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PREFACE

Mhe tensor calculus used in the mathematical treat-
ment of relativity, and concisely explained by Professor A. S,
Eddington in his ¢ Report on the Relativity Theory of
Gravitation’, is, like the various kinds of vector calculus,
a system of condensed notation which not only conduces to
economy in the writing of symbols, but, what is more
important, enables spatial and physical relationships to
be grasped as a whole without having to be built up from
a number of components which really represent views
from different parts of space. Three-dimensional geometry
or physics is troublesome enough : the addition of a fourth
dimension made the need of a condensed notation imperative.

Professor Eddington has recently pointed out that the
tensor notation and methods can be applied, with happy
results, to other and more elementary classes of problems
than those for which they were originally devised; and
this book is an attempt to put his somewhat compressed
exposition into a form in which it may appeal to a larger
circle of readers. The book, therefore, is not intended as
an introduction to the mathematical theory of relativity—
though I hope it may be of some use for that purpose—
but rather as an exercise in the elementary application of
methods which, apart from any practical use, possess a special
beauty of their own.

The new notation is not introduced until the fifth chapter.
The properties of determinants, which serve as the starting-
point for the application of the notation, are familiar to the
mathematician ; but, as I hope the book may be read by
some who are not entirely at ease with determinants,
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I have commenced with four chapters on the elementary
theory of the subject. I make no apology for doing this,
mmstead of referring the reader to the ordinary text-book
on; algebra The text-book treatment is not always stimu-
lating ; the reasons for the various stages are not necessarily
clear to the student ; and ‘xttempt at simplicity sometimes
leads to loss of rigidity in proof. In such a subject it
s necessary to take the reader into one’s confidence; and
this earlier part may in this respect be found helpful to
some, teachers or students, to whom the later part makes
at first a less strong appeal.

I have added a chapter on some applications to the
theory of statistics, to which the tensor calculus seems
specially suitable. The basis of this portion, so far as
method is concerned, is a short paper by Professor Iiddington,
mentioned at the end of the chapter. This is onc only of
many possible applications.

What I have called double sets will be recognized by
the advanced student as matrices; and many of the pro-
positions will be found to be familiar. But the tensor
calculus may fairly claim that, in bringing into close
relation various branches of mathematical study, previously
regarded as distinct, it gives them a new life.

I have to thank Professor Eddington for looking at my
manuscript and making some corrections and suggestions.

5 June 1923. W. F. S,
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INTRODUCTION

As this is a comparatively new subject to most readers,
it may be as well to explain briefly what it is about.

A vector in (say) 3 dimensions is a directed quantity,
determined as regards both direction and magnitude by its
components, which are magnitudes measured along three
definite axes. These axes being supposed to have been fixed
beforehand, we can take them in some definite order; and
a vector @ is then determined by a set of 3 quantities,
which we may call

A, 4, A,
Algebraically, the idea of a vector can be extended to some-
thing which is determined by a set of 7z quantities
4, A, A,..4d,,
where 7 may have any value,

A determinant (say)
b

a; 0 G
adg by ey
ay, by o

is the algebraical sum of all the products that can be
formed in a certain way according to a certain rule of signs
from the set of quantities

o b oo
a, b, ¢y
ay by e,

Each ‘element’ of this set has its position fixed in the set
by the numbers of horizontal and of vertical steps required
to reach it from the initial element a. Thus the set is
extended in two directions, while the set which determines
a vector is extended in one direction only. This applies to
a determinant with any number #? of elements.
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In the same way we might have a set extended in 3 direc-
tions, the symbols being written along the edges of a cub.
and along lines inside the cube or on its faces; and wn
could, in theory, increase the number of ¢directions’ co
4 or more, hy proper convention as to the order in which
the elements are to be taken. On the other hand, a single
quantity—what in the language of vectors is called a scalar
—may be regarded as a set not extended in any direction.

The tensor caleulus, using the word ¢ tensor’ in its broad
sense, deals with all these different kinds of sets, in relation
to sets of variables by which we can regard axes of refer-
ence as being determined. In the narrower sense in which
the word is used in reference to the ther -y of relativity,
only sets which satisfy certain conditioysare called tensors.

In this book I have treated the ten¢ r caleulus as arising
out of the use of determinants. Clpters I-IV deal with
the elementary theory of determ:nants, so far as it is
required for our purpose. (The student who is familiar
with determinants can skip these chapters.) In Chapter V
the tensor notation is introduced in successive steps, with
explanatory remarks. These latter are in small print, not
because they are less important, but in order not to break
the continuity of the chapter as a whole. In Chapter VI
these explanatory paragraphs (or parts of them) are brought
together and amplified so as to give a general idea of the
elementary properties of sets. Chapters VII and VIIT
deal with some developments of the subject in its
general aspect. Chapter IX shows the application of the
methods to certain problems in the theory of statistics and
of error; this can be omitted hy any one who wishes to
pass on to Chapter X, which deals very briefly with the
tensor in its more limited sense, as applied to the theory
of relativitv.
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I. ORIGIN OF DETERMINANTS

L 1. Solution of simultaneous equations.—Deter-
minants ordinarily arise out of the solution of simultaneous
equations. Suppose we have two equations

5242 = 19

4z+3y =18 } ’
Then, if we used only elementary methods, we could
multiply the first by 3 and the second by 2, which would
give

.

’

152+6y = 57 }
8x+6y = 36
and thence, by subtracting, we should have
Tz =21, x = 3,
whence either equation would give
y=2.
Similarly, if we had three equations
22+5y+3:= 4 }
z2—3y—2z= —14¢,
—br—4y+ 2= 7
we could, by eliminating z between the first and the
sceond and between the second and the third, obtain
Te+y= 5 } .
—9z—11y = 13)’
whence, proceeding as before, we should obtain
r=1 y=-2, =4,
This process of successive elimination is tedious, especially
when there are more than two unknowns; and it is found
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bettec to obtain a formula for the general solution and
apply it to the numerical values of the particular case.

Since such an equation as #—3y—22z = —1 can be
written in the form (+1)z+(—3)y+(—2)z = (=1), we
can use positive signs throughout, it being understood that
the quantity represented by any symbol may be either
positive or negative.

I. 2. Formula for solution.—(i) For completeness we
begin with one unknown. The equation

. ar =k
gives
o=t
4

(ii) For two unknowns the equations may be written

ax + 61 ¥ = ,{‘1
a2w+//2y = k} )
Multiplying the first equation by 6, and the second by 4,
and subtracting, we get
(210, —ayby)x = kyby— kb,
whence
Fyby— kb,

T =
uyby—a,b,

Similarly, interchanging @’s and ’s,

,— ka,—k,a

g ba,—b,a,
_ak,—ak
T ayb,—a,b, .

It should be noticed that the expressions for # and for y
have the same denominator, and that the numerators are
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obtained from the denominator by replacing the «’s in the
one case, and the &’s in the other, by #’s.

(ili) Next take the case of three unknowns. Let the
equations be
ax+by+ez= ,{'ll
a,x+b,y+c,z=kyr.
ar+b,y+c2 =4k, j
Eliminating z from the first two equations, we obtain
(ney—aer) @+ (biey—by0))y = ko, —hyey.
Similarly from the second and third equations
(2,0, —ayep)m + (byey—bye)) y = kyey—kye,.
Then, eliminating 7 from these equations, we get
= (e, —ky01) (byey —by0)) — (kyey—Fye) (B e, —0y00) .
(@ye,—a,61) (byey—byes) — (ay05—ayey) (b o —0z01)
As before, the numerator is got from the denominator
by replacing a’s by #4’s, and we therefore need only consider
the denominator. Multiplying out, it becomes

aybycyes—a byt —aghye e+ ayboe e, — a0 cpe, + ayhyer ey
+aby et —a,lye e,
= ¢ 0y e5—arbye,—a,b e+ aylyey +aylhc,—aghye).
Hence, replacing the «’s by 4#’s for the numerator,
o= kybyes—hybyey—kybicy + kylyey + kybycy —kylye )
ayhyey—ayhye, —aybicg+aybyep + aglyey — aghyey

Corresponding expressions can be obtained for  and for 2.

I. 3. General problem.—(i) We might proceed in the
same way for equations in four or more unknowns. But
this would mean that each case would have to be considered
separately ; and not only should we fail to get a general
formula, but the algebraical work would soon become
practically impossible. We therefore alter our tactics.
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We write down the general cquations involving m un-
knowns 2,7, 2,...w

ax+by+ ezt Hiw=14k

a8+by+ et pw =4y , (L3 4)

U+ U Y+ ezt o F w0 =Fky,
guess at a solution, and then verify that this solution does
actually satisfy the equations.

(i) The values of z, 7, 2...w as found from these equa-~
tions will be in the form of fractions. We will consider
first the denominators. Putting together the results ob-
tained in § 2, for the cases of m = 1, 2, 3, we find that the
successive denominators, which we will call D), D@, DE),
are

DO = a,

D@ = a, Z)z—az/zl

DO = ayb,e,—aybycy—ayhieg+agbye, +aybc,

—ayhy0)

(I.3.1)

We want to obtain an expression D™), which we should
guess to be the common denominator in the solution of
the equations (I. 3. A), and of which DU, D®, ) shall
be the particular cases for m =1, 2, 3.

(iii) The three 2’s in (1. 3. 1) have a general similarity,
which enables us to obtain a formula for Dt™. It will be
seen that both in J® and in J® some of the terms have
sign + and some have sign —. We will see first how
the terms are constructed, and then consider the question
of sign.

L. 4. Construction of terms.—(i) For each of the three
D’s, for which the values of w are 1, 2, 3 respectively, each
term is the product of 7 factors, which are the coefficients
in the equations in § 2. In writing down these coefficients,
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it is convenient {0 keep them in the relative positions in
which they occur in the equations. Thus we get

For DM For D® For D®
a, a, b, a, b ¢
a, b, ay by e
a; Uy ¢

In each case we have a set of quantities arranged in the
form of a square. The individual quantities are called
the elements of the set; the quantities in a vertical line
constitute a column, and the quantities in a horizontal
line constitute a row. The columns are numbered from
the left, and the rows from the top. The diagonal drawn
from the top left-hand corner—i.e. the diagonal through
a,—is called the leading diagonal.

(ii) Each term contains m factors, which are taken from
the set in such a way that one (only) shall come from each
column and that one (only) shall come from each row. Also
D™ contains every term which can be constructed in this
way. Take, for example, D®). Since one factor is to come
from each column, the factors are an «, a 6, and a ¢. The
@ can be either «; or a, or a, i.e. it can be taken in three
ways; when one of these three a’s has been taken, one row
has been used up, and the & can only be taken in two ways;
and, when one of the two &’s has been taken, the ¢ can
similarly only be taken in one way. There are therefore
3.2.1 =6 possible combinations of factors; and this is
the number of terms in DG),

(iii) Another way of stating the thing is that, if we
keep to a fixed order a 6 ¢ of the factors in each term,
the suffixes of the factors are the numbers1or12 or1 2 3,
arranged in different ways, and there is one term for each
of the possible arrangements.
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(iv) We conclude that D™ contains terms, each of which
is constructed by taking s factors from the set of m x m = m?

quantities
o b f
ay [/.2 Cgunn f2

S

in such a way that there shall be one factor (only) taken
from each column and one (only) from each row; there
being one term for each of the m (m —1)...1=m! ways
in which this can be done. Or, which comes to the same
thing, that the terms are made up of factors «éec...f with
suffixes 1 2 3...m arranged in different ways, there being
one term for each of the 22! possible different arrangements.

.

1. 5. Rule of signs.—(i) It will be seen that, in the J'’s
after D@, half of the terms are positive and half negative,
and that in each case the term found from the elements in
the leading diagonal—namely «, or «,4, or a,l,c,—is posi-
tive. We should therefore expect that half of the terms
in D™ would be positive and half negative, the term
a, b, ;... f,,—which we call the leading term and usually
place first—being positive. The difficult question is that
of signs. In the case of (say) m = 5, how are we to know
whether such a term as a;/;c,d, ¢, is to have the sign +
or —°?

(ii) The sign of a term must, if the letters « b c... fare
kept in their original order, depend on the arrangement of
the suffixes, i.e. on the extent to which this has departed
from the initial arrangement 1 2 3...m. Now any arrange-
ment such as 35241 can be got from the initial arrangement
12345 by a series of interchanges of adjacent figures. We
must fix a definite order in which these interchanges are to
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be made. We therefore say that each figure is to be moved in
turn, beginning with that which ultimately comes first, then
that which ultimately comes second, and so on. Thus in this
particular case the successive stages would (repeating for each
group of interchanges the arrangement from which we start)
be 12345, 13245, 31245; 1245, 1254, 1524, 5124; 124, 214;
14, 41; 1: a total of seven interchanges. Now let us look
at the signs in J® and D®). In J® the arrangement 21
is obtained from 12 by 1 interchange, and the sign for 21
is —. In D™ the signs of the successive terms, and the
stages by which the final arrangements of suffixes are
obtained, are as follows, the numbers of interchanges being
added in heavy type:

4+ 1123, ..., (] 4 | 123,213,231 .. ... 2
— 123,132 .. 1 + | 123,132,312 .. ... 2
— | 123,213.. 1 — | 123,132, 312,321 .. 3

It will be seen that both for Z® and for J®) the sign is
— or + according as the number of interchanges is odd
or even. We therefore adopt this as our rule; in the case
of azbse,d, e, for instance, seven interchanges are necessary,
and the sign is therefore —.

(iii) In order to find the sign of any given term by
the above rule, it would be necessary to perform all
the interchanges. A shorter method is to look at the
term as it stands and to consider the reversals of order in
it; i.e. taking the suffixes of the term in pairs in every
possible way without altering their order, to see in how
many cases the numbers are in the reverse of their order in
the leading term, i.e. are in descending instead of ascending
order. The term a,b4c,d,e,, for instance, gives the following
pairs, those in which the order is reversed being printed
in heavier type:—35, 32, 34, 31, 52, 54, 51, 24, 21, 41.

2611 C
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It is easily seen that each interchange, of the kind described
in (ii) above, produces one reversal of order; for, while we
are shifting one number, such as the 5 in the second group
of arrangements there shown, the relative order of the
other numbers remains unaltered. It follows that the
number of reversals of order is the same as the number
of interchanges of this kind; and therefore the sign of
a term will be — or + according as the number of reversals
of order is odd or even.

(iv) The interchange of any two suffizes in a term changes
the sign of the term.

[Let the two suffixes be ¢ and y; ¢ coming before ¥ in the
term in question, but not necessarily being before it in numerical
order.

(1) First let ¢ and ¥ be adjacent. Then the interchange of
¢ and y increases or decreases the number of reversals of order
by 1, and therefore changes the sign of the term.

(2) Next suppose that there are x suffixes between ¢ and V.
Then we can move v in front of ¢ by x + 1 interchanges with
the adjacent term, and then move ¢ into the original position
of ¥ by « interchanges. This is a total of 2 + 1 interchanges,
each of which in succession makes a change of sign: the total
result is to change the sign of the term.]

(v) We have so far assumed that the factors of a term
are arranged in the original order of the lettersa bc d....
Now suppose that the order of the factors is altered in any
way. How does this affect the rule of signs?

The alteration of order can be brought about by a series
of interchanges of factors. Suppose there is an interchange
of a, and §,. Then, by (iv), the number of reversals of
order of suffixes is altered by an odd number, but the
number of reversals of order of letters is also altered by

an odd number; and therefore, if we consider the sum
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of the numbers of reversals of order of letters and of
suffixes, this sum either is not altered or is altered by an
even number. It follows that, if the factors of a term have
been shifled about 8o thut the letters abe. .. are not in their
original order, the sign of the term depends on the sum of the
numbers of reversals of order of letters and of suffizes re-
spectively, being — or + according as this sum is odd or even.
For example, in d,b,c,a,e; there are five reversals of order
of the letters and eight of the suffixes, so that the sign is —.



II. PROPERTIES OF DETERMINANTS

II. 1. Definition of determinant.—We can now com-
bine the results obtained in I. 4¢ and I. 5. We suppose that
we are dealing with a set of m x m = m? quantities, which
we can arrange in the form of a square, thus (the quantities
being denoted by crosses) :

X X X..X
X X X..oX

Then the expression which we have to consider is the
algebraical sum of a number of terms, of which some are
taken positively and some negatively. Each term (apart
from sign) is the product of m elements of the set, taken
in such a way that one element (only) shall come from each
column and that one element (only) shall come from
each row; and there are m! terms, corresponding to the
m! different ways in which this can be done. The leading
term is the term containing the elements in the leading
diagonal of the square, and has sign +. The signs of the
other terms are to be found by replacing the elements of
the set by a,, a,, . . . #,, etc., arranged as a key set :

a, by e Sy

@ b ety
nm bm ci)t see .fm
The sign of a term is then — or + according as the sum of
the numbers of reversals of order of the letters and of the
suflixes, as compared with the leading term a, b,¢; .../ p,
is odd or even.

a
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The algebraical sum of the terms so obtained, namely
aybye, .o fra—uglics ... fo, + ete.,is called the determinant
of the set, and will be denoted by D. It should however
be observed that it is the determinant of the set as so
arranged ; with different arrangements of the elements of
a set, still keeping them in a square, we may obtain
different determinants.

We can therefore define the determinant as the alye-
braical sum of lterms of the form apbyc, . . ., wherepqr. ..
are the numbers 1 2 3 ... m arranged in some order, there
being a term for each of the m! possible orders, and the sign
prefized to the term being + for the natural order 1 23...m
and — or + jfor other orders according as the number of
reversals of natural order is odd or even.

The symbol for the determinant is constructed by placing
single vertical lines before and after the set; thus

a, b ¢
a, b, ¢,
a, b, ¢

means the determinant @,0,c,— etc., which we have called
D®,

The terminology is the same as is given in I. 4 and I. 5
for a set. The quantities between the vertical lines are
the elements of the determinant. Those in a vertical line
are a column ; those in a horizontal line are a row. The
leading diagonal is the diagonal drawn from the top left-
hand corner; and the leading term is that containing the
elements through which the leading diagonal passes. The
leading term, as already stated, is taken positively.

If the symbol for a determinant contains » columns and
m rows, the determinant is said to be of the mth order.

II. 2. Elementary properties.—(i) From the mode of
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construction it follows that each element of the determinant
appears in (2 —1)! out of the ! terms; and there are no
two terms having more than m — 2 factors alike.

() If each element of a column or of a row is 0, the
determinant is = 0. [For each term contains one of these
elements as a factor.]

II. 3. Properties depending on the rule of signs.—
() Thevalue of a determinant is not altered bymaking the columns
rows and the rows columns ; e.g., for m = 4,

a, by ¢ d; } = |a a, a; a,
a, by ¢y d, by by by 0,
as by ey dy L Cp € 0y
(/4 //4 1'4 114 (]1 //2 (/3 (74

[Let D be the determinant, and R the new determinant obtained
by making columns rows and rows columns in the symbol for D.
Then, apart from sign, D and R obviously have the same m ! terms.
We have therefore only to consider signs. The two determinants
have the same leading term, which is positive in both. Let ¢ be
any other term of D, say agb,c,d, ... . Then ¢ also occurs in R,
but, since the terms of R must be constructed according to the
system prescribed in our definition of a determinant, the factors
of tin R will be arranged in the numerical order of the suffixes,
namely d,cash, ... . The sign of ¢ in D depends on the number
of reversals of order in the suffixes3421. .. and the sign of
¢t in R depends on the number of reversals of order in the letters
dcab... . Buteach of these nuinbers is the sum of the numbers
of reversals of order of letters and of suffixes as compared with the
original orders abcd...and 1234...; and, by L. 5 (v), these
sums are either both odd or both even. It follows that the sign of

is the same in both determinants. This is true for each term
of D or R; and the two determinants are therefore equal.]

