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PREFACE

TrE following lectures contain an elementary account
of the logical foundations of algebra and geometry, —
elementary, in the sense that the technical mathematical
equipment presupposed on the part of the reader has been
reduced to a minimum. Ezxcept in a very few instances,
no knowledge of mathematics beyond the most elementary
portions of algebra and geometry has been assumed. It
has been my purpose to give a general exposition of the
abstract, formal point of view developed during the last
few decades, rather than an exhaustive treatment of the
details of the investigations.

The results of recent work on the logical foundations
are of vital interest alike to the teachers of mathematics
in our secondary schools and colleges and to -philosophers
and logicians. I hope that both these classes will welcome
a concise statement of some of the more fundamental of
these results and an elementary exposition, omitting all
involved details, of the point of view which governs all
present work on the foundations. The book should be
available also as a text in connection with so-called Teach-
ers’ Courses in colleges and universities.

The lectures were given at the University of Illinois
during the summer of 1909. They are here reproduced in

v



vi PREFACE

substantially the same form as delivered. The conversa-
tional style has, to a large extent, been retained in the
hope that the presentation has gained thereby in spon-
taneity.

My cordial thanks are due my former colleagues, Dean
E. J. Townsend and Professor G. A. Miller, of the Univer-
sity of Illinois, who read the greater part of the manuseript;
and to my colleague, Professor U. G. Mitchell, who not only
read the whole manuscript and rendered valuable assist-
ance in seeing the book through the press, but has added
to its value by contributing the Note on “ The Growth of
Algebraic Symbolism,” which will be found at the end of
the lectures. Above all, however, my thanks are due
to Mr. W. W. Denton, of the University of Illinois, with-
out whose help the lectures would probably not have been
published. He took the lectures down stenographically,
and applied himself to the revision of the resulting manu-
soript with great enthusiasm and keen insight.

J. W. YOUNG.

LAWRENCE, KANSAS,
April, 1911.
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FUNDAMENTAL CONCEPTS OF
ALGEBRA AND GEOMETRY

LECTURE I

INTRODUCTION. EUCLID’S ELEMENTS

‘Two Aspects of Mathematics.— Mathematics may be con-
sidered from two aspects. The first, or utilitarian, regards
mathematics as presenting in serviceable form a body of
useful information. The second and educationally more
important aspect, the one with which we shall chiefly
concern ourselves in these lectures, relates to the fact that
mathematics, in particular algebra and geometry, consists
of a body of propositions that are logically connected. It is
proposed to consider the more important fundamental con-
cepts of glgebra and geometry with regard to their logical
- significance and their logical interrelations. Let it be said
at the outset that we shall not be primarily concerned with
the psychological genesis of these concepts, nor with the
manifold and interesting philosophical questions to which
they give rise.

“ Mathematical Science” defined. — We are at once con-
fronted with the question: What is mathematics ? To give
a satisfactory definition is difficult, if not impossible. We

B 1
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shall be in a better position to appreciate the difficulties
attaching to this question at the close of the lectures. We
may, however, define what we shall understand by a mathe-

\ matical science. A mathematical science, as we shall use the

|
| term, is any body of propositions arranged according to a

i sequence of logical deductions; i.e. arranged. so that every
proposition of the set after a certain one is a formal logical
consequence of some or all of the propositions that precede
it! This definition is open to the criticism that it is too
broad; it contains more than is usually understood by the
term it professes to define. The idea, however, is simply
that whenever a body of propositions is arranged or can be
arranged in a strictly logical sequence, then by virtue of
that fact we may call it mathematical. It will do no harm,
if the meaning we attribute ‘to this term in the present
connection is broader than that usually attributed to it;
the considerations that follow merely have a wider field
of application.

Unproved Propositions and Undefined Terms. — Let us sup-
pose that we have before us a body of propositions satisfying
this definition, and let us inquire what it must have for a
point of departure. The first proposition cannot, of course,
be a logical consequence of a preceding proposition of the
set. The second, if the body of propositions is at all exten-
sive, is probably not deducible from the first; for the
logical implications of a single proposition are not many.

1 This definition is closely related to a definition given by Bexsamin
Prince, when he said that *“ mathematics is the science which draws
necesgary conclusions.’
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If we consider the nature of a deductive proof, we recognize
at once that there must be a hypothesis. It is clear, then,
- that the starting point of any mathematical science must be a
set of one or more propositions which remain entirely unproved.
This is essential ; without it a vicious circle is unavoidable.

Similarly we may see that there must be some undefined
terms. In order to define a term we must define it in terms
of some other term or terms, the meaning of which is
assumed known. In order to be strictly logical, therefore,
a set of one or more terms must be left entirely undefined.
One of the questions to be considered relates to the logical
significance of the undefined terms and the unproved
propositions. The latter are usually called axioms or pos-
tulates. Are these to be regarded as self-evident truths?
Are they imposed on our minds a priori, and is it impossible
to think logically without granting them ? Or are they of
experimental origin? Are the undefined terms primitive
notions, the meaning of which is perfectly clear without
definition? Closely connected with these questions are others
relating to the validity of the propositions derived from the
unproved propositions involving these undefined terms. We
often hear the opinion expressed that a mathematical propo-
sition is certain beyond any possibility of doubt by a reason-
able being. Will a critical inspection bear out this opinion?
We shall soon see that it will not. As an illustration of
an extreme view, we may cite a definition of mathematics
‘recently given by BERTRAND RussELL, one of the most emi-
nent mathematical logicians of the present time. ¢ Mathe-
matics,” he said, ¢ is the science in which we never know
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admitted that a very large number of our pupils do study
mathematics in just this way. There can be no doubt
that the fault lies with the teaching. This does not
necessarily mean that the fault is with the individual
teacher, however. Mathematical instruction, in this as
well as in other countries, is laboring under a burden of
century-old tradition. Especially is this so with refer-
ence to the teaching of geometry. Our texts in this sub-
ject are still patterned more or less closely after the model
of Eucrip, who wrote over two thousand years ago, and
whose text, moreover, was not intended for the use of
boys and girls, but for mature men.

The trouble in brief is that the authors of practically
all of .our current textbooks lay all the emphasis on the
formal logical side, to the almost complete exclusion of
the psychological, which latter is without doubt far more
important at the beginning of a first course in algebra or
geometry. They fail to recognize the fact that the pupil
has reasoned, and reasoned accurately, on a variety of
subjects before he takes up the subject of mathematics,
though this reasoning has not perhaps been formal. In
order to induce a pupil to think about geometry, it is
necessary first to arouse his interest and then to let him
think about the subject in kis own way. This first and
difficult step once taken, it should be a comparatively
easy matter gradually to mold his method of reasoning
into a more formal type. The textbook which takes due
account of this psychological element is apparently still
unwritten, and as the teacher is to a large extent governed
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by the text he uses, the failure of mathematical teaching
is not altogether the fault of the teacher.

The latter must be prepared, however, to make the best
of existing conditions. Much can be accomplished, even
with a pedagogically inadequate text, if the teacher suo-
ceeds in awakening and holding his pupils’ interest. It
is well known that interest is contagious. Let the teacher
be vitally, enthusiastically interested in what he is teach-
ing, and it will be a dull pupil who does not catch the
infection. It is hoped that these lectures may tend to
give a new impetus to the enthusiasm of those teachers
who have not as yet seriously considered the logical
foundations of mathematics. Every thoughtful teacher
has doubtless been confronted with certain logical difficul-
ties in the treatment of topics in algebra and geometry.
Even on the assumption that he has not had the hardi-
hood of questioning the axioms and postulates which he
finds placed at the basis of his science,—and it is hardly
to be expected that he should thus question the validity
.of propositions which stood unchallenged for over two
thousand years,—many serious difficulties attach to such
topics as irrational numbers and ratios, complex numbers,
limits, the notion of infinity, etc. How serious some of
these difficulties are is made evident by the fact that in
spite of the attention they received during several centu-
ries, & satisfactory treatment has been found only within
the last hundred years. Indeed, the present abstract point
of view, which is to be described in these lectures, has
been developed only within the last three or four decades.
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Historical Development to be emphasized. — It is proposed
throughout to emphasize the historical development of the
conceptions and points of view considered. It is hoped
hereby to give a comprehensive view of mathematical
progress in so far as it relates to fundamental principles.
This should tend to eradicate the all too common feeling
that the fandamental conceptions of mathematics are fixed
and unalterable for all time. Quite the contrary is the
case. Mathematics is growing at the bottom as well as
at the top; indeed, not the least remarkable results of
mathematical investigation of recent years and of the
present time relate to the foundations. Let the teacher
once fully realize that his science, even in its most elemen-
tary portions, is alive and growing, let him take note of
the manifold changes in point of view and the new and
unexpected relations which these changes disclose, let him
further take an active interest in the new developments,
and indeed react independently on the coneeptions involved,
—for an enormous amount of work still remains to be
done in adapting the results of these developments to the
requirements of elementary instruction,—let him do these
things, -and he will bring to his daily teaching a new
enthusiasm which will greatly enhance the pleasure of
his labors and prove an inspiration to his pupils.

Results not of Direct Use in Teaching. — Reference has just
been made to the need of adapting the results of the recent
work on fundamental principles to the needs of the class-’
room. It should here be emphasized, perhaps, that the
points of view to be developed in these lectures and the
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made use of many propositions which he did not prove and
which he did not explicitly state as unproved. But there
is much evidence to show that his ideal was in accordance
with our definition of a mathematical science. We may
use Euclid’s Elements as a convenient starting point to in-
troduce the order of ideas which is to engage our attention.
Any attempt to criticize Euclid’s treatment of geometry is
rendered peculiarly difficult at the outset on account of
the great uncertainty that exists as to the real content of
Euclid’s text. Although he lived, as has been stated, about
the year 300 B.c., the oldest manuscripts which purport to
give Euclid’s Elements date from about the year 900 a.p.!
An interval of twelve hundred years intervenes between the
time at which Euclid wrote and any record we have of his
work. Moreover, there are several manuseripts dating from
that time, and they differ considerably from one another.

Definitions. — How, then, did Euelid begin his treatment
of geometry ? 'We have seen what the starting point ought
to be. It ought to be a set of undefined terms and a set of
unproved propositions such that every other term can be
defined in terms of the former and every other proposition
derived from the latter by the methods of formal logic.
Euclid does indeed begin with a series of definitions, of
which we will give a few examples:

A point is that which has no parts.

A line is length without breadth.?

1 KLEIv, Elementarmathematik vom hoheren Standpunkte aus,
vol. I, p. 404.
3 Some MSS. add: The extremities of a line are points.
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A straight line is a line which lies evenly between two
of its pointas.

These definitions serve to illustrate how it is necessary
to define a term in terms of something else, the meaning
of which is assumed known. The terms ¢ part,” ¢length,”
“breadth,” “lies evenly ” are undefined. These definitions
are entirely superfluous, in so far as they do not enable us
to understand the terms defined, unless we are already
familiar with the ideas they are intended to convey. It
is probable that Euclid himself did not regard these as real
definitions. He probably regarded the notions of  point,”
“line,” “straight line,” etc., as primitive notions the mean-
ing of which was clear to every one. The definitions then
merely serve to call attention to some of the most impor-
tant intuitional properties of the notions in question. We
will so regard them for the time being. We shall have
more to say of them presently.

Postulates. — Euclid gives us next a set of postulates. On
account of their historical importance we will give them in
full as they appear in the text of HerBere:?

1. B shall be possible to draw a straight line joining any
two points.

2. Aterminated straight line may be extended without limit
n either direction.

1 Ruclidis opera omnia, edited by Heisere (Leipzig, 1888-1895).
An excellent English edition based on Heiberg’s text with critical notes
has recently appeared; viz. T. L. Hearn, The Thirteen Books of

Fuclid’s Elements, translated from the Text of Heiberg, with Intro-
duction and Commentary, 8 vols. (Cambridge, 1908).
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3. It shall be possible to draw a circle with given center and
through a given point.

4. AU right angles are equal.

v 5. If two straight lines in a plane meet another straight line
in the plane so that the sum of the interior angles on the same
side of the latter straight line is less than two right angles, then
the two straight lines will meet on that side of the latter straight
line.!

This fifth postulate is the famous so-called parallel postu-
late. On it is made to depend the theorem that through a
point not on a given straight line there is only one parallel
to the given line.

Axioms. — Euclid now gives a set of axioms, “common
conceptions of thought,” to translate approximately the
meaning of the Greek. There are also five of these:

1. Things equal to the same thing are equal to each other.

2. 1If equals be added to equals, the results are equal.

3. If equals be subtracted from egquals, the remainders are.
equal.

4. The whole is greater than any one of its parts.

b. Things that coincide are equal.

These definitions, axioms, and postulates form the start-
ing point of Euclid’s Elements. We may note in passing a
very plausible distinction between the axioms and the postu-
lates, which is suggested by this arrangement into sets of

1 Another discrepancy between the old manuscripts may here be

noted. The fifth postulate, as just given, is in some texts given as the
eleventh or twelfth axiom.
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rived from them by the methods of formal logic without
any further appeal to geometric intuition? We have al-
ready stated that Euclid made many tacit assumptions in
his derivation of these theorems. He assumes for example
without explicit statement that the shortest distance be-
tween two points is measured along the straight line join-
ing them. The answer to the last question must then be
negative. There remains still another question: What is
the logical significance of the postulates? Are they to be
regarded as self-evident, necessary truths? This question
is at once seen to be closely connected with the first: Are
the fundamental notions of “point,” “line,” “ distance,” ete.,
so simple as to have a perfectly clear, precise meaning ?
We shall devote the next lecture to a discussion which will
show that, on the contrary, the connotations of these terms
are extremely complex, and that the meaning to be attached
to them is by no means clear.



LECTURE II

A NON-EUCLIDEAN WORLD

Logical Difficulties. — The present lecture is to be devoted
~to an attempt to show that such fundamental notions as
straight line, plane, and distance, far from having a precise
meaning, are decidedly vague, and subject to a large number
of tacit assumptions. We may get some intimation of the
difficulties involved, if we try to describe clearly what
meaning we do as a matter of fact attach to these terms.
Consider, for example, the “distance between two points.”
How shall we tell what it means? We think first perhaps
of measuring the distance, with a foot rule, for example.
But that helps us not at all to tell what distance means, since
the division of the foot rule into equal intervals (units of
distance) already presupposes this notion. And what do we
mean by equal distances? This seems easier. The dis-
tance, whatever it is, between two points A and B is equal
to the distance between two points C and D, if the pair of
points 4, B can be moved, without changing their mutual dis-
tance, so as to coincide with the pair C, D. But here we
are again in difficulty. The condition # without changing
their mutual distance” implies that we know already what
14
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is meant by equal distances. “ Well,” some one will urge,
“let us join the points 4, B by a straight line. Then we
will say that the distance 4B is equal to the distance CD,
if the segment of the line 4B can by a rigid motion of this
segment be made to coincide with the segment joining C
and D.” Does the notion of “distance between two points ”
necessarily involve the notion of straight line? What then
is the significance of the statement that the shortest dis-
tance between two points is measured along the line joining
them? And what is a “rigid motion”? It is a motion in
which the distance between every pair of points remains
unchanged. The vicious circle is apparent.

A New World. — Enough has perhaps been said to show
that the connotations of the notion of distance are rather
complicated. In order to gain a vivid realization of how

- gerious these difficulties really are, let us construct in our
imagination an entirely new world. This world, which it
is now proposed to describe, will doubtless appear very
fanciful at first; but it will serve a serious purpose. Let
us imagine a world inclosed entirely within a large sphere.!
Suppose that in that sphere the temperature changes from
point to point, being a maximum at the center and decreas-
ing gradually until it reaches absolute zero at the boundary.
In order to make precise our ideas, let us suppose that if
the radius of this sphere is a, and the distance of an object
from the center is 7, the temperature ¢ is always propor-

1 This world is described by Poincarf, Science and Hypothesis,
English translation by G. B. HarsteDp, p. 40 (The Science Press,
New York, 1906).
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tional to a® —7*; that is, t=c(a®—1*), where ¢ is a con-
stant. Then the value of ¢ is a maximum for » =0, that is,
at the center of the sphere; and it vanishes when r=a,
that is, at the boundary. Moreover, on the surface of any
sphere within the given sphere and concentric with it, the
temperature is constant. Let us assume also that the in-
habitants and material bodies occupying this world are
very susceptible to changes in temperature, that they grow
larger or smaller in size in direct proportion to the tempera-
ture, becoming indefinitely small as they approach the
boundary. Suppose also that these changes in size take
place instantaneously, so that a body at a given point is
always in equilibrium with the temperature at that point.

With this description in mind, we ought to begin to see
some of the properties of the geometry which a man living
in that world would develop. To him it would seem to be
of infinite extent, although to us, viewing it from the out-
side, it seems to be finite, For if he started to walk toward
the boundary, as the temperature fell, his body would grow
smaller and his steps gradually shorter, contracting indefi-
nitely as he approached the surface of the bounding sphere.
To reach the boundary of his world, he would have to take
an infinite number of steps. He would be just as sure that
his world was infinite in extent as we are in regard to ours.

The question naturally arises whether he would notice
how bodies changed in size when their distance from the
center of the world changed. The way in which we usually
compare the sizes of objects is to place them side by side,
or measure them as with a yardstick. If he moved from
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one part of his world to another and took objects with him,
they would all change at the same time and in the same
proportion as he changed. So we may be sure there would
be no immediate way of his discovering this law.

¢“Shortest Lines” are Circles. — In some respects his geom-
etry would resemble our own; but in others it would differ
considerably from ours. Suppose, for instance, the man
wished to go from his house (H') to his barn (B) by the
smallest number of steps (Fig.1). Itisreasonable to suppose
that the smallest number of
steps would not be taken
along the straight line (HB)
joining the two places, but
rather along a path (say

HmB) which swerves toward
the center, since his steps /
would be longer there. In

fact, it can be rigorously
proven, by the calculus of
variations, that the path
which gives the smallest number of steps is the arc of a
circle which cuts the bounding sphere orthogonally. Such
a circle we shall call a “shortest line.” Through any pair
of points (as H and B) within the sphere there is just one
such shortest line. In order to study this world a little
more closely, we will take a cross section of it through the
center, and try to find the system of circles through a
point P, which lie in the plane of this section and cut the
bounding circle orthogonally. These circles are very easily
c

Fia. 1.
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obtained in the following way. Through the given point P
draw the diameter DD, also a line perpendicular to it
through P, which will intersect the bounding circle in a

PI

oL-N-—7

Tl
Ql

Fia. 2

pair of points, say 7' and 7" (Fig. 2). The tangents to the
circle at 7' and 7" will intersect upon the diameter, at a
point which we will call P'. Any circle through P and P'
will cut the given sphere orthogonally; and, conversely, any
circle cutting the given circle orthogonally and passing through
P will also pass through P'! 1t follows readily that

1To prove this, we notice that OT'P’ is by construction & right tri-
angle, so that for any point P and the corresponding point P! we
always have OP.OP’ = OD%. Let QPP' be any circle through P
and P, C its center, Q' the other extremity of the diameter through
0. Then OM2=0Q.0Q'=(0C— QC) (0C+ QC) =0C2— QC*
= 0C3%— M(C3. Whence OM3+ MC2= 0OC%3 and OMC is a right
angle. Q. E.D.
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through any two points within the sphere there is one anid only
one shortest line.

A New Assumption. — We will now make another assump-
tion regarding this world, namely that light does not travel
along straight lines. 'We might realize this condition
physically by filling the sphere with a gas of which the
index of refraction changes from point to point. We will
assume that light travels along the circles which we have just
described, i.e. along the shortest lines. Suppose there is an
object at P and a man at @. According to our last assump-
tion, a ray of light from the object will travel along the arc
PQ and reach the eye of the man by the shortest path. If
he walked toward the object, keeping it always directly in
view, he would move along the arc PQ and arrive at @ by
the smallest possible number of steps. We see, then, that
these shortest lines play a role tn his geometry very similar to
that which straight lines play in ours; in fact, these shortest
lines would “look straight” to him. There is one respect,
however, in which the geometry of his shortest lines would
differ from the geometry of our straight lines.

Euclid’s Parallel Postulate. — From his parallel postulate,
Euclid derived P

the theorem, that, ‘

through a given \
point P not on a ,

given line [, there ) Q\
. . Fia. 8

is only one line

parallel tol. One way of describing this notion is to draw
any line through P cutting ! in a point which we will call
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sects it. But since their world would seem infinite to
them, and no material object could ever reach its boundary,
it would seem to them that the point @ could never reach
R. They would consider PR a limiting position of PQ.
By allowing @ to travel in the opposite direction, they
would obtain a second limiting position PS. These two
circles do not, in general, coincide. The angle 6, which they
make with each other, is in general so appreciable that the
inhabitants would easily observe it. Defining two shortest
lines to be parallel, if they are in the same plane and do
not meet however far they are produced, we see that the
inhabitants of this world would recognize the existence of
an infinite number of shortest lines through P and parallel
to [, viz. all such lines lying within the angle . The two
limiting parallels PR and PS we may call the principal
parallels. On account of these contradictions to euclidean
geometry, we might call theirs a non-euclidean world.

To avoid a complicated discussion, we have confined
our attention to the geometry of a plane section through
the center of the sphere. The question might be raised,
how do we know that planes in our geometry correspond
to planes in this non-euclidean world? It can be shown
that the things which correspond to our planes are surfaces
of spheres which cut the surface of the bounding sphere
orthogonally. But no sphere through the center would cut
- the boundary orthogonally, unless it degenerated into a
plane, which may be thought of as the limiting form of the
surface of a sphere as the radius is indefinitely increased.-

The Earth placed in this World. — We had a very serious
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purpose in describing this world. We will now think of it
as being of immense size, but still finite in extent. Imagine
our earth placed relatively near the center, so we could
examine only a small portion of the world in the immediate
neighborhood of the center. The shortest lines through
the center are straight lines; the shortest lines through
a point very close to the center are approximately straight
lines. In fact, we may make the curvature of the shortest
lines through a point just as small as we please by plac-
ing the point relatively near enough to the center.

An Abstract Science vs. a Concrete Application.— Let us
pause for a moment to call attention to a certain distinction
to the neglect of which is due a large part of the misunder-
standings and acrimonious discussions that are so frequent
concerning the subject of non-euclidean geometry. The
distinction is that between an abstract science and its con-
crete representation or application. For example, if we
conceive of geometry as describing the properties of the
space in which we live, that is, the space accessible to our
senses, and which we are in the habit of explaining in terms
of the sensations of sight and touch, we must remember
that we are applying that science to things to which
strictly it does not apply. When we talk about points, we
are thinking of abstractions, things without size; lines are
without breadth, planes are without thickness. We know
that such things are not observable in the world accessible
to our senses; we can observe only things which approxi-
mate to them. Even when by means of carefully made
instruments we are able to draw thousands of straight lines
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to the inch, we still have things which possess breadth,
not the lines of abstract geometry. Think of two lines
which make an angle of y43'". There is no instrument in
the world accurate enough to distinguish the angle included
between them. Yet we do conceive it abstractly. When
we wish to determine whether our abstract science can be
applied to our world, the best we can do is to test it, to see
if it corresponds to the observed properties of concrete
space to within the possible error of observation. In other
words, there are certain small distances and angles which
we conceive of abstractly, but which we cannot realize at all
in the concrete application.

The Angle 6. — Now let us return to our non-euclidean
world. We have seen that the shortest lines which corre-
spond in the geometry of this world to the straight lines of
euclidean space, differ from straight lines by as little as we
please in a relatively sufficiently small region near the
center of the bounding sphere. Let us consider again the
parallels through a given point P to a given shortest line I.
‘We have seen that through P there are two principal par-
allels, which make at P a certain angle §. This angle 8
decreases as the point P and the line / approach the center
of the sphere, and may be made as small as we please by
taking P and ! sufficiently close to the center. We must
remember that “sufficiently close” must be understood
relatively to the radius of the bounding sphere. It is
perhaps better to put it in this way: If P and ! are at a
given distance from the center, the angle 6 decreases indefi-
nitely as the radius of the bounding sphere is increased ; and
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non-euclidean the trne geometry ? We see now that such
a question has no meaning.! It is very much as if we were
to ask if the metric system is true; whether it is more
correct to measure things in centimeters than in feet and
inches. We might very well ask whether it is more con-
venient to measure things in feet and inches than it is
to measure them in centimeters. Non-euclidean geometry
is much more complex than euclidean geometry, and we
shall always find it more convenient to employ the latter
in elementary concrete applications of mathematics.

