is 128 cu. in. Q

Ezample 2. A closed cylindrical
tin ecan of given volume is to be con-
structed. What should be the ratio
between the diameter of the base and
the height of the can, if the amount of
tin to be used is a minimum?

Solution: Let S = the total surface =
or amount of tin to be used and z and y

Fic. 168
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the diameter and altitude of the cylindrical can. Now

9

22
1 + T TY,

©) =7 (% + xy)~

v

S=2.

F4

Since the volume is a constant the variables = and y
are connected by the relation,

() or 2%y = 2 — I where & is a constant.
™
From this point on there are two methods of procedure.

Method I. By means of (2) we can eliminate one of
the variables, say ¥, and obtain S as a function of z

alone:
2 B
§ = (“2 + ;)'
3
Now S’=7r(x—%>-

Since S is to be a minimum, 8’ = 0, which gives z = &

as the only eritical value. The corresponding value of
3

yisy = i k. The minimum amount of tin is then

used when y = 2, t.e., when the height is equal to the
diameter.

Since we found only one critical value, and the prob-
lem must have a solution (Why?), we can be sure that
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the value £ = k corresponds to a minimum of S. How-
ever, we can prove it analytically, by noting that

3
S"=T(1+2k)

2
X

and this is positive when z = £.

Method II.  Considering ¥ as a function of z, we can
write the derivative of S in the form

§'=r(@+y+ay).
By taking the derivative of (2), i.e,

oy =k,
we obtain
2y +2my =0,
or z(@y +2y)=0.
Since = # 0, this gives 2y’ = — 2y or y' = —Q?y;

substituting this value of 3’ in the expression for S,
we get

S=r@+y—-2y) =r(@-—y.

Since for a minimum, 8’ = 0, this gives ¢ = y, as before.

PROBLEMS

1. Find two numbers whose sum is n such that their produet
is as large as possible.

2. Find two numbers whose sum is » such that the sum of
their squares shall be a minimum.
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3.
4

10.

11,

12,

Find the largest rectangle with perimeter equal to 2 p.

A square piece of tin whose side is a has equal squares cut
out at each corner. Find the side of the square cut out if
the remainder forms a box of maximum capacity.

. A rectangular piece of tin is 7/ X 15" and has equal squares

cut out at each corner. Find the side of the square cut
out if the remainder forms a box of maximum capacity.

. Find the largest isosceles triangle that can be inseribed in

a given circle.

. A rectangular region including 60 sq. yd. is to be enclosed

along a long straight wall any part of which can be used as
one side of the enclosure. What lengths should the three
new sides have to require the smallest amount of new
material?

. A tank has a square base and open top and holds 64 eu. ft.

If the cost of the material of the sides is $1. a sq. ft., and of
the bottom $2. a sq. ft., what are the dimensions of the box
when the cost is a minimum?

. In order that a package may go by parcel post the sum of

its length and girth must not exceed 84 inches. What are
the dimensions and the volume of the largest rectangular
package with square ends that can be mailed?

What is the most economical shape of a cylindrical tin cup
with circular bottom and open top which is to hold a half
pint?

Find the area of the largest rectangle that can be inseribed
2 2
in the ellipse % +% =1

Find the altitude of the right cireular cylinder of maximum
volume inscribed in a sphere of radius 7.
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13. Find the altitude of the right circular cone of maximum
volume inseribed in & sphere of radius r.

14. Find the coordinates of the point on 2z +y = 16, such
that the sum of the squares of its distances from (6 — 3)
and (4, 5) is a minimum.

15. A rectangular building is to be erected on a triangular lot.
Show that the maximum floor space available, if the

thickness of the walls be neglected, is one-half the area of
the lot.

147. Velocity — Rates. If a body, moving in a
straight line, travels a distance s in the time #, then
the average velocity v of the body is defined to be,

) =

o~ 1 &

For example, if an automobile goes 100 miles in 5 hours,
its average velocity is 20 mi. per hour. This of course
does not mean that it goes 20 mi. in each hour. In
general, the average velocity in some hours will be
greater than in others.

The velocity at any moment of time ¢, called the in-
stantaneous velocity at the given instant, is found as
follows. Let ¢4 At be a later time and suppose in the
time A {, the body has moved the distance As. Then

. . . . As
its average velocity during the time Atis s We

now define the instantaneous velocity at the time ¢ to be

As
v=Lim —=Ds.
At—0 A t
Hence, the instantaneous velocity is the derivative of

the distance s with respect to the time ¢ If { and Dis
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are positive, s is inereasing; if { is positive and Ds is
negative, s is decreasing.

In similar manner, if z is a function of ¢ and if Az
and At are corresponding increments we define the
instantaneous rate of change of = at the instant ¢ to be,

Lim ar_ Dyz.

At—0 Al

The rate of change of the velocity is called the ac-
celeration. If we denote it by @, we have

o= Dp= Dk.

Ezample 1. Given s =41 — 3¢+ 2. TFind the
instantaneous velocity and acceleration at the time ¢ = 1,
Solution: v = D,s= 8¢ — 3;

when t=1, v=Ds=8—-3=05.
a= Dp=28

Ezample 2. The distance s a body moves in a straight
line in a time ¢ measured from a fixed point on the line,
is given by the formula s = ¢ — 6 ¢+ 3. Discuss the
motion of the body.

Solution: s = £ — 6¢ 4+ 3,

v=Ds=2t—-6=2(-3).

