SATADTVI HOSNAL A0 SLNIWITIL

@

ZOTMOIUYOTT

=
"
o0

ELEMENTS OF
TENSOR CALCULUS

A. Lichnerowicz

METHUEN'S MONOGRAPHS ON

PHYSICAL SUBJECTS




ey
THE HARRIS COLLEGE ~*

CORPORATION STREET,
PRESTON.

All Books must be Returned to the College Library not
later than the last date shown below.

1.8 MAY 1960} 22 001 1y
0861 ATH 82

_ -2, DEC. 199

26, MY 1980. :

-2, 001 1947

30,007 1567)
. i P9

-3, 8. 19eh
-7 1R 1948




METHUEN’S MONOGRAPHS

ON PHYSICAL SUBJECTS

General Editor: B. L. WORSNOP, B.sc., PH.D,

ELEMENTS OF TENSOR CALCULUS



Elements of
Tensor Calculus

by A. Lichnerowicz

Professeur au College de France

translated by
J. W. LEECH

Senior Lecturer in Physics
Queen Mary College, University of London

and

D. J. NEWMAN

Lecturer in Physics
Queen Mary College, University of London

LONDON: METHUEN & CO LTD
NEW YORK: JOHN WILEY & SONS INC




First published in 1950 as
‘Eléments de Calcul Tensoriel’ by
Librairie Armand Colin, Paris
© 1950 by Max Leclerc et Cie, Paris
English translation of 4th revised
edition (1958) first published in 1962
© 1962 by Methuen & Co Ltd
Printed in Great Britain by
Spottiswoode Ballantyne & Co Ltd
London & Colchester
Catalogue No. (Methuen) 2/4313/11

g L
ilb0\g

Foycs el

A a,ll:

beZ)6bt iy v

=

Contents

Preface page vii

PART I: TENSOR CALCULUS

Vector Spaces

I Concept of a vector space, §§1-4. II n-dimen-
sional vector spaces, §§5-9. III Duality, §§10-13.
IV Euclidean vector spaces, §§ 14-24.

Affine Euclidean Point Spaces, §§25-29

Tensor Algebra

1 Concept of a tensor product, §§30-32. II Affine
tensors, §§33-40. III Euclidean tensors, §§41-45.
1V OQuter products, §§46-52.

Curvilinear Coordinates in Euclidean Space

I Derivatives and differentials of vectors and
points, §§53-55. II Curvilinear coordinates in a
Euclidean point space, §§ 56-59. III Christoffel
symbols, §§60-63. IV Absolute differentials and
covariant derivatives, §§ 64-66. V Differential
operators in curvilinear coordinates, §§67-70.

Riemannian Spaces

I Tangential and osculating Euclidean metrics,
§§71-76. 11 The transport of Euclidean metrics,
§§77-79. III Curvature tensor of a Riemannian
space, §§80-86.

v

29

53

73



vi

Vi

Contents
PART II: APPLICATIONS

Tensor Calculus and Classical Dynamics page 98

I Dynamics of holonomic systems with time-
independent constraints, §§87-92. II Dynamics of
holonomic systems with time-dependent
constraints, §§93-96. 11I Dynamics of continuous
media, §§97-103.

Special Relativity and Maxwell’s Equations 119
I Physical principles, §§ 104-106. II The Lorentz

group and Minkowski space-time, §§107-111.

IIT Dynamics in special relativity, §§112-115.

IV Relativistic dynamics of continuous media,
§§116-118. V The Maxwell-Lorentz equations,
§§119-126.

Elements of the Relativistic Theory of Gravitation,

§§127-131 154
Bibliography 160
Index 162

Preface

In 1900 Ricci and Levi-Civita produced a celebrated mémoire which
gave the first systematic account of tensor calculus and drew the
attention of mathematicians and physicists to some of its applications.
Since then much has happened. The appearance of the theory of rela-
tivity, which would not have been possible without the previous
existence of tensor calculus, gave it, in turn, an immense impetus,
Tensor calculus has now become one of the essential techniques of
modern theoretical physics. It has even been used recently in the
study of technical problems such as the interconnection of electrical
machines. It can be said that tensor calculus now forms a fundamen-
tal part of mathematics and physics.

This little book is divided into two parts, one concerned with tensor
algebra and analysis, the other with the most important applications.
In Part I the study of tensor algebra ends with a brief consideration of
outer product algebras, since this technique deserves to be better
known by physicists. On the other hand, the concept of tensor density,
which is of little mathematical interest, is not introduced. This con-
cept is, in fact, easily avoided by the introduction of adjoint tensors of
antisymmetric tensors.

In the chapters on tensor analysis I have confined myself to the
analysis of tensor fields in Riemannian spaces, since Riemannian
geometry is the most interesting from the point of view of applications.
I have used systematically the method of ‘transported reference
frames” due to M. Elie Cartan. This method, which is the most geo-
metrical and intuitive, has the added advantage of permitting the
reader to avoid the consideration of other generalized geometries.

In the section on applications I was forced to be selective. The first
chapter is intended to show the intuitive nature of Riemannian spaces
in classical analytical dynamics and their usefulness in this field. In
Particular, an introduction to the study of continuous media and
of elasticity is given. The reader wishing to extend his knowledge
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viii Preface
in this direction should refer to the excellent works of M. Léon
Brillouin.

The remaining two chapters are devoted to the study of Maxwell’s
equations of the electromagnetic field and to the theory of relativity.
Only a brief sketch is given of the principles of general relativity
theory. My task will have been accomplished if I have assisted the
reader to undertake the study of the fundamental theories of contem-
porary physics.

Translators’ Note

In the course of translation some explanatory footnotes have been
added and a number of references to works not available in English
have been omitted. The Bibliography has been revised and extended
in order to provide suitable suggestions for further reading.

Queen Mary College WL,
(University of London) D.J. N,

PART I: TENSOR CALCULUS

CHAPTER 1

Vector Spaces

I. CONCEPT OF A VECTOR SPACE

1. Definition of a vector space. Consider the set of displacement vectors
of elementary vector analysis. These satisfy the following rules:

(/) The result of vector addition of any two vectors, x and y, is their
vector sum, or resultant, x+y. Vector addition has the following
properties:

(@) x+y = y+x (commutative property);

(b) x4+ (y+2) = (x+y)+z (associative property);

(¢) there exists a zero vector denoted by 0 such that x+0 = x;

(d) forevery vector x there is a corresponding negative vector (—x),
such that x+(—x) = 0.

(if) The result of multiplying a vector x by a real scalar « is a vector
denoted by ox. Scalar multiplication has the following properties:

(@) Ix=x;

(b") «(Bx) = (xP)x (associative property);

(¢") (2+P)x = ax+ PBx (distributive property for scalar addition);
(d’) a(x+Y) = ax+ ay (distributive property for vector addition).

Using the above properties as a guide, we now consider a general
set E of arbitrary elements x, y etc., which obey the following rules:

(I) To every pair x, y, there corresponds an element X +y having the
properties (a), (b), (c), (d).

(2) To every combination of an element x and a real number o there
corresponds an element «x having the properties (@), ("), (¢), (d").

We then say that E is a vector space over the field of real numbers and
that the elements X, y, etc., are vectors in E. If the second rule holds for

1 1



2 Elements of tensor calculus

all complex numbers « then E is a vector space over the field of com-
plex numbers. Except when otherwise stated we shall confine our-

selves in this book to the study of vector spaces over the field of real
numbers,

2. Examples of vector spaces. There are several other simple examples
of vector spaces which may be quoted to give an idea of the interest
and application of the general concept.

(@) Consider the set of complex numbers a+ib, where ¢ and & are
real. The addition of any two complex numbers (a+ib, c+id, etc.)
and the multiplication of a complex number by a real number «
obviously have the properties listed in §1. It follows that the set of
complex numbers constitutes a vector space over the field of real
numbers.

(b) Let X be an array of # real numbers arranged in definite order
X o= (v xs. )

and let E be the set of all arrays X. Assume the following two rules of
composition:

X =(x,x,...,x)and Y = (1,725 --..»,) then

X+Y = (xp+y1, X0+ V2 e 0 X+ ¥,).
If X = (x4,x5,...,x,) and if « is any real number then
oX = (axy, cxy,. .., ax,).

It is easily verified that these two rules imply the rules (1) and (2) of

§1. It then follows that E constitutes a vector space with respect to the
field of real numbers.