Our present object is attained, if we have succeeded in
showing that our intuitional knowledge of space is not in ttself
sufficient to characterize with precision and completeness the
meaning to be attached and the properties adhering to the
Jundamental abstract conceptions of geometry, and, in par-
ticular that Euclid’s parallel postulate, however evident cen-
turies of tradition have made it seem to us, is not the only
conceivable one to describe the situation in question. * How,
then,” it will be asked, “is it possible to build up a valid
geometry ?”

1 Cf. Pomncarg, loc. cit., p. 89, _
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ON THE HISTORY OF THE PARALLEL
POSTULATE '

Euclid’s Attitude toward his Fifth Postulate. — Before
attempting to answer the question proposed at the close
of the last lecture, it seems desirable to consider briefly the
history of the parallel postulate. Euclid’s fifth postulate
states that if two lines in a plane are cut by a transversal in
such a way as to make the sum of the interior angles on the
same side of the transversal less than two right angles, then the
two straight lines meet on that side of the transversal. There
is internal evidence to show that, for some reason, Euclid
himself did not regard this postulate as being quite so
fundamental, or quite so self-evident (if we may use that
expression) as his other postulates. For, although he
states it with the other postulates, he avoids using it until
Theorem 29 of Book I. This theorem says that, if the given
lines are parallel, the sum of the interior angles is two right
angles. He divides his discussion of the exterior angles of
a triangle into two parts, as he probably would not have
done had he not wished to avoid using the fifth postulate.
He first shows, in Theorem 16, that in any triangle, an

% .
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exterior angle is greater than either of the non-adjacent interior
angles. By means of Theorem 16 he proves Theorem 28,
that, if two lines are cut by a transversal so as to make the
sum of the interior angles equal to two right angles, the lines
are parallel. For this theorem he did not need to use the
fifth postulate. It is the converse of this, namely, Theorem
29, mentioned above, in which he found difficulty and was
forced to use the postulate. In Theorem 32 he continues
his discussion of the interior angles of a triangle, and shows
that their sum is precisely two right angles. This division
of the treatment of interior and exterior angles into two
parts can hardly be regarded as accidental. It seems to
show that Euclid was not entirely satisfied with his fifth
postulate, and avoided its use as long as possible.

Ancient Times and the Middle Ages. — The ancient phi-
losophers give us ample evidence that, for a long time after
Euclid, it was the fashion among them to discuss the fifth
postulate, to try to prove it a consequence of the others,
or to replace it by a more satisfactory one; but no essential
improvement upon Euclid’s treatment resulted for nearly
two thousand years. The Dark Ages were as dark in math-
ematical research as in other things. Not much was done
until the time of the Renaissance, about the latter part of
the fifteenth century. Then much activity was awakened.
This, howevei-, was confined mainly to algebra, such as the
solution of cubic and biquadratic equations. Not much was
done with geometry, and there is scarcely anything to recall
concerning the fifth postulate, until near the end of the
seventeenth century.
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Wallis, Saccheri, Legendre, — The movement to replace
the fifth postulate by a more satisfactory one again attracted
attention when taken up, at that time, by JoEN WarLLis
(1616-1703), who gave a proof, as he called it, of Euclid’s
postulate. His proof depends upon the assumption, that
if there is given a triangle in a plane, we can construct a
triangle similar to it and of as large an area as we please.
This assumption, however, is practically equivalent to
Eueclid’s. It would not be difficult to show that it is not
satisfied in the circle world described in the last lecture.
He might indeed have simplified his assumption a little.
It would have been sufficient, if it were possible to construct
one triangle similar to a given triangle.

GIROLAMO SACCHERI, an Italian Jesuit priest, who wrote
about 1733, took a long step in advance. He constructed
a new proof, as he supposed, of the fifth postulate, by the
method of reductio ad absurdum.
This form of proof was so well
n at T known and so common even in
Euclid’s time, that it seems strange
it had not been employed for this
purpose before. He made an as-
sumption contrary to Euclid’s postu-
M late, and tried to show that it led
 to an absurdity. He considered -
two parallel straight lines AC and
BD crossed at right angles by a
third line AB (Fig. 5). On the lines AC and BD he laid
off equal distances .AC and BD on the same side of AB,

Fia. 8



LECTURE III 29

and joined the extremities of the segments so formed by a
fourth line CD. He could show, without the use of the
fifth postulate, that the two new angles thus formed were
equal. Hence these angles were (1) both right angles, or
(2) both obtuse, or (3) both acute. He proved readily
that they could not both be obtuse. He then made the
assumption that both were acute. He derived property
after property —for instance, that the sum of the angles
of a triangle is less than two right angles — without coming
to any contradiction. He found that, if there were a single
triangle in space the sum of whose angles is two right
angles, then Euclid’s postulate would follow as a conse-
quence from it. The deductions soon became very compli-
cated, however. He supposed that they involved some
contradiction, and that Euclid’s postulate was therefore
established. But he was mistaken. For we know that all
the other postulates of Euclid are satisfied by non-euclidean
geometry, that is, by the other assumptions made by Sac-
cheri, and the fifth postulate could in no wise follow from
them, since it would have to contradict itself. 'We shall re-
turn to this point later. Saccheri was the first to develop
a body of theorems of non-euclidean geometry, although ap-
parently he did not know that he could not prove Euclid’s
fifth postulate.

‘We ought also to mention the work of the French mathe-
matician LeeENDRE (1752-1833). The first edition of his
Elements of Geometry appeared in 1794. He attempted to
rewrite Euclid’s Elements in a form as clear and logical
as possible. To accomplish this, he made use of some new
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postulates; but it was not till 1823, in the twelfth edition
of that most popular work, that Legendre claimed he had
proved the fifth postulate of Euclid. He was right in
thinking that he had proved it, but in proving it he made
another assumption, which is rather interesting, since, on
account of our habits of thought, it seems so evident and
fundamental. He assumed that, given two half lines issuing
Jrom a point O, and any point P in the same plane with them,
a straight line can always be drawn through the point P and
intersecting both the given half lines. Why is this postulate
not so self-evident as it seems? Let us recall the circle
world described in the last
lecture. We will take for
simplicity the half lines
OP, 0Q, issuing from the
center of the sphere and
piercing the boundary at P
and @ (Fig. 6). Let R be
the given point, and let us
see if a shortest line can
always be drawn through
it, which will intersect
both half lines. If we
draw the circle through P and @ which cuts the boundary
orthogonally, we can easily see that if R lies between the
arc Pa@ and the boundary PbQ, as at S, no shortest line
through R cutting one of the given half lines will ever cut
the other half line.

Gauss. — Among mathematicians recently interested in

Fia. 6
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non-euclidean geometry was Gauss (1777-1855). In some
letters to friends, written near the beginning of the nine-
teenth century, he said many things that intimate that he
was himself for some years in possession of the principles
of non-euclidean geometry, but it is doubtful just how ex-
tensive his investigations were. In one place he expressed
himself to the effect that he was becoming more and more
convinced that the fifth postulate of Euclid cannot be proved
without an additional assumption. Hesaid he did not wish
to publish his results until they were complete, especially
since they were of so startling a nature.

Lobatchewsky and Bolyai. — Non-euclidean geometry, as
such, appeared first in 1835, when the Russian mathemati-
cian, N1cHOLAUS LoBATCHEWSKY (1793-1856), published
what he called his Imaginary Geometry. Several articles on
the foundations of geometry, which had been published
previously, as far back as 1829, gave an indication of the
author’s genius. JomANN BoLvar (1802-1860) also pub-
lished articles on non-euclidean geometry, in 1832. The
two men probably worked independently. They carried the
subject far beyond the point which Saccheri had reached
one hundred years before. Saccheri, we have seen, had
stood on the very threshold of the science, and had even
~ entered the edifice; but either he did not have the courage
of his convictions or he did not realize what possibilities
lay ahead of him. Lobatchewsky and Bolyai began in the
same way. When discussing our ideas of parallelism, in
the last lecture, we took a line / and a point P without it,
and considered the limiting positions of the line joining the
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purpose, we will construct a sort of dictionary by means of
which we can translate propositions of non-euclidean over
into euclidean geometry, or vice versa. We may write the
equivalent words opposite each other in the following way:

NON-EUCLIDEAN EUuCLIDEAX

Point. Point.

Straight line. Circumference of circle per-
pendicular to a bounding
sphere.

Plane. Surface of sphere perpen-
dicular to a bounding
sphere.

Angle. Angle.

The way in which the translation takes place may be
shown by the following example. Theorem in non-
euclidean geometry : The sum of the angles of a triangle is
less than two right angles. Corresponding theorem in eu-
clidean geometry : The sum of the angles of a triangle of
circular arcs perpendicular to the bounding sphere is less
than two right angles. Let us imagine the propositions
and theorems of the two geometries all written down, each
statement in the one opposite the corresponding statement
in the other. Then if we assume that our ordinary euclidean
geometry is a self-consistent science, the non-euclidean
geometry must also be self-consistent. For, corresponding
to any contradiction in non-euclidean geometry on the one
side, there would have to be a contradiction in euclidean
geometry opposite it.
D

~
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Riemann. — Another kind of non-euclidean geometry was
developed by RieMaNN (1826-1866) about 1850. In a very
important paper on the assumptions which lie at the basis
of geometry,! he suggested that there is still a third possi-
bility for a parallel postulate, and hence for a new geometry.
Returning again to our figure regarding the limiting posi-
tion of PQ, Riemann assumed that when the point @ had
traveled for some distance along the line ! in a given
direction, it returned from the opposite direction along the
other side of the line, so that the line PQ did not approach
any limiting position at all. This assumption contradicts
not only the fifth postulate, but also the postulate that a
line can be extended indefinitely. It involves the assump-
tion that a line is finite in length. In Riemann’s geometry,
the sum of the angles of a triangle is always greater than
two right angles. Euclidean geometry, then, lies between
the other two geometries, forming a limiting case, as it
were, for both of them.

Résumé. — It is not our purpose to study the various
geometries in ‘detail. We shall be satisfied with what has
been said thus far, if it is now possible for us to regard as
established that the mere knowledge of space which we get
from our senses of sight and touch is not sufficient to char-
acterize completely the abstract space of geometry. We
have seen that the starting point of a strictly logical
science must be a set of undefined terms and a set of un-
proved propositions. We have also seen that the simplest

1 Ueber die Hypothesen welche der Geometrie zu Grunde liegen,
Habilitationsschrift (Gottingen, 1854).
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notions, such as point and line, those which we would pre-
fer to use for our starting point and leave undefined, are by
no means so clear as we sometimes think ; and therefore, as
an immediate consequence, our unproved propositions and
those derived from them are by no means as certain as we
sometimes think they are. I repeat the question: How,
then, is it possible to build up a geometry that is logically
valid ?



LECTURE 1V

LOGICAL SIGNIFICANCE OF DEFINITIONS,
AXIOMS, AND POSTULATES

O~E of the problems which was suggested in the first
lecture was: What is the logical significance or the logical
character of the definitions, axioms, and postulates in
geometry? We are now in a position to give a partial an-
swer to that question. We can at least reject some of the
answers that have been advanced by philosophers in the
past.

Kant and Mill. — The great German philosopher, IMMAN-
UEL KANT (1724-1804), claimed that the axioms and postu-
lates were a priori synthetic judgments imposed upon the
mind, without which no consistent or accurate reasoning
would be possible. At that time, non-euclidean geometry
was already in existence and known by mathematicians to
be consistent, but it had not spread rapidly enough for phi-
losophers in general to learn about it. So for a long time
they followed Kant, and taught that our conceptions of
space were a priori judgments, while the mathematicians
knew very well that they were not. Only in recent years

36
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Postulates are Mere Assumptions. — Granting that our
geometry need satisfy only our experience of space, and that
we may therefore choose a set of non-euclidean or a set of
euclidean postulates, as we please, the question still remains
a8 to what those postulates or axioms intrinsically are. So
far as we have seen, they are apparently mere assumptions or
agreements concerning the properties of space, which we make
at the outset in order to get started. Suppose we have before
us a geometry, consisting of a mass of propositions which
for some reason or other we believe to be consistent, and
which we wish to rearrange and exhibit in the form of a
- sequence of logical deductions. 'We must first choose those
terms which we wish to leave undefined and those proposi-
tions which we wish to leave unproved. As a practical ex-
pedient we would, of course, choose the simpler propositions
and try to get the more complex from them. Theoretically,
there is no reason why we should not choose the more com-
. plex. There is absolutely no restriction upon our choice
except that which has already been mentioned: The terms
which we leave undefined must be such that every other
term we use may be defined in terms of them, and the set of
propositions which we leave unproved must be such that we
can derive all the others from them by formal logic, without
any further appeal to intuition.

An Example. — In order to illustrate these facts, let us
choose a few simple propositions from euclidean plane geom-
etry, and see what we can derive from them formally.

1. If 4 and B are points, there exists a line containing
A and B. :
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2. If A and B are distinct points, there exists not more
than one line containing 4 and B.

3. Through a point not on a given line there is one line
which does not meet the given line.

4. Through a point not on a given line there is not more
than one line which does not meet the given line.

5. Every line contains at least three points.

6. Not all the points are on the same line.

Finally, in order to give us a starting point, we will
assume: ’

7. There exists at.least one line.

Let us see what terms are involved in these propositions.
We will write them in two columns.

point is

line exists

(line) contains (point) not more than one

(line) through (point)

(line) meeting (line)

(point) on (line)
The words in the right column stand for primitive notions
of logic, behind which we shall not try to go. As for the
words “one” and “three,” we will assume for the present
that the meaning of these and of all the positive integers is
known. Of the terms in the left column, we are certainly
obliged to leave ¢ point” and “line” undefined.

The Notion of a “Class.”—The last four terms which remain
mean very much the same thing. We may replace them all
by a single primitive notion of logic. Let us regard a line
as being a class of points. By this we mean an assemblage,
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other than that which is contained in our explicitly stated
assumptions. In erder to enter into the spirit of this dis-
cussion, we must free our minds of any geometrical ideas
which may be lurking there. Imagine, if you please, that
the things about which we are talking are men, and that
the m-classes are committees of men.

‘1. If A and B are elements of S, there exists an m-class
containing A and B.

2. If A and B are distinct elements of S, there exists not
more than one m-class containing A and B.

3. @Qiven an m-class a and an element P of S not in a,
there exists one m-class containing P and not meeting (that
is, not having an element in common with) a.

4. Given an m-class a and an element P of S not in a,
there exists not more than one m-class which does not meet a.

5. Every m~class contains at least three elements of S.

6. Not all the elements of S belong to the same m-class.

7. There exists at least one m-class.

Let us see if we can draw any conclusions from these
assumptions. From (7) and (5) we immediately deduce
that there are at least three elements in S. This is a new
proposition not contained among the original assumptions.
Let us call these elements 1, 2, 3.

By (1) there exists an m-class containing 1 and 2. By
(2) there is not more than one m-class containing these
 elements, Let us denote this unique m-class by 12. By
(6) there exists at least one element not contained in 1 2.
Call it 4. Then, by (1) and (2) again, we have two new
m-~classes, 24 and 14. 'We had 3 belonging to the class
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12, and by (5) we have two new elements, say & and 6, be-
 longing respectively to 14 and 24. Let us therefore change
our notation for the three m-classesto 123,145,246. The
* elements 3,5, 6 are all distinct, for if any two of them, say &
and 6, were not distinet, the two m-classes to which they
belong, 145, 24 6, would have the pair of elements 4 and
5=6 in common, so that by (2) they would be the same
m-class, which is contrary to the hypothesis. By (1) there
is consequently a new m-class 1 6, which by (5) contains an
element 7 distinct from all the others.

We will now make use of assumption (3). Take for a
the m-class 24 6, and for P the element 1. By (3) there is
an m-class containing 1 which does not meet 24 6, and there-
fore cannot contain any of the elements 3, 5, 7. For if it
did, it would meet 24 6. By (5) it contains besides 1 at least
two other elements. Let these be 8 and 9. We will stop
here with this theorem: The class S contains at least nine
distinct elements.

Already, we have some idea of how we may proceed to
reason formally with a set of absolutely undefined elements,
concerning which we have made a certain number of funda-
mental assumptions, the results being devoid of all content
except such as is contained in the set of assumptions.
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CONSISTENCY, INDEPENDENCE, AND CATEGORI-
CALNESS OF A SET OF ASSUMPTIONS

Consistency. — The question now arises, are the funda-
mental assumptions which we made during the last lecture
logically self-consistent, or could we arrive at contradictory
conclusions ? This is, of course, a question of the greatest
importance. The only test for the consistency of a body
of propositions is that which connects with the abstract
theory a concrete representation of it. We are dealing here
with a collection of symbols. If we can give them a con-
crete interpretation which satisfies, or appears to satisfy, all
our assumptions, then every conclusion that we derive for-
mally from those assumptions will have to be a true state-
ment concerning this concrete interpretation. As an illus-
tration, consider the set of assumptions which we have been
discussing. They were taken originally from geometry.
Suppose instead of regarding the elements of S as mere
symbols devoid of meaning, we interpret them as points in a
plane, and m-classes as straight lines in a plane. Then every
one of our assumptions is satisfied by euclidean geometry.

43
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ing, otherwise, by assumption (2), 1 AB could not be a new
m-class. Since 4 and B must be distinct from each of the
old elements, 1. 4B could not meet 246. But, by (3) and
(4), there is one and only one m-lass containing 1 which
does not meet 24 6, and we already have 1 8 9, which satisfies
those conditions. Therefore, a fifth m-class containing the
element 1 cannot exist. Let us find all the m~classes con-
taining 2. 'We already have 123 and 246. We might take
2, 5, and 7 together to form a .new m-class 257. But, in
that case, we would be unable to find an m-class containing 2
which did not meet 14 5. - The existence of an m-class 289
is contradictéd by the fact that we already have 189. No
two men, for example, can serve together on more than one
committee, on account of assumption (2). Instead of tak-
ing 257, however, let us take 258. This will allow us to
take also 279. Proceeding in the same way, we might take
as additional m-classes containing 3,348,357,369, but a
contradiction would arise from this choice. If, however,
we take for the new m-classes containing 3,349,357, 368,
we shall be able to select another new m-class containing 4,
namely, 47 8, also one containing 5, namely 569. Clearly, if
we choose our m-~classes in the manner indicated, we cannot
obtain more than these twelve without violating our assump-
tions. Let us arrange them in a table in the order in which
we obtained them.

123 246 349 478 b69
1456 258 357

167 279 368

189
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This arrangement of the nine digits into sets of three constitutes
a proof that the set of eight assumptions with which we have
been working is consistent. If by the class S we mean the
digits from one to nine inclusive, or any set of nine distinect
things designated by these nine digits, and if by an m-class
we mean the above triples, then every one of the assump-
tions is satisfied. Every consequence which we derive from
these assumptions must be true of these twelve triples.
Corresponding to any contradiction in the propositions
derived from our fundamental assumptions, we would find
a contradiction concerning these triples, which is impos-
sible. Moreover, if we take away one of our fundamental
assumptions, the remaining seven are certainly consistent.
Before leaving this example, let us notice that the above

set of triples is not the only set which will satisfy our eight
assumptions. When we chose the m-class 2 58, we might
have taken 259 instead. In that case, we would have con-
structed a table of twelve triples as follows:

123 246 348 479 568

145 259 357

167 278 369

189 4
‘We shall have occasion to return to this table very soon.

The set of assumptions upon which any mathematical

science is built up should ordinarily possess three funda-
mental properties. The first and most important property
is consistency. It is always required. No mathematical
science is possible without a consistent set of fundamental
assumptions.
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Independence. —The second fundamental property sought
for in a set of assumptions is independence. By this we
mean that none of the assumptions can be derived as a for-
mal logical consequence from the others. For example, it
can be shown that none of the eight assumptions which we
have just been discussing follows as a logical consequence
of the other seven. That set of assumptions is therefore
independent as well as consistent. If we wish to make a
clear distinction between a theorem (i.e. a proposition de-
rived from assumptions) and an assumption, we must be
sure that our unproved propositions are completely inde-
pendent. If, however, we are not greatly concerned with
this distinction, then the question of independence is not of
so much importance. In this sense, then, independence is
not an essential requirement, but merely, from some points
of view, a desirability.

‘We saw that the first seven assumptions had a complete
concrete representation in ordinary euclidean geometry.
On the other hand, the eighth assumption contradicts ordi-
nary euclidean geometry, since it implies that there are not
more than three points on a line. If it were possible to de-
rive the eighth as a consequence of the first seven, it would
have to express a property of ordinary euclidean geometry.
The eighth assumption 18 therefore independent of the others.

In general, an independence proof is constructed in the
following way : Let there be given a set of assumptions of
any nature, numbered 1, 2, 3, n, and let it be required
to prove that Assumption No. k is independent of all the
others. We must find one concrete representation for
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as long as possible, for the reason that, if we build up a
science on a set of assumptions which is non-categorical,
there will be more than one system of things which satis-
fies the assumptions, that is, there will be at least two
essentially distinct concrete representations of it. There
will thus be a gain in generality. Consider, for example,
the eight assumptions of our miniature science. The first
seven are non-categorical, for they are satisfied by the set
of nine numbers, also by the points on a plane, and the
points on a plane cannot be put into reciprocal one-to-one
correspondence with the nine numbers. In general, by
starting with a non-categorical set of assumptions, we can
develop a part of several abstract sciences at the same time.
We obtain, in that way, a theory which may be part of a
great many different theories. The great gain in gener-
ality thus obtained is so obvious that examples are hardly
necessary. The principle is illustrated by our miniature
science. If we work with all eight assumptions, instead
of the first seven only, we obfain a set of propositions
which are not all true of euclidean plane geometry, and
which apply to a much narrower field of science, namely
the arrangements of nine things into triples in a certain
way. All theorems derived from the first seven only,
however, are equally true of the system of triples and of
ordinary euclidean geometry.

A Set of Assumptions for any Branch of Mathematics. —
This miniature mathematical science of triples illustrates
what is done on a larger scale in setting up a set of assump-
tions for any branch of mathematics. First, it is necessary
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to choose the terms which are to be left undefined in such a
way that every other term may be defined in terms of them.
Secondly, it is necessary to choose the propositions which
are to be left unproved in such a way that all the other prop-
ositions of the science can be derived by the methods of
formal logic from these chosen ones. The resulting science
is thus purely abstract, and may have several concrete repre-
sentations. If the set of assumptions is categorical, any two
of these representations will be isomorphiec.

Advantages of Abstract Formulation.— Such an abstract
formulation is essential in order to exhibit with precision
the logical connections of the science. What we have just
said shows, however, that such a formulation has also a
great unifying power, in that it exhibits clearly the analogies
existing between several sciences. This fact makes the
abstract treatment of great importance, quite aside from its
logical significance.

Pasch and Peano. — The abstract formulation of mathe-
matics seems to date back to the German mathematician,
MoriTz PascH (1843— ). At any rate, he was the first to
study in detail the axioms concerning the order of points on
a straight line and to state clearly the assumptions involved
in the idea of ‘“betweenness.” We shall have occasion to
return to this later. But to the Italian Gruserpr Prano
(1858— ) belongs the credit of developing this point of
view systematically. His idea, which he began to elaborate
about 1880, is to put the whole of mathematics on a purely
formal basis, and for this purpose he invented a symbolism
of his own. In 1893 he began the publication of a “For-
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unproved propositions have a very important bearing on
elementary teaching. The great majority of our textbooks
in geometry begin with a set of formal definitions and a
few axioms and postulates, then follows immediately the
sequence of formal propositions. To attempt formal defini-
tions of such things as point, straight line, plane, etc., is
scientifically unjustifiable and pedagogically undesirable.
One of the things we wish to impart to our pupils is a clear
understanding of the force of a definition, to teach them to
learn- the meaning of an unknown or vaguely understood
word by defining it with precision in terms of words of
which the meaning is known. Is it going to help a high
school pupil to gain a clear notion of the nature of a defini-
tion by giving him at the very outset of his study the fol-
lowing as a sample ?

“ A straight line is a line of unlimited extent such that
any part of it will coincide with any other part, if e Owis.
extre'miti* of the two parts made to coincide.”

This is very much as though we were to say to our boys:
“Here is an example of a definition: A boy is a male of the
genus homo who has not reached the age of an adult. Isit
not clear how this statement tells you the meaning of
‘boy’? And is it not interesting ?” Just as absurd it is
to expect the pupil to become interested in and to under-
stand the nature of a demonstration by giving him as first
examples alleged proofs of propositions which appear to
him so obvious that he can see no reason for a proof.
Such a procedure merely confuses him and stifles his
interest.
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inary propositions (i.e. propositions formally unproved)
be large. Let us remember that our primary object is
not to teach our pupils to know geometry, but rather to
lead them to think geometry. This can be done only by
arousing their interest in geometric figures and problems
and leading them to think about them in their own way, at
first. The pupil’s own thoughts must be gradmally led
into the formal mode of reasoning; he is not likely ever
to learn to think geometrically by being required to repeat
the thoughts of another in a form that must in the nature
of the case appear to him at first as artificial and unnatural.