When ¢ > 3, v is positive and s is increasing.
When ¢ < 3, v is negative and s is decreasing.

When ¢ = 3, v is zero and the body is at rest.

Ezample 3. Find the point on the parabola y* = 8 7
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at which the absecissa and ordinate increase at the same
rate.
Solution: By the conditions of the problem

Dz = Dy.
Differentiating the given equation we have
2y Dy = 8 Dga.

5 2y=8ory = 4. Hencez = 2and the point is (2, 4).

Ezample 4. A ladder 25 ft. long rests against a house.
If the foot of the ladder is pulled along the ground away
from the house at the rate of 3 ft. per minute, find how
fast the top of the ladder is de-
seending when it is 20 ft. from
the ground.

Solution: As the ladder is be-
ing pulled away two distances ¥

change and are marked z and y &
in the adjacent figure. By the
problem
D = 3 when y = 20; ' T
Fia. 169

we are asked to find Dy.
Now, when y = 20, 20*+4 2% = 25" or & = 15.
But 2 + o = 25%

s~ 2z2Dx+2yDy=0,

z
or Dy= - ; Da.

15 9 .
Dy = _%.3_ -7= — 2.25 ft./min.
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Exercises

In the following examples find the instantaneous velocity
and the acceleration at the time indicated.

Ls=7£~3t+1, t=1
2. s=4£+3t-1, t=2
3.s=5-Tt+2 t=3.
3t—-1
£ -1
Discuss the motion of the following bodies which move in g
straight line according to the following laws.

“Bs=f-4i+3. 6. s=8£—3t+2

) t=25.

4 5=

T.s=16{—8 8. s=(t—-2>%
9. The height y in feet, of a ball thrown vertically upward
after ¢ seconds, is given by the formula,

y=96t-16¢

a) Find the velocity and acceleration at any instant.
b) Find the initial velocity (i.e., when £ = 0).

¢) Find the velocity and acceleration when ¢ = 3.

d) Find the highest point which the ball reaches.

¢) Find when the ball hits the ground.

10. The distance s an automobile goes on a straight road from its
starting point is given by the formula s = 2#* — 4 + 16 %
a) When will the automobile change its direction?
b) Describe the motion for the first 12 hours.

11, A particle moves on the parabola y2 = 4z, If z increases



13.

14,

15.

16.

17,

18.

19.

20.

21‘

22,
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uniformly at the rate of 3 in. per second, find the rate at
which y inereases when z = 4 in.

. In the function y = 22° ~ 2, find the value of  at the

point where y increases 24 times as fast as z?

Where in the first quadrant does the angle increase twice
as fast as its sine?

Find the rate of change of the area of a square when its
side is m ft. and is increasing » ft. per second.

For what value of £ do the functions z* — 52" + 17 2 and
1 — 3 z change at the same rate?

Given y=12"—6 224+3z+5. Find the coordinates of
the points at which the rate of change of the ordinate is
equal to the rate of change of the slope of the tangent.

A man 6 ft. tall walks away from a lamp post 12 ft. high
at the rate of 20 ft. a minute. Find how fast the further
end of his shadow moves along the road. How fast does
the length of the shadow increase?

When a stone is dropped into a pond, the radius of the
circular wave increases 2 inches a second. How fast is the
circumference increasing?

The volume of a soap bubble increases 2 cu. in. per sec.
How fast is the radius increasing when it is 1 in.?

Water is flowing into a cylindrical tank at the rate of 5 cu.
ft. persec. If the radius of the tank is 4 ft., how fast is the
water rising?

The cross-section of a tank is a rectangle 2 ft. X 3 ft. If
water flows into the tank at the rate of 50 cu. ft. per minute,
how fast is the water rising?

Two trains, one going east and the other south, start from
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25.

26.

27.

the same place and travel 40 and 60 mi. per hr. respectively.
How fast are they separating at the end of 45 minutes?

. A man on a dock 12 ft. above the water pulls in a rope

attached to a boat at the rate of 3 ft. per minute. How
fast is the boat approaching the dock when it is 16 ft. away?

. Water is flowing into a conical reservoir 24 in. deep, and

12 in. across the top, at the rate of 10 cu. in. per min,
How fast is the surface rising when the water is 8 in. deep?

Find the point on the ellipse 16 2%+ 9y* = 400 where y
increases at the same rate z decreases.

A kite is 100 ft. high and has 200 ft. of cord out. If the kite
moves horizontally 3 mi. per hr. away from the boy who is
flying it, how fast is the cord being let out?

Sand being poured on the ground forms a pile in the shape
of a right circular cone whose height is equal to the radius
of the base. If the sand is falling at the rate of 5 cu. ft.
per sec., how fast is the height of the pile increasing when
it is 8 ft.?

. An airplane is 2640 ft. directly above an automobile. The

airplane flies west at the rate of 100 mi. per hour, and the
automobile goes east at the rate of 50 mi. per hour. How
fast are they separating at the end of 6 minutes?

HA41
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The answers to the odd exercises are omitted to give the student ex-
perience in checking his own work. Teachers desiring all the answers
should communicate with the publishers.