(c) Consider the set of real functions of a real variable defined on
the interval (0, 1) with the usual composition rules for the sum of two
functions and for the product of a function by a constant «. With
these rules the set under consideration is a vector space over the field
of real numbers,

3. Elementary properties of vector spaces. (/) For any two vectors x
and y there is one, and only one, vector z such that

X = z+Yy. 3.1)

Vector spaces 3

This is easily seen by adding the vector (—y) to each side of (3.1)
giving the relation
z=X+(~y)

which defines z uniquely. As in elementary algebra we write
x+(-y) = x—V.
With this notation the property (¢) of §1 can be written as
(x—B)x = ax—Px. (3.2
In view of this property it follows that
(e—P)x+B(x) = (c—B+Px = (x+0)x = ax.
Putting « = f it can immediately be deduced from (3.2) that

Ox = 0, (3.3)
and, on writing & =0
(—P)x = —Bx.
In particular
(-Dx = —x. (3.4

(2) From (3.4)itfollowsthat the property (d”) of §1 can be rewritten
in the form
a(X—y) = ax—ay. (3.5)

Putting x = y in (3.5) it follows that
ol = 0. (3.6)
(3) Conversely, the relation
ox =0 (3.7

implies that either « = 0 or x = 0. For, if « is not zero it has an inverse
", and on multiplying both sides of (3.7) by « ! we have

o Yax) = 0,
or (e ')x=x=0,

which is the required result.
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4. Vector sub-spaces. Definition: A sub-space of a vector space E is
any part, V, of E which is such that, if x and y belong to V and e is any
real number, then the vectors x+y and ox also belong to V.

The commutative, associative and distributive properties of E
clearly apply to V. The real number « may be zero so that it is clear
that ¥ necessarily contains the zero vector. Again if x belongs to ¥,
(—1)x = —x also belongs to ¥ and it follows that each vector of V
has a negative in V. The rules of addition and of multiplication by a
scalar thus have the properties listed in §1, therefore ¥ itself is a
vector space. :

Some simple examples of vector sub-spaces may be given.

(a) The set of vectors coplanar with two given vectors constitutes
a sub-space of the vector space of elementary geometry.

(b) If x is a non-zero vector of a vector space E, the set of products
ox, where « is any real number, constitutes a sub-space of E.

(¢) Theset of real functions of a real variable defined on the interval
(0,1) forms a vector space over the field of real numbers. The bounded
functions of a real variable defined in the same way form a sub-space
of this vector space since the sum of two bounded functions and the
product of a bounded function by a constant are themselves bounded.

II. n-DIMENSIONAL VECTOR SPACES

5. Basis of a vector space. Let x;, X,,..., x, be p non-zero vectorsina
vector space E. These vectors are said to form a linearly independent
system of order p if it is impossible to find p numbers &, oy, ..., o, not
all zero, such that

oy Xy topXo+... o, X, = 0.

In the contrary case the given system of p vectors is said to be
linearly dependent.

Consider the set of all systems of linearly independent vectors in
the vector space E. There are two possibilities — either (a) there exist
linearly independent systems of arbitrarily large order, or (b) the order
of the linearly independent systems is bounded.

In the second case the vector space is said to have a finite number of
dimensions. This classification will be explained shortly. In the

Vector spaces 5

remainder of this book we shall only consider vector spaces which
have a finite number of dimensions. In this case it is possible to deter-
mine an integer # such that there exist linearly independent systems
of order n but not of order (n+1). If (e;,,,...,e,) is any such systf,m
of order n it will be called a basis of Ein conformity with the following
definition:

The basis of a vector space E is any linearly independent system of
maximum order. s

Let x be any vector in E. The system of (n+ 1) vectprs (x,eg,
€5,...,&,) is necessarily linearly dependent, so there exist (n+1)
numbers A, &y, oa, ..., &, Such that

Ax+oqeg+agert...+oye, = 0. (5.1)

A must be different from zero, otherwise the system e; will not be
linearly independent. Equation (5.1) can thus be solved for x and
there exist n numbers x!, x,..., x" such that

x = x'e; +x%e,+...+x"e, (5.2

and the vector x is expressible as a linear combination of the e;. More-
over, this combination is unique for, if there existed another, their
difference would constitute a linear combination of the e;equal to the
null vector and with coefficients not all zero. This conflicts with the
original postulates. This result may be stated formally:

THEOREM: Given a basis of E, any vector X of E can be represented
in a unique way as a linear combination of the vectors of this basis.

The numbers (x!,x2,...,x") which appear in (5.2) are called the
components of x with respect to the basis (ey,e,...,€,).

It is easy to show that the property stated in the above theorem
specifies bases amongst all systems of vectors. Let (eg,e,,...,e,) be a
system of p vectors such that any vector x of E can be expressed
uniquely in the form

X = xle,+xzez+...+x"ep. (5.3)
In particular the null vector 0 can be expressed in one way only
(x' = x2=...= x? = 0) as a linear combination of the vectors of the
system, Tt follows that such a system must be linearly independent
and that p < n.
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It is clear that the same property holds for all linearly independent
systems of order p. Let (e, €,,...,€,) be such a system. €, can be
written

€ = a8 tmert...taye,
Suppose that «; (for example) is non zero, then
e = ﬁl El+|8202+.. . +Bpeps

and on substituting in (5.3) it is seen that any vector x of E can be
expressed as a linear combination of (g, e,,.. -»€,). In particular

€ =19 €]+Yzez+..-+‘)fpep,

with at least one of the numbers y,,..., ¥, different from zero, other-
wise the system of ;s cannot be linearly independent. Repeating this
procedure we find that any vector x of E can be expressed in the form

X = §lel+§2ez+...+£-"ep.

It follows immediately that there cannot exist any linearly in-
dependent systems of order (p+1), consequently p =n. We now
express this formally:

THEOREM: For a system of vectors to constitute a basis of E it is
necessary and sufficient that any vector of E can be expressed in one,
and only one, way as a linear combination of the vectors of that
system.

The number # is termed the dimension of the vector space under

consideration. We shall, in future, use E,, to denote an n-dimensional
vector space.

6. Examples. (@) In the vector space of elementary geometry a basis

is formed by any three non-coplanar vectors. This space is therefore
three dimensional.

(b) Take the example () of §2 and consider the vectors
- (1) 0) .. .,0),
o (0) 19 weey 0))
(6.1)

e, = (0,0,...,1).

Vector spaces 7

Any vector
x = (x1,23,...,%5

can be expressed in one, and only one, way as a linear combination of
the e;:
x = x'e;+x2e,+...+x",

Itr follows that these vectors constitute a basis for E, which is thus an
n-dimensional space.

7. Vector sub-spaces of E,. Let ¥ be a vector sub-space of E,. Then ¥V
is a vector space in which any linearly independent system of vectors
is also a linearly independent system of E,. It follows that ¥ has a
finite number of dimensions » < n. Let (€y,€,,...,€,) be a basis of
V. Any vector of ¥ can be put in one, and only one, way into the form

Ele+8e+8e+...+ ¢, (1.1

Whatever the numbers &', £2, ..., £, a vector in the form of (7.1)
belongs to V.

Conversely, if (e;,€,,...,€,) is a linearly independent system of
order rin E, it is clear that the set of all vectors which can be expressed
as a linear combination of the €, constitute a vector sub-space of E,,.

Any n-dimensional vector sub-space of E, coincides with E,.

8. Complementary vector sub-spaces. Let us consider a linearly
independent system (e, , €,,...,€,) of order r < n. We wish to complete
this system by adding (n—r) new vectors (1, . y,...,M,) such that the
system of vectors €; and ; constitutes a basis of E,,.

There certainly exists in E, at least one vector such that the system
formed by adjoining it to the €, is a linearly independent system: for if
not, the system €; would itself be a basis of E,,. Let 0, ; be this vector
so that (e;,€,,...,€,,M,. 1) is a linearly independent system of order
(r+1). Repeating this procedure gives systems of increasing order and
it will stop only when the order reaches n, the dimensionality of E,.
We now express this formally:

THEOREM: Given a linearly independent system of order r it is always

Possible to complete the system with (n— r) vectors to obtain a basis for
E.
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Let U, be a vector sub-space of E, having r < n dimensions and let
(€y,€,,...,€,) be any basis of U,. Using the preceding theorem n
vectors (n,41,...,7M,) can be found (in point of fact in an infinite
number of ways) such that the €; and n; define a basis of E,. Let the
vector sub-space generated by the n; be denoted by ¥,,_,.

Evidently the two sub-spaces U, and V,,_ , have only the zero vector
in common. Moreover any vector x of E, which is expressible in the
form

r n
x= 3% o+ 3 Bm;
i=1 J=r+1

can be decomposed into the sum
X =Yy+z

of a vector y of U, and a vector z of ¥V,_,. This decomposition is
evidently unique according to the preceding remarks. In view of this
property the vector sub-spaces U, and V,,_, are said to be comple-
mentary. This may be expressed formally:

THEOREM: To every vector sub-space U, of E,, there corresponds a
unique complementary sub-space V,,_,.

9. Change of basis. It follows from the first theorem of §8 that a
vector space E,, has an infinity of bases. We propose to determine the
relations that exist between the components of a particular vector x
with respect to two distinct bases.