LECTURE VI

CLASS. CORRESPONDENCE. NUMBER

Résumé. — The last lecture closed what may be regarded
as the preliminary or introductory part of this course.
The object of these introductory lectures has been to
make clear the nature of the problems to be discussed and
the point of view from which it is proposed to approach
them. The description of an imaginary world served to
show that the meaning popularly attributed to certain
fundamental concepts (such as distance and straight line)
lacks precision, that the axioms and postulates of geometry
cannot be regarded as self-evident truths, and that indeed
the ordinary euclidean geometry is by no means the only
science that will serve to describe the properties of space, —
in other words, that our intuitive knowledge of space is
not sufficient to determine completely the fundamental
propositions of geometry.

It thus became apparent that a purely logical treatment
of geometry implies a purely abstract treatment. Beginning
with the observation that it is impossible to give formal
definitions of every term, or to give formal proofs of every
proposition without becoming involved in a vicious circle,
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it was seen that the starting point of any mathematical
science must be a set of undefined terms and a set of un-
proved propositions (assumptions) concerning them. The
science then consists of the formal logical implications of the
latter. These considerations were illustrated by the discus-
sion of a miniature mathematical science, by means of which
it was possible also to exhibit the properties of consistency,
independence, and categoricalness of a set of assumptions.
With these general ideas in mind, we are now ready to
begin a more systematic discussion of various fundamental
concepts of mathematics, and will begin with the notion of
class, which will lead directly to that of cardinal number.
The Notion of Class. —In the abstract formulation of
any mathematical science the notions of class (or set), and
of belonging to a class are fundamental. Another very
fundamental notion is that of correspondence between the
elements of two classes,(wliich has already been used in
the (\liscussion of the categoricalness of a set of assump-
tions, These notions are primitive concepts of logic, into
the meaning of which we do not inquire further. We may
first consider these notions without particular reference to
mathematics. Is there anything which we oan discover or
discuss about a class, if we do not know anything concern-
ing the individual elements of the class? Is there any
way we can compare two classes without making any use
of the nature of the individual elements of which they are
~ composed ? It seems that there is just one thing we may
do. We may possibly be able to tell whether the number
of elements in each class is the same. This leads to a very
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as the cardinal number of the class of points on any line
segment OD contained in AB. To prove this we need
only agsume an auxiliary line
segment A'B’ in a plane with
AB, but on a different line.
The points of AB may then
be placed into one-to-one cor-
respondence with the points
of A'B' as already described,
and these in turn placed into
correspondence with the points
of CD (cf. Fig. 8). But the
points of CD form a part only
of the points of AB. We
have thus an example of a class
which has the same cardinal
number as a part of itself.

Another Example.— Another
example of this kind of class
is furnished by the class of all positive integers. It is
readily seen how the latter class may be put into one-to-one
" correspondence with the class of all even positive integers,
by writing the classes as follows : —

1, 2, 3 4 5 6 7, 8 9, 10, 11, ...

[ (A A A N R I |

2, 4 6, 8 10, 12, 14, 16, 18, 20, 22, ...
To any integer a of the first class corresponds the integer
2a of the second; and, conversely, to any integer 2b in
the second corresponds the integer b in the first. The class

(o)

Fia. 8
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of all positive integers therefore has the same cardinal num-
ber as the class of all even positive integers, and the latter
i3 only a part of the former.

Infinite Classes. — We have thus seen two examples of
classes — viz., the class of all points on a line segment,
and the class of all positive integers — which have the
property that there exists a part of the class which can
be put into one-to-one correspondence with the whole class.
This property is characteristic of the classes called infinite,
In fact, we may now formulate the following definition: —

A class C is said to be infinite if it contains a part C'
which can be put into oneto-one correspondence with C. A .
class which ©s not infinite i8 said to be finite.

It should be noted that a part C' of a class C is any
subclass of C such that there exists at least one element
of C which is not also an element of C'. From this defi-
nition follows readily the following important property of
infinite classes: —

If a class C is infinite, the class C, obtained by removing
from C any element is also infinite.

For by hypothesis C contains a part C' which may be
put into one-to-one correspondence with C. Let a be the
element of C which is removed to obtain the class C,, and
let a' be the element of C' which corresponds to a in the
correspondence existing between C and C'. The class C,'
obtained by removing from C' the element a' is then a part
of C, which is in one-to-one correspondence with C,. The
class C, is, therefore, infinite by definition.

It follows from this theorem that an infinite class can-
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Is there more than one infinite cardinal; or are mot all
infinite classes equivalent ?

The Whole Greater than any of its Parts. — It was stated
in the first lecture that modern criticism of Euclid’s axioms
is mainly to the effect that they are too general; and atten-
tion was called to the axiom: The whole is greater than
any of its parts. We see now why this axiom is too gen-
eral. 'We have seen that the number of elements in an
infinite class is equal to the number in one of its parts.
The axiom in question is characteristic of finite wholes.



LECTURE VII

ORDER. DISCRETE SEQUENCES

Relations and Operations. — We have hitherto considered
the notion of a class simply as such, without assuming it
to have any special properties. We have seen how it is
possible with no further assumptions to define the notion
of a cardinal number and to distinguish between finite and
infinite classes. The classes with which mathematics is
concerned, however, are of many kinds — classes of points,
of numbers, etc., with certain characteristic properties. It
is our purpose to consider in detail some of these classes
and to see how they may be characterized abstractly by
their properties. These properties are in general of two
kinds. Either the elements of the class in question are
subject to certain relations, or they are subject to certain
operations. As examples of the first kind of properties we
have the relation of order (of two numbers one is greater
than the other, of two points one is to the left of the
other, etc.), the relation of collinearity (three points are, or
are not, on the same line), etc. As examples of the second
kind we mention the operations of addition, multiplication,
etc., applied to numbers.
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can be put into one-to-one correspondence in such a way
that, if of any two elements of C, a first precedes a second,
then of the two corresponding elements in C', the first will
also precede the second, the two classes are said to be ordi-
nally similar or to belong to the same type of order.

We shall be able to give only a brief outline of some
of the important types of order. We shall see that the
ordinary real number system of algebra, the rational num-
bers by themselves, the integers by themselves are all
examples of different types of order, and that they can be
completely distinguished, so far as abstract properties are
concerned, as types of order. One great achievement of
mathematical research of recent years has been the proof
that the class of all real numbers and the class of all
points on a line may be completely characterized simply
by the notion of order, without the notion of magnitude
or measurement.

Definitions. — In discussing types of order, we will begin
with some definitions.! ‘

Given two elements a and b of an ordered class (C, <);
an element z of C such that a < 2z and # < b, is said to be
between a and b.

If we have a < z, and no element of C is between a and z,
then & is called the immediate successor of a.

If we have < a, and no element of C lies between = and
a, z is said to be the immediate predecessor of a.

1We are following here, in & general way, the article by E. V.
HurtiveToN, ‘The Continuum as a Type of Order,’’ Annals of
Math., Vol. 18, 1904-1905, p. 151,
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The unlimited sequence of negative integers in their nat-
ural order,

3) veey =5, —4, —3, —2, —1,
has no first element, but has a last. Every element has an
immediate predecessor, every element except the last has
an immediate successor.

The unlimited sequence of positive and negative integers
and zero in their natural order,

) e —3,-2,-1,0,1,2, 3, ...

has no first and no last element; but every element has an
immediate successor and an immediate predecessor.

Now let us consider the class of all positive rational
numbers in their order of magnitude, that is, let < be in-
terpreted to mean “less than.” This class has no last
element; it has no first element. Also no element has an
immediate predecessor, since between any two rational frac-
tions there exist other such fractions. For the same rea-
son no element has an immediate successor. It is evident
that all classes thus far considered belong to different types
of order.

The Same Class may represent Different Types of Order.
The class last considered, viz. that of the positive rational
numbers, will serve to show that the elements of certain
classes may be arranged in a linear order in several essen-
tially different ways.

We considered this class above with reference to the
usual order of magnitude, < meaning simply “less than.”
We will now consider two other ways of ordering this class.
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The class in question consists of all fractions of the form
g, m and n being positive integers having no common fac-

tor. Suppose now we arrange this class of fractions as
follows:

bbb bbb b0 8 PHHE s
Here we take first all rational numbers whose numera-
tor is 1 in ascending order of their denominators, then all
those whose numerator is 2 in ascending order of their
denominators, then all those whose numerator is 3, and so
on. In other words, with this meaning of <, of two frac-
tions a, b, with different numerators, a < b, if the numera-
tor of a is less than the numerator of b; of two fractions
a, b, with the same numerator, a < b, if the denominator of
a is less than the denominator of b. This arrangement
clearly satisfies the fundamental assumptions O, O, O;.
With this ordering the class has a first element, but no
last, and every element has an immediate successor. But
some elements have immediate predecessors, while others
(such as }, 4, §, ete.) have not. This type of order is differ-
ent from any of those previously described.

A third method of ordering this class is obtained by
writing the fractions in a rectangular array as follows:

I i g i s
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and then arranging them in order by reading them diag-
onally as indicated. 'We thus obtain the arrangement:

(7) ‘}" %’ ‘}‘) '}) §» *7 *, ‘}, *} i, {" i’ eoe

The relation « in this case means “ precedes” in the
order in which the fractions are thus obtained. It is
readily seen that this arrangement of the fractions exhibits
them as ordinally similar to the sequence of positive integers
1,2,3,4,5,6, .., a result of far-reaching importance. We
shall return to this later. ~'We may note in passing, how-
ever, that it proves the remarkable theorem: The cardinal
number of all positive rational numbers is equal to the cardi-
nal number of all positive integers.

Discrete Sequences. — It is our purpose to characterize the
types of order mentioned and certain other types of impor-
tance in mathematics by further assumptions. To this end
we will first give the additional assumptions to characterize
the type of order known as a discrete sequence. Of this we
shall find several subtypes. A discrete sequence is charac-
terized by the following set of assumptions in addition to
those we have already made:

D,. Dedekind’s postulate. If C, and C, are any two non-
empty subclasses of an ordered class C, such that every ele-
ment of C belongs either to C, or to C,; and such that every
element of C, precedes every element of Cq then there exists
an element X in C, such that every element which precedes
X belongs to C, and every element which follows X belongs
to C;. In other words, there is an element X in C which
actually brings about the division into two classes. It
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may be either the last element in C, or the first element
in G,

D, Every element of C, unless it be the last, has an imme-
diate successor.

D;. Every element of C, unless it be the first, has an tmme-
diate predecessor.

As an example, consider the class of integers arranged
in their usual order of magnitude, negative, zero, positive,
thus,

ey — 4 —3} _2, —17 0,1, 2: ) 4, \'-

Let us divide it into two classes in any way we please, say
at 3. It is quite evident Dedekind’s postulate is satisfied.
The other two assumptions are also satisfied. If we begin
to write the integers with, say, — 2, there is a first, but no
last element. If we take the original sequence and break
it off at, say, 5, there is no first element, but there is a last.
The example given shows that this set of six assumptions
0,, Oy Oy Dy, D,, D, is consistent.

Dedekind’s Postulate. — The assumption D, is of partic-
ular interest, as it describes a property of ordered classes,
which is of great importance. Its bearing will become
clearer if we consider an example of an ordered class for
which it is not satisfied. Consider the class C of all posi-
tive and negative integers, and consider them ordered as

follows:
1,28 5 e =8, =2, —1;

that is, the symbol < is to mean that any positive integer
precedes any negative integer, whereas of any two positive
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element, which in turn by D; has an immediate predecessor,
which would have to be the last element of C, This
involves a contradiction.

The connection of this theorem with the principle of
mathematical induction is obvious. This principle is a
simple consequence of the fact that the sequence of positive
integers 1, 2, 3, ---, n, n + 1, ... forms a discrete sequence.

Types of Discrete Sequences. — There are four types of
discrete sequences: progressions, regressions, unlimited
sequences, and finite sequences, which are defined as
follows:

1. Type w. A progression is any discrete sequence which
has a first element and no last.

2. Type *w. A regression is any discrete sequence which
has a last element and no first.

3. Type w+*w. An unlimited discrete sequence is one
which has neither a first nor a last element.

4. Type of finite discrete sequences, that is, those which
have both a first and a last element.

It is easy to see why a discrete sequence possessing a
first and a last element must be finite. Suppose we take
away the elements of the sequence one at a time, beginning
with the first. The last element is one of the successors
of the first element, by the theorem proved above. By
taking away all the successors of the first element, we can
finally exhaust the sequence.
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THE SEQUENCE OF CARDINAL NUMBERS. DE-
NUMERABLE CLASSES. DENSE CLASSES. CON-
TINUOUS CLASSES

The Sequence of Cardinal Numbers. — It will be recalled
that in Lecture VI we defined the cardinal number of a
class C to be a symbol representing the class N of all
classes which are equivalent to C. This symbol attaches to
each class of the class N, and serves to recognize two of
these classes as belonging to N. 'We have not as yet, how-
ever, ordered the class of all cardinal numbers; in particular,
we have not defined what is meant by saying that one cardinal
number is greater than or less than another.

In the case of finite cardinals this definition might
simply be as follows: The cardinal number of a class C
is less than the cardinal number of a class C' if the class C
is equivalent to a part of C'. This definition will not, how-
ever, apply to the cardinals of infinite classes, since in this
case C may be equivalent to a part of C'and at the same
time be equivalent to the whole of C'. In order, therefore,
that the definition may apply also to infinite cardinal num-
bers, we formulate it as follows : —
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numbers might be established by arranging the (positive)
rational fractions in a rectangular array and reading it
diagonally. These classes then have the same cardinal
number. It is usually denoted by w, and is called a
¢ denumerable infinity.”

Not all classes are denumerable. A good example of one
which is not is the class of all positive non-ending decimals
less than one. Let us assume that this class can be put
into oneto-one correspondence with the natural numbers.
Imagine the whole class written down in the required order,

1. — 0.a,a0050,a:a5 -+
2. — 0.b,bdsbbsbg -
3. — Oesecc6 -
where the letters represent digits. It is, then, possible
to find a non-ending decimal greater than zero and less
than one which is not contained in the above list, and

which we will write as follows:

0.mymsmgmmemeiny <=+ +++
To form it, we need only take m, different from a,, m, dif-
ferent from by, m, different from ¢; and so on. The new
decimal will differ from the first decimal in the list at
least in its first digit, it will differ from the second at
least in the second digit, from the third in at least the
third digit; in short, it will differ from the nth decimal
in at least the nth digit. Since there are ten different
digits, there are nine different ways of selecting each m.
This proof was given by CanTor in 1891.

[¢]
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The Cardinal of the Continuum. — The cardinal number of
this class is therefore different from the cardinal number
of a denumerable class. It is called the cardinal number
of the continuum, and is generally denoted by ¢. It follows
at once from the discussion that we have w<e¢. It can
be shown that w is the first infinite cardinal; also that
there exists an unlimited number of cardinals greater
than ¢. Are there any cardinals between w and ¢? Mathe-
maticians are still awaiting the answer.

Dense Classes. —In the last lecture we characterized
what is meant by saying that an ordered class is discrete.
‘We now turn our attention to a second type of ordered
class, which is equally important. An ordered class C is
said to be dense, if, in addition to assumptions O,, O, O,
it satisfies the following assumption:

H. If a and b are any two elements of C, there exists an
element of C between a and b.

A simple example of a dense class is the class of all
positive rational numbers, arranged in their natural order.

If ™ and 7lc are any two numbers of this class, it is
n

easy to show that the rational number m_:"i is between
n

™ and ll_c Another familiar example is the class of points
n

on a line ; between any two such points there exists another
point of the line.

Continuous Classes. —Finally we should characterize what
is meant by a continuous class. An ordered class is said to
be continuous if it is dense (Assumption H) and satisfies
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Dedekind’s postulate (Assumption D,). As an example, we
may mention the class of all points on a straight line.
This class is clearly dense. Moreover, it satisfies Dede-
kind’s postulate. For this requires simply that if the
points of the line be divided into two (non-empty) sub-
classes C,, C,;, such that every point of the line belongs
either to C, or to C,, then there exists a point X which ef-
fects this division. Another example consists of the class
of all real numbers. In fact, we are in the habit of repre-
senting these numbers by the points of a line.

The class of all rational numbers furnishes an example
of a class which is dense, but not continuous. For let us
divide the class of all rational numbers into subclasses as

follows: Let C, consist of all rational numbers ':—': for
which %”;< 2, and let C; consist of all the remaining

rational numbers. The classes C, and C, then satisfy the
conditions for Dedekind’s postulate; but since there exists
no rational number whose square equals 2, the class C; con-

2
sists of all rational numbers :’f such that 2 < % It is

readily seen that C, has no last element, and that C; has
no first element. Assumption D, is therefore not satisfied.
Any discrete sequence is an example for which assumption
D, is satisfied, but which is not dense.

Fundamental Segment. Limit.—The distinction between a
continuous class and one that is merely dense is so vital to
a clear understanding of many problems connected with the
foundations of mathematics, that it seems desirable to ex-
hibit it in a slightly different form.
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a square. Let us define order in this class as follows (Fig.
9) : Of two points in the square at different distances from
the side OY, the one nearer
OY shall precede the other;
of two points at the same
distance from OY (i.e. on a
line parallel to OY) the one
nearer OX shall precede the
other. It is then readily ver-
ified that the points of this
square satisfy all our assump-
tions for a continuous class g X
(viz. Oy, 0y, Oy, Dy, H). Fro- 9

To characterize the type of order to which the points of a
line belong, and which is called a linear continuum, we will
have to add another assumption, or better, replace the
agsumption of density by another known as the postulate of
linearity.

If an ordered class C contains a denumerable subclass R
such that between any two elements of C there is an ele-
ment of R, the class C is said to be linearly continuous, pro-
vided it also satisfies Dedekind’s postulate. Take for the
class C the set of all real numbers, for the subclass R all
the rational numbers. This subclass is denumerable, and it
is such that an element of it exists between every pair of
real numbers, which we may choose to select in the class
C. The real numbers therefore constitute a linear con-
tinuum, according to this definition. It is not difficult to
see that the elements of the square above mentioned do not

Y
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form a linear continuum. If there existed a subclass R
such that between every pair of points in the class of the
square there always existed an element of R, there would
have to be an element of R for every point on the base line
OX of the square. It can be proved that the set of points
on a line segment is not denumerable. In fact, if we take
the side of the square to be of length unity, and assume that
the points of such a side are equivalent to the class of all
non-ending decimal fractions between 0 ‘and 1! we have
already proved this proposition (p. 81). We found, namely,
that the set of non-ending decimals between 0 and 1 is not
denumerable.

Cantor’s Mengenlehre. — We will now leave for the present
the subject of ordered classes. The results we have given
are practically all due to Grore CANTOR, Wwho developed
them and many others in his so-called Mengenlehre (theory
of classes)] beginning in 1872.* We should note particu-
larly that we have succeeded in characterizing abstractly
by means of sets of a.ssumptioris the following types of
order:

1. Discrete sequences (Assumptions O, Oy, Oy, Dy, D;, D),
e.g. the type of the integral numbers.

2. Denumerable dense classes (Assumptions O,, O, Oy H,

17t should be noted that any terminating decimal may be written
as & non-terminating decimal. Thus 0.24 = 0.23999....

2 CaNTOR’S original articles appeared mostly in the Mathematische
Annalen, e.g. Vols, 15, 17, 20, 21, 28, 46, 4. For an exposition in
English reference may be made to the articles by E. V. HuNTINGTON,

Annals of Mathematics, Vols. 6, 7; and to the Treatise by W. H. and
G. C. Youxna, The Theory of Sets of Points, Cambridge, 1906.
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with assumption of being denumerable), e.g. the type of the
rational numbers.

3. Continuous classes (Assumptions O,, Oy O, D, H).
In particular, linearly continuous classes (Assumption H
replaced by assumption of linearity), e.g. the type of all real
numbers and the points on a straight line.

‘We are thus making progress in our problem of character-
izing the fundamental conceptions of mathematics. We
turn now toward the characterization of the number sys-
tems of algebra. To do this, we must first discuss the
notion of an operation.



LECTURE IX

GROUP. NUMBER SYSTEM

Class and Operation. — We have considered the notion of
a class by itself as a fundamental notion. We have also
discussed the notion of class in connection with the relation
of order. We will now discuss the notion of class in con-
nection with the idea of operation. In order to sge clearly
just what are the abstract concepts which lie at the basis of
a number system, we may first examine an important exam-
ple of a class in which a single operation has been defined.

Given a class C of which the elements are denoted by a,
b, ---; what are we to understand by an operation upon the
elements of the class? We say that an wperation o upon
the elements a and b is defined, if, corresponding to the
elements a and b and to a certain order of those elements,
there exists a certain third thing ¢. Here again the notion
of correspondence is the central one. The new thing ¢
which is associated with, or corresponds to, the given ele-
ments in the given order, is called the result of the opera-
tion, and we write aob=¢, or boa=c', according as the
order of the elements is a, b, or b, a.! If, for example, the

1 In speaking of order in this connection we have no reference to
the notion of order discussed in the previous lectures. We are not
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given elements are the numbers 3 and 5, in the order first
3, second 5, and the operation is division, the correspond-
ing result is the number §. If the elements and the
operation had been the same, but the order reversed, the
result would have been different, namely §. If the opera-
tion had been addition, the results would have been the
same, irrespective of the given order. That is, 3+ 65=3§,
and 5+ 3=8. Whenever the result aob is equal to the
result boa, the operation o is said to be commutative (with
respect to @ and b).

The result ¢ may or may not belong to the class C of the
given elements a and . In the above examples, if we take
C to be the class of all positive integers, then the result
3+ 5 belongs to the same class as the original elements, but
the results $ and § do not belong to that class, and it is
necessary to go outside the given class to find the resulting
element c.

Definition of a Group. — Closely connected with the idea of
operation is the notion of a group with respect to an opera-
tion. We will say that a class C is a group with respect to
an operation o which is supposed to operate between any
two elements of C, if the following four assumptions are
all satisfied:?

supposing the class C to be ordered. We merely wish to call atten-
tion to the formal difference between aob and boa.

2 This definition of a group is substantially that given by L. E.
Dicksox, * Definitions of a Group and a Field by Independent Postu-
lates,”” Transactions of the American Mathematical Society, Vol. 6
(1906), p. 199.
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Gy. Ifaand b are in C, then aob is tn C.

Gy, If a, b, c, « are elements of C, the result of operat-
ing upon the elements a and boc, in the order named, ts the
same as the result of operating upon aob and c, in the order
named. That i3, ao(boc) = (aob)oc. This is the so-called
associative law.

@s. There exists in C an element 3, such that' aoi = ioa =a,
Jor every element a of C.

G, There exists in C, corresponding to any element a,
another a' such that aoa' =i.

The element ¢ is called the identity or the tdentical ele-
ment of the group. The element a' is called the tnverse
of a '

If we take for the class C the system of ordinary real
numbers, or the system of rational numbers, or the system
of all integers, and for the operation o the operation of
addition, we find that all these assumptions are satisfied.
For if a, b, ¢, --- are elements of C, (1) a+ b is in C, (2)
a+ (b+c)=(a+Dd)+c, (3) there exists a number (0) such
that a + 0=0+4a=a, and (4) thers exists another a' such
that a 4 a' =0, that is, corresponding to each number, there
is another which is the negative of it. The set of real num-~
bers or the set of rational numbers or the set of all integers,
therefore, each forms a group with. respect to the operation of
addition. If we take for the class C the real number
system, and for the operation that of multiplication, we
shall find that the conditions for a group are again satisfied,
except in one particular. The product of two numbers is
always in C, the associative law holds, and there exists a

-
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number corresponding to the identical element ¢, namely
the number 1, since 1 Xa=a x1=a. For every number
a there is another a' such that aa' = 1, except for the number
zero. There is no number which multiplied into 0 gives 1.

It is easy to prove from these assumptions that in any
group there exists only one identical element 4, also that
there is but one inverse for each element. The assumption
that there are two of either of these readily leads to a con-
tradiction.

An operation which is not in general commutative may
be so in special cases. Division, for example, is not in

general commutative, since if a-and b are not equal, gis
not equal to f—;. But if a and b are equal and distinct from

0, the operation of dividing one by the other is commu-
tative, since it always leads to the same result, namely 1.
A group in which the operation o is commutative through-
out is called a commutative group.