Page 2. 2. Real,Equal,S=-—1.P=i 4. Ima.ginary,S=§sP=g
1 1
6.Real,Equa1,S=§,P=ié 8.k=-9 7
10. k= 3, -if—i 12.k=1, 5
Page3. 14. k=425 16.k=2-
Paged. 2. ag—bp 4.0

Page5. 6.50 8. k—14=0 100 (@49 z y 1
4yt mm 1 -
(x4 y®) 2y 1
@24y w1

1 6 3

—\/ﬁ, cos 5 = ﬁx/l—ﬁ

.8
Page 8. 2. sz—1

0
33 63
" = - tan -— = ——
4 Tan (a+B) 5 (a=B) %
. 4 3 . 1 2
Page 9. 6. Sm26=g, cos20=g, smﬂ=g\/3, eosO:E\/E-;

1
8. Tan 6 = 1,;

Page10. 2. AD 4. DA 6.0 8. 4AD=-2 CB=10, AC=-3
10. DA=—4, AB=8, BC=-1
Pagel1l. 2.0
Page12. 4.|OM|=5v3, |ON|=5.
Page14. 2.a)~T7, b)=1, ¢)1, 4)2, &4 NT
In a) and b) the first point is to the right of the second.
In ¢), d), €), f) the first point is to the left of the second.

Page16. 2. 0 4. (0, 0) 6. a) IT b) IV
8. (-3, — 4) 10. 4 (0, 0), B (10, 0), € (10, 3), D (0, 3)
Page 17.

12. (= 5,0, (50, ©5V3); (50, 50, 0 —5V3)
14. 213
Page19. 2. a) 2Va2+4 8% b) V(b—c)*+ (a—b)?
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Page 20. ’
4. Isosceles 8. (0, 10) 10. 16, - 8
12. Isosceles 14. z+y=10
Page 21. 16. 522+ 94 =45
Page 24.
51 53 46 32
2. (— 5) 5), (51 '2‘>, ("“ 2) 5) 4- (5! 5>
14 14
6. (32,27) 8.(8,4) 10. 33
Page 25.
12. (2 é 14. 10 16. (4, 9). Three
3 3
Page 28
5
2. —g 4 —g 6. no slope 14. 6 16. — 1 18. -30
Page30. 8. y=3z-5
Page 31. 10. 22—y = 1 12. (16, 0), (-8, 12), (4, -4)
Page 39.
2.y=—-3 4.3+5y=0
6. Qb—a)z+ (Ra-b)y=3a+38 8. (x—a)+ @y-br=a
Page 40. 10. 2*+-4y+4=0 12. 224 —8x+12=0
14. 2224129271z~ 145y + 542 =0 16. 2+ 9+ 2~ 9 y+ 16=0
18. 28 22~ 36 y2 = 63 20. 44 22— 100 42 = 275
Page 44.
z-intercepts y-intercepts z-intereepts ' y-intercepts
2. =1 +2 8. none 3
4. x2 none 10. 0 0
6. 0 0 I2. none +2
Page 48.
2-axis y-axis origin z-axis y-axis origin
2. Yes No No 8. Yes No No
4. Yes Yes Yes 10. No No Yes
6. No No Yes 12. No No Yes
Page 47.
14. No No No 16. No Yes No
Page 48. 2.y <0 4.y>0
6.2>6 2<-6 y>3 y<-38 8. None

10.2>0, 2<-2, y>1, y<-1 12. 2>0
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Page 53. 2. (1, 1) 4 1, 2) 6. (2, 4), (8 —28)
8 (4, 3), @ P @D 02 CL-2, C2-1

12 0, 0), (© 0), (ﬁ ig) (:_\f_, -__\/3)
‘ 2 1 2 4

Page 58.
2.y==2z—-5 4. y=z+4 6.y=—z+4 8. by=ar+b
10. 2+ 5y—23=0 12 z-y—1=90 14.2
Page 59. 16, — 8 =0
b a
22.a)42—-3y—30=0 b)3z)+4y—-10=0

24. a) Az+ By — (da+Bb) =0 b) — Bz+ Ay+Ba— 4Ab= 10
Page 60. 28. (1, 5): (51 9), (33 _3)
30. 82+ 11y—70=0, z4+3y+1=0; 5z+2y+5=0.

Page 61.
2.2—y+2=0 4 7z—-3y+4=0 6.4z+y=0
= — =q—n —
8.z+y=a+d 10.y=¢ p_m(z »)
Page 62.
2. 224 y==—2 4. 2bz+3ay=06ab
Ty z y
e ™ — 8.—' - 1
68+ 16 1 25+725
4 8
Page63. 2.y=0 4 y=~1
Page64. 6.2=6, y=7
Page 65.
2. V3z4y==+20 4 2+y=—14 6. No
TV 8,05 8
2. §+5—1, y=— 3ty Fotpy=1
3 4
z ¥y 1 5 -z 3y 5
. == [ T A,
T ay
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Page 70.
3z 4
8.4z-3y=17, 4z—3y=—3 To. —;—‘+—f=5
Page 72.
2.83z—5y=-29 4. 32—-2y=-2 6 224+3y=—13
Page 73.
8.4z-3y=-2¢ 10. 1224+ 10y =25
Page74. 2. -8 4 k=5 k=-1
Page 7.
! ab 6. —= 8 —1 10. None. Lines dicular,
2.3 4.2(12_‘_1)2 -3 & . . perpendicular.
Pag678. b 2ab a
12.2-5y+13=0 4. y+§=m(x—§)
243 2-4/3
16. y+ 5= (z-8), y+5 - (z—8)
1-2V3 ' 1+23
18. 0, no slope 20.—1, =2, -3
2. @) Parallel b) Perpendicular ¢) None d) None
Page 79.
6. 1:3 8. c=2d 10.2—5y—16=0
12. 22— 3y=14 4. 2+2y=—4
Page 80.