If two determinants correspond so that the columns
of one are the rows of the other, each determinant is said
to be the transposed of the other
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(ii) It follows from (i) that any statement as to columns
or rows is equally true for rows or columns. We shall
indicate this, for conciseness, by ‘column [row]’ or ‘row
[column]’.

(iii) If any two columns [rows)] of a determinant are inter-
changed, the absolute magnitude of the determinant remains
unaltered, but its sign is changed.

[Suppose, e. g., that we interchange the b’s and the ¢'s. Let ¢
and { be any two suffixes. Then, in the original determinant,
corresponding to any term which contains b, and ey, there is
another term exactly similar except that the factorsare byand e ;
and these two terms, by I. 5 (iv), are of opposite sign. The effect
of interchanging the b’s and the e's is that the two terms are inter-
changed, i. e. the sign of each is changed. This applies to every
such pair of terms.]

(iv) If any two columns [rows] of a determinant are iden-
tical, the determinant is = 0.

[We can see this in either of two ways.

(1) Consider a pair of terms such as are mentioned in (iii).
The one contains b, and ey, ; the other is exactly similar, except
that it contains by and e, ; and the two terms have opposite
signs. If by, = ey and by, = ¢y, the two terms cancel. The whole
determinant is made up of such pairs.

(2) More briefly, suppose we interchange the two columns
which are identical. Then the determinant remains unaltered.
But, by (iii), its sign is changed. This can only be the case if
the determinant is 0.]

(v) Since columns and rows may be interchanged, a
determinant is sometimes represented by its leading diago-
nal alone, if this indicates a system for insertion of the

remaining elements. The notation is
| aghyey o fon | = b e Sy s
by Cy oty

b.s i ./3
h e f

2.8 88
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it is then immaterial, so far as the value of the determinant
is concerned, whether we enter the @’s as a column or
as a row. But it should be mentioned that the relative
arrangement of colamns and rows is of importance later on,
when we come to consider properties of sets of quantities.

<

I1. 4. Cofactors and minors.—(i) In the complete ex-
pression for D, each term contains one @, which is either a,
or a, or a, etc. We can therefore group the terms accord-
ing to the a&’s they contain. In the case of D®), for
instance,

ay by | = ayhyey—ayhie,—aybieg+aylie +ashey
a, b, ¢, —ayb,eq
a; by ¢

= ay(bye;—bye,) + ay(—byeg+byer) + ay(byey
—b,c;).
Suppose that the terms of 2 are grouped in this way; and
let the resulting coefficients of ¢, a,a,...a, be ﬂ{noted
by 4,4,4,...4,. Then
D=ad+a,d,+a,d,+...+a,4,.
Similarly, if we group the terms according to the &’s or
¢’s ete. they contain and denote the coefficients of the 0’s
or ¢’s ete. by B, B, B;... B, or C,C,C,...C, etc., we
shall have
D=l D+ 0y By+ by Byt oo+ 0y, By s
D=cC+c,Co+c,Cot ..+, Cpp,
" ete.
The 4’s, B’s, ete., are called the edfagtors of the correspond-
ing elements of the determinant ; tus the cofactor of 4, is
B, where b, B, is the sum of all the terms which contain &,.

(ii) The terms whifh contain the leading element a, are
obtained from the leadin‘, term a,b,¢, .. .f,, by altering
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the suffixes, and prefixing the proper sign to the term, in
the manner already described, with the proviso that the
factor @, remains unaltered. But this process will give us
the products, by @,, of the terms so constructed from
a leading term b,¢,.../,. In other words, the cofactor
of a, is the determinant

by ¢y iify

]{3 €y f:

/}m (.’nl e 7:”5
In D®), for example, 1t is
byey=1lye, = ‘ by
by o

(iii) The determinant which is obtained from 2 by
striking out the column and the row which contain any
element of the determinant is called the minor of that
element in the determinant.

We see from (ii) that

4, = cofactor of @, = minor of 4,.

We might show in the same way that the cofactor of
any other element, say ¢,, is equal to the minor of that
element, with the sign — or + prefixed according to the
position of the element in the determinant: but it is
simpler to find the cofactor by bringing the element into
the position of a,. Let the element be in the gth column
and the 7th row. Then we can make it the leading
element, without altering the order of the other columns
or rows, by means of ¢g— 1 interchanges of its column with
an adjoining column and »—1 interchanges of its row with
an adjoining row. Each of these interchanges, by II. 3 (iii),
multiplies the determinant by —1; and the total result is
to multiply by —1 or by + 1 according as ¢ +7—2 is odd

2611 D
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or even. Having got the element into the position of the
leading element, we strike out the first column and the first
row ; the result, apart from the prefixed sign, is still to give
the minor of the element, since the relative positions of the
other columns and rows are unaltered. Hence t/4e cofactor
of any element is equal to ite minor with the sign — or..+. pre-
fiwed according as the number of steps from.the leading element
to this element is odd or even ; it being understood that each
step is either horizontally from one column to the next or
vertically from one row to the next. Tor example,
4, = 4+ minor of a,,
C, = —minor of ¢,
ete.
(iv) We have found in (i) that
aydi+a,dy+a A, + ... vayd, =D
b By+ 0y, B, +0,By+ ...+ 0, B, =D}. (II.4.1)
ete.

We have now to find the value of such sums as

a,By+a,By+ag B+ ...+, By,

b, 4, +0,d, + 0, A, + ...+ 0,4,

ey dy Fegdy ¥egdy+ ooty d,,,

ete.

Let us take the second and third of these as examples,
But replace the &’s or the ¢’s by 6’s. Then we want to
find the value of

0,4, + 0, dy+ 0, dy+ ...+ 60, A,
Now we see from (II. 4. 1) that this is the value of the
determinant
0 b e S5

0 by e,
O by e

om l’m ("m °"fm
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for the cofactors of 6, 6,0, . .. 8,, in this determinant are
the same as the cofactors of a, ¢, a,...a, in D, i.e. are
A, 4, 4, ... 4, Let usreplace 6 throughout this deter-
minant by any letter, other than a, occurring in D, e.g.
by ¢. Then the determinant becomes

A N &
e by ey . Sy
e 6.3 e oSy

Cm 6m e oo Sm
But this is a determinant which has two columns identi-
cal, and its value, by § 3 (iv), is 0. Hence

e dy+egdy+ogdy + .o 40,4, =0
Similarly &, A, + by dy + b, dy +'--+bm‘4m=0[ (IL. 4. 3)
(ZlB1+azB2+a3B3+"'+amBm=Oi. o
ete.

(v) Now let us interchange the columns with the rows,
so that the determinant becomes
ap Gy Ayl
by by byl

€L g Cgeenly

Su S SseSu
Then, by § 3 (i), the value of the new determinant is the
same as that of the old, i.e.is D. Also the minor of any
element € in the new determinant is the same as its minor
in the old determinant, but with columns and rows inter-
changed, so that its value is unaltered ; and the number of
steps from @, to € is the same in both determinants. The
cofactor of € in the new determinant is therefore equal to
its cofactor in the old determinant. Hence by applying
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(I1. 4. 1) and (IL 4. 2) to the new determinant we get
new sets of relations, namely

a i+ Bi+e, Ci+ ...+ 11, =D .
aydyg+ b, B+ ¢, Cy+ ... + f, F, = D} (IL. 4. 8)
ete.
and .
ayd,+0, B, +c,C + ...+ fo F, = 01
tgdy + by B+ c,Co+ ...+ fLF, =0

. (I1.4.9)
ete. }

(vi) If all the elements in a column [row], except one,
are 0, the determinant is equal to the product of that one
by its cofactor.



III. SOLUTION OF SIMULTANEOUS
EQUATIONS

IIL. 1. Statement of previous results.—We have
next to consider the solution of the simultaneous equations
(I. 3. A). Before we do this, it will be convenient to
express in determinant forwnn the results obtained in I. 2.
These results are as follows:

(1) If «yo =4y, then* z=|4|==|a]|.
(2) If a1x+&1y=,{'1}
ay v+ by =k,

then
w=14k b |F|a |, yg=|a k|+|a b-
ky by | ay 0, ay ky ay bz’.
(3) If ax+biytez ="~k
a @+ by e,z =k, t,
ax+b,y+ e = 3}
then
g=|k b oo | DO, y=|a k o |+DO,
ky by e, ay, ky ¢,
ky by ¢ ay, ky ¢y
z=|ay b k |+ DO,
a, by, £k,
ay, U, £k,
where
DO =1 ay b ¢
a, by ¢,
l(l b:} c:; -

* Here, as elsewhere, vertical lines denote a determinant, not
‘absolute value’.
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II1. 2. General solution.—The general equations of
which we require a solution are those set out in (L. 3. A),
namely:

a e+ by + ct+ .+ fiw=4k
0@+ by F ozt + fLw=4k | (1L 2. A)

a2 +bpyte,z+. .+ fuw = b

The form of the solution is suggested by the results
given above. Multiplying the successive equations by
4y, d,,... d,, and adding, we have

(al Al + 02112 +...+ amdm)w
+(bydy+body+ .o+ b, 4,)y
+ (o dyteydyt oty dy)2
+...
+(f1A1+fz‘42+ "'+j:m/1m)w= '{'1‘41 +A'2A2+ te +km‘4m'
By (II. 4. 1) and (II. 4. 2) the coefficient of z is equal
to ), and those of 7, z,...w are equal to 0. Also the
expression on the right-hand side is what 2 would become
if we replaced the a’s by #’s. Hence

= (kydi+hkdy+ ..+ k,4,)+

=| i 6 e - /1 L= 1a, &1 ¢ S
'{ 6 2 ./z a, by ¢ .t
1’ 0"” '"I« .fm a’l)t //m (.'"5 * "fm
Similarly (111.2.1)
y=la &k ¢ S| Fe b i ]
‘{2 2 ‘z . /2 a, /’2 €y Ja
am 'm ‘1 "'j;u am /J:n cm '".f;n
and so on.

If, for verification, we substitute these values in the
original equations, it will be found that the relations
(IL. 4. 3) and (II. 4. 4) come into play.



IV. PROPERTIES OF DETERMINANTS
(continued)

IV. 1. Sum of determinants.—If two determinants
are identical except as regards one column [row], their sum
is a similar determinant in which the elements of that
column [row] are the sums of corresponding elements in
the two determinants. [For example

a, by ey |+ dy by ey =] agHdy by o
a, b, c, dy by ¢, ay+dy, b, ¢, |,
ag by ey dy by e ag+dy by ey

since it is = (a, 4, +a,dy+ay )+ (dydy+dyd 4 dy )
= (ay+dy) Ay + (ay+dy) dy + (a5 +dy) 4. ]

IV. 2. Multiplication of determinant by a single
factor.—If each element of a column [row] is multiplied
by the same factor, the determinant is multiplied by that
factor. [For example

Aay by e [=Najd +Aa,d,+Nayd, = )\t a, b e ]
Aa, by ¢, La, 0, ¢,
Aay bs 3 ‘ ay by ey

IV. 3. Alteration of column or row.—If the elements
of a column [row] are multiplied by a single factor and added
to the corresponding elements of another column [row], the
value of the determinant is not altered. [For example

' f
ay4+hey byep|=ay by ey | +N]ep by ey | =|ay by ¢ }.]
ag+Ae, by oy a, b, e, e, b, c, ay by ¢, |
ay+Aey by o a3 by ¢ ¢y by e ay by ¢y
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1V. 4. Calculation of determinant.—(i) There are two
main methods for calculation of a numerical determinant.
(¢) When  is small, we can use the formula

I)::al di+a,d,+ ...+ @y, oy,
repeating the process as often as may be necessary. Thus, if

D=3 =2 7
5 1 —3/,
4 6 1
then]lza’l —3’—5!’—-2 7(+4[-—2 7
6 1 6 1! 1 =3
=3.19—5(—44)+4(—1) = 273.

() When = is large, we can reduce the determinant
to one of order »,—1 by means of § 3 and II. 4 (vi).
Applying this method to the above example, we could
multiply the first row by § and subtract from the second,
and also multiply it by 4 and subtract from the third.
To avoid fractions, we multiply D twice by 3. Then

9l = 3 —2 7,: 3 —2 7
15 3 —9! [0 13 —44 |
12 18 3| 0 26 —25
=3x 13 —44 ‘:3(—325+1144)=3.819.
| 26 —25
D =273,

(ii) For algebraical determinants various devices have to
be used. An important determinant is
D=1 gm-1 [m-1 em-1,, em-1 fm—l
am=2 [m-2 -2 gm-2 ./'m~2
«a b e f
1 1 1 .1 1
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This is =0 if a=4 or if a=¢, etc. Hence it contains
a—b, a—c,...oa —e, a—f as factors. Similarly it con-
tains b6 —¢,...0 —¢, 6—~f; and so on. Looking to the
leading term, it will be seen that there can be no other
factors; i.e.

D =(a=b)a—c)..(a—e)(a=f).(b—c)...(b=)(b=F)...(e=f).

[Example.—Hence prove that

L R S T T .. D . .

p-r gz s ;m_z =(=)" ’H‘lT“) x coefficient of a” in ¢ (),
B et o (@)= by (6=0)la= ) (@=f)]
L - L Pl&)=(a=b) (a=c)...(a=e '
i1 ... i 1

IV. 5. Product of determinants.—(i) The product of
a determinant of order # and a determinant of order # can
be expressed as a determinant of order m + 2 by placing
the leading diagonals in line and filling in with 0’s, For
example

a by e |x|dy oegl=]a; b ¢ 0 0
ay by ¢, ds e, ay, by ¢, 0 0
ay by e ay by ¢ 00
0 0 0 d, e
0 0 0 d; e

[For the only terms of this latter determinant which are
not 0 are those for which the first three factors (collectively)
are taken from the first three columns and rows and the
next two factors (collectively) from the last two columns
and rows; and in each such case the first three factors
form a term of the first determinant and the next two

factors form a term of the second determinant. Thus all
2611 E
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the terms of the product of the one expanded determinant
by the other are accounted for, and there are no others.]

(i) We have now to show that the product of two
determinants, each of order s, can be expressed as a
determinant of order m. To obtain the general formula,
it will be sufficient*to take a particular case, e. g.

D=la b |, E=|a B 7|
ay by ey a B ¥
a, by e, a, By v,

provided that in our reasoning we retain m as the order of
each determinant.

By means of the first sentence of (i) we can write down
DE as a determinant of order 2, i.e.

DE=1{a 4, ¢, 0 0 0

ay by ¢, 0 0 0
by ¢, 0 0 O
0.0 0 o B ¥
0 0 0 a B 7
0 0 0 a By v,

Two of the quarters of this determinant contain 0’s only;
and it will be seen, from the method of forming those
terms of the determinant which do not contain 0 as a factor,
that we can fill in either of these quarters in any way we
like, provided we leave the other quarter alone. Also, in
order to reduce the determinant from order 2w to order .,
we ought to get 7 1’s in the leading diagonal. We there-
fore shift the last z columns to be the first », and then
replace the 0’s in the new leading diagonal by 1’s. The
first process involves 72 interchanges: we can avoid change
of sign of the determinant, in the case where 7 is odd, by
changing the signs of the first » rows (before inserting
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the 1's), whether  is even or odd. Then, inserting the
I’s, we get
DE=|1 0 0 —u —b —¢
0 1 0 —u, —//2 -0y
0 0 1 —0, —b, —c
a Bon 0 0 0
a, B, v, O 0 0
ay By v, 0 0 0
We now reduce each of the elements in the right-hand

top quarter to 0 by means of § 3; i.e. we add «; times
the 1st column to the (w +1)th (in this case the 4th), thus

getting

1 0 0 0 b = ",
0 1 0 —a, —b, —¢ |
0 0 1 —qu, —03 —C, |

a By 0o 0 0
a, By vy, aa, O 0 i
a, By v, o, 0 0 |
then do the same with @, times the 2nd column and
a, times the 3rd..., and then deal in the same way
with the (w+2)th and (7+3)th... columns. We get
finally

DE=|1 0 0 0 0 0
01 0 0 0 0
001 0 0 0

a B N eatafitagy, biaytbBi+by, ¢apteBitey
a, By Y2 a8yt asy, Dyag+byB;+bsys cpagtcyBr+cgys

ag PBs ys @yagtayBytagy; biag+ b8y +byyy cpagtoyBytegys
By the same reasoning as that employed at the beginning
of this paragraph, we can replace each of the elements in
the left-hand bottom quarter of the above determinant
by 0. Hence, if the determinant formed by the elements
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in the lower right-hand quarter of the above is called P, we
have, by (i),

DE=|1 0 0 |xP=P;
0 1 0O
0 0 1
1e. .
a by o |x]a B 7y
a b, ¢ ag By 7
ag by ¢ ag By s |

@ray+a, By +agy; byar+b,8,+bsy, caj+¢Bi+egy, [ (IV.5.1)
@ ay+ayByt+agy, biag+b8,+ by, cpaytenBytesy,

ayag+ay By +agys brag+0,8s+byys crag+e,By+cgys

The reasoning is quite general, and the product of two
determinants of any order can be written down from the
above.

By interchanging columns and rows in one or other
or both of the original determinants we get three other
expressions. All four expressions, of course, are equal
when expanded: we shall take the above to be the
standard form. It is to be noticed that DE or Dx F
means the product of D and Z, in this order; by reversing
the order of multiplication we get four other forms, but
these are only the ¢ transposed’ of the previous four. The
eight forms are given, in the new notation (see V., 6 (vi)),
in the Appendix (p. 122). They are based on the principle
that in the standard form the element in the ¢th column
and 7th row of the product is formed in a particular way
from the gth column of the first determinant and the 7th
row of the second.

IV. 6. The adjoint determinant.—(i) Let 2’ denote
the determinant whose elements are the cofactors of the
corresponding elements in the original determinant, i.e.
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V=4 B, C ..F | (IV.6.A)

4, B, C,..F,

Ai)b B’m ('fm""Fm
If we interchange columns and rows in Z', and then
express the product D20’ as in (IV. 5. 1), we find that
the elements in the principal diagonal of the product are
a Ay +aydy +...a, 4, 0, B, +0, B+ ... +6,,B,, etc., each
of which, by (IL 4. 1), is =7, while the other elements
areay By + a,By+ ... +a, By, 04, + by dy+ .. + b, 4, , ete.,

each of which, by (I1. 4. 2),is=0. Hence

DD'=|D 0 0..0|=Dm (IV.6.1)

o D o0..0
0 0 0..0
and therefore
= D, (IV. 6. 3)

The determinant J was formerly called the reciprocal, but
is -now more usually called the adjoint, of D. It is not
the true reciprocal of D), since the product of the two is
not 1 but O™ (cf. V. 2).

(ii) Let the cofactors of 4,, B,, C,, ... F, in D' be denoted
by a;, 81,715+ &+ Then, applying (II. 4. 3) and (II. 4. 4)
to 7', we have

Ay, + B, B+ Oy + . + B G = 1
Aya;+ B,8,+ Coyy + oo + B G = 0

Ay g+ B+ Cpyi+ e + Fr =0
We can regard these as equations for determining a,,3,,
Y1540+ ¢ Comparing them with
dya,+Bb+Ciey+...+ Ffi=D
dyay+ Byl + Cpey + ... + F, fy =0

Aty + B+ Cpey 4o+ Fpfy = 0
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which are obtained from (II. 4. 3) and (I1. 4. 4), we see that
the solution is
’ ’

a = %al = D" 2%, B, = % b, = D=2, ete.
Hence the cofuctoy of any element of the adjoint determinant
is equal to the corresponding element of the original determinant,
multiplied by the ratio of the adjoint determinant to the original
determinant.