A Geometrical Group.—As an example of a group in
which occur non-commutative operations, let us consider
the rotations of an equilateral triangle ABC about its cen-
ter or its lines of symmetry 8o as to transform the triangle
into itself. By transforming the triangle into itself, we
mean moving it in such a way as to bring the vertices 4, B,
C back to their original positions, except for a possible
interchange or permutation of the letters 4, B, C. In this
case the elements of the class C are the three rotations of
the triangle in its plane about its center through angles of
120°, 240°, and 360°, and the three rotations of the triangle

L J
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about its medians through an angle of 180° (Fig. 10). After
each of these movements the triangle is superposed upon,
or congruent with, its original position. If we take for
granted the fact that these six
movements are the only possi-
ble ones which transform the
triangle into itself, we .see at
once that, if two of the rota-
tions be performed successively,
the result is equivalent to a
single rotation belonging to the
.. same class. The six rotations
8 “‘therefore satisfy the first postu-
late, namely that the class of
rotations forms a group with respect to the operation of com-
binix:fg them. The associative law also holds. The identical
element is represented by the rotation about the center
through 360°. The inverse of each rotation exists; corre-
sponding to any one of the rotations about the center
through an angle of «° there is another rotation about the
same point through an angle of (360 — «)° which combined
with the original rotation is equivalent to the identical ele-
ment or the rotation through 360°. Corresponding to each
of the three operations of turning the triangle over through
180°, there is a repetition of the turning which brings the
triangle into its original position. Each of these turn-
ings is therefore its own inverse. That the operation is
not in general commutative may be shown very easily.
Let the medians through 4, B, C, be lettered a, b, ¢, respec-

Fia. 10
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tively. A rotation through 180° about a puts B into C,

C into B, and A4 into 4. The result may be conveniently

represented by the symbol (jgg) A similar rotation

about ¢ now puts 4 into B, B into 4, and C into C, and
may be represented by (ﬁgg) The result of performing

these two rotations in succession is to put 4 into B, B into

C, C into A, or, briefly, it is equivalent to the substitution

ﬁgﬁ), which is at once seen to be equivalent to a rota»

tion of 120° about the center. If, however, we change the
order of the rotations, performing first the rotation about c,

and then the rotation about a, we obtain the result %ﬁB

which is equivalent to a single rotation through 240° about
the center. The operation of combining these rotations is
therefore not commutative.

Importance of Group Concept. — If we were asked to state
the most important single concept which lies at the basis
of mathematics, next in importance to the fundamental
notions of class and correspondence, we would mention the
notion of group. The set of all movements of a rigid body in
space forms a group. That is, any such movement followed
by any other such is equivalent to a single movement of a
rigid body. This group is of fundamental importance in
elementary geometry. We introduce the notion of group
at this point, however, in order to define by means of it
what is meant by a number system, in the abstract and
most general sense. Later, we will see to what extent the
concept of a general number system must be restricted in
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order to obtain the system of numbers used in ordinary
algebra.

Definition of a Number System.— A number system con-
sists of a class N in which two undefined operations, which
we will denote by + and X, exist and operate subject to
the following three assumptions:

N,. N is a group with respect to the operation +. We
will denote the identical element with respect to + by 1.,
or 0.

N, N is a group with respect to the operation X, except
that no inverse of 0 is required. The identical element with
respect to X is denoted by i,, or 1. The third postulate
connects the two operations, and is usually called the dis-
tributive law.

N, If a, b, ¢, are any elements of N, we have
ax®+c)=axdbtaxcand b+c)xa=bxa+cxa.

Observe that in this definition nothing has been said
concerning the number of elements which compose the
number system N. The number of elements may be finite
or infinite. There exist number systems of both kinds. We
have also said nothing about the operations 4+ and x which
would imply that they are commutative or not commutative.
There are classes which satisfy the postulates, and hence
form number systems in this abstract general sense, for
which the operations + and x are not commutative. A
number system in which the operations 4+ and x are both
commutative is called a commutative number system or a field.

The class of all rational numbers forms a group with
respect to addition (+) ; it also forms a group with respect
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to multiplication (), except that the inverse of 0 does not
exist. The distributive law (V) also holds. The rational
numbers, therefore, form a number system in the sense just
defined. Moreover, it is clear. that this number system is
commutative. .

It should be noted that the inverse operations of subtrac-
tion (—) and division (+) may be defined in terms of +
and x respectively. Indeed, the element a — b is defined
as the element z such that b+xz=a; the element a-+b
(6+0), as the element 'y such that b X y=a. And such
elements z and y always exist in a class N satisfying N,
and N,! .

A Finite Number System. — Examples of non-commutative
number-systems will be given later. 'We may at this point,
however, give a simple example of a number system con-
sisting of only a finite number of elements. Let the elements
of the class N in question be the five digits

01,2 3 4

Let the “sum” (4) of any two of these elements be the
ordinary sum of the two numbers, if this sum is less than
5; and, if this ordinary sum is equal to or greater than 5,
let it be the smallest remainder (positive or zero) obtained
by dividing the ordinary sum by 5. Thus:

1+2=3,0+3=3,

14+4=24+3=0; 24+4=1, ete.

1What we have defined is more precisely right-handed subtraction
and division, Left-handed subtraction and division is defined similarly

by reversing the order of b and z, and b and y. In a commutative
number system this distinction is unnecessary.
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Further, let the ¢ product ” (X ) of any two of these elements
be defined as the ordinary product, if the latter is less than
5; and, if this ordinary product is equal to or greater than
5, let it be replaced, as before, by the smallest remainder
after division by 5. For example:

1x3=3 2x2=4.
2x3=1 4x4=1. 3x3=4.

With these definitions the assumptions for a number system
are all satisfied. As to the existence of an inverse, we may,
for example, say that with respect to addition, the inverse
of 1is 4, since14+4=0. With respect to multiplication,
the inverse of 4 is 4, since 4 x 4=1.

Such a number system is called modular, the modulus in
this case being 5. A modular number system may be de-
fined similarly for any modulus which is a prime number.

Implications of the Definition. — It will be of interest to
inquire briefly just how much is implied by the assumptions
for a number system. We note first that the only elements,
the existence of which is directly assumed, are the identical
elements 0 and 1 with respect to addition and multiplica-
tion respectively. As far as these assumptions are con-
cerned, moreover, no further elements are necessary. For
if we assume 14+1=0,0x1=1 x 0 =0, we shall find all
the assumptions satisfied. This number system is, indeed,
simply the modular system with modulus 2. Let us leave
out of consideration this case, however. Since the sys-
tem forms a group with respect to addition, the elements
1+1,31+1)+1,[Q1+1)+1]+1,..- are all elements of
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the system. Let us assume that all elements obtained in
this way, by the successive addition of 1, are distinct, and
let us denote them by the usual symbols
1, 2, 3, 4, ..

The class N is then infinite. It follows further, from the
fact that corresponding to each of these elements there
exists an inverse with respect to addition, that N also con-
tains elements which, in the usual notation, are written,

-1, _2) ’—'3) —4,---
Our class now satisfies the first assumption: it forms a
group with respect to addition.

The second assumption requires it to form a group with
respect to multiplication, except that no inverse of 0 is
required. The first three assumptions for a group are
satisfied, if we interpret x to be ordinary multiplication.
The fourth assumption, however, requires the existence of
an inverse for each of the above symbols (except 0) with
respect to multiplication. This implies the existence of
the “reciprocals”

L bherand =4 — 4 =4,
and hence follows the existence of symbols oorrespondihg
to all the rational numbers. But we have already seen that the
latter form by themselves a number system. To character-
ize completely, in its abstract form, the ordinary real num-
ber system of algebra, additional assumptions are, therefore,
necessary. We are in a position now to state the assump-
tions characterizing abstractly the ordinary system of real
numbers in a very simple way.
H
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The System of Ordinary Real Numbers. —The ordinary
system of real numbers is a class R involving a relation <
and two operations + and X, subject to the following
assumptions:

BN, The class R is an unlimited linear continuum with
respect to <.

RN, The class R is a commutative number system with
respect to + and X. .

RN, If a, 2, y, are any elements of R, and = <y, then we
havez+a<y+a.

" RN, If a, b, are any two elements of R, and 0<a, 0 <b,
then0 <ax b

The two assumptions BRN; and RN, serve to connect the
relation < with the operations + and X respectively. All
the fundamental laws of algebra can be derived formally
from these assumptions, which, moreover, may be shown to
be categorical.! It would take us too far, however, to go
into further details. A similar characterization of the
system of ordinary complex numbers will be given later.

1This characterization of the real number system is essentially
equivalent to one of the sets of postulates given by E. V. HuxTINGTON,
Transactions of the American Mathematical Society, Vol. 4 (1908),
p. 368.



LECTURE X

HISTORICAL AND LOGICAL DEVELOPMENT oF
THE CONCEPT OF REAL NUMBERS

Positive Integers. Addition. Multiplication. — Histori-
cally, the first numbers to appear were doubtless the posi-
tive integers. Symbols representing them are found in
the earliest records of ancient times. It happens that
these numbers are precisely the ones which we have been
able to define abstractly in terms of the notions of class
and correspondence, since they are the finite cardinal num-
bers. The relation of <, existing between any two num-
bers of this kind, has also been defined. We may now
define the operations of addition and multiplication for
positive integers. It will be recalled that a positive inte-
ger was defined as a symbol associated with a finite class.
The same symbol attached to all classes equivalent to
the given one. Suppose, then, we have two classes, A and
B, whose cardinal numbers are respectively a and b. Let
C be a new class formed by combining the two classes A
and B. In other words, let C be a class such that every
element of A and of B is an element of C, and such that
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tive law, which conneets addition and multiplicition; viz.
if a, b, ¢ are any positive integers, a(d + c) = ab + ac.

Rational Fractions. —The first extension of the notion
of number beyond that of the positive integers was made
by the introduction of fractions, or, as we shall call them,
the positive rational numbers. This extension involves a
new conception of the nature of number. It is now no
longer merely the result of counting, but is used to express
quantity or magnitude. Symbols expressing fractions are
also found in the records of very ancient times, for exam-
ple, among the records of the Babylonians. Euclid consid-
ered commensurable ratios, which are now expressed by
means of rational numbers, but he did not himself regard
such ratios as numbers. DiopmANTUS of Alexandria, who
lived about 300 A.p., seems to have been the first actually
to have made use of rational numbers.!

From a purely logical point of view, a rational number
may be regarded merely as a pair of integers. A rational

number %" may be regarded simply as the pair of integers

(m, n). It is possible then to define the relation of order
and the operations of addition and multiplication for the
rational numbers in terms of the relation and the opera-

1 The Egyptian AamEs, who wrote about 1700 B.c., however, made
extensive use of so-called ‘ unit fractions,’” i.e. fractions whose nu-
merators are unity. This papyrus of Ahmes is the most ancient treatise
on mathematics that has come down to us. Cf. CaJori, History of
Mathematics, p. 11. Also G. A. MiILLER, ‘‘ The Mathematical Hand-
book of Ahmes,” School Science and Mathematics, Vol. 6 (1905),
p. 667.
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tions already defined for positive imtegers. This is done
f .
briefly as follows. Two rational numbers —, o e

defined to be equal, if mn' =nm'. The rational number
™ is said to be less fhan the rational mumber %’, if

mn' < nm'. The sum of the two rational numbers ";" and
™ is defined as the mumber (ma'+m'n, nn'). Their
product is (mm', nn'). These definitions, it will be observed,
depend merely on properties of positive integers already
defined. In terms of these definitions, it is then possible to
prove that the operations of addition and multiplication, as
applied to the rational numbers, satisfy the same nine funda-
mental laws previously noted to hold for the positive integers
alone. :

' A General Observation. — A general observation is perhaps
in place here, which will tend to make clear our point of
view in this historical survey. When a set of properties
has been observed to hold for a given class of elements,
and this class is then made more extensive by the addi-
tion of new objects, it may be expected that some of the
properties may cease to hold. We wish to examine the
successive extensions of the concept of number with refer-
ence to the nine properties which we have enumerated.
The .remarkable fact to be noted is what may be called
the permanence of these nine properties. In spite of the
wider and wider meaning applied to the word “number,”
it will be found that only two of these properties require
modification.
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Introduction of Irrational Numbers. — The conception of a
number as expressing the measure of a quantity or magni-
tude soon made apparent the necessity for a further exten-
sion. Euclid, and indeed some Greek philosophers before
him, were familiar with linear segments whose ratio was
incommensurable. In this connection, we need only recall
the ratio of the diagonal to the side of a square and of
the circumference of a circle to its diameter. As has
already been said, however, Euclid did not regard these
ratios as numbers. The irrational numbers, as such, seem
not to have appeared in western Europe until near the end of
the sixteenth century A.n. It was at that time that the
decimal system of notation was applied to the representation
of fractions. In expressing the rational fractions in this
notation, it was soon found that certain ones, for example §,
led to nonending decimals which were “periodic.” It was
natural, then, for mathematicians of that age to consider also
nonending decimal fractions which were not periodic. It was
soon found that they led to an arithmetical expression for
incommensurable ratios. They began to use these irrational
numbers in the same way in which they used the rational
ones, without inquiring too critically as to the justification
of attributing the same fundamental properties to them.
It was not until recent times that the theory of irrational
numbers was placed on a scientifically satisfactory basis by
WeiersTRASs (1815-1897), DEpErinp (1831-), MerAy
(1835-), and Grore CANTOR (1845-).

Dedekind’s Postulate.  Cuts.” — We will first recall Dede-
kind’s postulate: If an ordered class C is divided into two
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a and b, defined by cuts (C,, C;) and (C,', C;"), respectively,
a new cut is formed by multiplying, on the one hand, every
number of C, by every number of C),and, on the other
hand, every number of C, by every number of C,. The
number corresponding to this cut is defined to be the prod-
uct of the two numbers a and b.

The Class of Positive Real Numbers.— The nine funda-
mental laws for addition and multiplication may then be
proved to hold for this more extended class of numbers
which constitutes what is known as the class of all positive
real numbers. The detailed discussion -of these laws is,
however, long. We are satisfied here to indicate its possi-
bility. . It may be readily shown thereafter that it satisfies
the assumptions previously made to characterize a linear
continuum. -



LECTURE XI

NEGATIVE NUMBERS

Historical Items. — We have hitherto considered the.
extensions of the notion of number which were brought
about by its introduction as a measure of quantity simply..
The next extension, namely, that of introducing negative
numbers, involves a radical change in the conception of
number itself, and was -effected only after years of struggle
and controversy. The need for this extension arose first
in connection with the solution of equations, and therefore
did not appear until the subject of algebra was considerably
developed. The first writer who appears to have recog-
nized the existepce of negative roots of a quadratic equa-
tion was the Hindu BmAskARA, in a work written about
1150 a.po. He gives =050, z=—5, as the roots.of
o' —452=250; “but,” says he, “the second value is in
this case not to be taken, for it is inadequate; people do
not approve of negative roots.”! For centuries thereafter
people did not approve of negative roots. The German.
mathematician, MicHAEL STIFEL, speaks, in 1544, of num-
bers which are “absurd,” or ¢ fictitious, below zero,” and

1 Cador1, A History of Mathematics, New York, 1909, p. 88. -
107












LECTURE XI 111

3, we know that 2 (—1) is not less than 3 (— 1). The law
must then be modified to read as follows: If a<<b, then

azé bz, according as x % 0. We have here the first example

in which an extension of the number system made neces-
sary a modification of one of the nine fundamental laws
of operation previously enumerated.

Law of Signs cannot be Proved. —The rules for addition
and multiplication of negative numbers were given above
as definitions. One often sees attempts to prove these
rules. That this is a logical impossibility without some
additional definition or assumption follows immediately
from the fact that other rules for addition and multiplica-
tion may be given which are quite as logically consistent
with the previous laws as those which are familiar. These
rules must therefore be regarded as pure conventions concern-
ing the use of the new symbols introduced into the system
of numbers. If it is asked, whence come these conventions,
we will find the answer in a general principle which has
already been referred to incidentally, and which may be
called the permanence of the formal laws. »

The conventions as to signs are made so as to preserve
this permanence purely on the ground of the convenience
and serviceability of the resulting symbolism.

Negative Numbers forced their Introduction. — We have
seen that negative numbers came into use oxﬂy gradually
during the development of algebra, and that their adoption
was practically forced upon the mathematicians of the
sixteenth, seventeenth, and eighteenth centuries, without
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tion of addition has already been interpreted. As to the
interpretation of multiplication, we may note that to mul-
tiply any number by any positive number is equivalent
geometrically to an expansion away from or a contraction
toward the origin of the segments of the line of representa-
tion, according as the multiplier is greater than or less than
one. If the multiplier is a negative number, the geometric
interpretation consists likewise of such an expansion or
contraction, determined by the absolute value of the multi-
plier, combined with a rotation of the whole line about the
origin through an angle of 180° (Fig. 12). Since there is

—~4 -3 -2 -1 0 1 § 3 &
Fia. 12 '
nothing self-contradictory in the conception of these dis-
placements and expansions or contractions, there can be
nothing self-contradictory in the operations with negative
numbers to which they correspond. '

Two Characterizations of the System of Real Numbers. —
The real number system of algebra has now been character-
ized by two methods. The first, given at the end of Lecture
IX, described this number system at one stroke, as it were,
by a set of assumptions concerning the undefined terms,
number, <, +, X. The other, the discussion of which we
have just completed, followed a more historical line of de-
velopment, and showed how it was possible to build up this
system by successive extensions of the number concept, be-
ginning with that of the positive integer. It could now be
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say a word regarding the classification of these numbers.
‘We have already spoken of the distinction between rational
and irrational numbers, The former are defined as those
numbers which can be expressed as the quotient of two
integers. They include, according to this definition, the
integers themselves. This - definition is so simple, it is
strange how much confusion exists regarding it. Ninety-
nine students out of a hundred, if asked to define a rational
number, will attempt to give a negative definition, to the
effect that a rational number is one which does not “ contain
radicals,” a definition which is obviously inadequate.

We are concerned here primarily with another classifica-
tion, viz. into so-called algebraic and transcendental real
numbers. An algebraic real number is defined as any real
number which is the root of an algebraic equation,

4 + T 4 e+ QB+ Gy =0,

in which the coeflicients, a,, ay, ---, @,, are integers, positive,
negative, or zero. Any real number which is not algebraic
is said to be a transcendental (real) number.

The Algebraic Numbers are Denumerable. — The existence
of such transcendental numbers follows at once from the
following consideration. It may be readily proved that the
class of all algebraic real numbers is denumerable. We will
assume the truth of the following well known theorem from
the theory of equations to the effect that every algebraic
number is a root of one and only one so-called irreducible
equation, i.e. one the left-hand member of which cannot be
resolved into factors of the same form and of lower degree,
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with integral coefficients, and in which the coefficients, a,,
@y, ++-, G, have no common factors greater than unity.
Caxtor effected the proof of the theorem in question by
attaching to every such irreducible equation a positive
number, .
N=n—1+4a|+la|+ - +la,
which he called the height of the equation.! It is then
easily seen that the number of irreducible equations of
given height is finite. All algebraic numbers may then be
put into one-to-one correspondence with the positive inte-
gers by considering first all equations of height 1, then all
equations of height 2, then all equations of height 3, and
so on, and arranging the roots of all possible equations of
a given height in order of magnitude. Every such root,
in other words every algebraic number, is thus assigned a
definite place in the progression of positive integers.
Recalling the fact that the class of all real numbers is
non-denumerable, it follows from the theorem just proved
that the class of all algebraic numbers does not comprise
all the real numbers. In fact, it shows that, compared
with the class of all real numbers, the algebraic numbers
form an almost insignificantly small part. In spite of this
fact, very little is known regarding transcendental numbers
as such. It is, in general, a very difficult problem to deter-
mine of a given real number whether it is algebraic or tran-
scendental. The first number to be proved transcendental
was the base of the natural system of logarithms, usually
denoted by the number e. This proof was given by the
1 The notation |a/] means * the absolute value of a.."
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French mathematician HerMiITE, in 1874. Not until the
year 1882 was the attempt to prove the number = tran-
scendental successful. The proof was published in that
year by a German, LINpEMANN. It is beyond the scope
of these lectures to give either of these proofs. Regard-
ing the bearing of the transcendental character of = on the
famous problem of the squaring of the circle, we shall have
something to say in a later lecture.



LECTURE XII

ORDINARY AND HIGHER COMPLEX NUMBERS

Introduction of Complex Numbers. — The so-called imagi-
nary or complex numbers forced their way into algebra in
a way very similar to that of the negative numbers. Com-
plex numbers occurred apparently as early as 1545, in Car-
DAN’s solution of the cubic equation, but their occurrence at
that point is only incidental ; and, as in the case of negative
numbers, it took centuries before the seruples of mathemati-
cians against the use of such numbers were overcome. Until
the end of the eighteenth century, these numbers seem to
have had a rather mysterious aspect, just as to-day every
pupil is inclined to be mystified when first he hears of that
peculiar ¢=+'—1.! Not until the early part of the nine-
teenth century was the real nature of these numbers
recognized, and their use placed upon a strictly logical
foundation. Just as negative numbers became necessary
in order to make the operation of subtraction always pos-
sible, so the introduction of complex numbers became

1 A number of important theorems involving complex numbers date
from this time, however. We may mention in this connection the

work of DE Moivee (1667-1764) and of Evier (1707-1783).
121
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necessary in order to make the extraction of roots always
possible. From the point of view developed in the last
lecture, in connection with the introduction of negative
numbers, whereby algebra is to be regarded as a formal
‘symbolism which is to be studied on account of its useful
applications, there should be little difficulty in recognizing
that a still further extension of this symbolism might be
possible and useful. Furthermore, as will be seen pres-
ently, the usual interpretation of a complex number in-
volves little that is essentially different from the conception
which we have already attached to a negative number,
namely, that of representing the combination of a magni-
tude and a direction. .

Consistency. — We should be concerned here primarily
with the question as to the logical consistency of the new
symbolism. That the algebra of the ordinary complex
numbers 2+ iy, where 2 and y are real numbers, is logi-
cally consistent is seen very easily as follows. From an
abstract point of view, the number « 4 ¢y may be regarded
simply as a pair (@, y) of real numbers, z and y. Two com-
plex numbers, z + iy and ' 4 4y', or the two corresponding
pairs (z, y) and (2, ¥'), are defined to be equal if and only
if 2=2' and y=y'. The sum of two numbers (z, y) and
(«', ¥') is defined as the complex number, or number pair,
(z+=', y+y'). With these definitions, the fundamental
laws for addition, with the exception of the monotonic law,
are readily seen to hold. The monotonic law, of course,
breaks down, in view of the fact that the system of complex
numbers no longer forms a linearly ordered class. As for
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multiplication, the product of two complex numbers (2, y)
and (2, y') is defined to be the complex number (z='— yy',
zy' +y='); and, with this definition, the fundamental laws
for multiplication, except the monotonic law, which breaks
down for the same reason as noted for the case of addition,
are readily proved to hold. The distributive law of multi-
plication with respect to addition also follows without diffi-
culty. These considerations show that there can be nothing
inconsistent in this new symbolism, since any such incon-
sistency would involve a contradiction in the system of real
numbers, i.e. in the pairs of real numbers which we have
been considering. It follows from these definitions that
algebraic operations on complex numbers z < iy may be
performed according to the laws established for real num-
bers, except that the symbol  is to be replaced, wherever
it occurs, by the number — 1.

A Geometric Interpretation.— A geometric interpretation
of complex numbers may be obtained as follows. We have
seen in a previous lecture -that when the real numbers are
represented by the points of a line the operation of multi-
plying every number of this system by —1 is equivalent
to the rotation of the line about the origin in a plane
through an angle of 180°. According to what has been
said, the operation of multiplying any real number by ¢ is
such that when performed twice the result must be
equivalent to the multiplication of the number in question
by — 1. The natural geometric interpretation of multiply-
ing all the real numbers by ¢ is, then, that this multiplication
is equivalent to a rotation of the line, the points of which
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represent the real numbers, and which we will call the axis of
reals, about the origin in a plane through an angle of 90°.
This operation evidently satisfies the condition that when
repeated it gives an operation equivalent to multiplying by
—1 (Fig. 13). The so-called pure imaginary numbers, that
is, those of the form ¢y, where y is a real number, are then
represented by the points of a line, called the axis of im-
aginaries, passing through the origin and perpendicular to
the axis of reals. Any other complex number, =+ iy, is
then represented by a
point, in the plane of
these two lines, whose
codrdinates with re-
spect to the two axes
in question are z and
'y, respectively, the

-4 -3 -2 -1
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axis of reals playing

1 the rdle of the axis
T of abscissas and the
—st axis of imaginaries
44 that of ordinates. By
Fro. 18 this means, every

complex number cor-
responds to a unique point of the plane, and, conversely,
every point in the plane represents a unique complex num-
ber. Such a representation would, however, be of little
value, if it were not possible to interpret conveniently the
fundamental operations of addition and multiplication.
Let us note first that a complex number may also be
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thought of as representing not a point in the plane, but the
line joining the origin to the point in question; that is, by
a line of a certain length issuing from the origin in a certain
direction, in other words, by a wvector. We see here what
was meant when it was stated that the ordinary interpreta-
tion of complex numbers conceives of such a number as
representing a magnitude combined with a direction. It is
distinguished from the real numbers, from this point of
view, merely in the fact that, while the latter could repre-
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sent magnitudes combined with one of two opposite direc-
tions only, the complex numbers represent magnitudes
combined with any direction in a plane.