Let (e,e5,€;3...,¢,) and (e;,e,,...,e,)T be two arbitrary bases of
E,. Expressing the vectors of each basis in terms of those of the other
we write

i=n : F=n
e]' = l;] Aj'ef: ef = rgl A‘,i ej!. (9.1)

T It is common practice to distinguish bases (and their associated co-
efficients) by dashes or bars attached to the symbols themselves rather than
to the indices. This is simpler to write, but can easily lead to confusion, since
the two indices attached to the transformation coefficients refer to different
bases. (T.)
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Let x be an arbitrary vector in E, having components x' relative to
the basis (e;) and x’ relative to (e;). We have
=n j'=n s i,
x= Y xeg= 3 xVep = 3 1 Ale, 9.2)
i=1 = L7
Equating the coefficients of the e; appearing in the second and last
terms of (9.2) gives the transformation formula

 rEm o
=3 A (9.3)
=1

On interchanging the roles played by the two bases we can also write

i=n
xI'= 3 4l X, 9.4)
i=1

III. DUALITY

10. Linear forms. Let E, denote a vector space of n dimensions and
suppose that to each vector x of E,, there corresponds a quantity F(x),
the relationship being such that for any x, y of E, and for any real «

we have
F(x+y) = Fx)+F(y), (10.1)

F(ox) = aF(x). (10.2)

F(x) is then said to be a linear form defined on E, and (10.1), (10.2) are
the relations which characterize such forms.

With the help of (10.1) and (10.2) it is easy to obtain an expression
for F(x) in terms of the components of the vector x with respect to a
basis (e;). Representing an arbitrary vector of E, by

i=n

x= 3 x'e
i=1

it follows, using (10.1) and (10.2) successively, that

i=n

Fx) = ¥ x'Fe), (10.3)
i=1
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where the Fi(e;) are independent of x. 'I’hiﬁ may also be written

i=n
F@x) = :§1 a;x' [a; = F (e)).

11. Dual spaces. Consider the set of linear forms defined on E, and
denote its members by y*, z*, etc. Assume in addition the following
two rules of composition:

() If y*x)= ¥ y7x" and z*(x) = ¥ z}x' denote two arbitrary
linear forms, then

i=n
YHE)+24(x) = 21 OF +zD "
I=
(2) If o denotes any real number, then
i=n
ay*(x) = ;21 (ay) x'

Itis clear that these rules are in accordance with the requirements of
§1. Hence the set of linear forms defined on E, constitutes a vector
space. Furthermore every linear form can be expressed in one, and
only one, way as a linear combination of the n forms (x!,x2,...,x").
This system of » forms thus constitutes a basis for the vector space
under consideration which is therefore n-dimensional.

The vector space (Eyy) of the linear forms defined on E,, and conform-
ing to (1) and (2) above, is called the vector space dual to E,,.

12. Dual of the basis. Corresponding to each basis (e;,e5,...,e,) of E,
we have set up in a canonical manner a basis (x',x2,...,x") of EY,
This will be called the dual of the basis (e)).t If a change of basis is
effected on E,,

i=n IS=n _
ej’ = "Zl A}reb e; = j‘zl A{ ej', (] 2.1)
T The dual basis arrived at in the manner indicated obviously depends

upon the choice of the vector x. The vector space E} dual to E,, is, however,
uniquely defined by E,,. (T.)
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a corresponding change of basis defined by (9.3), (9.4) is simultane-
ously effected on E, such that
Bt . a
x = fz‘,l Apxty o0 2 = 5 Al (12.2)
Under this change of basis the components y} of the form y}(x)
transform according to the relations

i=n J'=n :
=T A4, = P A{ y}. (12.3)

It is clear that each basis of E,; can be considered as the dual of a
basis in E,. Let (*",y*%,...,y*") be an arbitrary basis in E*. The
forms (x!,x%,...,x") can be related to this basis as follows

J'=n :
=3 ALy,
J=1
The system of n vectors e; defined by
i=n ¢
ej' = E Aj' e,—
i=1

is linearly independent and consequently forms an alternative basis
to ¢;in E,, for which the dual basis in E}, is (*!', y*2 ..., y*").

13. Biduality. Assuming the existence of the vector spaces E, and
E,’ referred to the dual bases (e;) and (¥*' = x), let us consider the
space E,* dual to Ej. Designate by z}™ the elements of the basis in
E,'* which is dual to the basis (y*') in E,}. Since the basis (y*') is dual
to (e;) and (z;'*) is dual to (y*)), it follows from (12.1) and (12.2) that
the e; and the z;* transform according to the same rule. As a conse-
quence, if each vector x of E, given by

i=n

x=3 xle (13.1)
i=1

is made to correspond to the element z** of E* given by

i=n
= 3 i, (13.2)
=1
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then this correspondence is independent of the choice of basis. It is also
manifestly /inear, in the sense that addition and scalar multiplication
remain invariant: to the sum of two elements in E,, there corresponds
the sum of two elements in E,* and to the product of an element in
E, by « there corresponds the product of an element in E, ¥ by «.

Since there is no intrinsic interest in the elements of E; * we find it
convenient in what follows to identify the vector space E,;* with E,,and
to consider as identical the elements x and z** which correspond
according to (13.1) and (13.2). In particular, the basis (z'*) is identi-
fied with the basis (e;) so that the dual basis relation becomes a
reciprocal one.t

t An example drawn from elementary vector analysis may help to clarify
the concept of duality.
Let us write
F(x) = F-x,

where F is an arbitrary vector. Then the function F(x) clearly satisfies (10.1)
and (10.2) and is therefore a linear form defined on 3-dimensional Euclidean
space (E;). Introducing the components of F and x we have

X= x;l+x3j+x3k and F = F1i+le+F3k,
whence
F(x) - x;F,+sz2+x3F3.

The set of all functions F defines the space, E¥, dual to E;. The elements
of EF may alternatively be represented as y*, z*, etc., where

YE) = ¥4 x = x, 97 +x i a3 08

These functions y*, z*, etc., obviously satisfy (1) and (2) of § 11 and therefore
EZ is a vector space with the basis (x;,x,,x3).

When we go on to define bidual spaces it is clear that the special rule for
the formation of elements introduced above cannot be used precisely as
before since y* is not a vector in the normal restricted sense of the term.
(It is, of course, an element of E3* and therefore a vector according to our
general definition.) Theelements of thedualspace, E5 *, of EF may, however,
be defined by

20N =gt +ra +yidt

and if we further specify that
2 =1i,etc,
then the basis of E; is bidual to itself and E3™* is identical with E;. (T.)
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IV. EUCLIDEAN VECTOR SPACES

14. The summation convention. It is apparent in all the formulae
given so far that summations are always effected with respect to an
index repeated twice, once as a superscript and once as a subscript.
For ease of notation Einstein proposed that in these circumstances
the summation sign should be suppressed and the following conven-
tion adopted:

The Einstein summation convention: Whenever, in the same term,
the same index appears twice, once as a superscript and once ds a
subscript, a summation is implied over all terms obtained by letting that
index assume all its possible values, unless an explicit statement is
made to the contrary.

With this convention formulae (9.3) and (9.4) take the form

=dAlxt, x'=Alx, (14.1)
whilst formulae (12.3) can be written
yi=Apyi,  yi=A{y}. (14.2)

The reader will easily convince himself that, far from making
algebraic manipulations more difficult to follow, such a convention
greatly simplifies the presentation and understanding of the formulae
of tensor calculus once some familiarity has been established.

15. Definition of a Euclidean vector space. Consider first the vector
space of elementary geometry. For each pair of vectors x, y the process
of scalar multiplication determines a number denoted by x - y whichis
called their scalar product. Scalar multiplication has the following
properties:

(@) x+y = y-x (commutative property);

(5) (ex)+y = x-(xy) = x(xy) (associative property with respect to
multiplication by a scalar «);

(¢) x-(y+2) = x'y+x-z (distributive property with respect to
vector-addition);

(d) If x+y = 0 for arbitrary x then y = 0.
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Consider, in general, a vector space E,, defined over the field of real
numbers. Suppose there exists a rule of composition which gives for
every pair of vectors x, y, a correspondence with a real number x-y
having the properties (a), (6), (c), (d).

We then say that E,, is a Euclidean vector space and that the rules of
composition (@), (b), (¢), (d), define scalar multiplication in that space.

It follows from (a), (b), (¢), that the scalar product of two vectors is
a bilinear form with respect to these vectors; that is a linear form with
respect to either of them. From the commutative condition it follows
that this bilinear form is symmetric in the two vectors. We now
investigate how the scalar product may be expressed analytically.

Let the Euclidean space E,, be referred to an arbitrary basis (e;) and
let

X = xieb y=)e

be any two vectors in E,. Forming the scalar product and allowing
for (b) and (c) we find that
x-y = x'yleye;
We are thus led to consider the scalar products of pairs of basis
vectors, and find it convenient to write

e e = g (15.1)
Due to the commutative property of the scalar product, the quan-
tities g;; are symmetric in their indices:
&y = &ji-
Using this notation we have:
x'y = gyx'yl
It remains to consider the implications of (d). If x+y = 0 for any x
we have for arbitrary values of the x'

gyx'y = 0.

If, in this equation, we put successively xy, x,..., X, €qual to one with
the remaining x’s zero the following relations are obtained:

g.(f)“j = 0.
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These constitute a system of # linear equations in n unknowns which
admit only the solutions ' = 0 according to (d). It follows that

deth # 0,

and the bilinear form is said to be non-degenerate. This may be
stated as follows:

THEOREM: The scalar product of two vectors in a Euclidean space
is given by the symmetric, non-degenerate, bilinear form

x-y = gyx'y, (15.2)

where the g; represent the scalar products (e;"e)) of the basis vectors.
Itis clear that any sub-space of a Euclidean space is itself Euclidean.