V. THE TENSOR NOTATION *

V. 1. Main properties of determinant.—(i) The
notation so far used is the ordinary one for elementary work.
For higher work we reduce the number of letters and make
a more liberal use of suffixes. We shall replace z, 7,2... w
by Xoy Xy Xoy von Xiy5 @y, by, 05 0oy Y gy gy digy von iy
and so on. Also, it being understood that the values
assignable to each of the letters ¢ and r are 1, 2, 3,...,
we can use |d,.| and |d, | to denote the determinants
whose elements in the ¢gth column and rth row are respec-
tively T 4,, and @, i.e.

[ IS dn dn Ay oidig |
(7!2 Ao (Z§2 corl g
D Mo dyperepym L, (V.1.A)
=| d / d d.
l"rql-— ‘. 2 g ey
’Zgl (1_22 (/.23 '--’]gm
d w1 Dz (]ms""lmm -

so that the interchangeability of columns and rows gives

| dye 1 = | 4y |- (V.1.1)

(i) The #’s in (III. 2. A) were supposed to be known

* The paragraphs in small print may be omitted on first reading,
but should be read before Chapter VI is taken.

+ It is more usual to have the suffixes the other way round; i.e.
to use 11, 12, 13,...1m as suffixes for the first row. But my
arrangement seems to follow more naturally from the a;b, ...
notlz:tion, and I also find that it fits in better with the subsequent
work.
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quantities, so that the equations served to determine
2,7,2,...w. We shall have to consider the relations between
the set of quantities which we have denoted by , 7, z,... w
and those which we have denoted by 4, £,, &,,...&,. We
therefore, in altering @, g, 2,...w to X}, X,, X,,... X, also
alter £;, £y, £yyoiudy, to 1, 13, 1oyl 1.

(iii) The main properties which we have to consider are
set out below. Definitions are marked with capital letters:
propositions with arabic numbers.

D=ldy |=|dy dy Ay ody - (&)

dyy (/.22 (7.32...117!;2

(Zl m (]2110 (]37)1 cee (]/I)L m

D, =cofactor of ,,,in U . . . (B)

ps =
=1,2,...m3;\ . . :
(z _ 1’ 2’ m )Bplllql + Dp2/]q2+ et pmdqm
0ifg#p
D'E]Z)qr] N (6]
DD =0 . . . . . (2
cofactor of D, in ' = D"2d,, . . (3)
If  dyX,+dyXo+dyXo+..+d, X, = 1)
o Xy +dgp Xo+dyg Xyt oo+ dyp Xy = Ty |
{llm‘\’l + d2m X2 + (73,,01’3 +...+ (l'mm Xm = Y'm
then >' (4)

(p=1,2,..m)

_ ’Dpl N+ ‘Dp2 Yy + ])133 Yi+... + me Yo,

P y/)

(iv) As a preliminary, to make the statements more
concise, we may—though this is not essential—introduce
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the ordinary notation of summation. Thus (1) can he
written

p=1,2,.005\ < _{Difq:pg. 1
g = l) 29--.7/l )s%])p‘"]q*— 0 ifq #p ’ ) ( )

and (4) can be written

If (s = 1, 2,.m) 2 dp, Xy =V,
r=1 )]
. he _Dps 178
then (p=1,2,...m) .\, =§1 ' )

(v) The tensor notation involves five steps, which are
set out in §{§ 2-4, 6, 8 below. The reader will find it
helpful to copy out the statement in (iii), modified as in
(iv), and make the successive alterations which are now to
be described.

V. 2. Reciprocal determinant.—The first step (which
will be found in modern text-books) relates to (1) and (2).
The determinant 2’ has sometimes been called the reci-
procal of D. But, as has already been pointed out in
IV. 6 (i), it is not a true reciprocal, since the product of
the two determinants is not 1 but J™. Since, however,
I contains m columns, we see that if we form a new
determinant by dividing each element of it by D the pro-
duet of this new determinant and 7 will be 1. We therc-
fore write (1) in the form

P=1,2,.m5\ < Dy, __{1 if9=17}.
g=1,2,...m )s:l _])_(]93“ 0ifg=£p§° -~ (1)

and form a new determinant 2" defined by
0" =\0,/D|. . . . . . (C)
This new determinant will be equal to 2/D™=1/D), so

2611 F
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that the product of the two determinants will be 1; and
the cofactor of 2,,/D in the new determinant will be
dpy/D=d,, D". Hence the two determinants D and D"
are so related that their product is 1 and that the cofactor
of any element of either determinant, divided by the
determinant, is equal to the corresponding element of the
other determinant. We can therefore call each determi-
nant the reciprocal of the other.

V. 3. Elements of reciprocal determinant.—The

next step is to have a single symbol for
(cofactor of 4, in D)+ D.
We have already used D, for the cofactor of @,,; and it is
inconvenient to introduce a new letter in place of 4 or D.
We therefore denote the above expression by
dPs,

We accordingly, in our statement, replace (B), (1), (C), (2),
(3), and the second line of (4), by

dP* = (cofactor of 4, in D)+ . . . (B)
p=1,2,...m; - ey, _{1 lflj =2)§ 1
7=12,...m )sz T loifg#EpS (1)

y=javr| . . . . . . ()
DD’ =1 .o .o (2)

s = (cofactor of 42" in D”)+ 2" . . (3)
(r=12..mX, = D arY, . [2ndline of] (4)
s=1
The parallelism of (B) and (3), and of the two lines of (4),
should be noted.

V. 4. Set-notation.—(i) The next step is to abbreviate
(4), as altered. This contains two statements—a hypothesis
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and a conclusion; they are similar in form, so that we
need only consider the first one, namely
(=1,2..m) 24, X, =7,
p=1

(i) The expression on the left-hand side of this state-
ment has a definite value for each value of $; we can
denote these values by

}l EZ J3"‘ }7)L°
The statement then takes the form
(s=1,2,..m)F, =Y,
We cannot merely omit the ‘(s=1, 2,...m)  from this,
without leaving it doubtful whether we are speaking of
some particular s or of each s. We get over the difficulty
by omitting the ‘(s=1, 2,...m)’ and replacing the &
in ‘B, =1Y,” by a Greek letter. The convention then is
that a statement of the form
EO' = ))ff
means that 7 is equal to Y, for each of the values of s,
1.e. that
by=Y, By=1Y, Ey=1, . .E,=1Y,;

it being understood that the values 1, 2, 3,...m which
are to be given to a Greek letter have been settled before-
hand and remain the same throughout our work.

(i) Applying this convention to the two statements
in (4), it becomes :
m m
If Erlanp=Y,,, then X, = XY, . . . (4)
p=1 s=1
It is immaterial what Greek letter we use in either of
these statements, provided the letter is the same on both
sides. We could have used the same letter in the two
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statements, but in the particular case it is better to have
the letters different.*

We have rather spoilt the symmetry of (4), but we will
put this right in § 6.

(iv) The statement in (1) is a statement as to the value
of a certain expression for all values of p» and all values
of ¢; and, so far as the left-hand side is concerned, we
could extend the above principle by using two Greek
letters. But the right-hand side presents difficulties; and
we must therefore leave this over for later consideration (§ 8).

V. 5. Principles of set-notation.—It is desirable at this stage
to consider the principles underlying the notation which we have
Jjust adopted.

(i) Take first the case of a single set of m quantitics or elements;
i. e. an aggregate of m quantities which fall into a certain linear
arrangement. We denote these by, say,

A, Ay Ay, 4,,.
We have settled that a statement such as
Ay = E)
is a comprehensive way of saying that
Ay=E\, 4, = F,, Ay = Ly, ... 4,,= E,,.
Thus we use 4, etc. when we ave referring to a particular member
of the set, and we use 4, etc. when we are making a statement
with regard to each member of the set in turn. We may also
want to speak of the set as a whole. It will be found that no
confusion arises from using 4, in this sense also. We can there-
fore say that
AN=(4, 4, 4. 4p);

the brackets being used in order to show that we are considering
the set as « whole. In this sense we might regard the statement
A) = E) as meaning that the set 4, as a whole is equal to the set

* I have as far as possible used A, g, p, o in this chapter to corre-
spond to p, g, 7, s, reserving v for product-sums (§ 6). Later on it
is better to have no fixed rule, beyond that laid down in § 5 (iii).
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E) as a whole, this equality of the wholes implying equality of the
parts. We shall have to take this step later (Chapter VI): for the
present it will be sufticient to regard the statement 4, = E, as
merely an abbreviated way of saying that 4, = E,, 4, = E,, etc.

(ii) The interpretation of 4, as the set as a whole recalls the
idea of a vector as the resultant of a number of components. But
the operations which we shall have to perform with single sets do
not follow exactly the same laws as those which govern operations
with vectors as ordinarily understood (see note to (vi) below), so that
the analogy must not be pushed too far.

(iii) Next take the case of a double set of m? quantities, i.e. a set
consisting of m single sets, each containing m elements. If we
denote the elements of the gth single set by Foui Fup ooe Fopuy
this single set as a whole can be called F),, and the complete
double set can be called I',,. We think of the elements as
arranged in a square, the columns of which are the single sets: by
regrouping (e.g. Fy,, Fy,...F,;) we get the rows of the square.
We have already, in § 1, adopted the convention that in d or d;.,
the g represents the column and the » the row; and similarly we
shall say that in F),, or F,, etc. the first letter, according to alpha-
betical order, means the column and the second the row. Hence

Fuopy=(Fy Fy Iy o Py \va;LE By I, Fy.. Ly,

v v ' nl ’
Fl? F22 11‘1" 'I.l)), 121 112 ﬁ23 "’F2JJI |

; v
1717/ Iﬂ?l 3?)l"'l'7)l 7)1) ‘FIIII F/N” FIIIS 7)2/)!)

the brackets being inserted, as before, in order to show that the
set of quantities is in each case to be regarded as a whole. Then
the statements

Fup=Cups Fup=Hyy,
mean respectively that F,l,. = Gy, a,nd that Fy = H,,, for every
value of ¢ taken with every value of ».

A double set is symmetrieal if it is not altered by interchanging
columns and rows.

(iv) A particular form of double set is obtained by multiplying
together every element of one single set and every element of
another single set (of the same number of elements). If these two
sets are BM and C‘o (in this order), the representative element of
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the resulting double set will be B, Cy, so that the double set can
be represented by B, C, or C, B,. This double set is called the
product of the two single sets. It should be noted that we must
not write it as ‘B, C,’ or as ‘B, C,”; partly because this would
not define the particular arrangement of the elements of the
double set, and partly because we shall presently have to give

a special meaning to these latter expressions.

(v) In addition to double sets and single sets, we have to use
single quantities, such as ¢ or %. Any such quantity is called
a scalar. It need not be a constant: it may, as will be seen later,
be a definite function of the elements of one or more sets.

(vi) We shall for the present be dealing only with expressions
which, interpreted according to the laws of ordinary algebra, are
obtained from scalars, single sets, and double sets by addition,
subtraction, and multiplication. The rule of interpretation is the
same that we adopted in (iv) for B, C,: we replace the Greek
letters A pp...by pgr... and take the total expression to be
the set obtained by giving to each of the quantities p ¢ ... each
of the values 1 2 3...m. For example:

(a) kA, means the single set whose elements are
KAy, kdy o kdy;
(b) A\ £b B, means the single set whose elements are *
A, 2bBy, 4,#VB,,... A, 2bBpy;
(o) Ayp—aF, G, means the double set whose element in
the gth column and the 7th row is 4, —aF,G,.

It is obvious that this system of interpretation is in accordance
with the laws of ordinary algebra ; for instance
k(A +B,) =kA,+kB, =kB,+kA,,
Fx(G,~Hp)= F)G,~Fy\H),
and so on,
We are further restiicted, in the case of expressions containing

* 1t will be seen from (vi) (a) and (b) and from (iv) that single
sets follow the same rule as ordinary vectors as regards multipli-
cation by a scalar, addition, and subtraction, but not as regards
multiplication together.
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more than one term, to (1) scalar expressions, (2) single sets
arising as sums (‘sum ’ of course including ¢ difference’) of expres-
sions which contain the same letter, e.g. ad) + By + ..., (3)
double sets arising as sums of expressions which contain the same
pair of letters, e.g. ad,, + VB, C,. We do not therefore have to
consider such an expression as 4, + B, which is really a double
set, not a single set.

(vii) The suffixes which we have so far attached to a symbol have
usually, in accordance with the regular practice in algebra and
with the ordinary meaning of the word, been placed below the
line: the exception being the use of dPs to mean (cofactor of ds
in D) + D. This latter system of having upper suffixes as well as
lower suffixes will sometimes be found convenient. We may, for
instance, want to denote a single set by 4*; and in that case
A, 4% ... would be members of the set. Where there is any risk
of confusion, we shall not use the ordinary indices of algebra at
all ; thus the square of Ap will be 4, Ap, not Ap?.

V. 6. Product-sum notation.—(i) Our next simplifica-
tion consists in dropping the sign of summation in (1)
and (4). But, since merely to drop it and to replace, say,
> dvdy, by dred, would be misleading, we use a
s=1
special notation. The number of alphabets at our disposal
is limited : and it will be found not only that we can use
Greek letters for this purpose without risk of error, but
that there are actual advantages in doing so.

(ii) The rule we adopt is that, when an expression of the
form _BpC has to be summed for the values 1,2,...m
of p, we denote the result by replacing p by a Greek letter
in both places; and, conversely, the meaning of such an
expression as B,C, is

B,C,= B,C,+B,C,+...+B,C,. (V.6.4)

vy —
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(iii) The pair of »'s in B,,C’,, could be replaced by a pair
of any other identical Greek letters; e.g.
B,C,=B,.C,. (v.8.1)

The » (or p) is for this reason called a dummy. We can
think of the surp represented by B, C, as the result of link-
ing the elements of B, with the corresponding elements
of C,; we can therefore describe a Greek letter which
occurs twice as a linked suffix, and one which occurs once
only as a free suffix.

"(iv) The rulein (ii) applies if either or both of the expres-
sions B, and C, has a free suffix as well as the p; e.g.
A4,B,, means A, By + 4, B, + ... + 4,, B, and 4,, B,
means 4y, B, + 4y, By + ... + Ay By, which is a double
set whose typical element is 4, 53,

(v) We can also have successive summations expressed
in the same way. Thus

B,C,D, F

A" pp %P
involves summations with regard to A, with regard to p,
and with regard to p. It is easy to show that these sum-
mations can be made in any order: e.g. we can take (),
and 2 together as if the A and p were free, and then
bring in B, and £,

(vi) As an example of the brevity effected by this
notation we may take the expression for the product of
determinants. Even for so small a value of m as 3, the
expression obtained in IV. 5 (ii) for the product of two
determinants is formidable. 'We can condense it by intro-
ducing =’s, but the result is clumsy. In the new notation
it will be found that the method of I'V. 5 (ii) gives

l a(l"' i X | bqr | = I aq)\b)\'r } (V. 6. 2)
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The process can be repeated : e.g.

. (v.8.3)

(vii) The result of applying the product-sum notation to
the statement in § 1 (iii) is that (1) and (4) become (p and
s in (4) being replaced by X and o respectively)

p=1,2,...m; pog 1ifq=19}
g=l, 2,--.772 )d (lqa'—{o if([?“']’ . . (1)

If ,,X, =Y, thew X, =adY,. . . (4

| agr [ X1 0gr X} eqr | X | dgy | =] agaby,e,d,,

V. 7. Inner products of sets.—(i) The quantity B, C, behaves
in many respects like an algebraical product. We call it the inner
product of B, and C,, to distinguish it from an ordinary or outer
product such as By C, (§5 (iv)). The inner product of B, and C, is
the sum of the elements in the leading diagonal of the outer
product of By and C,.

(1) In the same way 4,B,, is the inner product of 4, and
B,,, and 4,, B,, is the inner product of 4, and B,,.

(ii1) The process of forming an inner product, as above, may be
called inner multiplication.

V. 8. Unit-set notation.—(i) We have finally to con-
sider the form of (1), which is a statement that
P=1,2,...mN 6. {1 ifq=p}
¢g=1,2,...m )d) Agr = 0if ¢ #p§’
So far as the left-hand side is concerned, this is a statement
as to the values of the elements of a double set

ad,,.
As regards the right-hand side, however, the statement falls
into two ; first that @7 d,, = 1, and next that &7 d,, = 0 if
p and g are different.  We want to replace these by a single
statement.

(ii) We do this by converting the statement into onc as
2811 G
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to the equality of two double sets. For this purpose we
construct a set whose typical element, in the ¢th column
and rth row, is 1 if ¢ and » are the same and 0 if they are
different ; a set, in other words, which has 1 for each
element of its leading diagonal and 0 everywhere else. If
we call this set* *

o
then our definition of |7 is that

|7 = the function of » and ¢ which

lS—-{O if g £ pf (v.8.4)
We can therefore write (1) in the form
17:1, 2)‘“””; po —1Ip.
q=12,..m )d o= 175
or, in the set-notation,

Pdg=1 ... (1)

V. 9. Properties of the unit set.—(i) We have defined |2 as
the set whose typical element is
If,zzlifq=p$ (V.9. A)
1=10if g#p)’
Hence each element of the leading diagonal of | ,’} is 1, and the
other elements are all 0; in other words

[2=/1 0 0 0..0y (V.9.B)
010 0..0
0010..0
0 0 0 0..1
* The usual symbol, adopted by Einstein, is 8%; J. E. Wright
(‘ Invariants of quadratic differential forms’) uses n),. Neither of
these seems sufticiently distinctive ; and & already has a consider-
able number of other uses. I have therefore altered the symbol to
|4 (‘unit Ap’), as an experiment.
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This set (with any pair of letters) will be called the unit set. The
following are its chief properties,

(ii) The set is symmetrical, i. e.

Ii=1k. (v.9.1)
(iii) The determinant of the set is
Z]=11 0 0..0 |=1 (V.9.2)
01 0..0

0 0 0.1

(iv) Also, if we multiply together this determinant and any other
determinant, in either order, it will be found that we merely
reproduce the latter, i. e.

8] x [agr| =1 agr | x |17 |=|agr |- (V.9.38)
(v) The special importance of the set, or of any column or row
of it, lies in its effect when combined with another set to form

a product-sum. It will be found that, ¢ having any one of the
values 1, 2, 3,...m,

|fdu=tAu=4d, |fAun=|"4u=41, (V.9.4)
=14 dp=dry 1} Ay =] b= rye (V.9.5)
[For example, take ¢ = 3 in the first part of (V. 9. 4). Then
|24, =]34,+]|34,+ |54 +]34,+ ...
=0.4,+0.4,+1.4,+0.4,+ ...
= Ay.]

Thus the effect of inner multiplication by | ;}1 of a single or double
set which contains u (or A) is to alter the latter to X (or u).

V. 10. Determinant properties.—(i) Before we write
down the final results, there is another small change which
we shall find it convenient to make. In the statement
ar’ &y = |}, obtained in § 8 (ii), the linked suffixes are an
upper o and a lower o, which cancel one another; and the
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free suffixes A and p are in the same respective positions
on the two sides. It is desirable that, whenever possible,
these two conditions should exist. In each of the state-
ments d,, X, = ¥, and X, = @’ Y, given at the end of § 6,
one of the conditions exists but the other does not. We
make them both gxist by replacing X,, throughout, by

X = (Xl A‘z.”‘Xm),
as explained in § 5 (vii).