Addition and Multiplication.— Thinking of the complex
number as represented by a vector issuing from the origin, we
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may represent the sum of the two complex numbers a 4 ib
and ¢+ id, corresponding- respectively to the vectors OP
and 0Q (Fig. 14), in magnitude and direction by the diago-
nal OR of the parallelogram of which OP and OQ are two
adjacent sides. In order to describe simply the geometric
interpretation of multiplication, let us first define what is
meant by the absolute value and the argument of a complex
number. The absolute value of a complex number z 41y is
defined as the positive value of Va'+3. It evidently
represents geometrically the length of the vector represent-
ing the number. The angle which this vector makes with
the positive end of the axis of reals is called the argument
of the complex number. The product of the two numbers
a+tb and ¢+ id is then readily shown to be a number
whose absolute value is the product of the absolute values
of the two vectors, and whose argument is the sum of the
arguments of the two vectors. It is represented geometri-
cally, therefore, by a vector OS, whose length represents the
product of the two absolute values and which makes an
angle with the axis of reals equal to the sum of the two
angles made by the vectors OP and 0Q. This geometrical
interpretation provides another proof of the logical consist-
ency of the algebra of ordinary complex numbers.!
Generalizations. — Having conceived of algebra as a formal
symbolism with useful concrete interpretations, it is per-

1This geometric interpretation of complex numbers has until
recently been attributed to Gauss (1799) and Arcanp (1808). It was
anticipated, however, by Caspar WESSEL in a paper presented to the
Danish Academy of Sciences in 1797.
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fectly natural for us to suppose that there may be other
symbolisms which may also prove serviceable. As far as
‘the domain of ordinary algebra is concerned, no further
extension of the system of complex numbers is necessary,
that is to say, all algebraic operations performed upon
numbers of this system are now possible and lead to
numbers of the same system. In fact, it can be shown
that no further extension of this number system is possible
without the sacrifice of one or more of the fundamental laws
of algebra. Among the latter are to be included now the
uniqueness of the operations of subtraction and division, and
the fact that the product of two numbers cannot be zero unless
one of the factors i3 zero.

Vector Analysis.— The geometric interpretation of com-
plex numbers at once suggests a possible symbolism that
may be of value. We have seen that complex numbers
may be represented by vectors in a plane. If we consider
the important applications which the notion of vector has
in physies, especially in mechanics,— we need only recall
that velocities, accelerations, forces, etc., are represented by
vectors, —it is to be expected that a symbolism the elements
of which represent vectors in space may be of the greatest
value, and such indeed is the case. The so-called vector
analysis has of recent years reached a high degree of
development, and is being used more and more extensively
in the mathematical treatment of physical problems.

Higher Complex Numbers. — On the other hand, the form
of complex numbers, which may be thought of as consisting
of all possible combinations obtained by multiplying two
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units, 1 and 4, by any pair of real numbers, z and y respec-
tively, and adding the results, viz. 1.2+ ¢.y, at once
suggests a possible generalization of which the so-called
quaternions are perhaps the most important example.
These two methods of generalization, leading to vector
analysis and the algebra of quaternions, one resting on a
geometric, the other on a purely formal foundation, were
developed almost simultaneously by the German, H. GRrass-
MANN, and the Englishman, W. R. HaMILTON, respectively,
about 1840. We ought, perhaps, to give a brief account of
the algebra of quaternions, but first it may be well to con-
sider the general formulation suggested above.

In place of the two “units” 1 and ¢, we suppose given
any finite number n of * units,” which we will denote by e,,
€y -+~ €,; and form a “number”

a=0:,+ases + -+ +a.e,
the coefficients a,, ay, -++, a, being any ordinary real numbers.!
Two such numbers, a t}nd

b="ber + b3+ -+ + baew
are defined to be equal if, and only if, the corresponding
coefficients throughout are equal; that is, if

0=y y=0by -+, a4y =D,
The sum and difference of any two such numbers is simply
defined by the expression

atbd=(axb)e+(ax ds)es+ -+ +(au £ Da)en

1The following discussion follows substantially the treatment by
- KLEIN, Elementarmathematik vom hoheren Standpunkte aus, vol. I,
PD. 144 et seq.



LECTURE XII 129

The commutative and associative laws of addition are then
readily seen to hold for this system of numbers.

Multiplication of Higher Complex Numbers. — The prob-
lem becomes more complicated and more interesting as soon
as we attempt to define multiplication. It is natural to
proceed at the outset in accordance with the ordinary dis-
tributive law of algebra and place the product

a-b=(ame+ aey + - +a.e.)(bies + bees + -+ +0ge,),
which, when multiplied in the ordinary way according to
the distributive law, will give the expression
a-b=3,abee, (,k=1,23, ..., n).
In order that this new expression shall be a number of our
original system, however, it is necessary that the products
of the units e, ¢, shall be numbers of the system, that is,
must be linear combinations of the original units e, .-, e,
In order to define multiplication, then, we must have «f
equations of the form
e =23ca, (,k1=1,23, -, n),
where the c,, are real numbers. Substituting these equa-
tions in the expression for the product obtained above, we
have
a-b=33uabcuey, (,k1=123, .., ),
which is indeed a number of the form desired. In the arbi-
trary choice of this rule of multiplication, that is, of the
system of coefficients c,,, we find the characteristic property
of any particular system of these so-called higher complex
numbers. If now we define division as the inverse of mul-
tiplication, that is, if we attempt to determine the number
K
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b by the equation a - b=¢, @ and ¢ being given numbers of
our system, we will find that the coefficients b,, b, ---, b, of
the number b are determined by » linear equations. Now it
can well happen with an arbitrary choice of the coefficients
cu that this system of equations may have no solutions, or
an infinite number. It is also possible that the product of
two numbers a and b may be zero without either of the fac-
tors being zero. To avoid such difficulties, it is necessary
to subject the coefficients ¢y, to further conditions.
Commutative Law for Multiplication usually Sacrificed. —
But the fact should here be noted without proof that, if the
number of units is greater than two, it is not possible to
choose such a system of coefficients without doing violence
to one or more of the ordinary laws of algebra. The law
which it has usually been found most convenient to sacrifice
in this case is the commutative law for multiplication.
Quaternions. — With this statement of the general prob-
lem in mind, we may now turn our attention to a brief
description of the system of quaternions. As the name
implies, it is a system formed by means of four units, one
of which is taken to be the real number one, and the other
three of which, to adopt Hamilton’s notation, are denoted
respectively by ¢, j, k. Any quaternion ¢ is then of the

form
g=a+bi+¢+dk.

The sum of two quaternions, ¢ and ¢' (¢'=a'+0b'i+c'j+d'k),
is then given by the expression

g+q =(a+a)+@+b)i+(e+c)j+@+d)k
As to multiplication, we must, as has been seen, first define
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what shall be meant by the product of the units. Hamilton
defined these by the following 42=16 equations:
' 1P=1, i-1=1-i=i
k-l=1.-k=k, jel=1.j=j.
For the squares of the units 4, j, k, we place
P=f=k=—1,

and finally complete the list of sixteen defining equations
by placing
jeok=i, k-i=j i-j=k;
k.j=—1, tok=—j, j-i=—Fk

‘We note at once that the commutative law of multiplication
has been sacrificed by this definition. With these rules for
multiplying units, and making use of the ordinary distribu-
tive law of multiplication, the product of any two quater-
nions ¢ and ¢' may be readily formed, and is found to be
another quaternion. The associative law for multiplication,
as well as for addition, is readily proved to hold. The fact
which above all others merits attention in this connection
is that, with this definition of multiplication, division con-
tinues to be unique. That is, given any two quaternions, ¢
and ¢', ¢+ 0, there is one and only one quaternion z satis-
fying the relation gz =g¢', and the equation ¢g' =0 cannot
be satisfied unless either ¢ or ¢'is itself 0. It would take
us too far to give the proof of these statements. They
involve nothing, however, but simple algebraic computa-
tion. It would take us too far also to discuss the geometric
and other applications of this system of higher complex
numbers. Suffice it to say that it bears a very close rela-
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this lecture, it may be desirable to give a set of assump-
tions characterizing the system of ordinary complex
numbers: !

A class K of elements (numbers) is said to form a system
of ordinary complex numbers provided it contains an unde-
fined sub-class C and order relation <, and two operations
+ and x exist and operate upon the elements of K subject
to the following assumptions:

CN, The class K forms a commutative number system
with respect to the operations 4+ and X.

CN;. The sub-class C forms a system of ordinary real num-
bers with respect to 4+, X, and <.

ON,. The class K contains an element i such that it = —1.

CN, If a i3 any element in K, there are two elements, x
and y, of C, such that a =z + .

1 The set of assumptions which follows is substantially that given by
E. V. HuNTiNGTON, “ A Set of Postulates for Ordinary Complex Alge-
bra,” Transactions of the American Mathematical Society, vol. VI,
1906. Reference may also be made to two other articles by Professor
HouxtiNeToN : ¢ The Fundamental Laws of Addition and Multiplication
in Elementary Algebra,’ Annals of Mathematics, second series, vol. 8
(1806), p. 1; and ‘“The Fundamental Propositions of Algebra,”
Mathematical Monographs, edited by J. W. A. Young, Longmans,
Green and Co,, 1911.
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GEOMETRY. HILBERT'S ASSUMPTIONS

Introduction. — We shall now leave for the time being the
subject of algebra, and turn our attention to the founda-
tions of geometry. We have seen in the first few lectures
what the problem is that confronts us. It is desired to
choose a set of undefined terms and a set of unproved
propositions (assumptions, postulates, or axioms) concerning
them, with the property that the whole content of the
so-called elementary euclidean geometry may be derived
from them by the methods of formal logic, that is, withtout
any further appeal to intuition. In stating the problem in
this way, we purposely leave aside the discussion of the
psychological and philosophical questions pertaining to the
genesis of our space conceptions. Those who are interested
in these questions may be referred to the discussion of them
given by PoINcARE in his Science and Hypothesis, to which we
have already had occasion to refer, and by E. MacH, Space
and @eometry, an English translation of which, by T. J.
McCorMACK, has been published by the Open Court Pub-
lishing Co., Chicago. It may be noted in passing that
psychologists, philosophers, and mathematicians who have
: 134
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discussed these questions are by no means agreed. We are
concerned here only with the purely logical side of the
problem.

Projective and Metric Geometry. — That the problem of
setting up such a set of fundamental assumptions charac-
terizing our ordinary geometry is very complex, will become
clear as soon as we consider the large number of terms
which are in use and the resulting immense freedom of
choice that exists in the selection of those that are to be
left undefined. We need think only of the terms ¢ point,”
“line,” “ plane,” “segment,” “length,” ¢« distance,” ¢ angle,”
“congruent,” “ movement,” “between,” ete. Although the
type of geometry we are to consider is usually referred to
by the word “elementary,” it is by no means the most
elementary, geometry. Itis complicated by the fact that
it is concerned not merely with the relative positions of
points, lines, planes, etc., but that it combines with such
notions the ideas of magnitude and of measurement. It is
by virtue of the latter fact, that the geometry which we are
discussing is also referred to as metric geometry, more pre-
cisely, as euclidean metric geometry, a term which we shall
adopt in the future. It serves to distinguish this geometry
from the so-called projective geometry or the geometry of
position, as it is sometimes called, which is entirely inde-
pendent of the notion of measurement, and involves only
the various intersectional properties of points, lines, planes,
etc. The simplest method of building up a set of assump-
tions for euclidean metric geometry would be to study first
the foundations of this projective geometry, then to add
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further assumptions to characterize the metric. However
desirable this method of procedure would be, it would carry
us too far to follow it in these lectures. It seems desirable,
however, on account of the great importance of projective
geometry, to give at least one theorem which may serve to
illustrate the difference between the theorems of projective
and those of metric geometry. The theorem we choose for
this purpose is the following:

THE THEOREM OF DESARGUES. — If two triangles ABC
and A'B'C' are so related that the lines AA', BB, CC' all
pass through the same point O, then the pairs of corresponding
sides, that is, AB and A'B', ACand A'C', BC and B'C', in-
tersect in three points which are on the same straight line,
provided none of these corresponding sides are parallel.!

Projection and Section. — This theorem is evident if the
two triangles are in different planes. It can readily be
shown to hold, however, when the two triangles are in the
same plane. The characteristic property of the theorems

of projective geometry, as distinguished from those of

1The condition last stated is necessary in the statement of this
theorem as long as we make use of the conceptions of metric geometry.
From the point of view of projective geometry, the theorem is always
true, even without this restriction. This is made possible by attribut-
ing to two parallel lines an ‘¢ ideal point of intersection,’’ called *‘ a
point at infinity,”” and likewise to two parallel planes, a line of inter-
section, called ‘‘a line at infinity,”” etc. The introduction of these
ideal elements involves merely a change in the terminology employed,
and in no way affects the meaning of the proposition. For a full
discussion, reference may be made to ReEYE, Geometry of Position,

English translation by T. F. HoLeaTE, New York, 1898; or VEBLEN
and Youxe, Projective Geometry, vol. I, Boston, 1910, p. 7.
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transformation. This is the characteristic property of the
theorems of projective geometry. It is at once evident that
properties involving the notion of measurement can have
no place in projective geometry.

Geometry Characterized by a Group of Transformations. —
We may, at this point, answer a question of the greatest
importance which at once suggests itself: What is it that
characterizes the theorems of metric geometry as such ?
Briefly this: The theorems of metric geometry state properties
of figures which remain valid when the figure is subjected to
any rigid movement or displacement in space. This is merely
another kind of transformation. So we see here illustrated
one of the fundamental modern conceptions of geometry —
that a branch of geometry may be characterized by a group
of trangformations. The theorems of any such branch of
geometry state all those properties of figures which remain
valid when the figures are subjected to any one of the trans-
formations of the corresponding group.! We shall see pres-
ently what a fundamental rdle the idea of rigid movements
or displacements, which we have just referred to, may be
made to play in the foundations of geometry.

Hilbert’s Assumptions. —To return to the problem in
hand, namely, that of characterizing by means of a set of
assumptions the euclidean metric geometry, we must con-
tent ourselves with a brief outline of two of the more

1 This conception was first formulated by F. KL, Vergleichende
Betrachtungen ilber neuere geometrische Forschungen, Erlangen,
1872 ; reprinted in Mathematische Annalen, vol. 43 (1898), p. 68.

English translation by M. W. HaskerL, Bulletin of the American
Mathematical Society, vol. 2 (1893), p. 215.
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important methods which have been employed for this
purpose. The amount of work which has been done on
this subject in the past thirty years is very large. To
mention only the most important names in this connection,
we should cite Pascr, HrLeerr, F. ScHUR in Germany,
Peano and Pieer in Italy, E. H. Moore and O. VEBLEN in
this country. The sets of assumptions which appear to us
most closely related to the needs of elementary instruction
are those of HrLeerT and P1er. We shall proceed to de-
scribe them as briefly as possible. Hilbert® considers a class
of undefined elements, called points, and certain undefined
sub-classes ? of these points, called straight lines and planes.
He divides his set of assumptions into five sub-sets:
I. Assumptions of alignment; II. Assumptions of order;
ITI. Assumptions of congruence; IV. A parallel assump-
tion; V. Assumptions of continuity.

The Assumptions of Alignment. — The first set of assump-
tions, that is, the assumptions of alignment, comprise the
following eight:

L1land1 2. Two distinct points A and B determine one,
and only one, straight line.
I 3. A straight line contains at least two points; a plane

1 @rundlagen der Geometrie, first edition 1899, third edition 1909,
English translation by E. J. Towxsexp, The Foundations of Geometry,
Open Court Publishing Co., 1902.

2 Hilbert does not state that the ‘‘lines’’ and * planes’’ are to be
thought of as classes of points. To think of them as such, however,
simplifies to some extent the discussion without essentially altering
Hilbert’s point of view.
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IL. 4. Given three points, A, B, C, which are not on the
same straight line, and a straight line a in the plane ABC,
not containing any of the points A, B, or C; if the straight
line a contains a point of the interval AB, then it contains also
a point either of the interval BC or of the interval AC.

As consequences of the two sets of assumptions I and II,
we will merely mention the following: Between any two
points of a straight line there is an unlimited number of
points; given any four points of a straight line, it is always
possible to denote them by letters A, B, C, D, in such a
way that B is between 4 and C, and also between A and
D, and that C is between A and D and also between B and
D;! any straight line a of a plane « divides the points of «
which are not of a into two regions with the following
property : Every point A4 of one region determines with
every point B of the other region an interval 4B contain-
ing a point of a; on the other hand, any two points 4 and 4’
of the same region determine an interval 44’ not having
a point in common with a. It is possible by means of this
theorem to define what is meant by the sides of a straight
line in a plane. A similar theorem states that any plane «
divides all remaining points into two regions with a similar
property.

These assumptions of order are of particular interest
historically in view of the fact that Evucrip makes abso-

1 This theorem, which was given in the first edition of Hilbert’s
work as an assumption, was proved by E. H. Moore to be a conse-
quence of the assumptions previously given. (7ZYransactions of the
American Mathematical Society, vol. III, 1802.)
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lutely no mention of them, and that, as a result of this
omission on the part of Euclid, it is possible, using his
axioms and postulates alone, to derive many of the well-
known paradoxes of geometry. We will give an exampk
of one. :

. A Paradox. — To “prove” that every triangle is isosceles.
Given any triangle ABC. We draw first the bisector of the
angle A4, and erect to BC a perpendicular at its middle point
D. If these two lines were parallel, the bisector of the angle
would be perpendicular to the side BC, and the triangle, by a
well-known theorem, would be isosceles. If these two lines

ED

Fi1a. 15

are not parallel, they intersect in a point O, and we can dis-
tinguish two possible cases. The point O will lie either
within the triangle ABC or without it. In either case, we
draw straight lines OE and OF perpendicular to AB and
AC respectively and join O to the points B and C. In the
first case (Fig. 15), the two right triangles AOF and AOE
are congruent, since they have the side 40 in common and
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their two angles at A4 are equal by construction. We have,
therefore,

AF= AE, also OF = OE.
Similarly, the two right triangles OCD and OBD are congru-
ent, since they have the side OD in common and DC=DB
by construction. We have, therefors,

0C= OB.

From the latter equality, in connection with the equality
OF = OFE, already noted, we conclude that the two right

Fia. 16

triangles OCF and OBE are congruent; that, therefore,
EB=FC. This proves, in connection with the equality
AE = AF, by addition, the equality of the two sides AC
and AB (q.E.p.). In the second case (Fig. 16), if O is out-
side the triangle ABC, we may derive in precisely the
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same way the congruence of three pairs of triangles, viz.,
AOF >~ AOE, OCD = O0BD, and hence OCF =~ OBE, and
. find as before AF=

AE and FC=BE.

By subtraction, we g1
again obtain the
result AB= AC,
which proves the
triangle is isosceles.
The only thing that
is wrong in this
demonstration is the
figures. According
to Euclid’s axioms Fa. 17

and postulates

alone, the demonstration is absolutely valid. As a matter
of fact, the point O will always lie outside the triangle
ABC, and, of the two points ¥ and E, one will always lie
within, the other will always lie without, the corresponding
sides AC and 4B of the triangle. We then have, for ex-
ample (Fig. 17),

AB=AE — BE, and AC=AF+ FC= AE + BE,

so that we cannot conclude that 4B and AC are equal.
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[ONS (Continued)

third group of assumptions

ndefined relation between

latter term will presently
be defined), which is expressed by the word congruent. This
relation is characterized by the following assumptions:

IIL. 1. If A and B are two points of a straight line a, and
A' is a point on the same or another straight line a', then there
exists on a' in a given direction from A', one and only one
point B! such that the interval AB i3 congruent with the
interval A'B'. In symbols, AB > A'B'. Every interval is
congruent with itself; that is, AB >~ AB, and AB > BA.

III. 2. If an interval AB 18 congruent with an interval
A'B', and also congruent with an interval A"B'", then A'B' s
congruent with A"B". In symbols, if AB~A'B', and
AB> A"B", then A'B' > A"B":

III. 3. Given two.intervals AB and BC on the straight
line a, with no common points (other than B), and also two
intervals A'B' and B'C’ on the same or another straight line
a', with no common points (other than B'): if AB~A'B', and
BC=B'C', then also AC = A'C'.

146
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metric system for which it is not satisfied.! We know that
in the ordinary method of measuring angles between
straight lines this assumption is satisfied. If we consider
angles between two curves, in the usual way, we define
such an angle to be equal to the angle between the tan-
gents to the curves at their point of intersection. Let us
consider in particular the angle between two circular arcs.
If the two circles intersect, without being tangent to each
other, the angle, in the usual sense, has a completely de-
fined meagure greater than zero. If, however, the circles
are tangent to each other, they form an angle of measure
zero in the usual sense, since in that case the two tangents
at their common point coincide. It is proposed now, how-
ever, to consider the angle between two intersecting circular
arcs to consist of the figure itself in the immediate neigh-
borhood of their point of intersection, and to show how,
by a simple device, it is possible to arrange these angles
in a linear order. For the sake of simplicity, let us con-
fine ourselves to the consideration of angles of which one
side i8 a fixed horizontal straight line a, and whose vertices
are at a fixed point O of this line. The other side of the
angle is then to be a circular arc, or, in special cases, also
a straight line passing through O. We will consider only
those portions of these circular ares (or straight lines)
which lie above the given straight line. Given two such
“angles,” it i3 then natural to define that one to be the
smaller whose circular side lies below the circular side of

1 This section follows closely the discussion in KLEIx, Elev;oentar-
mathematik vom hBheren Standpunkte aus, vol. II, p. 428.



LECTURE XIV 1561

the other (Fig. 18). According to this definition, for ex-
ample, the “angle” formed with the given straight line
by a circle which is tangent to this straight line will always
be less than that formed by a circle which is not tangent;
and, of two circles which are tangent, the one with the
greater radius will form the smaller “angle.” According
to this convention, the set of all “angles” formed with the

Fia. 18

given straight line at the point O by circular arcs and
straight lines passing through O, is arranged in a linear
order, which is readily seen to satisfy the three assump-
tions O,, O, O, previously made to characterize such order.
In order to exhibit the relation of this system of what we
may call lunar angles with the axiom of Archimedes, it is
necessary to define further what shall be meant by integral
multiples of such an angle, or what shall be meant by mul-
tiplying one of these angles by a positive number n. Let
us oconsider first the angle formed by a tangent circle of
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categorical, and also that they are independent in sets, that
is, each of the sets I to V is independent of all the other
sets, and all of the assumptions within a given set are
independent among themselves; but he does not show that
the whole set of twenty-one assumptions are mutually inde-
pendent. Indeed, that such is not the case follows at once
from the fact that the last assumption V. 2 is self-contra-
dictory unless assumption V. 1 is also present.

Congruence vs. Motion. — Hilbert’s set of assumptions is
‘of interest further in that it chooses as one of the funda-
mental undefined notions the concept of congruence.. There
has been much discussion in the past regarding the question
a8 to whether Euclid regarded the idea of congruence or the
idea of motion as fundamental. The early part of his
treatment seems to indicate that he desires expressly to
avoid the notion of movement. This seems to follow par-
ticularly from his ingenious constructions for congruent
segments; but very soon thereafter he draws conclusions
which appear to be justified only on the hypothesis of a
rigid displacement of the figures in question. The concept
of rigid displacement is one of such fundamental impor-
tance that it seems desirable to devote the next lecture to
the consideration of a set of assumptions in which this
notion is taken as one of the undefined concepts.



