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PREFACE BY PROFESSOR GIBBS

SINCE the printing of a short pamphlet on the Elements of
Vector Analysis in the years 1881-84, — never published, but
somewhat widely circulated among those who were known to
be interested in the subject, — the desire has been expressed
in more than one quarter, that the substance of that trea-
tise, perhaps in fuller form, should be made accessible to
the public.

As, however, the years passed without my finding the
leisure to meet this want, which seemed a real one, I was
very glad to have one of the hearers of my course on Vector
Analysis in the year 1899-1900 undertake the preparation of
a text-book on the subject.

I have not desired that Dr. Wilson should aim simply
at the reproduction of my lectures, but rather that he should
use his own judgment in all respects for the production of a
text-book in which the subject should be so illustrated by an
adequate number of examples as to meet the wants of stu-
dents of geometry and physics.

J. WILLARD GIBBS.

Yare UNIversiTy, September, 1901.
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GENERAL PREFACE

WHEN I undertook to adapt the lectures of Professor Gibbs
on VECTOR ANALYSIS for publication in the Yale Bicenten-
nial Series, Professor Gibbs himself was already so fully
engaged upon his work to appear in the same series, Elementary
Principles in Statistical Mechanics, that it was understood no
material assistance in the composition of this book could be
expected from him. For this reason he wished me to feel
entirely free to use my own discretion alike in the selection
of the topics to be treated and in the mode of treatment.
It has been my endeavor to use the freedom thus granted
only in so far as was necessary for presenting his method in
text-book form.

By far the greater part of the material used in the follow-
ing pages has been taken from the course of lectures on
Vector Analysis delivered annually at the University by
Professor Gibbs. Some use, however, has been made of the
chapters on Vector Analysis in Mr. Oliver Heaviside’s Elec-
tromagnetic Theory (Electrician Series, 1893) and in Professor
Foppl's lectures on Die Mazwell’sche Theorie der Electricitat
(Teubner, 1894). My previous study of Quaternions has
also been of great assistance.

The material thus obtained has been arranged in the way
which seems best suited to easy mastery of the subject.
Those Arts. which it seemed best to incorporate in the
text but which for various reasons may well be omitted at
the first reading have been marked with an asterisk (*). Nu-
merous illustrative examples have been drawn from geometry,
mechanics, and physics. Indeed, a large part of the text has
to do with applications of the method. These applications
have not been set apart in chapters by themselves, but have
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been distributed throughout the body of the book as fast as
the analysis has been developed sufficiently for their adequate
treatment. It is hoped that by this means the reader may be
better enabled to make practical use of the book. Great care
has been taken in avoiding the introduction of unnecessary
ideas, and in so illustrating each idea that is introduced as
to make its necessity evident and its meaning easy to grasp.
Thus the book is not intended as a complete exposition of
the theory of Vector Analysis, but as a text-book from which
so much of the subject as may be required for practical appli-
cations may be learned. Hence a summary, including a list
of the more important formule, and a number of exercises,
have been placed at the end of each chapter, and many less
essential points in the text have been indicated rather than
fully worked out, in the hope that the reader will supply the
details. The summary may be found useful in reviews and
for reference.

The subject of Vector Analysis naturally divides itself into
three distinct parts. First, that which concerns addition and
the scalar and vector products of vectors. Second, that which
concerns the differential and integral calculus in its relations
to scalar and vector functions. Third, that which contains
the theory of the linear vector function. The first part is
a necessary introduction to both other parts. The second
and third are mutually independent. Either may be taken
up first. For practical purposes in mathematical physics the
second must be regarded as more elementary than the third.
But a student not primarily interested in physics would nat-
urally pass from the first part to the third, which he would
probably find more attractive and easy than the second.

Following this division of the subject, the main body of
the book is divided into six chapters of which two deal with
each of the three parts in the order named. Chapters I. and
II. treat of addition, subtraction, scalar multiplication, and
the scalar and vector products of vectors. The exposition
has been made quite elementary. It can readily be under-
stood by and is especially suited for such readers as have a
knowledge of only the elements of Trigonometry and Ana-
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lytic Geometry. Those who are well versed in Quaternions
or allied subjects may perhaps need to read only the sum-
maries. Chapters III. and IV. contain the treatment of
those topics in Vector Analysis which, though of less value
to the students of pure mathematics, are of the utmost impor-
tance to students of physics. Chapters V. and VI. deal with
the linear vector function. To students of physics the linear
vector function is of particular importance in the mathemati-
cal treatment of phenomena connected with non-isotropic
media ; and to the student of pure mathematics this part of
the book will probably be the most interesting of all, owing
to the fact that it leads to Multiple Algebra or the Theory
of Matrices. A concluding chapter, VII., which contains the
development of certain higher parts of the theory, a number
of applications, and a short sketch of imaginary or complex
vectors, has been added.

In the treatment of the integral calculus, Chapter 1IV.,
questions of mathematical rigor arise. Although modern
theorists are devoting much time and thought to rigor, and
although they will doubtless criticise this portion of the book
adversely, it has been deemed best to give but little attention
to the discussion of this subject. And the more so for the
reason that whatever system of notation be employed ques-
tions of rigor are indissolubly associated with the calculus
and occasion no new difficulty to the student of Vector
Analysis, who must first learn what the facts are and may
postpone until later the detailed consideration of the restric-
tions that are put upon those facts.

Notwithstanding the efforts which have been made during
more than half a century to introduce Quaternions into
physics the fact remains that they have not found wide favor.
On the other hand there has been a growing tendency espe-
cially in the last decade toward the adoption of some form of
Vector Analysis. The works of Heaviside and Foppl re-
ferred to before may be cited in evidence. As yet however
no system of Vector Analysis which makes any claim to
completeness has been published. In fact Heaviside says:
“I am in hopes that the chapter which I now finish may
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serve as a stopgap till regular vectorial treatises come to be
written suitable for physicists, based upon the vectorial treat-
ment of vectors” (Electromagnetic Theory, Vol. I., p. 805).
Elsewhere in the same chapter Heaviside has set forth the
claims of vector analysis as against Quaternions, and others
have expressed similar views.

The keynote, then, to any system of vector analysis must
be its practical utility. This, I feel confident, was Professor
Gibbs’s point of view in building up his system. He uses it
entirely in his courses on Electricity and Magnetism and on
Electromagnetic Theory of Light. In writing this book I
have tried to present the subject from this practical stand-
point, and keep clearly before the reader’s mind the ques-
tions: What combinations or functions of vectors occur in
physics and geometry? And how may these be represented
symbolically in the way best suited to facile analytic manip-
ulation ? The treatment of these questions in modern books
on physics has been too much confined to the addition and
subtraction of vectors. This is scarcely enough. It has
been the aim here to give also an exposition of scalar and
vector products, of the operator §7, of divergence and curl
which have gained such universal recognition since the ap-
pearance of Maxwell's Treatise on Electricity and Magnetism,
of slope, potential, linear vector function, etc., such as shall
be adequate for the needs of students of physics at the
present day and adapted to them.

It has been asserted by some that Quaternions, Vector
Analysis, and all such algebras are of little value for investi-
gating questions in mathematical physics. Whether this
assertion shall prove true or not, one may still maintain that
vectors are to mathematical physics what invariants are to
geometry. As every geometer must be thoroughly conver-
sant with the ideas of invariants, so every student of physics
should be able to think in terms of vectors. And there is
no way in which he, especially at the beginning of his sci-
entific studies, can come to so true an appreciation of the
importance of vectors and of the ideas connected with them
as by working in Vector Analysis and dealing directly with
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the vectors themselves. To those that hold these views the
success of Professor Foppl's Vorlesungen tiber Technische
Mechanik (four volumes, Teubner, 1897-1900, already in a
second edition), in which the theory of mechanics is devel-
oped by:means of a vector analysis, can be but an encour-
aging sign.

I take pleasure in thanking my colleagues, Dr. M. B. Porter
and Prof. H. A. Bumstead, for assisting me with the manu-
script. The good services of the latter have been particularly
valuable in arranging Chapters III. and IV. in their present
form and in suggesting many of the illustrations used in the
work. I am also under obligations to my father, Mr. Edwin
H. Wilson, for help in connection both with the proofs and
the manuscript. Finally, I wish to express my deep indebt-
edness to Professor Gibbs. For although he has been so
preoccupied as to be unable to read either manuscript or
proof, he has always been ready to talk matters over with
me, and it is he who has furnished me with inspiration suf-
ficient to carry through the work.

EDWIN BIDWELL WILSON.

YALE University, October, 1901.

PREFACE TO THE SECOND EDITION

THE only changes which have been made in this edition are
a few corrections which my readers have been kind enough to
point out to me.

E.B. W.
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VECTOR ANALYSIS

CHAPTER 1
ADDITION AND SCALAR MULTIPLICATION

1] I~ mathematics and especially in physics two very
different kinds of quantity present themselves. Consider, for
example, mass, time, density, temperature, force, displacement
of a point, velocity, and acceleration. Of these quantities
some can be represented adequately by a single number —
temperature, by degrees on a thermometric scale; time, by
years, days, or seconds; mass and density, by numerical val-,
ues which are wholly determined when the unit of the scale
is fixed. On the other hand the remaining quantities are not
capable of such representation. Force to be sure is said to be
of so many pounds or grams weight; velocity, of so many
feet or centimeters per second. But in addition to this each
of them must be considered as having direction as well as
magnitude. A force points North, South, East, West, up,
down, or in some intermediate direction. The same is true
of displacement, velocity, and acceleration. No scale of num-
bers can represent them adequately. It can represent only
their magnitude, not their direction.

2.] Definition : A wector is a quantity which is considered
as possessing dsrection as well as magnitude.

Definition : A scalar is a quantity which is considered as pos-
sessing magnitude but no direction.
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The positive and negative numbers of ordinary algebra are the
typical scalars. For this reason the ordinary algebra is called
scalar algebra when necessary to distinguish it from the vector
algebra or analysis which is the subject of this book.

The typical vector 1s the displacement of translation in space.
Consider first a point P (Fig.1). Let P be displaced in a
straight line and take a new position P

This change of position is represented by the

/ / 7 line PP'. The magnitude of the displace-
/ ;/ ment is the length of PP'; the direction of
T it is the direction of the line PP’ from P to

P z P'. Next consider a displacement not of one,
s but of all the points in space. Let all the
points move in straight lines in the same direction and for the
same distance D. This is equivalent to shifting space as a
rigid body in that direction through the distance D without

¢

rotation. Such a displacement is called a translation. It .

possesses direction and magnitude. When space undergoes
a translation T, each point of space undergoes a displacement
equal to T in magnitude and direction; and conversely if
the displacement PP’ which any one particular point P suf-
fers in the translation T is known, then that of any other
point @ is also known: for @ @' must be equal and parallel
to P P '

The translation T is represented geometrically or graphically
by an arrow T (Fig. 1) of which the magnitude and direction
are equal to those of the translation. The absolute position
of this arrow in space is entirely immaterial. Technically the
arrow is called a stroke. Tts tail or initial point is its origin ;
and its head or final point, its terminus. In the figure the
origin is designated by O and the terminus by 7. This geo-
metric quantity, a stroke, is used as the mathematical symbol
for all vectors, just as the ordinary positive and negative num-
bers are used as the symbols for all scalars.
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*3.] Asexamples of scalar quantities mass, time, den-
sity, and temperature have been mentioned. Others are dis-
tance, volume, moment of inertia, work, etc. Magnitude,
however, is by no means the sole property of these quantities.
Each implies something besides magnitude. Each has its
own distinguishing characteristics, as an example of which
its dimensions in the sense well known to physicists may
be cited. A distance 3, a time 3, a work 3, etc., are very
different. The magnitude 8 is, however, a property common
to them all — perhaps the only one. Of all scalar quanti-
tities pure mumber is the simplest. Tt implies nothing but
magnitude. It is the scalar par excellence and consequently
it is used as the mathematical symbol for all scalars.

As examples of vector quantities force, displacement, velo-
city, and acceleration have been given. Each of these has
other characteristics than those which belong to a vector pure
and simple. The concept of wvector involves two ideas and
two alone — magnitude of the vector and direction of the
vector. But force is more complicated. When it is applied
to a rigid body the line in which it acts must be taken into
consideration; magnitude and direction alone do not suf-
fice. And in case it is applied to a non-rigid body the point
of application of the force is as important as the magnitude or
direction. Such is frequently true for vector quantities other
than force. Moreover the question of dimensions is present
as in the case of scalar quantities. The mathematical vector,
the stroke, which is the primary object of consideration in
this book, abstracts from all directed quantities their magni-
tude and direction and nothing but these; just as the mathe-
matical scalar, pure number, abstracts the magnitude and
that alone. Hence one must be on his guard lest from
analogy he attribute some properties to the mathematical
vector which do not belong to it; and he must be even more
careful lest he obtain erroneous results by considering the
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vector quantities of physics as possessing no properties other
than those of the mathematical vector. For example it would
never do to consider force and its effects as unaltered by
shifting it parallel to itself. This warning may not be
necessary, yet it may possibly save some confusion.

4.] Inasmuch as, taken in its entirety, a vector or stroke
is but a single concept, it may appropriately be designated by
one letter. Owing however to the fundamental difference
between scalars and vectors, it is necessary to distinguish
carefully the one from the other. Sometimes, as in mathe-
matical physics, the distinction is furnished by the physical
interpretation. Thus if » be the index of refraction it
must be scalar; m, the mass, and ¢ the time, are also
scalars; but f, the force, and a, the acceleration, are
vectors. When, however, the letters are regarded merely
as symbols with no particular physical significance some
typographical difference must be relied upon to distinguish
vectors from scalars. Hence in this book Clarendon type is
used for setting up vectors and ordinary type for scalars.
This permits the use of the same letter differently printed
to represent the vector and its scalar magnitude.! Thus if
C be the electric current in magnitude and direction, (' may
be used to represent the magnitude of that current; if g be
the vector acceleration due to gravity, g may be the scalar
value of that acceleration; if v be the velocity of a moving
mass, v may be the magnitude of that velocity. The use of
Clarendons to denote vectors makes it possible to pass from
directed quantities to their scalar magnitudes by a mere
chahge in the appearance of a letter without any confusing
change in the letter itself.

Definition : Two vectors are said to be equal when they have
the same magnitude and the same direction.

! This convention, however, is by no means invariably followed. In some

instances it would prove just as undesirable as it is convenient in others. It is
chiefly valuable in the application of vectors to physics.
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The equality of two vectors A and B is denoted by the
usual sign =. Thus A—B.

Evidently a vector or stroke is not altered by shifting it
about parallel to itself in space. Hence any vector A = PP’
(Fig. 1) may be drawn from any assigned point O as origin ;
for the segment PP’ may be moved parallel to itself until
the point P falls upon the point O and P’ upon some point 7.
g A=PP=0T=T.

In this way all vectors in space may be replaced by directed
segments radiating from one fixed point 0. Equal vectors
in space will of course coincide, when placed with their ter-
mini at the same point 0. Thus (Fig.1) A=P P, and B= @ @/,
both fall upon T = O 7.

For the numerical determination of a vector ¢hree scalars
are necessary. These may be chosen in a variety of ways.
If », ¢, @ be polar cotrdinates in space any vector r drawn
with its origin at the origin of covrdinates may be represented
by the three scalars r, ¢, @ which determine the terminus of

the vector.
r~ (r, ¢, 0).
Or if #, y, 2z be Cartesian coordinates in space a vector r may
be considered as given by the differences of the covrdinates «/,
y', 2’ of its terminus and those #, y, z of its origin.
r~ @ —a,y —y,2 —2).

If in particular the origin of the vector coincide with the
origin of covrdinates, the vector will be represented by the
three coordinates of its terminus

r~ (z', y', 2)
When two vectors are equal the three scalars which repre-

sent them must be equal respectively each to each. Hence
one vector equality implies three scalar equalities.
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Definition : A vector A is said to be equal to zero when its
magnitude 4 is zero.

Such a vector A is called a null or zero vector and is written
equal to naught in the usual manner. Thus

A=0if 4 =0.

All null vectors are regarded as equal to each other without
any considerations of direction.

In fact a null vector from a geometrical standpoint would
be represented by a linear segment of length zero — that is to
say, by a point. It consequently would have a wholly inde-
terminate direction or, what amounts to the same thing, none at
all. If, however, it be regarded as the limit approached by a
vector of finite length, it might be considered to have that
direction which is the limit approached by the direction of the
finite vector, when the length decreases indefinitely and ap-
proaches zero as a limit. The justification for disregarding
this direction and looking upon all null vectors as equal is
that when they are added (Art. 8) to other vectors no change
occurs and when multiplied (Arts. 27, 81) by other vectors
the product is zero.

5.] In extending to vectors the fundamental operations
of algebra and arithmetic, namely, addition, subtraction, and
multiplication, care must be exercised not only to avoid self-
contradictory definitions but also to lay down useful ones.
Both these ends may be accomplished most naturally and
easily by looking to physics (for in that science vectors con-
tinually present themselves) and by observing how such
quantities are treated there. If then A be a given displace-
ment, force, or velocity, what is two, three, or in general z
times A? What, the negative of A? And if B be another,
what is the sum of A and B? That is to say, what is the
equivalent of A and B taken together? The obvious answers
to these questions suggest immediately the desired definitions.
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Scalar Multiplication

6.] Definition: A vector is said to be multiplied by a
positive scalar when its magnitude is multiplied by that scalar
and its direction is left unaltered.

Thus if v be a velocity of nine knots East by North, 2} times
v is a velocity of twenty-one knots with the direction still
East by North. Or if f be the force exerted upon the scale-
pan by a gram weight, 1000 times f is the force exerted by a
kilogram. The direction in both cases is vertically down-
ward.

If A be the vector and z the scalar the product of zand A is

denoted as usual by
z A or Az

It is, however, more customary to place the scalar multiplier
before the multiplicand A. ‘This multiplication by a scalar
is called scalar multiplication, and it follows the associative law

z(yA)=((y) A=y (zA)

as in ordinary algebra and arithmetic. This statement is im-
mediately obvious when the fact is taken into consideration
that scalar multiplication does not alter direction but merely
multiplies the length.
Definition : A wunit vector is one whose magnitude is unity.
Any vector A may be looked upon as the product of a unit
vector a in its direction by the positive scalar 4, its magni-

tude.
A=A4da=a 4.

The unit vector a may similarly be written as the product of
A by 1/4 or as the quotient of A and 4.

A

A=Z.

a=

[ N
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7.] Definition : The negative sign, — prefixed to a vector
reverses its direction but leaves its magnitude unchanged.

For example if A be a displacement for two feet to the right,
— A is a displacement for two feet to the left. Again if the
stroke 4 B be A, the stroke B A, which is of the same length
as A B but which is in the direction from B to 4 instead of
from A4 to B, will be — A. Another illustration of the use
of the negative sign may be taken from Newton’s third law
of motion. If A denote an ‘“action,” — A will denote the
“reaction.” The positive sign, +, may be prefixed to a vec-
tor to call particular attention to the fact that the direction
has not been reversed. The two signs 4+ and — when used
in connection with scalar multiplication of vectors follow the
same laws of operation as in ordinary algebra. These are
symbolically

++=4+; +—=—5 —+=—3; ——=+3
— (m A) =m (— A).

The interpretation is obvious.

Addition and Subtraction

8.] The addition of two vectors or strokes may be treated
most simply by regarding them as defining translations in
space (Art. 2). Let 8 be one vector and T the other. Let P
be a point of space (Fig. 2). The trans-

4

g lation § carries P into P’ such that the
o line PP’ is equal to § in magnitude and

de I direction. The transformation T will then

0 i " carry P’ into P”— the line P"P" being
i parallel to T and equal to it in magnitude.

Fie. 2. Consequently the result of § followed by

T is to carry the point P into the point

P". If now @ be any other point in space, § will carry @
into @' such that Q@' =8 and T will then carry @' into Q"
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such that Q"Q" =T. Thus § followed by T carries ¢ into @".
Moreover, the triangle @ @' Q" is equal to PP'P". For
the two sides @ @' and Q' ", being equal and parallel to §
and T respectively, must be likewise parallel to P P' and
P’ P" respectively which are also parallel to § and T. Hence
the third sides of the triangles must be equal and parallel

That is
@ @" is equal and parallel to P P".

As @ is any point in space this is equivalent to saying that
by means of § followed by T all points of space are displaced
the same amount and in the same direction. This displace-
ment is therefore a translation. Consequently the two
translations § and T are equivalent to a single translation R.
Moreover

if S=PPand T= P P", then R=PP.

The stroke R is called the resultant or sum of the two
strokes § and T to which it is equivalent. This sum is de-
noted in the usual manner by

R=§S+T

From analogy with the sum or resultant of two translations
the following definition for the addition of any two vectors is
laid down.

Definition : The sum or resultant of two vectors is found
by placing the origin of the second upon the terminus of the
first and drawing the vector from the origin of the first to the
terminus of the second.

9.] Theorem. The order in which two vectors § and T are
added does not affect the sum.

8 followed by T gives precisely the same result as T followed
by 8. For let § carry P into P’ (Fig. 8); and T, P’ into P’
8 4+ T then carries P into P”. Suppose now that T carries P
into P". The line PP" is equal and parallel to P'P". Con-



10 VECTOR ANALYSIS

sequently the points £, P', P and P" lie at the vertices of
a parallelogram.  Hence
»# . P P" is equal and par-

? 8 allel to PP. Hence S
T+§ B carries P into P". T fol-

a S+T “” lowed by S therefore car-
S 7 ries P into P" through P/,

e whereas § followed by T

Fic. 3. carries P into P" through

P". The final result is in
either case the same. This may be designated symbolically
by writing e
It is to be noticed that §= PP’ and T = P P" are the two sides
of the parallelogram PP’ P" P" which' have the point P as
common origin; and that R =PP" is the diagonal drawn
through P. This leads to another very common way of
stating the definition of the sum of two vectors.

If two vectors be drawn from the same origin and a parallelo-
gram be constructed upon them as sides, their sum will be that
diagonal which passes through their common origin.

This is the well-known ¢ parallelogram law’ according to
which the physical vector quantities force, acceleration, veloc-
ity, and angular velocity are compounded. It is important to
note that in case the vectors lie along the same line vector
addition becomes equivalent to algebraic scalar addition. The
lengths of the two vectors to be added are added if the vectors
have the same direction ; but subtracted if they have oppo-
site directions. In either case the sum has the same direction
as that of the greater vector.

10.] After the definition of the sum of two vectors has
been laid down, the sum of several may be found by adding
together the first two, to this sum the third, to this the fourth,
and so on until all the vectors have been combined into a sin-
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gle one. The final result is the same as that obtained by placing
the origin of each succeeding vector upon the terminus of the
preceding one and then drawing at once the vector from
the origin of the first to the terminus of the last. In case
these two points coincide the vectors form a closed polygon
and their sum is zero. Interpreted geometrically this states
that if a number of displacements R, S, T - - . are such that the
strokes R, S, T - - - form the sides of a closed polygon taken in
order, then the effect of carrying out the displacements is nil.
Each point of space is brought back to its starting point. In-
terpreted in mechanics it states that if any number of forces
act at a point and if they form the sides of a closed polygon
taken in order, then the resultant force is zero and the point
is in equilibrium under the action of the forces.

The order of sequence of the vectors in a sum is of no con-
sequence. This may be shown by proving that any two adja-
cent vectors may be interchanged without affecting the result.

To show

A+B+C+D+E=A+B+D+C+E

Let A=04,B=A4B,C=BC,D=CD,E=DE.
Then OE=A+B+C+D+E

Let now B("=D. Then ¢' BC D is a parallelogram and
consequently (" D =C. Hence

OE=A+B+D+C+E,

which proves the statement. Since any two adjacent vectors
may be interchanged, and since the sum may be arranged in
any order by successive interchanges of adjacent vectors, the
order in which the vectors occur in the sum is immaterial.

11.] Definition: A vector is said to be subtracted when it
is added after reversal of direction. Symbolically,

A—B=A+ (—B).

By this means subtraction is reduced to addition and needs
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no special consideration. There is however an interesting and
important way of representing the (ﬁf_erence of two vectors
geometrically. Let A = 04, B= 0B (Fig. 4). Complete
the parallelogram of which A and B
are the sides. Then the diagonal
0C =C is the sum A + B of the
two vectors. Next complete the
parallelogram of which A and — B
= OB’ are the sides. Then the di-
agonal 0D = D will be the sum of
Frc. 4. A and the negative of B. But the
segment 0D is parallel and equal
to BA. Hence BA may be taken as the difference to the two
vectors A and B. This leads to the following rule : The differ-
ence of two vectors which are drawn from the same origin is
the vector drawn from the terminus of the vector to be sub-
tracted fo the terminus of the vector from which it is sub-
tracted. Thus the two diagonals of the parallelogram, which
is constructed upon A and B as sides, give the sum and dif-
ference of A and B.

12.] In the foregoing paragraphs addition, subtraction, and
scalar multiplication of vectors have been defined and inter-
preted. To make the development of vector algebra mathe-
matically exact and systematic it would now become necessary
to demonstrate that these three fundamental operations follow
the same formal laws as in the ordinary scalar algebra, al-
though from the standpoint of the physical and geometrical
interpretation of vectors this may seem superfluous. These
laws are

I,: m(nA) =n(mA) = (mn) A,
I,: (A+B)+C=A+ (B+C)
IT - A+B =B+ A,
I, : (m+n) A=mA + nA,
II,:  m(A+B)=mA+mB,
mI,:  —(A+B)=-A-B
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I, is the so-called law of association and commutation of
the scalar factors in scalar multiplication.

I, is the law of association for vectors in vector addition. It
states that in adding vectors parentheses may be inserted at
any points without altering the result.

II is the commutative law of vector addition.

II1, is the distributive law for scalars in scalar multipli-
cation.

III, is the distributive law for vectors in scalar multipli-
cation,

III, is the distributive law for the negative sign.

The proofs of these laws of operation depend upon those
propositions in elementary geometry which have to deal with
the first properties of the parallelogram and similar triangles.
They will not be given here; but it is suggested that the
reader work them out for the sake of fixing the fundamental
ideas of addition, subtraction, and scalar multiplication more
clearly in mind. The result of the laws may be summed up
in the statement :

The laws which govern addition, subtraction, and scalar
multiplication of vectors are identical with those governing these
operations in ordinary scalar algebra.

It is precisely this identity of formal laws which justifies
the extension of the use of the familiar signs =, +, and —
of arithmetic to the algebra of vectors and it is also this
which ensures the correctness of results obtained by operat-
ing with those signs in the usual manner. One caution only
need be mentioned. Scalars and vectors are entirely different
sorts of quantity. For this reason they can never be equated
to each other — except perhaps in the trivial case where each is
zero. For the same reason they are not to be added together.
So long as this is borne in mind no difficulty need be antici-
pated from dealing with vectors much as if they were scalars.

Thus from equations in which the vectors enter linearly with



14 VECTOR ANALYSIS

scalar coefficients unknown vectors may be eliminated or
found by solution in the same way and with the same limita-
tions as in ordinary algebra; for the eliminations and solu-
tions depend solely on the scalar coefficients of the equations
and not at all on what the variables represent. If for
instance
aA+bB+c¢C+dD=0,

then A, B, C, or D may be expressed in terms of the other
three

1
as D=—a(aA+bB+cC).

And two vector equations such as

and 2A+3B=F

yield by the usual processes the solutions

A=3E—-4F
and B=3F—2E.

Components of Vectors

13.] Definition : Vectors are said to be collinear when
they are parallel to the same line; coplanar, when parallel
to the same plane. Two or more vectors to which no line
can be drawn parallel are said to be non-collinear. Three or
more vectors to which no plane can be drawn parallel are
said to be non-coplanar. Obviously any fwo vectors are
coplanar.

Any vector b collinear with a may be expressed as the
product of a and a positive or negative scalar which is the
ratio of the magnitude of b to that of a. The sign is positive
when b and a have the same direction ; negative, when they
have opposite directions. If then 0.4 = a, the vector r drawn
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from the origin O to any point of the line 04 produced in
either direction is

r=2z8. (¢))
If = be a variable scalar parameter this equation may there-
fore be regarded as the (vector) equation of all points in the
line 0 4. Let now B be any point not

upon the line 04 or that line produced —%F—=—
in either direction (Fig. 5). "\ :r

Let 0B =b. The vector b is surely \ .
not of the form za. Draw through B F1g. 5.

a line parallel to 04 and let R be any
point upon it. The vector BR is collinear with a and is
consequently expressible as za. Hence the vector drawn
from O to R is -

or r=b+4+ za.