16. Orthogonality and the norm. Let x and y be two vectors whose
scalar product is zero. In the special case where the Euclidean space
under consideration is that of elementary geometry, either x or yis
zero or they are mutually perpendicular; in either case they are said
to be orthogonal. In the general case of an n-dimensional Euclidean
space x and y are again said to be orthogonal if

xy = 0. (16.1)

The scalar product of the vector x by itself is called the norm (or
square) of the vector. We write

Nx = (x)® = gyx'x’. (16.2)

The norm of a vector x in Euclidean space is thus given in terms of
its components by the quadratic form (16.2). A vector whose norm is
equal to 1 is said to be unitary or normalized.

In the space of elementary geometry the norm of a vector is strictly
Positive and it vanishes only if the vector is zero. If the coefficients gy
of the quadratic form (16.2) can take any value this is no longer true.
We are therefore led to the following definition:

A vector space is said to be properly Euclidean if it is Euclidean and
the norm is strictly positive for every non-zero vector.

In order that the quantity (16.2) be strictly positive for every non-
Zero vector it is both necessary and sufficient that the quadratic form
g;x'x’ be positive definite.
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17. The Schwarz inequality and its applications. Consider a proper
Euclidean space P,. The norm Nx being always positive or zero, its
square root is termed the modulus of the vector and we write
V(Nx) = |x|.
A fundamental inequality exists between the moduli of two
vectors of P, and the modulus of their scalar product:
Ix-y| < |x][y]. (17.1)

This is known as the Schwarz inequality.
In order to establish this inequality we start with the vector Ax +y,
where A denotes an arbitrary real number. We have

(Ax+y)? = x*+2Xx-y+y> (17.2)

Since the left-hand side is necessarily positive or zero, the discriminant
of the quadratic expression in A appearing on the right-hand side can
only be negative or zero. We therefore have the inequality

(x-y)? < x%y%

which is equivalent to (17.1).
An inequality relating to the modulus of the sum of two vectors can
easily be derived from (17.1). Putting A =1 in (17.2)

(x+y)? = x>+ 2x-y+y>

Maximizing the absolute value of x-y using the Schwarz inequality
gives
x+y)* < |x]2+2[x] [y]+ |y = (x[+|yD?
hence
|x+y] < |x|+]y]. (17.3)

Finally the Schwarz inequality enables us to define the angle
between two vectors of P,. In elementary geometry the angle ¢
between two vectors is related to their scalar product by

x-y = x| |y|cos¢,
or cos¢ = x-y/|x] |yl.
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Returning to P,, the Schwarz inequality shows that for two non-
zero vectors x, y of P,
x-y/Ix] |yl < L.
It follows that in the range (0,) there is one, and only one, angle ¢
such that
X'y
IxlTyl
This angle is by definition the angle between two vectors x and y of

P,. If x and y are defined by their components it follows from (15.2)
and (16.2) that
g uxfyl

Vigg®x) /(g 7'y

cos¢g = (17.4)

cosg = (17.5)

18. Orthonormal systems of vectors. Let P, be a proper Euclidean
n-dimensional space. A system of r vectors of P,, is said to be ortho-
gonal and normalized (or, more briefly, orthonormal)if all the vectors
in the system are normalized and mutually orthogonal. If (e, e5,...,€,)
are the vectors of the system then

ere ;=38 (iLj=12..,n, (18.1)
where 8y=0 ifi#j
=1 ifi=j

It is clear that every orthonormal system of vectors is necessarily
linearly independent. If this were not true there would exist a relation
of the form

i=r

> aye; =0, (18.2)

where the o;were not all zero. Suppose o, for example, to be different
from zero. Taking the scalar product of the members of (18.2) with
€;, we find using (18.1) that

a1=0,
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which is contrary to our hypothesis. It follows that the number of
vectors of an orthonormal system is less than or equal to the number
of dimensions of the space n. If r = n the orthonormal system under
consideration forms an erthonormal basis of P,,.

19. The Schmidt orthogonalization procedure. One can ask whether,
given an arbitrary integer r < n, orthonormal systems composed of »
vectors can be found. We shall now show, using a method due to E.
Schmidt, that such systems can indeed be found.

Let (x,X5,...,X,) be a linearly independent system of order r in
P, and let U, be the corresponding vector sub-space. It is always
possible to construct an orthonormal system whose vectors are
linear combinations of the vectors x; in U,. To this end we define the
set of vectors y; as follows:

Y1=%
Y2 = Myi1+x;
¥s = Ay +Aya+x; ’

-------------------

¥, = Ay, + 2y, 4. 4+ A Ly, +x,

where the A} denote coefficients which we propose to determine in
such a way that each y; is orthogonal to all the preceding y;’s. Using
the relation
Y2'¥1 =0
we deduce
Myi+x,'y; = 0 where y} # 0.

This determines A} and we obtain a y, which is both orthogonal to
¥ and non-zero, because the system (yy,X,,...,X,) is linearly inde-
pendent.

Using the relations

31 =0, Ya'¥y2 =0,
we obtain
Aiyi+x3'y; =0 withyf # 0;

R§y§+x3-y2 =) w1thy§ #=.0,
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This determines a vector y; which is orthogonal to both y; and y,. It
is also non-zero because the system (¥;,¥3,X3,...,X,) is linearly inde-
pendent according to the definition of y,.

Continuing in this way a system of vectors (¥4,¥2,...,¥,) is ob-
tained, none of which is zero and which are all mutually orthogonal.
Dividing each of these vectors by its modulus we obtain the required
orthonormal system of vectors

g I
il

20. The space P, referred to an orthonormal basis. Let a proper
Euclidean space P, be referred to an orthonormal basis (e;,e,,...,e,)
so that

€;

€;'e; = 511-. (20.1)
Writing i
x = x'e
and taking the scalar product of each side with e;, we find
i = x-e. (20.2)

Since the basis is orthonormal the scalar product of two vectors is
given by

x'y = x P 4222 4.+ XY, (20.3)
and the norm of a vector becomes
Nx = ()24 ()% +...+ (")~ (20.4)

Equations (20.3) and (20.4) will be recognized as the generalization
to n-dimensions of the familiar formulae of elementary vector
analysis,

We note, moreover, that it is always possible to bring a given
positive definite form g;x'x/ into the form of (20.4) by a suitable
change of basis.

21. Contravariant and covariant components of a vector. Let E, denote
a Euclidean vector space which is referred to an arbitrary basis
(e),e,,...,e,). We have seen in the preceding section that, if this basis
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is orthonormal, the components x° of the vector x are equal to the
scalar products of x by the vectors of the basis, If the basis is not
orthonormal this is no longer true. We are thus led to the following
definition.

DEFINITION: Given an arbitrary basis (e,,e,,...,e,) of the Euclid-
ean vector space E,,

(1) the term contravariant components of a vector x referred to this
basis is applied to the numbers x*' which are such that

x = x'e, (2L.1)

(2) the term covariant components of a vector X referred to this basis
is applied to the scalar products

X; = X*e; (21.2)

In what follows, contravariant components are always represented
by means of superscripts and covariant ones by subscripts. The
reasons for this distinction will appear shortly (§23).

The covariant components of a vector may be determined readily
from a knowledge of its contravariant components. From (21.1) we
have

x = x'e;.
Forming the vector product of each side with e, it follows that
x; = e;re;x/,
which becomes, on introducing the g
X = guxj t=1,2.....n. (21.3)

Conversely, let us seek to express the contravariant comppnents of
a vector in terms of its covariant components. We require the solution
of the system of n linear equations in » unknowns x’ given by

guxj = X (21.4)

From the considerations of §15 the determinant of the g is different
from zero and the system (21.4) is therefore a Cramer’s system.} In

t A system of linear equations with a unique solution. (T.)
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the following we write the determinant of the g;;as g and the coefficient
of g;;in the development of g as o'; using Cramer’s rule, it follows

that
o ji

x=—x.
g d
Writing gl = - (21.5)
we get the fundamental relations
x)=glix, (21.6)

Since the determinant formed from the elements g;; is symmetric,
we have o'’ = ¥ and consequently the quantities g defined by (21.5)
are also symmetric with respect to their indices. Moreover, from a
well-known result of the theory of determinants

det o/ = g"-l,

1
hence detg¥ = é 217

22. Expressions for scalar product and norm in terms of covariant
components. The use of covariant components leads to particularly
simple expressions for the scalar product and norm in terms of the
components referred to an arbitrary basis.
Substituting (21.3) into the relation
x-y = gyx'y/
it follows that
xy=xp' = x'y. 22.1)
We also find, for the norm of a vector x,
Nx = x'x;. (22.2)
On the other hand, the scalar product of two vectors and the norm

of a vector can be expressed uniquely in terms of the covariant com-
ponents of the vectors. Using (21.6) we have

xy = glxy; (22.3)
and Nx = glx;x; (22.4)
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Because of (21.7) the bilinear form (22.3) and the quadratic form
(22.4) are both non-degenerate.