LECTURE XV

PIERI’'S ASSUMPTIONS

Undefined Terms: Point and Motion.—An Italian, MaARrIO
Preri,? has recently given a set of assumptions characteriz-
ing the ordinary metric geometry in which the notion of point
and the notion of a rigid displacement or motion are the
only undefined terms. The points are thought of as
elements of a class S. Motion is considered merely as a
one-to-one reciprocal correspondence between points, that is
to say, as in the popular conception of the word “motion,”
the result of the motion alone is considered. The points and
the motions are characterized by the following assumptions:’

1. The class S contains at least two distinct points.

2. Given any motion p which establishes a correspondence
between every point P and a point P, there exists another
motion ut, which makes every point P' correspond to P. The
motion p is called the inverse of p.

1 «Della Geometria elementare come sistema ipotetico-deduttivo ;
monografla del punto e del mote.”” Memorie della R. Academia delle
Scienze di Torino (1899). We have followed the abstract of this paper
given by L. Coururar, Les Principes des Mathématiques, Paris, 1905, -
p. 102, . ‘ . .
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follows: - Given two distinet points A and B, the class of
all points P, such that for every point P there exists a
motion which leaves A fixed and transforms P into B, is
called the sphere of center A and passing through B. It
may be denoted by B,. It follows then that every motion
transforms a sphere into a sphere, and every motion which
leaves the center of a sphere fixed transforms the sphere
into itself; also that, if two spheres with centers 4 and
B have only one point C in common, the points 4, B, C are
collinear. In order to characterize the particular kind of
motions which consist in turning a line about one of its
points through an angle of 180°, the following assumptions
are introduced :

7. If A and B are two distinct points, there exists a motion
which leaves A fixed and transforms B into another point of
the straight line AB. From this assumption may be proved
the theorem that the sphere with center A passing through
B has a second point in common with the straight line AB.
- 8. If A and B are distinct points, and if two motions exist
which leave A fixed and transform B into another point of the
line AB, the latter point is the same for both motions. This
amounts to the statement that the sphere of center 4 and
passing through B has only one other point in common with
the straight line AB. This point, which we will call B, is
thus uniquely determined by A and B, and is called the
opposite of B with respect to 4. It follows readily that
the opposite of B' with respect to 4 is /2

9. If A and B are two distinct points, there exists a motion
which transforms A into B and which leaves fixed a point of
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the line AB. This motion also transforms B into 4, and
A and B are opposite to each other with respect to a fixed
point of the line AB. This fixed point is uniquely deter-
mined, and is called the mid-point of 4 and B. It is the
center of a sphere which passes through 4 and B, and is
the only point of the line AB possessing this property.
In order to characterize similar motions with respect to a
plane, the following assumptions are necessary :

10. If A, B, C are three non-collinear points, there exists a
motion which leaves A and B fixed and which transforms C
into another point of the plane ABC.

11. If A, B, C are three non-collinear points and D and
E are points of the plane ABC common to the spheres C, and
Cp, and distinct from C, the two points D and E coincide; in
other words, there exists in the plane ABC only one point

distinet from C which is at the same ¢ distance ” frem Cés

the points 4 and B, provided 4, B, C are non-collinear (if
they are collinear, there is no such point). We may now
define a circle as the class of all points common to a sphere
and a plane passing through the center. The center of the
sphere is also called the center of the circle. Assumptions
10 and 11 may then be stated .in the following form: In a
plane ABC, the circles C, and Cp (a circle may be repre-
sented by the same notation as a sphere, provided the plane
in which it lies is known) have one and only one point in
common distinct from C. We may now define the perpen-
dicularity of two straight lines as a relation between three
points. The pair of points AC is said to be perpendicular
to the pair AB, in symbols AC L 4B, if there exists a
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line of the plane ABC which has a point tn common with the
tnterval AB must also have a point in common with the inter-
val AC or the interval BC, provided the straight line does
not pass through any of the points A, B, C. We find here
again the assumption of Pascm, which was also taken in
Hiueert's set (IL. 4). It is now possible to define the
extensions of an interval, the half-line, the half-plane, angle,
ete., also the inequality of intervals, as follows: The in-
terval AB is said to be.less than an interval CD, if there
exists a motion which transforms A into C and B into a
point between C and D. Two intervals are said to be con-
gruent, if there exists a motion which transforms one into
the other. It is then possible to prove that of two intervals
which are not congruent one is necessarily less than the
other. The relation of order between angles is defined
similarly. The sum of two intervals may now be readily
defined in terms of motion. Thus it is possible to derive
practically all the theorems of the first books of Euclid
which are independent of the parallel postulate. For
example, the base angles of an isosceles triangle are equal ;
if the angles of a triangle are unequal, the greater angle is
opposite the greater side, and conversely; also, each side of
a triangle is less than the sum of the other two. However,
it is not possible to prove the following fundamental theo-
rem: There exists a triangle whose sides are respectively
equal to three given intervals of which each is smaller than
the sum of the other two; or, what amounts to the same
thing, two circles in the same plane intersect, if the dis-
tance between their centers is less than the sum of their
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radii. In fact, this theorem presupposes a last assumption,
the assumption of continuity. It is sufficient, moreover,
to assume merely the continuity of linear intervals, as
follows: '

17. If C is any class of points contained tn the interval
AB, there exists in this interval a potnt X such that no point
of C is between X and B, and such that for every point Y
between A and X, there is a point of C between Y and X or
coincident with X. From this assumption can be derived
the assumption of Archimedes, which, as we have seen,
- forms the foundation for the measurement of magnitudes.
Now, and now only, is it possible to affirm that linear in-
tervals are measurable magnitudes.

Pedagogical Considerations. — We must content ourselves
with this all too brief discussion of sets of assumptions
characterizing metric geometry. We have chosen the two
particular sets which have been outlined, because the one
rests primarily on the fundamental notion of congruence,
while the other is built up from the fundamental notion of
motion. The current textbooks appear to combine these
two notions in their treatment of geometry. In view of
the fact that the notion of congruence, as such, appears to
be much more abstract than that of motion, it would seem
that the latter should be made the fundamental one also in
our elementary texts, and congruence defined in terms of it,
as indeed is usually the case. (Two figures are said to be
congruent if one can be superposed upon the other so as to
coincide throughout.) This does not mean, of course, that
the set of assumptions given by Pieri should find a place in
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devoted to an informal treatment of geometry, in which
the pupil is made familiar with the more important figures
and constructions, and in which he is encouraged to think
about the problems which present themselves in his own
way. During this part of the course the pupil could be led
to see the advantages of the more formal methods that fol-
low. TUnfortunately none of our present textbooks provide
for such an informal introduection.



LECTURE. XVI

THE DIMENSIONS OF A CLASS

The Three Dimensions of Space. — The familiar proposition
that space is three-dimensional, if analyzed, is seen to mean
about the following: If a point moves along a straight line,
it generates a space of one dimension; if this straight line
in turn moves in a direction differing from its own, it gen-
erates a space of two dimensions, or a surface; if this sur-
face in turn moves in a proper direction, it generates a
space of three dimensions; and this exhausts all the points
of space as we know it. The fact that three motions are
necessary in this process is what is usually expressed by
the statement that space has three dimensions. It follows
at once, from this description, that any point in space may
be represented by three numbers (codrdinates), the first of
which fixes the position of the point in question on a line,
the second of which determines the position of this line on
a surface, and the third of which determines the position of
this surface in space. This is the fundamental idea of
analytic geometry, to which we shall return later.

Dimensionality and Cardinal Number. — If we attempt to
describe it in purely logical terms, that is, without making
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number of the points in the square is equal to the cardinal
number of the points on the line.

Dimensionality a Property of Order. — It follows from this
theorem that the dimensionality of a class is not an inherent
property of the class as such. We shall see at once that it
is a property of order in a class. Indeed, since, as we have
seen on several occasions, the elements of a class may be
ordered in different ways, it will follow that the dimension-
ality of one and the same class may be different, depending
on the way in which it is ordered. To come immediately to
the point, a class which satisfies the assumption for linear
order is said to be onedimensional. A two-dimensional
class is then a linearly ordered class of linearly ordered
clagsses. This may be called a doubly ordered class. A
linearly ordered class may now conveniently be called sim-
ply ordered. A three-dimensional class is then a simply
ordered class of doubly ordered classes. The important
fact to be noted is that when we think of a class as two-
dimensional, for example, we are thinking, strictly speak-
ing, not of a class, as such, but of a class of relations. To
illustrate: The points of a plane, when thought of as two-
dimensional, in the ordinary way, is two-dimensional by
virtue of the fact that it consists of a simply ordered class
of lines, each line being a simply ordered class of points.
Space, when considered as three-dimensional in the ordinary
way, is three-dimensional because it is a simply ordered
class of planes, each of which in turn is a simply ordered
class of lines, which are composed of simply ordered classes
of points.
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tradict any of our previous geometrical assumptions. We
have seen in both sets of assumptions for geometry which
we have discussed that they contained an assumption
which implied that the class of points considered was three-
dimensional. If these assumptions had been replaced by
others not having this implication, the class of points char-
acterized by these assumptions might well have been more
than three-dimensional, and the only justification necessary
for studying the logical implications of such a set of as-
sumptions is that of logical consistency. That logically
consistent sets of assumptions characterizing a four-dimen-
sional class of points are indeed possible is readily shown,
and will indeed appear presently in this lecture. The
desirability of studying such an abstract space of four or
more dimensions is of course simply dependent upon the
interest and serviceableness which attaches to the results
obtained. It may be stated, without fear of contradiction,
that the study of such spaces has been of the greatest prac-
"tical value both in pure mathematics and in the applications
of mathematics to the physical sciences.

Spaces of n Dimensions in Applied Mathematics. — Indeed,
it is a fact, which may at first appear strange, that the
study of geometries of more than three dimensions was
made almost necessary by certain problems in applied
mathematics. How this came about may be suggested by
the following considerations. The analytic formulation
of the problem of describing the motion of a body in a
straight line involves a relation between a variable 2 deter-
mining the position of the body on the line at a given time
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and the time ¢. It is often desirable to represent this rela-
tion graphically, by interpreting any pair of simultaneous
values of ¢ and = as a point in a plane, according to the
methods of analytic geometry recently referred to. This
simplest sort of a mechanical problem requires for its geo-
metric interpretation the points of a plane. If we consider
the motion of a body in a plane, we at once have a relation
between three variables, the codrdinates 2 and y of the
point and the time ¢; and any system of simultaneous
values of ¢, x, y may be interpreted as a point in space,
an interpretation which is often of the greatest service. If
now we consider the fact that the motion of even a single
body in space involves four variables, the time ¢ and the
corresponding values of the codrdinates z, y, z of the body,
it is at once seen that our three-dimensional space of points
will not admit of an analogous geometric interpretation.
The problem demands that we consider, as in the other
case, simultaneous sets of values of four variables ¢, z, ¥, 2.
These four variables are subject to certain equations, and
the analytic discussion of the mechanical problem in ques-
tion requires the discussion of such a set of equations
involving four variables. In general our problems of me-
chanics are concerned, however, with more than one moving
body. If we consider n such bodies, we find it necessary to
consider, in addition to the time ¢, the 3n codrdinates
determining the position of the set of n bodies in space,
and must then consider equations involving these 3n+1
variables and sets of simultaneous values of such 3n+41
variables. We have just noted that the concrete geometrio
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There exist at least five points not lying in the same three-
space. Corresponding to I. 7, already referred to, we
should have the assumption: If two three-spaces have a
point 4 in common, they have at least two other distinet
points B and C in common, which are not collinear with A.
This assumption will imply that the space considered is
not more than four-dimensional. These examples of the
new assumptions must suffice to give a general idea of the
nature of the new assumptions necessary to characterize a
space of four dimensions. That such a set of assumptions
may be chosen so as to be logically consistent is then readily
shown by constructing the analytic space of the kind de-
scribed above, in which each point consists of a set of four
numbers, and in which the straight lines, planes, and three-
spaces are defined by means of certain equations. We have
already referred to the fact that in such a four-dimensional
space the geometry within any three-space will be precisely
the same as the three-dimensional geometry with which we
are familiar. The new element which enters is merely the
fact that any such three-dimensional geometry is merely
one of an infinite number of such geometries, all equivalent
to each other, just as the geometry in any plane is merely
one of many, all equivalent to one another, within a three-
dimensional space. Hi)wever, just as the geometry in a
plane bears certain relations to the geometry of the three-
dimensional space of which it forms a part, so the geometry
in a three-space will bear certain relations to the geometry
of the four-dimensional space within which it lies; and we
are now in a position to indicate how this new conception
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may throw additional light on theorems of ordinary three-
dimensional geometry.

Value of a Four-Dimensional Space in Studying Geometry. —
Consider for example two triangles ABC and A'B'C'
(Fig. 21) in a plane, one of which may be obtained from the

[ 3
B B/
]
A [ c/ N
a -
Fia. 21

other by rotating the plane through an angle of 180° about
an axis a in the plane. We are in the habit of saying that
these two triangles are congruent. If, however, we were con-
fined to motion in a plane, it would be impossible to super-
pose one of these triangles upon the other, or to move one of
the triangles in such a way as to bring it into coincidence
with the other. It is only by going outside the plane and
turning one of the triangles over that it is possible to super--
pose them. Let us now consider an analogous situation in
space. Suppose we have two tetrahedra ABCD and
A'B'CD' (Fig. 22), which are symmetric, that is, “mirror
images ” of each other. We refuse to call them congruent
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for the simple reason that no motion in three-dimensional
space is possible which will bring one into coincidence with
the other. If, however, we consider the three-space in
which they lie to be part of a four-dimensional space of
the kind we have described above, then it can be proved

c’ -

Fio. 22
from- the assumptions characterizing such a space that
there exists a “motion” which will carry one of these
tetrahedra into the other. From this point of view, there
is no more reason to regard two such tetrahedra as non-
congruent than there is to regard the two triangles men-
tioned above as non-congruent. This is only one of many
examples. which might be given to show how the concep-
tion of an abstract four-dimensional space can serve to
exhibit new and interesting relations within the ordinary
three-dimensional geometry.
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to represent the points of space by sets of three codrdinates.
It is therefore possible, starting with the set of assumptions
characterizing the algebra of real numbers, to define a
system of things which is abstractly equivalent to metric
euclidean geometry. We merely define a “point” to be
such a set of three real numbers, 2, y, 2, and consider the
class of all points (that is, three-dimensional space) as con-
sisting of all such sets. The plane is then defined as the
set of all these “ points ” which satisfy an equation of the
first degree.
az+by+cz+d=0,

in the coordinates z, y, z; and the straight line is simply
defined as the class of all “points” common to two such
“planes,” provided they have “points” in common. The
assumptions of alignment may then all be shown to be
satisfied by the “points,” “straight lines,” and “planes”
of this system. The further notions of “betweenness” and
congruence are also readily defined, and the assumptions
of parallelism and continuity shown to hold. We see then
that, abstractly considered, the whole content of metric
euclidean geometry of three dimensions (and indeed of any
number of dimensions) is contained among the implications of
the set of assumptions defining the ordinary algebra of real
numbers. The converse process is also possible, moreover.
Starting with a set of assumptions characterizing metric
euclidean geometry of three dimensions, we may define the
real numbers as the system of all intervals on a straight
line, having a given point as one extremity, and define
addition and multiplication of these intervals by means of
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distance from O is measured by the product of the two
numbers representing the distances of 4 and B from O,
and which is such that the line joining O to O makes an
angle with the real axis equal to the sum of the two angles

A

Fig. 23

made with this axis by the lines 04 and OB. The product
of any two numbers represented by points on the circle
just described is therefore represented by another point on
this circle, since in this case the distances from O are by
hypothesis equal to unity. If we consider, in particular,
the point z, we see that the number 2* will be represented
by the point A, since the angle X0A, is equal to twice
the angle X0A, Similarly, the number 2* is represented
by the point A, the number 2* by the point 4, and finally



LECTURE XVIII 187

the number z* by the point 4, This proves that the num-
ber 2z representing the point 4, satisfies the equation

@ 2°—1=0.
The left member of this equation is divisible by z2—1,
which yields the root 1, or the point 4, in which we are
not interested. The quotient of this division is the equa-
tion of the fourth degree

® AP+ +2+1=0.
This equation is one of the type known as reciprocal, since,
if any number « is a root of this equation, %—‘ is likewise
aroot. All the roots of this equation can be expressed in
terms of the rational operations and the extraction of square
roots. It is for this reason that the construction of a regu-
lar inscribed pentagon is possible with the ruler and com-

pass. To prove the statement just made regarding the roots
of this equation, we may suppose

®) s+l=s,
from which follows, by squaring,
#i=a-,
and if then we write equation (2) in the form
1,1 _
F4a+142+5=0,

and substitute from the relations just obtained, we find
P?+2z—1=0,
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which is a quadratic equation for determining «, and if # is
known, (3) gives a quadratic equation for the determination
of z. No irrational operations other than the extraction of
square roots are necessary to solve this equation.

The Regular Heptagon. — The treatment of the inscribed
heptagon is entirely similar to this, although the result,
from the point of view of geometric constructions, is radi-
cally different. If, as before, we take the circle in question
to be the circle with unit radius and with its center at the

>

Fia. 24

point O (Fig. 24) of the complex plane, and choose the point
1= A, to be one vertex of the inscribed heptagon sought,
the other vertices 4,, 4;, 4, A, A, A, are seen to be repre-
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sented by the complex numbers 2, 2%, 25, 24, 2%, 24, and we find
that

Y] 2’ —1=0.
The left-hand member of this equation is also divisible by
z—1, the quotient in this case being

®) L+ +2 42+ +241=0,
which is another reciprocal equation. In order to consider
the solution of this equation of the sixth degree, we again
put

2+ 1 =2,
2

and find

£+%=f—z f+$=ﬁ—3@

go that if equation (4) is put into the form
1,11
z’+2’+2+1+;+§+;—0;

2 may be determined as the solution of the cubic equation,
®) P+ —22—1=0.

As before, if a solution of this equation is known or can be
constructed, the calculation of z in terms of z will involve
only the extraction of square roots. However, a radical
difference between the present problem and the preceding
one exists in the fact that equation (5) cannot be solved by
means of rational operations and extractions of square roots
alone. If it were possible to construct the point B repre-
senting the number z, the construction of the point 4,
representing the number z would follow very easily, as may
be seen by consulting the figure. Indeed,the perpendicular
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bisector of the segment Oz intersects the unit circle in the
required point 4,, To prove this, we notice first that the
point 4, representing the number 2% also represents the

number ;1-, for upon dividing both members of equation
(4) by z we obtain

2=1
2

To form the sum of the numbers 2, } represented by the

pomts 4,, A, respectively, we have only to complete the
parallelogram of which 04, and 04, are adjacent sides and
A, A, is one diagonal, in accordance with the rule for the
addition of complex numbers (described in Lecture XIT).
The extremity of the other diagonal is evidently the point
B in question, representing the number

z+1=a;.
2

The Trisection of an Angle.—A much simpler example
of this sort of proof is furnished by the problem of
trisecting an angle. Suppose the angle in question is
placed with its vertex at the zero point O of the complex
plane, and that one of its sides extends along the positive
end of the x axis. Suppose the other side cuts the
circle with unit radius and center at O in a point which
is the representative of the complex number a. It then
readily follows from considerations similar to those just
noted that the side of an angle equal to one third of the
given angle will meet the unit circle in a point z satisfying

the equation
z*=a.
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The determination of the value of  is, therefore, equivalent
to the solution of this equation, which in turn involves the
construction of a cube root, an operation which isin general
impossible with the ruler and compass alone.

Weobserved in a previous lecture that the number » does
not satisfy any algebraic equation with rational coefficients.
It follows from this that the number = representing the.
ratio of the circumference of a circle to its diameter cannot
be constructed with the ruler and compass, in other words,
that the famous problem of the squaring of the circle by
means of ruler and compass is as impossible as that of the
construction of a regular heptagon mscnbed in a circle, or
the trisection of an angle.!

lEor & more complete discussion of these problems, the reader is
referred to KLEIN, Famous Problems of Elementary Geometry, trans-
lation by BEmax and SurrH, Boston.



LECTURE XIX

VARIABLE. FUNCTION

Variable and Function.—Qur discussion of the funda-
mental concepts of mathematics hitherto has been confined
almost exclusively to those immediately concerned with the
logical foundations. If, however, we glance at the content
of elementary mathematics, we note that there are other
derived concepts which have not been considered. Among
these, perhaps the most important are the notions of vari-
able, function, and limit. It is proposed to discuss them
briefly, in the next two lectures.

The notion of functionality is one of such fundamental
importance in our daily life that it should be introduced as
early as possible into our school curriculum. The popular
definition of a function, viz., that a quantity y is said to be
a function of another quantity z, if y depends upon =,
finds abundant illustration, not merely in the quantitative
expression of the simplest physical laws, but in a more
general sense in many of our daily activities.

The mathematical definition of function presupposes the
notion of a variable. If this notion is analyzed, its essen-
tial characteristics will be found in the following definition:
A variable is a symbol which represents‘any one of a class

192
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History of the Concept of a Function. — This conception of
a function is a very general one, and was reached only
after many years of gradual extension. Indeed, the history
of the term function forms an interesting example of the
tendency of mathematics to generalize its concepts. The
word function appears to have been used first by DESCARTES,
in 1637. He used the word simply to mean an integral
power'of a variable 2z such as % 2% etc., and indeed such
expressions are functions in the modern sense defined above.
This meaning seems to have been attached to the term until
the time of LeisN1Tz (1646-1716). He used it apparently
to denote any quantity connected with a curve, such as the
codrdinates of a point on the curve, the length of a tangent,
ete. In this meaning of the term, the notion of correspond-
ence or of the dependence of one variable upon the other is
slightly obscure, but it is likely that Leibnitz thought of
such quantities connected with the curve as being interre-
lated ; that is, as being functions of one another in the sense
above defined. JomN BerNourLi (1667-1748) defined a
function to be any expression made up of one variable and
any constants whatever. A little later, ahout the middle
of the eighteenth century, Evier (1707-1783) called the
functions defined by Bernoulli analytic functions, and made
a distinction, which does not appear to be very clear, be-
tween algebraic and transcendental functions. The distine-
tion was probably that between a function defined by an
algebraic equation and one defined in some other way.
This conception of function remained unchanged until the
time when FouriEr (1768-1830), near the beginning of the
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certain temperature, and this establishes the temperature
as a function of the time. If we think of the thermometer
as self-recording, this function will be represented graph-
ically by means of a curve from which the number repre-
senting the temperature at any instant is readily determined.

The definition we have given does not, however, imply
that the classes of the variables be classes of numbers: they
may be any classes. If we think of the variable z, for
example, as representing any point in the plane, and if
we associate with every such point a straight line parallel to
a given straight line, we see that these straight lines are
functions of the points; or if we consider any two classes
whatever which have the same cardinal number, and es-
tablish a one-to-one reciprocal correspondence between the
elements of the two classes, which is necessary to show that
their cardinal numbers are equal, we may say that this
correspondence defines a function, in which the variable y
representing the elements of one of the classes is a function
of the variable = representing the other class.

Other Functions. — We have, for the sake of simplicity,
considered only so-called one-valued functions of one vari-
able. A many-valued function y of one variable z may be
defined as any correspondence whereby to every value of =
corresponds a set of values of y. A one-valued function z
of two variables ¢ and y is defined as any correspondence
whereby with any value of z and any value of y is as-
sociated a single value of z. Here # and y may represent
the elements of the same class or of different classes. For
example, the pressure exerted by a gas on the sides of an
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graphical method of representing such functions, and geo-
metric methods of defining them should be used wher-
ever possible, on the one hand to emphasize and clarify the
notion of function itself, and on the other hand to make
clearer and more vivid the relations presented by the
problems in question.

A New Cardinal Number. — Before leaving the notion of
function, it may be well to make use of it to show the
existence of a new cardinal number. It will be recalled
that hitherto we have noted the existence of two distinct
infinite cardinal numbers, namely, (1) the cardinal number
of a denumerable class, and (2) the cardinal number of the
continuum ; in other words, (1) the cardinal number belong-
ing to the class of all positive integers, and (2) the cardinal
number of the class of all ordinary real numbers. We
noted that the cardinal number of the latter class was
greater than the cardinal number of the former; and it
was stated at the time these cardinal numbers were dis-
cussed that there existed also cardinal numbers greater
than the cardinal number of the continuum. We may
now prove this assertion by showing that the cardinal of
the class of all possible one-valued functions of a single
real variable x is greater than the cardinal number of the
continuum. Indeed, suppose it were possible to establish a
one-to-one correspondence between the class of all functions
J(z) of a variable « and the class of all real numbers R.
This would mean that corresponding to any real number
r there will exist a unique function of =, say f(z). To
show that such a correspondence is not possible, we will
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sequence of infinite cardinal numbers is unlimited. It is
interesting to note further that three of these distinct
infinite cardinal numbers can be defined in terms of the
simple notions, positive integer, real number, one-valued
function of a real variable, which are current in elementary
mathematics. .
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polygons is indefinitely increased. He is told that the
length of the circle is the limit which the perimeters of the
polygons approach when the number of sides is increased
indefinitely. This has led, doubtless, to the thoroughly
unsatisfactory definition of a limit, which is current in the
majority of our textbooks, and which it seems almost impos-
sible to eradicate from the mind of the pupil when once
introduced, viz., that “the limit of a variable is a number
which the variable may approach infinitely near to, but
which it never reaches.” It is the italicized portion of this
definition which is chiefly objectionable. It is greatly to
be desired that our textbook writers and the teachers who
use them should have a proper conception of this funda-
mental notion. It seems desirable for this reason to discuss
it in some detail.