2)

This equation may be regarded as the (vector) equation of
all the points in the line which is parallel to a and of which
B is one point.

14] Any vector r coplanar with two non-collinear vectors
a and b may be resolved into two components parallel to a
and b respectively. This resolution may
be accomplished by constructing the par-
allelogram (Fig. 6) of which the sides are
parallel to a and b and of which the di-
agonal isr. Of these components one is
xza; the other, yb. =z and y are respec-
tively the scalar ratios (taken with the
proper sign) of the lengths of these components to the lengths
of aand b. Hence

Fic. 6.

r=za+yb &)}

is a typical form for any vector coplanar with a and b. If
several vectors ry, r,, r, --- may be expressed in this form as



16 VECTOR ANALYSIS

r,=z,a+yb
I,=2,8+ Yy b,

their sum r is then

r=r, +r,+r3+... =(z; +2,+23+...) 8
+ @+ Ytyst-.)d

This is the well-known theorem that the components of a
sum of vectors are the sums of the components of those
vectors. If the vector r is zero each of its components must
be zero. Consequently the one vector equation r=0 is
equivalent to the two scalar equations

z + 2+ 23+ ...=0

r=0, 3
Nty tyst...=0 )

15.] Any vector r in space may be resolved into three
components parallel to any three given non-coplanar vectors.
Let the vectors be a, b,
and c¢. The resolution
may then be accom-
plished by constructing
the parallelopiped (Fig.
7) of which the edges
are parallel to a, b, and
¢ and of which the di-
agonal is r. This par-
allelopiped may be
drawn easily by passing
three planes parallel re-
spectively to a and b, b and ¢, ¢ and a through the origin 0
of the vector r; and a similar set of three planes through its
terminus E. These six planes will then be parallel in pairs
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and hence form a parallelopiped. That the intersections of
the planes are lines which are parallel to a, or b, or ¢ is
obvious. The three components of r are za, ¥ b, and zc;
where z, y, and z are respectively the scalar ratios (taken with
the proper sign) of the lengths of these components to the
length of a, b, and ¢. Hence

r=za+yb+ze C))

is a typical form for any vector whatsoever in space. Several
vectors Ty, Iy, Iy . . . may be expressed in this form as

r,=za+y;b+20¢
I, =258+ ¥y b+ 250
r;=z3a+ y3 b+ 250

Their sum r is then

r=r,+r,+r,+-- =@ +2,+2,+--)a
+ @ty tys+--)b
+ @+t +--)e

If the vector r is zero each of its three components is zero.
Consequently the one vector equation r = 0 is equivalent to
the three scalar equations

xl+x2+x3+...=0
y1+y2+y3+---=0>r=0. ®)
21+ 2 +2,+ =0

Should the vectors all be coplanar with a and b, all the com-
ponents parallel to ¢ vanish. In this case therefore the above
equations reduce to those given before.

16.] If two equal vectors are expressed in terms of the
same three non-coplanar vectors, the corresponding scalar co-

efficients are equal.
2
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Let r=a'
r=zat+yb+zge
r=z'a+yb+7ec

Then z=a, y=y, z=12.

For r—r=0=(z—2)a+@—y)b+(z—2)ec

Hence z—2'=0, y—y' =0, z—2'=0.

But this would not be true if a, b, and ¢ were coplanar. In
that case one of the three vectors could be expressed in terms
of the other two as

c=ma+nb.

Then r =za+yb+ze=@+mz)a+ (y+n2)b,
r=za+yb+ze=(C +m2)a+ (¥ +n2)bh,
r—r'=[(+mz)— (@ +mz)]a,

+(y+n2)— (¥ +n2)]b=0.

Hence the individual components of r — r’ in the directions

a and b (supposed different) are zero.

Hence z+mz=uz"+mz

y+nz=y+nz.

But this by no means necessitates z, ¥, z to be equal respec-

tively to @/, %, 2. In a similar manner if a and b were col-

linear it is impossible to infer that their coefficients vanish
individually. The theorem may perhaps be stated as follows:

. In case two equal vectors are expressed in terms of one vector,

or two non-collinear wectors, or three non-coplanar wvectors, the

corresponding scalar coefficients are equal. But this is not ne-
cessarily true if the two vectors be collinear ; or the three vectors,
coplanar. This principle will be used in the applications

(Arts. 18 et seq.).

The Three Unat Vectors i, j, k.

17.] In the foregoing paragraphs the method of express-
ing vectors in terms of three given non-coplanar ones has been
explained. The simplest set of three such vectors is the rect-
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angular system familiar in Solid Cartesian Geometry. This
rectangular system may however be either of two very distinct
types. In one case (Fig. 8, first part) the Z-axis 1 Jies upon
that side of the X Y- plane on which rotation through a right
angle from the X-axis to the Y-axis appears counterclockwise
or positive according to the convention adopted in Trigonome-
try. This relation may be stated in another form. If the X-
axis be directed to the right and the Y-axis vertically, the
Z-axis will be directed toward the observer. Or if the X-
axis point toward the observer and the Y-axis to the right,
the Z-axis will point upward.  Still another method of state-

z

7
Right-handed Left-handed
Fic. 8.

ment is common in mathematical physics and engineering. If
a right-handed screw be turned from the JX-axis to the Y-
axis it will advance along the (positive) Z-azis. Such a sys-
tem of axes is called right-handed, positive, or counterclock-
wise.2 It is easy tosee that the Y-axis lies upon that side of
the Z X-plane on which rotation from the Z-axis to the X-
axis is counterclockwise ; and the X-axis, upon that side of

1 By the X-, Y-, or Zaxis the positive half of that axis is meant. The X Y-
plane means the plane which contains the X- and Y-axis, i.e., the plane z = 0.

2 A convenient right-handed system and one which isalways available consists
of the thumb, first finger, and second finger of the right hand. If the thumb and
first finger be stretched out from the palm perpendicular to each other, and if the

second finger be bent over toward the palm at right angles to first finger, a right-

handed system is formed by the fingers taken in the order thumb, first finger,
second finger.
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the Y Z-plane on which rotation from the Y-axis to the Z-
axis is counterclockwise. Thus it appears that the relation
between the three axes is perfectly symmetrical so long as the
same cyclic order X YZXY is observed. If a right-handed
screw is turned from one axis toward the next it advances
along the third.

In the other case (Fig. 8, second part) the Z-axis lies upon
that side of the X Y-plane on which rotation through a right
angle from the X-axis to the Y-axis appears clockwise or neg-
ative.  The Y-axis then lies upon that side of the ZX-plane
on which rotation from the Z-axis to the X-axis appears
clockwise and a similar statement may be made concerning
the X-axis in its relation to the ¥'Z-plane. In this case, too,
the relation between the three axes is symmetrical so long
as the same cyclic order Y Y ZX Y is preserved but it is just
the opposite of that in the former case. Ifa left-handed screw
is turned from one axis toward the next it advances along
the third. Hence this system is called left-handed, negative,
or clockwise.!

The two systems are not superposable. They are sym-
metric. One is the image of the other as seen in a
mirror. If the X-and Y-axes of the two different systems be
superimposed, the Z-axes will point in opposite directions.
Thus one system may be obtained from the other by reversing
the direction of one of the axes. A little thought will show
that if two of the axes be reversed in direction the system will
not be altered, but if all ¢three be so reversed it will be.

Which of the two systems be used, matters little. But in-
asmuch as the formul® of geometry and mechanics differ
slightly in the matter of sign, it is advisable to settle once for
all which shall be adopted. 1In this book the right-handed or
counterclockwise system will be invariably employed.

! A left-handed system may be formed by the left hand just as a right-handed
one was formed by the right.
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Definition: The three letters i, j, k will be reserved to de-
note three vectors of unit length drawn respectively in the
directions of the X-, Y-, and Z- axes of a right-handed rectan-
gular system.

In terms of these vectors, any vector may be expressed as

r=zi+yj+z2k (6)

The coefficients z, y, z are the ordinary Cartesian coordinates
of the terminus of r if its origin be situated at the origin of
coordinates, The components of r parallel to the X-, ¥-, and
Z-axes are respectively

zi, yj =k

The rotations about i from j to k, about j from k to i, and
about k from i to j are all positive.

By means of these vectors i, j, k such a correspondence is
established between vector analysis and the analysis in Car-
tesian covrdinates that it becomes possible to pass at will
from either one to the other. There is nothing contradic-
tory between them. On the contrary it is often desirable
or even necessary to translate the formul® obtained by
vector methods into Cartesian coordinates for the sake of
comparing them with results already known and it is
still more frequently convenient to pass from Cartesian
analysis to vectors both on account of the brevity thereby
obtained and because the vector expressions show forth the
intrinsic meaning of the formulz.

Applications

*18.] Problems in plane geometry may frequently be solved
easily by vector methods. Any two non-collinear vectors in
the plane may be taken as the fundamental ones in terms of
which all others in that plane may be expressed. The origin
may also be selected at pleasure. Often it is possible to
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make such an advantageous choice of the origin and funda-
mental vectors that the analytic work of solution is materially
simplified. The adaptability of the vector method is about
the same as that of oblique Cartesian coérdinates with differ-
ent scales upon the two axes.

Ezxample 1 : The line which joins one vertex of a parallelo-
gram to the middle point of an opposite side trisects the diag-
onal (Fig. 9).

Let A BCD be the parallelogram, BE the line joining the
vertex B to the middle point Z of the side

7 ¢ AD, B the point in which this line cuts the
g diagonal 4 C. To show AR is one third of
AC. Choose 4 as origin, 4 B and 4D as the
two fundamental vectors 8 and T. Then
AC is the sum of § and T. Let AE=R. To show

4

FiG. 9.

where z is the ratio of ZR to £B — an unknown scalar.

And R=y (8+T7T),
where y is the scalar ratio of AR to 4 C' to be shown equal
to é
1
Hence :T+2(8—3; D=y B +T)
or wS+%(l—w)T=yS+yT.

Hence, equating corresponding coefficients (Art. 16),

w=y,

%(l—z)=y-
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©O! gt

From which y=

Inasmuch as z is also % the line £B must be trisected as
well as the diagonal 4 C.

Ezample 2: 1f through any point within a triangle lines
be drawn parallel to the sides the sum of the ratios of these
lines to their corresponding sides is 2.

Let ABC be the triangle, B the point within it. Choose
4 as origin, 4 B and 4 C as the two fundamental vectors 8
and T. Let

AR=R=mS+nT. (@)

m 8 is the fraction of 4 B which is cut off by the line through
R parallel to AC. The remainder of 4 B must be the frac-
tion (1—m)S. Consequently by similar triangles the ratio of
the line parallel to 4 C to the line 4C itself is (1 — m).
Similarly the ratio of the line parallel to 4 B to the line 4 B
itself is (1 —n). Next express R in terms of 8 and T — 8 the
third side of the triangle. Evidently from (a)

R=(m+n)8+ n (T —8)

Hence (m + n) 8 is the fraction of 4 B which is cut off by the
line through R parallel to BC. Consequently by similar tri-
angles the ratio of this line to BC itself is (m + n). Adding
the three ratios

A—m)+ L—n)+m+n)=2,

and the theorem is proved.

Example 3: If from any point within a parallelogram lines
be drawn parallel to the sides, the diagonals of the parallelo-
grams thus formed intersect upon the diagonal of the given
parallelogram.

Let ABCD be a parallelogram, B a point within it, KM/
and Z N two lines through R parallel respectively to 4 B and
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AD, the points K, L, M, N lying upon the sides D 4, 4 B,
B, CD respectively. To show that the diagonals KN and
LM of the two parallelograms K RND and LBMR meet
on AC. Choose 4 as origin, A B and A4 D as the two funda-
mental vectors S and T. Let

R=AR=mS+n T,
and let P be the point of intersection of X'V with L.

Then N=KR+REN=mS+(1—n)T,
» N —

Hence P=nT+2[m8S+@A—-n)T)]
and P=mS+y[(1—m)S+naT]
Equating coefficients.

zm=m+y (1l —m)
yn=n+2z(1—n)
n

By solution, e |
. m
R

Substituting either of these solutions in the expression for P,

the result is

P=—""__ (54T,

T m+n—1
which shows that P is collinear with 4 (.

*19.] Problems in three dimensional geometry may be
solved in essentially the same manner as those in two dimen-
sions. In this case there are three fundamental vectors in
terms of which all others can be expressed. The method of
solution is analogous to that in the simpler case. Two
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expressions for the same vector are usually found. The co-
efficients of the corresponding terms are equated. In this way
the equations between three unknown scalars are obtained
from which those scalars may be determined by solution and
then substituted in either of the expressions for the required
vector. The vector method has the same degree of adapta-
bility as the Cartesian method in which oblique axes with
different scales are employed. The following examples like
those in the foregoing section are worked out not so much for
their intrinsic value as for gaining a familiarity with vectors.
Example 1: Let ABCD be a tetrahedron and P any
point within it. Join the vertices to P and produce the lines
until they intersect the opposite faces in 4’, B', ¢/, D'. To
show ‘
P4 PB  PC PD
a2 38 T 00 T oD
Choose A as origin, and the edges 4B, AC, AD as the
three fundamental vectors B, C, D. Let the vector 4 P be

P=AP=IB+mC+naD,
A=A44=k,P=k, ((B+mC+nD).
Also A=AA=4B+ B4.
The vector BA' is coplanar with BC = ¢ — B and BD =
D — B. Hence it may be expressed in terms of them.
A'=B+z,(C—B)+y (D—B).

Equating coefficients kym =z,

=

kin =y,
kyl=1—2;,—y4
Hence kl=_1__
l4+m+n
' _
and f—-‘i=k_1_1=1—(l+m+n).

44~ r
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In like manner AB'=2,C+y, D
and AB'=AB+ BB'=B+k, (P—B).
Hence z,C+ y,D=B+%,(!IB+mC+nD—B)
and 0=1+Fk, (I—1),
xg=kym,
Yo =kyn.
1
Hence k2=1——l
PB'" k-1
and 'B—E———-Tz——l.
In the same way it may be shown that
P PD'
Z,—O—,zmandD—D,=n

Adding the four ratios the result is
1—-(+m+n)+l+m+n=1.

Ezample 2: To find a line which passes through a given
point and cuts two given lines in space.

Let the two lines be fixed respectively by two points 4
and B, C and D on each. Let O be the given point. Choose
it as origin and let

A=04, B=0B, ¢C=0C, D=0D.
Any point P of 4 B may be expressed as
P=0P=04d+xzAB=A+z(B—A).
Any point @ of C'D may likewise be written
Q=00=0C+yCD=C+y (D—C).

If the points Pand @ lie in the same line through O, P and Q

are collinear That is
P-=-2Q
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Before it is possible to equate coefficients one of the four
vectors must be expressed in terms of the other three.

Let D=!A+mB+nC.
Then P=A+2(B—-A)
=2[C+y(lA+mB+ 2C—0C)].
Hence l—z=zyl,
x=zym,
O=z[1+y (»—-1)]
Hence e — g
l+m
_ 1
y=1=x
1—n
2 — .
l+m
Substituting in P and @
lA+mB
P=———»
l+m
nC—D
s n—1

Either of these may be taken as defining a line drawn from O
and cutting 4 B and CD.

Vector Relations independent of the Origin

20.] Ezample 1: To divide a line 4B in a given ratio

m : n (Fig. 10).
A

Choose any arbitrary point O as ” p
origin. Let 04 =A and 0B=B. 4 *_B
To find the vector P = 0P of which B

I Y . 0
the terminus P divides 4B in the Fre. 10.
ratio m : n.

= = m — m
= = =A+ —— (B—A).
PESOIR 0A+m+nAB +m+n( )
B
That is, P MACH B, %)

m+n
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The components of P parallel to A and B are in inverse ratio
to the segments AP and PB into which the line 4B is
divided by the point P. If it should so happen that P divided
the line A B externally, the ratio 4 P/ PB would be nega-
tive, and the signs of m and » would be opposite, but the
formula would hold without change if this difference of sign
in m and » be taken into account.

Erample2 : To find the point of intersection of the medians
of a triangle.

Choose the origin 0 at random. Let 4 BC be the given
triangle. LetO4 = A, OB=B,and 0C=C. Let 4", B',(C’
be respectively the middle points of the sides opposite the
vertices 4, B, C. Let M be the point of intersection of the
medians and M = OM the vector drawn to it. Then

mzm=o7+xﬂf=A+x[(B»‘A); W‘“]
and

M:0—7=O_B+yB_B'=B+y|:(C_B)‘;(A_B)].

Assuming that O has been chosen outside of the plane of the
triangle so that A, B, C are non-coplanar, corresponding coeffi-
cients may be equated.

1
1—$=§y,
1
—2-x=l—y,
1. _1
2*¥=3¥
Hence x=y=§.

Hence M=;-(A+B+C).
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The vector drawn to the median point of a triangle is equal
to one third of the sum of the vectors drawn to the vertices.

In the problems of which the solution has just been given
the origin could be chosen arbitrarily and the result is in-
dependent of that choice. Hence it is even possible to disre-
gard the origin entirely and replace the vectors A, B, C, etc.,
by their termini 4, B, C, etc. Thus the points themselves
become the subjects of analysis and the formula read

P=nA+mB
m4+n
and M= (4+B+0).

This is typical of a whole class of problems soluble by vector
methods. In fact any purely geometric relation between the
different parts of a figure must necessarily be independent
of the origin assumed for the analytic demonstration. In
some cases, such as those in Arts. 18, 19, the position of the
origin may be specialized with regard to some crucial point
of the figure so as to facilitate the computation ; but in many
other cases the generality obtained by leaving the origin un-
specialized and undetermined leads to a symmetry which
renders the results just as easy to compute and more easy
to remember.

Theorem : The necessary and sufficient condition that a
vector equation represent a relation independent of the origin
is that the sum of the scalar coefficients of the vectors on
one side of the sign of equality is equal to the sum of the
coefficients of the vectors upon the other side. Or if all the
terms of a vector equation be transposed to one side leaving
zero on the other, the sum of the scalar coefficients must
be zero.

Let the equation written in the latter form be

aA+b0B+¢C+dD+.--=0.
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Change the origin from O to O’ by adding a constant vector
R = 00’ to each of the vectors A, B, C, D---- The equation
then becomes
a(A+R)+b5(B+R)+¢(C+R)+d(D+R)+---=0
=aA+bB+c¢C+dD+.--+R(a+b+c+d+..).

If this is to be independent of the origin the coefficient of R
must vanish. Hence

a+b+c+d+---=0.

That this condition is fulfilled in the two examples cited
is obvious.

nA+mB
= e=e
_n m
_m+n m+n
If M =;(A+B+0C)
1 1 1
1=§+§+§.

*21.] The necessary and sufficient condition that two
vectors satisfy an equation, in which the sum of the scalar
coefficients is zero, is that the vectors be equal in magnitude
and in direction.

First let aA+bB=0
and a+b=0.

It is of course assumed that not both the coefficients ¢ and b
vanish. If they did the equation would mean nothing. Sub-
stitute the value of a obtained from the second equation into
the first.

. —bA+0bB=0.

Hence A=3B.
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Secondly if A and B are equal in magnitude and direction

the equation
A—B=0

subsists between them. The sum of the coefficients is zero.

The necessary and sufficient condition that three vectors
satisfy an equation, in which the sum of the scalar coefficients
is zero, is that when drawn from a common origin they termi-
nate in the same straight line.!

First let aA+bB+c¢C=0
and a+b+4+c¢=0.

Not all the coefficients «,?,¢, vanish or the equations
would be meaningless. Let ¢ be a non-vanishing coefficient.
Substitute the value of @ obtained from the second equation
into the first.

—(b+c)A+02B+cC=0,
or ¢(C—A)=0(A—B).

Hence the vector which joins the extremities of C and A is
collinear with that which joins the extremities of A and B.
Hence those three points 4, B, C' lie on a line. Secondly
suppose three vectors A= 04,B = 0B,C = 0C drawn from
the same origin O terminate in a straight line. Then the

vectors e .
AB=B—Aand 40C=C—A

are collinear. Hence the equation
(B—A)=z(C—A)

subsists. The sum of the coefficients on the two sides is
the same.

The necessary and sufficient condition that an equation,
in which the sum of the scalar coefficients is zero, subsist

! Vectors which have a common origin and terminate in one line are called by
Hamilton “termino-collinear.”
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between four vectors, is that if drawn from a common origin
they terminate in one plane.l

First let aA+bB+c¢cC+dD=0
and a+b+c+d=0.

Let d be a non-vanishing coefficient. Substitute the value
of a obtained from the last equation into the first.

—(b+c+d)A+bB+¢C+dD=0,
or d(D—A)=b(A—B)+c(A—-0C).

The line 4D is coplanar with 4 B and 4 C. Hence all four
termini 4, B, C, D of A, B,C,D lie in one plane. Secondly
suppose that the termini of A, B, C, D do lie in one plane.
Then E:D—A,IE’:C—A, and 4B =B — A are co-
planar vectors. One of them may be expressed in terms of
the other two. This leads to the equation

IB—A)+m(C—A)+n(D—A)=0,

where I, m, and n are certain scalars. The sum of the coeffi-
cients in this equation is zero.

Between any five vectors there exists one equation the sum
of whose coefficients is zero.

Let A,B,C,D,E be the five given vectors. Form the

differences
E—A, E-B E—-C E-D

One of these may be expressed in terms of the other three
— or what amounts to the same thing there must exist an
equation between them.

k(E—A)+1(E~B)+m (E—C)+n(E—D)=0.
The sum of the coefficients of this equation is zero.

! Vectors which have a common origin and terminate in one plane are called
by Hamilton “ termino-complanar.”
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*22] The results of the foregoing section afford simple
solutions of many problems connected solely with the geo-
metric properties of figures. Special theorems, the vector
equations of lines and planes, and geometric nets in two and
three dimensions are taken up in order.

Ezxample 1: 1If a line be drawn parallel to the base of a
triangle, the line which joins the opposite vertex to the inter-
section of the diagonals of the
trapezoid thus formed bisects the
base (Fig. 11).

Let ABC be the triangle, £D
the line parallel to the base CB,
@ the point of intersection of the
diagonals £B and D C of the tra-
pezoid CBDE, and F the intersec-
tion of 4@ with CB. To show
that F bisects CB. Choose the
origin at random. Let the vectors drawn from it to the
various points of the figure be denoted by the corresponding
Clarendons as usual. Then since ED is by hypothesis paral-
lel to C B, the equation

E—-D=n2(C—B)

holds true. The sum of the coefficients is evidently zero as
it should be. Rearrange the terms so that the equation

takes on the form
E—2C=D—nB.

The vector E — nCis coplanar with E and C. It must cut
the line £C. The equal vector D — 2B is coplanar with D
and B. It must cut the line DB. Consequently the vector
represented by either side of this equation must pass through
the point 4. Hence

E—nC=D—nB=xA.
3
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However the points E, C, and 4 lie upon the same straight
line. Hence the equation which connects the vectors E,C,
and A must be such that the sum of its coefficients is zero.

This determines z as 1 — =.
Hence E—n2C=D—2B=(1—n)A
By another rearrangement and similar reasoning
E+2B=D+2C=(1+n)G
Subtract the first equation from the second:
n(B+C=1A+2)6—-A—n)A.

This vector cuts BC and AG. It must therefore be a
multiple of F and such a multiple that the sum of the coeffi-
cients of the equations which connect B,C, and F or @A,
and F shall be zero.

Hence n(B+C)=1A+2)G— 1 —-n)A=22F.
Hence F= I?-}-_C
2

and the theorem has been proved. The proof has covered
considerable space because each detail of the reasoning has
been given. In reality, however, the actual analysis has con-
sisted of just four equations obtained simply from the first.

Ezample 2: To determine the equations of the line and
plane.

Let the line be fixed by two points 4 and B upon it. Let
P be any point of the line. Choose an arbitrary origin.
The vectors A, B, and P terminate in the same line. Hence

aA+bB+pP=0
and a+b+p=0.
2A+bB

Therefore P=
a+b
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For different points P the scalars a and b have different
values. They may be replaced by z and y, which are used
more generally to represent variables. Then

P:M_.
z+y

Let a plane be determined by three points 4, B, and C.
Let P be any point of the plane. Choose an arbitrary origin.
The vectors A, B, C, and P terminate in one plane. Hence

aA+b5B+c¢C+pP=0

and a+b+c+p=0.
Therefore P= W.
a+b+c

As a, b, ¢, vary for different points of the plane, it is more
customary to write in their stead z, ¥, 2.

P_2A+yB+zC.
- r4+y+z

Example 3: The line which joins one vertex of a com-
plete quadrilateral to the intersection of two diagonals
divides the opposite sides har-
monically (Fig. 12). ’

Let A4, B, C, D be four vertices
of a quadrilateral. Let 4 B meet
CD in a fifth vertex %, and 4D
meet BC in the sixth vertex F.
Let the two diagonals 4C and
BD intersect in @. To show
that F@ intersects 4 B in a point £’ and CD in a point E”
such that the lines 4B and CD are divided internally at
E' and E” in the same ratio as they are divided externally
by E. That is to show that the cross ratios

(4B-EE)=(CD.EE")=—1.

Fie. 12.
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Choose the origin at random. The four vectors A, B, C, D

drawn from it to the points 4, B, 0, D terminate in one

plane. Hence
aA+bB+¢C+dD=0

and a4+bdb+c+d=0.
Separate the equations by transposing two terms:

aA+c¢C=— (B + dD),
a+c=—(b+d).

aA+cC_bB+dD

Divide : G= ate = b¥d

In like manner F=a2132=b’;izc.

o S oty

5 (a+c)i:fia+d)F=c(;:¢;D=E”. @

Separate the equations again and divide:

4A+bB c¢C+dD
— = E,
g e+ d ®)

Hence E divides 4 B in the ratio a:b and CD in the ratio
¢ :d. But equation (a) shows that E" divides CD in the
ratio —c:d. Hence £ and E" divide CD internally and
externally in the same ratio. Which of the two divisions is
internal and which external depends upon the relative signs
of ¢ and d. If they have the same sign the internal point
of division is E; if opposite signs, it is £”. In a similar way
E' and E may be shown to divide 4 B harmonically.

Ezxample 4 : To discuss geometric nets.

By a geometric net in a plane is meant a figure composed
of points and straight lines obtained in the following manner.
Start with a certain number of points all of which lie in one
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plane. Draw all the lines joining these points in pairs.
These lines will intersect each other in a number of points.
Next draw all the lines which connect these points in pairs.
This second set of lines will determine a still greater number
of points which may in turn be joined in pairs and so on.
The construction may be kept up indefinitely. At each step
the number of points and lines in the figure increases.
Probably the most interesting case of a plane geometric net is
that in which four points are given to commence with.
Joining these there are six lines which intersect in three
points different from the given four. Three new lines may
now be drawn in the figure. These cut out six new points.
From these more lines may be obtained and so on.
To treat this net analytically write down the equations

aA+b0B+¢cC+dD=0 ©)
and a+b+c+d=0

which subsist between the four vectors drawn from an unde-
termined origin to the four given points. From these it is

possible to obtain
E_aA-{-bB _¢C+dD

a+bd c+d,
aA+¢cC bB+dD
F= = ’
a+c b+d
aA+dD bBB+cC
G= = ’
a+d b+e¢

by splitting the equations into two parts and dividing. Next
four vectors such as A, D, E, F may be chosen and the equa-

tion the sum of whose coefficients is zero may be determined.
This would be

—aA+dD+ (a+0)E+ (a+c)F=0.

By treating this equation as (¢) was treated new points may
be obtained.
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_—aA+dD_(a+b)E+(a+c)F,

= —a+d 2a +b+c
I_—aA+(a+b)E_dD+(a+c)F’
- b T a+4c+d
K__—-aA+(a+c)F___ aD + (a+b)E.
- c T a+4b+d

Equations between other sets of four vectors selected from
A,B,C,D,E,F,G may be found; and from these more points
obtained. The process of finding more points goes forward
indefinitely. A fuller account of geometric nets may be
found in Hamilton’s ¢ Elements of Quaternions,” Book L.