23. The effect of a change of basis on the contravariant and covariant
components of a vector. We have just seen that if the Euclidean vector
space i8 referred to an arbitrary basis the scalar product of two
vectors X, y can be expressed in the form

xy = x;).

If x is a constant vector, the scalar product x-y defines a linear
form with respect to the arbitrary vector y. This linear form has the
components x; relative to the basis (»',52...,»") which is dual to
(e1,€2...,€,).

Consider a change in the basis of E, defined by

@ e;= Al'ey, () ey = Abe, (23.1)

We have seen that the contravariant components x’ of a vector trans-
form according to the formulae

(@) x' = Abx?, () x" = 4 X\ (23.2)

As for the covariant components x;, we have seen that these transform
according to the formulae (12.3) for the components of a linear form,
thus

@ x;=Af xp, () xp = Abx,. (23.3)

It will be noted that the linear expressions appearing on the right-
hand side of (23.1) (4) and (23.3) (4) contain the same coefficients.
This is also true of (23.1) () and (23.3) (). On the other hand, (23.2)
(@) and (23.1) (b) have a similar form. These similarities justify our
use of the terms covariant and contravariant.

24. Euclidean vector spaces and duality. If x is a vector in the Euclidean
vector space E, we have seen that the scalar product x-y, where y is an
arbitrary vector, enables a correspondence to be set up between the
vector x and a linear form defined on E,. Conversely, any linear form
defined on E, can be considered as the scalar product of a fixed
vector x with an arbitrary vector of E,,.
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If the space E,, is referred to an arbitrary basis (e;) and the dual
space E,f to the dual basis (x), the element in E, which has the com-
ponents ¥ corresponds to the element in E, with the components ;.
These components are linked by the relations (21.3) and (21.6), i.e.

=gy, VY=g (24.1)

Thus, the existence of the scalar product enables us to set up a one-to-
one correspondence between the elements of E, and E,, and the
components of these elements bear a simple relationship to one
another. The Euclidean vector space E, and its dual E;’ are therefore
considered to be equivalent.



CHAPTER II

Affine Euclidean Point Spaces

25. Definition of an affine space. The points of the space & of elemen-
tary geometry define vectors — the position vectors of elementary
vector analysis. These obviously satisfy the relations

—_ =

AB = —BA,
— —> —>
AB = AC+CB.

Choose an arbitrary point O in &, then each point 4 of ¢ is associ-
ated with a displacement vector a defined by

—_
a = 0A.

Conversely, given an arbitrary displacement vector a, there exists a
point A such that
—

OA = a.

In general, consider a manifold of points, &, and suppose that to
each pair (4, B) of points of & taken in order there corresponds a

—
vector of an n-dimensional vector space E, denoted by AB. Assume
this correspondence to have the following properties:

— —
(@) AB = —BA;
— — e—
(b) AB = AC+CB;
(c) if O is an arbitrary point in & then, to every vector a of E,,
there corresponds a unique point A4 such that

—
OA = a.

When these conditions hold we say that the manifold & is an affine
point space of n-dimensions. We shall denote it henceforth by the
24
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symbol &,,. The space &, will be termed real or complex according to
whether the associated vector space E, is defined over the real or
complex field. We shall limit future considerations to real affine

spaces.

—-

Given a vector denoted by 4B we say that A is the origin and B the
extremity. Condition (¢) consequently states that, for all a, the speci-
fication of a in E, and an origin O in &, completely determines the
extremity A.

From the above hypotheses it is clear that

—
AA =0,

26. Reference frames of affine spaces. DEFINITION: Given an affine
space &, then an arbitrary point O of €, and a basis (eq,€5,...,e,) of
the associated vector space together constitute a reference frame of € .
The point O is called the origin of the reference frame.

A reference frame will henceforward be represented by the nota-
tion (0, e4,€5,...,€,) Or, more concisely, by (0,e;).

Let A denote an arbitrary point of &,. The components of the

vector -CT; with respect to the basis (e;) are called the coordinates of A
in the reference frame (O, e;). By virtue of (c) there is a unique cor-
respondence between the sets of 7 real numbers (x',x?...,x") and the
points 4 of &,,. - y :

Given two points 4 and B of &, defined by their coordinates _(f,_ )

and () in the reference frame (O, e;), we wish to define the vector AB.
From (@) and (b) we have

AB = AO+OB = OB—-0A.

—> r
From this we deduce that the vector AB has the n quantities (»'— x')
as components with respect to the basis (e;).

27. Change of reference frame. We wish to determine the relations
that exist between the coordinates of a given point M of & , referred to
two distinct frames.
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Let (O,¢;) and (O:’, e;) be two reference frames of &,. In order to
locate each frame with respect to the other we refer the origin of each

frame to the other and the vectors of each basis to the other basis
We have :

— —
00’ = d'e;; 00 = de;
e = Ale; e; = Af ey

Let M be an arbitrary point of &, whose coordinates are x' in the
frame (O,e;) and x/" in (0,e;). We have

—_— o
OM = x'e; (27.1)
also
—_— —> —
OM = 00'+0'M = d'ej+x'e; = (d'+Abx")e;. (27.2)

Identit_'ying the right-hand sides of (27.1) and (27.2), and comparing
coefficients of e;, we get the transformation formulae

x' = o'+ Al x, (27.3)

!nterchanging the roles of the two reference frames we can also
write

x' = of + Al X', (27.4)

28. Affine sub-spaces. DEFINITION: Let ¥ be a part of an affine

—

space &, such that for any point O in ¥ the set of vectors OM (all M
in ¥") constitutes a vector sub-space of E,. ¥is then said to form an
affine sub-space of &, '

A sufficient condition for ¥ to be an affine sub-space is that, for a
—_—

particular point O, the vectors OM constitute a vector sub-space
V. of E,. If O’ is any other point in ¥

—_ — —
O'M = OM-00’
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— — —_—
and since OM and OO’ both belong to ¥,, so must O’ M. Conversely,

given a vector a of ¥, there exists a unique point M belonging to ¥~
which is such that

—_— —>

OM = 00’ +a,
—
which is to say O'M = a.

It is clear from this definition that if the vector sub-space is r-dimen-
sional then the corresponding affine sub-space is an r-dimensional
affine space. We denote this by ¥,.

As an example, consider the three-dimensional affine point
space €5 of elementary geometry. The one- and two-dimensional
affine sub-spaces are then simply the lines and planes of &5.

29, Euclidean point spaces. DEFINITION: An affine point space which
is associated with a Euclidean vector space is called a Euclidean point
space.

If the associated vector space E, is properly Euclidean the space
&, is also said to be properly Euclidean. Furthermore, the reference
frame (O, e;) is orthonormal if the basis (e;) of E, is orthonormal.

The point space &5 of elementary geometry is an obvious example
of a three-dimensional proper Euclidean point space.

The concept of distance may be introduced through the following

definition: The square of the distance between two points 4 and Bin
—_ —

&, is the norm of the vector AB (or of BA) so that

— —_
N(AB) = (4B)* = (4B)~

If the space is properly Euclidean, (4B)? is positive definite for two
distinct points 4, B so that the square root is always real and defines
the distance AB between the points 4 and B. If 4, B, C denote any
three points in a proper Euclidean space we have

—_ = —
AC = AB+ BC,
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and applying the inequality (17.3) it follows that
AC < AB+BC. (29.1)

This is known as the triangular inequality.

Let us return to the general case of a Euclidean point space which
we suppose to be referred to an arbitrary frame (0,e;). We wish to
express analytically the square of the distance between two points,

If M has the coordinates (x’) and N the coordinates () the vector)\—HV

has the components (y'—x"). Accordingly, using the notation of
Chapter I

P
(MN)* = (MN)? = g;(y'~x)(/ - x)). 29.2)

Supp9&e the point N to be in the immediate neighbourhood of M
and let its coordinates be (x'+ dx’). The square (ds)? of the distance
between M and N is therefore given by the quadratic differential form

(ds)* = gydx'dx?, (29.3)

where the g;; are constants with respect to the (x). It is clear, in
particular, that if &, is properly Euclidean and is referred to an
orthonormal reference system, then

(ds)? = (dx"Y+ @D+ ...+ (dx")> 29.4)

The reader w111 recognize this as the generalization to # dimensions of
the expression for (ds)?in terms of orthogonal coordinates in elemen-
tary geometry.