A Definition. — A definition of a limit which for most
purposes of elementary mathematics will be found satis-
factory is the following: If a variable « represents any one
of an infinite sequence of numbers a,, ay, @y +--, a,, -, it is
said to approach a limst, if a number a exists such that the
numerical value of the difference # — a becomes and remains
less than any previously assigned positive number e. A
more precise formulation of this definition will be given
presently, but one or two things may be noted at this point.
In the first place, the definition implies, in view of the first
italicized phrase, that a variable may not approach any
limit; in other words, there may not exist a number a with
the specified property. Secondly, it will be observed that
the definition implies absolutely nothing as to whether the
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variable in question is ever equal to its limit. All that is
required is that the numerical value of the difference be-
tween the variable 2 and the limit a shall become and
remain less than any previously assigned positive number,
and nothing implies that this difference may not be zero
for some (or indeed all) of the values of . The phrase
“becomes and remains” needs perhaps to be explained a
little more fully. The idea implied by the above formula-
tion of the definition is that the variable represents in suc-
cession the numbers of the sequence, and the phrase in
question then means simply that, after a certain point has
been reached, depending in general on the number e chosen,
the difference between a and every suoceéding value of 2
shall be numerically less than e

A simple illustration will make this clear. Suppose z
represents any number of the sequence

}: !‘7 ‘l‘) *“" oot
The nth term of this sequence is readily seen to be 1 —-1-,

and the numerical value of the difference between the num-
ber 1 and the nth term of this sequence is at once seen to

be % Now, if any positive number ¢ be chosen, however

small this number may be, it is easy to see that after n has
reached a certain value depending on the value of ¢ for
every value of n greater than this particular value, the

%‘-will be less than e The number 1 therefore
satisfies the definition of a limit for the sequence consid-
ered. This example shows us how to formulate the defini-

difference
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tion in question more precisely as follows: If a variable 2
represents any number of a sequence a,, ay, @y, -++, Gye++, it is
said to approach a number a as a limit, provided that, cor-
responding to every positive number ¢, there exists & number
m such that the numerical value of the difference a — a, is
less than ¢, provided only = is greater than m. It seems
desirable to give further examples of sequences which
satisfy and which do not satisfy this definition. We have
just given one which satisfied it. In it the numbers of the
sequence were all less than the limit. The sequence

‘!‘2 i’) ﬁ, H: b
is an example of a sequence which approaches the number 1
a8 a limit, in which the value of the variable is always
greater than the sequence. If we consider the sequence
obtained by taking alternately a number from each of the
two sequences just considered, namely, the sequence

'}’ *’ !‘! i” ‘1‘: *7 °*

we have an example of a sequence which satisfies the defini-
tion of having the limit 1, and in which the numbers of the
sequence are alternately less than and greater than the limit.
This should serve to emphasize the fact that the numbers
forming the sequence need not form a sequence in their
order of magnitude, as is sometimes supposed. Let us con-
sider now a sequence obtained from the last by inserting
the number 1 after every successive pair of terms

‘}’ *’ 1: '!’, i’; 1, ‘l‘; ‘3‘) 1) °*
‘We have here a sequence which still satisfies all the re-

quirements of the definition, of having the limit 1, and in
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in geometry. It should be noted, however, that our geo-
metric intuition may be a deceptive guide in such matters.
That this is so may be made clear from the following example,
which will furnish us with an illustration of a limit of -a
different kind. We formulated our definition above with
reference to a variable which represents numbers. Since
a variable may represent other things as well, it is natural
to inquire as to what meaning may be attached to the
term limit in such cases. Suppose we have a sequence of
curves. Can we formulate a definition of a limit-curve
of such a sequence? Let the curves of the sequence be
represented by C,, C, C, ---, and suppose there exists a
' curve C such that the
maximum  distance
between a curve of
the sequence and the
curve C, measured in
some given direction,
becomes and remains

8

less than any previ-
ously assigned posi-
tive number. We
may then say that
the curve C is the
limit of the sequence
Cy Cy C;, +--.  As an example, let us consider an equilateral
triangle ABC, and let C; of our sequence be the broken line
ABC (Fig. 25). Bisect the sides of the triangle in the
points D, E, F, and let C, of the sequence be the broken

Fia. 25
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line ADFEC. Bisect the sides of the two new triangles
having their bases on the line AC, and let the curve C; of
our sequence be the broken line AGHIFJLKC. Suppose
this process continued indefinitely. The maximum distance
of any point of one of the broken lines C), C;, C +-- from
the base AC of the triangle, measured perpendicular to this
base, is readily seen to become and remain less than any
previously assigned positive number e We may then say
that the line AC is the limit of the sequenee of broken
lines which we have been considering. Does it follow from
this, however, that the lengths of the broken lines C,, Cj,
C;, --- have as a limit the length of the line AC? Obvi-
ously not; for, if the length of a side of the original equi-
lateral triangle is taken to be unity, it is readily seen that
the length of every one of the broken lines C), Gy Cy, --- is
equal to two. The sequence of lengths is then simply a
" sequence
2: 21 2, 2) 2, °*%

the limit of which is the number 2, and is by no means
equal to 1, the length of the line AC. And yet our geo-
metrical intuition, if it has not been refined by careful study,
might well lead us to assume that the limit of these lengths
was indeed equal to the length AC. This example should
again emphasize the important fact that there can be no
such thing as a ¢ proof ” that the limit of the lengths of the
inscribed (or circumscribed) polygons mentioned above is
the length of the circle, until “length of circle” has been
defined. The usual process consists, as has been said, in
proving the existence of the limit of the lengths of the poly-
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gons and then to define this limit to be the length of the
circle.

A More General Definition. — The definition of limit which
we have given depends essentially on the existence of a se-
quence of values which the variable represents. In fact,
what we have defined is simply the limit of a sequence. It
is often necessary in mathematics to consider limits of
variables which do not represent discrete sequences of the
kind previously considered. A more general definition of
limit, which will apply to such cases, may be obtained as
follows. Let C be any linearly ordered class, and let the
variable # represent any element of this class. A segment
of such a class may be defined as the elements of the class
which lie between two given elements of the class. Given
an element a, which need not be itself an element of the
class C, but which is ordered with reference to C (it may
be an element of a linearly ordered class C' containing C),
a neighborhood or wicinity of a is defined as any segment
of the class C such that a lies between two elements of this
segment. The element a is then said to be a limit element
of the class C, provided every neighborhood of a contains
elements of C. That this definition includes as a special
case the one previously given is readily seen. We must
refrain, however, from a more detailed discussion of this
more general definition.

Infinity. — This seems to be the place to consider briefly
the notion of infinity as it occurs in elementary mathemat-
ics. We have considered the notion hitherto only in con-
nection with that of an infinite cardinal number, and have
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exceptional character of division when the divisor is zero?
In some cases this is indeed desirable, and the introduction
of a new symbol o, or symbols, + o, —, to represent
division by zero is sometimes of value; but it must be
clearly noted that the introduction of such a symboi is
impossible without the violation of some of the fundamen-
tal laws characterizing the algebraic symbolism. Such a
symbol cannot, therefore, be regarded as a number in the sense
previously defined, and, if introduced at all, must be thought
of as satisfying different laws, which form exceptions to the
JSundamental laws of algebra. By the introduction of such
a symbol with the purpose of removing one exception,
numerous other exceptional properties are introduced.
The introduction of such a symbol in this sense, therefore,
largely defeats its own purpose. There is another mean-
ing, however, which may be attached to this symbol, and
which is indeed the meaning in which it is generally used
in algebra, though, as we have said, this meaning is often
obscured. The use of the symbol o which we have now
in mind is closely associated with the notion of limit. If

we consider the fraction g, where we suppose a to represent

a number different from zero, and z a variable, we shall
have corresponding to every value of « different from zero

a unique value of the fraction ‘—;- It is then readily seen
that as the variable z approaches the limit zero over any
sequence of values not including zero, the fraction g in-

creases indefinitely in numerical value. To express this
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fraction as « approaches the limit a, the fraction is readily
seen to approach as a limit the number 2a. In fact, so
long as % is different from a, we may write

2 —a?

z—a

=+a,

and if » is allowed to approach a over any sequence of
values (not including @), the quotient may be made to differ
from 2 a by less than any positive number however small.
For example, suppose that = approaches a over the sequence
of values '

20,0, %40, }q -, 1"—1-1“-
The numerator then assumes in turn the sequence of values
‘3a’, $a* }at &b, 2"T':'1-a’;
and the denominator in turn the sequenoe. of values

atatae ta - %&x

The ratio of the corresponding values of the numerator and
denominator then assumes in turn the sequence of values

84,40, §0, }a, -, L2410

As n increases indefinitely, the gemeral term of this
sequence, which is

210 (341,
n n

approaches the value 2 a.
This process, may, moreover, be given a very vivid geo-
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metric interpretation. If we place the fraction in question
equal to y, the usual graphic representation of the function

z'—a?

Y / y= z—a’
/ referred to a system of rec-
tangular cartesian cobrdi-
/ nates, is represented, for all
-X values of z differing from g,

A . by the straight line

y=z+a.
When z=a, as we have
seen, any value of y will
satisfy the equation, and is
therefore represented by the points of the line z=a. By
referring to the graph (Fig. 26), it is readily seen that the
value of y is entirely indeterminate when z=a, but that
the values of y, as # approaches a, do indeed approach the

value 2 a.

Fia. 26



LECTURE XXI

GENERAL CONCLUSIONS

What is Mathematics? — We have now considered the
more important fundamental concepts of elementary mathe-
matics. It seems desirable to devote this last lecture to
certain general considerations which could find no place in
the previous lectures and which indeed to a large extent
presuppose the results which have there been obtained.

We may in particular return to the general questions
raised in the first lecture. At the very outset we were
confronted with the question: What is mathematics? We
should now be in a position to appreciate the difficulties in_
the way of giving a satisfactory definition. It is true that
we have considered only the fundamental concepts of ele-
mentary mathematics. But we have not considered them
from the point of view of elementary mathematics merely.
The notion of “number,” for example, has been discussed
not alone as it occurs in arithmetic and elementary algebra;
we have rather considered the meaning that attaches to this
term in the most general sense in which it is used through-
out the whole of mathematics. We have seen how this
meaning has been extended step by step, until “number”
appears merely as a symbol representing the elements of a

215
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tion as follows: Mathematics is the science which considers
by formal logical methods certain relations assumed to hold
between the elements of certain classes, we also find the
result too broad ; and from another point of view too narrow.
In order to render the last definition more satisfactory, we
might attempt to find a further resemblance among the
classes and among the relations with which mathematics
deals with a view to further limiting the content of the
definition. But all attempts to discover such a common
element in these classes and relations has hitherto failed.
The further application of the first method therefore seems
to hold out but small prospect of success.

Logical Difficulties. —If then we turn to the second method,
that of attempting to define mathematics by means of its
methods, we are confronted with two difficulties. If we
assume the characteristic method of mathematics to be
formal logic, t.e. the drawing of necessary conclusions, we
must determine with precision what is a necessary conclu-
sion. The history of our science shows that the standard
of logical rigor has changed with the times. The math-
ematicians of earlier periods regarded as valid arguments
which to-day are not so regarded. Even Gauss, one of the
most critical of the mathematicians who flourished at the
beginning of the last century, published proofs which at
the present time would not be regarded as rigorous. The
standard of rigor at present is doubtless greater than it has
ever been. We have seen that it requires that geometric
intuition be entirely banished as not sufficiently trustworthy;
that indeed an argument to be rigorous must be abstract.
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deduction. This appears to be the proper function of the
logical method in a definition of mathematics.

‘We may now restate in more accurate form the definition
of a mathematical science given in the first lecture: A math-
ematical science is any body of propositions which is capable
of an abstract formulation and arrangement in such a way
that every proposition of the set after a certain one is a
formal logical consequence of some or all the preceding
propositions. Mathematics consists of all such mathematical
sciences. It may still be urged that this definition is too
broad. But this objection does not appear to us very
serious. Of the actually existing sciences satisfying this
definition all will probably justify the term mathematical
with the current meaning of this term. That it includes,
latently as it were, other sciences as yet unborn to which
we might not be willing to apply the term mathematical,
need not concern us until some one really exhibits such a
science. '

Axioms and Postulates. — Given a mathematical science
in its abstract form, we have seen that a certain number of
its propositions at the beginning of the sequence are un-
proved. These are the so-called axioms or postulates of
the science. From the strictly logical point of view they
are arbitrary assumptions. These assumptions involve cer-
tain undefined terms (elements of certain. classes and cer-
tain relations). These terms from the strictly logical point
of view are mere symbols with no other content than is
implied in the assumptions concerning them. We have
seen further that these assumptions are logically quite












THE GROWTH OF ALGEBRAIC SYM-
BOLISM

By U. G. MiTcHELL

Three Stages in Algebraic Notation. — About seventy years
ago NEsseLMAN' characterized the historical development
of algebraic notation as marked by three stages. (1) Rhe-
torical algebra, in which problems are solved by a course
of logical reasoning expressed emtirely in words without
the use of abbreviations or algebraic symbols. (2) Synco-
pated algebra, in which abbreviations are used for some
of the operations and quantities which recur most often.
(3) Symbolic algebra, in which arbitrary symbols having
no apparent connection with the things they represent are
employed for all forms and operations. This characteriza-
tion has proved so helpful and convenient that the terms
have gained considerable currency in subsequent writings
on the subject.

Rhetorical Algebra. — Although signs for addition, sub-
traction, and equality are found in the old manuscript of
the Egyptian scribe AEMrs® (cf. note on p. 101) and

1G. H. F. NesseLuaN, Die Algebra der Griechen (Berlin, 1842),
pp. 302-3086.

3 CanTOR, Vorlesungen ueber Geschichte der Mathematik, vol. I

(1804 edition), p. 87.
226
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equality, the unknown quantity, and powers of the un-
known quantity as high as the sixth. In the Alexandrian
notation current at that time the letters o, 8, v, 8, ¢, . . .,
¢, x, eto., are used for 1,2, 3, 4, 5, . . ., 10, 20, ete.

Diophantus indicates addition of numbers by juxtaposi-
tion, but a number written immediately after a power of
the unknown is the coeficient of that power. For equality
he used the sign ¢ and for subtraction a sign n resembling
closely an inverted and truncated y. The symbol for the
unknown quantity is § or %, and for its second, third, fourth,
fifth, and sixth powers the abbreviations are & (for Svmpus,
square), «* (for xvfos, cube), 88° (for Swwapodivams, square-
square), 8 (for dwapdxvfos, square-cube), and x«* (for xvB4-
xvfos, cube-cube), respectively. Diophantus does not go
beyond the sixth power of the unknown,and these symbols
are not used for the powers of any number other than the un-
known. Since addition was indicated by mere juxtaposition,
it was necessary in order to avoid confusion that the negative
terms should all be placed together after the negative sign and
that a sign w3 (abbreviation for wovddes, units) be written
before an absolute term to distinguish it from a variable
term. Thus, Diophantus would write

k% s 9 p & € pla
for * - 142-8—(2?-5+1-1); ie for 2 —52?4+8z— 11
It will be noticed that Diophantus’ notation was nearly as
compact as our own, and in this connection it is worthy of
note that in case of mixed numbers (e.g. 7§) we still indi-
cate addition by juxtaposition.
1 Heatn, p. 71.
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Diophantus represents the highest achievement in algebra
of the Greek mind. During the Dark Ages which followed,
the greatest advances in algebra were made by the Hindus.
In the so-called Bakshali Arithmetic, an anonymous manu-
script discovered in Bakshali in northwestern India in 1881,
and supposed to be a copy of a work written in the third or
fourth century, numerical fractions are written in a manner
similar to the present practice except that there is no
line between numerator and denominator. Integers are
written as fractions with denominator one. Addition, divi-
sion, and equality are indicated by yu, bkd, and pha, respec-
tively, which are the initial syllables of the corresponding
words. Multiplication is indicated by juxtaposition, and
subtraction by placing after the subtrahend a cross closely
resembling our present plus sign and supposed to be an old
form for ka, the initial syllable of the word kanita, meaning
« diminished.” CANTOR® gives the following examples:

5 7

yu | pha 12, for § + §=12;
11
g 3i pha 20, for § x 32 =20;
111
111 | fo@-—p o
3+3+3+

1Vol. 1, p. 674.
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The unknown quantity is represented by a heavy dot
called sunya, meaning “empty.” This is the same symbol
that was used for zero, and their idea seems to have been
that the place for the unknown might properly be designated
as “ empty ” until the number to be placed there had been
determined.!

The later Hindu writers, ArvaBHATTA (born 476) and
Brarmaaupra (born 598) used the abbreviations 72 and yd
for known and unknown quantities respectively. Addition
was indicated by juxtaposition, and in subtraction a dot was
placed above the subtrahend. They understood clearly the
difference between positive and negative numbers, interpret-
ing them as “possessions” and “debts.” Hence the dot
used in subtraction is to be taken as a symbol to distinguish
negative from positive numbers, rather than as a sign of
operation.?

Diophantus never used more than one unknown quantity,
but the Hindus used several unknowns. They gave them
the names of colors and represented them by the initial
syllables of the corresponding words. Thus, for the second,
third, and fourth unknowns introduced Brahmagupta wrote,
respectively, kd (for kdlaka, black), nt (for nilaka, blue), and
pt (for pitaka, yellow).

In the English translation of the Algebra and Arithmetic

1 HorrNLE, Indian Antiquary, vol. 17, p. 86, quoted by CaxToOR,
vol. I, p. 674.

2 CaNTOR says: ‘‘Das jiingere Plinktchen ist kein Zeichen der
Operation, sondern der Zahlenart. Es verwandelt die Subtraktion
in eine Addition anders gearteter, entgegengesetzter Gréssen.’’ —Vol.
I, p. 680.
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of Brahmagupta and Bhaskara by H. TH. COLEBROOKE
(London, 1817), the following examples * of Brahmagupta’s
notation are given :

yd va 0 yd 10 74 8 02'4+102—8
for
ydvalyd O0re1 =12'— 0z41;
9 -9
for _
yd va 1 y4 10 =122—102.

From these examples it will be seen that equality was
expressed not by a special sign, but merely by writing the
first member of the equation above the second.

To the Hindus belongs the credit of  recognizing the
existence of irrational numbers and of performing operations
with them as with other numbers. Their sign for square
root was the abbreviation %ka, for karana, meaning
“irrational.” BrAskARA (born 1114) has already been
quoted (ante, p. 107) in regard to operations with negative
numbers.

The rise of Saracen learning in the later Middle Ages
contributed little to the growth of algebraic symbolism
since the Eastern Arabs wrote only rhetorical algebra and
the Western Arabs made no use of syncopated algebra
before the thirteenth century. In the fourteenth and
fifteenth centuries the Western Arabs seem to have
developed a considerable symbolism, as may be seen from
the work of an Andalusian writer, ALKALSADI, who lived in

1 Reproduced by Caxror, vol. I, p. 582, and by Trorrke, vol. I,
p. 180.
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the second half of the fifteenth century. The title of his
book was Raising the Veil of the Science of Gubar,
the word Gubar being used here figuratively to represent
written as distinguished from mental arithmetic. Alkalsadi
indicated equality and square root by the final and initial
letters respectively of the corresponding words! TROPFKE
remarks? that by employing an equality sign and a way
similar to our own for writing a proportion, he surpassed in
some respects the Hindus.

‘We may take as representative men whose works aided
the development of syncopated algebra in Western Europe,
NicorLas CHUQUET in France, Jomuany WipmAN in Ger-
many, and Luca Pacror in Ttaly.

Chuquet’s treatise, Le Triparty en la science des nombres,
was written at Lyons in 1494, but never appeared in. print
until 1880. Nevertheless, according to Cantor® it was
widely circulated by means of copies and its influence was
further extended by the publication at Lyons in 1520 of an
arithmetic, a large part of which was taken bodily from
Chuquet’s manuscript. This arithmetic was written by
EsTIENNE DE LA RocHE, one of Chuquet’s pupils, and was
the best of early French arithmetics. To Chuquet’s Le
Triparty can be traced the use of our present radical sign
with indices to show what root is to be taken. Taking the
letter R as an abbreviation for the word radiz, meaning root,

1 CANTOR, vol. I, p. 764. Cf. also Casori, History of Elementary
Mathematics (New York, 1910), pp. 110-111.

2 Vol. 1, p. 130.

8 Vol. II (1892 edition), p. 318.
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Chuquet wrote! B16=4, B*64=4, B‘16=2, B°243=3.
The following examples will serve to illustrate further his
notation : ? :

B 13. fi. B%. 7. . B% 6. par B%. 5. . B. 2., for

V13— VT4 V6,
VB—-v2

12. plus. 3* égaux a. 30%., for 1243 #*=302.

It is particularly worthy of note that he wrote (as illus-
trated in the second example above) small numbers above
and at the right of the coefficient to indicate the first few
powers of the unknown. Thus he writes

129 121, 123, 125, for 12, 122, 1222, 1224,
and even?
8® multiplie par 7™ monte 56* for 8 2*. 7 2~ =56 2%

This is the first appearance of the zero exponent. Fractional
exponents and even some rules for exponents had appeared
in an earlier work entitled .Algorismus Proportionum by a
French bishop, N1coLe OresME, who was born about 1323
and died in 1382. In Oresme’s notation 41 is expressed * by

pl|,

1pi |4 orby 1'2

Chuquet may have been influenced by the work of Oresme,
but Cantor ® is of the opinion that such is not the case.
The first great German text-book on arithmetic is that of
1 CaxnToR, vol. I1, p. 824, 3 CaNTOR, vol. II, p. 824,

2 TROPFKE, vol. I, p. 816. ¢ TrOPFKE, vol. I, p. 200.
8 Vol. 11, p. 827.
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JoHANN WipMAN, published at Leipzig in 1489, in which
the signs + and — appeared for the first time in print.
Widman used them to indicate excess and deficiency. For
example, if a case of goods was expected to weigh 4
centners and weighed 5 lbs. more or & 1bs. less, Widman
gives its weight as 4¢ 4 5 lbs. or 4¢ — b lbs., respectively.!
Through the writings of GraMmaTEUs (1518), RUDOLFF
(1525), StiFEL (1544), and others the + and — signs came
into general use in Germany long before they were adopted
elsewhere.

The introduction of syncopated algebra into general use
outside of Germany was due, in large measure, to an Italian
friar, Luca PacroLi, who is said to have lectured on mathe-
matics at Rome, Pisa, Venice, and Milan. His Summa de
Arithmetica, Geometrica, Proporzioni e Proporzionalita was
printed at Venice in 1494, and is important because it was
the first great general work on mathematics printed, and
attained a wide circulation. In it addition and subtraction
are indicated by the initial letters p and m, respectively,
and abbreviations are used for the first 29 powers of the
unknown quantity. The absolute term and 2, %, % &, etc.,
are respectively represented by numero or n°, cosa (Ital. for
thing) or co, censo or ce, cubo or cu, censo de censo or ce. ce,
etc.? The notation for indicating roots is like Chuquet’s,
except that square, cube, and fourth roots are sometimes rep-

1BarL, 4 Short History of Mathematics, fourth edition (London,
1908), p. 207.

2 FINk, A Brief History of Mathematics, translation by BEmax
and Smite (Chicago, 1908), p. 96.
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resented by B., B cu., and BB, respectively. The quantity
V40— /320 is expressed by B V 40 m B 320, the B V
being an abbreviation for radiz universalis (general root).
BawLL says (p. 211) that ae (for aequalis, equal) is sometimes
used as an equality sign, and in two instances in writing a
proportion a known number is represented by a letter.