As regards geometric nets in space just a word may be
said. Five points are given. From these new points may be
obtained by finding the intersections of planes passed through
sets of three of the given points with lines connecting the
remaining pairs. The construction may then be carried for-
ward with the points thus obtained. The analytic treatment
is similar to that in the case of plane nets. There are
five vectors drawn from an undetermined origin to the given
five points. Between these vectors there exists an equation
the sum of whose coefficients is zero. This equation may be

separated into parts as before and the new points may thus
be obtained.

If aA+bB+ ¢cC+dD+e¢eE=0
and a+b+ec+d+e=0,

then F=aA+bB=cC+dD+eE,
a+b c+d+e

H_%A+cC_BB+dD+E

T a+b b+d+ec

are two of the points and others may be found in the same
way. Nets in space are also discussed by Hamilton, loc. cit.
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Centers of Gravity

* 23.] The center of gravity of a system of particles may
be found very easily by vector methods. The two laws of
physics which will be assumed are the following:

1°. The center of gravity of fwo masses (considered as
situated at points) lies on the line connecting the two masses
and divides it into two segments which are inversely pro-
portional to the masses at the extremities.

2°. In finding the center of gravity of two systems of
masses each system may be replaced by a single mass equal
in magnitude to the sum of the masses in the system and
situated at the center of gravity of the system.

Given two masses @ and b situated at two points 4 and B.
Their center of gravity & is given by

G=aA+bB

a+bd ’ ®)

where the vectors are referred to any origin whatsoever.
This follows immediately from law 1 and the formula (7)
for division of a line in a given ratio.

The center of gravity of three masses a, b, ¢ situated at the
three points 4, B, € may be found by means of law 2. The
masses ¢ and b may be considered as equivalent to a single
mass a + b situated at the point

aA+bB
a+b
A+0bB
Th = SRT OB 50
en G = (a + d) T +c
a+b+ec

_aA+bB+cC

Hence
a+b+c
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Evidently the center of gravity of any number of masses
a, b, ¢, dy ... situated at the points 4, B, C, D, ... may
be found in a similar manner. The result is

q_0ATVB+cC+dD+ .
- a+b+c+d+---

(9)

Theorem 1. The lines which join the center of gravity of a
triangle to the vertices divide it into three triangles which
are proportional to the masses at the op-

posite vertices (Fig. 13). Let 4, B, C

’ be the vertices of a triangle weighted

4 L—7—~—\r with masses a, b, c. Let G be the cen-
C

ter of gravity. Join 4, B, C to G and
produce the lines until they intersect
the opposite sides in A', B', C' respectively. To show that
the areas

GBC:GCA:GAB:ABC=a:b:c:a+b+ec.

Fic. 13.

The last proportion between 4BC and a + b + ¢ comes
from compounding the first three. It is, however, useful in
the demonstration.
ABC 44 AG GA b+ 1
GBC™ G4 eatga = o T

ABC__a+b+c

Hence

GBC a
In a similar manner BCA _a+b+e
GCA4A "~ b ’
CAB a+b+ec
and _ )
GAB ¢

Hence the proportion is proved.
Theorem 2: The lines which join the center of gravity of
a tetrahedron to the vertices divide the tetrahedron into four
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tetrahedra which are proportional to the masses at the oppo-
site vertices.

Let A4, B, C, D be the vertices of the tetrahedron weighted
respectively with weights a, b, ¢, d. Let @ be the center of
gravity. Join 4, B, C, D to G and produce the lines until
they meet the opposite faces in 4', B, C', D'. To show that
the volumes

BCDG:CDAG:DABG:ABCG:ABCD
=a:b:c:d:a+b+c+d.
BO’DA__AA’_AG G’A’_b+c+d

BCDG—GA’_GA'+GA’— c
a+b+c+d
=

In like manner CDAG a+b+c+d

oLe ® CDAB" p

i .DABG_a+b+c+d
DABC ™~ c ’
and ABC’G__a+b+c+d
ABCD ™~ d 2

which proves the proportion.

* 24] By a suitable choice of the three masses, a, b, ¢ lo-
cated at the vertices 4, B, C, the center of gravity ¢ may
be made to coincide with any given point P of the triangle.
If this be not obvious from physical considerations it cer-
tainly becomes so in the light of the foregoing theorems.
For in order that the center of gravity fall at P, it is only
necessary to choose the masses @, b, ¢ proportional to the
areas of the triangles PBC, PC A, and P A B respectively.
Thus not merely one set of masses a, b, ¢ may be found, but
an infinite number of sets which differ from each other only
by a common factor of proportionality. These quantities
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a, b, ¢ may therefore be looked upon as covrdinates of the
points P inside of the triangle 4 BC. To each set there
corresponds a definite point P, and to each point P there
corresponds an infinite number of sets of quantities, which
however do not differ from one another except for a factor
of proportionality.

To obtain the points P of the plane 4 B C which lie outside
of the triangle 4 B(C one may resort to the conception of
negative weights or masses. The center of gravity of the
masses 2 and —1 situated at the points 4 and B respectively
would be a point G dividing the line 4 B externally in the
ratio 1: 2. That is

GA:GB=1:2.

Any point of the line 4 B produced may be represented by
a suitable set of masses a, b which differ in sign. Similarly
any point P of the plane 4 B(C may be represented by a
suitable set of masses a, b, ¢ of which one will differ in sign
from the other two if the point P lies outside of the triangle
ABC. Inasmuch as only the ratios of a, b, and ¢ are im-
portant two of the quantities may always be taken positive.

The idea of employing the masses situated at the vertices
as coordinates of the center of gravity is due to Mobius and
was published by him in his book entitled ¢ Der barycentrische
Calcul,” in 1827. This may be fairly regarded as the starting
point of modern analytic geometry.

The conception of negative masses which have no existence
in nature may be avoided by replacing the masses at the
vertices by the areas of the triangles GBC, GCA, and
G A B to which they are proportional. The coordinates of
a point P would then be three numbers proportional to the
areas of the three triangles of which P is the common vertex ;
and the sides of a given triangle 4 B C, the bases. The sign
of these areas is determined by the following definition.
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Definition: The area ABC of a triangle is said to be
positive when the vertices 4, B, C follow each other in the
positive or counterclockwise direction upon the circle de-
seribed through them. The area is said to be negative when
the points follow in the negative or clockwise direction.

Cyclic permutation of the letters therefore does not alter
the sign of the area.

ABC=BCA=CAB.

Interchange of two letters which amounts to a reversal of
the cyclic order changes the sign.

ACB=BAC=CBA=—4BC.
If P be any point within the triangle the equation
PAB+PBC+PCA=A4BC

must hold. The same will also hold if P be outside of the
triangle provided the signs of the areas be taken into con-
sideration. The areas or three quantities proportional to
them may be regarded as covrdinates of the point P.

The extension of the idea of ¢ barycentric” coovrdinates to
space is immediate. The four points 4, B, C, D situated at
the vertices of a tetrahedron are weighted with mass a, b, ¢, d
respectively. The center of gravity G is represented by
these quantities or four others proportional to them. To
obtain points outside of the tetrahedron negative masses
may be employed. Or in the light of theorem 2, page 40,
the masses may be replaced by the four tetrahedra which
are proportional to them. Then the idea of negative vol-
umes takes the place of that of negative weights. As this
idea is of considerable importance later, a brief treatment of
it here may not be out of place.

Definition: The volume 4 BCD of a tetrahedron is said
to be positive when the triangle 4 B (C appears positive to
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the eye situated at the point D. The volume is negative
if the area of the triangle appear negative.

To make the discussion of the signs of the various
tetrahedra perfectly clear it is almost necessary to have a
solid model. A plane drawing is scarcely sufficient. It is
difficult to see from it which triangles appear positive and
which negative. The following relations will be seen to
hold if a model be examined.

The interchange of two letters in the tetrahedron 4 B CD
changes the sign.

ACBD=CBAD=BACD=DBC(CA
=ADCB=ABDC=—ABCD.

The sign of the tetrahedron for any given one of the pos-
sible twenty-four arrangements of the letters may be obtained
by reducing that arrangement to the order 4 B C D by
means of a number of successive interchanges of two letters.
If the number of interchanges is even the sign is the same
as that of 4 BC D, if odd, opposite. Thus

CADB=—CABD=+ACBD=—-A4ABCD.
If P is any point inside of the tetrahedron 4 BCD the
equation
ABCP—BCDP+ CDAP—DABP=ABCD
holds good. It still is true if P be without the tetrahedron
provided the signs of the volumes be taken into considera-
tion. The equation may be put into a form more symmetri-

cal and more easily remembered by transposing all the terms
to one number. Then

ABCD+ BCDP+ CDPA+DPAB+PABC=0.
The proportion in theorem 2, page 40, does not hold true
if the signs of the tetrahedra be regarded. It should read

BCDG:CDGA:DGAB:GABC:ABCD
=a:b:c:d:a+b+c+d.
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If the point G lies inside the tetrahedron a, b, ¢, d repre-
sent quantities proportional to the masses which must be
located at the vertices 4, B, C, D respectively if @ is to be the
center of gravity. If G lies outside of the tetrahedron they may
still be regarded as masses some of which are negative — or
perhaps better merely as four numbers whose ratios determine
the position of the point G. In this manner a set of “bary-
centric” coovrdinates is established for space.

The vector P drawn from an indeterminate origin to any
point of the plane 4 B is (page 35)

p_"A+yB+:2C

z+ Y+ 2
Comparing this with the expression
aA+bB+cC
G=-—
a+b+c

it will be seen that the quantities , ¥,z are in reality nothing
more nor less than the barycentric covrdinates of the point P
with respect to the triangle 4 BC. In like manner from

equation
P__:cA+le-i—zC+wl)

z+y+z4+w

which expresses any vector P drawn from an indeterminate
origin in terms of four given vectors A, B, C, D drawn from
the same origin, it may be seen by comparison with

_aA+bB+cC+dD
- a+b+c+d

that the four quantities z, y, 2, w are precisely the bary-
centric covrdinates of P, the terminus of P, with respect to
the tetrahedron 4 BCD. Thus the vector methods in which
the origin is undetermined and the methods of the ¢ Bary-
centric Calculus” are practically co-extensive.

It was mentioned before and it may be well to repeat here

G
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that the origin may be left wholly out of consideration and
the vectors replaced by their termini. The vector equations
then become point equations

p_Z A+yB+2C

z+Yy+z2
zrA+yB+20+wD

=T rty+eztw
This step brings in the points themselves as the objects of
analysis and leads still nearer to the « Barycentrische Caleul”
of Mobius and the “Ausdehnungslehre” of Grassmann.

and P

The Use of Vectors to denote Areas

25.] Definition : An area lying in one plane MN and
bounded by a continuous curve PQR which nowhere cuts
itself is said to appear positive from the point O when the

letters PQR follow each
A4 O other in the counterclockwise
n or positive order; negative,

Y P when they follow in the
negative or clockwise order
(Fig. 14).

R
M It is evident that an area
o] can have no determined sign
Fic. 14. per se, but only in reference

to that direction in which its
boundary is supposed to be traced and to some point O out-
side of its plane. For the area P R @ is negative relative to
P QR; and an area viewed from O is negative relative to the
same area viewed from a point O’ upon the side of the plane
opposite to 0. A circle lying in the X Y-plane and described
in the positive trigonometric order appears positive from every
point on that side of the plane on which the positive Z-axis
lies, but negative from all points on the side upon which
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the negative Z-axis lies. For this reason the point of view
and the direction of description of the boundary must be kept
clearly in mind.

Another method of stating the definition is as follows: If
a person walking upon a plane traces out a closed curve, the
area enclosed is said to be positive if it lies upon his left-
hand side, negative if upon his right. It is clear that if two
persons be considered to trace out together the same curve by
walking upon opposite sides of the plane the area enclosed
will lie upon the right hand of one and the left hand of the
other. To one it will consequently appear positive; to the
other, negative. That side of the plane upon which the area
seems positive is called the positive side; the side upon
which it appears negative, the negative side. This idea is
familiar to students of electricity and magnetism. If an
electric current flow around a closed plane curve the lines of
magnetic force through the circuit pass from the negative to
the positive side of the plane. A positive magnetic pole
placed upon the positive side of the plane will be repelled by
the circuit.

A plane area may be looked upon as possessing more than
positive or negative magnitude. It may be considered to
pussess direction, namely, the direction of the normal to the
positive side of the plane in which it lies. Hence a plane
areais a vector quantity. The following theorems concerning
areas when looked upon as vectors are important.

Theorem 1 : If a plane area be denoted by a vector whose
magnitude is the numerical value of that area and whose
direction is the normal upon the positive side of the plane,
then the orthogonal projection of that area upon a plane
will be represented by the component of that vector in the
direction normal to the plane of projection (Fig. 15).

Let the area 4 lie in the plane MN. Let it be projected
orthogonally upon the plane M'N'. Let M N and M'N' inter-
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sect in the line 7 and let the diedral angle between these
two planes be z. Consider first a rectangle PQES in MN
whose sides, P@, RS and QR, SP are respectively parallel
and perpendicular to the line /. This will project into a
rectangle P'Q'R'S' in M'N'. The sides P'Q’ and R'S’
will be equal to PQ and RS; but the sides Q' R’ and S'P’
will be equal to @R and SP multiplied by the cosine of z,
the angle between the planes. Consequently the rectangle

P'Q'R'S'=PQRS cos z.

FiG. 15.

Hence rectangles, of which the sides are respectively
parallel and perpendicular to /, the line of intersection of the
two planes, project into rectangles whose sides are likewise
respectively parallel and perpendicular to ! and whose area s
equal to the area of the original rectangles multiplied by the
cosine of the angle between the planes.

From this it follows that any area 4 is projected into an
area which is equal to the given area multiplied by the cosine
of the angle between the planes. For any area 4 may be di-
vided up into a large number of small rectangles by drawing a
series of lines in MV parallel and perpendicular to the line .



ADDITION AND SCALAR MULTIPLICATION 49

Each of these rectangles when projected is multiplied by the
cosine of the angle between the planes and hence the total
area is also multiplied by the cosine of that angle. On the
other hand the component A’ of the vector A, which repre-
sents the given area, in the direction normal to the plane
M'N' of projection is equal to the total vector A multiplied
by the cosine of the angle between its direction which is
the normal to the plane M N and the normal to M'N’. This
angle is z; for the angle between the normals to two planes
is the same as the angle between the planes. The relation
between the magnitudes of A and A’ is therefore

A'= A4 cos z,

which proves the theorem.

26.] Definition: Two plane areas regarded as vectors are
said to be added when the vectors which represent them are
added.

A vector area is consequently the sum of its three com-
ponents obtainable by orthogonal projection upon three
mutually perpendicular planes. Moreover in adding two
areas each may be resolved into its three components, the
corresponding components added as scalar quantities, and
these sums compounded as vectors into the resultant area.
A generalization of this statement to the case where the three
planes are not mutually orthogonal and where the projection
is oblique exists.

A surface made up of several plane areas may be repre-
sented by the vector which is the sum of all the vectors
representing those areas. In case the surface be looked upon
as forming the boundary or a portion of the boundary of a
solid, those sides of the bounding planes which lie outside of
the body are conventionally taken to be positive. The vec-
tors which represent the faces of solids are always directed
out from the solid, not into it.

4
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Theorem 2 : The vector which represents a closed polyhedral
surface is zero.

This may be proved by means of certain considerations of
hydrostatics. Suppose the polyhedron drawn in a body of
fluid assumed to be free from all external forces, gravity in-
cluded.! The fluid is in equilibrium under its own internal
pressures. The portion of the fluid bounded by the closed
surface moves neither one way nor the other. Upon each face
of the surface the fluid exerts a definite force proportional
to the area of the face and normal to it. The resultant of all
these forces must be zero, as the fluid is in equilibrium. Hence
the sum of all the vector areas in the closed surface is zero.

The proof may be given in a purely geometric manner.
Consider the orthogonal projection of the closed surface upon
any plane. This consists of a double area. The part of the
surface farthest from the plane projects into positive area ;
the part nearest the plane, into negative area. Thus the
surface projects into a certain portion of the plane which is
covered twice, once with positive area and once with negative.
These cancel each other. Hence the total projection of a
closed surface upon a plane (if taken with regard to sign) is
zero. But by theorem 1 the projection of an area upon a
plane is equal to the component of the vector representing
that area in the direction perpendicular to that plane. Hence
the vector which represents a closed surface has no component
along the line perpendicular to the plane of projection. This,
however, was any plane whatsoever. Hence the vector is
zZero.

The theorem has been proved for the case in which the
closed surface consists of planes. In case that surface be

! Such a state of affairs is realized to all practical purposes in the case of a
polyhedron suspended in the atmosphere and consequently subjected to atmos-
pheric pressure. The force of gravity acts but is counterbalanced by the tension
in the suspending string.
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curved it may be regarded as the limit of a polyhedral surface
whose number of faces increases without limit. Hence the
vector which represents any closed surface polyhedral or
curved is zero. If the surface be not closed but be curved it
may be represented by a vector just as if it were polyhedral.
That vector is the limit ! approached by the vector which
represents that polyhedral surface of which the curved surface
is the limit when the number of faces becomes indefinitely
great.

SuMMARY oF CHAPTER I

A vector is a quantity considered as possessing magnitude
and direction. Equal vectors possess the same magnitude
and the same direction. A vector is not altered by shifting it
parallel to itself. A null or zero vector is one whose mag-
nitude is zero. To multiply a vector by a positive scalar
multiply its length by that scalar and leave its direction
unchanged. To multiply a vector by a negative scalar mul-
tiply its length by that scalar and reverse its direction.

Vectors add according to the parallelogram law. To subtract
a vector reverse its direction and add. Addition, subtrac-
tion, and multiplication of vectors by a scalar follow the same
laws as addition, subtraction, and multiplication in ordinary
algebra. A vector may be resolved into three components
parallel to any three non-coplanar vectors. This resolution
can be accomplished in only one way.

r=za+yb+ze 4)

The components of equal vectors, parallel to three given
non-coplanar vectors, are equal, and conversely if the com-
ponents are equal the vectors are equal. The three unit
vectors i,j,k form a right-handed rectangular system. In

1 This limit exists and is unique. It is independent of the method in which
the polyhedral surface approaches the curved surface.
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terms of them any vector may be expressed by means of the
Cartesian coordinates z,¥, 2.

r=zi+yj+ 2k (6)

Applications. The point which divides a line in a given
ratio m :n is given by the formula

p_rAt+tmB
m+n

(M

The necessary and sufficient condition that a vector equation
represent a relation independent of the origin is that the sum
of the scalar coefficients in the equation be zero. Between
any four vectors there exists an equation with scalar coeffi-
cients. If the sum of the coefficients is zero the vectors are
termino-coplanar. If an equation the sum of whose scalar
coefficients is zero exists between three vectors they are
termino-collinear. The center of gravity of a number of
masses a,b,c ... situated at the termini of the vectors
A, B, C ... supposed to be drawn from a common origin is
given by the formula

G__aA+bB+c('.!+- c
T a4btedeor

)

A vector may be used to denote an area. If the area is
plane the magnitude of the vector is equal to the magnitude
of the area, and the direction of the vector is the direction of
the normal upon the positive side of the plane. The vector
representing a closed surface is zero.

ExERCISES ON CHAPTER I

1. Demonstrate the laws stated in Art. 12.
2. A triangle may be constructed whose sides are parallel
and equal to the medians of any given triangle.
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3. The six points in which the three diagonals of a com-
plete quadrangle ! meet the pairs of opposite sides lie three
by three upon four straight lines.

4. If two triangles are so situated in space that the three
points of intersection of corresponding sides lie on a line, then
the lines joining the corresponding vertices pass through a
common point and conversely.

5. Given a quadrilateral in space. Find the middle point
of the line which joins the middle points of the diagonals.
Find the middle point of the line which joins the middle
points of two opposite sides. Show that these two points are
the same and coincide with the center of gravity of a system
of equal masses placed at the vertices of the quadrilateral.

6. If two opposite sides of a quadrilateral in space be
divided proportionally and if two quadrilaterals be formed by
joining the two points of division, then the centers of gravity
of these two quadrilaterals lie on a line with the center of
gravity of the original quadrilateral. By the center of gravity
is meant the center of gravity of four equal masses placed at
the vertices. Can this theorem be generalized to the case
where the masses are not equal? :

7. The bisectors of the angles of a triangle meet in a
point.

8. If the edges of a hexahedron meet four by four in three
points, the four diagonals of the hexahedron meet in a point.
In the special case in which the hexahedron is a parallelopiped
the three points are at an infinite distance

9. Prove that the three straight lines through the middle
points of the sides of any face of a tetrahedron. each parallel
to the straight line connecting a fixed point P with the mid-
dle point of the opposite edge of the tetrahedron, meet in a

1 A complete quadrangle cousists of the six straight lines which may be passed
through four points no three of which are collinear. The diagonals are the lines
which join the points of intersection of pairs of sides



54 VECTOR ANALYSIS

point £ and that this point is such that P passes through
and is bisected by the center of gravity of the tetrahedron.

10. Show that without exception there exists one vector
equation with scalar coefficients between any four given
vectors A, B, C, D.

11. Discuss the conditions imposed upon three, four, or
five vectors if they satisfy fwo equations the sum of the co-
efficients in each of which is zero.



CHAPTER II
DIRECT AND SKEW PRODUCTS OF VECTORS

Products of Two Vectors

27.] THE operations of addition, subtraction, and scalar
multiplication have been defined for vectors in the way
suggested by physics and have been employed in a few
applications. It now becomes necessary to introduce two
new combinations of vectors. These will be called products
because they obey the fundamental law of products; <. e., the
distributive law which states that the product of A into the
sum of B and C is equal to the sum of the products of A into
B and A into C.

Definition: The direct product of two vectors A and B is
the scalar quantity obtained by multiplying the product of
the magnitudes of the vectors by the cosine of the angle be-
tween them.

The direct product is denoted by writing the two vectors
with a dot between them as

A.B.

This is read A dot B and therefore may often be called the
dot product instead of the direct product. It is also called
the scalar product owing to the fact that its value is sca-
lar. If 4 be the magnitude of A and B that of B, then by
definition

A.B=4 Bcos (A,B). €H)
Obviously the direct product follows the commutative law

A-B=B.A @)
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If either vector be multiplied by a scalar the product is
multiplied by that scalar. That is

(zxA)B=A.(zB)=x(A-B).

In case the two vectors A and B are collinear the angle be-
tween them becomes zero or one hundred and eighty degrees
and its cosine is therefore equal to unity with the positive or
negative sign. Hence the scalar product of two parallel
vectors is numerically equal to the product of their lengths.
The sign of the product is positive when the directions of the
vectors are the same, negative when they are opposite. The
product of a vector by itself is therefore equal to the square

of its length
A.A=A42 3)

Consequently if the product of a vector by itself vanish the
vector is a null vector.

In case the two vectors A and B are perpendicular the
angle between them becomes plus or minus ninety degrees
and the cosine vanishes. Hence the product A « B vanishes.
Conversely if the scalar product A « B vanishes, then

A B cos (A,B) = 0.

Hence either 4 or B or cos (A, B) is zero, and either the
vectors are perpendicular or one of them is null. Thus the
condition for the perpendicularity of two vectors, neither of
which vanishes, is A « B = 0.

28.] The scalar products of the three fundamental unit
vectors i, j, k are evidently

i'i“-—'j'j:kok: (4)

11}
irj=j-k=k.i=0.

If more generally a and b are any two unit vectors the

product
a+b=cos (a,b).
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Thus the scalar product determines the cosine of the angle
between two vectors and is in a certain sense equivalent to
it. For this reason it might be better to give a purely
geometric definition of the product rather than one which
depends upon trigonometry. This is easily accomplished as
follows: If a and b are two unit vectors, a«b is the length
of the projection of either upon the other. If more generally
A and B are any two vectors A « B is the product of the length
of either by the length of projection of the other upon it.
From these definitions the facts that the product of a vector
by itself is the square of its length and the product of two
perpendicular vectors is zero follow immediately. The trigo-
nometric definition can also readily be deduced.

The scalar product of two vectors will appear whenever the
cosine of the included angle is of importance. The following
examples may be cited. The projection of a vector B upon a
vector A is
A.B A= AB
A-A" 44
where a is a unit vector in the direction of A. If A is itself a
unit vector the formula reduces to

(A-B) A= Bcos (A,B) A.
If A be a constant force and B a displacement the work done
by the force A during the displacement is A+B. If A repre-
sent a plane area (Art. 25), and if B be a
vector inclined to that plane, the scalar prod-
uct A+ B will be the volume of the cylinder *
of which the area A is the base and of
which B is the directed slant height. For
the volume (Fig. 16) is equal to the base Fre. 16.
A multiplied by the altitude 2. This is
the projection of B upon A or B cos (A, B). Hence

v=A4h=4Bcos (A,B)=A-.B.

A acos (A,B)=DBcos (A,B)a, ()
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29.] The scalar or direct product follows the distributive
law of multiplication. That is

(A+B):C=A-C+ B-C (6)
This may be proved by means of projections. Let C be equal
to its magnitude ¢ multiplied by a unit vector ¢ in its direc-
tion. To show
(A+B)-(Ce)y=A-(Cc)+B:(Cc)
or (A+B)sc=A-c+B-c

A.c is the projection of A upon ¢; B.e¢, that of B upon c;
(A + B)-c, that of A + B upon ¢. But the projection of the
sum A + B is equal to the sum of the projections. Hence
the relation (6) is proved. By an immediate generalization

(A+B+.-)-®P+Q+--)=AP+A-Q+ ...
+B-P+B-Q+--.- (6)’

The scalar product may be used just as the product in ordi-
nary algebra. It has no peculiar difficulties.

If two vectors A and B are expressed in terms of the
three unit vectors i, j, k as

A=Aji+ 4, j+ A,k
and B=B,i+ B,j+ Bk,
then A.-B=(4,i+ 4,j+ 43k) . (Bi+ B,j+ Byk)
= A Bji-i+ A, Byi-j+ A4, Byi-k
+ Ay Bijei+ Ay Byj-j+ 4, B,j -k
+ Ay Bkj+ A, Bk+j+ A, B k. k
By means of (4) this reduces to
A-B=A4,B + A, B, + 4, B, )

If in particular A and B are unit vectors, their components
4,,4,,44 and B,, B,,B, are the direction cosines of the
lines A and B referred to X, ¥, Z.
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A, =cos (A, X), A, =cos(A,Y), Az=cos (A7),

B, =cos (B, X), By=cos (B, Y), Bz=cos (B,2).
Moreover A «+ B is the cosine of the included angle. Hence
the equation becomes
cos (A,B) = cos (A, X) cos (B, X) + cos (A, Y) cos (B, Y)

+ cos (A, Z) cos (B, Z).

In case A and B are perpendicular this reduces to the well-
known relation

0 =cos (A, X) cos (B, X) + cos (A, Y) cos (B, ¥)
+ cos (A, Z) cos (B,2)

between the direction cosines of the

line A and the line B. S
30.] If A and Bare twosides 0 A
and O B of a triangle 0 4 B, the third o
Fre. 17.

side 4Bis =B — A (Fig. 17).

or 02=A2+Bz—2ABCOS(AB).

That is, the square of one side of a triangle is equal to the
sum of the squares of the other two sides diminished by twice
their product times the cosine of the angle between them.
Or, the square of one side of a triangle is equal to the sum of
the squares of the other two sides diminished by twice the
product of either of those sides by the projection of the other
upon it — the generalized Pythagorean theorem.

If A and Bare two sides of a parallelogram, C = A + B
and D = A — B are the diagonals. Then

C.C=(A+B)-(A+B)=A-A+2A-B+B.B,
D:-D=(A—B):(A—B)=A-A—2A-B+ BB,
C.:C+D.D=2(A-A+ B.B),
or C?+ D=2 (42 + B3).



60 VECTOR ANALYSIS

That is, the sum of the squares of the diagonals of a parallelo-
gram is equal to twice the sum of the squares of two sides.
In like manner also
C-C—D:-D=4A-B
or C?—D*=4 4 B cos (A, B).

That is, the difference of the squares of the diagonals of a
parallelogram is equal to four times the product of one of the
sides by the projection of the other upon it.