16. 35 —2y=~8 3z—~Ty=—48 y=28 Intersectat §,8
18.324+2y=34, z—y=~8, 4z+y=26. Intersectat l_,__

20.4z4+y=15 3z+2y=19, z—y=—4 Intersectat 15:

5
22.9=32+6-3V3, y=—v3:+6+3vV3 (3-2 /3, 0),
B+23, 0) 24. -9
Page 81. 26.—2
Page 85.
18 23 _ 23 23
2. 5 4. Id'\/éx ZI\/Z]-_, ﬁ\/]—-?-’

7 7 7 12 3
6. 13\/1—3, 41\/4_1, lox/ﬁ 8.5 10. I6\/5
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Page 86.
1 1
14. (0, 5), (0, IE) 16. 3z +4y=0, 3z+4y=20
20.0)Ta+Ty—19=0 B 17z+1Ty+13=0
Page 87.

22.0)22+2y+5=0, z4+9=0, z4+2y—-4=0, (-9, -15)
Be-y+10=0, (VZ+1)y+z=6V72

(V2+ )z ty=~4v7, -6+ V2 4+ V2)

24. 271211084y —348=10, 5732z +356y—2532=0

Page89. 2.3 4.0 6.45-5

Page92. 2.z+3y=0

Page 93.

4.2—-2y—-1=0 6.3z—y-1=0 8. 5z—-10y—-27=0
10.7—4y—2=0 12. 8374+ 13y =599
Page 95.

2. Linez+2y=0 4. Linesy=z, y=2z 6. Linessz=—~5z=1
8. No locus 10. Linesz=0, y=0
Page 96. 12. Linesz —2y—1=0, z4+y~2=0
Page 100.
7 3
2. (1, 1), (2 3), (5,—5) 4 4,2V3), 4, -2V3) 6.z+2y=11

8.0)s—y—2=0 b4V2 &2 A6 ¢ 16
Page 101.

: 2
lz=4, z4+3y=2 Tz-3y=30 q) (4,—-?;)
hz+5y=2 z-3y=—-~6, z+y=-2 (=31
15 3
Na+by=0 z+y=6, z2—-3y=12 k)('z_"i)
1
14. (2, -5)
Page 102.
74 90 28 56
8. (-13’ -1—3) 20. (0, b) 22. (3—, -'5—) 24, y=2z+2

26. Vertices (5, 9), (9, 3). Equations of sidesarez+ 5y—50=0
z4+5y—24=0, 53—y—16=0, fz-y—42=0
28.a)7B+C=0
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Page 103.

28.0)3B+A=0 ©54+2B=0 d) 4=0 ¢) B=
f13A-2B+C=0 30. 22 —5y+29=0
Page 105.

2. 124+ =36 4o 2+ y2=25 6. 2+ 2 —20x—2ay=0
8 ot p—22—4y—36=0 10. 4+ 92— 62— 8y+9=0
12. 2+ — 202 —2ay+a*=0

4. 2+~ 6z—4y+9=0, 2+ —6z+4y+9=0

16. 169 22+ 169 12+ 676 z — 1690y — 428 =0

18. 22+ 1 —-82z—8y+16=0 20. 2+ 2—-22~2y—14=0

Page 107.
2. Point (— 2, 1) 4. Circle, C (-5, 12), R=13
5
6. Circle, C(3,0), R=+4 8. Circle, C (g' E)’ R=3

Page 108. 10. No Locus ‘

12. 2 — 22+ 42— 4y=20 14. 22+ 22+ —=8y=0
16. 2 —6z+92~6y+9=0, 22—6z+4¥*+6y+9 0
8. 2+t —-2y=9

Poge111. 2. 22448+ 2y—1=0

4 Bt Ptz —4y+1=0 6. 3(x*+41)+17z~16y+25=0
Page113. 2.2z24+3y+1=0
Page 114. o4

4. (1, 0). ('— 5’ ""5‘) 6. (_ 3) l)) (11 - 1)

8. (4, 1). Line is tangent to the circle
10, a) 322+ 312+ 22—-8y=0 b) 3224342 4+2—10y+3=0

c) B+ yt—4z— 129+ 14=0
Page 116. 2. 2z+3y+13=0 4 3z+4y=25
6.3z+y+19=0 8. 3z+4y=20 10. oz + by = 2(a®+ B?)
Page 117.

5 3 Va2 a 1

z.C( 7 4), R= 1 4.C(§s 0), R—é\/4lc+a2
6. 224+ 2 =5z—y=0 8. 22—6zx+y2+4y+12=0
10. 2+ 2 —21y+T74=0 12. 22— 3zt —y=16
4. 2+ 2 —-22—-2y+1=0, 22+ 42—10x—-10y+25=0
16. Pointslieon 224+ 32— 62+ 4y—12=0
Page 118.
18, 224+ - 82—4y+16=0, 2+ 2—2z2+2y+1=0
20, =22+ -2y+1=0
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Page119. 24, Yes, P+ P+ 22-3y4+6=0
Page 127. 2. V (0, 0); F(-1,0; z=1; 4
Page 128.
4.V(0,0; FO-1); y=1; 4
6. V(0,0); F(-4, 0); z=4; 16
8.V©,0; F(O,—-4); y=4; 16

7.7

7
IO.V(O, 0), F(-‘I—z, 0), x—1—21 5‘

7 7 7
12. V(O) O): F(01 "E)y y=i'2" '3‘
14. y2=—1_22 16. 2=~ 20y 20. =162
Page 129.
22. 22+ 6y=0 24224+ 16 y+64=0 28. 322 +4y=0
Page130. 32. (1, 2); (1, 2) 34.- (2 4); 29
Page133. 4. 2b=6v3; 2¢=6 cs.—‘z/—é
Page 136, 2. \f 4. (:1:\/5, 0); e \/551-

6. @FEVE0; V30 GF0£vE; v 29
@F O, £V20); V(0 £5 @F @V, 0); V(5 0)
Page 141.