As a later example of syncopated algebra we may notice
the Ars Magna de Rebus Algebraicis of JEROME CARDAN,
published at Nuremburg in 1545, and famous chiefly be-
cause it contained the solutions of the gemeral cubic and
biquadratic equations. As illustrations of the notation used
in the Ars Magna we have

cubus p 6. rebus aequalis 20,

for 2+ 6 =20,
and R. u. cu. R. 108 p. 10 m. R. u. cu. R. 108 m. 10,
for V+/108 + 10 —V/+/108 — 10,

the value of = as found by solution of the given cubic.!

The invention of printing (about 1450) contributed
greatly to the development of algebra. Printing gave to
the writer of a book a much larger circle of readers, and the
wide dissemination of printed translations of Greek, Hindu,
and Arabian mathematical works and of books based upon
them gave a great impetus to mathematical thought. The
second half of the sixteenth century saw symbolic algebra
well begun, and by the close of the seventeenth century
much of our present symbolism was fully established.

1 MATTHIESSEN, Pp. 364 and 368.
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Vieta’s capitals with small letters. In this work of Har-
riot’s the cross (x) for multiplication appeared.almost si-
multaneously with its introduction by WiLLiaM OQueHTRED
in his Clavis Mathematica, published in the same year (1631).
The sign is due to Oughtred. Harriot also made the im-
portant improvement of writing aa for a? aaa for a? ete.
For example, he wrote!

aaa — 3-bba = + 2-ccc

for#—-3bx=2¢,
and /ccc + ~/cceccc — bbbbbb + /ccc— ~/cccecc — bbbbbd = a,
for Ve +VE—6+VA VI P=a.

In 1634, three years after the appearance of Harriot’s
work, PIERRe HERIGONE brought out at Paris a Cours
Mathématique in § or 6 volumes in which d?, a?, a!, etc., were
written as a2, a3, a4, ete. It only remained for DEscARTES,
in his Géométrie of 1637, to put this notation into the form
aa, @®, a*, etc., and for NEwroN (about 1666) to make the
generalization for rational exponents.

Two other improvements in notation are due to DESCARTES
—the use of z, W for unknown and @, b, ¢ for known quan-
tities, and the introduction of the vinculum and its com-
bined use with the radical sign. This last step may have
been suggested by the practice of Harriot as illustrated in
the second example given above.

For \’/}q+ V1 ¢ + 4, p* Descartes wrote ?
VOtig+ViaTHe

1 TROPFKE, vol. I, p. 830. 3 I'bid., p. 140.
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. 'The form % for common fractions dates back to the Arabs

and possibly to the Hindus. Its first use for algebraic

expressions dates from a German manuscript of about 1460,
100 .. q_12reset 45

1 ding 1 census et 3 res

122445

2432

The sign + is first found in the Teutsche Algebra of J. H.
Rann (Zurich, 1659). LeieNiTz in 1684 made use of the
double dot (:) for ratio, and to him should be credited
also the use of subseripts (1676), and of a single letter to
represent a function, as the ¢ function of . Although
Leibnitz conceived the idea of determinants, its modern
notation belongs to a much later date, chiefly due to
Cavucnay, about 1812.

Although one readily calls to mind other familiar symbols
of algebra (e.g., the sign o for infinity, due to WarL1s, 1655,
the symbol n! for1.2.3 . . . - n, due to Kramp, 1808, etc.),
enough has been said to show that by the close of the seven-
teenth century a sufficient symbolism had been developed to
determine the general form of our present usage and to give
the subject a language of its own emancipated from subjec-
tion to the rules of syntax. From the notation of LEIBNITZ
and NEwtoN to the employment of arbitrary symbols for
any form or operation whatever, or even, as in recent times
(cf. ante, p. 88), for a relation entirely undefined, seems to
us an easy step when compared with the difficulties which
faced the early explorers in the field.

where such expressions as

used?® for 1—:2 and

1 TROPFKE, vol. I, p. 187.
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Absolute value, of a complex num-
ber, 126; of a negative number,
109.

Abstract science, 22; advantages
of, 51, 225.

Addition, 67; an undefined opera-
tion, 94 ; fundamental properties
of, 100; logical definition of, 99;
of complex numbers, 122; of
irrational numbers, 105; of nega-
tive numbers, 110.

Ahmes, 101, 226.

Algebra, 122; and geometry iden-
tical, 181 ff.; geometric inter-
pretation of, 171; rhetorical,
226; symbolic, 226, 235, 236 fI.;
syncopated, 226, 227 ff.; teach-
ing of, 54 fi., 115, 197.

Algebraic numbers, 118;
numerable, 118.

Algebraic symbolism, growth of,
236 fI.

Alignment, assumptions of, 139.

Alkasadi, 231, 232.

Analytic geometry, 166, 171;
n~dimensions, 176.

Analytic space, of n-dimensions,
176 ; of three-dimensions, 182.
Angle, defined, 147; lunar, 151;
right, 148; trisection of, 190.

Arabs, 227, 231, 239.

Archimedean assumption, 148, 151,
152, 163.

Archimedes, 149, 151, 152, 163.

Argand, J. R., 126.

Argument of complex number, 126.

Aristotle, 37, 227.

Aryabhatta, 230.

Assemblage, 39 ; see class.

Associative law, in a group, 90;
for addition, 100; for multipli-
cation, 100.

are de-

of

Assumption, of completeness, 149 ;
of continuity, 148, 163; of
measurement (Archimedean),
148.

Assumptions, categoricalness of,
43 fi., 224; concrete representa-
tion of, 225; consistency of, 43
fi., 224 ; for continuous class, 82,
149; for dense class, 82; for discrete
sequence, 75; for geometry;
Hilbert’s, 139 fi., Pieri’s, 155 fi.,
222; for linear order, 68, 140;
for number system, 94; for ordi-
nary complex number system,
133; for ordinary real number
system, 98; independence of, 47
fi., 69, 77; in the rdle of defini-
tions, 63; of alignment, 139; of
congruence, 146; of order, 140;
of parallels, 148.

Axioms, 3, 222; see also' assump-
tions; distinction between axioms
and postulates, 11; Euclid's, 11;
logical significance of, 38; with
Kant, 36; with Mill, 37; with
Klein, 223.

Axis of reals, of imaginaries, 124;
of reference, 172.

Babylonians, 101.
Ball, W. R. R., 234, 235.
Beman, W. W., 191, 234.
Bernoulli, John, 194.
Bernstein, 8., 80.
Between, as undefined relation, 140,
153; defined, 71, 161.
Bhaskara, 107, 231.
Bocher, M., 216, 217.
Bolyai, Johann, 31.
Bombelli, 236.
Borel, Emile, 80.
Brahmagupta, 230, 231.
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Cajori, Florian, 101, 107, 108, 232.

Cantor, Georg, 60, 81, 86, 103, 119,
167, 199,

Cantor, Morits, 226, 229, 230, 231,
232, 233, 237.

Cardan, Jerome, 108, 121, 235.

Cardinal number, 60; a new, 198,
199; abstract definition of, 65;
and dimensionality, 167; of
class of one-valued functions of
real variable, 198; of continuum,
82; of rational numbers, 75;
older attempts to define, 64.

Cardinal numbers, sequence of, 79,
80; reference to, 99.

Categorical set of assumptions, 49 ;
for geometry, 154; for real num-
ber system, 98.

Categoricalness of a set of assump-
tions, 48 ff.

Cauchy, A., 239.

Chuquet, Nicolas, 232, 234.

Circle, length of, 201, 205, 207;
Pieri’s definition of, 169; squar-
ing of, 191. )

Class, and operation, 88; con-
tinuous, 82, 84, 87 ; denumerable,
80, 86; infinite, 63; notion of,
39, 59; ordered, 70; ordinary,
219; properties of, 63, 64.

Classes, a paradox concerning, 219 ;
equivalent, 60; infinite, 63, 66;
ordinally similar, 71.

Closed cut, 104.

Colebrooke, H. Thomas, 231.

Collinearity, 67.

Commutative group, 91; number
system, 94 ; operation, 89.

Commutative law, for addition,
100; for multiplication, 100, 130.

Compass, constructions with, 184 ff.

Completeness, assumption of, 149.

Complex numbers, 121 fi.; abso-
lute value and argument of, 126 ;
assumptions for, 133; consist-
ency of, 122; geometric inter-
pretation of, 123, 185 fi.; higher,
127 ff.

Concrete application of abstract
science, 22, 43, 225; for proving

INDEX

consistency, 43, 224 ; for proving
independence, 47.

Congruence, of figures, defined,
163; of intervals, 146; defined,
162; of triangles, 148; wvs.
motion, 154, 163.

Congruent, as undefined term, 146,
154.

Consistency, of a set of assump-
tions, 43 ff., 224 ; of assumptions
defining discrete sequence, 76;
of assumptions defining negative
numbers, 113; of assumptions
defining order, 68; of assump-
tions for complex numbers, 122 ;
of assumptions for geometry, 153 ;
of non-euclidean geometry, 32.

Constant, 193.

Construction, of regular pentagon,
185 fI. ; of regular polygons, 183 ;
with ruler and compass, 184 ff.

Continuity, assumption of, 148,
163.

Continuous class, 82, 84, 87;
linearly, 87, 163.

Continuum, cardinal number of,
82; linear, 84 ff., 149 ; unlimited
linear, 110.

Cobrdinates, 166, 171.

Correspondence, 49, 59; between
points of line segment and those
of square, 167 ff.; in defining
function, 193 ; in defining opera~
tion, 88; one-to-one, 60, 155.

Couturat, Louis, 155.

Cuts, 103, 104; open and closed,
104.

De Moivre, A., 121.

Decimals, 103; periodic, 103.

Dedekind, R., 75, 76, 103, 104.

Definitions, 3; assumptions in the
rble of, 53; Euclid’s, 9; logical
significance of, 36 ff.; of mathe-
matics, 2, 3, §3, 54, 217, 222.

Dense class, definition of, 82; de-
numerable, 86.

Denumerable classes, definition of,
80, 81; dense, 86.

Denumerable infinity, 81.
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Desargues, Girard, theorem of,
136.

Descartes, René, 108, 194, 236, 238.

Dickson, L. E., 89.

Dimensions, of a class, 166 ff.; and
cardinal numbers, 167; and
order, 170; defined, 170; class
of four (or more), 171, 173; the
three, of space, 166.

Diophantus of Alexandria, 101, 227,
228, 229, 230.

Dirichlet, Lejeune, 195.

Discrete sequence, defined, 75;
finite, 78; reference to, 86; un-
limited, 78.

Displacement, rigid, 138, 155.

Distance between two points, 14.

Distributive law, of multiplication
with respect to addition, 100, 123,
129; in number system, 94.

Division, 95; by szero, 211 ff.;
left-handed and right-handed, 95.

e, transcendental number, 119.

Effective motion, 156.

Element, identical, 90.

Elements of a class, 40; number
of, 60.

Elements of Geometry, Euclid’s,
8, 26, 152, 162.

Equation, cubic, 121; height of,
119; irreducible, 118; recipro-
cal, 187.

Equivalent classes, 60.

Euclid, 5, 8, 10, 11, 26, 27, 28, 29,
101, 103, 142, 143, 148, 149, 152,
154, 162; his axioms, 11; his
Elements, 8, 26, 152, 162; his
postulates, 10.

Euclidean geometry, 135 ff.

Euler, Leonhard, 121, 194.

Exterior of an angle, 147.

Exterior points, of an interval, 141 ;
of a sphere, 161.

Extremities of an interval, 141, 161.

Field, 94.

Finite discrete sequence, 78.
Finite number system, 95.
Fink, Karl, 234.
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Formal laws, permanence of, 102,
111.

Four-dimensional space, 173 ff.

Fourier, J. B. J., 194.

Fréchet, M., 225.

Function, 192 ; examples of, 195 ff. ;
history of, 194; many-valued,
196, 197 ; one-valued, 193, 196.

Fundamental properties or laws,
of addition, 100, 102, 123; of
algebra, 127; of multiplication,
100, 102, 123; permanence of,
102, 111.

Fundamental segment, 83, 84.

Gauss, Karl Friedrich G., 31, 126,
218.

Geometric interpretation, of (a — b)
(¢c—d), 112; of algebra, 171; of
complex numbers, 123, 185 ff.;
of operations on negative num-
bers, 114.

Geometry, analytic, 166, 171; and
algebra identical, 181 ff.; ele-
mentary metric, 135 ff., 165 ff.;
non-euclidean, 22, 24, 29, 31; of
position, 135; projective, 135;
réle of groups in, 138; i
of, 4 ff., 54 ff., 163, 172, 197.

Girard, Albert, 237.

Gow, James, 227.

Grammateus, 234.

Grassmann, H., 128.

Group, commutative, 91; example
of non-commutative, 91, 92;
identity in a, 90, 91; importance
of, 93; in number system, 94;
inverse element in a, 90, 91;
of motions in geometry, 93, 156 ;
of rigid motions, 93, 156; of
transformations characterising
geometry, 138; with respect to
an operation, 89 ff.

Half-line, defined, 147.
Halsted, G. B., 15.
Hamilton, W. R., 128, 130.
Hankel, Hermann, 108.
Harriot, Thomas, 237, 238.
Haskell, M. W., 138.
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Heath, T. L., 10, 227, 228.

Heiberg, I. L., 10.

Height of an equation, 119.

Heptagon, regular, 188 ff.

Herigone, Pierre, 238.

Hermite, Charles, 120.

Hilbert, David, 139 ff., 162, 167,
177, 181.

Hindus, 229, 230, 231, 232, 239.

Historical development, to be em-
phasized, 7; of algebraic sym-
bolism, 226 ff.; of concept of
function, 194; of concept of
number, 107 ff., 121 ff.

Hoernle, A. Fr. R., 230.

Holgate, T. F., 136.

Huntington, E. V., 68, 71, 86, 98,
133.

1, 121.

Identical element, in a group, 90,
91.

Identical motion, 156.

Identity, in a group, 90.

Imaginary numbers, 121; see com-
plez numbers; pure, 124.

Independence of assumptions, 47 ff.,
69, 77 ; for geometry, 154.

Independence proof, 47, 69, 77.

Indeterminateness, symbol of, 211.

Induction, mathematical, 77.

Infinite, cardinal number, 66, 167,
200; class, 63.

Infinity, 6; in elementary mathe-
matics, 208 ff.; point, line, at,
136.

Integers (integral numbers), 86, 90,
99.

Interior of angle, defined, 147.

Interior points, of an interval, 141;
of a sphere, 160.

Interval, 141, 161.

Inverse element, in groups of
motions, 155; of a group, 90, 91.

Inverse motion, 155.

Inverse operations, 95.

Irrational numbers, 6; Dedekind’s
definition of, 104; introduction
of, 103; properties of, 105;
referred to, 118.

INDEX

Irreducible equation, 118.
Isomorphic systems, 49.

Kant, Immanuel, 36.

Klein, Felix, 9, 112, 128, 138, 150,
191, 223, 224.

Kramp, Christian, 239.

Laisant, C. A., 236, 237.

Left-handed subtraction and divi-
sion, 95.

Legendre, A. M., 29.

Leibnitz, G. W., 37, 194, 239.

Lennes, N. J., 193.

Leonardo of Pisa, 227.

Less than, applied to intervals,
defined, 162 ; see order.

Limit, 6, 192, 208; general defini-
tion of, 208 ; in geometry, 205 ff. ;
of a sequence, 201 ff., 208; of
a sequence of curves, 206; of
fundamental segment, 84.

Lindemann, Fransz, 120.

Line, as a class of points, 39; at
infinity, 136; Euclid’s definition
of, 9; Pieri's definition of, 156 ;
points on a, 83, 87.

Linear continuum, 85; unlimited,
110, 149.

Linear order, 68 ff., 151, 161, 170;
assumptions for, 68; categorical-
ness of, 70; consistency of, 69 ;
independence of, 69, 70.

Linearity, postulate of, 85.

Linearly continucus class, 85.

Lines of reference, 172.

Lobatchewsky, Nicholaus, 31.

Logarithms, natural, base
119.

Logical rigor, 218 ff.

Lunar angles, 151. i

of,

McCormack, T. J., 134.

Mach, E., 134.

Michtigkeit, 60.

Many-valued function, 196, 197.

Mathematical induction, 77.

Mathematical science, a miniature,
40 ff.; defined, 2; starting point
of, 3.
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Mathematics, and philosophy, 37,
225; attempts to define, 216 ff.;
definition difficult, 1, 222; de-
mocracy of, 52; Peirce’s defini-
tion of, 2, 217 ; pure and applied,
54; Russell’s definition of, 3, 53,
54, 217 ; teaching of, 4 ff., 54 fI.,
115; two aspects of, 1; unity of,
225.

Matthiessen, Ludwig, 227, 235.

Measurement, assumption
148.

Mengenlehre, 86.

Meray, C., 103.

Metric geometry, 135 ff., 155 fI.;
and groups of movements, 138.

Mid-point of two points, 159.

Mill, John Stuart, 37.

Miller, G. A,, 101.

Modular number system, 96.

Modulus of a number system, 96.

Monotonic law, for addition, 100,
110, 122; for multiplication, 100,
110, 123.

Moore, E. H., 139,142, 167, 225.

Motions, groups of, 93, 156.

Movement or Motion, as undefined
element, 155; effective, 156;
identical, 156; rigid, 93, 138;
vs. congruence, 154, 163.

Multiplication, 67; as undefined
operation, 94; logical definition
of, 100; of complex numbers,
123 ; of higher complex numbers,
129; of irrational numbers, 105;
of negative numbers, 110, 116.

of,

n~-dimensional space, 173; in ap-
plied mathematics, 174 fi.
Negative numbers, 90, 107 fi.;
absolute value of, 109; addition
and multiplication of, 110; con-
gistency of, 113; formal treat-
ment of, 109; order in, 109;
reference to, 121, 230.
Neighborhood of an element, 208.
Nemorarius, Jordanus, 227.
Nesselman, G. H. F., 226.
Newton, Isaac, 238, 239.
Non-archimedean system, 150.
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Non-euclidean geometry, 22, 24, 29,
31.

Non-euclidean world, 14 ff.

Number, cardinal, 60, 64, 65, 82,
167, 198; historical development
of concept of, 107 ff.,, 121 ff.;
representing magnitude and di-
rection, 108; ¢, 119; =, 120, 191.

Numbers, algebraic and transcen-
dental, 113; complex, 6, 121 ff.;
higher complex, 127 ff.; irra-
tional, 6, 103 ff., 118; negative,
90, 107 ff.,, 230; rational, 71,
73 fi., 75, 87, 90, 101, 102, 118;
real, 83, 87, 90, 98, 106, 114 f.,
117 ; sequence of cardinal, 79, 80.

Number system, 88, 93; commu-
tative, 94; defined, 94; finite,
95, 96; general concept of, 132;
modular, 95, 96; ordinary real,
98, 114.

One-to-one
155.

One-valued function, 193.

Opcn cut, 104.

Operation, 67; commutative, 89;
defined, 88; group with respect
to an, 89, 92; result of, 88.

Order, 67; among irrational num-
bers, 105; among negative num-
bers, 109; in geometry, 140 ff.;
linear, 68 ff., 161, 161, 170.

Ordered class, 70. ’

Ordinally similar classes, 71.

Ordinary class, 219.

Oresme, Nicole, 233.

Oughtred, William, 238.

correspondence, 60,

x, 120, 191.

Pacioli, Luca, 232, 234.

Padoa, 68.

Paradox, a, 143 ff.

Parallel postulate or axiom, 11, 19,
26 ff., 148, 162.

Parallels, principal, 21, 23.

Pascal, Blaise, 37.

Pasch, Morits, 51, 68, 139, 140, 162.

Peano, Giuseppe, 51, 54, 139, 167.

Peirce, Benjamin, 2, 217.
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Pentagon, regular, construction of,
185 f1.

Perlodlo decimals, 103.

Permanence of fundamental laws,
102, 111.

Perpendicular pair of points, 159.

Philosophy and mathematics, 37,

225.

Pieri Mario, 139, 155 f1., 163.

Pierpont, James, 113.

Plane, as undefined element, 139;
Pieri's definition of, 157.

Poincaré, Henri, 15, 25, 134.

Point, Euclid's definition of, 9; at
infinity, 136.

Points, on a straight line, 83, 87;
‘as undefined elements, 139, 153,
155.

Point space of four dimensions, 176,

177.

Polar sphere, 161.
Polygons, construction of regular,
183 ff.

Position, geometry of, 135.
Postulate, 3; of linearity, 85;
parallel, 11, 19, 26 ff., 148, 162.
Postulates, are assumptions, 38,
222; distinction between axioms
and postulates, 11; Euclid’s, 10;
with Kant, 36; with Klein, 223 ;
with Mill, 37; see also assump-
tions.

Power of a class, 60.

Predecessor, immediate, 71.

Progression, 78.

Projection, 137.

Projective geometry, 135 fi.

Projective transformation, 137.

Psychological questions, 134.

Pure imaginary numbers, 124.

Quaternions, 128, 130.

Rahn, J. H., 239.

Rational numbers, and order, 71,
73 fi.; cardinal number of, 75;
class of, 87, 90; introduction of,
101; logical definition of, 101;
properties of, 102; referred to,
118.

INDEX

Real numbers, 83, 87, 90, 106, 114
ff.; assumptions for, 98; classi-
ﬁcatlon of, 117.

Reciprocal equation, 187.

Recorde, Robert, 236.

Reference, line or axes of, 172.

Regiomontanus, 227.

Regression, 78.

Resularlsa p polygons, construction of,

Relations, 67 ; class of, 170.

Result of operation, 88.

Reye, T., 136.

Rhetorical algebra, 226.

Riemann, Bernhard, 34.

Riese, Adam, 236.

Right angle, 148.

Right-handed subtraction and divi-
sion, 95.

Rigid displacement or motion, 138 ;
as undefined term, 155.

Roche, E. de la, 232.

Rudolff, Christoph, 234, 236.

Ruler, construction with, 184 ff.

Russell, Bertrand, 3, 4, 37, 63, 54,
80, 217, 219.

Saccheri, Girolamo, 28, 31.

Schur, F., 139.

Science, mathematical, a miniature,
40 ff.; defined, 2; starting point
of, 3.

Section, 137.

Segment, fundamental, 83, 84; of
linearly ordered class, 208.

Sequence, discrete, 75, 86; finite
discrete, 78; of cardinal num-
bers, 79, 80; unlimited discrete,
78.

Series, trigonometric, 195.

Set, 40, 59.

Shortest lines, 17.

Sides, of a straight line, 142; of an
angle, 147.

Smith, D. E., 191, 234, 236, 237.

Space, analytic, 176, 182; four-
dimensional, 173 ff.; in applied
mathematics, 174 ff.; n-dimen-
sional, 173; of points, 173 fI.;
three-dimensional, 166.
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Sphere, definition of, 157; exterior
points of, 161 ; interior points of,
160; polar, 161.

Squaring of circle, 191.

Stevin, Simon, 236.

Stifel, Michael, 107, 234, 236.

Straight line, as undefined element,
139; defined in terms of motion,
156; Euclid’s definition of, 110;
points on, 83, 87; sides of, 142.

Subtraction, 95, 109; left-handed
and right-handed, 95.

Successor, immediate, 71.

Sum, of two cardinal numbers, 100 ;
of two intervals, 162.

Symbolic algebra, 226, 235, 236 ff.

Symbolism, algebraic, growth of,
226 ff.

Bynoopt;ted algebra, 226, 227 ff.

Teaching of mathematics, 4 fI., 53,
54 ff., 115, 163 ff., 172, 197.
Thomae, J., 223.
imensional space, 166.
Three-space, 177.
Townsend, E. J., 139.
Transcendental numbers, 118;
existence of, 119; ¢, 119; =, 120,
191.
Trigonometric series, 195.
Trisection of an angle, 190.
Tropfke, Johannes, 227, 231, 232,
233, 237, 238, 239.
Types of order, 70.
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Undefined terms, 2, 3, 48, 134, 223.

Units, 128.

Unlimited discrete sequence, 78.

Unlimited linear continuum, 110.

Unproved propositions, 2, 3; as
disguised definitions, 53.

Vailati, 52, 68.

Value, of a variable, 193 ; absolute,
of a complex number, 126 ; abso-
lute, of a negative number, 109.

Variable, definition of, 192; value
of, 198.

Veblen, O., 136, 139, 153, 193.

Vector, 125, 127.

Vector analysis, 127, 128, 132.

Vertex of an angle, 147.

Vicinity of an element, 208.

Vieta, Frangois, 236, 237, 238.

Wallis, John, 28, 239.
Weierstrass, Karl, 103.
Wessel, Caspar, 126.
Widmann, Johann, 232, 234.
‘Woepcke, 227.

Young, G. C., 86.

Young, J. W., 136.
Young, J. W. A, 133, 153.
Young, W. H., 86.

Zero, division by, 211 ff.


