(ii) Our statement, after carrying out the alterations
indicated in §§ 2—4, 6 and 8, and in (i) above, becomes—

Notation. b= dg, | (V.10.A)
dp* = (cofactor of d,; in D)+ 1. (V.10.B)

' =|ar|. (V.10.C)

Properties. dM(lM = (V.10.1)
DI’ = 1. (V. 10.2)

s = (cofactor of @ in ")+ 21", (V.10.3)

If ¥ =d,,X then X =d"Y . (V.10.4)

To these we may add the formula (V. 6. 2) for multiplica-
tion of determinants, namely

l aqr | x I bqr | = ‘ “qi\lj)\r [ (V. 10. 5)

V.11, Example of method.—Toillustrate the methods
that we are now able to use, let us verify (V. 10. 4) by
means of (V. 10. 1). It is given that

Y, =d, X"

To find the value of @” ¥, it will not do to replace ¥, by
the above value as it stands, since we should then have
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three X’s. We must first replace A in the expression for
1, by some other suffix, say u. We then have, by (V. 10.1)
and (V. 9. 5),

Y, =d"d,, X =i X = X,
which is what we wanted to prove. The reader will find
it instructive, for comparison, to write out the proof in the
ordinary notation.

In the above proof we have proceeded from @ (4 e AY)
to (@7 d,,;) X¥. 1t has already been pointed out, in § 6 (v),
that summations in a case of this kind can be made in any
order.
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VI. SETS OF QUANTITIES

+. 1. Introductory.—(i) It may have been noticed that
tm V. 11,in deducing (V. 10. 4) from (V. 10. 1) and (V. 9. 5),
- 3 made no direct use of determinant properties: the only
direct use being in the relations between elements and
‘heir cofactors, from which (V. 10. 1) was derived. But
we can dispense even with this indirect use. In the equa-
tions d,,X"=Y_ the values of d, are supposed to be
known; and we can treat the -’ mt in (V. 10. 1),
amely
dmdp.a' = li}: ’

a set of equations giv’ g the values of @7 in terms of
those of d,,. If, for instance, m = 20, the set d,  contains
400 elements, and (V. 10. 1) is a condensed :tatement of
the 400 equations (each with 20 terms on one side) which
g ve the 400 values of @’’. Thus for p =2 we should
have

T AR 4 d, @% + dy AP+ . Ay 3 = 0
<Ay ¥ 4 dygd®® + .. + dp P =1
dyyu~ + Ag0d®® + dyz dB + ... + dy,, A = 0 [

oad® b g0 .. ™ = 0 )

hich give . alues of d%,d?2, 423, 4d%m, j.e. of d*.
wilarly for d17,4%, ete.

Ji) We have, in fact, arrived a*  position similar to
nat reached at the end of the first chanter. We started
ith the problem of solving a set of simuitaneous equations,

~nd arrived at a probable solution, involving what we
2611 ’ H
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called determinants, To verify the solution, we had to
investigate the properties of determinants. The determi-
nant thus took the leading place, its applicability to the
solving of equations being one only of its properties.
A determinant of order = is based on a set of 7% quantities,
which for convenience of reference are thought of as
arranged in a square, the determinant being expressed by
enclosing the set of symbols of the quantities between
vertical lines: and we have reached the stage at which the
set of quantities becomes the important thing, its existence
as the basis of a determinant being one only of its
properties.

(111) These properties we have now to consider. The
following sections of this chapter are mainly a restatement,
with obvious modifications and extensions, of results ob-
tained in the preceding chapter.

VI. 2. Single sets.—(i) We may have a single set
A4,=(4, 4, 4,...4,).
The separate quantities A, d,... 4, comprised in the set
are called its elements. The order of the set is the number

of elements comprised in it. The typical statement with
regard to such a set is of the form

AP = Ep.

This, in the first instance, we regardéd merely as a short
way of saying that

A, =E, 4,=F,,..4, =E,;
but we must now think of it as a statement that the two
gets 4 and E, each taken as a whole, are equal, this

equality of the wholes implying the equality of correspond-
ing elements. The analogy of a vector may help us here.
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The statement that two vectors are equal implies that the
components are equal, each to each; but what we really
think of is not the separate equalities of the components
but the equality, in all respects, of the vectors.

(i) Single sets behave like ordinary vectors as regards
addition and subtraction and multiplication by a scalar
(§ 4 (iii)), but not as regards multiplication of one single
set by another.

VI. 3. Double sets.—(i) We may have a double set of
order m—i.e. comprising m? elements—

Ay =(dy Ay Ay oy ]
g oo d

up =

A]Z Agz 4,

m2|

lAlm Ay Aam“"’l’mm}
Here the quantity in the ¢th column and 7th row is 4,,.
We adopt the convention that the first Greek letter (in
alphabetical order) represents the column and the second
the row, so that

d, =

12 11 Alz A 1 \ ’

A S |
A;zl ‘4.22 423 -"Agm
Aml Am2 117"13 b Amm)

the representative element of which is 4,,. The sets 4,
and A4 pu BT€ called the transposed of each other.

(ii) The determinant
| 4gr |
is called the determinant of the set* 4,, and similarly
| 4,4 | is the determinant of 4.,
* The set is usually called the matsriz of the determinant. It is
a singularly inappropriate name, as the symbol of the set is the

inner part of that of the determinant, not something which sur-
rounds it. The set is really the substance or core of the determinant.
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(iii) The brackets in which the elements of 4, 4,,, 4,,
have been placed are not essential,* and have been intro-
duced partly to help the eye and partly to indicate that the
sets are being considered as a whole.

(iv) A double get is symmetrical if columns and rows can
be interchanged without altering it. Thus, if 4, is sym-
metrical, then 4,,=4,, ; and conversely.

VI. 4. Sets generally.—(i) We describe a single set
as being of rankt 1, and a double set as being of rank 2.

(i) Similarly a set of rank 3 of order » is made up of =
double sets of order 7 ; and so on. Thus we might repre-
sent a set of rank 8 by 4, . There would have to be
a convention as to the order of the symbols, so as to dis-
tinguish 4, from 4,,, etc. Where, however, the set is
symmetrical, so that 4, =4,  =ete., this difficalty does
not arise.

(iii) The set of rank 0 is a single quantity or scalar.

(iv) To denote a set genmerally, without reference to its
suffixes, we use a Gothic letter such as & or 2B.

* An alternative method, in the case of a double set or matrix,
is to enclose the symbols between two pairs of vertical lines, so as
to distinguish the set from the determinant, which has two single
lines. It is not a satisfactory symbolism from our point of view,
as it would seem to suggest that the set is more restricted than the
determinant, whereas what we are aiming at is to free the set from
the bonds of the determinant.

T I have been doubtful as to the appropriate word. In reference
to tensors Einstein uses Rang, Hilbert Ordnung, Eddington rank,
de Sitter order. The objection to either of the last two is that
there isalready a settled meaning for order as regards a determinant,
and (though this is not so important) for rank as regards a matrix
(see note to § 3 (i1)). It would seem reasonable to describe a set
containing m/ elements (i. e. composed of m sets each containing
m/ 7! elements) as being of degree 5. I have, however, felt bound to
keep to Eddington’s use of rank.
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VI. 5. Sums and products of sets.—(i) If two or
more sets, of the same rank and the same order, have t/e
same suffixes, we add (or subtract) them by adding (or sub-
tracting) corresponding elements. Thus

A+ By = (dy+ By, dy+ By Ay+ Dy dp+By);
and similarly for sets of higher rank.

(i1) We multiply a set, of whatever rank, by a scalar
when we multiply every element of the set by the scalar ;
e.g.

i Rdy, = (kdy  hdy  kdy Ay,

kdy kdy kdy, ok

’éAlm k/lmn kA:'M’n '"kAmm

Thus the determinant of l:AMP is not £ times, but 4™ times,
the determinant of 4, ..

(iii) If A and 2B are two sets, with diferent suffixes, o
ranks f and ¢ respectively (fand g not being necessarily
different), their product & 2B is the set of rank f+¢ ob-
tained by multiplying every element of one by every
element of the other. (Here, as elsewhere, we assume that
all the sets we are considering are of the same order.)
Thus the product of two single sets 4, and B, is the double
set 4, B, obtained by giving to p and o separately each of
the values 1 to m. A product obtained in this way is
sometimes called an outer product, to distinguish it from
an ‘inner’ product as defined in § 6 below.

VI. 6. Inner product.—(i) When a suffix occurs twice
in an expression such as 4,, or B,C,, or, more generally, in
any single expression or product, e.g. dy,,,... or B,,...C,...
(where the letters may be in any order), this means that the
expression is to be summed for the values 1, 2...m of the
suffix ; e.g.
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B,C, = B0y +B,C, 'l;'--‘*'-BmCm
B,D,, = B, D,;+B,D,,+... +BmDM,,I». (V1. 8.A)
ete.

Where a letter occurs twice in this way, each of the two
letters is linked. Where a letter occurs once only, it is
free. The linked suffixes are called dummy, as they can be
replaced by a pair of any other suffixes not already occurring
in the expression.

(ii) In the particular case where the expression to be
summed is of the form B,C,, the result is called the inner
product of B, and C,, or of B, and C,, ete. It is immaterial
what suffixes we use in this latter description, since they

have to be replaced by one and the same suffix.

(iii) From a pair of double sets 4,,and B, or 4, and
B, we can by a single product-summation form several

different double sets 4, B, , 4,, B, 4, B),, ete. There

is also the scalar quantity A,, B, formed by two summa-

tions, which can be simultaneous or successive; if suc-
cessive, the first is a product-summation giving us the
double set 4y, B, or A, B,,. Strctly speaking, this
scalar quantity 4,, B,, is fhe inner product of 4, and
B,,. But it occurs less frequently than the double sets
obtained by a single summation, and it is therefore more
convenient to call one of these latter the inner product.
We shall call 4 up Bu.o the complete inner product of 4 Lo and
B”P. By analogy with the expression found in V. 6 (vi)
for the product of two determinants, we define the inner

product* of two sets Aup and B“p—or, more generally, of

* This is what, in the case of matrices, is called the ‘ product ’.
The true product of two sets 4,,, and B, , is a set of rank 4.

If this use of * inner product” seemed likely to lead to confusion
with the ‘complete inner product’, we could use a different
phrase, such as ‘interproduct’. It should be noted that the inter-
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two sets 4, and B, —, in ‘\each of which the letters are in
their proper alphabetical order, as the set 4,, B, ; the
linked suffix in this latter expression being chosen so as to
be (alphabetically) intermediate between the two free suf-
fixes. This is equivalent to saying, as regards this case,
that the tnner product of two doulle sets is the double set
whose element in the qth column and xth row is the inner
product of the qth column of the first set and the xth row of
the second set ; and we apply this rule to all cases. The
simplest way of applying it is to use the result for 4, and
Bﬂp and alter the order of the suffixes where necessary.
Suppose, for instance, that we want the inner product of
4,, and B, ; then by writing B, ,=F, we see that the
inner product is 4, ¥,,=4,, B,. It should be noticed
that in all cases the inner product depends on the relative
position of the original sets; thus the inner product of

Bﬂpand/l is not 4 ]3 butB A

fad

(iv) There are four main forms of inner product constructed in
accordance with (iii) ; and four others, which are really repetitions,
can be obtained by interchanging the two sets. Denoting the
inner product of & and B (in this order) by & x B (cf. IV. 5 (ii) as
to product of two determinants), the forms are as follows:

wpXBup=AwB,, (1) BuyxAu,=B,A,,=4,,B, (5

A,‘ xB A“,,BP,, (2)  B,ux A _3B, vy = A,,B,, (6)
APFxB A,,B,, (8)  By,x A B,w ,w =4, By (7)
% By A,,#BP,, @)  B,.x A,,# =B, Ay = A, B,, (8)

(v) The transposed of an inner product such as A#,,B,,P is found
in the usual way (V. 5 (iii)) by interchanging the free suffixes p
and p. By comparison of (1) with (8), (2) with (7), ete., it will be
seen that the transposed of the inner product of two double sets is the

mediate product-sum, for A4,,B,,, is not A, B,, but either
Ay,B,, or A, ,By,;. There are various reasons for taking the
former, rather than one of the two latter, as ¢ the’ inner product.
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inner product of the transposed sets, in reverse order; e.g. the trans-
posed of the inner product of 4,, and B, is the inner product of
B,,and 4,,.

(vi) It will be seen by comparison with IV, 5 (ii) and the
Appendix that the rule for construction of the inner product of
two double sets is sxa,ctly the same as that for construction of the
product of two determinants; so that the determinant of the inner
product of two double sets—whether we call them (say) 4,, and
B,, or A, and B, —is equal to the product of the determinants
of the two sets.

VL 7. The unit set.—(i) The unit set*

15
is defined as the set whose typical term is
1if7‘=g
9 =
Ir._{oﬂ.r#g}, (VI.7. A)
so that
p=(l 0 0 0..0) (VL 17.1)
P10 1 0 0...0
0 0 1 0..0
0 0 0 0..1

(i1) From the definition it follows that the set is sym-
metrical, i.e.

|“=1e, (VL 7. 2)
and that
112 = 1. (VL 7. 3)

(iii) The special property of this set is that, if 4, is any
set (possibly containing other suffixes ¢ 7...), then

lpd,=104,=4, (VI. 7. 4)

so that the inner product of the unit set and any other set

* This is by analogy with the ¢ unit matrix’.
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is the same as the latter but with the suffix changed. In
other words, the unit set acts, for inner multiplication, as
a substitution-operator.

(iv) In particular, the inner product of two unit sets is
a unit set, i.e.
11, =1% (VI. 7. 5)

VI. 8. Inverse double sets.—(i) We take any double
set

Ayps

and we say that there is another set
APH

connected with it by the condition that the inner product
of the former and the latter is a unit set, i.e. (see §§ 6 (iii)
and 7 (i)) that

4,47 =" (VI. 8.1)

This represents 72 equations, which are sufficient to deter-
mine the 7% values of 4"/ when those of 4, are known.
The set 4*, as defined by the above condition, is called the
inverse of the set 4,,. We shall keep to this notation, so
that (VI. 8. 1) will always hold, however we alter the
letters 4, u, v, p.

(ii) The above is subject to one condition. If we write
down the equations which determine the elements in, say,
the second row of 47, namely

Ay A% + A A% 4 A AP 4, + Ay, 427 = 0
Ay AP + A A% 4 Ay AP + .+ Ay AP = 1
A A2 4 Agg AP 4 Ay AP+ ., + Ay AP =0 >

Ay AP 4 Ay 422 4 A AV ., + A,y AP =0

2611 I



66 Inverse double sets VI. 8 (i)

we see that in order that there may be a solution it is
necessary that we should have |4, | # 0, which is the

same thing as
EME) (VI 8. 2)

This applies also to the other rows. It is a sufficient as
well as a necessary condition for the existence of AP¥.

(iii) Taking it that | 4., | # 0, we have, by (V. 6. 2) and
(VI. 8. 1) and (VI. 7. 3),
407 | x | 4y | = | AT A, |=[|1]=1. (VL.8.3)
It follows that
| A | £ 0, | AT % 0. (VI. 8. 4)

(iv) The statement (VI. 8. 1) is a statement as to the
m? relations obtained by taking each value of p with each
value of u. It is therefore equally true to say, by inter-
changing p and p, that

4”4, =} (VI.8.5)

The expression on the left-hand side is (§ 6 (iii)) the inner
product of 4" and 4,,; and these are the transposed of
A and A, respectively. Hence, if 25 is the inverse
of d, the transposed of { is the inverse of the trans-
posed of 2B.

(v) The relation in (VI. 8. 1) is a relation connecting
columns of the original set and rows of the inverse set.
There is a similar relation connecting rows and columns.
For (VI. 8. 1) gives

A“AAm,Apvz |,’:A")‘= AN = |4
whence, as will be shown in § 9 (v), it follows that
4N 4, =), (VI.8.8)

and hence also

A 4" = |2, (VL 8.7)
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The expression on the left-hand side of (VI. 8. 6) is the
inner product of 4 and 4,,, which is the equivalent
of that of 4" and 4,,; so that, by the definition in (i),
the latter is the inverse of the former. Hence, if 2B is
the inverse of @, then { is the inverse of 25. The
relation (VI. 8.7) is similar to (V1. 8. 5), and shows that
the transposed of 1B is the inverse of the transposed of 4.

VI. 9. Reciprocation.—(i) Suppose there are two single
sets X* and 1, connected by the relation
Y, =4d,, X
Then, as in V. 11, we have
AN Y = AMAWX“ = I,);X“ =X

If Y, =4, X" then X*=4"Y . (VI 9.1)
Similarly by taking A* to be each single set, in turn,
of a set of second or higher rank, with ¥, to correspond,
we find that

If ¥, =4, X}, thn X2 =AY, . (VLo.2)

(1)) Thus the operation represented by 4, is annulled
by the operation 4 ; and conversely. The sets 4,, and
AM will be said to be reciprocal to one another: and the
process adopted in (VI. 9. 1) and (VL. 9. 2)—which we shall
have to use very frequently—will be called reciprocation.

(iii) We see from § 8 that the reciprocal of a set is
the transposed of the inverse of the set, and conversely.
If a set is symmetrical, its inverse and its reciprocal are
identical.

(iv) As an example of the application of (V1: 9. 1),

suppose that
AAG XA =0
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for all values of . Then, by reciprocation,
Xr=A4%0=o0,

provided that |4,, |+ 0. (This is practically the same

thing as saying that, if the inner products of X* by  in-

dependent single sets are all 0, then X* is 0.)

(v) Similarly, s‘uppose that
A)\V CVO' o AAV DVG'
identically, i.e. for all values of A and o, and that
| Aqu is not = 0. Then, by reclprocatlon,
(544 A)\v A Dpa — Ip Dva

Thus we can divide both sides of the equation by 4,,.
This supplies the missing step in § 8 (v).

(vi) The two definitions, and the proposition, used in
the establishment of (VI. 9. 1) are

lif?‘:(

7 q

|r_{0if¢¢q},. S (A)
|44 = 4", N ¢ )]
A, AM_U, . - . . . (B

and from these we deduce (VL. 9. 1). We could have
altered the order in various ways. For instance, we
could have defined |2 by (1); thence, by giving A its
successive values, and equating coeflicients, we should have
got (A). Also we might have defined 4 by (VL 9. 1),
instead of by (B), as the coefficients of ¥ when the equa-
tions ¥, = 4,, X" are solved for X*. This would give
X = 4 4, X*. Then, if we defined | by (1), we should
have AMA = ] ; or, if we defined | by (B), we should
have X* = |" X" which is (1).

VI. 10, Continued inner products.—(i) We can construct con-
tinued inner products without ambiguity, provided we adhere to
the rule laid down in § 6 (iii). Suppose, for instance, that we
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want the inner product of 4,4, Bpg, and C,p. That of 4,, and
B)g, according to the rule, is 45, B,,. If we call this Fj,, then,
by (2) of § 6 (iv), the inner product of Fy, and Cy) is Fyy, Cyyp ; i.e.
the inner product of 4y, Brg, and Cy) is 4y, B, Cpye  Similarly
that of Aygy B)\O-, Cd)\, and D,\o- is A,\#Blw Cp,, -Dpa-

(ii) On the other hand, the inner product of A;x, Bsa, Cags Do
is not Agp Bpy Cuy Dy For, by (4) of § 6 (iv), that of A4, and By,
is By, Ay Ca,lhng this G,,, the inner product of G4, and Cy4 is,
by (3) of § 6 (iv), CysGyr = Cyg By, A, Similarly that of Ag,
Bgr, Crgy Do 18 Do'p CVPBV}LA/A)\

(iii) The transposed of the inner product of any number of double
sets is the inner product of the transposed sets, in reverse order;
e.g. the transposed of the inner product of Ayg, Birgy Cyay Drg 18
the inner product of Dgy, Crg, Bgry 4grn. [For we have shown, in
§ 6 (v), that this is true for the inner product of two sets; and
thence it follows, by induction, for any number of sets.]