If A is any vector expressed in terms of i, j,k as

A=4,i+ 4,j+ 4,k
then A A=A"=A472+ 42 + 4% ®

But if A be expressed in terms of any three non-coplanar unit
veetors a, b, ¢ as
A=aa+bb+ce,
A-A=A4?2=a%a-a+ b%2b:b+c%2c:c+2aba-b
+2bcbec+2cac-a
A?=a®+ 1?4+ 2+ 2 abcos (ab)+ 2 bc cos (b,¢)
+ 2 ca cos (c,a).

This formula is analogous to the one in Cartesian geometry
which gives the distance between two points referred to
oblique axes. If the points be z;, ¥;, 2, and z,, y,, 2, the
distance squared is

D2= (zy— 1)+ (y3 — ¥1)2 + (25 — 2)?
+ 2 (zy— ) (y,—yy) cos (X, 7)

+ 2 (Y3 — y1) (2 — 2) cos (¥, 2)
+ 2 (29 —2) (g — ) cos (Z, X).

81.] Definition: The skew product of the vector A into
the vector B is the wvector quantity C whose direction is the
normal upon that side of the plane of A and B on which
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rotation from A to B through an angle of less than one
hundred and eighty degrees appears positive or counter-
clockwise ; and whose magnitude is obtained by multiplying
the product of the magnitudes of A and B by the sine of the
angle from A to B.
The direction of A X B may also be defined as that in
which an ordinary right-handed
screw advances as it turns so as ¢=|axB
to carry A toward B (Fig. 18).
The skew product is denoted by
a cross as the direct product was
by a dot. It is written Fie. 18.
C=AXxB

and read A cross B. For this reason it is often called the cross

product. More frequently, however, it is called the vector prod-

uct, owing to the fact that it is a vector quantity and in con-

trast with the direct or scalar product whose value is scalar.
The vector product is by definition

C=A x B=ABsin (A,B)e, Q)

when 4 and B are the magnitudes of A and B respectively and
where ¢ is a unit vector in the direction of C. In case A and
B are unit vectors the skew product A x B reduces to the
unit vector ¢ multiplied by the sine of the angle from A to B.
Obviously also if either vector A or B is multiplied by a scalar
z their product is multiplied by that scalar.

(xA) x B=AX (zB) = zC.

If A and B are parallel the angle between them is either zero
or one hundred and eighty degrees. In either case the sine
vanishes and consequently the vector product A x B is a null
vector. And conyersely if A X B is zero

A Bsin (A,B) =0.
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Hence A4 or B or sin (A, B) is zero. Thus the condition for
parallelism of two vectors neither of which vanishes is A X B
=0. As a corollary the vector product of any vector into
itself vanishes.

32.] The vector product of two vectors will appear wher-
ever the sine of the included angle is of importance, just as
the scalar product did in the case of the cosine. The two prod-
ucts are in a certain sense complementary. They have been
denoted by the two common signs of multiplication, the dot
and the cross. In vector analysis they occupy the place held
by the trigonometric functions of scalar analysis. They are
at the same time amenable to algebraic treatment, as will be
seen later. At present a few uses of the vector product may
be cited.

If A and B (Fig. 18) are the two adjacent sides of a parallel-
ogram the vector product

C=AXxB=A4Bsin (A B)ec

represents the area of that parallelogram in magnitude and
direction (Art. 25). This geometric representation of A X B
is of such common occurrence and importance that it might
well be taken as the definition of the product. From it the
trigonometric definition follows at once. The vector product
appears in mechanics in connection with couples. If A and
—A are two forces forming a couple, the moment of the
couple is A X B provided only that B is a vector drawn from
any point of A to any point of —A. The product makes its
appearance again in considering the velocities of the individ-
ual particles of a body which is rotating with an angular ve-
locity given in magnitude and direction by A. If R be the
radius vector drawn from any point of the axis of rotation A
the product A x R will give the velocity of the extremity of
R (Art. 51). This velocity is perpendicular alike to the axis
of rotation and to the radius vector R.
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33.] The vector products A x B and B X A are not the
same. They are in fact the negatives of each other. For if
rotation from A to B appear positive on one side of the plane
of A and B, rotation from B to A will appear positive on the
other. Hence A x B is the normal to the plane of A and B
upon that side opposite to the one upon which B x A is the
normal. The magnitudes of A X Band B x A are the same.
Hence

AXxB=—BXxA. (10)
The factors in a vector product can be interchanged if and only
if the sign of the product be reversed.

This is the first instance in which the laws of operation in
vector analysis differ essentially from those of scalar analy-
sis. It may be that at first this change of sign which must
accompany the interchange of factors in a vector product will
give rise to some difficulty and confusion. Changes similar to
this are, however, very familiar. No one would think of inter-
changing the order of « and y in the expression sin (z —y)
without prefixing the negative sign to the result. Thus

sin (y — ) =—sin (z — y),
although the sign is not required for the case of the cosine.
cos (y —x) =cos (= — y).
Again if the cyclic order of the letters 4 B(C in the area of a
triangle be changed, the area will be changed in sign (Art.
25).
ABC=—ACB.

In the same manner this reversal of sign, which occurs
when the order of the factors in a vector product is reversed,
will appear after a little practice and acquaintance just as
natural and convenient as it is necessary.

34] The distributive law of multiplication holds in the
case of vector products just as in ordinary algebra — except
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that the order of the factors must be carefully ‘maintained
when expanding.
(A+B)xC=AxC+BxC. 1)

A very simple proof may be given by making use of the ideas
developed in Art. 26. Suppose that €
is not coplanar with A and B. Let A
and B be two sides of a triangle taken
in order. Then — (A+ B) will be the
third side (Fig. 19). Form the prism
of which this triangle is the base and
of which C is the slant height or edge.
The areas of the lateral faces of this
prism are

AxC BxC —(A+B)XxC.

The areas of the bases are
1 1
3 (A X B) and —; (A X B).

But the sum of all the faces of the prism is zero; for the
prism is a closed surface. Hence
AXC+BXxC—(A+B)xC+3(AxB)—1(AXB) =0,
AXC+BxC—(A+B)xC=0,
or AXC+BxC=(A+B)xC. (11)
The relation is therefore proved in case € is non-coplanar
with A and B. Should C be coplanar with A and B, choose D,

any vector out of that plane. Then C + D also will lie out of
that plane. Hence by (11)

Ax(C+D)+Bx(C+D)=(A+B) x (C+D).

Since the three vectors in each set A, C, D, and B, C, D, and
A + B, C, D will be non-coplanar if D is properly chosen, the
products may be expanded.
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AXC+AXD+BXxC+BXD
=(A+B)xC+(A+B)xD
Butby (11) AXD+BxD=(A+B) XD
Hence AxC+BxC=(A+B)xC.

This completes the demonstration. The distributive law holds
for a vector product. The generalization is immediate.
(A+B+--)xP+Q@+--)=AXP+AxQ+--- (11)
+BXP+BxQ+ .-
+ .

35.] The vector products of the three unit vectors i, j, k are

easily seen by means of Art. 17 to be

ixi=jxj=kxk=0,

ixj=—jxi=k, a12)
ixk=—kxj=i,
kxi=—ixk=j.

The skew product of two equal! vectors of the system i, j, k

is zero. The product of two unequal vectors is the third taken

with the positive sign if the vectors follow in the cyclic order

ijk but with the negative sign if they do not.

If two vectors A and B are expressed in terms of i, j, k,
their vector product may be found by expanding according
to the distributive law and substituting.

A=A4,i+ 4,j+ 4,k,
B =B,i+ B,j+ Bk,
AXB=(4,i+ 4,j + 4;k) x (B,i+ B,j+ B;3k)
=4,Bixi+ 4, B,ixj+ 4,B;ixk
+ 4y Bij X i+ 4y B,j X j+ Ay Byj X Kk,
+ A3 Bk Xi+ A3 Bk X j+ A3 Bk x k.
Hence A XB=(4,B,— A3B,)i+ (43 B, — 4,B;)j
+ (4, B, — 4, B)) k.
! This follows also from the fact that the sign is changed when the order of

factors is reversed. Hence j X j=—j X j=0.
5
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This may be written in the form of a determinant as

i j k
AxXB=|4;, A, A4,
Bl Bz Bs :

The formule for the sine and cosine of the sum or dif-
ference of two angles follow immediately from the dot and
cross products. Let a and b be two unit vectors lying in the
i j-plane. If = be the angle that a makes with i, and y the
angle b makes with i, then

a=cos zi+ sin zj,
b=cos i+ sin ¥ j,
a-b=cos (a, b)=cos (y — z),
a+b=coszcos y+ sin z sin y.
Hence cos (y — z) = cos y cos z + sin y sin 2.
If b’ =cos yi —sin ¥ j,
a.b'=cos (8, b')=cos (y + z).
Hence cos (y + z) = cos y cos z — sin y sin z.
a X b=ksin (a,b) =ksin (y — z),
a X b=k (sin y cos # — sin z cos y).
Hence sin (y — z) =sin y cos  — sin z cos ¥.
a X b’ =ksin (8, b") =k sin (y + z),
a X b’ =k (sin y cos z + sin z cos y).
Hence sin (y + #) =sin y cos = + sin z cos 7.

If I, myn and I, m', n' are the direction cosines of two
unit vectors a and a’ referred to X, ¥, Z, then

a=li+mj+nk9
a'=l'i4+m'j+ n'k,
a-a'=cos (a,a)=1ll'4+mm'+nn

as has already been shown in Art. 29. The familiar formula

for the square of the sine of the angle between a and a’ may
be found.
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axa' =sin(a,a) e=ma’'—m'n)i+ (' —a'l)j
+ ({m'—1"m) k,

where e is a unit vector perpendicular to a and a’.
(axa').(axa’)=sin%(a,a’)e.e=sin? (a,a’).
sin? (a,a') =(mn'—m'n)2+ (nl"—a' )2 +(Um’'— V' m)3
This leads to an easy way of establishing the useful identity
(ma'—m'n)2 4+ (nl'—n' D2+ (Im' —1'm)?
=2+ m2+2D)(U24+m'2+0'2)— (QV+mm' 4+ nn')2

Products of More than Two Vectors

36.] Up to this point nothing has been said concerning
products in which the number of vectors is greater than
two. If three vectors are combined into a product the result
is called a triple product. Next to the simple products
A.B and AxB the triple products are the most important.
All higher products may be reduced to them.

The simplest triple product is formed by multiplying the
scalar product of two vectors A and B into a third C as

(A-B) C.

This in reality does not differ essentially from scalar multi-
plication (Art. 6). The scalar in this case merely happens to
be the scalar product of the two vectors A and B. Moreover
inasmuch as two vectors cannot stand side by side in the
form of a product as BC without either a dot or a cross to
unite them, the parenthesis in (A.B) C is superfluous. The
expression A-BC

cannot be interpreted in any other way! than as the product
of the vector C by the scalar A.B.

1 Later (Chap. V.) the product BC, where no sign either dot or cross occurs,
will be defined. But it will be seen there that (A«B) C and A«(BC) are identical
and consequently no ambiguity can arise from the omission of the parenthesis.
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37.] The second triple product is the scalar product of
two vectors, of which one is itself a vector product, as

A.(BxC) or (AXB)-C.

This sort of product has a scalar value and consequently is
often called the scalar triple prod-

g ‘ uct. Its properties are perhaps most

o easily deduced from its commonest
geometrical interpretation. Let A, B,

and C be any three vectors drawn

from the same origin (Fig. 20).

Then BxC is the area of the par-
allelogram of which B and C are two adjacent sides. The

scalar A(BXC) = v (14)

Fia. 20.

will therefore be the volume of the parallelopiped of which
BxC is the base and A the slant height or edge. See Art. 28.
This volume v is positive if A and Bx C lie upon the same
side of the BC-plane; but negative if they lie on opposite
sides. In other words if A, B, C form a right-handed or
positive system of three vectors the scalar A«(BxC) is posi-
tive; but if they form a left-handed or negative system, it
is negative.

In case A, B, and C are coplanar this volume will be
neither positive nor negative but zero. And conversely if
the volume is zero“the three edges A, B, C of the parallelo-
piped must lie in one plane. Hence the necessary and suffi-
cient condition for the coplanarity of three vectors A, B, C none
of which vanishes is A«(BxC) = 0. As a corollary the scalar
triple product of three vectors of which two are equal or
collinear must vanish; for any two vectors are coplanar.

The two products A.(BxC) and (AxB).C are equal to the
same volume v of the parallelopiped whose concurrent edges
are A, B, C. The sign of the volume is the same in both

. H
cases. Hence (AXB):C = A+(BXC) = ». (14)
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This equality may be stated as a rule of operation. 7he dot
and the cross in a scalar triple product may be interchanged
without altering the value of the product.

It may also be seen that the vectors A, B, C may be per-
muted cyclicly without altering the product.

A:(BxC) = B:(CxA) = C-(AXB). (15)
For each of the expressions gives the volume of the same
parallelopiped and that volume will have in each case the
same sign, because if A is upon the positive side of the B C-
plane, B will be on the positive side of the C A-plane and C
upon the positive side of the A B-plane. The triple product
may therefore have any one of six equivalent forms

A.(BXC) = B-(CxA) = C-(AXB) 1s5)
= (AXB)-C = (BXC)-A = (CxA)-B

If however the cyclic order of the letters is changed the
product will change sign.

A-(BXC) = — A-(CXB). (16)
This may be seen from the figure or from the fact that
BxC = — CxB.

Hence: A4 scalar triple product is not altered by interchanging
the dot or the cross or by permuting cyclicly the order of the
vectors, but it is reversed in sign if the cyclic order be changed.

38.] A word is necessary upon the subject of parentheses
in this triple product. Can they be omitted without am-
biguity? They can. The expression

A.-BXC
can have only the one interpretation
A-(BXOC).

For the expression (A.B)XC is meaningless. It is impos-
sible to form the skew product of a scalar A.B and a vector
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C. Hence as there is only one way in which A.BXC may
be interpreted, no confusion can arise from omitting the
parentheses. Furthermore owing to the fact that there are
six scalar triple products of A, B, and C which have the same
value and are consequently generally not worth distinguish-
ing the one from another, it is often convenient to use the
symbol
[ABC]
to denote any one of the six equal products.

[A B C] = A-BXC = B-CxA = C-AXB
= AXB.C = BXC-A = CxA-B
then [ABC]=—[AC B] 16y

15y

The scalar triple products of the three unit vectors i, i, k
all vanish except the two which contain the three different
vectors.

[iik]=—[ikj]=1 an
Hence if three vectors A, B, € be expressed in terms of ij k
as
A=A4di+ 4,j+ A4, k,
B=Bli+B2j+B3k,
C=0Ci+Gj+ Cyk,
then [ABC]=4,B,C,+ B, C, 43+ C, 4, B,

(18)
— 4, By C,— B, Cy 4, — C, 4, B,

This may be obtained by actually performing the multiplica-
tions which are indicated in the triple product. The result
may be written in the form of a determinant.!

A, 4, 4y

B, B, B,
0, Cy Gy
1 This is the formula given in solid analytic geometry for the volume of a

tetrahedron one of whose vertices is at the origin. For a more general formula
see exercises.

[ABC] = (18)/
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If more generally A, B, C are expressed in terms of any three
non-coplanar vectors a, b, ¢ which are not necessarily unit

vectors,
A=a;a+a;btage

B=0ba+b,b+d¢
C=c;a+cyb+ecge
where ay, a, ag; by, by, by; and ¢y, ¢y ¢y are certain con-
stants, then

[ABC]=(a,byeg+bcyas+cya,b,

—a bge,—bycga, —cyazby) [abel (1)
@1 Qg g

or [ABC] =|b; b, bg|[abec] (19)'
€1 C3 Cg

39.] The third type of triple product is the vector product
of two vectors of which one is itself a vector product. Such
are

Ax(BxC) and (AxB)XC.
The vector AX(BxC) is perpendicular to A and to (BXC).
But (BxC) is perpendicular to the plane of B and C. Hence
AX(BxC), being perpendicular to (BxC) must lie in the
plane of B and C and thus take the form

Ax(BxC)=zB+yC,
where 2z and y are two scalars. In like manner also the

vector (AxXB)XC, being perpendicular to (AxB) must lie
in the plane of A and B. Hence it will be of the form

(AXB)XC=mA + nB

where m and n are two scalars. From this it is evident that

in general
(AXB)XC s not equal to Ax(BXC).

The parentheses therefore cannot be removed or inter-
changed. It is essential to know which cross product is
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formed first and which second. This product is termed the
vector triple product in contrast to the scalar triple product.

The vector triple product may be used to express that com-

ponent of a vector B which is perpendicular to a given vector

A. This geometric use of the product is valuable not only in

itself but for the light it sheds

upon the properties of the product.

Let A (Fig. 21) be a given vector

and B another vector whose com-

ponents parallel and perpendicular

A to A are to be found. Let the

components of B parallel and per-

A X (AXB) pendicular to A be B’ and B” re-

Fra. °l. spectively. Draw A and B from a

common origin. The product AxB

is perpendicular to the plane of A and B. The product

AX(AXxB) lies in the plane of A and B. It is furthermore

perpendicular to A. Hence it is collinear with B”. An

examination of the figure will show that the direction of

Ax(AxB) is opposite to that of B”. Hence

AX(AXB) =—cB’,

where ¢ is some scalar constant.

Now Ax(AxB) = — A? Bsin (A, B) b
but — ¢B"=—¢ Bsin (A, B) b/,
if b"" be a unit vector in the direction of B".
Hence ¢c= A% = A.A.
Ax(AxB
Hence B = — _Xi_;_(__) [¢))

The component of B perpendicular to A has been expressed
in terms of the vector triple product of A, A, and B. The
component B’ parallel to A was found in Art. 28 to be
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AB
J ==
B = A 21)
AB . Ax(AxB)
— 7R et i it A
B=B +B =gad " aa @2

40.] The vector triple product Ax (BxC) may be expressed
as the sum of two terms as

Ax(BXC) = A-C B— A.B C
In the first place consider the product when two of the
vectors are the same. By equation (22)

AAB=AB A— Ax(AxB) (22)
or Ax(AxB)=ABA—AAB (23)

This proves the formula in case two vectors are the same.
To prove it in general express A in terms of the three
non-coplanar vectors B, C, and BxC.

A=05B+ ¢cC + a (BxC), @)
where a, b, ¢ are scalar constants. Then
Ax(BxC) = b Bx(BXC) + ¢ Cx(BxC) an
+ a (BXC)x(BxO0).
The vector product of any vector by itself is zero. Hence
(BXC)x(BxC) =0
Ax(BxC) = bBX(BXC) + ¢ Cx(BxC). dny
By (28) Bx(BxC) =B.C B— B.B C
Cx(BXC) = — OXx(CXB) = — C-B C + C-C B.
Hence AX(BXC) = [(»B-C + ¢C-C)B— (5B-B + ¢C-B)C]. (II)"
But from (I) A.B=105B-B + ¢C-B + a (BXC)-B

and A.-C =0B-C + ¢C:C + a (BXC)-C.
By Art. 387 (BxC)-B = 0 and (BxC)-C = 0.
Hence A.B=56B:B + ¢C-B,

A.C = bB-C + ¢C-C.
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Substituting these values in (II)”,
Ax(BXC) = A-C B — A:B C. (24)
The relation is therefore proved for any three vectors A, B, C.
Another method of giving the demonstration is as follows.
It was shown that the vector triple product Ax(BXC) was
of the form
Ax(BXC) = B + yC.
Since Ax (AXC) is perpendicular to A, the direct product of
it by A is zero. Hence
A.[Ax(BXC)] =2A:B + yAC=0
and z:y = A.C:—A.B.
Hence Ax(BxC) =n (A:C B—A.BC),
where n is a scalar constant. It remains to show n = 1.
Multiply by B.
AX(BXC)-B = n (A-C B-B —A.B C-B).
The scalar triple product allows an interchange of dot and
cross. Hence
Ax(BXC)-B = A.(BxC)xB = — A.[Bx(BxC)],
if the order of the factors (BxC) and B be inverted.
— A[BX(BXC)] = — A +[B.C B — B.B (]
= —B.C A-B + B-B A.C.
Hence » =1 and Ax(BxC) = A.C B— ABC. (24)
From the thrce letters A, B, C by different arrangements,

four allied products in each of which B and C are included in
parentheses may be formed. These are

Ax(BxC), Ax(CxB), (CxB)xA, (BxC)xA.

As a vector product changes its sign whenever the order of
two factors is interchanged, the above products evidently
satisfy the equations

Ax(BxC) = — AX(CxB) = (CxB)xA = — (BxC)xA.
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The expansion for a vector triple product in which the
parenthesis comes first may therefore be obtained directly
from that already found when the parenthesis comes last.

(AxB)xC = —Cx(AxB) =—C.B A + C.-A B.
The formuls then become

AX(BXC) = A.C B— A.B C (24)
and (AXB)XC=A.C B—C.-BA  (24)

These reduction formule are of such constant occurrence and
great importance that they should be committed,to memory.
Their content may be stated in the following rule. 7o expand
a vector triple product first multiply the exterior factor into the
remoter term in the parenthesis to form a scalar coeficient for
the nearer one, then multiply the exterior factor into the nearer
term in the parenthesis to form a scalar coefficient for the
remoter one, and subtract this result from the first.

41.] As far as the practical applications of vector analysis
are concerned, one can generally get along without any
formul® more complicated than that for the vector triple
product. But it is frequently more convenient to have at
hand other reduction formule® of which all may be derived
simply by making use of the expansion for the triple product
Ax(BxC) and of the rules of operation with the triple pro-
duct A-BxC.

To reduce a scalar product of two vectors each of which
is itself a vector product of two vectors, as

(AXB)+(CxD).

Let this be regarded as a scalar triple product of the three
vectors A, B, and CxD — thus

AxB.(CxD).

Interchange the dot and the cross.
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AxB.(CxD) = A.Bx(CxD)
Bx(CxD) = B.D C — B-C D.

Hence (AXB)+(CxD) = A.C B-D — A.D B.C. (25)
This may be written in determinantal form.
AC AD

(AxB1©xD) = "0 Z0 (25)'

If A and D be called the extremes ; B and C the means; A
and C the antecedents: B and D the consequents in this
product according to the familiar usage in proportions, then
the expansion may be stated in words. The scalar product
of two vector products is equal to the (scalar) product of the
antecedents times the (scalar) product of the consequents
diminished by the (scalar) product of the means times the
(scalar) product of the extremes.

To reduce a vector product of two vectors each of which
is itself a vector product of two vectors, as

(AxB)x(CxD).
Let CxD = E. The product becomes
(AXB)xE=AE B—B:E A
Substituting the value of E back into the equation :
(AXB)Xx(CxD) = (A-CxD)B — (B.CxD) A. (26)
Let F = AxB. The product then becomes
Fx(CxD)=F.D C—F.CD
(AxB)x(CxD) = (AxXB-D)C — (AxB.C) D.  (26)’
By equating these two equivalent results and transposing
all the terms to one side of the equation,
[BCD]JA—[CDA]B+ [DAB]C—[ABC]D=0. (27)
This is an equation with scalar coefficients between the four
vectors A, B, C, D. There is in general only one such equa-
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tion, because any one of the vectors can be expressed in only
one way in terms of the other three: thus the scalar coeffi-
cients of that equation which exists between four vectors are
found to be nothing but the four scalar triple products of
those vectors taken three at a time. The equation may also
be written in the form

[ABCID=[BCD]A+[CAD]B+[ABD]C. (27)

More examples of reduction formul®, of which some are
important, are given among the exercises at the end of the
chapter. In view of these it becomes fairly obvious that
the combination of any number of vectors connected in
any legitimate way by dots and crosses or the product of any
number of such combinations can be ultimately reduced to
a sum of terms each of which contains only one cross at most.
The proof of this theorem depends solely upon analyzing the
possible combinations of vectors and showing that they all
fall under the reduction formule in such a way that the
crosses may be removed two at a time until not more than
one remains.

* 42.] The formul developed in the foregoing article have
interesting geometric interpretations. They also afford a
simple means of deducing the formule of Spherical Trigo-
nometry. These do not occur in the vector analysis proper.
Their place is taken by the two quadruple products,

(AXB)+(CxD) = A.C B-D — B.C A.D (25)
and (AxB)x(CxD) =[ACD] B— [BCD] A
=[ABD]C — [ABC] D, (26)
which are now to be interpreted.

Let a unit sphere (Fig. 22) be given. Let the vectors
A, B, C, D be unit vectors drawn from a common origin, the
centre of the sphere, and terminating in the surface of the
sphere at the points 4, B, €, D. The great circular arcs
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A B, A0, etc., give the angles between the vectors A and B,
A and C,etc. The points 4, B, C, D determine a quadrilateral
upon the sphere. 4 C and BD are one
pair of opposite sides; 4.D and BC, the
other. A4 B and CD are the diagonals.

(AxB)+(CxD) = A.C B.D — A.D B.C
AxB =sin (A, B), CxD =sin(C, D).

The angle between AXB and CxD is the

Fre. 22. angle between the normals to the AB-

and CD-planes. This is the same as

the angle between the planes themselves. Let it be denoted
by z. Then

(AXB)+(CxD) = sin (A, B) sin (C, D) cos z.

The angles (A, B), (C, D) may be replaced by the great
circular arcs 4 B, C D which measure them. Then

(AXB)+(CxD) = sin 4 Bsin C D cos z,
A.C B:D—A.D B:.C =cos AC cos BD — cos AD cos BC.

Hence
sin 4 Bsin CD cosz=-cos 4 Ccos BD —cos AD cos BC.

In words: The product of the cosines of two opposite sides
of a spherical quadrilateral less the product of the cosines of
the other two opposite sides is equal to the product of the
sines of the diagonals multiplied by the
cosine of the angle between them. This
. theorem is credited to Gauss.

Let 4, B, C (Fig. 23) be a spherical tri-
angle, the sides of which are arcs of great
circles. Let the sides be denoted by a, b, ¢
respectively. Let A, B, C be the unit vectors

drawn from the center of the sphere to the points 4, B, C.
Furthermore let p,, p; p. be the great circular arcs dropped

FiG. 23.
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perpendicularly from the vertices 4, B, C to the sides a, b, c.
Interpret the formula
(AxB)«(CxA) = A-C B-A — B-C A.A
(AxB) =sin (A, B) =sin¢, (CxA) =sin (C,A) =sin b.

Then (AXB)+(CxA) =sin ¢ sin b cos z,

where z is the angle between AXB and CxA. This
angle is equal to the angle between the plane of A, B and the
plane of C, A. It is, however, not the interior angle 4 which
is one of the angles of the triangle: but it is the exterior
angle 180° — 4, as an examination of the figure will show.

Hence
(AXB).(CxA) = sin ¢ sin b cos (180° — 4)

= —sin ¢ sin b cos 4
A.C B-A—B.C A-A=cosbcosc—cosal.
By equating the results and transposing,
cos @ = cos b cos ¢ — 8in b sin¢ cos 4
cos b = cos ¢ cos @ — sin¢ sin @ cos B
cosc=cosa cos b — sin a sin b cos C.
The last two may be obtained by cyclic permutation of the
letters or from the identities
(BxC)-(AxB) = B-A C-B — C-A,
(CxA)+(BxC) = C-B A-C — B-C.
Next interpret the identity (AxB)x(CxD) in the special
cases in which one of the vectors is repeated.
(AxB)x(AxC) =[ABC] A.
Let the three vectors a, b, ¢ be unit vectors in the dizzction of
BxC, CxA, AxB respectively. Then
AxB=csing, AXC=—bsinbd
(AxB)X(AXC) = — exb sin ¢ sin b = A sin ¢ sin b sin 4
[ABC] = (AxB)+C = c-C sin ¢ = cos (90° —p,) sin ¢
[ABC] A =sin ¢ sin p, A.
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By equating the results and cancelling the common factor,
sin p, =sin b sin 4
sin p, = sin ¢ sin B
sin p, =sin a sin C.

The last two may be obtained by cyclic permutation of the
letters. The formule give the sines of the altitudes of the
triangle in terms of the sines of the angle and sides. Again

write
(AxB)x(AxC) =[ABC] A

(BxC)x(BxA) =[BCA]B
(CxA)x(CxB) =[CAB]C.
Hence sin¢ sin b sin 4 = [ABC]

sina sin¢c sin B= [BCA]
sin b sin @ sin C = [C A B].