2.0)5 3 b) (£4, 0), (= 5 0) °)§
25 18 9 9
d)c=:f:z‘ e) 3‘, (4, :I:g); (—4, ig)
4043 b EVT,0); (x4 0) o) “/Tf

d)x==t§\/? e)g; (\/iig) (—\ﬁ,ig)
V115 /69 ( \/2415) ( \/ﬁ)
6. a) -'5—' b) 0, 0:

30 5
1
c)—\/el_ d)y=:+:§25\/2415

) )

)=, (x2S, v

6’ 12 30

12 30
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4
8.2)5 3 b) (0, £4), 0, %5 D) e=5
25 18 9 9
d)y=—; e)gr (:I:g’ 4) (:!:5! —4)
7
10. @) 4, 3 b) (0, £V, 0,=4 c)%
9 9
Dy= 2V of (+3vi) (2%-v
9 6 3v5 V5
12. a)g 5 b(:l:TO) (ig’ 0) c)-—3—-
o 8 (3v5 4 3v5
d)$=:b2—5'\/g 8)5’ ( 5 v:l:g), <——5-’:i:
14, 2+ 51P2=9 16. 16 22 + 25 y* = 400
18. 20 22+ 36 y* = 405 20, 3224+ 492=48
Page 142,
22, 81 224 45 42 = 500 24. 0, 4; (0, —4)
26. Circle; 0; 0; 2a; no value
Page 146.
10 55 3 = -
4.—3’-: 3 6.6—5, b—‘\/g
Page 148.
z.g 4 (£ V29, 0); e=—\/5—2E
Page 157, 5 9
2.0)8,4 b F(=x50); Vs 0) c)§ d)a;=;tg

32 16
e)dz—3y=042z+3y=0 f)—3—: (5, 3)’ (5,_139)

4022 BF&E2VZ0; VE20 oVZ do=+./7
gz—y=0, s+y=0 N4 ©@V2 £2; (-2V?2 £2)

55 5 5 V13
6. a) 7 3 b) (:!:g V13, 0), (:!: 5’ ) c) —3
15
d)z=:i:%\/ﬁ ¢ 22—3y=0, 2243y=0

20 [5 10 5 10
) Y (g\/ﬁi'g-), (—— 5\/1—5. :!:—9-)
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8.4)3, 4 HFQ £5); V(3 c)g

d)y=:t§ €)3z—4y=0,3z+4y=0

32 16\, 16
f)'g': (:t?; 5)’ (ﬂ:?,"5)
10. a) 5, 3 BF 0, =v30; V(x5 c)\/3-4
d)y=i§2\/32 &52—3y=0, 5243y=0
18 9
Nsi (fcs—:\/s‘zz); (tgf—x/ﬁ)
5 5 5 5 G
12. a)gy 3 b) (O,dzﬁx/f;): (O,iz) c)T

d)y:i;—Z\/E €2y-32=0,2y+3z=0
J)%O; (i%ovg\/ﬁ) (d:%o:-gw/ﬁ)
14. 16 22— 992 = 144 16. 16 22— 92 = 256
18. 52— 2042 = 36 20, 7y~ 922=175
Page 158,
22 W42 —8142=1600 24420 —32=20 26 51— 4542 =72
Page 161. 2. 2= 4(z22 4 1) 4. 1y=k%k

6.ay=8 @V22VY, (-2v%-2v3) 82
Page 163. 6. 22— 12 = 16
Page 168.
1 4161

2.273-3 4. " 6. — 3
8.6z—y~2=90 10 y+32=21 12. 32— y=0
Page 170.

2.2—y+2=0 4. 32-2y=35

6. 24zz— Bly+y) =0 8.z+2y=38
Page 171.

2.2-3y—-9=0 4 oy — ) = eylz — z,)
Page 175.

2.Y=22+1 4.2—2y+16=0 6. 2—y+1=0, z+y+1=0
8 z+y+4=0, 2z+y+2=0 10. z—4y+8=0, z4+2y+2=0
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Page 176.