(iv) The inverse of the inner product of any number of double
sets is the inner product of the inverse sets, in reverse order; e. g.
the inverse of the inner product of By, Cuy, Dags Eug is the inner
product of E°%, D°%, C%, B7% i, e,

If Ay = Bog Oy Dys Esgy then 47 = B C®YDYBEBe, (V1L.10.1)
[Denote this latter expression (right-hand side) by /%% and alter
Bydinittouvp. Then the inner product of 4,, and F% is
A\ F° = B,g B Cg CP D5 D"* Eg) E**
aBB PCB C'WD 5D”’"|“

= BaBB PCB.,CP |"

= B 8 B7| 4 3

=]a.
Hence, by reciprocation,

FoA =Aa)\'g =A"}‘,

so that Fo% = 47%]

(v) It follows from (iv) and (iii), since A%? is the transposed of
A9%, that the reciprocal of the inner product of any number of
double sets is the inner product of the reciprocal sets; e. g.

If Ayg =B,z Cp, 761;&,, then A% = BB CBY D8 gdo,
(VI. 10, 2)
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VI. 11. Partial sets,—(i) When we are dealing with a set
Ay (4, 4, 4;...4y,)

we sometimes want to consider the separate or mutual relations
of groups of the A’s. The simplest case is when the set divides
into two groups, one group consisting of & elements, which we
shall take to be thg first %, and the other group consisting of the
other m —k elements. If we use suffixes aBy... in reference to
the first group, and ¢ x v ... in reference to the second, reserving
Apv... for the set as a whole, we may treat the two groups as
partial single sets of orders & and m —k respectively, and write

Ag == (A4y AgooiAp), A= (Agyy Ao Apy)-

(ii) In the same way a double set 4,, may fall into four groups
by division by two lines cutting off % columns and % rows
respectively. We could denote these groups by

% ay Agy 2

Agy Agy

¢ being regarded as coming before y. The groups 4,4, and Apy
would be partial double sets of orders i and m — & respectively. The
groups Agy and 4, would each have different numbers of columns
and of rows, and therefore would not be double sets; but this
would usually not matter, as we should be specially concerned with
Agyand Ayy. The important point to notice is that, if we take
Agy, say, as a partial set and construct the inverse set A7 or the
reciprocal set A%7, the set so constructed will not in general be
the same as the set made up of the corresponding elements of the
set inverse or reciprocal to 4,,. The inverse set A7%, for instance,
is given by

Aggp A‘yB = I vy
with summations made only from 1 to 4 instead of from 1 to m.
To avoid mistake, we may write it (47%);. Similarly the set
inverse to the partial set 4 py may be written [A'/"P]m_ ke

(iii) If, however, all the elements in the portions Aqy and 4
are 0, so that the set 4,, practically consists only of the two
partial sets 4,, and Ay, this is also the case for the complete
reciprocal set 4#°; all the elements in 4% and A?Y are 0, and
the elements of 4%Y and A% are just the same whether they are
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regarded as obtained from the complete set 4, or from the partial
sets A, and Apy.

(iv) If we had two or more sets, single or double, divided in the
manner described above, we could take portions from different sets
to form new sets. If, for instance, we had divided 4, into 4,and
4y, and By into B, and B, (orders again & and m —%), we could
construct a new set consisting of 4, and By.

(v) It would, of course, be incorrect to describe this new set as
being 4,+ By, or the old set as being 4,+A,: for we cannot
add together two sets of different order. We could, however,
look at the matter in another way. Consider the two sets

{4, Ad,..4; 0 0 ..0)

O 0.0 A4, Ap...Ay).
The sum of these, if we regard each as having the suffix A, is 4, ;
and in this sense, if we denote the two sets by 4, and 4., and
regard a and ¢ as connoting A, we could say that

Ay = Ao+ A,

If we compare A) with a vector, we see that 4, and 4, correspond
to the projections of 4, on a ‘plane’, i.e. a surface of the first
degree, passing through the first & axes, and on a ‘plane’ through
the last m — % axes, respectively.

The extreme form, if we made further divisions, would be that
in which 4, was split up into m component single sets, each
having m —1 Q's in it. It would only be in this sense that we could
describe the set as being the sum of its . components.



VII. RELATED SETS OF VARIABLES

VIIL 1. Variable sets.—(i) In the earlier chapters we
considered the manner in which determinants arose in
solving a set of equations of the form

(s=1,2,.0.m)di X1+ dgo X2+ ... + d ) , X" = Y,; (1)

and in the chapter preceding this we have considered the
general aspects of the system under which we express these
equations and their solution in the form

Y,=d X, X=d"7,. (2)

According to the definitions we gave to the notation, X*
and ¥ are each used in different senses in the two places
where they occur in (2): X* means ‘the elements of X"’
on its first occurrence and ‘each element of X*’ on its
second occurrence; and similarly for Y, but in the re-
verse order. We have, however, by this time practically
reached the stage of treating a set as a whole, so that
we can now regard (2) as a pair of statements, one of which
gives an expression for the set ¥, in terms of the set X*,
while the other expresses X* in terms of ¥,. The form
of either expression determines the nature of the relation
between the two sets.

(ii) The special features of the particular case were that
the X’s were unknown quantities which we wanted to find,
that the d’s were coefficients, more or less accidental, and
that the ¥’s were known quantities arising from the applica-
tion of these coefficients to the X’s; and, more important,
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that this was merely an isolated set of equations, for which
we had no further use when we had found the X’s.

(iii) The relations with which we have to deal in this
and subsequent chapters are of a different nature. We
have a set & and a set )B, each consisting of a number
(the same for both) of elements, which we will call the
A’s and the B’s. In each set the elements need not be all
of the same kind. Each of the A’s is a variable; i.e.
it either has, or can (as in the theory of statistics or of
error) be regarded as having, a very large number of
actual or possible values. These variables, the values
of which are algebraically independent,* together consti-
tute the variable set 4. In the same way the B’s are
variables, and constitute another variable set )B. But
the two sets of variables are not independent of each
other: they are connected by certain relations, by means
of which the B’s are known if the 4’s are known, and con-
versely. Thus the B’s are functions of the 4’s, in the
ordinary sense of the word, and the A’s are functions of the
B’s.  In this case we say that )B is a function of {, and
4 a function of )B. But we must not only say it, but
think it; i.e. we must treat the functional relations of
the 4’s and the /s rather as interpreting the nature of
the functionality of 4 and )3 than as actually consti-
tuting this functionality.

(iv) In the particular case we have been considering,
4 and 2B were the single sets X* and 7,, and the relation
between them was linear ; 1. e. the ¥’s were linear functions
of the X’s, and the X’s were therefore linear functions of

* By algebraical independence of m quantities we mean that
each may have any of its values, whatever the values of the other

m—1 may be. This does not imply statistical independence, which
is a different thing.

2611 K
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the ¥’s. Insuch a case we say that ¥, is a linear funection
of X*, and it follows that X is a linear function of ¥,.

(v) In dealing with the theory of the subject, as distinet
from its applications, we are concerned not with the actual
values of elements of sets but with the relations between
the sets. Thus in the case of the linear relation
Y, = d, X", where the variable single set ¥, is expressed
in terms of the variable single set X* and the fixed double
set d,,, the elements of /,  form a kind of framework

AT (]12 A +(/22 A +’/;;2 A +---+’]m2 AL

AT dlm/\ +/]2m/\ +(]:5m AT +d A

into which the values of the X’s and the I’s can be fitted ;
and what we are really investigating are the propertics and
mutual relations of such frameworks. In the present
chapter we shall consider certain simple relations between
two such frameworks, namely relations between the linear
relation of one pair of sets and the linear relation of another
pair of sets.

VIL 2. Direct proportion of single sets.—(i) If a
quantity Z is a linear function of m X’s, which we will call
XY X2, .. A", it is of the form

Z =X 45, X2 4 oo+ X = 1, X, (1)
This is the simplest form of statement of a linear relation.
Suppose, for instance, that Z is the 3rd difference of the
X’s, formed in the usual way, i.e.

Z=AAAXY,
This is equivalent to Z= X*—3 X°+ 38 X2— X!, so that

hh=~1, 7/2=3, ﬁ3=—3, /14=1, /l5=ﬁ6=,,,=/zm= 0.
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The Z#’s havmg these values, the X’s may alter, but (l) will
always give the 3rd difference.

(ii) Now suppose that there is another set 4, and that
C is the same function of the 4’s that Z is of the X’s;
e. g., as in the above example, that it is the 3rd difference.
Then the Z’s are the same, so that

C=nrd\ (2
We can write (1) in the form
7/X* =y,

on the understanding that a suffix in a denominator is linked
with a similar suffix on the other side and implies an inner
multiplication. Similarly we can write (2) as

C/4 =k,
Equating the two values of Z,, we have
c 7
AR @)

as our way of stating that C is the same linear function
of the A’s that Z is of the X’s.

(iii) Next suppose that a set ¥ * is a linear function of
the set X*, so that each of the ¥’s is a linear function of
the X’s. Then we can take Z of (1) to be each of the
Y’s in turn : but the sets of 2’s will be different, so that the
relation will be of the form

Y L, =d,, XH,
If there is also a set B 5> each element of which is the same

* The set might be called either ¥” or ¥,; we choose the latter
zlt.(s) giving a convement symbol d,,, for the coefficient of X* (see V.
(@)
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linear function of the 4’s that the corresponding element
of ¥ ,is of X ’s, then

B p =d /‘PA# )
the two sets of @’s being the same. We therefore have *
. _—]i& _ Yp
A~ X*

as a statement of the fact that the 5’s have the same linear
relations to the 4’s that the 1’s have to the X’s. This would
be .the case, for instance, if the Y’s were the successive
differences of the X’s, and the B’s were those of the A’s
according to the same system.

In view of the variety of ways in which we are able to
deal with sets according to algebraical laws, it is perhaps
permissible to describe this as a case of direct proportion,
and to say that B, bears the same ratio to 4 that ¥,
bears to X*. This ‘ratio’, here denoted by @, is really
the operator that is required to convert 4* into B, or X'*
into YP.

(iv) If the linear relation of the B’s to the 4’s is the
same as that of the ¥’s to the X’s, then that of the 4’s
to the B’s is the same as that of the X’s to the ¥’s
(or, if the ratio of Bp to A" is the same as that of ¥ , to
X*, then the ratio of 4" to B, is the same as that of
XF to I); le

B Y 4 X*
—p_° =, VII.2.1
If ¢ xR then 'Bp YP ( )

[Let ])’P = LZM, 4", Then 4" = d** BP. Similarly X* = d*? l'P.
Therefore 4“/B, = X*/V ]
* This expression B,/A* must not be confused with B,/4* as

the double set whose typical element is B,/A49. The limitation in
V. 5 (vi) excludes double sets of this kind from consideration.
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(v) The above sets of relations can be expressed by the
diagram in Fig. 1. The crosses

may be taken as representing | i [ i i
either coefficients of the X’s ,ia x|k & .-

in the values of the Y’s and | A? | X* X xe--e--
of the 4’s in the values of the |A' | X' [x  x  x-----]
B's; or—in virtue of (VIL Y, Y, Yj-----f
2. 1)—coeflicients of the Y’s B, B, B;----

in the values of the X’s and
of the B’s in the values of
the 4’s.

(vi) Ratios of the kind considered above can be com-
bined according to the laws of ordinary algebra; e.g.

B, CC_C B _C
A" B, T B AP T 4P

The expression on the left-hand side is, of course, an inner
product. A special ratio is

A"
[_ﬁzlv-_-”;:m. (VIL 2. 3)

Example. 1f B,/A* = Y,/X¥, prove that B,/4¥. XV/Y,= I‘;

Fic. 1.

(VIL 2. 2)

VII 3. Reciprocal proportion of single sets.—
(i) The other important class of cases is that in which the
linear relation (or ratio) of B, to 4* is the reciprocal of that
of ¥, to A%, i.e. in which, B, and 4* being altered to
B and A,

Y, =%, X B =#"4,.
This gives

XF — yp,
so that
B XH
4, - Yp ‘

We can call this a case of reciprocal proportion.
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(ii) If the ratio of BP to 4, is the reciprocal of that of
Y, to X*, then the ratio of Y , to X* is the reciprocal
of that of B” to 4,; i.e.

BP  X* Y
—_ =Z2_, then _r VII. 3. 1
If =7 B = i ( )
[Let B’ =#*4,. Then 4, =k, B". Similarly
Y, =k, X" Thelef'ore 4,/ =7 /X“]
: E 1 (i) The sets of relations
N ! Ri can be expressed by a diagram
Lop4ox X180 g6 in Fig. 2, where the crosses
:’ X X A | represent coefficients of the I’s
L L TR | in the X’s and of the A’s in
X X X' the B’s, or of the X’s in
< & g the I’s and of the B’s in
Fig. 2. the A’s.

(iv) The inner produets of the reciprocally corresponding
sets are equal; i.e.

1 A en BY =4 X
A——y:y‘—; bl t en P= u . (VII.3. 2)

[Let B =4#*%4,. Then X*=/4*Y ; and therefore
Y,=#k,X*  Hence B'Y, = WAk, X = kPk,, 4, X
=|b4,X =4,3"]

(v) An interesting case is that in which the Y’s are the successive
differences of the X's. It will be found that in this case the B’s
are linear functions of successive sums, and therefore of successive
moments, of the 4’s. In the ordinary system, for instance, which
is such as to give V=X, ¥, =20X'=X>— X!, Y, =00X'=
X-2X2+ X1, we ha.ve X'=Y, X*=Y+Y, X°=
Y, +2Y,+Y,...; and these give B'= —34,, B*= + 33 4,,
B®= — 333 4,,..., the constants in the sums being chosen so
that £4,,,,=0,224,,,,=0,2224,,,,=0,..
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VII 4. Cogredience and contragredience.—(i) In
§§ 2 and 3 we have not assumed the existence of any relation
between 4™ and X* or between B, and ¥,. Where a relation
does exist, the important cases are those of cogredience and con-
tragredience. We start with a set X*, and a set 4* which
is derived in a definite way from X*, in other words is
a function of X*. We then take ¥, to be any linear func-
tion of X*, and B, to be derived from Y, in the same way
that 4" is derived from X*. Then B, is some function of
A, Of the cases in which this is a linear function, we are
concerned with two special classes :—

(1) If B,/4* is always = ¥,/X*, then 4" and X" ave
said to be cogredient.
(2) If B,/4* is always = X*/Y,, then 4" and X*
are said to be contragredient.
Examples of cogredience are given in IX. 6 (x), and of
contragredience in VIII. 3 (iv) and IX. 4 (v).

(ii) Instead of saying that «£*and X are cogredient or
contragredient, we might say that 4* in the one case varies
directly as X* and in the other case varies reciprocally as X™.
When we say that 4* varies directly as X, we mean that,
if X* is multiplied by any double set involving A, 4 is
multiplied by the same set: when we say that 4* varies
reciprocally as X*, we mean that, if X* is multiplied by any
double set involving A, 4™ is multiplied by the reciprocal of
this set. )

(i) 16 4" and X aro § _CoBreclent L, und 2* and 4

contragredient
cogredient

. hen P* and X* ient ;
contragredient }, then and X" are cogredient ;

are also {

if A* and X* are { cogredlet}t }, but P* and 4™ are
contragredient

{contragredlent}’ then P* and X" are contragredient.

cogredient
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[Suppose, for instance, that 4* and X* are contragredient,
and P* and 4" are also contragredient. Then we have
relations of the form
B,/4" = X¥/Y , Q,/PK= 4*/B,,
whence, by (VII. 3. ),
Q,/Pt =1, /X¥
so that P* and X are cogredient. ]

VII. 5. Contragredience with linear relation.—
(i) The simplest case of contragredience is that in which
the contragredient sets are connected by a linear relation.

(@) Suppose that, with the notation of § 3, the relation
between A, and X* is

A# = d}wa.

Then, if @ denotes the inner product (cross-product) in
(VIL 3. 2),
Q=4,X =a, XY = a X1X" + (a),+a,) X' A2

+ 20, X2 X2 + (a4 a5)) X1 X3+ 4 a,,, AKX
Thus @ is a quadratic in X', X% X3 ... A™ i.e. in X*. Also,
since each of the four sets X¥, ¥, A ,, B¥ isalinear function
of each of the others, @ can be expressed in a good many

other ways, e. g. as a quadratic in B*, or in the form £*4, ¥,
or ' 4,4,

(%) If the relation between 4, and X* is symmetrical,
le. if Byp= @, it can be shown that we shall, in addition
to (VIL. 3. 1), have the farther relations

gy B ¥, X
Y, X 4, B

(i1) Conversely, suppose that we are dealing with a set
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of quantities or coordinates A*=(X!X%..,X™), and that
we come across an expression

Q= aw,X" X,
where «,, =a,. Then we may construct a new set
given by

X# = ale"
and we shall have
Q= X“X#.

Now suppose we change the system of coordinates lin-
early or replace the X’s by some linear functions of
them. The «’s will normally have some definite meaning ;
and this meaning, though not their actual values, will
remain unchanged when the X’s are changed. Suppose
that, when X* becomes 7, X,—as based on this meaning
of the a’s—becomes Y¥. Then we shall have
YY" =X'X
and also g -

Y. _4&X,_ @

X=r=re fe

VII. 6. Ratios of sets generally.—(i) The word ratio
has so far only been used in reference to single sets con-
nected by a linear relation; if the relation between ¥, and X*
is of the form ¥,=d,, X*, we call 4, the ratio of ¥, to X#,
and we call o the reciprocal of this ratio. We can
extend the use of the word to sets other than single sets.

(i) We have already had examples of a ratio which
involves a scalar. Thus in § 2 we had relations Z= 4, X*,
C=#h, 4*, and we said that

c _ P Z
==
Here we can quite well call £, the ratio of C to A" orof Zto X0

2611 L
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i.e. it is the ratio of a scalar to a single set. Similarlyin § 5 (ii)
the statement
Y, Q

M Y
XX

may be regarded as a statement that the ratio of @ to X" ¥

is equal to that of ¥, to X”. In each case the ratio of one

set to another is the set by which the latter has to be multi-

plied in order to obtain the former.

(iii) The more important case is that of the ratio of
a variable set of any rank to another variable set of the
same rank. If Qd is a variable set of any rank, and W3
is a set which is a function of & and is of the same rank,
and if the relation between )3 and { is of the form

B=pd,
where P is a constant set whose symbol contains all the

suffixes occurring in @ and 2B, then we can call p t}_le ratio
of B to 4, and denote this ratio by 1B/4.

(iv) In these cases we can continue to speak of the
relation of B to & as linear. Also, by solving the equa-
tions, we find that there is a relation of the form

d= p’?-B,
so that, if )B is a linear function of &, then @ is a linear
function of )3. Here, p being the ratio of 1B to 4, p’ is
the ratio of & to )B, and we can call each ratio the reci-
procal of the other.

(v) As an example, suppose that & and 2B are of rank 3,
and that p is the product of three double sets, each of which
has inner multiplication with 4. Then the relation might
be of the form

'B;o' = a)\pblwc""zly‘.



VIL 7 Ratios of sets generally 83

It is easy to show that in this case

AF = advie Bl,.
Thus the reciprocal of the product of the three double sets
is the product of their reciprocals.

VIL 7. Related sets of higher rank.—With the
preceding explanation, there is no difficulty in extending
the ideas of equality of ratios, and of related systems of
sets, to sets of higher rank.