The expressions [ABC], [BCA], [CAB] are equal. Equate
the results in pairs and the formulze

sin b sin 4 = sin a sin B
sin ¢ sin B =sin b sin C
sin a sin €' = sin ¢ sin A

are obtained. These may be written in a single line.

sin4d sinB sinC
sine  sind sine

The formule of Plane Trigonometry are even more easy to
obtain. If 4 BC be a triangle, the sum of the sides taken
as vectors is zero— for the triangle is a closed polygon.

From this equation
a+b+ec=0

almost all the elementary formule follow immediately. It
is to be noticed that the angles from a to b, from b to ¢, from
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¢ to a are not the interior angles 4, B, C, but the exterior
angles 180° — 4, 180° — B, 180° — C.
—a=Db+ec
a.a = (b + ¢)+(b + ¢) = beb 4 c.c + 2b.c.

If a, b, ¢ be the length of the sides a, b, ¢, this becomes

a2="0%2+c¢2—2bccos A4
b2=c2+ a?2—2cacos B
c2=a2+b2—2abcosC.

The last two are obtained in a manner similar to the first
one or by cyclic permutation of the letters.
The area of the triangle is

1 1 1
Eaxb=§bxc=§cxa=

%absiu 0=%bcsinA =%casin B.
If each of the last three equalities be divided by the product
3 a b ¢, the fundamental relation
sin 4 _sin B_sin C
a b ¢

1s obtained. Another formula for the area may be found from
the product
(bxe)«(bxe) = (exa)+(axb)
2 Area (besin 4) = (ca sin B) (a b sin 0)
. .
2 Area — 2 s1r{ Bsin '
sin 4

Reciprocal Systems of Three Vectors. Solution of Equations

43.] The problem of expressing any vector r in terms of
three non-coplanar vectors a, b, ¢ may be solved as follows.

Let
r=aa+bb+ce
6



82 VECTOR ANALYSIS
where a, b, ¢ are three scalar constants to be determined.
Multiply by «b Xe.
r-bxe = a asbxe + b bebxe + ce-bxe

or [tbe] =a[abe].
In like manner by multiplying the equation by .¢ x a and
. a X b the coefficients b and ¢ may be found.

[reca] =0 [bea]

[rab] =c[cab]

[rbe] [reca] [rab]
Hence r= [2bo] a+ o b [cab] c. (28)

The denominators are all equal. Hence this gives the
equation
[abe]jr —[ber]a+ [era]b—[rable=0

which must exist between the four vectors r, a, b, c.
The equation may also be written

1_=r-b><ca'+r-cxa +r-a.><bc
[abe] [abe] [abec]
T. ma+r-c—x—ab+r-iﬁo.
[abe] [abe] [abe]

or r=

The three vectors which appear here multiplied by r., namely

bxe exa aXxb
[abe] [abe] [abe]

are very important. They are perpendicular respectively to

the planes of b and ¢, ¢ and a, a and b. They occur over and

over again in a large number of important relations. For

this reason they merit a distinctive name and notation.
Definition : The system of three vectors

bxe cxa axb
[abe] [abe] [abe]
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which are found by dividing the three vector products b x e,
¢ X a,a X b of three non-coplanar vectors a, b, ¢ by the scalar
product [a b ¢] is called the reciprocal system to a, b, e.

The word non-coplanar is important. If a, b, ¢ were co-
planar the scalar triple product [a be] would vanish and
consequently the fractions

bxe exa axb
[abe] [abe] [abe]
would all become meaningless. Three coplanar vectors have
no reciprocal system. This must be carefully remembered.
Hereafter when the term reciprocal system is used, it will be
understood that the three vectors a, b, ¢ are not coplanar.
The system of three vectors reciprocal to system a, b, ¢
will be denoted by primes as a’, b’, ¢’.

, bxe , _eXa_ , axbh (29)
a4 = —7? = ¢ = .
[abe] [abec] [abe]
The expression for r reduces then to the very simple form
r=r.a'a+4 rb’'b 4 rec’ec. (30)

The vector r may be expressed in terms of the reciprocal
system a’, b/, ¢’ instead of in terms of a, b,c. In the first
place it is necessary to note that if a, b, ¢ are non-coplanar,
a’, b’, ¢/ which are the normals to the planes of b and e,
¢ and a, a and b must also be non-coplanar. Hence r may
be expressed in terms of them by means of proper scalar
coefficients z, y, 2.

r=za' +yb' +z¢'
or [abe]r=zbxc+yexa+zaxh.
Multiply successively by -a, +b, «c. This gives

[abc]rsa=xz[bca)], z=ra
[abe]rb=y[cab], y=rb
[abe]re=2[abe], z=rec

Hence r=raa’ +rbb’ + rcc’. (31
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44] If a/, b/, ¢’ be the system reciprocal to a, b, ¢ the
scalar product of any vector of the reciprocal system into the
corresponding vector of the given system is unity; but
the product of two non-corresponding vectors is zero. That is

ala=bb=cle=1 (82)
asb=a’¢c=Dba=>blc =c’ea=c'sb=0.

This may be seen most easily by expressing a’, b’, ¢’ in
terms of themselves according to the formula (31)
r=raa’ +rbb’ + rece'.
Hence a'=alaa’ +a’bb’ + alce’
b'=Db'.aa’ + bbb’ + b'ece’
¢/ =csaa’ + ¢’bb’' + c'cec’.
Since a', b/, ¢/ are non-coplanar the corresponding coeffi-

cients on the two sides of each of these three equations must
be equal. Hence from the first

l1=a’sa 0=a’b 0=a'e.
From the seeond 0 =Dbsa 1=Db’b 0 =D'ec.
From the third 0=ca 0=c'sb 1=c'ec

This proves the relations. They may also be proved
directly from the definitions of a’, b’, ¢’.

o a__b><c a_bxn-a_[bca]_l
“[abe] ~ [abe] [abe]
o' b bxe _bxe.b 0

“[abe]  ([abe] [abe] =0
and so forth.

Conversely if two sets of three vectors each, say A, B, C,
and a, b, ¢, satisfy the relations

Aa=Bb=Cec=1
Ab=Ac=Ba=B.c=Ca=0b=0
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then the set A, B, C is the system reciprocal to a, b, e.
By reasoning similar to that before

A=A.aa + Abb' 4 Accc’
B=B.aa'+ Bbb’'+ Becc!
C==C.aa + Cbb’'+ Cicec

Substituting in these equations the given relations the re-

sult is
A=a, B=b, C=c
Hence
Theorem : The necessary and sufficient conditions that the
set of vectors a’, b/, ¢’ be the reciprocals of a, b, ¢ is that

they satisfy the equations

ala=bb=cle=1 (32)
a’sb=a’.¢c=b'sa =b'ec =c¢’a =c¢’b = 0.

As these equations are perfectly symmetrical with respect
toa’, b’/,c¢’ and a, b, ¢ it is evident that the system a, b, ¢ may
be looked upon as the reciprocal of the system a’, b’, ¢’ just
as the system a’, b/, ¢/ may be regarded as the reciprocal of
a, b, c. That is to say,

Theorem : If a’, b’, ¢’ be the reciprocal system of a, b, ¢,
then a, b, ¢ will be the reciprocal system of a’, b/, ¢’.

b’ x ¢’ ¢’ x a' a' xb' (29

B=Tve] C [abe] O [able]

These relations may be demonstrated directly from the
definitions of a’, b’, ¢’/. The demonstration is straightfor-
ward, but rather long and tedious as it depends on compli-
cated reduction formule. The proof given above is as short
as could be desired. The relations between a’, b/, ¢’ and
a, b, ¢ are symmetrical and hence if a’, b/, ¢’ is the reciprocal
system of a, b, ¢, then a, b, ¢ must be the reciprocal system of
a', b/, ¢,
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45.] Theorem : Ifa’, b’, ¢’ anda, b, ¢ be reciprocal systems
the scalar triple products [a’b’e¢’] and [a b ¢] are numerical
reciprocals. That is

[a’b’e’] [abe] =1 (33)
bxe e¢Xxa aXxb
Tw! all —
[a"D c]_[[abc] [abe] [a.bc]]

[bxe exa axb].

[abe]?
[bxe exa axb] = (bxe)x(exa)+(axb).

But (bxe)x(exa) = [abe]e.
Hence  [bxe ecxa axb] = [abe] ceaxb = [abec]2

1 1
Hence [a'b’e] =[a.b—c]3 [abe]2= [ab—c]. (33)

By means of this relation between [a’b’¢’] and [a b ¢] it
is possible to prove an important reduction formula,

P.-A P.-B P.C
(P-xR)(A-BXC) =|Q-A QB QC|, (39
R-A RB R.C

which replaces the two scalar triple products by a sum of
nine terms each of which is the product of three direct pro-
ducts. Thus the two crosses which occur in the two scalar
products are removed. To give the proof let P, @, R be
expressed as

P=P-A A’ + P.B B' + P.C C'

@=Q-A A’} QB B'+Q.C (¢’

R=R.:A A' + R.B B+ R.CC"

P'A P'B Poc

Then [PAR]=|Q-A QB Q.C|[A'B/C].
R-A R:B R.C

But [A'B'C'] = L

[ABC]
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P.A P-B P.C
Hence [PQR][ABC]=|@A QB Q.
R:A R-B R.C

The system of three unit vectors i, j, k is 1ts own reciprocal
system.
ixk i oy Exi oo, ix]

=1 ) =g =)
Tk (ij k] ~ [ijx]
For this reason the primes i’, j’, k/ are not needed to denote
a system of vectors reciprocal to i, j, k. The primes will
therefore be used in the future to denote another set of rect-
angular axes i, j, k, just as X', ¥’, Z’ are used to denote a
set of axes different from X, Y, Z.

The only systems of three vectors which are their own reciprocals
are the right-handed and left-handed systems of three wnit
vectors. 'That is the system i, j, k and the system i, j, —k.

Let A, B, C be a set of vectors which is its own reciprocal.
Then by (32)

'I

=k (35)

A/A=BB=C.C=1.
Hence the vectors are all unit vectors.
AB=A.C= 0.
Hence A is perpendicular to B and C.
B.A=B.C =0.
Hence B is perpendicular to A and C.
C-A =CB=0.

Hence C is perpendicular to A and B.

Hence A, B, € must be a system like i, j, k or like i,j, — k.
*46.] A scalar equation of the first degree in a vector r is

an equation in each term of which r occurs not more than

once. The value of each term must be scalar. As an exam-

ple of such an equation the following may be given.

a a-bxr + b(exd)-(exr) + cfor + d =0,
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where a, b, ¢, d, e, f are known vectors; and a, b, ¢, d, known
scalars. Obviously any scalar equation of the first degree in
an unknown vector r may be reduced to the form

rrA=a

where A is a known vector; and @, a known scalar. To ac-
complish this result in the case of the given equation proceed

as follows.
a axber + b (exd)xeer + cfor + d =0

{o axb + b (exd)xe + cf}or =—d.

In more complicated forms it may be necessary to make use
of various reduction formulse before the equation can be made

to take the desired form,
r A =a.

As a vector has three degrees of freedom it is clear that one
scalar equation is insufficient to determine a vector. Three
scalar equations are necessary.

The geometric interpretation of the equa-
tion

rrA=a (36)

is interesting. Let r be a variable vector
(Fig. 24) drawn from a fixed origin. Let
A be a fixed vector drawn from the same
origin. The equation then becomes

r 4 cos (1,A) =a,

or r cos (1,A) = %—,

FiG. 24.

if  be the magnitude of r; and 4 that of A. The expression
r cos (1, A)

is the projection of r upon A. The equation therefore states
that the projection of r upon a certain fixed vector A must
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always be constant and equal to a/4. Consequently the ter-
minus of r must trace out a plane perpendicular to the vector
A ata distance equal to @/4 from the origin. The projec-
tion upon A of any radius vector drawn from the origin to a
point of this plane is constant and equal to a/4. This gives
the following theorem.

Theorem : A scalar equation in an unknown vector may be
regarded as the equation of a plane, which is the locus of the
terminus of the unknown vector if its origin be fixed.

It is easy to see why three scalar equations in an unknown
vector determine the vector completely. Each equation de-
termines a plane in which the terminus of r must lie. The
three planes intersect in one common point. Hence one vec-
tor r is determined. The analytic solution of three scalar
equations is extremely easy. If the equations are

rrA=a
r-B=29% @30
r-C =¢,

it is only necessary to call to mind the formula
r=r.AA'+1.BB' +r.CC.
Hence r=aA"+0bB +cC (88)

The solution is therefore accomplished. It is expressed in
terms A’, B/, €' which is the reciprocal system to A,B, C. One
caution must however be observed. The vectors A, B, C will
have no reciprocal system if they are coplanar. Hence the
solution will fail. In this case, however, the three planes de-
termined by the three equations will be parallel to a line.
They will therefore either not intersect (as in the case of the
lateral faces of a triangular prism) or they will intersect in a
common line. Hence there will be either no solution forr or
there will be an infinite number.
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From four scalar equations

rrA=a
rrB=5 39)
roC=c
rD=d

the vector r may be entirely eliminated. To accomplish this
solve three of the equations and substitute the value in the
fourth.
r=aA +bB +cC'
a AD+bBD+cCLD=d
or a[BCD]+b5[CAD]+c¢[ABD]=d [ABC]. (40)

*477] A vector equation of the first degree in an unknown
vector is an equation each term of which is a vector quantity
containing the unknown vector not more than once. Such
an equation is

(AXB)X(Cxr) + DEr+nr +F =0,

where A, B, C, D, E, F are known vectors, n a khown scalar,
and r the unknown vector. One such equation may in gen-
eral be solved for r. That is to say, one vector equation is in
general sufficient to determine the unknown vector which is
contained in it to the first degree.

The method of solving a vector equation is to multiply it
with a dot successively by three arbitrary known non-coplanar
vectors. Thus three scalar equations are obtained. These
may be solved by the methods of the foregoing article. In the
first place let the equation be

Aar+Bbr+4 Cecr=D,

where A, B, C,D, a, b, ¢ are known vectors. No scalar coeffi-
cients are written in the terms, for they may be incorporated in
the vectors. Multiply the equation successively by A', B, C'.
It is understood of course that A, B, C are non-coplanar.
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a.r = D.A’

ber = D.B’

cor = D.C'.
But r=a’ar + b’ ber 4+ ¢’ cer.
Hence r=D.A’a’ + D.B'b' + D.C' ¢.

The solution is therefore accomplished in case A, B, C are non-
coplanar and a, b, ¢ also non-coplanar. The special cases in
which either. of these sets of three vectors is coplanar will not
be discussed here.

The most general vector equation of the first degree in an
unknown vector r contains terms of the types

Aar, nr, Exr, D.

That is it will contain terms which consist of a known
vector multiplied by the scalar product of another known vec-
tor and the unknown vector; terms which are scalar multi-
ples of the unknown vector; terms which are the vector
product of a known and the unknown vector; and constant
terms. The terms of the type A a.r may always be reduced
to three in number. For the vectors a, b, ¢,--- which are
multiplied into r may all be expressed in terms of three non-
coplanar vectors. Hence all the products a.r, ber, cer, ---
may be expressed in terms of three. The sum of all terms of
the type A a.r therefore reduces to an expression of three

terms, as
A aer + B ber + C cer.

The terms of the types n r and Exr may also be expressed
in this form.

nr=mna'ar+ nb br+ nec er

Exr = Exa'a.r + Exb’ ber+EXc’ cer.

Adding all these terms together the whole equation reduces

to the form
Lar+ Mber+4+ Ner=XK.
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This has already been solved as
r=K.L'a' + K-M'b’ 4+ K.N'¢".

The solution is in terms of three non-coplanar vectors a’, b/, ¢'.
These form the system reciprocal to a, b, ¢ in terms of which
the products containing the unknown vector r were expressed.

* SUNDRY APPLICATIONS OF PRODUCTS

Applications to Mechanics

48] In the mechanics of a rigid body a force is not a
vector in the sense understood in this book. See Art. 3.
A force has magnitude and direction; but it has also a line
of application. Two forces which are alike in magnitude
and direction, but which lie upon different lines in the body
do not produce the same effect. Nevertheless vectors are
sufficiently like forces to be useful in treating them.

If a number of forces f,, f,, fs,---act on a body at the
same point 0, the sum of the forces added as vectors is called

the resultant R.
R=f,+f,+f,+---

In the same way if f,, f,, f5--- do not act at the same point
the term resultant is still applied to the sum of these forces
added just as if they were vectors.

B=f, +f,+fs+ - (41)

The idea of the resultant therefore does not introduce the
line of action of a force. As far as the resultant is concerned
a force does not differ from a vector.

Definition: The moment of a force f about the point O is
equal to the product of the force by the perpendicular dis-
tance from O to the line of action of the force. The moment
however is best looked upon as a vector quantity. Its mag-
nitude is as defined above. Its direction is usually taken to
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be the normal on that side of the plane passed through the
point O and the line f upon which the force appears to pro-
duce a tendency to rotation about the point O in the positive
trigonometric direction. Another method of defining the
moment of a force f = P @ about the point O is as follows:
The moment of the force f = P about the point O is equal
to twice the area of the triangle O P Q. This includes at once
both the magnitude and direction of the moment (Art. 25).
The point P is supposed to be the origin; and the point @,
the terminus of the arrow which represents the force f. The
letter M will be used to denote the moment. A subscript will
be attached to designate the point about which the moment is
taken.
M, {ff =20PQ.

The moment of a number of forces f,, f,, --- is the (vector)
sum of the moments of the individual forces.

If f1=-P1Q1, f2=.P2Q2-..
Mo {1,650 }=2(0P, Q1+ OF, Q3+ ---).

This is known as the total or resultant moment of the forces
Feitogas

49.] If f be a force acting on a body and if d be the vector
drawn from the point O to any point in the line of action of
the force, the moment of the force about the point O is the
vector product of d into f.

M, if} = dxf (42)
For dxf =d fsin (4, f) e,
if e be a unit vector in the direction of dxf.
dxf =dsin (4,f) fe.
Now dsin (4, f) is the perpendicular distance from O to f.

The magnitude of dxf is accordingly equal to this perpen-
dicular distance multiplied by f, the magnitude of the force.
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This is the magnitude of the moment My {f}. The direction
of dxf is the same as the direction of the moment. Hence

the relation is proved.
M, {f} = dxf.

The sum of the moments about O of a number of forces
f,, f,, - - acting at the same point P is equal to the moment
of the resultant R of the forces acting at that point. For let
d be the vector from O to P. Then

M, {f,} = dxf,
Mo {f,} = dxf,

M, {f;} + M, {fz} + o =dxf; +dxfy + - (43)
=d><(f1+f2+ -..) =dxR

The total moment about 0’ of any number of forces f,, f,, - - -
acting on a rigid body is equal to the total moment of those
forces about O increased by the moment about O’ of the
resultant Ro considered as acting at 0.

Mo {f1, 8y, -} =Mo {11, -} + Mo {Bo}.  (44)

Let d,, d,, --- be vectors drawn from O to any point in
£y, f5, - - - respectively. Letd,’, d,’, --- be the vectors drawn
from 0’ to the same points in f,, f,, - - - respectively. Let e
be the vector from O to.0’. Then

d,=d,/ +e, d,=d,/+e¢---
Mo {f;, £y, -} =dxf; +d,xf, +---
Mo {f,, £y, -3 =d/%xf, +d,)/xf, + ...
=(d; —e)xf; + (dy —e)xfy + - --
"= d XXy - —ox(fy 4 fy e 0)
But — ¢ is the vector drawn from 0’ to 0. Hence —e X f,

is the moment about 0’ of a force equal in magnitude and
parallel in direction to f, but situated at 0. Hence
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—GX(f1+f2 + .- ) = —¢XRo =My {R()}
Hence Mo {fy, %5, -} = Mo {f,£;, -} + Mo (Boj. (44)

The theorem is therefore proved.

The resultant R is of course the same at all points. The
subscript O is attached merely to show at what point it is
supposed to act when the moment about 0’ is taken. For
the point of application of R affects the value of that moment.

The scalar product of the total moment and the resultant
is the same no matter about what point the moment be taken.
In other words the product of the total moment, the result-
ant, and the cosine of the angle between them is invariant
for all points of space.

R-Mo {f,f5,--} =RM, {f;,f,, -}

where 0’ and O are any two points in space. This important
relation follows immediately from the equation

My {f;,f,, -} =M {f;,f;, -} + Mo {Ro}.
For R+My §f,,fy, -} =R Mo {f;,f,,-} + R+ Mo {Ro}.

But the moment of R is perpendicular to R no matter what
the point O of application be. Hence

R-My §Ro} =0

and the relation is proved. The variation in the total
moment due to a variation of the point about which the
moment is taken is always perpendicular to the resultant.
50.] A point O’ may be found such that the total moment
about it is parallel to the resultant. The condition for
parallelism is
BRxMy {f,, f,, -} =0
BRxMo if, f,, ---§ =BxM, {f,,f,, -}
+ R X My iRo; =0
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where O is any point chosen at random. Replace Mo{Ro}
by its value and for brevity omit to write the f,, f,, - -- in the
braces {}. Then

RxMy = RxM, — RX(GXR) = 0.
The problem is to solve this equation for c.
BxMy, —R-Rc+ RecR=0.

Now R is a known quantity. M, is also supposed to be
known. Let ¢ be chosen in the plane through O perpen-
dicular to R. Then Re.c =0 and the equation reduces to

RxMo =R:Rec
5 — RxMo .
- R-R

If ¢ be chosen equal to this vector the total moment about
the point O’, which is at a vector distance from O equal to ¢,
will be parallel to R. Moreover, since the scalar product of
the total moment and the resultant is constant and since the
resultant itself is constant it is clear that in the case where
they are parallel the numerical value of the total moment
will be a minimum.

The total moment is unchanged by displacing the point
about which it is taken in the direction of the resultant.

For Mo gfl’ f2, °-'} =My {fl, f2, . } — ¢XR.

If ¢ = 0 0'is parallel to R, exR vanishes and the moment
about 0’ is equal to that about 0. Hence it is possible to
find not merely one point 0' about which the total moment
is parallel to the resultant; but the total moment about any
point in the line drawn through O’ parallel to R is parallel
to R. Furthermore the solution found in equation for e is
the only one which exists in the plane perpendicular to B —-
unless the resultant R vanishes. The results that have been
obtained may be summed up as follows:
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If any system of forces f,, f,, --- whose resultant is not
zero act upon a rigid body, then there exists in space one
and only one line such that the total moment about any
point of it is parallel to the resultant. This line is itself
parallel to the resultant. The total moment about all points
of it is the same and is numerically less than that about any
other point in space.

This theorem is equivalent to the one which states that
any system of forces acting upon a rigid body is equivalent
to a single force (the resultant) acting in a definite line and
a couple of which the plane is perpendicular to the resultant
and of which the moment is a minimum. A system of forces
may be reduced to a single force (the resultant) acting at any
desired point O of space and a couple the moment of which
(regarded as a vector quantity) is equal to the total moment
about O of the forces acting on the body. But in general the
plane of this couple will not be perpendicular to the result-
ant, nor will its moment be a minimum.

Those who would pursue the study of systems of forces
acting on a rigid body further and more thoroughly may
consult the Traité de Mécanique Rationnelle! by P. APPELL.
The first chapter of the first volume is entirely devoted to
the discussion of systems of forces. Appell defines a vector
as a quantity possessing magnitude, direction, and point of
application. His vectors are consequently not the same as
those used in this book. The treatment of his vectors is
carried through in the Cartesian covrdinates. Each step
however may be easily converted into the notation of vector
analysis. A number of exercises is given at the close of
the chapter.

51.] Suppose a body be rotating about an axis with a con-
stant angular velocity a. The points in the body describe
circles concentric with the axis in planes perpendicular to

1 Paris, Gauthier-Villars et Fils, 1893.
7
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the axis. The velocity of any point in its circle is equal
to the product of the angular velocity and the radius of the
circle. It is therefore equal to the product of the angular
velocity and the perpendicular dis-
tance from the point to the axis.
The direction of the velocity is
perpendicular to the axis and to
the radius of the circle described
by the point.

Let a (Fig. 25) be a vector drawn
along the axis of rotation in that
direction in which a right-handed
screw would advance if turned in

Fia. 25. the direction in which the body is

rotating. Let the magnitude of a

be a, the angular velocity. The vector a may be taken to

represent the rotation of the body. Let r be a radius vector

drawn from any point of the axis of rotation to a point in the
body. The vector product

axXr = a rsin (a,r)

is equal in magnitude and direction to the velocity v of the
terminus of r. For its direction is perpendicular to a and r
and its magnitude is the product of @ and the perpendicular
distance 7 sin (8, r) from the point to the line a. That is

v = axr. (45)

If the body be rotating simultaneously about several axes
), 8, 85 - - - which pass through the same point as in the
case of the gyroscope, the velocities due to the various

Fotats
otations are v, =a,xr,

Va = aaxrs
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where r;, r,, Iy, - - - are the radii vectores drawn from points
on the axis a,, a,, a3, -+ - to the same point of the body. Let
the vectors ry, r,, rg, - - - be drawn from the common point of
intersection of the axes. Then

Bl =Yl =T ol ===l R =P
1 2 3
and

V=V 4+ Vo + Vg4 oo =8;XT + 8,XT + 8gXr + - -+
=(a1+32+a3+---)><r.

This shows that the body moves as if rotating with the
angular velocity which is the vector sum of the angular
velocities a,, 85, 84, - - This theorem is sometimes known
as the parallelogram law of angular velocities.

It will be shown later (Art.) 60 that the motion of any
rigid body one point of which is fixed jis at each instant of
time, a rotation about some axis drawn through that point.
This axis is called the instantaneous axis of rotation. The
axis is not the same for all time, but constantly changes its
position. The motion of a rigid body one point of which is
fixed is therefore represented by

vV = axr (45)

where a is the instantaneous angular velocity; and r, the
radius vector drawn from the fixed point to any point of the
body.

The most general motion of a rigid body no point of which
is fixed may be treated as follows. Choose an arbitrary
point O. At any instant this point will have a velocity v,.
Relative to the point O the body will have a motion of rotation
about some axis drawn through 0. Hence the velocity v of
any point of the body may be represented by the sum of
v, the velocity of O and axr the velocity of that point

relative to O.
V=1V, + axr. (46)
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In case v, is parallel to a, the body moves around a and
along a simultaneously. This is precisely the motion of a
screw advancing along a. In case v, is perpendicular to a, it
is possible to find a point, given by the vector r, such that
its velocity is zero. That is

axXr = —yv,.
This may be done as follows. Multiply by xa.
(axr)xa = —v,Xa
or 8 T — &I 8= — V,Xa.
Let r be chosen perpendicular to a. Then aer is zero and
aar=—v,Xa
—V,Xa
T aa
The point r, thus determined, has the property that its veloc-
ity is zero. If a line be drawn through this point parallel to
a, the motion of the body is one of instantaneous rotation

about this new axis.
In case v, is neither parallel nor perpendicular to a it may

be resolved into two components

Yo=Y+ v
which are respectively parallel and perpendicular to a.

v=v/+ v, + axr

A point may now be found such that

v, = —axr.
Let the different points of the body referred to this point be
denoted by r’. Then the equation becomes

v=v, + axr. (46)
The motion here expressed consists of rotation about an axis

a and translation along that axis. It is therefore seen that
the most general motion of a rigid body is at any instant
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the motion of a screw advancing at a certain rate along a
definite axis a in space. The axis of the screw and its rate
of advancing per unit of rotation (4.e. its pitch) change from
instant to instant.

52.] The conditions for equilibrium as obtained by the
principle of virtual velocities may be treated by vector
methods. Suppose any system of forces f,, f,, --- act on a
rigid body. If the body be displaced through a vector dis-
tance D whether this distance be finite or infinitesimal the
work done by the forces is

Df), Dfy, - --
The total work done is therefore
W=D, + Defy + -
If the body be in equilibrium under the action of the forces
the work done must be zero.
W=D, + Dfy+ --- =De(f; + 5+ ---) =D-R=0.
The work done by the forces is equal to the work done by

their resultant. This must be zero for every displacement
D. The equation

DR=0
holds for all vectors D. Hence
R=0.