12. y=—5z+4 14 z+y+1=0 16.92-2y=§ 92+2y=35

Page 181, 2. y=—2=2

Page 182. 6. 4z—y=>5z+4y+3=0
g, 169 10. 25:c+6y=137} 25— 6y+137=0]
" 40 6z~25y=—20 6z+25y=20
2. 9z+15y=125 16 Viz+4y=16 162-4V7y=77

Page 183. 18. z—y—35=0, z+4y—-10=0

Page 190. 2. z*+y?=19

Page 191. 3 1

4 y2—6y ~82—31=0 6.V, 4),F(§’ 4),$=5
15 - 25

8.V (=3, -8, Fl-8—7) ¥=—

10.V(=1~-2, F(-2), z=~-2
2. C 1), Vil 1), Ve=2 1), F(0+V5 1), B:(-v51),
z=1x % \/5
14. c (ly - 2): Vi (lv 3)) \ (1’ - 7)7 Fl (1) 2)) T, (11 —6))
17 - 33
VR Ve T
6.C0 ~2), Vi(l,0, Va(l, =4, R, —2+V3),
RO, -2- v, y=-255V3
8.C22, Vi(=25), Val-2 -1, F(-2 2+V5),

Fa (=2 2— V), y=2:l:%\/5
20. C (=3, 2), VI(—3+S\/§, 2), vz(—s—g\/é, 2),

i) (—3+§\/§, 2), F (—3—‘;-\/5, 2), z=—3x43,

V2r—2y+3V2+4=0, V2z+2y+3v2—4=0
Page193. 2. 22y =25
Page 194, 4. 22— y2 =2k
6. 22— y=38§ 8. 1722 - 17Ty7 =40
Page197. 2.6=arctan 2, 2522 — 725236 V5y=0

3
4 0=arctan§: Tar—6y72=42



ANSWERS 355

6.6=arctan—\g—§v 2y'=-3:c’+\/§y’=0

8.6=45°, 6z2—2y2+ V22 +13V2y =16

Page198. 2. 22— ay— 2y —2z+2y=0
4 82— 11zy— 17— 12924+ 21y +81=0

Page 211. 4. y=4z, 16y=—9z

Page 212.
6. y=—6 10. 42+ 9y =22 12, 52— 2y—11=0
Page 217.
1 9 21
- (3, - 5) B (- 4 - 10) 9 (:,; ég)
Page 220.

2. G) (47 600)! (— 4} 2400)) (- 4: - 1200)) (4) - 3000)
b) (2, 809, (=2 210°, (=2 -150°, (2, —330%

) (—2, 459, (2, 225%), (2, —185°%, (— 2, —315%)
d) 3, —150°), (=3, 309, @3, 210°), (=3, —330°
e) (—2, —100°), (2 807, (2, —280°), (=2, 260°)

N (=2 -180%, (-2 1809, (2 09

g) (— 3) 1200)1 (31 - 600)’ <_ 31 - 2400): (33 3000)
k) (=2, 270%, (2, 90°), (2, —270°), (-2, —90°
i) (-3, 180°), (-3, —180%), (3,09

j) (3; 2400): (3) - 1200)! (_ 3: 600)7 (— 3} - 3000)
k) (0, any angle)

D (530, (5,-30° (=515, (-5 —210°)

Page 221. 8.3 V3

Page 227.
2.y=5 4. Bt—1p=4 6. 22 = 2ay
Y
8. =~ = tan 10. (2 + 32+ 2)?= 2?
z \/x—’-l-_yﬂ (#2412 +2) + 4
Page 228.
12. 7 (cos 6+ sin §) = 10 14. r25in 26 = 20 16. r=2cos6+ 1
18. r=2tanfsin g 20.7cos (f—a)=1p
Page 231. 2.r=T€_-p__T e>1

Page 237. 6. r=4d cosd

Miscellaneous Exercises
4 P=4axt+4a
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Page 238.
1 6
6. §T1T28111((13—d1) 8. r: 3—2cos6

Page 239. 10.r=asecfxb
Page 243.  10. (ptyls, p (L1 + 1))

4 3 -5
Poge 255. 2. d=T77%, ;\/'5, SVh o Vi

Page 256. 4.d=T;

9 4 V3 V3 3
' - 8. LS, .
6. (-5-’ E, 1)’ -15-6) 3 3 ’ 3
10. Sphere, center at origin, radius 5

3 2
y = =
T 7

~ >

Vit

Page 260. 4. Mpp=1:—2:1 6. 4

Page 263
2. (\/6, 45°, tan™ ?) (V/3, 45°, tan™1 V2)

(3, tan™ — 2, tan™! — ;/g) (- 2/3, 45°, tan1/2)

4 (V2 45, 2), (V2 45° —4), (272 135 2)
6. (7,052,935, 2565), 3017 miles
Page 270. 2. Az+ By+Cz=10

4.0)3, —4,12 b)) —4,4, -4
-D =D =D
¢) 0, 0, no intercept d)T T
6.a)2z—y+2z=3 b)2z—y—2z=0 )zt+z=4¢4
Page 271.
8. a) 82+ 9y+122z=29 b) 182—3y+1lz=14 ¢) 22+ 8y+52=27
3 b 25
. a) =T — =
12. a) 14\/~ b) 186@ c) 3
Page 272.
3 : 8 - 1/
x4.a)2—6x/é‘e b)ﬁﬁ 0)5\/6
Page 276.