Suppose, for instance, that we have a set 4 which is
a function of three single sets, and a set )® which is a
function of three other single sets. If the three latter sets
were functions of the three former, 23 would be a function
of A. The cases analogous to those considered in § 4
would be the cases in which there were linear relations
between corresponding sets. Suppose that X, Y,,Z, are
linear functions of U, 7%, W™ respectively, e.g.

XP = “APUA’ Y, =10,V Z . =c, W,
that & is a certain function (in the most general sense)
of U, VM I/, and that )B is the same function of
X,, I, Z,. Then 2B is some function of . If we sup-
pose that, when the values of a,,,0,,¢c,, are made to
vary, 1B is always a linear function of {, and the ratio of
B to 4 is always compounded of the ratios of X, to U", of
Y, to 7", and of Z, to W™, each taken directly or recipro-
cally, we get an extension of the cases considered in § 4.
Thus we might have
so that B = aAPbMCWAtﬂ’

I

Y A/ [

each of these latter expressions representing a set of rank 6,
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In this particular case we can say that 43* is cogredient
as regards U and 7* and contragredient as regards #”; or
we can say that it varies directly as regards U™ and 7* and
reciprocally as regards W, or that it is directly proportional
to U* and 7* and recinrocally nronortional to W”.



VIII. DIFFERENTIAL RELATIONS OF SETS

VIIL 1. Derivative of a set.—We have now to con-
sider the cases in which two sets vary together continuously,
so that there can be a derivative (differential coefficient) of
one with regard to the other, this latter being a single set.
The derivative will in all cases be a partial one, since the
elements of the single set vary independently.

(1) The simplest case is that of a scalar linear function
=X =hX +h,X2+... +h, X",

Here
27
oXp T F
Giving p all values 1 to m, we can write this
37 - Z
wxr T Ty

and we can regard %, as the derivative of the set 7 (which
is of rank 0) with regard to the set X*.

(i) Similarly, if
¥, =d,X",
then *
S/ S )
dX* wp T YR
* It should, however, be noticed that in this statement the sign
‘= has not the same meaning in the two places in which it is
used. When we say that 0Y,/0X* =d,,, we mean that Y,/ dX1=

dgy for all values of ¢ and »: but, when we say that ¥,/X* = d,,
we mean that Y, =.d,, X# for all values of r.
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(iii) A particular case of (ii) is where ¥, =X". Here
dX"[foX%is =1 or 0 according as r is = ¢ or F ¢, since the
X’s vary independently. Hence (see (VII. 2. 3))

AXP XP D. I, (o

(iv) Taking also sets of higher rank, and not limiting
ourselves to linear functions, we see that the derivative of
a set with regard to a single set X is a set of rank higher
by 1 than that of the original set.

VIII. 2. Derivative of sum or product.—(i) The
derivatives of sums and products of sets follow the ordinary
laws of derivatives of sums and products; e.g.

2(B+E) _ 3B |, o€

= + —, VIII. 2.1
4™ 4" 34 ( )
I(BL) B 20T
==—C+B—=. VIII. 2.2
d.AN dA* X4 ( )

(i1) As a particular case of this last result, take the scalar
quadratic form
Q= aFVX"X"
considered in VII. 5. Here, taking (VIII. 1. 1) into
account, we have

2Q XY .

517 = Gk e, X e =0, X +a, X = 20, X",
This can be verified by expressing @ in terms of the X’s and
finding the partial derivative with regard to X? in the
usual way.

(iii) For an application of this, suppose that
a, XX =0, X*X”
for all values of the X’s, By taking adjoining values of
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X, we get the 1esulb which is expressed by dlﬁ’erentlatlon

namely wX =26, X",
Differentiating again, or equatmg coefficients, we find that
@, = 7)#,,

VIIL 3. Derivative of function of a set.—(i) If 2

is a function of y, and y is a function of #, then we know
that
dzdy _dz
dy dz = dz’
and, total and partial differential coefficients being in this
case identical,
923y _ 34
dy Y
(i) Now suppose that B, is a function of 4", and C* is
a function of B,. Then, p and  being values of A and p
respectively, we know that

T _3CTIB, | 3CTIB, S CT 3B, _ "B,
A T 3B, 04» T 3B, 04” 3B, 4"~ 3B
Hence, giving p and 7 all their values,
20P _ACPIB,

a3t 9B, o4
The argument applies to sets of higher rank. If, e.g.,

we are dealing with CF?:*:, where the o... relates to
aspects independent of B, then

A0 _ YCPT IR

(VIIL 3.1)

= £, VIII. 3. 2
o4 OB, 4t ( )
(iii) As a particular case (see (VIIL 1. 1)),
P 3 BH P
30" B8 _ 30 =|°. (VIIL 3. 8)

dBHACT T AC°
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(iv) Suppose that the relation between B, and 4" is
linear, say
_ P N

B, =p,4% 4 =p*B,.
Then, replacing C" or C* by €, we have

3C 2 AU _C

0B, 24 B, st
Hence

b@ Nﬂ: AR 4N
Thus 4* and dC/d 4" are contragredient. We can express
this by saying that 4™ and the operator 3/3 4" are contra-

gredient.

(v) The determinant of 3B, /bA" is the Jacobian of B,
with regard to 4*; i.e.
2By, Byvoo Bu) _ |25,
S(d', 4*,...A™ ~ | 544
From (VIIL 3. 1), taken with (V. 10. 5), we have the
ordinary formula for the product of two Jacobians:
28, 00" 3B, 0 ACT
9d1| " |3B, T |2413B, d44

. (VIIL 3. 4)

. (VIIL 3.5)

VIII 4. Transformation of quadratic form to sum
of squares.—(i) For an example of a Jacobian, take the
case in which a quadratic form is to be expressed as the sum
of the squares of linear functions of the variables. Let the
quadratic form be

= aMpX“X”, (1)
where
a, =a,,,.
Let “P i
Ya = Z’,.WXF . (2)
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be a set of linear functions of the X’s, so that
Xt =1077,. (3)
Suppose that the &’s are chosen so that (1) gives
Q=YlYl+Y2Y2+"'+YmYm=YoYa' (4)
Then, by substitution from (2), '
Q=10,,X".6,X =¢,0, X\XP.

uo”’po

Hence, by comparison w1th (1) (see § 2 (iii)),
=0 (5)

uo”po*
The Jacobian which we should usually want to find is
that of X* with regard to ¥, i.e.

7= oA X2,, X™m) |BX‘1 .
_b(l/l’}Z""'Ym)— BY
By (3),
dXH o
Ma.
and therefore
J =82, (6)

But (5) gives
P = P,

and therefore
Jatr | = | 07| = |27 | x| 7 | = .
Hence, combining this with (6),

J =097 | = {|at"|}E=1/{]ag |} (7)
Similarly the Jacobian of ¥ with regard to X* is
,_ (Y, Y,,...T,) 1 1
J '—3()5 Ag“’”jm) = lbquz {laqr”z
=1/{]at"|}5. (8)
There are a good many different ways of expressing @ as

in (4), but they all give the same two Jacobians.
2611 M
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(i1) Hence we easily obtain the value of the multiple integral

DE'[ J ...re’de‘dX’...de. 9

m "o
Using (f) to denote Jm J ...(m times), we have
. -0 J -

m
D= (D 10 JaY,dY,...dY,,

o
= r e-*Yl”ldY,...f et inln gy,
-0 )

= {|av |}4@m)im. (10)
(iii) We shall require, in the next chapter, the value of
N/D,
where
m 20 _
NE(D D O Waxtaxe.. axm (11)

and D is as above. We find the value of N, as we have found that
of D, by expressing everything in terms of ¥'s. By (2) and (4),
and (VIIL 3. 1) and § 2 (ii),
20 _2¥, 29
X J3XrdY,
and therefore, by (3),

3¢
%Xq’a;?{r = 0", Y, Y,

=2byr Y73

m
N =15, (D Y, Y, et 0axaxe.. .axm

m
=Jbp,, (D Y, Y, 0ar,dy,...dY,. (12
Let us write
m
MtEqua(J) YUY,e‘*Qlede---dlﬁm 13y

8o that
N=10b.,.M,. (14)
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Then M, consists of m terms due to the m values of o. Since Q is
the sum of the squares of the Y’s, the only term which counts in
the integration is that for which o = ¢ Also we know that

[ve) 00
J Ytne'iY‘Y‘dYt=J Hrtigy,

—® -

Hence it follows that
m
M, = Tt (D 10qy,qY,...d¥,,

=b2D;
and therefore, by (14),
N/D = by, bar
=|%. (15)



IX. EXAMPLES FROM THE THEORY
OF STATISTICS *

IX. 1. Preliminary.—(i) The special feature of a statis-

tical set )
X, = (X, X, X, .. X,),

of the kind which we have to consider in this chapter, is
that each X has one only of a very large number of actual
or possible values, which together constitute the field from
which the X is drawn; and the fundamental facts with
which we are concerned are the relative frequencies of
occurrence of the various possible combinations formed by
taking an X from each of the m fields. Thus the X’s are
variables, and the expression for the relative frequency of
joint occurrence of a particular set (X, X,...X,,) involves
the X’s of the set, with certain constants. In a large class
of cases the constants depend on the mean values of the X’s
and the mean squares and products of their deviations
from their respective means. It is to these cases that the
new notation is specially applicable. It may be that some
of the X’s are drawn from the same field ; we shall proceed
as if the fields were all different, but this does not affect
the validity of the reasoning.

(ii) We shall only consider two kinds of cases.

(2) The first kind of case is where our statistical
information relates to a large number of individuals, and
X, X, X,... are the measures of specified attributes, such
as height, head-length, chest-expansion, intelligence, etc.,

* T have dealt with the problems of this chapter in as general
terms as possible. The explanations in small print may help to

show the statistical student the way in which the problems
actually arise.
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of any individual. Here the ¢variability’ of any X has
reference to the different values that it takes for different
individuals. The frequency of joint occurrence of particu-
lar values of X} X; X;... may be a complicated function of
these values and of certain constants which are to be
determined.

() The other kind of case is that in which the ques-
tion is one of ‘ graduation’ or ‘ fitting’. Here X, X, X, ...
are observed values of different quantities (e.g. rates of
mortality at successive ages), or are the results of observa-
tion of one quantity at different times or by different
observers. The ‘variability’ of any particular X lies in the
fact that the observed value contains an unknown error;
and our treatment is based on the assumption that a rela-
tion of a particular kind holds between the true X’s.

In cases of this latter kind it should be noticed that
the only things which we treat as variables are the errors
in the X’s. We may take, as the typical case, the observed
rates of mortality X X, X ... at ages f;/,7,... If we
denote the true rates by & ¢, ¢;..., then the assumption
which we make is really an assumption that ¢ is a certain
funetion, with constants to be determined, of £. So far as
this function is concerned, ¢ and ¢ might be called variables.
But, for our purpose, they are not variables. We are con-
cerned with the fixed values 4, 4,7,... and the corresponding
fixed, though unknown, values & £, ¢,...; the real variables
are the differences between the observed values X, X, X...
and the true values & £, &,....

(iii) There are two reasons why the same mathematical methods
apply to subjects so different as relativity and statistical theory.
One is that the number of X's in a statistical set may be verylarge :
in the second kind of case mentioned in (ii) it may be as many as
20 or 30. The need of a condensed notation is therefore even
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greater than for relativity, where the number of dimensions does
not exceed 4. The other reason is that, asin the relativity theory,
we are, to a certain extent in the first kind of case, and very
largely in the second kind of case, concerned with sets constructed
from the original sets by means of linear relations.

(iv) We denote the mean product of the deviations of
X, and X, by (X,.X)), or, more briefly, by 7, ; i.e.
JSqr = (X;.X;) = mean value of
(X;—mean X ) (X, —mean X,).
It must be clearly understood that, though (X,.X,)
depends on ¢ and 7, it relates to the complete fields
from which X, and X, are drawn, and, for any par-
ticular values of ¢ and 7, is not a variable, like X q and X,
but a constant.

(v) Although we have defined (X;.X,) as a mean value,
our dealings with it ultimately depend on the algebraical
laws which it follows. These are, first that it satisfies the
ordinary laws of multiplication of two expressions X, and
X,, i.e. that, ¢ being a constant as regards the X’s,

(Xq . X'r) = (Xr . Xq)’ (Xq . (Xr + Xs)) = (Xq . ‘Yr) + (Xq . Xs),
(Xq.ch) = c(Xq.X,.); (IX.1.1)
and next that, if » is any linear function of the X’s, then
(w.u) is positive unless » = 0, i.e. that
(w.u)>0 if u =£ 0, (IX.1.2)
It is clear that (v.x) = 0 if u=0; for (IX. 1. 1) gives, by
putting ¢ =0,
(X,.0)=0, (IX.1.3)
whence (2.0) =0 follows by means of (IX. 1. 1) (cf. (vi)
below). These are the only properties we shall use; and

our results will therefore be true for any meaning of
(X, . X,) that satisfies these laws, provided, of course, that
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(X;-X,) is a constant as regards all the X's. And, con-
versely, we shall only be dealing with sets for which
(X4-X;) has a meaning and a value for each value of ¢ with
each value of 7, and satisfies these laws. It will be assumed
that the values of (X, .X,) are known ; or, at any rate, that
our results are final when expressed in terms of these
values. Whether we are dealing with mean squares or
mean products or not, we can call (X,.X,) the (. ) of X,
and X,.

In the first kind of case mentioned in (ii) (X, . X;) would usually
be the mean square of deviation of X from its mean, i.e. would
be the square of the standard deviation; and (X, .X,) would be
the mean product of deviations of X, and X, from their respective
means, and would therefore, in the case of normal correlation, be
equal to the product of the standard deviations of X, and X,
multiplied by their coefficient of correlation. In the second kind
of case (X,. X,) is the mean square of error of X, and (X, . X,)is
the mean product of errors of X, and X,.

(vi) It follows from (IX. 1, 1) that
(@,X,.X)=a,X,.X), (,X,.6X)=0a,,(X,.X).
' (IX.1.4)
(vii) If X, is a set of the kind considered in this section,

then so also is any other set which is a linear function
of X,. Suppose, for instance, that

Y# = (M,
Then, by (IX. 1. 4),
(Y1. ¥ = (1 X,.0" X,) = P107(X, . X,),
which has a definite meaning for each value of ¢ with each
value of , and can be shown to satisfy the laws stated in (v).

(viil) Our results are also subject to the condition that
none of the determinants of the double sets we have to
deal with are 0; i.e. that [ (X, . X,)| # 0, whether the range
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of values of ¢ and 7 is the whole of the range 1 to m or
a part of it only.

IX. 2. Mean-product set.—(i) The quantities (X, . X,)
constitute a symmetrical double set

S =l = (5] (£,.5) (X.X).. (X, X,)

(Xl:X2) (XZ:XZ) (XZ:X3)'"(X2:Xm) . (IX. Z.A)

(Xl : Xm) (X2 ."Xﬂl) (X3: Xm) e (XWL : ‘Ym)
We call this the mean-product set.

(ii) Corresponding to this there is a reciprocal set
# =fP given by
A = A — F£PA — £PA A

() If (X,.X,)=0, we can for the purpose of this
chapter deseribe X, and X, as stafistically independent.
Strictly speaking, this is a loose description, since the
complete statistical independence of two variables X, and
X, would imply a good deal more than that the mean
product of their deviations from their respective means
should be 0. But we are only concerned, here, with mean
squares and mean products.

(iv) The simplest class of cases—from the point of view
of algebraical treatment—consists of those cases in which
the X’s are statistically independent of one another and the
mean square of deviation of each Xis 1. We can express
this by duplicating the set, thus:

X, X, X,.4,
X, X, X,..%,

n

and saying that the (.) of corresponding elements of the
two sets is 1, and that the (.) of elements which do not
correspond is 0.
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For a set of this kind we have
f=X,. X) =14,
so that the mean-product set is the unit set. It follows
that in this class of cases the mean-product set and its
reciprocal set are identical.

(v) The next kind of case, in point of simplicity, is that in
which the X’s are statistically independent of one another but the
mean squares of deviation are not all 1. This would be the case,
for instance, if the X's were independent observations, not all of
the same weight, of a single quantity. For practical purposes
a case of this kind can be brought under (iv) by expressing each

X in terms of its standard deviation (square root of mean square of
deviation) as the unit,

(vi) There is also an important class of cases in which the X's
fall into two groups, such that each X in one group is statistically
independent of each X in the other group. If, asin VL 11 (i), we
denote the two groups by 4, and 4, then the property is that

(Aa . A‘I)) == 0.

IX. 3. Conjugate sets.—(i) When a set X, is not of
the simple kind deseribed in § 2 (iv), we shall find it useful
to introduce another set X* which (1) is a linear function of
A, and (2) is such that, if we place the sets opposite one
another, thus:

A, 4, AL,

DI, CIND LR
the (.) of corresponding elements of the two sets is 1, and
that of elements which do not correspond is 0. This new
set X* is said to be conjugate to X,.

(if) The second of the above conditions can be written
(Ar. Xy = [ (IX. 3.1)
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or
A VY 1A
(X X)) = (IX. 3. 2)

(iii) Each element X7 of the new set will contain
terms, with = coefficients which have to be determined
from the 2 equatiohs given by

7 Y 1P

(Ap . Au) - l ne
There are altogether #® equations to determine \*. By
regrouping these according to the values of u in (A*. X o

we see that if X is conjugate to X, then X, is conjugate to
X*. This is in fact evident from the symmetry of (IX. 3. 2).

(iv) To express X* in terms of X,, or X, in terms of Y%,
let us first take # to be any linear function of X,, say
V=ad2x, (1)
Then we want to find an expression for a”.
As we know the value of (X*. X ), we take the ( . ) of
W and X, By (IX. 1. 4) and (IX. 3. 2) we find that
(W.XY) = ("X, . 1) = a*(X,. XY = o]}, = o,
whence
a = (W .X¥).
Substituting in (1),

W=(W.X"X,. (IX. 3. 8)
Taking # to be each element of X* in turn, we have
X=X XX, (IX.3.4)

We do not yet know the values of (X .X¥). But,if we had
started with 7 as a linear function of X*, we should simi-
larly have got

W=(.X)X, (IX. 8. 5)
whence

X, = (X,. X,) X~ (IX. 3. 8)
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Writing this in the form

X, = £, A%, (IX.8.7)
we have, by reciprocation,
A =M, (IX.3.8)

which gives A* in terms of X,. Further, comparing
(IX. 3. 8) with (IX. 3. 4), we see that

If (X,.X) =4, then (A" X¥)=F"; (IX.8.9)
and, of course, the converse also holds. This result is
dependent on the assumption, made in § 1 (viii), that

| fgr | is mot 0.

(v) We could have obtained (IX. 3. 4) and (IX. 3. 6) in
fewer steps by considering the set as a whole instead of
element by element. If we assume

=X,
then we get g
(A X)) = (a"“X# A = a“‘lz =aV,
so that
™ = (X AH).
This gives (IX. 3. 4); and (IX. 3. 6) can be obtained in
the same way.

(vi) We can write (IX. 3. 3) in the form

W/X, = (W.2%); (IX. 3.10)
and similarly from (IX. 3. 5)
W/XE = (W X,). (IX. 3.11)

(vii) If the set A, is of the special kind considered in
§ 2 (iv), i.e. is such that
(A’)\ ¢ X,u) = I,l):’

I=X. ) =Ax =2

then
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so that the set is identical with its conjugate. The set is
said to be self-conjugate.

(viii) In a case of the kind mentioned in § 2 (v), where fp, = 0
if ¢ #p, but fj, is not necessarily =1, it may be shown that
JPP = 1/fyp, and fP4 = 0 if ¢ # p, s0 that XP = X /f,,,.