The total resultant must be zero if the body be in equilibrium.

The work done by a force f when the rigid body is dis-
placed by a rotation of angular velocity a for an infinitesimal
time ¢ is approximately

a-dXxf ¢,

where d is a vector drawn from any point of the axis of rota-
tion a to any point of f. To prove this break up f into two
components f', f" parallel and perpendicular respectively to a.

a.dXf = a.dxf’ + a.dxf’.
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As f' is parallel to a the scalar product [a d f'] vanishes.
asdxf = a.dxf”.

On the other hand the work done by f” is equal to the work
done by f during the displacement. For f’ being parallel to
a is perpendicular to its line of action. If h be the common
vector perpendicular from the line a to the force f”, the work
done by f” during a rotation of angular velocity a for time
¢ is approximately

W=hf"at=ahxft

The vector d drawn from any point of a to any point of f may
be broken up into three components of which one is h, another
is parallel to a, and the third is parallel to f”. In the scalar
triple product [a d f”] only that component of d which is
perpendicular alike to a and £ has any effect. Hence

W = ashxf" t = a«dxf’ t' = a.dxf¢.

If a rigid body upon which the forces f, f,, - - - act be dis-
placed by an angular velocity a for an infinitesimal time ¢
and if d,, d,, - - - be the vectors drawn from any point O of
a to any points of f,, f,, - - - respectively, then the work done
by the forces f,, f,, - - - will be approximately

W= (adxf; + aed,xf, +---) ¢
=as(d,xf; +d,xf, +.-)¢
=aMp {f,, f,, -} ¢

If the body be in equilibrium this work must be zero.
Hence a-My if,f,, ...} t=0.

The scalar product of the angular velocity a and the total
moment of the forces f;, f,, -.. about any point O must be

zero. As a may be any vector whatsoever the moment itself
must vanish.

Mo {f,, f,,--}=0.
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The necessary conditions that a rigid body be in equilib-
rium under the action of a system of forces is that the result-
ant of those forces and the total moment about any point in
space shall vanish.

Conversely if the resultant of a system of forces and the
moment of those forces about any one particular point in space
vanish simultaneously, the body will be in equilibrium.

If R = 0, then for any displacement of translation D

D.R =0.
W=DS, +Dfy+---=0

and the total work done is zero, when the body suffers any
displacement of translation.

Let M, {f;, f,, - - -} be zero for a given point 0. Then for
any other point 0’

Mo {f17 fz: © ‘z = Mo {fp fz, o ¢ } + Mo {Ro}.
But by hypothesis R is also zero. Hence

Moy {f,f, ---}=0.
Hence aMy {f,f,---3¢=0

where a is any vector whatsoever. But this expression is
equal to the work done by the forces when the body is rotated
for a time ¢ with an angular velocity a about the line a
passing through the point 0'. This work is zero.

Any displacement of a rigid body may be regarded as a
translation through a distance D combined with a rotation
for a time ¢ with angular velocity a about a suitable line a in
space. It has been proved that the total work done by the
forces during this displacement is zero. Hence the forces
must be in equilibrium. The theorem is proved.
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Applications to Geometry

53.] Relations between two right-handed systems of three
mutually perpendicular unit vectors.— Let i, j, k and i/, j/, k'
be two such systems. They form their own reciprocal systems.
Hence

r=reii+4rjj+ rkk
and r=rii+rj j + rk’ k.
From this .

47

J=3ii+ jjj+ i kk=0bi+bj+bk 47

{i’ =i+ ]+ ikk=a,i+a,] +ask
k'=kii+k'jj+k'kk=c¢i+c¢j+cek

The scalars a,, a,, ag; by, by, b g5 ¢, €, c3 are respectively the
direction cosines of i'; j’; k’ with respect to i, j, k.
That is

a;=cos (i',i) a,=cos ({,j) a3 =-cos (i, k)

by=cos (ji) b, =cos (§,j) bs=cos (§,k) (48)

¢y =cos (k,i) ¢, =cos (K, j) ¢;=cos (k, k).

In the same manner

=it 4+ §i T+ IRK =a i+ b e kK (4T)"

gi — i.ilil +i‘j’j/ + i'k,k,:al i/+ bl j’+01 kl
k=ki'i' + kj'j + kk'k'=a3i' + b;j' + 5 K

j"j’ =1= b12 + bz2 + bs2 (49)

g il =1=a.2+ a,2+ a,?
k"k’ =1 = 012 + 022 + 632

i =1=a2+ b2+ 2
and g i =1=a + b + ¢, (49)
kk =1=ag+ b2 + ¢’
ij) =0=ua,b, + a, b, + a; b,
and JR'=0=0b¢; +bycy + D3¢ 60)
ki =0=1¢ a, + ¢y a5 + ¢5 a4
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ioj =O=a1a2+blbz+6102
and jk=0=ay a3 + b; b3 + ¢5 ¢5 (560)
ki =0=aga; 4+ b3 8; + ¢3¢,
a, a; g
by b, b4 (61)

C; G C3

and [jk]=[IjK]=1=

k' =i'Xj=(a, 05 — a3 b)) i+ (a5 b, —a; bp) ]
+ (218 —a; ) k.

But k'=c¢it+cj+ek
¢y = (a5 b3 — a3 by),
Hence ¢y = (ag by — a, by), (62)
o3 = (a1 by — a5 by).
I T SN GeRdy NGty
Or a=|y o "2 |5 0| 2| 00|

and similar relations may be found for the other six quantities
ay, @g, ag; by, by, by All these scalar relations between the
coefficients of a transformation which expresses one set of
orthogonal axes X', Y, Z' in terms of another set X, ¥, Z are
important and well known to students of Cartesian methods.
The ease with which they are obtained here may be note-
worthy.

A number of wvector relations, which are perhaps not so well
known, but nevertheless important, may be found by multi-
plying the equations

i=ai+a,j+a3k
ayi'+b,j+¢, k=i
in vector multiplication.
b k' —¢j=a3j—a,k (53)

The quantity on either side of this equality is a vector. From
its form upon the right it is seen to possess no component in
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the i direction but to lie wholly in the jk-plane; and from
its form upon the left it is seen to lie in the j'k’-plane.
Hence it must be the line of intersection of those two planes.
Its magnitude is v a2 + a2 or v/ 5,2 + ¢, This gives the
scalar relations

a22 + a32 = blz + 012 =1-— alz.

The magnitude 1 — a,% is the square-of the sine of the angle
between the vectors i and i'. Hence the vector

bhk'—¢j'=aj—ayk (53)

is the line of intersection of the j'k- and jk-planes, and
its magnitude is the sine of the angle between the planes.
Eight other similar vectors may be found, each of which gives
one of the nine lines of intersection of the two sets of mu-
tually orthogonal planes. The magnitude of the vector is in
each case the sine of the angle between the planes.

54.] Various examples in Plane and Solid Geometry may
be solved by means of products.

Ezample 1: The perpendiculars from the vertices of a trian-
gle to the opposite sides meet in a point. Let 4 BC be the
triangle. Let the perpendiculars from 4 to BC and from B
to C4 meet in the point 0. To show O0C is perpendicular
to 4 B. Choose O as origin and let 04 = A, OB =B, and
0C=C. Then

BC=C—B, CA=A—C AB=B—A
By hypothesis

A(C—B)=0
and B.(A—-C)=0.
Add; C.(B—A)=0,

which proves the theorem.
Ezample 2: To find the vector equation of a line drawn
through the point B parallel to a given vector A.
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Let O be the origin and B the vector O B. Let R be the ra-
dius vector from O to any point of the required line. Then
R — Bis parallel to A. Hence the vector product vanishes.

Ax(R—B) =0.
This is the desired equation. It is a vector equation in the
unknown vector R. The equation of a plane was seen (page
88) to be a scalar equation such as
R.C=c¢

in the unknown vector R.

The point of intersection of a line and a plane may be
found at once. The equations are

g AX(R—B) =0
R.C=c
AxXR = AXB
(AXR)XC = (AxB)xC
ACR —C.-R A= (AxXB)xC
A.CR —¢c A= (AXB)xC
BR— (AXB)XC + c A
A.C

The solution evidently fails when A.C = 0. In this case how-
ever the line is parallel to the plane and there is no solution ;
or, if it lies in the plane, there are an infinite number of solu-
tions.

Ezample 3 : The introduction of vectors to represent planes.

Heretofore vectors have been used to denote plane areas of
definite extent. The direction of the vector was normal to
the plane and the magnitude was equal to the area to be re-
presented. But it is possible to use vectors to denote not a
plane area but the entire plane itself, justas a vector represents
a point. The result is analogous to the plane cosérdinates of
analytic geometry. Let O be an assumed origin. Let M N be
a plane in space. The plane M N is to be denoted by a vector

Hence
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whose direction is the direction of the perpendicular dropped
upon the plane from the origin O and whose magnitude is the
reciprocal of the length of that perpendicular. Thus the nearer
a plane is to the origin the longer will be the vector which
represents it.

If r be any radius vector drawn from the origin to a point
in the plane and if p be the vector which denotes the plane,
then

rp=1
is the equation of the plane. For

r-p =rcos (1, p) p.

Now p, the length of p is the reciprocal of the perpendicular
distance from O to the plane. On the other hand 7 cos (r, p)
is that perpendicular distance. Hence r-p must be unity.

If r and p be expressed in terms of i, j, k

r=zi+yj+ 2k
p=%i+vj+wk
Hence rp=zu+yv+zw=1

The quantities u, v, w are the reciprocals of the intercepts of
the plane p upon the axes.

The relation between r and p is symmetrical. It is a rela-
tion of duality. If in the equation

rrp=1

r be regarded as variable, the equation represents a plane p
which is the locus of all points given by r. If however p be
regarded as variable and r as constant, the equation repre-
sents a point r through which all the planes p pass. The
development of the idea of duality will not be carried out.
It is familiar to all students of geometry. The use of vec-
tors to denote planes will scarcely be alluded to again until
Chapter VII.
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SuMMARY OF CHAPTER II

The scalar product of two vectors is equal to the product
of their lengths multiplied by the cosine of the angle between
them.

AB= A B cos (A, B) 1)
AB=BA @)
AA = 42, 3)

The necessary and sufficient condition for the perpendicularity
of two vectors neither of which vanishes is that their scalar
product vanishes. The scalar products of the vectors i, j, k

are
ii=jj=kk=1

i-j =jok = koi = O (4)
AB=4, B, + 4, B, + 43 By M
AA=A2= A2+ 4,2 + 4,2 (8)
If the projection of a vector B upon a vector A is B/,
A.B
f—
B = LA A (%)

The vector product of two vectors is equal in magnitude to
the product of their lengths multiplied by the sine of the an-
gle between them. The direction of the vector product is the
normal to the plane of the two vectors on that side on which
a rotation of less than 180° from the first vector to the second

appears positive.
AxB= 4 Bsin (A, B) ¢c. )

The vector product is equal in magnitude and direction to the
vector which represents the parallelogram of which A and B
are the two adjatent sides. The necessary and sufficient con-
dition for the parallelism of two vectors neither of which
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vanishes is that their vector product vanishes. The com-
mutative laws do not hold.

AXB=— BxA (10)
ixi =jxj=kxk=0
ix] =— jxi=k a2

ixk =—kxj=i
kxi =—ixk=]j
AxB = (4, By — A3 By) i + (dy B, — 4, By)j
+(4,B,— 4, B) k (13)

i j k
AxB=|4, 4, 4, @asy
Bl B2 B8

The scalar triple product of three vectors [A B C] is equal
to the volume of the parallelopiped of which A, B, C are three
edges which meet in a point.

[ABC] = A-BxC = B.CxA = C.AxB
= AXB.C = Bx(C-A =CxA.B
[ABC] =— [ACB]. (16)’

(15)'

The dot and the cross in a scalar triple product may be inter-
changed and the order of the letters may be permuted cyclicly
without altering the value of the product; but a change of
cyclic order changes the sign.

Ay Ay Ay
[ABC] =B, B, B 18y’
G G G

@y @y ag

[ABC]=|b, b, b5[[abec] (19)/
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If the component of B perpendicular to A be B’,

- AX(AXB)
B'=— W (20)
Ax(BxC) =ACB — A.BC (29
(AxB)xC=ACB—C.BA (24’
(AxB):(CxD) = A.C B-D — A.D B.C (25)
(AxB)x(CxD) =[ACD]B—[BCD] A
=[ABD] C—[ABC]D. (26)

The equation which subsists between four vectors A, B, C, D
is
[BCD]A—[CDA]B+ [DAB]C—[ABC]D=0. (27)

Application of formule of vector analysis to obtain the for-
mule of Plane and Spherical Trigonometry.

The system of vectors a/, b/, ¢/ issaid to be reciprocal to the
system of three non-coplanar vectors a, b, ¢

_bxe ) exa c,_axb_ ¢
“[abe]’ [abe] " [abe]

A vector r may be expressed in terms of a set of vectors and
its reciprocal in two similar ways

when a

29)

r=r.a'a+rb'b 4+ rcc (30)

o r=r.aa + b + recc. 1)

The necessary and sufficient conditions that the two systems of
non-coplanar vectors a, b, ¢ and a’, b/, ¢’ be reciprocals is that

a,’.a — ‘bl.b = c/oc =1

32

a’ob = a,oc = b’ac = bl.a — c,oa — c’-b = O.

Ifa/,b’, ¢’ form a system reciprocal to a, b,¢; then a,b, ¢ will
form a system reciprocal to a’, b’ ¢.

1
[abc]

[a'be] = (33)/
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P-A P-B P.C
[PQR][ABC]= QA QB Q.C 34
R-A R.B R.C

The system i, j, k is its own reciprocal and if conversely a
system be its own reciprocal it must be a right or left handed
system of three mutually perpendicular unit vectors. Appli-
cation of the theory of reciprocal systems to the solution of
scalar and vector equations of the first degree in an unknown
vector. The vector equation of a plane is

r-A =a. (36)

Applications of the methods developed in Chapter IL., to the
treatment of a system of forces acting on a rigid body and in
particular to the reduction of any system of forces to a single
force and a couple of which the plane is perpendicular to that
force. Application of the methods to the treatment of
instantaneous motion of a rigid body obtaining

v=v,+aXxr (46)

where v is the velocity of any point, v, a translational veloc-
ity in the direction a, and a the vector angular velocity of ro-
tation. Further application of the methods to obtain the
conditions for equilibrium by making use of the principle of
virtual velocities. ~Applications of the method to obtain
the relations which exist between the nine direction cosines
of the angles between two systems of mutually orthogonal
axes. Application to special problems in geometry including
the form under which plane covrdinates make their appear-
ance in vector analysis and the method by which planes (as
dlstmgulshed from finite plane areas) may be represented
by vectors.
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ExErcises oN CHAPTER II
Prove the following reduction formulae

1. Ax{Bx(CxD)} =[ACD] B — A-B CxD
= B.D AXC — B.C AXD.
2. [AXB CxD ExF]=[ABD] [CEF]—[ABC] [DEF]
=[ABE] [FCD] — [ABF] [ECD]
=[CDA] [BEF] — [CDB] [AEF].

3. [AXB BxC CxA]=[ABC]2

P.A PB P
QA QB Q
RA RB R

5. AX(BxC) + Bx(CxA) + Cx(AxB)=0.

6. [AxXP Bx@ CxR]+ [Ax@ BxR CxP]
+ [AXR BxP CxQ@]=0.

4 - [PQR] (AXB) =

7. Obtain formula (34) in the text by expanding
[(AxB)xP]-[Cx(QXxR)]
in two different ways and equating the results.

8. Demonstrate directly by the above formule that if
a/, b/, ¢/ form a reciprocal system to a, b, ¢; then a, b, ¢ form
a system reciprocal to a/, b/, ¢'.

9. Show the connection between reciprocal systems of vec-
tors and polar triangles upon a sphere. Obtain some of the
geometrical formule connected with polar triangles by inter-
preting vector formul@ such as (3) in the above list.

10. The perpendicular bisectors of the sides of a triangle
meet in a point.

11. Find an expression for the common perpendicular to

two lines not lying in the same plane.
8
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12. Show by vector methods that the formule for the vol-
ume of a tetrahedron whose four vertices are
. @y Y10 2D (Tg Y %) (T Y 25) (2 Yo 24)
is
zy oy % 1
Ty Yy %3 1
Ty Yy 23 1
Ty Yy 24 1

13. Making use of formula (34) of the text show that

1 n m
[abe] =abe\|n 1 I
m [ 1

where a,b, ¢ are the lengths of a, b, ¢ respectively and where

D=

l=cos (b,e), m =cos (¢,a), m=cos (a,b).

14. Determine the perpendicular (as a vector quantity)
which is dropped from the origin upon a plane determined by
the termini of the vectors a, b, . Use the method of solution
given in Art. 46.

15. Show that the volume of a tetrahedron is equal to one
sixth of the product of two opposite edges by the perpendicu-
lar distance between them and the sine of the included angle.

'16. If a line is drawn in each face plane of any triedral angle
through the vertex and perpendicular to the third edge, the
three lines thus obtained lie in a plane.



CHAPTER III
THE DIFFERENTIAL CALCULUS OF VECTORS

Differentiation of Functions of One Scalar Variable

55.] IF a vector varies and changes from r to r’ the incre-
ment of r will be the ‘difference between r’ and r and will be
denoted as usual by Ar.

Ar=r'—r, @

where Ar must be a vector quantity. If the variable r be
unrestricted the increment A r is of course also unrestricted :
it may have any magnitude and any direction. If, however,
the vector r be regarded as a function (a vector function) of
a single scalar variable ¢ the value of A r will be completely
determined when the two values ¢ and ¢’ of #, which give the
two values r and r/, are known.

To obtain a clearer conception of the quantities involved
it will be advantageous to think of the vector r as drawn
from a fixed origin O (Fig. 26). When
the independent variable ¢ changes its
value the vector r will change, and as ¢
possesses one degree of freedom r will
vary in such a way that its terminus
describes a curve in space. r will be
the radius vector of one point P of
the curve; r/, of a neighboring point P’. Ar will be the
chord PP of the curve. The ratio

Ar
At

0O  Fie. 26.
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will be a vector collinear with the chord P 7' but magnified
in the ratio 1: A¢. When A ¢ approaches zero P’ will ap-
proach P, the chord P P’ will approach the tangent at P, and
the vector

Ar dr
T will approach 7

which is a vector tangent to the curve at P directed in that
sense in which the variable ¢ increases along the curve,.
If r be expressed in terms of i, j, k as

r=ri+rj+ rk
the components 7;, r,, 73 Will be functions of the scalar ¢
= (4 Ar) it (ry+ Ar)j+ (r+ Ark
Ar=r'—r=Ari+Arj+ Ark

Ar Ar,., Ar,, Ar
at acitazita:k

and dr ‘iﬁ' _d_rz' %k,

a1 ac ta I tan @
Hence the components of the first derivative of r with re-

spect to ¢t are the first derivatives with respect to ¢ of the

components of r. The same is true for the second and higher
derivatives.

dzr_d2r1i+d2r2,+d27'3
it de T gl ek

@
d"r _d*r;.  d'r,.  d"r

i ap T gpitga k

In a similar manner if r be expressed in terms of any three
non-coplanar vectors a, b, ¢ as
r=aa+4bb+ce
arr _d"a d"b. d"c
- art T ae Tap®
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Ezample: Let r=acos?+ bsint

The vector r will then describe an ellipse of which a and b
are two conjugate diameters. This may be seen by assum-
ing a set of oblique Cartesian axes X, ¥ coincident W1th a
and b. Then

X=acost, Y =~0bsint,

JrA

a2t =1
which is the equation of an ellipse referred to a pair of con-
jugate diameters of lengths @ and b respectively.

e,
g; = —@&sint+boost.
dr :
Hence  —— =a cos (¢ + 90°) + b sin (¢ + 90°).

dt

The tangent to the curve is parallel to the radius vector
for (¢ + 90°).

d?r .
FTE =—(a cos? + b sinf).
The second derivative is the negative of r. Hence
d®r
det

is evidently a differential equation satisfied by the ellipse.

Ezample: Let r=a cosh £ + bsinh ¢
The vector r will then describe an hyperbola of which a and

b are two conjugate diameters.

ar
H:asinht+ b cosh ¢,

d 4 h h
an dt2 =a cosh ¢ + b sinh 2
d?r
H — =
ence 5 r

is a differential equation satisfied by the hyperbola.
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56.] A combination of vectors all of which depend on the
same scalar variable ¢ may be differentiated very much as in
ordinary calculus.

d db da
g b =2 (d—t>+ (ﬂ)b
For

(a+Aa)-(b+Ab)=a-b+a-Ab+Aa-b+Aa-Ab
A(a:b)=(a+ Aa)-(b+Ab)—a:b
—a.Ab+ Aa-b+ Aa.Ab

A(a:b) Ab Aa b Aa-.Ab.
Al =% Ar T AT TTA:
Hence in the limit when A ¢ = 0,
a db da
AL AR AL T (3)
d b da
E—t(axb)_ax<&—t—)+(7{)xb #)
d de ab
d—t(a-bxc)_a-bx(—t)+a.<-t—)xc
da
+<d—t>-bxc. (5)
d de ab
&—t(ax[bxc])_ax[bx<ﬂ>]+ax[<ﬁ>xc]
+(”la % [b X e] 6)
-t-i-?) cl. (

The last three of these formul® may be demonstrated exactly
as the first was.

The formal process of differentiation in vector analysis
differs in no way from that in scalar analysis except in this
one point in which vector analysis always differs from scalar
analysis, namely : The order of the factors in a vector product
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cannot be changed without changing the sign of the product.
Hence of the two formula

7 @xn=(g1) xv+ (57) x»

d da b
and %(aXb)_(dt>Xb+ax<dt>

the first is evidently incorrect, but the second correct. In
other words, scalar differentiation must take place without
altering the order of the factors of a vector product. The
factors must be differentiated ¢n sitw. This of course was to
be expected.

In case the vectors depend upon more than one variable
the results are practically the same. In place of total deriva-
tives with respect to the scalar variables, partial derivatives
occur. Suppose a and b are two vectors which depend on
three scalar variables z, y, 2. The scalar product a.-b will
depend upon these three variables, and it will have three
partial derivatives of the first order.

—(a. b) = <9—) b+a Zb)
Lema(@) e (2)

The second partial derivatives are formed in the same way.
92 d%a da
523y D= (9:1:9 ) s 9w> )

da db 92%p
+(5) (2) ++- Goms)
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’

Often it is more convenient to use not the derivatives but
the differentials. This is particularly true when dealing with
Jirst differentials. The formula (3), (4) become

d(asb)=da+b+ a-db, 3)
d(axb)=daXxXb+axdb, )

and so forth. As an illustration consider the following
example. If r be a unit vector

rer=1.

The locus of the terminus of r is a spherical surface of unit
radius described about the origin. r depends upon two vari-
ables. Differentiate the equation.

dr)er+re(dr)=2r.(dr) =0.

Hence redr=0.

Hence the increment dr of a unit vector is perpendicular to
the vector. This can be seen geometrically. If r traces a
sphere the variation dr must be at each point in the tangent
plane and hence perpendicular to r.

*57.] Vector methods may be employed advantageously
in the discussion of curvature and torsion of curves. Letr
denote the radius vector of a curve

r=1(¢),

where f is some vector function of the scalar ¢£. In most appli-
cations in physics and mechanics ¢ represents the time. Let
s be the length of arc measured from some definite point of
the curve as origin. The increment Ar is the chord of the
curve. Hence Ar /A sis approximately equal in magnitude
to unity and approaches unity as its limit when A s becomes
infinitesimal. Hence dr/ds will be a unit vector tangent to
the curve and will be directed toward that portion of the
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curve along which s is increasing (Fig. 27). Let t be the
unit tangent beat

dr

—=t. 8

P ®

The curvature of the curve is the
limit of the ratio of the angle through
which the tangent turns to the length
of the are. The tangent changes by the increment At. Ast
is of unit length, the length of A t is approximately the angle
through which the tangent has turned measured in circular
measure. Hence the directed curvature C is
_ L At_dt_d°r

c'_AsﬁO As ds  ds? ®)

Fie. 27.

The vector C is collinear with A t and hence perpendicular to
t; for inasmuch as t is a unit vector At is perpendicular
to t.

The tortuosity of a curve is the limit of the ratio of the
angle through which the osculating plane turns to the length
of the arc. The osculating plane is the plane of the tangent
vector t and the curvature vector C. The normal to this

plane is N=txC.

If ¢ be a unit vector collinear with C
n=tXxe

will be a unit normal (Fig. 28) to the osculating plane and
the three vectors t, ¢, n form an i, j, k system,
that is, a right-handed rectangular system.
Then the angle through which the osculating
plane turns will be given approximately by
An and hence the tortuosity is by definition
dn/ds.

From the fact that t, ¢, n form an i, j, k system of unit
vectors

¢
Fic. 28.
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tet=ce.c=n.n=1
and tec=cen=n.t=0.
Differentiating the first set
tedt=cede=ne.dn=020,
and the second
tede+dtec=cedn+deen=ne.dt+dn.t=0.
But d t is parallel to ¢ and consequently perpendicular to n.
nedt=0.
Hence dn.t=0,
The increment of n is perpendicular to t. But the increment
of n is also perpendicular to n. It is therefore parallel to e.
As the tortuosity is T = dn/ds, it is parallel to dn and hence
to c.
The tortuosity T is
d d fdr d3r 1
T= = (b x c)=a—s(g;xw Wﬁ) (11)
diy dire il dr_dir 1

T=gnXis c.c+_d—sxtm1/3—.“é
dr d?r d 1

The first term of this expression vanishes. T moreover has
been seen to be parallel to C =d?r/ds%. Consequently the
magnitude of T is the scalar product of T by the unit vec-
tor ¢ in the direction of C. It is desirable however to have
the tortuosity positive when the normal n appears to turn in
the positive or counterclockwise direction if viewed from
that side of the ne-plane upon which t or the positive part
of the curve lies. With this convention d n appears to move
in the direction — ¢ when the tortuosity is positive, that is, n
turns away from ¢. The scalar value of the tortuosity will
therefore be given by —c¢.T.
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dr d3r 1 dr d?r d 1

'35 I YG.6 | ds dstds Y G.6
But ¢ is parallel to the vector d®r/d s2. Hence
dr d?r

S E e

_.coT:-——-c

0.

And ¢ is a unit vector in the direction C. Hence

¢ _ar 1

T VG.C ds'VE.C
d2r dr d3r 1

c

Hence T=_c.T=_E—;2.a_;xd_ssm° (12)
[dr d?r d3r]
ds ds dsb
Or e A (13)
d?r d?r
ds? dst

The tortuosity may be obtained by another method which
is somewhat shorter if not quite so straightforward.

tec=c.n=n.t=20,
Hence dtec=—dc-t
deen=—dn-.¢
dnet=—dt.n

Now dt is parallel to ¢; hence perpendicular to n. Hence
dt.n=0, Hencedn.t=0. Butdn is perpendicular to n.
Hence d n must be parallel to e. The tortuosity is the mag-
nitude of dn/ds taken however with the negative sign
because dn appears clockwise from the positive direction of
the curve. Hence the scalar tortuosity 7' may be given by

dn de
.T—'—‘d—s'c—n‘g;a (14)

— dc /
T—txc‘a—s’ (14)
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i c-C

txc.iﬁ_[txc.é_cvc T—txc-CL VG- €-C.]+c-c

But txe.C=0.
txc."—l—c«/c—‘-c
ds
c.-C

dC
th-d

S
==

[dr dr? dsr]
ds ds® dsb
T- .

d%r d2r

ds? ds?
In Cartesian coordinates this becomes
do dy ds
ds ds ds
d*xz d?y d2z
ce g 2= 13)’
ds?2 ds? ds2 &)
ds® ds3 ds3

d2 x\ 2 d2 y
(&) (@) (@)

Those who would pursue the study of twisted curves and
surfaces in space further from the standpoint of vectors will
find the book « Application de la Méthode Vectorielle de Grass-
mann & la Géométrie Infinitésimale”! by FEHR extremely

1 Paris, Carré et Naud, 1899.

as
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helpful. He works with vectors constantly. The treatment
is elegant. The notation used is however slightly different
from that used by the present writer. The fundamental
points of difference are exhibited in this table

a; X a, ~ [a’l a’?]
a, - a, ~ [a; | a,]

8y 8, X a3 =[a,8,8;] ~ [a a, a5].