CHAPTER III

Tensor Algebra

1. CONCEPT OF A TENSOR PRODUCT

30. Tensor product of two spaces. Let us consider two vector spaces
E,and F, of n- and p-dimensions respectively and associate with them
a vector space of dimensionality np denoted by E,® F,,. If x and y
belong to E, and F, respectively we can set up a correspondence
between the pair (x,y) and an element of the vector space E,® F,
denoted by x ® y. This correspondence has the following properties:

(@) If x, %y, X, belong to E,, and y, ¥y, ¥, to F, then the distributive
law holds with respect to vector addition:

X®@(@;+y2) = XQy;+x8Y,,
(X1 +X)®y = x; @y +X,QY.
(b) If « is an arbitrary scalar, the associative law holds:
X®Y = XQay = a(X@Y).
(©) If (x4,%3,...,X,) and (¥4, ¥2,...,¥,) are any two bases of E, and
F, respectively the np elements
50y, G=1,2..,me=12,...,p)
of E,® F, form a basis in that space.
When these conditions hold we say that the vector space E,® F), is

the tensor product of the vector spaces E, and F, and that the element
X ®y is the tensor product of the two vectors x and y.

31. Analytical expression for the tensor product of two vectors. Let
us see how the three properties given above allow the formulation
of a rule of composition for the two vectors x and y. Choose any
three bases (e), (f.), (e;,) in the vector spaces E,, F, and E,® F,
(i=1,2,...,n;2=1,2,...,p). According to (c) it is possible to write

o®f, = & GLY
29
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Suppose that
X= x'e,,
(31.2)
y =y,

are two arbitrary vectors belonging respectively to E, and F),. Taking
the tensor product of the right-hand sides of the equations (31.2) and
using properties () and (b) we get

x®y = x'y%e;®f, = x'y%e,. (31.3)
It follows that the quantities x’y* are the components of the tensor
product x ® y with respect to the basis €;,.

On the other hand, does the composition rule defined by (31.3)

satisfy property (c) ? Let (x;) and (y,,) be two arbitrary bases of E, and
F,; referring the vectors e, to the basis (x;) we have

e, = aix;
Similarly
fg = b;ya.
Each element T of E, ® F,, can be written
T = e, = #oRf, (31.4)
so that

T = *Paix,® bRYe = r"%ﬁ,bﬁx,@ ¥us

Therefore T can be expressed as a linear combination of the ele-
ments x;®Yy,. If T =0, equation (31.4) shows that #*=0, and the
system of np elements x;®y, is linearly independent, which shows
that (c) is satisfied. This can be expressed formally as follows:

THEOREM: If the spaces E,, F,, E,®F, are referred to certain
bases related according to (31.1) then the only composition rule satis-
[fring the properties of §30 is that which, for a vector x with components
x' and a vector y with components y%, gives a correspondence with
the element of E,® F, having components x'y™.

32. Tensor products of several spaces. Tensors. Consider three vector
spaces E,, F,, G, with n, p, ¢ dimensions respectively. If x belongs to
E,,yto F,,zto G, then theelementx®y of E, ® F, can be multiplied
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tensorially with the element z of G,. The element [x®y]®z of a
vector space H is thus obtained. We assume that the same element of
H is obtained by taking the tensor product of x withy®z, i.e.

x@yl®z =x0[y®z] (32.1

which is the associative property of tensor products. It is only neces-
sary to assume this property for the basis vectors, then (32.1) follows
because of the distributive properties (@) and (b) above. We denote the
common value of the two sides of (32.1) by x® y ® z and the vector
space H will be represented by E, ® F,® G,.

Given a finite number r of vector spaces E,,, F,, G, ..., the definition
of their tensor product follows immediately. As every element of
E,®F,®G,®... is not necessarily the tensor product of r vectors
belonging respectively to E,, F,, G,,...T we formulate the following
general definition:

DEFINITION: Each element of the vector space

E,®F,8G,®...

constructed from the spaces E,, F,, G, is called a tensor.

1I. AFFINE TENSORS

33. Affine tensors attached to a vector space. Given an n-dimensional
space E, it is possible to construct the tensor product of ¢ spaces
identical with E,. The vector space of n? dimensions thus obtained
will be denoted by E? and called the gth tensorial power of E,. As the
vector spaces E, and E? are referred respectively to the basis vectors
(e)) and (e, ;,... ;) we adopt the following convention which generalizes
(31.1)
e, Re,8¢€;,...0€;, = €, i

If X(1y, X(2)s -++»X(q) denote any g vectors of E, with components
X{iys X{ys ++-» X () TESpECtively, then

X(1)®X2)® .. OXg) = X X(yyee - X Chis..ote (331

1 It may be the sum of several such expressions. (T.)
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Consider the vector space E, dual to E, referred to the basis (x)
dual to (e;). Starting from these two spaces we can carry out the
following operation: take arbitrary tensor powers of E, or E, and
multiply them tensorially amongst themselves. We then obtain
tensor products of the type

E’sﬂ)® E:(81)®E’£FI) ®...0 E:(b) ®E’£r-). (33.2)

DEFINITION: A tensor is said to be an affine tensor attached to the
vector space E,, if it is an element of a vector space obtained by form-
ing a vector product of spaces identical with E, or its dual.

If (ry+rat...trp)+ (s +52+...4+5,)=q, the vector space
(33.2) is g dimensional. Each element of (33.2) is thus called an affine
tensor of orderf gq; it is (ry+ry+...+r,)-fold contravariant and
(s1+52+...+s,)-fold covariant. Each element of E? is a contra-
variant affine tensor of order g and each element of E,f ) is a covariant
affine tensor of order g. In particular it is often said that the elements
of E, are contravariant vectors whilst those of E, are covariant
vectors. Naturally this terminology varies according to which of the
spaces E, and E, is considered to be given first.

34, Components of an affine tensor. In order to represent the com-
ponents of different affine tensorsit is convenient to introduce a special
notation which will now be explained. We consider, for example, a
tensor of order ¢ which is an element of the space E4~2 @ E}@, A
basis of this vector space is formed by the set of elements

€. ®e,®...0¢, ,@x"@x"=¢,, .k (34.1)

where both sides have the same suffices and superfixes. Let T be a
tensor element of E¢~2® Ex® and refer it to the basis (34.1). In
order to preserve the summation convention we represent the com-
ponents of T by £/l 5o that

ot A L b (34.2)

The indices iy, i5,...7,_, aresaid to be contravariant and the b1ty
are said to be covariant. Mere inspection of the components of a

T The term rank is often used in this context (T.)

T = Ifxil...l'u—l
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tensor is therefore sufficient to determine how many times it is contra-
variant and covariant. Using (34.1) and (34.2) we deduce

T= E (Z’hh.“f‘_lh—ﬂ.eh)®eh®"'®eh—l®x’.—l®xh
{7908 "R

where, for clarity, the summation signs have been inserted.

Each term of the summation on the right-hand side is the tensor
product of g contravariant or covariant vectors and this sum has 7!
terms.

Thus every affine tensor of order q is the sum of at most n® " tensor
products of g contravariant or covariant vectors.

For example, if the tensor T, an element of E@, is the sum of
p < n?" ! tensor products of ¢ vectors it can be expressed as the sum
of p terms in the form of the right-hand side of (33.1) and its com-
ponents will be the sum of p terms in the form

i i i
xﬁ) X(.z) cee I(z,).

It is clear that, whatever the type of tensor, all its components have
the same form.

35. Change of basis for the components of an affine tensor. Let us again
consider a tensor T which is an element of the space E&Z~2 @ EF @,
If the space E,, is referred to the basis (e,), Ey will be referred to the
dual basis (x) and E~? ® E*® to the basis

e, ®...0e, ,x" ®x" (35.1)

Now refer E, to another basis (e;)) defined by
e;=Aley, ep = A (35.2)
The space E{~? ® E;¥® will then be referred to the associated basis
¢, ®¢,®...0¢, ,0x " @x7", (35.3)

We wish to determine the components #/**+*~%, _; of T with respect
to the first basis in terms of the components /%', _ . referred
to the second.

3
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To this end suppose that T is the tensor product of g contravariant
or covariant vectors. Then

ti:l‘l...lw—l

F} i i P
iemiis = X(DXQ@)+ - ¥ G- X@q— Vi1 X (@13 (35.4)

Prived e o= XBXE X X gty e X @re  (35.5)

However, using the transformation formulae for the components of
a contravariant or covariant vector, we have

i i g i*e—1
M = A/ Xetes  Xgonie = AR5 X1y ote
xty = Apxfjete;  x = A{*7'x etc

Hence

Bt i = M AT Ty (356)
or, interchanging the roles of the two bases we obtain

tj’lj'l I J'«_’j'c—l_rl - A{:l o Aj'!' tl'l [ ia—'lq—: i (35.7)

As each tensor is to be regarded as the sum of p tensor products and
the relations (35.6) and (35.7) hold for each component of T, these
relations also hold for the components of an arbitrary affine tensor
which is (g—2)-fold contravariant and two-fold covariant.

Using (35.6) and (35.7) the general transformation rule for the com-
ponents of any tensor may easily be derived. Itisclear that a repetition
of the above reasoning will, in particular, give the following expres-
sions for the components of a purely contravariant tensor:

iide o gh gy (P S (35.8)
prlses m gfs afe by (35.9)

The components of a covariant tensor transform according to
thote = AL ALY il
by, e = AbscAB by 1 (35.11)

These transformation formulae can be interpreted as follows. Let
E, and E{? be referred to associated bases (e;) and (e, ® ... ® ¢;) and
consider a system of n? quantities "% which transform according
to (35.8) and (35.9) on passing from the bases (e)), (¢;, ®€;,®...® e;)
to (e), (¢, ®...® ;). A correspondence can be set up between
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these quantities and a tensor T which has them as components with
respect to the basis (e, ®...®e;). The transformation rule then
defines the same tensor T with respect to an arbitrary basis

e/, ®...0ep).