(ix) Next consider a case of the kind mentioned in § 2 (vi),
where X, consists of two portions, the elements in each portion
being independent of those in the other portion. As before, we
take one portion to consist of the first £ elements, and the other of
the remaining m—k, and we denote the two portions by X, and
X,. Then the special property is that

faq) =(Xg- X¢) =0, (1)
whence, as in VI. 11 (iii), it follows that
¢ =0 2)

Breaking up the right-hand side of (IX. 3. 7) into two portions, we
get, according as A belongs to the first or to the second portion,
the two separate results

Xo=Jay X7, Xy = fyy X¥. (3)
Similarly, from (IX. 3. 8),
X(l =fa‘y‘ v X‘P =f4)¢X¢. (4)

In finding F%7 and S from f aps 1t 18 (see VI 11 (iii)) immaterial
whether we take the set /), as a whole or the sets f,., and f,
separately, so that (4) may equally well be written (see VI. 11 (ii))

X = (f N Xy X =[] Xy (5)

IX. 4. Conjugate sets with linear relations.—
(1) Let ¥, be any set which is a linear function of X, and
therefore of X*; and let ¥* be its conjugate set. Then,
taking # in (IX. 3. 10) to be each element of ¥, in turn,
we have

Y /X, =(¥,.X"). (IX.4.1)

Similarly
Y,/X = (7,.X,), Y7/X,=(¥.X, P/X=(P.X,)
(IX. 4. 2)
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(i) By combining ratios, we get such results as
(8,.X)=E,/X,=E,/Y,. Y /X, =(E,. Y)(Y, X).

(IX. 4.38)
(iii) To find ¥?, suppose that
YP=])P#XF' (1)
Let the conjugate set be
¥ =k  X*,
Then P
lg = (YP' 'Ya) = (kp,uX“‘ blIVXV) = lﬁkp/.tbav = 'ép,ubo'y;
whence, by reciprocation,
fou = O7H| 5 = 0P,
Thus the conjugate set is
¥P = P XH, (2)

(iv) Similarly, if )
Y. = bivcypddem
Y€ =b"cPar X,
ete.; in other words, the conjugate of an inner product is the

reap rocals} of the factors. [Let us write
conjugate

ce=pncPa XA

then

inner product of the {

Then
(CE.Y,) = bbg, e, d Py (XM X)
=€
since (X X,) =|3. Hence I5
Ce=Y",
We might, alternatively, have deduced this fram (iii) by means of
(VI. 10. 2).]

(v) From (IX. 4. 1)
Y./X,=(¥,.X*)= (X*. 1)) = X*/T?;
and therefore, by VII. 3 (iv),
Y, Y= X" (IX. 4. 4)
Thus conjugate sets are contragredient (VII. 4); and the
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inner product of a set and its conjugate is the same for
all linearly related sets, If we denote this inner product
by @, then the sets X, X*, ¥, I* are connected by four
relations of the form

Ml o, Ty = x4

We can express ¢ in such forms as
Q=X X'=(X.X) X=X XXX,

the last of which, when written out in full, is

o0 SETY0 S LS ATV S SUNEYLLD db o
or in more general forms such as ,

Q= (C".D¢ D,

where C, and D), are any linear functions of X,. It must
be remembered that the invariability of @ only applies for
the particalar values X, X,, ... X,,. If there were a dif-
ferent set of X’s there would (in general) be a different Q.

IX. 5. The frequency-quadratic.—(i) In most of the
cases we are considering, whether of the first or of the second
kind mentioned in § 1 (ii), the frequency of joint occur-
rence of values lying within limits

X+ 34X, X, +34X,...X, +4dX,
is proportional to
e tPdX,dX,...dX,,,
where, if @, %, . . . @, are the deviations of X}, X, ... X},
from their respective means, P is of the form
P=ale + 2480 2,4 a¥0,0, 4+ 2030 2, + 0 + 0", 2, (1)

In our notation this becomes

P=d%na,; (2)
where

oM = o, , (3)
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(i) Let us write

B = e, = dMe +d eyt 4 d "y,
= 3P/ da,. (4)
Then it can be shown (see VIII. 4 (iii)) that

1 if qg=p
0if g p} : )
Taking (B .C ) to mean, for these cases, the mean product
of B, and C » 1t follows from (5) that E is conjugate to
z,, i. e.

mean value of El’wq = {

B =, (6)
Hence, by (4),
A

— oM
¥ =a" g,

and therefore, by (IX. 3. 10), or by comparison with
(IX. 3.4),
= w"/x# = (2. 2"). (7)

(iii) Thus the &’s in the expression for P given in (1)
are the mean squares and mean products of the elements of
the conjugate set. Similarly, if we expressed P in terms
of the conjugate set, the coefficients would be the mean
squares and mean products of the elements of the original
set; l.e
=d¥ a8, = 5o = o\ 2 0" } (®)
= a, 82 + 20,21 2% + a,,2°2% + 24,0720 + ..+ a,,,, 2™

here

ay, = (4. 2,). (9)

(iv) Take, for example, the case of two quantities X;, X,, whose
standard deviations and coefficient of correlation are ¢;, ¢;, and »
Then it is well known that

zx rex, I
P= (_1,1 —oTTT _2__2)/(1_,.,.)_
€16 €16y C2Cy
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This gives, for the members of the conjugate set,
x,  rEy 1 re, | &, 1
2= (G %) a0 )

It is easily verified that the mean square of z' is equal to the
coefficient of x,«, in P, and so on.

(v) If we expregs the 2’s linearly in terms of a new set
7 the value of P will remain unaltered. We can put this
differently as follows. Suppose that 7, is any linear func-
tion of @,. Let Z,,=(#,.7,); and let 2 be the reciprocal
of #,,. Then, if we write
Y=y,
we shall have

7y =P =2z,

(vi) The (#4.#,) or (z,.,) which we have so far been
considering is the mean square of ,, or the mean product
of z, and «,, without regard to the values that each of the
other #’s may have ; i.e. the mean square or mean product
taken for all possible values of these other 2’s according to
their relative frequencies. We may also want to know
what happens when some of the #’s have definite values
ascribed to them and are not allowed to vary from these
values. Inthese cases we follow the principle of VI. 11 (ii).
Suppose that all the 2’s after o, are fixed. Let the s up
to @, be denoted by z, or #g ete. Then our methods apply
to the set of order # formed by these #’s. The principle,
therefore, is as follows. Suppose we want to study the
variation of the % quantities #, when the m—£ quantities
z, are fixed. We first construct the mean-product set /',
(=a,,) for the m quantities #, and 2, ; then construct the
reciprocal set f#7 (=a'f), the elements of which are the
coefficients in the terms in P ; then take out the partial set
S corresponding to z,; and then find the set (£,); which
is the reciprocal of /7. The result is the mean-product
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set of @, when z, is fixed. (This is a well-known theorem,
but is usually expressed in terms of determinants.)

(vii) If the partial sets #, and «,, in (vi) are independent,
so that (z,.2,)=0, the elements of the mean-product set
outside the portions corresponding to (z,.,) and (z,.x,)
will all be 0, and (see § 3 (ix)) the values of (£,.); will be
the same whether we construct them from the whole set
or from the partial set. This is otherwise obvious ; for, if
the @’s of z, vary independently of those of z,, they vary
in the same way whether the latter are fixed or vary.

IX. 6. Criteria for improved values.—(i) Our next
problem, considered in this and the following section, is that
of reduction of error, in a case of the second kind mentioned
in § 1 (i1). We have a set of quantities

Dy=(Dy D, Dy..Dy)
which contain errors ; the mean products of error being
= (Dy. D). (IX.8.A)
The whole set /), consists of two portions
-Z)a = (Dl D;:“'j)k)s Dq» = (-Dkﬂ Dk+2""Dm)’
All the D’s are the results (direct or indirect) of observa-
tion ; but the true values of the 2, are negligible (within
the degree of accuracy to which we are working), and, if U
is any one of the J)’s, or any linear function of them, we
can add to it any linear function* of D, without altering,
except to a negligible extent, the true value which it repre-
sents. If the sum of U and an indeterminate linear func-
tion of D, is represented by U’, the problem of reduction of
error is to determine this linear function so as to make

* This is, of course, an incomplete statement. We could replace
U by any function of Uand Dy, which would be equal to U if the
D, were all 0. DBut we are only considering linear functions.

2611 0
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(U’.U’) & minimum. The resulting value of U’ is called
the improved value of U, and will be denoted by IU. The
elements of D, are called the auxiliaries. We can replace
aby B,y ... and ¢ by x, ¥, . . ., as occasion requires.

(ii) The way in which this problem arises is as follows. We
start with a set of observed quantities X;, X,, ... X,, which
correspond to a series of values of some other quantity ¢ at equal
or unequal intervals ; the Xs might, e.g., be rates of mortality at
different ages. The X's contain errors; and our fundamental
assumption, based on general experience and on inspection of the
particular data, is that the true values are so nearly of the form
(in ordinary notation) ¢, + ¢, ¢ + ¢, t* +. .. +¢;_, t*7! that their
differences (divided differences if the values of ¢ are at unequal
intervals) after the (X —1)th are negligible. We may therefore add
to each X any linear function of these differences, which are what
we are calling Dy.,,, Dj 4y, ... Dy,. The problem is to determine
the coefficients in this linear function so that the mean square of
error of the sum of the X and the linear function shall be
a minimum,

(iii) We have first to see what relations hold between
the two portions of 2, and the two portions of its con-
jugate set when similarly divided. Denoting the con-
jugate set, as usual, by D, let the two portions be

Df = (D' D..D%, D= (Dt Dk+z, Dm),
Here it is to be observed that D® is not (in general)
the set (order £) conjugate to the set D, (order £),
since each element of it is a linear function of the
whole 7, ; and similarly for 2. Now the condition of
conjugacy is

(or. l)q) = l{l}
But, if 2P and D, belong to non-corresponding portions
of the two sets, ¢ cannot be equal to ». Hence we get
the relations
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(0. Dg) =|5...(1), (D*.D,)=0...(2),
(D*.D)=0..3), (D*.D)=|%...(4).

(iv) First let U be an element of D, or a linear func-
tion of D, say a"’])q,. Then its improved value must be
U-U=0;i.e.

I(«*D,) = 0. (1X.8.1)
For this makes (U’. U’)=(0.0) = 0, by (IX. 1. 3) ; and, by
(IX. 1. 2),(U’.U’) would be >0 if U’ were not = 0. Hence
(U’.U’) is a minimum when U’ = 0.

(v) The next most simple case is that in which U is an
element of D° or a linear function of 17 say

U=a,D". (1)
Let the value of U’ be
U'=U+u,
where
u= a"’Dq). (2)

Then, by (IX. 1. 1),
(U.U)y=(U.U)+2(U.u)+(v.u).
But, by (1) and (2), and by (2) of (iii) above,
(U.n) = aaa¢(D°.D¢) =0,
Hence (U’.U’) is a minimum when (% . %) is a minimum ;
and this, by (IX. 1. 2), is when # = 0, so that
U'="U.
Hence the improved value is the same as the original value ;
1. e.
1 (e, D% = a, D" (IX. 8.2)

(vi) The simplicity of the results obtained in (iv) and (v)
suggests that we should in all cases regard U as expressed
in terms of 2% and J,. There is no difficulty about this,
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in theory, whatever linear function of the 2’s U may be.
If, for instance, U is given as a linear function of J,, then
we obtain our result by eliminating D, (4 values) between
this formula for U and the £ equations which give D% in
terms of J,, i.e. in terms of D, and D, Suppose then
that *
U=V+1,

where

V=10,0% W=1040D,.
Then U’ is formed from U by adding some linear func-
tion of D,, so that

U=V+Ww,
where 7 =10, 1" as before, and ¥ is of the form
W=D,
Hence
(U.0)y=WF.Fy+2(F.mwy+Ww’ . w).
But

(7. W)= (&aI)“.c"’D(p) = b e (D" D, =0,
by (2) of (iii). Hence
U.uy=r.ry+w .n.
But this is a minimum when ##” = 0. Hence
I, D*+4*D,) =6,D" (IX. 8. 3)
In other words, if we express U in terms of 2" and D¢,

the improved value of U is found by omitting the part
involving D,

(vii) Since, by (IX. 6. 3), LU is a linear {unction of 27,
and, by (2) of (iii), (2. D,) =0, it follows, by (IX. 1. 4),
that

(IU.D,) =o. (1X.6.4)
In other words, the (. ) of any improved value and each
of the auxiliaries is 0.
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(viii) It also follows from (IX. 6. 3) that if two quantities
differ by a linear function of the auxiliaries they have the
same improved value.

(ix) By taking U in (vi) to be each member, in turn,

of a set N
B, = b6,,D*+4& ‘PD(P,

IBA = 0,,D".

we find that

Also
I(#B,) = I(L"‘b,\af)“-i-k*b*‘/’l)q,) =6, V" = 1B, ;
(IX. 6. 5)
1. e. the improved value of any linear function of the B’s is
the same linear function of their improved values.

(x) Altering 4" in (IX. 6. 5) to 4}, and writing C, =
kﬁ B,, we find that

1c c
S IX.6.6
1B, — B, ( )

i.e. the improved values of two linearly connected sets are
related in the same way as the original sets; or, more
briefly, a set and its improved values are cogredient.

(xi) Since we know that the improved values of 0,
are 0, we have really only to determine those of 4 other
quantities. In view of (IX. 6. 5), we can choose these to
be any linear functions of 2, that we like, with or
without linear functions of 2D, added; and similarly we
can replace 2, by any linear functions of 2, : provided,
in both cases, that none of the mean-product determinants
are 0. The functions so chosen can be called 2, and
Dy, so that we need only consider the problem of find-
ing ID,.

(xii) The result stated in (IX. 6. 2) gives us the extension, to the
general case in which the errors of the original observations may
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have any mean squares and mean products, of the ‘method of
moments’ ordinarily applied to the case of a self-conjugate set
(§ 3 (vii)). We take X, as in (ii), to be the original observations,
and D, to be their differences of successive orders. Then we have
found that the improved value of any linear function of D® is the
same as the original value. But, by VIL 8 (v), D\, D?... D* are
successive sums of the elements of X*, the set conjugate to X, ;
and the first  moments of X are linear functions of these sums.
Hence the improved values of these moments are the same as their
original values; and this, by (ix), is the same thing as saying that
the moments of the improved values of X* are equal to the
moments of the original values. Thus the method of moments
still applies. But it should be observed that it does not apply to
the original set of observations, but to the conjugate set.

As a simple example, suppose that X, is a set of independent
observations of a single quantity, the mean square of error of X
being ¢,cp. Then (§ 3 (vili)) the conjugate set is

( :‘_f_] X f‘m )

......

C1C1 €€y Cinlm

As the X’s will all have the same improved value, which we will
call 71X, there is only one moment to be considered, namely, the
Oth moment, or sum, of the conjugate set. Hence, equating the

sums of original and of improved values,
X X X IX IX I1X
e e S s ST
€16 €6y Cnlm 101 G Sl

which gives the familiar result.

IX. 7. Determination of improved values.—
(i) From the results obtained in the preceding section we
deduce three methods of finding the improved value of any
element of D, say Dy.

(1) We can express Dy in terms of D® and D, and then
omit the part involving D,. The result is 1D,

(2) We can say that 12, is some linear function of
This linear function has £ coefficients to be determined ;
they are determined by the condition that, if the linear
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function is expressed in terms of D,, the coefficient of
Dp is 1 and those of other elements of 2, are 0. The
practical application of this method depends on the cir-
cumstances of the particular class of cases.

(3) We can say that 1D, is obtained from Dy by adding
a linear function of D, which we have called — o D,
This linear function has m —£ coeflicients to be determined.
We have found in (IX. 6. 4) that (ID;. D,)=0; this gives
m — k& equations, from which the coefficients in question can
be determined. Thus the necessary and sufficient conditions
Jor ID; are that it differs from Dy by a linear function of
D, and that (ID;. D) = 0.

These three methods are exhibited in (ii), (iv), and (v)
below, and a fourth method is given in (vii).

(ii) To apply the first method, let us write
D, = ez P+ D,
We do not need ¢, since the only part of 2, that counts
for the improved value is e,; D®; we therefore get rid of
¢"? at once, by means of something whose (. D) is 0.
This, by (2) of § 6 (iii), is D?. Taking the (DY .) of both
sides, we have
(D7.D,) = e,5(D7. IP) = e,5d"".

Also, by (1) of § 6 (iii),
(7. 0,) =13
Hence
(ZB7eaB = lZ'

Here a, 3, y relate to the partial set (4, 4, ... 4p),
and the statement is limited to this set. Dealing only
with this set, let us denote the reciprocal of @7 by
(?gy)x 5 this, as pointed out in VI. 11 (ii) (cf. § 5 (vi) of the
present chapter) is not ordinarily the same thing as dj, as
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obtained from the whole set of order . We have then,
by reciprocation,

g = ()1l = (ga) 1
Substituting in the expression for 2, and dropping the
¢*? D, in order to get the improved value, we have

T ID, = (dg,); DP. (IX.7.1)

(iii) Although, in the above, we have not needed ¢**, we
ought to find its value in order to satisfy ourselves that,
as has been stated in § 6 (vi), any linear function of ),
say g,0,+9,D,, can be expressed as a linear function of
D* and D ; to do this, it is only necessary to prove the
proposition for D, since the formula for g,0, +g,0,, will
follow at once.

We have written

D, = e, D+ D,

and have found ¢,5. To find ¢*?, we must get rid of the
first term ; so we again use (2) of § 6 (iii), getting
(Do D,) =" (D,. D)
or Qo = Ca‘l)(l‘ﬁx
Hence, by reciprocation,
™ = [d?X],

where [d?X],,_;. is the reciprocal of d, obtained from the
partial set (Dy,,; Dy, ... D,). The complete expression
for D, is therefore

Dy = (g 4 VP + [A" ) eyl D, (IX.7.2)

The existence of (dg,);, and [d¥X],,_; is dependent on the
assumption that the determinant | d,, | formed for 7,
and the determinant | d,, | formed for D, are both # 0
(see § 1 (vii1)).

= k ‘ax?
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(iv) To use the second method, we might have proceeded
as follows. We write

I.Da = GBDB.
To find e,g, we express DPin terms of D, i.e. of D7 and DW
by means of (IX. 3. 4), and we have

ID, = e, dB"Du
=e B(ZB'YI) +e BrIWD
From the condition stated in (2) of (i), it follows that
eaBd37 = IZ’
and therefore, by reciprocation,
€8 = ((ZBy)klZ = ((lBa) k-
Hence we get the same result as before, namely,
1D a = (dBa)k ‘DB
(v) For the third method, we write
I.Da = .Da—ea(p-p‘l,’

and we have to find ¢*”, The condition stated in (3) of (i),
namely,

({D,. DX) =
gives

Aoy =Dy D) =¢"(Dy. D, ) = e, .
This is true for all the m — % values of x. By reciprocation
P = [d?X] 1 Doy

This agrees with (IX. 7. 1) and (IX. 7. 2). Asm—4£ will
usually be a good deal greater than £, the method is rather
of theoretical than of practical interest.

(vi) The elements which we have found to be important
in the above processes are the m — £ auxiliaries D, whose

improved values are all 0, and the £ elements D of the
2611 p
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conjugate set which correspond to the remainder of JD),.
These elements together constitute a set of order = ; and
we have in fact, in (iii), expressed D, in terms of this
set. As the set is important, it is worth while to see
what is its conjugate.
We write

. Pr=D"& D,
where the ‘&’ means that the elements of the two sets of
orders £ and m — £ are combined to form a set of order .
These two partial sets are statistically independent. It
follows, by § 3 (ix), that the set conjugate to B is

E)\ = (daB)kDB & [(Z‘PX] m~ka'

(vii) But (4,5 and dg, being identical) we have already
found that
1D, = (d,g);, D"
Hence we get a concise formula for finding 77),. Let the
set conjugate to D, & D, be D* & D?; and let the set
conjugate to D® & D, be F, & F?. Then F,=1ID,.