One used to either method need have no difficulty with the
other. All the important elementary properties of curves
and surfaces are there treated. They will not be taken
up here.

* Kinematics

58] Let r be a radius vector drawn from a fixed origin to
a moving point or particle. Let ¢ be the time. The equation
of the path is then
r=f£ ().
The welocity of the particle is its rate of change of position.
This is the limit of the increment A r to the increment A¢.

LM [Ar dr
v=arso[a7] =7 G
This velocity is a vector quantity. Its direction is the
direction of the tangent of the curve described by the par-
ticle. The term speed is used frequently to denote merely

the scalar value of the velocity. This convention will be

followed here. Then
ds

v=_——; 16
o a6

if s be the length of the arc measured from some fixed point

of the curve. It is found convenient in mechanics to denote

differentiations with respect to the time by dots placed over

the quantity differentiated. This is the old fluzional notation
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introduced by Newton. It will also be convenient to denote
the unit tangent to the curve by t. The equations become

. dr
v=r=—d—t- (15)
v=uot. an

The acceleration is the rate of change of velocity. It
is a vector quantity. Let it be denoted by A. Then by

definition

A Lim Av dv
At=0A7 " d:¢
. d d fdr\ d?r .
and A=v=ﬁ—7(ﬂ>—w—' (18)
Differentiate the expression v=uvt.
dv d(vt) dv dt
A—d—t_ a1 —d—tt+'l7g—t9
dv d2s
—_—— ——=3,
t dt?
dt _dt ds—Cv
dt ds dt

where C is the (vector) curvature of the curve and v is the
speed in the curve. Substituting these values in the equation

the result is
A=5st+v2C.

The acceleration of a particle moving in a curve has there
fore been broken up into two components of which one is paral
lel to the tangent t and of which the other is parallel to the
curvature C, that is, perpendicular to the tangent. That this
resolution has been accomplished would be unimportant were
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it not for the remarkable fact which it brings to light. The
component of the acceleration parallel to the tangent is equal
in magnitude to the rate of change of speed. It is entirely
independent of what sort of curve the particle is describing.
It would be the same if the particle described a right line
with the same speed as it describes the curve. On the other
hand the component of the acceleration normal to the tangent
is equal in magnitude to the product of the square of the
speed of the particle and the curvature of the curve. The
sharper the curve, the greater this component. The greater
the speed of the particle, the greater the component. But the
rate of change of speed in path has no effect at all on this
normal component of the acceleration.
If r be expressed in terms of i, j, k as

r=zi+yj+zk,

e E LE ) 16y
A=v=ft=2i+yj+ 2k a8y

zE+yy+zz
VTt gt + 2t

From these formul® the difference between §, the rate of
change of speed, and A =T, the rate of change of velocity,
is apparent. Just when this difference first became clearly
recognized would be hard to say. But certain it is that
Newton must have had it in mind when he stated his second
law of motion. The rate of change of velocity is proportional
to the impressed force ; but rate of change of speed is not.
59.] The hodograph was introduced by Hamilton as an
aid to the study of the curvilinear motion of a particle.
With any assumed origin the vector velocity  is laid off.
The locus of its terminus is the hodograph. In other words,
the radius vector in the hodograph gives the velocity of the
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particle in magnitude and direction at any instant. It is
possible to proceed one step further and construct the hodo-
graph of the hodograph. This is done by laying off the
vector acceleration A =Ff from an assumed origin. The
radius vector in the hodograph of the hodograph therefore
gives the acceleration at each instant.

Ezample 1: Let a particle revolve in a circle (Fig. 29)
of radius » with a uniform
angular velocity a. The
speed of the particle will then

v fe-dr v

! be equal to
v=ar.
A Let r be the radius vector
Fie. 29.

drawn to the particle. The
velocity v is perpendicular to r and to a. It is

r=v=axr.

The vector v is always perpendicular and of constant magni-
tude. The hodograph is therefore a circle of radius v =ar.
The radius vectorr in this circle is just ninety degrees in
advance of the radius vector r in its circle, and it conse-
quently describes the circle with the same angular velocity
a. The acceleration A which is the rate of change of v is
always perpendicular to v and equal in magnitude to
A=av=a?7r
The acceleration A may be given by the formula
r=A=axv=aXx(axXr) =ara—aar

But as a is perpendicular to the plane in which r lies, a . r=0.
Bl r=A=—aar=—a’r

The acceleration due to the uniform motion of a particle in
a circle is directed toward the centre and is equal in magni-
tude to the square of the angular velocity multiplied by the
radius of the circle.
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Ezample 2: Consider the motion of a projectile. The
acceleration in this case is the acceleration g due to gravity.

r=A=g.

The hodograph of the hodograph reduces to a constant
vector. The curve is merely a point. It is easy to find
the hodograph. Let v, be the velocity of the projectile
in path at any given instant. At a later instant the velocity
will be

v=v,+ g
Thus the hodograph is a straight line parallel to g and pass-
ing through the extremity of v,. The hodograph of a
particle moving under the influence of gravity is hence a
straight line. The path is well known to be a parabola.

Ezample 8: In case a particle move under any central

acceleration

r=A=1£().
The tangents to the hodograph of r are the accelerations r.
But these tangents are approximately collinear with the
chords between two successive values r and r, of the radius
vector in the hodograph. That is approximately

- T—1,

TTAr

(r—1,)
At

Multiply by rx. rXr=rx

Since r and r are parallel
rx(r—r)=0.
Hence rXr=rxr,.

But } r x t is the rate of description of area. Hence the
equation states that when a particle moves under an ac-
celeration directed towards the centre, equal areas are swept

over in equal times by the radius vector.
9
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Perhaps it would be well to go a little more carefully into
this question. If r be the radius vector of the particle in
its path at one instant, the radius vector at the next instant
ist+ Ar. The area of the vector of which r and r + Ar are
the bounding radii is approximately equal to the area of the
triangle enclosed by r, r + Ar, and the chord Ar. This

area is

1 _1 - =1
gTX(@+Ar)=3rxr+;r X Ar=grxAr

The rate of description of area by the radius vector is
consequently

Ly 1TXQ@+AR)  ppy 1, Ar 1
At=02" Az “At=0Q2 X pasT2FXT

Let r and 1, be two values of the velocity at two points
P and P, which are near together. The acceleration t, at P,
is the limit of

r—r, Ar
At At

>

r—r,
At
parallel and the other perpendicular to the acceleration ¥, .

Ag
Break up the vector _Ait = into two components one

AP .
At—wro'*'?/n’

if n be a normal to the vector ¥, The quantity z ap-
proaches unity when A ¢ approaches zero. The quantity y
approaches zero when A ¢ approaches zero.

Ax"=x"—1"°=a:At i-l,-}-yAt n.

Hence rXx (r—r)=2AtrXxr,+yAtrxn

A .
-—rAt)xro.

rx(r—r°)=r><r-(r°+At
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Hence
Ar

N XT,At+zAtrXf,+yAt rxn

IXT—TyX Fp=

But each of the three terms upon the right-hand side is an
infinitesimal of the second order. Hence the rates of descrip-
tion of area at P and Py differ by an infinitesimal of the
second order with respect to the time. This is true for any
point of the curve. Hence the rates must be exactly equal
at all points. This proves the theorem.

60.] The motion of a rigid body one point of which is
fixed is at any instant a rotation about an instantaneous axis
passing through the fixed point.

Let i, j, k be three axes fixed in the body but moving in
space. Let the radius vector r be drawn from the fixed point
to any point of the body. Then

r=zi+yj+z2k,
dr=zdi+ydj+z2dk.
But dr=@drei)i+(dr.j)j+(dr-k)k

Substituting the values of dr+i, dr«j, dr.k obtained from
the second equation

dr=(zi +dityidj+zi-dk)i
+(@j +dityj +dj+zjedk)j
+(@k-di+ykedj+zk.dk)k

But iej=j-k=ke.i=0.

Hence isdj+jedi=0 or jedi=—i.dj
jedk+kedj=0 or kedj=—j-dk
kedi+iedk=0 or iedk=—k.di

Moreover leg=j-j=k+k=1

Hence icdi=j.dj=ke.dk=0.
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Substituting these values in the expression for d r.
dr=(zi+dk—yjedD)i+ (xjedi—2zkedj)]
+(ykedj—=zi.dk)k
This is a vector product.
dr=(kdji+idkj+jdik)x(@i+yj+2zk).

Let dj . . dk, . di
a—k-z—t1+1-:l—t,]+')-g—tk.
Lhez r—é—!—axr
===

This shows that the instantaneous motion of the body is one
of rotation with the angular velocity @ about the line a.
This angular velocity changes from instant to instant. The
proof of this theorem fills the lacuna in the work in Art. 51.
Two infinitesimal rotations may be added like vectors.
Let a; and a, be two angular velocities. The displacements

due to them are
dir=a, Xrdt

dyr=a, Xrdt
If r be displaced by a, it becomes
r+d,r=r+a; Xrdt

If it then be displaced by a,, it becomes

r+dr=r+d,r+a,x[r+ (a,xr)dt]dt.
Hence dr=a, Xxrdt+a,xrdt+a,x(a; xr) (dt)
If the infinitesimals (d ¢) % of order higher than the first be
neglected,

dr=a; Xrdt+a,Xrdt=(a;+a,) Xrdt
which proves the theorem. If both sides be divided by d ¢

. dar
r=ﬂ=(a1+a,) X I,
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This is the parallelogram law for angular velocities. It
was obtained before (Art. 51) in a different way.

In case the direction of a, the instantaneous axis, is con-
stant, the motion reduces to one of steady rotation about a.

dr=axrdli,
r==axr.
The accelerationr =a Xr+axXxr=a Xr+ax (a xr).

As a does not change its direction 2 must be collinear with
a and hence & x ris parallel to a x r. That is, it is perpen-
dicular to r. On the other hand a X (a X r) is parallel to r.
Inasmuch as all points of the rotating body move in con-
centric circles about a in planes perpendicular to a, it is
unnecessary to consider more than one such plane.

The part of the acceleration of a particle toward the centre
of the circle in which it moves is

ax(axr).

This is equal in magnitude to the square of the angular
velocity multiplied by the radius of the circle. It does not
depend upon the angular acceleration a at all. It corresponds
to what is known as centrifugal force. On the other hand
the acceleration normal to the radius of the circle is
axr.

This is equal in magnitude to the rate of change of angular
velocity multiplied by the radius of the circle. It does not
depend in any way upon the angular velocity itself but only
upon its rate of change.

61.] The subject of integration of vector equations in which
the differentials depend upon scalar variables needs but a
word. It is precisely like integration in ordinary calculus,

If then dr=ds,
r=s+4C,
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where C is some constant vector. To accomplish the integra-
tion in any particular case may be a matter of some difficulty
just as it is in the case of ordinary integration of scalars.
Ezample 1: Integrate the equation of motion of a
projectile.
The equation of motion is simply

g
which expresses the fact that the acceleration is always ver-
tically downward and due to gravity.
I = gt+b,
where b is a constant of integration. It is evidently the
velocity at the time t =0.
r=%gt2+bt+c.

¢ is another constant of integration. It is the position vector
of the point at time #=0. The path which is given by this
last equation is a parabola. That this is so may be seen by
expressing it in terms of z and y and eliminating ¢.

Ezample 2 : The rate of description of areas when a par-
ticle moves under a central acceleration is constant.

r=f ().

Since the acceleration is parallel to the radius,

rxr=0.
But o I XI
—-dt( r).
d : g . a
For d—t(rxr)=rxr+rxr.
d
H il F) —
ence dt(rxr) 0
and l'Xl"=C,

which proves the statement.



THE DIFFERENTIAL CALCULUS OF VECTORS 1385

Ezample 3 : Integrate the equation of motion for a particle
moving with an acceleration toward the centre and equal to
a constant multiple of the inverse square of the distance
from the centre.

Given F=— =T
r
Then rxr=0.
Hence rxr=_0C.

Multiply the equations together with x.
rxC -— . -1 . :
r——c>—<§——=—7:8—r X(rxr)= py {rrr—rrr}

rer=r2

Differentiate. Then rer=rn

Hence

Each side of this equality is a perfect differential.

((:39)-4C)

C
rx i‘+eI,
r

Integrate. Then

P
where ¢ I is the vector constant of integration. e is its magni-
tude and I a unit vector in its direction. Multiply the equa-
tion by r ..

rerxC reor

2 =7—+er:1.
e reixC rxi.C_C.C

c2? c2 c?
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Let p= 06-20 and cos » = cos (r, I).
Then p=r-+ercosu.
Or = p

"1 +ecosu

This is the equation of the ellipse of which ¢ is the eccentri-
city. The vector I is drawn in the direction of the major
axis. The length of this axis is
=2 .

1—e2

It is possible to carry the integration further and obtain
the time. So far merely the path has been found.

a

Scalar Functions of Position in Space. The Operator V

62.] A function V (, y, 2) which takes on a definite scalar
value for each set of coordinates z, 7, z in space is called a
scalar function of position in space. Such a function, for ex-
ample, is

Vz,y,2) =22+ y2 + 22 =172,

This function gives the square of the distance of the point
(%, y, 2) from the origin. The function ¥ will be supposed to
be in general continuous and single-valued. In physics scalar
functions of position are of constant occurrence. In the
theory of heat the temperature 7' at any point of a body is a
scalar function of the position of that point. In mechanics
and theories of attraction the potential is the all-important
function. This, too, is a scalar function of position.

If a scalar function 7 be set equal to a constant, the equa-
tion

Vi(a 3.2) =l (20)
defines a surface in space such that at every point of it the
function 7 has the same value c¢. In case ¥ be the tempera-
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ture, this is a surface of constant temperature. It is called an
1sothermal surface. In case V be the potential, this surface of
constant potential is known as an equipotential surface. As
the potential is a typical scalar function of position in space,
and as it is perhaps the most important of all such functions
owing to its manifold applications, the surface

Vz,y,2)=c

obtained by setting 7" equal to a constant is frequently spoken
of as an equipotential surface even in the case where ¥ has
no connection with the potential, but is any scalar function
of positions in space.

The rate at which the function 7 increases in the X direc-
tion — that is, when z changes to # + A z and y and 2 remain
constant — is

LI V(a:-}-Ax,y,z)—V(x,y,z):l
Az=0 Az '

This is the partial derivative of 7 with respect to 2. Hence
the rates at which ¥ increases in the directions of the three
axes X, Y, Z are respectively

oV oV IV

9z’ 9y’ 9z
Inasmuch as these are rates in a certain direction, they may
be written appropriately as vectors. Leti,j, k be a system
of unit vectors coincident with the rectangular system of
axes X, ¥, Z. The rates of increase of ¥ are

LoV 9V K oV

192733 y' = 9z’
The sum of these three vectors would therefore appear to be
a vector which represents both in magnitude and direction

the resultant or most rapid rate of increase of V. That this
is actually the case will be shown later (Art. 64).



138 VECTOR ANALYSIS

63.] The vector sum which is the resultant rate of increase
of ¥ is denoted by V7.
v .V oV
VV =1— +k —. 21
PR PP &b
V V represents a directed rate of change of ¥ — a directed
or vector derivative of 7, so to speak. For this reason VV
will be called the derivative of V; and V, the primitive of
VV. The terms gradient and slope of V are also used for
V V. It is customary to regard V as an operator which obtains
a vector V¥ from a scalar function 7 of position in space.

VV= <—+J-—+ a)V @y

9 9. 8

—. 22
V= 94:+J dy dz )

This symbolic operator ¥V was introduced by Sir W. R.
Hamilton and is now in universal employment. There
seems, however, to be no universally recognized name? for it,
although owing to the frequent occurrence of the symbol
some name is a practical necessity. It has been found by
experience that the monosyllable del is so short and easy to
pronounce that even in complicated formule in which V occurs
a number of times no inconvenience to the speaker or hearer
arises from the repetition. V7 is read simply as “del V.”

Although this operator V has been defined as

) . 0 d
v_1ﬂ+18—g/+ké—_z’

1 Some use the term Nabla owing to its fancied resemblance to an Assyrian
harp. Others have noted its likeness to an inverted A and have consequently
coined the none too enphonious name Atled by inverting the order of the letters in
the word Delta. Foppl in his Einfuhrung in die Maxwell’sche Theorie der Elec-
tricitit avoids any special designation and refers to the symbol as “die Operation
Vv.” How this is to be read is not divulged. Indeed, for printing no particular
name is necessary, but for lecturing and purposes of instruction something is re-
quired —something too that does not confuse the speaker or hearer even when
often repeated.
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so that it appears to depend upon the choice of the axes, it
is in reality independent of them. This would be surmised
from the interpretation of V as the magnitude and direction
of the most rapid increase of V. To demonstrate the inde-
pendence take another set of axes, i, j’, k' and a new set of
variables &/, 4/, 2/ referred to them. Then ¥ referred to this

system is . 2 5
T A 0. '

By making use of the formule (47)' and (47)", Art. 53, page
104, for transformation of axes from i, j, k to i, j’, kK’ and by
actually carrying out the differentiations and finally by
taking into account the identities (49) and (50), V/ may
actually be transformed into V.

V' =V.

The details of the proof are omitted here, because another
shorter method of demonstration is to be given.
64.] Consider two surfaces (Fig. 30)

Vz,y,2) =¢
and V(zyy,2z)=c+de,

upon which V'is constant and which are moreover infinitely
near together. Let x, y, z be a given point upon the surface
V=c. Let r denote the ra-
dius vector drawn to this
point from any fixed origin.
Then any point near by in
the neighboring surface 7
= ¢ + d ¢ may be represented
by the radius vector r + dr.
The actual increase of 7 from
the first surface to the second
is a fixed quantity dc. The rate of increase is a variable

Fia. 30.
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quantity and depends upon the direction dr which is fol-
lowed when passing from one surface to the other. The rate
of increase will be the quotient of the actual increase d ¢ and
the distance 4/dr . dr between the surfaces at the point
z, i, z in the direction dr. Let n be a unit normal to the
surfaces and d n the segment of that normal intercepted
between the surfaces, n d n will then be the least value for
dr. The quotient de

Vdr.dr
will therefore be a maximum when dr is parallel to n and
equal in magnitude of dn#. The expression

de

"
is therefore a vector of which the direction is the direction of
most rapid increase of 7 and of which the magnitude is the
rate of that increase. This vector is entirely independent of
the axes X, ¥, Z. Let d ¢ be replaced by its equal d ¥ which
is the increment of 7 in passing from the first surface to the
second. Then let V V" be defined again as

av
VV:d_n n. (24)

From this definition, V¥ is certainly the vector which
gives the direction of most rapid increase of 7 and the rate
in that direction. Moreover V V is independent of the axes.
It remains to show that this definition is equivalent to the one
first given. To do this multiply by « d r.

(23)

av
VV-dr=ﬂnodr. (25)

n is a unit normal. Hence n « dr is the projection of dr on
n and must be equal to the perpendicular distance d n between
the surfaces.
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av ;
VV-dr—ﬂ dn=4dV. (25)
oV 4 v
where @z + (dy)?+ (d 2)!=dr.dr.

If dr takes on successively the valuesidz, j dy, k dz the
equation (25)' takes on the values

VV-idx:aKda:
dx
. oV
VVony—a—y—dy (26)
VV-kdz=a—I-]dz.
dz

If the factors d z, dy, d 2z be cancelled these equations state
that the components VV i, VV.j, VV.kof VV in the
i, j, k directions respectively are equal to

oV oV 24
S’ dy’ dz’
VV=V.D)i+ (VV:)ji+ (VV.kk
ov. .V v
Hence by (26) V¥V =i 3z S ay +k 35 (21)
The second definition (24) has been reduced to the first
and consequently is equivalent to it.
*65.] The equation (25)' found above is often taken as a
definition of V¥. According to ordinary calculus the deriv-
ative Z—Z satisfies the equation

dy
da: Iz =dy.
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Moreover this equation defines dy /dz. In a similar manner
it is possible to lay down the following definition.

Definition: The derivative V'V of a scalar function of
position in space shall satisfy the equation

dr VV=dV
for all values of dr.

This definition is certainly the most natural and important
from theoretical considerations. But for practical purposes
either of the definitions before given seems to be better.
They are more tangible. The real significance of this last
definition cannot be appreciated until the subject of linear
vector functions has been treated. See Chapter VII.

The computation of the derivative V of a function is most
frequently carried on by means of the ordinary partial
differentiation.

Ezample 1: Let V (z,y,2) =7 =422+ y2+22

dr
o

dr . 9r

Vr=1§;+']9y

+k

. z - y

T Vargra Vatgra
2z

VTt et

Vr

+k

1

Hence Vr= m (iz +jy + k2)

and VT‘:-——:—-.

The derivative of r is a unit vector in the direction of r.
This is evidently the direction of most rapid increase of #
and the rate of that increase.
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Ezample 2: Let V (@,2) = 1 _ 1 ]
v VaTF yT§ 23
1 . Z . y
M P g R 7 g gL

k 2
@+t + )

1 1

- J __ (—iz—jy—k
Hence Vr (w2+y2+z2)i( 1z —Jy 2)
and ylo =T =

r—(rur)i= r

The derivative of 1/r is a vector whose direction is that
of — r, and whose magnitude is equal to the reciprocal of the
square of the length .

Erample 3 : Vr”==nr"'zr=nr"——r—-

rer
The proof is left to the reader.
Ezample 4 : Let V(2,y,2) = log /a5 1 42,

¥

+ia

Vieg Va¥+ y2=i

€r
x2+y2 y2+0k

=w-2‘_'*_—y§(iw +3iy)-

If r denote the vector drawn from the origin to the point
(=, y, z) of space, the function ¥ may be written as

V(z9,2) =log VTer — (k+1)?
and iz+jy=r—kker.

r—kkr

H V2if 2= — —

ence Vieg vV 2%+ y = (&)’
r—kker

T G—kk1)-(r—KkKk)
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There is another method of computing V which is based
upon the identity

dr.VV =4dV.
Ezample 1: Let V=Ar.r=r.
dr.r r
dV—-m—dr-vm=dr-\7V.
r r
Hence VV=\/;—I‘=;

Ezample 2: Let V =r.a, where a is a constant vector.
dV=dr.a=dr-VYV.
Hence VV=a

Ezample 3: Let V = (rxa)e (rxb), where & and b are
constant vectors.
V =rer ab — rea rb.
adV = 2dr.r ab — drea rb —dreb rea =dr. VV.
Hence VV=2rab—ardb—brea
VV = (rab—ar:h) + (rab — brea)
=bx(rxa) + a x (rxb).

Which of these two methods for computing ¥ shall be
applied in a particular case depends entirely upon their
relative ease of execution in that case. The latter method is
independent of the coordinate axes and may therefore be
preferred. It is also shorter in case the function 7 can be
expressed easily in terms of r. But when V cannot be so
expressed the former method has to be resorted to.

*66.] The great importance of the operator ¥V in mathe-
matical physics may be seen from a few illustrations. Sup-
pose T' (z, y, 2) be the temperature at the point z, %, z of a
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heated body. That direction in which the temperature de-
creases most rapidly gives the direction of the flow of heat.
V T, as has been seen, gives the direction of most rapid
tncrease of temperature. Hence the flow of heat f is

f=—%kVT,

where k is a constant depending upon the material of the
body. Suppose again that V7 be the gravitational potential
due to a fixed body. The force acting upon a unit mass at
the point (&, ¥, 2) is in the direction of most rapid increase of
potential and is in magnitude equal to the rate of increase
per unit length in that direction. Let F be the force per unit

mass. Then
F=VV7.

As different writers use different conventions as regards the
sign of the gravitational potential, it might be well to state
that the potential ¥V referred to here has the opposite sign to
the potential energy. If W denoted the potential energy of
a mass m situated at z, y, z, the force acting upon that mass

would be
=-—-VW.

In case V represent the electric or magnetic potential due
to a definite electric charge or to a definite magnetic pole re-
spectively the force F acting upon a unit charge or unit pole

as the case might be is
F=—-VV.

The force is in the direction of most rapid decrease of
potential. In dealing with electricity and magnetism poten-
tial and potential energy have the same sign; whereas in
attraction problems they are generally considered to have
opposite signs. The direction of the force in either case is in
the direction of most rapid decrease of potential energy. The

difference between potential and potential energy is this.
10
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Potential in electricity or magnetism is the potential energy
per unit charge or pole; and potential in attraction problems
is potential energy per unit mass taken, however, with the
negative sign.

*67.] It is often convenient to treat an operafor as a
quantity provided it obeys the same formal laws as that
quantity. Consider for example the partial differentiators

9 9 9.
9z’ 3 Y ' 9z
As far as combinations of these are concerned, the formal laws

are precisely what they would be if instead of differentiators
three true scalars

a, b ¢
were given. For instance
the commutative law
d 9 9 9
— —=—— ~ ab=ba,
dzdy dydx ¢

the associative law

d /9 9 9 9 d

2 (é? 2)= (ﬁ 55) o~ al)=(d)s
and the distributive law

d (3 9 d 9 9 9 '
hold for the differentiators just as forscalars. Of course such
formule as

wl=2y

dz  dz
where % is a function of 2 cannot hold on account of the
properties of differentiators. A scalar function » cannot be
placed under the influence of the sign of differentiators.
Such a patent error may be avoided by remembering that an
operand must be understood upon which 9/9 z is to operate.
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In the same way a great advantage may be obtained by
looking upon

. 9 d d
V=1— — 4+ k—
FEh g e
as a vector. It is not a true vector, for the coefficients
9,9,
dz dy 9z

are not true scalars. It is a vector differentiator and of
course an operand is always implied with it. As far as formal
operations are concerned it behaves like a vector. For
instance
V@+v)=Vu+ Vo,
V@) =Nu)v+u(Vo),
¢ Vu=V(cu),

if v and v are any two scalar functions of the scalar variables
z, ¥, z and if ¢ be a scalar independent of the variables with
regard to which the differentiations are performed.

68.] If A represent any vector the formal combination
A.Vis

9 d d
A'V—A19—:;;+A 5y + 4, e @n
provided A=4,i+ 4,j+ 43k

This operator A« Vis a scalar differentiator. When applied
to a scalar function V7 (z, v, 2) it gives a scalar.
oV oV oV

A.V) V=4, +A4y—+A4; —- 28
( ) a 2 a y + 3 az ( )
Suppose for convenience that A is a unit vector a.

oV oV oV
@ VYyV=0a,— o +a;— 5y +ag — 5% (29)
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where @, a,, a4 are the direction cosines of the line a referred

to the axes X, Y, Z. Consequently (a+ V)V appears as the

well-known directional derivative of V in the direction a.
This is often written

oV _ v, av. oV ,
E-a1%+a25—?—/—+a35. (29)

It expresses the magnitude of the rate of increase of ¥ in
the direction a. In the particular case where this direction is
the normal n to a surface of constant value of V, this relation
becomes the normal derivative.
oV oV ov v
. V V —_——_— N - P n
(n ) on nlax+n29y +n3 az’ (29)

if ny, ny, ng be the direction cosines of the normal.

The operator a - V applied to a scalar function of position
V yields the same result as the direct product of a and the

vector V V.
@ V)V =a.(VP). (30)

For this reason either operation may be denoted simply by
a.vVVy

without parentheses and no ambiguity can result from the
omission. The two different forms (a V) ¥Vand a« (V V)
may however be interpreted in an important theorem.
(a+V) Vis the directional derivative of 7 in the direction
8. On the other hand a.(VV)is the component of VV in
the direction a. Hence: The directional derivative of ¥ in
any direction is equal to the component of the derivative
V'V in that direction. If 7 denote gravitational potential the
theorem becomes: The directional derivative of the potential
in any direction gives the component of the force per unit
mass in that direction. In case ¥ be electric or magnetic
potential a difference of sign must be observed.
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Vector Functions of Position tn Space

69.] A wector function of position in space is a function

V (z, y,2)

which associates with each point z, y, z in space a definite
vector. The function may be broken up into its three com-
ponents

V(z,9,2) = Vl (,y,2)1+ Vy (9, 2) j+ Vs (z,9,2) k.