THEOREM: In order that the n? quantities 1"+ associated with a
basis (e, ®...®¢;) of the space E? can be considered as the com-
ponents of some contravariant tensor it is necessary and sufficient that
the system transforms according to (35.8) and (35.9) under a change of
basis.

Similar statements hold for the components of a mixed tensor of
any kind.

36. A criterion of tensor character. It is easy to deduce from the pre-
ceding results a criterion of tensor character which is of great practical
use. By way of a change we shall consider the case of a purely covariant
tensor.

THEOREM: A necessary and sufficient condition for a system of n?
quantities t;, _; referred to a basis (x" ® ... ® x*) of the space E;¥® to
be the components of a covariant tensor is that for any contravariant
vectors [X(1), X (). - - X(q] with components x{ ) the quantity

i i i
tivie... 1 X (1) X(2) - -+ X(g)

shall remain invariant with respect to all changes of basis.
We establish first that the condition is necessary. If the #;,;, . ; are
the components of a covariant tensor they transform according to

tai.to = AL . Al by, p,

and the components of the g given contravariant vectors transform
according to

i b K. Y g e
X = AgaX()y e X = AR X
Hence we deduce

- bl EEa & &
Tiis.. 10X O Xy -+ Xboy = AL Al By p K1) X (-
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Since A{ A}, represents the components of the e, referred to the e
we have

: . 0 ifyEE
Al Ab = §) = ;
It follows that
U e X) o X0 = By g oXlye oo X (36.2)

Conversely, suppose the equality (36.2) to be satisfied for the
arbitrary set of contravariant vectors [X(1)...X¢g]. Then the com-
ponents x{}c) of these vectors transform according to the formulae

Xl = Allxtys i xlg = Afexfy,
We therefore have the relation
’I: o ,,xi‘n ases x{;) = A::l . .A{;'ff‘ " ..j'.x{ll)' e xf:,).

It follows that the #;,  ;, transform according to (35.10). This com-
pletes the required proof.

The above theorem can immediately be generalized as follows:

THEOREM: In order that a system of n” " quantities t;, ;.. referred
to the basis (x"®...@ x"®...® x") of the space EX¥"?* can be
identified with the components of a covariant tensor, it is necessary and

sufficient that, for p arbitrary contravariant vectors (X1 X(2ps-+ 2 X))
with components x{;,, the quantities

f »
TR . (e

shall be the components of a covariant tensor of order q.

Let (y(n,ym, . ':Y(q)) be q arb1tr&ry contravariant vectors with
components y{;. In order that the quantities #;, ;... .. in,, Shall be
the components of a covariant tensor of order p+g it is necessary and
sufficient that the quantity

k .
Ho...lologroe tog e X Q)+ - XC) VS« o TS

shall remain invariant with respect to changes of basis. But this con-
dition is also the necessary and sufficient condition that the quantities

i »
B8, by outmge 0LV = < X Lpy
shall be the components of a covariant tensor of order g.
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Analogous statements can be made for the components of an affine
tensor of any kind.

37. Affine tensor algebra. We have already met, incidentally, some
algebraic operations which permit the formation of new tensors
from known ones. Let us revue these briefly:

(@) Tensor addition. Given two tensors of the same order and of
the same kind which are both elements, for example, of E{9~2 @ Ex¥®,
the procedure of vector addition generates a third tensor of order g
and of the same kind which is called their sum. If the two tensors
under consideration have the components #*:%% . and

it f«--,'_! 1, Tespectively their sum obviously has the components

sh...lg—l -5 fh"'lr','

i1...0fe=2
1l IR, il T

(b) Tensor multiplication. Given two tensors of order g and ¢’
which are of any kind, their tensor product generates a tensor of order
q+q'. If, for example, two tensors have the components ¢+,
and u;, "1+, then their tensor product has components

ph aws l-—:l_! i[+liq+. voodape” til wes .fg-:in. uluxi“. N P i

Consider any tensor which is an element, for example, of E{?. The
multiplication in E® of this tensor by a scalar is a particular case of
tensor multiplication if the scalar (or invariant) is regarded as a tensor
of zero order. We shall adopt this point of view in the future.

38. Contraction of indices. Besides the two fundamental operations
given above there exists a third, the contraction of indices, which
permits the derivation of new tensors of order (g—2) from a given
mixed tensor of order g.

Consider first a mixed tensor of order 2 having the components #,/.
We now show that the quantity ¢/, obtained by summing the com-
ponents with identical contravariant and covariant indices, is
invariant with respect to a change in basis.

In fact, on changing the basis we get

t} = AF dft,)*
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But, from (35.1)

i i [0 k2K
A¥ 4L = 8 =
i {1 ifk’ =K,
which gives
) =4~

Consider next a mixed tensor of order g and choose a pair of in-
dices, one covariant and one contravariant. In order to simplify the
notation let these be the first two indices of the tensor

iz
ihie

Let i) and i; be put equal to i and sum over this repeated index. We
now show that the quantities

fr'-r....i.
thus obtained are the components of a tensor of order (g—2). Let

[X@3), -+ s X(g)] be (g —2) arbitrary contravariant vectors. In virtue of the
results of §36 the quantities

fhh'. e x{g) &% I{;)
are the components of a mixed second-order tensor. It follows that
for any vectors [x3)...X(,] the quantity

ft’:....f.xfb)- SR
is invariant with respect to changes of basis which demonstrates the
tensor character of #/;, ;.

The operation which consists in equating two indices, one contra-
variant and the other covariant, and summing over their common
values is called contraction. The contraction of two indices in a tensor
of order q generates a tensor of order (g—2).

It is clear that if the tensor under consideration has more than one
pair of indices, one covariant and the other contravariant, the opera-
tion of contraction can be repeated.

39. Contracted multiplication. A general criterion of tensor character.
One frequently encounters tensor products where the contracted
indices belong to different factors of the product. We shall call this
contracted multiplication. The operation of contraction may, more-
over, be repeated many times in such circumstances.
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If £;;,,and ™" are the components of two tensors their tensor pro-
duct has the components

pu“mnr — deumnr’

and the tensor

- pwkrr far tﬁmu""’
is one of their contracted products, obtained by contracting the
indices m, k and n, .

The concept of contracted multiplication can be used to specify a
criterion of tensor character which generalizes that of §36. This can
best be expressed in terms of a particular example:

In order that the quantities 17! referred to a basis (e;®¢;®@ e, ®¢))
shall be the components of a contravariant tensor it is necessary and
sufficient that, for any covariant tensor sy, the quantities 7kl 5, shall be
the components of a contravariant tensor.

The condition is evidently necessary from the study of contracted
multiplication which we have just carried out. To show that it is
sufficient we only have to observe that it is possible for sy, to be the
tensor product of two covariant vectors with components x; and y,,
and to use the second theorem of §36.

40. Symmetric and antisymmetric tensors. A contravariant second-
order tensor, whose components referred to a given basis are s
said to be symmetric in its two indices if

= it
and antisymmetric if W= -
Suppose, for example, that it is symmetric and change the basis:
KV = AF A = AF A =

Hence the fact that a tensor is symmetric (or antisymmetric) is a
property of the tensor itself and not merely of its components with
respect to a particular basis.

The same considerations hold for a covariant tensor of second
order. They extend immediately to pairs of indices, both contra-
variant or both covariant, of tensors of order g > 2.
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III. EUCLIDEAN TENSORS

41. Euclidean tensors and their components. Let us now take E, tobe a
Euclidean vector space. In this case we shall show that every tensor of
order g can be identified with a contravariant tensor of order g, so
there is no point in considering contravariant, covariant or mixed
tensors of the same order to be distinct entities.

Suppose E, to be referred to an arbitrary basis and E, to the cor-
responding dual basis and designate the coefficients of the fundamental
quadratic form by g;;. We have seen in §24 that we may identify the
element in E, which has the components x/ with the element in E
which has the components x; since

Xi= g::ix]! = gﬁxj-

Having established this, let us consider a contravariant tensor T of
order g which is the tensor product of g vectors X(1)s X(2)s -2 X(g)'

T= X1 ®X2)®... X,

To each of these vectors there corresponds a particular element in
Ey. Consider the various affine tensors obtained by replacing one or
more of the vectors Xy, X(3),..., X(,) by their corresponding elements
in E,’. These affine tensors are said to define the same Euclidean tensor
whose contravariant, covariant or mixed components are the compo-
nents of the corresponding affine contravariant, covariant or mixed
tensors.