(viii) Since 7D, is of the form D, —¢** D, and 1Dy is of
the form e, 7, and (D7. D,) = 0, it follows that
(ID,.1Dy) = (D,.TDy),

and similarly
(ID,.IDg) = (ID,. D).

[NotEe.—This chapter is based on (1) a paper by myself in Phil.
Trans. (1920), ser. A, vol. 221, pp. 199-237, in which the old nota-
tion was used ; (2) a paper by Professor Eddington in Proceedings
of the London Mathematical Society, ser. 2, vol. 20, pp. 213-221, show-
ing how the notation and methods of the tensor calculus can be
applied, and making some abbreviations and improvements in the
work ; and (3) a note by myself, following the above, bid., pp. 222-
224, I bhave altered the notation a good deal.]



X. TENSORS IN THEORY OF RELATIVITY

X. 1. Preliminary.—(i) Tensors are sets* which (1) are
functions of a set of co-ordinates (», #, #,...) and (2) are
subject to certain conditions of transformation when the
co-ordinates are transformed.

(ii) In the theory of relativity there are four co-ordinates
(», z, x5 2,), so that all the sets are of order 4, and any inner
multiplication with regard to a suffix p involves addition
of the products for the values 1,2, 3,4 of u. But this fixing
of the number of elements in a set does not affect the
general reasoning with regard to the sets, and we can
continue to treat them as of order .

(iii) In VIL 4 we started with a set A™, and a set 4"
which is a definite function of X*, and we supposed 4™ to
be changed as the result of X* being changed by linear
substitution ; and the cases we considered were those in
which, throughout all such changes, 4* varies either directly
or reciprocally as X*. In VIL 7 we extended the inquiry
by taking a set & to be a function of two or more single
sets, and considered cases in which, when these sets are
changed by linear substitution, & varies directly or reci-
procally as each of the sets. For tensors we have tc
consider cases in which the primary substitutions are not
necessarily linear. If in place of the original set of co-
ordinates #, we take a new set #’,, which is a fanction
but not necessarily a linear function of ,, the ratio which

* It must be remembered that the elements of a set are not
necessarily numbers, but may be quantities; and that a set as
a whole is something different from its elements. What we
usually mean by a tensor is some physical phenomenon represented
by a set: but no confusion arises if we caﬁ the set itself a tensor.
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we have now to consider is not the ratio of 2, to , but
the ratio of their differentials, i.e. the partial differential
coefficient 32/,/3z,. When the substitution is linear, this
is equal* to o, /r,, so that our treatment of the general
case is consistent with our previous treatment of the par-
ticular case. t

We will begin with the single set, and then go on to sets
of higher rank.

(iv) In the case of sets of higher rank, we sometimes
have to deal not only with inner products but also with
inner sums. By the inner sum, in such an expression as
4%, we mean the result obtained by replacing p by o
and summing the values for ¢ =1, 2, 3, 4. It will be seen
presently (§ 5 (iv)) that, as the result of the particular
notation adopted, the inner products or sums have only to
be considered when one of the two letters concerned is an
upper suffix and the other is a lower suffix.

X. 2. Single sets (vectors).—(i) Beginning with single
sets, we start with a pair which we call z, (the set of
co-ordinates) and AN or z, and 4%} AN or 4° being a func-
tion of #, or z,. (The a here, like the A, denotes a complete
set, not, as in Chapter IX, a partial set.) Connected with
these, or arising out of them, is a plurality of pairs 2/, and 4.
But our purview is limited to the cases in which the relation
between 4™ and 4™ is linear, and in which, further, this
linear relation is of one of the two following kinds:

(a) where

ANy
=%

* The difficulty mentioned in the note to VIIL 1 (ii) does not
arise, because dx’,/dx, does not occur absolutely, but (directly or
reciprocally) as one of the factors in inner multiplication with
regard to A or p,
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() —replacing 4" and 4™ by 4, and A’,—where

4y _ 2,

4,
In the cases under (z) " is said to be a contravariant
vector ; in the cases under (8) 4, is said to be a covariant
vector. Here ‘vector’ is used as meaning a single set
which is a tensor.

(ii) It will be seen from VIII. 1 (ii) that, if the relation
between «, and &', is linear, these become respectively

"o
4* )’
A _ %y
A, @y’

so that in these particular classes of cases A is contravariant
if 4" and », are cogredient, and .1, is covariant if 4, and @,
are contragredient.®

X. 3. Other sets.—(i) For sets of higher rank, we are
similarly concerned with pairs of partial derivatives

2’ dz
X apd O e,
oz, LEAN
o2’ dx

£ and —2»
be o0 u

ete.; and a set depending on #,,2g,... is not a tensor unless,
when z,@5... become 2',2’,..., the ‘ratio’ of the new
value of the set to the old value is the product of these
partial derivatives, one from each pair. The particular
derivatives are indicated by the position of the letters
af... or uv...: these are upper suffixes if, so far as the
particular variable is concerned, the relation is of the

* It seems desirable to call attention to these classes of cases, as
otherwise the tensor terminology may be found rather confusing.
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contravariant type, and lower suffixes if the relation is
of the covariant type. Thus for double sets (tensors of the
second rank) we should have such relations as

AN dad 35&"

e = 5—% 5——; (contravariant tensor),

Al

S 9—‘?,2- % (covariant tensor),
d,g 37\ 7,

A/I‘ bﬂ' b 4

Z" YT 2 # (mixed tensor);

and for a tensor of higher rank we might have such a rela-
tion as
A _ 3w, dug 38y 2y

AZBy bm ba, b:c y A5

Two tensors 4 and 2B are said to be of the same character
if the ratios A4’/QA and 2B’/)B are of the same form.

(ii) For a scalar function of a set or sets the above
condition becomes

4 =4,
so that a scalar (in the general sense) is not a tensor unless
it remains constant for all changes in the system of co-
ordinates. Such afunctionas 4, + 4,+ 4, + 4,, for instance,
would not usually be a tensor. For tensor purposes, there-
fore, ¢scalar’ practically means ‘invariant’.

X. 4. Reason for limitation.—The object of limiting
the definition of ‘tensor’ in this way is to ensure that the
result of any number of steps, all of the same kind, pro-
duced by successive transformations of co-ordinates, shall
be the same as if we had passed in one step, also of the
same kind, from the initial set of co-ordinates to the final
set. That this is in fact ensured is seen from the properties
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of the partial derivative of a set. Suppose, for example,
that

A_,}‘ —_ bw'}\ (1)
A* 31’2 ’
and that
A’/U bx//”
==, ’2)
AN !y

Then, by (VIL. 2. 2) and (VIIL 3. 1),
A//d A//a A/)\ _ bm”ﬂ 3&7/,\ _ Dw”

AT AN AT T, v, T
which is of the same form as (1) and (2).

rr’ (3)

a

X. 5. Miscellaneous properties.—The following are
some miscellaneous properties which are useful in deter-
mining whether a set is a tensor.

(i) The sum (or difference) of two tensors of the same
rank and character and the same suffix is a tensor.

[Suppose, for instance, that A4* and B are contravariant
tensors. Then

‘_1/)\ —_ bbi/_)_\ Aa, B/,\ —
X

o/

‘I
LN
oL

‘a a

B,

and therefore
a2’
28 2Rl WA ] a
(474 B%) = 3 (L4 BY) ]
(i1) The product of two tensors is a tensor whose character

is the combination of the characters of the two. For example,
from

B
we see that
o, B""’ bm a’, bx,,(A 1337)

A 0%g b.z'
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(ili) An inner product of two tensors, or an inner sum
(§ 1 (iv)) of a tensor, taken with regard to suffixes of
opposite character, is a tensor.

[Take, for example,
P dz, dwg dwy d2’p 5
4 )\;.w 7 7N aBy*
ouy dw," dx’, dwy

If we replace p by » we have, by (VIIL. 3. 3),

20w, da’,
b:c bwa Aap _'I A A“B'Y’
and therefore
IR

GARPY ST sy

which satisfies the requirements.]

(iv) If in this last example we had replaced p by A,
instead of p by », the expression would have contained
oz, dxg
o', ¥’
which has no general significance.

(v) The derivative of a scalar (§ 3 (ii)) is a covariant
vector. Suppose, e.g., that 4 is a scalar function of z,,
whose value remains constant (§ 3 (ii)) for all transforma-
tions. Then

2424 duw, 34
3, o, o, ow,’

so that 3.4/dz, is a covariant vector.

(vi) If the inner product of a set & by each of m (=4)
{contravariant

. } vectors is a tensor, then { is a tensor, and
covariant
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contravariant
suffix.

[Take the case in which the vectors are contravariant,
and suppose that A=4,,.... Let the m vectors be
denoted by B, B?,.,. B™ or, collectively, by B**; the A
not indicating any tensor character. Then, by hypothesis,
B is a tensor as regards z,, and B4 is a tensor as
regards z,..., so that

B _ 9% »\y N — 9 AB
B = b,B BNA = S B Ay,

From these we deduce

{ covariant } as regards z,, where p is the linked

pveee

dxg da
2N — IR B Y
'B A/,Lllooo_’B bx'# bmlv“‘Aﬁ’yu.)

whence, by division by B (see VI. 9 (v)),

/1/ wa \"L"y
HYooe am bw

AB,,

Hence 4,, ., is a tensor and is covariant as regards z,.
The case in which the vectors are covariant can be dealt
with in the same way.]



APPENDIX
PRODUCT OF DETERMINANTS

In IV. 5 we have taken as the standard form for product

of two determinant$—the order being now reduced from 3
to 2, for economy of printing—
a6, | x| a3 ajay+ 0y bya +06,3 |.
ay o az 3, @105+ @y8; bray+5,,
In this form, the element in the ¢th column and »th row
of the result is the “inner product’ of the gth column of
the first determinant and the rth row of the second. By
interchanges of columns and rows, and also by changing
the order of multiplication, we get seven other forms, all
constructed according to this rule. The eight forms can
be set out as follows:

ayby | X | 0By | = | a0+ @3By bray+6,8, (1)
ayby ay/3, ayay+ayBy byay+ 0,3,
a by | x| aja, | = I aya, +aza, b0, +bya, (2)
azb, BB o181+ ay8y 1B+,
@8y | X | a1 By | = | @0+ 08y a0, +0,53, (3)
by by asf3, ay0,+ 0,8, aya,+0,8,
a2, X | a;a,|=|a,a; +byay ty0, + by, s
by by ' 818 B+ 018y @38+ 0,3, ®)
By | x| ah | =|aa+ba, a8 +68, (5)
ag/3 ayb, aga; +0y0, @y, +0,3,
aya, | x| ayhy | =|ay0,+68 aya,+6,3, (6)
BB ayb, aya,+0,8; aya,+10,3,
a3 | X| @8, | = . ayay+a,a, )3, +a,0, 7)
a3, by 0, byoy+ 050y by By +0,8,
0,0 | X |28, | =1 aja,+a,8, a,0,+a,03, (8)
B1 B, by by byoy +8,8, byay+06,8,
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It will be seen that the last four are the transposed of the
first four, but in the reverse order; i.e. the transposed of
(1) (2) (3) (4) are (8) (7) (6) (5).

In the double-suffix notation these become, the order
of (5)—(8) being reversed :

ldgr | X Jegr|=1dpers | (1) &g | X [drg|=1dpnerg| (8)
| dgr | % | erg|=1dgrenn| (2)  leg | X |dyy|=]dnep | (7)
| dyg | X [egr|=1drgerr | (3)  lery| x| dgr|=]drrerg| (6)
| drg | X lerg |=1drgen | (4)  legr | x| dgy |=]drregn | (5)

It must be borne in mind that in each of these statements
¢ refers to the column and » to the row; e.g. (6) means
that

X dyiexy dayens |-
dygey; drgns

dyydy
dyo8y,

€11612
€41€50




INDEX OF SYMBOLS

| dgr| determinant 39

dps (in Chapter V) ratio of cofactor of dy to |y, | 42
4, single set 44, 58

A, double set 45, 59

Ay, transposed of 4, 45, 59

B, C, product-sum (inner product) of B, and C, 47, 62
| unit set 50, 64

@ set generally 60

@A product of & and BB 61

Ay Byp inner product of 4,,and B,, 63

AP* inverse of 4, 65

A" reciprocal of 4,,, 67

(47%);; inverse of partial set 44, 70

[4¥®]u_k inverse of partial set 44y 70

B,/ A¥ ratio of B, to 4* 76

13/4 ratio of 33 to & 82

91B/d 4, derivative of 3 with regard to 4, 85, 86
(X, - X;) mean product of deviations of X, and X,. 94
X" set conjugate to X, 97

IU improved value of U 106

A3y inner sum derived from 4f,; 116

A contravariant vector, 4, covariant vector 117



GENERAL INDEX

Under any heading, scparate entries are usually in the order of occurrence,

not in alphabetical order.

Addition of sets 61

Adjoint determinant 87; cofactor
of element of 38

Auxiliaries 106

Character of tensor 118

Cofactor 24 ; expressed as deter-
minant 25

Cofactors, determinant
structed from 36-38

Cogredience 79, 84 ; of statistical
set and improved values 109 ;
relation to contravariance 117

Cogredient sets 79, 84

Column of double set 15, 45 ; of
determinant 21

Complete inner product 62

Conjugate set 97; determination
of 98-99; original set as conju-
gate of 98 ; of inner product 101

Conjugate sets with linear rela-
tions 100

Continued inner product 68;
transposed of 69 ; inverse of 69;
reciprocal of 69

Contragredience 79, 84; with
linear relation 80 ; of variables
and their partial differential
operators 88 ; of conjugate sets
1?;-102 ; relation to covariance
1

Contragredient sets 79, 84

Contravariance, relation of, to
cogredience 117

Contravariant vector 117 ; tensor
118

Covariance, relation of, to contra-
gredience 117

Covariant vector 117 ; tensor 118

con-

Derivative of set 85; of sum or
product of sets 86; of function
of a set 87

Determinant 21 ; notation 21, 23,
39; elements 21 ; column 21;
row 21; leading diagonal 21;
leading term 21; order of 21;
calculation of 82-33 (See also
separate headings below)

Determinant, construction of:—
factors of terms 14-16 ; rule of
signs 16-19; sign of term
dependent on number of re-
versals of order 17-18; sign of
term changed by interchange
of suffixes 18 ; effect of altering
order of letters 18-19; final
definition 20-21

Determinant, main properties of,
in ordinary notation 40; in
tensor notation 52

Determinant, properties of :— 0 if
each element of column or row
is 0 22; not altered by inter-
change of columns and rows 22;
sign changed by interchanging
two columns [rows) 23; 0 if
two columns [rows] identical
28; expression in terms of
elements of column [row] and
their cofactors 24, 26, 28 ; sum
of products of elements of
column [row] by cofactors of
parallel elements is 0 27, 28;
multiplication by single factor
81 ; not altered by increasing
elements of column [row] by
gnultiples of parallel elements

1



126

Determinants, sum of 81; pro-
duct of, in ordinary notation
38-86 ; product of, in tensor
notation 48, 49 ; forms of pro-
duct of 122

Direct proportion 76, 84

Dummy suffix 48, 62

Elements of double'set 15, 45, 59 ;

of determinant 21 ; of single

set 44, 58
Error, reduction of 105

Fitting 93

Free suffix 48, 62

Frequency-quadratic 102; mean-
ing of coefficients in 103

Functional relation between sets
78

Gothic letters 60

Graduation 93

Greek letters for sets 48 seqq. ; for
product-sums 47

Improved values 106 ; criteria for
105-110 ; determination of 110-
114

Independence, algebraical 73 n. ;
statistical 96

Independent observations, set
constituted by 97, 110

Inner multiplication 49

Inner product 49, 62, 63; trans-
posed of 63 ; rule for construc-
tion of 64

Inner product, complete 62

Inner product, continued : see
Continued inner product

Inner sum 116

Inverse of double set 65; con-
dition for 65-66 ; of transposed
set 67; original set as inverse
of inverse set 67

Jacobian 88
Key set 20

Leading diagonal of double set
16; of determinant 21

General Index

Leading term of double set 16;
of determinant 21
Linear function of single set 74
Linear relation between single
;ets 78; between sets generally
2
Linked suffix 48, 62

Matrix of determinant 59 n.

Mean product of deviations, nota-
tion for 94; algebraical laws
satisfied by 94

Mean-product set 96; of self-
conjugate set, is unit set 97
(See also separate headings below)

Mean-product set, reciprocal of
96 ; is mean-product set of
conjugate set 99

Mean-product set for partial varia-
tion 104

Minor 25; relation of, to co-
factor 26-26

Mixed tensor 118

Moments, extension of method of
109-110

Multiplication of set hy scalar 61 ;
by set 61

Notation : see INDEX oF SYMBoOLS

Order of determinant 21 ; of single
set 58 ; of double set 59 ; of set
generally 60

Outer product 49, 61

Partial differential coefficient,
reason forappearanceof 115-116

Partial double set 70; inverse or
reciprocal of 70

Partial single set 70

Product, inner: see Inner product

Product, outer 49, 61

Product of determinant by single
factor 31 ; of two determinants,
ses Determinants; of two sets
45-46, 61

Product-sum notation 47

Proportion, direct 76, 84; reci-
procal 77, 84

Quadratic formn, expressed as inner
product of two single sets 81;



General Index

derivative of 86; expressed as
sum of squares 88-89

Rank of set 60

Ratio, as operator 76; of single
sets 76; of sets genmerally 81,
82; reciprocal of 81,.82

Ratios, equal 75, 76, 82,.83; in-
version of 76, 78 ; cross-multi-
plication of 78

Reciprocal determinant 41-42

Reciprocal of double set 67;
original set as reciprocal of
reciprocal set 67 .

Reciprocal proportion 77, 84

Reciprocation 67

Reduction of error 105

Relativity and statistical theory,
similarity of methods for 93

Reversals of order 17

Row of double set 15, 45; of
determinant 21

Scalar 46, 60; as invariant 118;
derivative of 120

Self-conjugate set 100

Set, double 15, 45, 59; deter-
minant of 59; transposed of
59 ; inverse of 65; reciprocal
of 67

Set, single 44, 68 ; as sum of com-
ponent single sets 71

Set-notation 42 ; principles of 44

Sets, functional relation between
73

Simultaneous equations:—method
ofindividualsolution11; formu-
lae for particular cases 12-13,
29 ; statement of general prob-
lem 18-14; trial formula for

127 -

denominator 14-19; general
solution 80 4

Statistical independence 96

Statistical set, nature of 92-93

Substitution-operator, unit set as
64-65

Successive summations, order im-
material 48

Suftixes, upper 47

Sum of determinants 31

Symbols : sec INDEX OF SYMBOLS

Symmetrical double set 45, 60;
identity of inverse and reci-
procal sets 67

Tensor 115; conditions for 116~
118; contravariant 118; co-
variant 118 ; mixed 118; reason
for limitation 118

Tensors, properties of 119-121;
sum or difference 119; product
119; inner product or inner
sum 120

Transposed of determinant 22 ; of
double set 59 ; of inner product
63 ; of inverse set 67 ; of reci-
procal set 67

Unit set 51, 64 ; properties of 49-
51, 64-65; symmetry of 51, 64;
action as substitution-operator
64-65; inner product of two
unit sets 65

Variable sets 72

Variation, direct 79, 84;
procal 79, 84

Vector,ordinary, relation tosingle
set 46 n., 59

Vector, tensor 117

reci-
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