4.0)22+6y—2—7=0 * b)9z+27y—16724+122=0
Page 279.
$"-3_y—4mz-5 c):c=-—2+6t, y=3+t,

2.
9, 1 6 =2
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AV Y
z—-l___y___f:_% :1:--2_y+1=L
L S R
-7 _yt2 24
Page 280, 6 T = _65- 2
2.0)20z+5y+4z=20 b)22—y+32=6 c)r—4y—4z=4
Page281. _ 2
4. 42+3y—22=1 6. 272 to/3 T35 a=2/2
5 2 10 5
8. No 10. 62+ y—4z=—12
Page 282.
z Yy z 7 6 1 4
12.8) =+ >+ —=1;—=2+——y—-—=z=—=
2T TR VR Ve v
7 3
T,y z 8 10 3 8
t+t-—4-=1; T ———y+ 2= ———
)1 -4 8 VI3 V113 V113 V18
5 3
4/ 231 a2 + bibe + ¢
=22 18. cos 6 =
I4. cOs 0 71 \/a12+ b2+ o '\/az"l' b+ o
Page 283. z20. 6z—y—32+4=0 22, Yes
Page 284. 26. k=0, —3
P afeffsﬁro o ¢) Point (— 1, —2, — 3)
: V1
b C(-1,—-2 —3), R=V13 j)C(—-g,l,—%), =——610
9C-1,00, R=1 ) Not a sphere
HC(-1,-1,0, R=v2 ? P
4 G-+ @—aP+—a?=a
@—ap+@y—aP+taoy=a
@—ar+ y+aP+(z—ar=d
@+a3+ y—aP+ - =a?
(z—aP+ @+ar+ t+a2=a
@+aP+ y—aP+ etap=a
@+aP+ y+a)+ —-a?=a
@+ o+ @+ap+ tar=a
Page294. 2. 4224+ 422+992=36
4. 422+ 42+ 922=36 6. 22422=4y
8. 22—y +224+16=0 10, 22+ 2t a2=4

12, P+ 22=922 14. (0,0, 0). No locus
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Page 301.
2. Elliptic hyperboloid of one sheet, C (0, 0, 0)
4. Hyperbolic paraboloid 6. Two planes 8. No locus
Page 302
10. Families of lines are:

T, Y _z
374 5 3+4_t(1 5)
YV 2 T ¥\ _q1.Y
‘(3 4) 1-5 t(s i)~ 1ty
Page 305.
1 1 1 A c b
2L % gy Ty vVTTETTE SUSEVE-A
Page 307, 2. 2 4.2 6. —4 8. No limit exists.
Page310. 2. 2z+1 4 32 6.::;—22—
Page 311.
1 -z 2z
8 1-—= 10, — . — .-
P y R 4. -1
Page 314, 2.2z-72; 4
4. 428—82 16
6. z= 1, —1; "3; (1, _2)’ (_ 1: 2)1 (0: 0)
8.a)y—8z+16=0, z+8y=2
by—4z+9=0, 4y+z—15=0
c)y—3z=0; 3y+z-10=0
dy—16z+31=0; 16y+z-18=0
e y+15z—-9=0; 15y—2z+91=0
Page 318. '
2. 574+ 322—2x 4. T2t~ 823+ 1122~ 8z 44
2 -3
ey Ty
Page 321.
2. 6z (22— 1)2 4. 30z —10) B22— 22— T4
2 z
6. - 8. —
¥ 4y
Page 322.
7T+2y—2z 1 z
_— Iz.—g 14.
2y—-2z 3z Va7
‘ -3 2 \/ -
6. 3z " 422+ z+6) Vart+-3 2 15

2Bz —6z—2)% (22 +3) “y(5z— 2
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Page 323.
2.3z-2y~1=0, 224+3y—5=0; 3z~y—4=0
z+3y—28=0
4. 82—y=12, z+8y=34
6.2—12y+11=0, 1224+9y—-13=0
Poge 325. 2. Positive values increasing, negative decreasing
Page 326. 4. Increases z <0, > 2; Decreases 0 <z < 2

6.Increases—%<z<0, z>2; Decreasesx(—%- 0<z<2

Page 327.
2. Increases ¢ > 0, Decreases z < 0. Turning point (0, 5)
4. Increases z < — 3, 2> 3; Decreases —3<z< 3
Turning points (- 3, 60); (3, — 48)

6. Increases—-%<z<0; :c>2;Decreases:c<—é: 0<z<2

115
—]E ’ (0: - 7)7 (21 - 15)

8. Decreases for all values of z.  No turning points

1
Turning points (- 7~

n n
Page 337. 2. 5} ~2-
u
Page 338. 4. &
6. Alt.=%base><\/'3' 8.4X4X4
10. Radius of base = height 12. Alt. = 331 V3

Page 339. 14. (7, 2)
Page342. 2.v=351, a=48
o 17 29
VI T
6.t <—1, vpositive, s increases
t=-1, body at rest
~1<¢<1, v negative, s decreases
t=1, body at rest
t>1, vpositive, ‘s increases
8.t <2, vnegative, s decreases
t=2, body at rest
t> 2, wvpositive, s increases
10,0)ti=4, =8 b) right for 4 hrs,, left for 4 hrs., right 4 hrs
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14. 2 mn sq. ft.

5
20. 7o~ ft./sec.

26. g +/3 mi./hr.

16" (1: 3)) (5, - 5)
22. 20 /13 mi./hr.