Examples of vector functions are very numerous in physics.
Already the function V7 has occurred. At each point of
space V'V has in general a definite vector value. In mechan-
ics of rigid bodies the velocity of each point of the body is a
vector function of the position of the point. Fluxes of heat,
electricity, magnetic force, fluids, etc., are all vector functions
of position in space.

The scalar operator a«V may be applied to a vector func-
tion V to yield another vector function.

Let V=V (y2)i+V,(@p2)j+V(@y2)k

and a=a;it+azj+azk
d d d
Then a-V=a19-x+a2§,—y+a3a—z

@ VNVYV=@V)Ti+@-VT]+@-V)IGk

on on on
and (a-V)V-( 135 + a, 8 + a, Qz)
9V QV av,

AL WL L e

o7,
k.
< +’a )
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This may be written in the form

v, o
(a-V)V=%- +%—J+99 k. @31y

Hence (a «V) V is the directional derivative of the vector
function V in the direction a. It is possible to write

@-V)yv=a.vVVv

without parentheses. For the meaning of the vector symbol
V when applied to a vector function V has not yet been
defined. Hence from the present standpoint the expression
a+V Vcan have but the one interpretation given to it by
@ v)v

70.] Although the operation V V has not been defined and
cannot be at present,! two formal combinations of the vector
operator V and a vector function V may be treated. These
are the (formal) scalar product and the (formal) vector prod-
uct of Vinto V. They are

v.v=<i+3—~+ —) .V (32)

d
and VxV—<1—+Ja+ki>xV (33)
oy d
V . Vis read del dot Vy and V X V, del cross V.
The differentiators E)a—x : % 3 5%’ being scalar operators, pass
by the dot and the cross. That is
) ov v
VeV=i.— e—+ko—— 2y
i 3 +) 9y+ 27 (32)
EOA ) av
VXV=1ix_-— — —. !
X xa +Jxé)y+kxaz (338)

These may be expressed in terms of the components 77, Vo Vs
of V.

1 A definition of v V will be given in Chapter VII. 4
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Vv _ vy, AV, 3V, -
Now 9z 9z +9x‘,+9xk’
v _ar, . 9V 34
5;—9?/ P =X ay k7 ( )
av V. av,. 97"3
- =-1 —2 k.
9z 9z +6)z +9
. AV _ a7,
Then l'ﬁ—'ﬁ-,
j v _av,
dy ~ dy’
v _o,
9z 9z
_QV.I aVz 973 32”
Hence V~V—W+ay 7 32)
. OV 9V, .9V,
Moreover lxﬁ_ka_x_‘] 72’
ov AV, o7,
—_— =13
V_, 0%, _, o,
az_J dz
7,
Hence Vx V= (W ) (9 )(33)"
dy
oV, v,
+k(‘a“x"“W)
This may be written in the form of a determinant
i J k
d o o m
= IRCA oA [ 3
e dz dy 9z (3
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It is to be understood that the operators-are to be applied to
the functions V7, V,, ¥; when expanding the determinant.

From some standpoints objections may be brought forward
against treating V as a symbolic vector and introducing V - ¥
and V x V respectively as the symbolic scalar and vector
products of V into V. These objections may be avoided by
simply laying down the definition that the symbols V « and
V X, which may be looked upon as entirely new operators
quite distinct from V, shall be

ov . oV oV
] =.O . k' 32’
VeV=ie o bt ke o (82)
ov . 9V ov
=1 —_— — k — !
and VxV 1x9w+1x9y+ = (33)

But for practical purposes and for remembering formule it
seems by all means advisable to regard

.9 .9 d
V=i r +j Z)—y- + k 27

as a symbolic vector differentiator. This symbol obeys the
same laws as a vector just in so far as the differentiators
8 9 9
oz’ 9y’ 9z

71.] That the two functions V « V and V X V have very
important physical meanings in connection with the vector
function V may be easily recognized. By the straight-
forward proof indicated in Art. 63 it was seen that the
operator V is independent of the choice of axes. From this
fact the inference is immediate that V. V and V x V represent
intrinsic properties of V invariant of choice of axes. In order
to perceive these properties it is convenient to attribute to the
function V some definite physical meaning such as flux or
flow of a fluid substance. Let therefore the vector V denote

obey the same laws as ordinary scalar quantities.
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at each point of space the direction and the magnitude of the
flow of some fluid. This may be a material fluid as water
or gas, or a fictitious one as heat or electricity. To obtain as
great clearness as possible let the fluid be material but not
necessarily restricted to incompressibility like water.

v .oV v
.a—+l'?— a

Then V.V=1 72 P r

is called the divergence of V and is often written
V.V=div V.

The reason for this term is that V.V gives at each point the
rate per unit volume per unit time at which fluid is leaving
that point — the rate of diminution of density. To prove
this consider a small cube of matter (Fig. 81). Let the edges
of the cube be dz, dy, and dz respectively. Let

V@)=V (5y2)i+ V(@92 ]+ V(xyz2)k

Consider the amount of fluid which passes through those
faces of the cube which are parallel to the Y Z-plane, 7. e.
perpendicular to the X
axis. The normal to the
face whose 2 codrdinate is
the lesser, that is, the nor-
mal to the left-hand face —1 @@ idyds
of the cube is —i. The flux zyz
of substance through this
face is X

—iV (z,9,2) dy dz.

Z
The normal to the oppo- Fic. 31
site face, the face whose
z covrdinate is greater by the amount dz, is + i and the flux
through it is therefore

g

x4+dx, ys.
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. ov
ieV(z+dr,y2)dyde=i. [V(:c, Y, %) +§—5dx] dy dz

=iV (z,v,2) dydz-i—i-%%dxdydz.

The total flux outward from the cube through these two

faces is therefore the algebraic sum of these quantities. This
is simply

ov

oz

v,
s dx dy dz.

In like manner the fluxes through the other pairs of faces of
the cube are

d oV
1°3 Y dz
The total flux out from the cube is therefore

A A ov
3, F31° 77 +k-9—z>dxdydz.

io

This is the net quantity of fluid which leaves the cube per
unit time. The quotient of this by the volume dz dy dz of
the cube gives the rate of diminution of density. This is

ov . av oV _avy oV, . 9,
VeVl ot gyt 5 =5 Y3y T

dz "9y Y

Because V .V thus represents the diminution of density
or the rate at which matter is leaving a point per unit volume
per unit time, it is called the divergence. Maxwell employed
the term convergence to denote the rate at which fluid ap-
proaches a point per unit volume per unit time. This is the
negative of the divergence. In case the fluid is incompressible,
as much matter must leave the cube as enters it. The total
change of contents must therefore be zero. For this reason
the characteristic differential equation which any incompres-

sible fluid must satisfy is
V.Vv=0
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where V is the flux of the fluid. This equation is often
known as the hydrodynamic equation. It is satisfied by any
flow of water, since water is practically incompressible. The
great importance of the equation for work in electricity is due
to the fact that according to Maxwell’s hypothesis electric dis-
placement obeys the same laws as an incompressible fluid. If
then D be the electric displacement,

divD=V.D=0.

72.] To the operator V x Maxwell gave the name curl.
This nomenclature has become widely accepted.

V X V =curl V.

The curl of a vector function V is itself a vector function
of position in space. As the name indicates, it is closely
connected with the angular velocity or spin of the flux at
each point. But the interpretation of the curl is neither so
easily obtained nor so simple as that of the divergence.
Consider as before that V represents the flux of a fluid.
Take at a definite instant an infinitesimal sphere about any
point (#, y, 2). At the next instant what has become of the
sphere? In the first place it may have moved off as a whole
in a certain direction by an amount dr. In other words it
may have a translational velocity of dr/d¢. In addition to
this it may have undergone such a deformation that it is no
longer a sphere. It may have been subjected to a strain by
virtue of which it becomes slightly ellipsoidal in shape.
Finally it may have been rotated as a whole about some
axis through an angle dw. That is to say, it may have an
angular velocity the magnitude of which is dw/d¢. An
infinitesimal sphere therefore may have any one of three
distinct types of motion or all of them combined. First, a
translation with definite velocity. Second, a strain with three
definite rates of elongation along the axes of an ellipsoid.
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Third, an angular velocity about a definite axis. It is this
third type of motion which is given by the curl. In fact,
the curl of the flux V is a vector which has at each point of
space the direction of the instantaneous axis of rotation at
that point and a magnitude equal to twice the instantaneous
angular velocity about that axis.

The analytic discussion of the motion of a fluid presents
more difficulties than it is necessary to introduce in treating
the curl. The motion of a rigid body is sufficiently complex
to give an adequate idea of the operation. It was seen (Art.
61) that the velocity of the particles of a rigid body at any
instant is given by the formula

v=v,+aXxr
culv=VXxv=V Xxv,+V x (axr).
Let a=a;it+a,j+azk
r=ryit+rj+rzgk=zit+yj+zk
expand V x (a x r) formally as if it were the vector triple
product of V, a, and r. Then
VXv=VXv,+(Ver)a—(V.a)r

v, is a constant vector. Hence the term V X v, vanishes.

As a is a constant vector it may be placed upon the other side
of the differential operator, V«a=a . V.

a- Vr:(alé%+ a2595+a39%>r=a1i+a2j+ask=a.

Hence VXxv=38a—a=2a.

Therefore in the case of the motion of a rigid body the curl
of the linear velocity at any point is equal to twice the
angular velocity in magnitude and in direction.
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V xXv=curl v=2a,

1 1
a_Qva-—écurlv.

V=V s (VX V) XT=Vo+3 (curl v) x 1. (34)

The expansion of 7 x (a X r) formally may be avoided by
multiplying a X r out and then applying the operator 7 x to
the result.

73.] It frequently happens, as in the case of the applica-
tion just cited, that the operators 7,7+, ¥ X, have to be
applied to combinations of scalar functions, vector functions,
or both. The following rules of operation will be found
useful. Let %, v be scalar functions and u, v vector func-
tions of position in space. Then

V@+v)=Vu+ Vo (35)
Ve(u+v)=Veut Vey (86)
VX @+v)=VXxu4+Vxyv 3D
V@v)=vVu+uVo (38
Vewv)=Vuesv+uV.ev 39
VXx@v) =Vuxv+uV XV (40)
V@:.v)=v.Vutu.Vv 41)

+vx(Vxun)y+ux (Vxv)!
Ve(uxv)=v.VXu—u:Vxv (42)

Vx@xv)=v.Vu—vVe.u—u.Vv4+auV.vl (43)

A word is necessary upon the matter of the interpretation
of such expressions as

YV u v, Vu.v, Vuxv.

The rule followed in this book is that the operator ¥ applies
to the nearest term only. That is,

1 By Art. 69 the expressions v-%/ uand u.\/vare to be interpreted as
(vey)uand (u.VY)v.
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Vuv=Vu)v
Vusv=Vu)v

Vuxv=(NVu) Xv

If ¥ is to be applied to more than the one term which follows
it, the terms to which it is applied are enclosed in a paren-
thesis as upon the left-hand side of the above equations.

The proofs of the formule may be given most naturally
by expanding the expressions in terms of three assumed unit
vectors i, j, k. The sign 2 of summation will be found con-
venient. By means of it the operators 7, 7., A x take the

form
. 9
V == Z 1 é‘_‘m‘,
= 2 i‘i
oz
.9
V x = z 1X é—.’;:.
The summation extends over z, 7, z.

To demonstrate V X (uv) =Vuxv+uV xv.

V x (uv) = EIX-—(““’)—E”((*—V-l~ :)
VX(uV)"EIX(“")“Lz’x( g:)
=2<i%>xv+2ui><3—;'

Hence VX @v)=Vuxv+uVxv

To demonstrate

V@ v)=v.Vu4u.Vv4+vx (Vxu)+ux (Vxv).
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. 9 . [ou ov
V(u-v)=21-a—:;(u-v)=21(ﬁ-v+u ax)
u . v
x'V"l"z lu'9—$

V(n-v):Ziz

Now
du
vx(qu)—vx21x——2v. i— v.la_z
u, .ou
Ev-é—wx—vx(qu)+2v-xﬁ
or Ev-a—ui=vx(qu)+v-Vu.
dx

: v,
In like mannerZu-a—;1=ux (Vxv)+u.Vv.

Hence V(@:v)=v:Vu+u.Vyvy
+vx (Vxu +ux (Vxv).

The other formul® are demonstrated in a similar manner.

74] The notation!
V@, (44)

will be used to denote that in applying the operator V to the
product (u -« v), the quantity u is to be regarded as constant.
That is, the operation V is carried out only partially upon
the product (u.v). In general if ¥V is to be carried out
partially upon any number of functions which occur after
it in a parenthesis, those functions which are constant for the
differentiations are written after the parenthesis as subscripts.

Let u=u; i+ u,j+ ugk,
V=o;i4+v,j+ vk

1 This idea and notation of a partial ¥ so to speak may be avoided by means
of the formula 41. But a certain amount of compactness and simplicity is
lost thereby. The idea of <7 (u « v), is surely no more complicated thanu .V v or
v X (V Xu)
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then WeV=uy ¥y + UgVy + Ug Vs

and V (uev)= 21 (uyvy + ugvgy+ ugvy).

du duqy dug
van=3t (Tt G gen)
91;2 dvg
+3i <“19 +“35;>-
afv dv
But V (@.v),= ( 2+ sa;
7 du 9u2+ é)us
and (uev),= 2 (7’1 7% iy 252 T3,
Hence V@v)=v,Vu;+v,Vu, +v3Vug

+u; Vo, +uy, Vo, + ug Vo,

But V@ev)y=4,Vv,+u, Vo, +usVog (44)’
and V@v),=v,Vu; +v,Vu, +v3Vu,
Hence V@:v) =V@:v),+V@:v),. (45)
This formula corresponds to the following one in the nota-
tion of differentials

d@:V)=d@V), +d(u.v),
or d(uev) =uedv+du.v.

The formul® (35)-(43) given above (Art. 73) may be
written in the following manner, as is obvious from analogy
with the corresponding formule in differentials:

V+)=V@+v),+V@+92), (35
Ve@@+v)=Ve(u+v),+ Ve(a+7v), (386)
VYX@+vD=VX@+V),+VXx@+v), @O
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V@v) =V @v),+ V (uv), (38)’
Veuv)=Ve@v),+ Ve(uv), (39)'
VX (uv)=VX (@wv),+Vx(uv), (40
V@ev) =V (uev), + V (u-v), 41y’
Ve@axv)=Ve(@xv),+Ve.@xv), (42)
VXx@xv)=VX@XVv)+VX@xv), (43)
This notation is particularly useful in the case of the
gcalar product u.v and for this reason it was introduced.
In almost all other cases it can be done away without loss of

simplicity. Take for instance (43)". Expand V x (u X v),

formally.
VX@XV)y=(Vv)u—(Veu)y,

where it must be understood that u is constant for the differ-
entiations which occur in V. Then in the last term the
factor u may be placed before the sign V. Hence
VX (uXv)y=uV-:v—u-VV
In like manner Vx (uxv),=v.Vu—vV.uw
Hence Vx@xv)=v.Vu—vVeu—u.Vv+uV.v,
75.] There are a number of important relations in which
the partial operation V (u.v), figures.
1 X (VXV)=V(uev),—u-Vy, (46)
or V@:v),=u.Vv+ux (Vxv), (46)’
or 1:.Vv=V @v), + (VXv)xu (46)"
The proof of this relation may be given by expanding in

terms of i, j, k. A method of remembering the result easily
is as follows. Expand the product

ux (Vxv)
11
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formally as if V, u, v were all real vectors. Then
1 X(VXVv)=u.vV—u.Vv.

The second term is capable of interpretation as it stands.
The first term, however, is not. The operator V has nothing
upon which to operate. It therefore must be transposed so
that it shall have u.v as an operand. But u being outside
of the parenthesis in u X (V X v) is constant for the differen-
tiations. Hence

vV =Vuev),

and X (Vxv)=V@ev),—ueVyv. (46)
If u be a unit vector, say a, the formula
a:Vv=V(@a:v),+(VXxVv)Xxa “n

expresses the fact that the directional derivative a«V v of a
vector function v in the direction a is equal to the derivative
of the projection of the vector v in that direction plus the
vector product of the curl of v into the direction a.

Consider the values of v at two neighboring points.

v (2,9, 2)
and viz+da, y+dy, 2+ dz2)
dv=v(@+dz,y+ dy,z + dz) — v (2,9, 2).

Let v=v,i+v,j+ vk

dv=dv;i+dvyj+ dvgk.

But by (25) dv,=dr.Vo,
dv,=dr.Vu,
dvg=dr.Vo,

Hence dv=dr.(Vv;i+ Vo, j+ Vozk).

Hence dv=dr.Vv

By (46)! dv=V (@r«v);+ (VXxv) xdr. (43)
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Or if v, denote the value of v at the point (z, », ) and v the
value at a neighboring point

v=v,+V(@rev)s+ (Vxv)xdr 49

This expression of v in terms of its value v, at a given point,
the dels, and the displacement d r is analogous to the expan-
sion of a scalar functor of one variable by Taylor’s theorem,

F (@ =)+ [ () da.

The derivative of (r.v) when v is constant is equal to v.

That is Va.v),=v
For -/~ VE:«v)y=v.Vr—(Vxr).xv,
v=v;i4+9v,j+ v5k,

rvmndsn Ll
r=zi+yj+ 2k,
veVr=wvit+vj+vsk=v,
Vxr=0.
Hence V@E.-v),=vw

In like manner if instead of the finite vector r, an infinitesimal
vector d r be substituted, the result still is

V@rev),=v.
By (49) V=Vo+ V(dreV)a+ (VX V) xdr
V@rev) =V ({@rev);; + V(drev),.
Hence V@rev);=V(dr.v) —v
Substituting :
V=3V V@rev) +3 (VY xv) xdr.  (50)

This gives another form of (49) which is sometimes more
convenient. It is also slightly more symmetrical.
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*76.] Consider a moving fluid. Let v (z, y, 2, £) be the
velocity of the fluid at the point (z, y,2) at the time ¢. Sur-
round a point (z,, ¥ %,) With a small sphere.

dredr=c2
At each point of this sphere the velocity is
vV=v,+dr-Vv.

In the increment of time & ¢ the points of this sphere will have

moved the distance
(Vo +dr-Vv)ét.

The point at the center will have moved the distance
v, 6t

The distance between the center and the points that were
upon the sphere of radius d r at the commencement of the
interval & ¢ has become at the end of that interval 8¢

dr'=dr+dr-Vvdt.

To find the locus of the extremity of dr’ it is necessary to
eliminate d r from the equations

dr'=dr+4+dr.Vvdi,
¢?=dr.dr.
The first equation may be solved for dr by the method of

Art. 47, page 90, and the solution substituted into the second.
The result will show that the infinitesimal sphere

dredr =c2

has been transformed into an ellipsoid by the motion of the
fluid during the time &¢.

A more definite account of the change that has taken place
may be obtained by making use of equation (50)
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v=%v°+}2V(drov)+;—(va)xdr,

V=V 2 [V(@rev)—v] +3(Vxv)xdr;
,
or of the equation (49)
v=v,+V({@r.v); +(Vxv)xdr,
v=v,+ [V(dr.v)d,+;—(va) xdr +%(va)xdr.

The first term v, in these equations expresses the fact that
the infinitesimal sphere is moving as a whole with an instan-
taneous velocity equal to v,. This is the translational element
of the motion. The last term

%(va)xdr:%curlvxdr

shows that the sphere is undergoing a rotation about an
instantaneous axis in the direction of curl v and with an angu-
lar velocity equal in magnitude to one half the magnitude of
curl v. The middle term

—;[V(dr * V) ———vo,]

or V(dr-v),,,—-%(va)xdr

expresses the fact that the sphere is undergoing a defor-
mation known as homogeneous strain by virtue of which it
becomes ellipsoidal. For this term is equal to

dzVo,+dy Vo, +dz Vo,

if v, v, v3 be respectively the components of v in the direc-
tions i, j, k. Itis fairly obvious that at any given point
(%os Yo» %) a set of three mutually perpendicular axes i, j, k
may be chosen such that at that point Vv, Vv,, Vv, are re-
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spectively parallel to them. Then the expression above

becomes simply

dv dv
T d dz 20k,
dwa i+ yé) 2§ + 9

The point whose coordinates referred to the center of the

infinitesimal sphere are
dz, dy, dz

is therefore endowed with this velocity. In the time & ¢ it
will have moved to a new position

dw(1+‘?£18t> dy(l +%8t> dz(l-i—avsSt)

The totality of the points upon the sphere
dredr=dz?+dy?+ dz2=¢?
goes over into the totality of points upon the ellipsoid of

which the equation is

22 ) dz?

— ¢2

(1 9"’1 ) <1+9—v"38t> (1+9”38t>

The statements made before (Art. 72) concerning the three
types of motion which an infinitesimal sphere of fluid may
possess have therefore now been demonstrated.

77.] The symbolic operator V may be applied several times
in succession. This will correspond in a general way to
forming derivatives of an order higher than the first. The
expressions found by thus repeating V will all be independ-
ent of the axes because V itself is. There are six of these
dels of the second order.

Let V" (2, 9, 2) be a scalar function of position in space.
The derivative V'V is a vector function and hence has a curl
and a divergence. Therefore

V.7, VxVV
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are the two derivatives of the second order which may be
obtained from V.
V.VV=divVV D
VxVV=curl VV. (52)

The second expression V X V V vanishes identically. That is,
the derivative of any scalar function V possesses no curl. This
may be seen by expanding V x V¥ in terms of i,j, k. All
the terms cancel out. Later (Art. 83) it will be shown con-
versely that if a vector function W possesses no curl, 1. e. if

V X W =curl W= 0, then W= V7,

W is the derivative of some scalar function 7.
The first expression V.V 7 when expanded in terms of

i, j, k becomes
a2V v v

. — . !
V.V¥V 9w2+ay2+9z2 (51)
. 9t  9r 92
Symbolically, V.V= 532 + 7y + - Y

The operator V « V is therefore the well-known operator of
Laplace. Laplace’s Equation
9tV 9V | 9tV

AV=9w2+93/2+ 537 =0 (63)

becomes in the notation here employed
V.VV=0. (53)’

When applied to a scalar function 7 the operator V . V yields
a scalar function which is, moreover, the divergence of the
derivative.

Let T be the temperature in a body. Let ¢ be the con-
ductivity, p the density, and % the specific heat. The
flow f is

f=—cVT
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The rate at which heat is leaving a point per unit volume per
unit time is V «f. The increment of temperature is

dT=—-}—V-f dt.
pk

dT__c_

- V. 5
dt pk N

This is Fourier’s equation for the rate of change of tempera-
ture.

Let V be a vector function, and 73, V,, V; its three com-
ponents. The operator V «V of Laplace may be applied to V.

V. VV=V.VV i+ V.YV, i+ V.VV,k (54

If a vector function V satisfies Laplace’s Equation, each of
its three scalar components does./ Other dels of the second
order may be obtained by considering the divergence and curl
of V. The divergence V «V has a derivative

VV.V=VdivV. (55)

The curl V X V has in turn a divergence and a curl,

and V.VXV, YxVxV.
V.V xV=diveurl V (56)
and V x V x YV =curl curl V. on

Of these expressions V.V x V vanishes identically. That is,
the divergence of the curl of any wvector is zero. This may be
seen by expanding V «V X V in terms of i, j, k. Later (Art.
83) it will be shown conversely that if the divergence of a
vector function W vanishes identically, 7. e. if

VeW=divW=0,then W=V x V=curl V,

W is the curl of some vector function V.
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If the expression V x (V x V) were expanded formally
according to the law of the triple vector product,

VX(VXV)=V.VV—-V.VV.

The term V - V V is meaningless until ¥ be transposed to
the beginning so that it operates upon V.

UXVXV=VV.V-V.VYV, (58)
or curl curl V=V divV - V.VV. (68)

This formula is very important. It expresses the curl of the
curl of a vector in terms of the derivative of the divergence
and the operator of Laplace. Should the vector function ¥
satisfy Laplace’s Equation,

V.VV=0and
curl curl V=V div V.
Should the divergence of V be zero,
curl curl V=—-V.VV.
Should the curl of the curl of V vanish,
Vdivv=V.VV.
To sum up. There are six of the dels of the second order.
V.VV, VxVV,
V.VV, VV.V, V.YXxV, VXVxV.
Of these, two vanish identically.
VXxVV7=0, V.VxV=0.
A third may be expressed in terms of two others.
VXVXV=VV.V-V.VV. (58)

The operator V. V is equivalent to the operator of Laplace.
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*78.] The geometric interpretation of V.V« is interesting.
It depends upon a geometric interpretation of the second
derivative of a scalar function « of the one scalar variable .
Let u, be the value of u at the point z;. Let it be required
to find the second derivative of » with respect to z at the
point z,. Let z; and x, be two points equidistant from .
That is, let
g — Lo =Ty — X7 = Q.

Uy + Uy
L
a?

Uo

Then

is the ratio of the difference between the average of u at the
points z; and x, and the value of u at z, to the square of the
distance of the points z;, #, from z,. That

“1+u2_u
l‘fi‘_LrM 2 °
2dz2" a=0 a?

is easily proved by Taylor’s theorem.

Let » be a scalar function of position in space. Choose
three mutually orthogonal lines i, j, k and evaluate the
expressions

922 9y* 9P
Let z, and z, be two points on the line i at a distance a from
Z,3 x, and x4, two points on j at the same distance a from
%3 % and Z;, two points on kat the same distance « from =,

Yt oy o
2922 a=0 a?

Uqs + u
. 32 iy,
19°% LM
29y a=0 a?
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Ug + Uy
- %o

Add:
N%u ?u u
1(2 2,9 .2 "\_1lg,
E(&x" dy? 92 gV Ve
u1+u2+u3+u4+u5+u6_u
_ Limn 6 °

a=0 a? :l

As V and V. are independent of the particular axes chosen,
this expression may be evaluated for a different set of axes,
then for still a different one, etc. By adding together all
these results

%y + uy+ -+ 67 terms

1 _Lm 6n
BV vu—aiO 3

.—-uo

Let n become infinite and at the same time let the different
sets of axes point in every direction issuing from , The

fraction
Uy + %y + --- 60 terms
6n

then approaches the average value of u upon the surface of a
sphere of radius a surrounding the point xz, Denote this
by u,.

1 _ LM %a — %o

gV Ve a=0 a?

V.V u is equal to six times the limit approached by the ratio
of the excess of w on the surface of a sphere above the value
at the center to the square of the radius of the sphere. The
same reasoning holds in case u is a vector function.

If » be the temperature of a body V.V u (except for a
constant factor which depends upon the material of the
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body) is equal to the rate of increase of temperature (Art.
17). If V+.Vuis positive the average temperature upon a
small sphere is greater than the temperature at the center.
The center of the sphere is growing warmer. In the case
of a steady flow the temperature at the center must remain
constant. Evidently therefore the condition for a steady

flow is
VeVu=0.

That is, the temperature is a solution of Laplace’s Equation.

Maxwell gave the name concentration to —V « V u whether
% be a scalar or vector function. Consequently V «V % may
be called the dispersion of the function % whether it be scalar
or vector. The dispersion is proportional to the excess of
the average value of the function on an infinitesimal surface
above the value at the center. In case u is a vector function
the average is a vector average. The additions in it are
vector additions.

SuMMARY oF CHAPTER III

If a vector r is a function of a scalar ¢ the derivative of
r with respect to ¢ is a vector quantity whose direction is
that of the tangent to the curve described by the terminus
of r and whose magnitude is equal to the rate of advance of
that terminus along the curve per unit change of ¢. The
derivatives of the components of a vector are the components
of the derivatives.

d"r_al"rli d""z-_{_d""ak

!
atr ditt T A @)

A combination of vectors or of vectors and scalars may be
differentiated just as in ordinary scalar analysis except that
the differentiations must be performed in situ.
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d db
(a-b) b+a-d—t, 3)
da
(axb)_ xb+ x%—l:, @
or d(a-b)=da+b+a-dhb, 3)
d{axb)=daxb+axdhb, “@'

and so forth. The differential of a unit vector is perpendicu-
lar to that vector.

The derivative of a vector r with respect to the arc s of
the curve which the terminus of the vector describes is
the unit tangent to the curves directed toward that part of the
curve along which s is supposed to increase.

dr

— = 8

Tt )
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