4500
8. — /
2% 501 901



INDEX

Abscissa, 15
. Angle, between two lines, 75, 258
between two planes, 266
bisector, 84
direction, 254 <~
formed by two curves, 118
Ares of Triangle, 87, 259
Asymptotes, 49, 153, 154
Auxiliary Variables, 200
Axis, ellipse, 131
hyperbola, 145
parabola, 124

Bundle of planes, 274

Cardioid, 232
Cartesian Coordinates, 14, 250
Circle, center, 104
equation, 104, 106
orthogonal, 118
parametric equation, 240
pencil of circles, 111
polar equation, 229
tangents to, 115, 116, 174
through three points, 108
Cissoid, 238
Concavity, 327
Conchoid, 239
Concurrent lines, 73
Cone, 297
Sections of, 121
Conie, 121, 161
"diameter, 208
directrix, 161
eccentricity, 123, 132, 145, 161
* focus, 161
normal to, 170, 323
polar equation of, 230
pole and polar, 215
sections of cone, 121
through given points, 197
Conjugate diameters, 210
Constants, essential, 286
Coordinates of a point on a line, 13
of a point in a plane, 14
of a point in 21%&06’ 250
metric,
poar, 219

Coordinates, rectangular, 15
relation between rectangula:
and polar, 226
transformation, 185
Cycloid, 247
Cylinders, 289
Cylindrical Coordinates, 261

Derivatives, 308
Tlgegorems on, 311, 316, 318,

Determinants, 3

Diameters, 208
conjugate, 210

Direction angles, 254
cosines, 254

Directrix — conic, 161
ellipse, 137
hyperbola, 149

. parabols, 123

Distance hbetween two points in

- plane, 18
in space, 252
point and line, 81

point and plane, 271

Eccentricity — conie, 161
ellipse, 132
hyperbola, 146

. pam%o}la, 123

)

Ellipse, 122, 130
axes, 131
center, 131
construction, 132
defined, 130
diameters, 208
directrices, 137
eccentricity, 132
equation of, 133
focal property, 180
focus, 130
of tangent, 179
parametric equation, 241
sub-normal, 172
sub-tangent, 172
tangent, 173

,&@ces, 131
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Ellipsoid, 292,

Equation, cardioid, 232
circle, 104
conie, 161, polar, 231
discussion of, 43
ellipse, 130
hyperbola, 146
Limacon, 232

Line, 56, 57, 60, 61, 63, 64; polar.
228

I‘.ii:ln‘r.;s,bf3724
parabola, 1
product of two, 53
spiral, 234, 235, 236

Focus, conie, 161
ellipse, 130
hyperbola, 142
parabola, 123

Function, 303
decreasing, 324
explicit, 304
implicit, 304, 319
increasing, 324
trigonometric, 6

Geometric Theorems, 31, 96

Harmonic Division, 213

Hyperbola, 122, 142
asymptotes, 153, 154
axes, 145
conjugate, 158
construction, 144
directrix, 149
eccentricity, 146
equation, 146
equilateral, 159
focal radii, 148
focus, 142
latus rectum, 149
rectangular, 159
tangent, 174
vertices, 145

Hyperboloid, one sheet, 295 -

T

two sheets, 296
Hypocyeloid, 247

Increments, 306

Inflexion, 328

Intercepts, 43, 291
Intersection of two loci, 52

INDEX

Latus Rectum, ellipse, 137
hyperbola, 149
parabola, 127

Lemniscate, 237

Limacon, 232

Limits, 306

Line, concurrent, 73
coordinates on, 13
directed, 9
distance of point from, 81
divided in given ratio, 22

equation of, 56, 57, 60, 61, 63

mid-point of, 21

Lines, angle between, 75, 258
penell of, 90

Lituus, 237

Locus, 36, 41, 199, 222, 264

Maximum Point, 326
Mid-point of Segment, 21
Minimum Point, 326

Normal equation of, 170, 323
form of line, 64
form of plane, 265

Octants, 251
Ordinate, 15
Origin, 13

Parabola, 121, 123
construction, 123
diameter, 208
directriz, 123
equation, 126
focal property, 177
focus, 123
Latus Rectum, 127
sub-normal, 172
sub-tangent, 172
vertex, 123

Paraboloid Elliptic, 295
hyperbolic, 297
of revolution, 293

Parallels — general theory, 70

Parameter, 240 K
time ag, 244

Parametri¢ Equations, 240

Pencil of lines, 90

lanes, 274

erpendicular ‘lines — general theo-

of
- Iy, 70



INDEX

Point, coordinates, 13, 14, 250
distance between two, 18, 252
distance from line, 81
distance from plane, 271
inflexion, 328
intersection of loci, 52
maximum,
minim um3,2226
turning,

Polar coordiates, 219
gphs, 21‘4201rectmgular rdin:

tion coordin-
ates, 226
standard equations, 228
Pole and Polar, 215

ts, 15
atic Equations, 1
m’

Radius Vector, 219
Rates, 339

Rotation of Axes, 192
Ruled Surfaces, 298

Section, 291

sheaf, 274

si:;}?ﬂgtmm linear equations,
Slope equation of s line, 26

of a line, 25

pagg]lel and perpendicular lines,

Sphere, 285

363

Spherical coordinates, 260
Spheroid oblate, 294

prolate, 204
Spirals, 234, 235, 236
Sub-normals, 171
Sub-tangents, 171
Surfaces, of ?eévollution, 293

of,

Symmetric Equations of a line, 277
Symmetry, 44, 291 &

Tangents to ‘68e, 115, 116

to conic, 1

to ellipse, 169 '
general definition, 164

to hyperbola, 169

to parabola, 169

i , 172

Test, maximum and minimum, 330
Traces, 291

Transformation of coordinates, 185
Translation, 185

space, 259
Trigonométric functions, 6
auxiliary, 200

Variable Range, 47
Vectorial Angle, 219
Velocity, 339
Vertex, ellipse, 131
hyperbola, 145
. parabola, 123