The relations between the various types of component of the
Eucflidean tensor T may readily be determined. Denoting the contra-
variant components of the vector Xy, by x{;, the contravariant com-
ponents of T are

lhia...h - x?l)x&)' ’ ‘xé’:“)_
If, for example, we replace the vector X3y by the corresponding
element of E we obtain the mixed components, one-fold covariant :

B bl ool
0l = Xy X Xy - X8,

where X 2y = & j.x{i)-
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From this we deduce that
L 41.1)
Conversely, we have
flieeein = gith g ia... ia, 41.2)

If this operation is repeated using the index i3 we obtain the two-
fold covariant components

ti.M'f....i. 1% ghj.rhhjai....i. = gi:j.ghja‘hjdm"'h° (41.3)

Operating on all the indices we finally obtain for the covariant com-
ponents ]
tl‘:l“l...fq = gh]l"'ghht!'"-h' (41-4)

Conversely, the contravariant components may be expressed in
terms of the covariant components as

LT g”j‘.-.g"j'fj;...;,- (41.5)

It is now seen that, on multiplying by g; or 2" and summing, each of
the ¢ indices of the tensor T may be placed either in the contravariant
or in the covariant position.

Let T now be any contravariant tensor of order g; such a tensor
can be expressed as a sum of p tensor products of g vectors. Each of
these tensor products defines a Euclidean tensor. Consider the various
affine tensors of the same type associated with these Euclidean tensors.
In summing them one sets up a correspondence between the tensor T
and the affine tensors whose components are given by formulae such
as (41.1), (41.3), (41.4) by virtue of the linear character of these
formulae in the components ¢ -+ of T. It follows that these affine
tensors do not depend on the way in which T has been decomposed
into a sum of tensor products and they are consequently uniquely
defined by T. We expect these various affine tensors to define a unique
Euclidean tensor whose various components are the components of
identical affine tensors. This can be expressed formally as follows:

THEOREM: The various contravariant, covariant or mixed com-
ponents of a Euclidean tensor can be derived from each other by
multiplying by g;; or g" and summing, this operation being performed
one or more times.
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The criteria of tensor character which have already been given for
affine tensors obviously apply without modification to Euclidean
tensors; the covariant components (for example) of a Euclidean
tensor being the same as the components of the corresponding
covariant affine tensor.

42. Symmetric and antisymmetric Euclidean tensors. A second-order
Euclidean tensor is said to be symmetric if the associated contra-
variant affine tensor is symmetric. We then have
V=

Therefore

I = S’k;gufU = gkfgu!ﬂ = I
and the covariant components are also symmetric in their two indices.
Conversely, if the covariant components are symmetric, it is clear
that the contravariant components are also symmetric. Analogous
considerations hold for antisymmetric Euclidean tensors. They may
also be applied to any two indices of a tensor of order g > 2.

43. The fundamental tensor. The scalar product of two vectorsx and y
of E,, which have the contravariant components x’ and ' respectively
is given by

xXey= gljxfy'”‘
This expression is invariant under changes of basis for any pair of
vectors x and y. It therefore follows that the g; are the covariant

components of a Euclidean tensor. We call this the fundamental
tensor of the space E,,.

This tensor, being symmetric, has only one set of mixed components
g = gug" = g% gy = &
Let us evaluate these. From the definition of the g/* (21.5) we have
g

where o/* denotes the cofactor of gy in the determinant g. The
numerator of the right-hand side is therefore the same as the expan-

gji -
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sion of g except that the gy; are replaced by the g;. It follows from the
properties of such expansions that
0 ifi#j,

i B
gi=¥ [1 if i =j.t

The contravariant components of the fundamental tensor are
therefore given by

(43.1)

g*gh = ¢v
These components are, of course, identical with the quantities g¥
introduced in §21. We can now state:

THEOREM: The quantities gy and &Y are respectively the covariant
and contravariant components of a certain symmetric tensor which is
the fundamental tensor of Euclidean space. The quantities defined by
(43.1) are the mixed components of this tensor.

44. Euclidean tensor algebra. We have seen that the various com-
ponents of a Euclidean tensor may be expressed as linear forms in the
contravariant components (for example) of this tensor. It follows that
the algebraic operations given for affine tensors may be extended to
Euclidean tensors.

(a) Addition. Tensor addition (considered in §37) gives a corre-
spondence between two Euclidean tensors of the same order g and a
third Euclidean tensor of order g called their sum. If the two tensors
have contravariant components "+ and x™**%, then the contra-
variant components of their sum are given by

siu’:...fq = ‘flll...f¢+uflis...f.-

Repeated contracted multiplication by the fundamental tensor gives a
similar relation for the covariant components:
Siits...ts = ot F U0, 10
An analogous result holds for the various components with mixed
indices.

t When i/ the expansion is that of a determinant with a repeated
column, and therefore vanishes. When i = j the expansion is of g.
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(b) Multiplication. Tensor multiplication generates a Euclidean
tensor of order g+¢’ from two Euclidean tensors of orders ¢ and ¢’.
If the tensors under consideration have contravariant components
¢+l and g+t leev’ the contravariant components of their product
are given by

ph...iql...,:...f.“' o ti:...f.ului...i"..'.

This equality obviously remains valid if one or more of the similarly
positioned indices of the two sides is placed in the covariant position.

(¢c) Contraction. Consider a Euclidean tensor with contravariant
components %% and choose two arbitrary indices, for example
the indices 7, and i,. When the first of these is moved to the covariant
position the corresponding components are

is...1 Vs
tjl Tt = 8 ji 'rh iv'

By contracting the indices j; and i, it follows that
Ijj.r'l...ln - githfl...lu -2y tj'jil...f-’ (44.1)

using the symmetry of the g;. The quantities (44.1) are the contra-
variant components of a Euclidean tensor of order (g—2):

cltvesle o g, (44.2)

It follows from (44.1) that this tensor does not depend upon which of
the indices i, and i,is lowered. (44.2) remains valid if one or more of
the indices i3...i, is placed in the covariant position.

45. The space E,” as a Euclidean space. A Euclidean space may
readily be constructed from E{?, which is the gth tensorial power of
the Euclidean space E,,.

We refer the space E, to an arbitrary basis (e;) and E to the
associated basis(e; ®e;,®...®e;). Any two gth order tensors, T
with components % and U with components «" "% define a
scalar

T = Al % @s.1)
such that

TU = @i jueee8ipje ot de = gy ytende, (45.2)
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1t is clear that the rule of composition thus defined has the pro-
perties detailed in §15 which characterize the scalar product of two
vectors in a vector space. We say that (45.1) is the scalar product of
two tensors T and U. This scalar product defines a Euclidean space
constructed on E.

In particular the scalar product of two elements (e;,®e;,®...®¢;)
and (e;, ® €,... ® ¢;) of the base of E{? is according to (45.2), given
by

(6,0€,®...0¢,)€;,®€,8...0¢,) = 8, /i8irja++8iefer (43.3)

so that the fundamental quadratic form of the Euclidean space E{?
has the coefficients g;, , 81, ja+ - -8l Jor
If the basis (e;) of E, is orthonormal then

(e;,_@eh@... ®ek)(eh®ej'®...®ej) = 8"1_’1...81.].,

and the right-hand side is zero if the set (i, i,...,i,) differs from the
set (jj,jz---Jg) and is equal to unity otherwise. Hence the basis
(e, ®e,®...0¢,) of E, derived from the tensor product of an
orthonormal basis of E,,, is itself orthonormal.

The covariant components of the tensor T, considered as a vector
of the Euclidean space E?, are clearly identical with the covariant
components of T considered as a tensor in E,,.

IV. OUTER PRODUCTS

46. Antisymmetric tensors of order 2. Let us return to the case where
E, is a general vector space which we refer to an arbitrary basis (g;). In
the space E referred to the associated basis e;® e; consider the
antisymmetric tensors

T= tueg® e = b t”e,®e1+ 2 tue,®ej (46.1)

i<j iz]j
where U= F=o
Interchanging the indices on the right-hand side and taking the anti-
symmetry into account it follows that
T= 3 te;,®e —e®e¢). (46.2)

i<j
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Any antisymmetric tensor of E{? can therefore be expressed as a
linear combination of the "C, elements

(e, @ €;—¢; ® e,‘), (l' - j) (46.3)

and these "C; elements obviously form a linearly independent system,
otherwise the (e;® e;) could not be linearly independent. This can be
formulated as follows.

THEOREM: The antisymmetric tensors in E® generate a vector
sub-space AP of E® having "C, dimensions. This sub-space has the
elements of order 2 defined by (46.3) as a basis.

47. Outer product of two vectors. DEFINITION: Given two vectors X
and y of E,, the antisymmetric tensor
XAy =X@y-y®X 47.1)
is called the outer product of the two vectors.
If x* and y' denote the components of x and y in (), X A y has the
antisymmetric components
Pl = xlyl iyt 47.2)
in (e,-@ ej).
The outer product of two vectors has the following properties,
which are also sufficient to define it:
(a) Ifx,y, zdenote vectors of E, and « is a scalar, the outer product
has the usual distributive properties:
XA(y+2Z) = XAy+XxAz,
x+yYAz=xAz+yAzZ,
aXAY =XAay = a(XAY).
(b) It is anticommutative:

XAy = —YAX,
in particular
xAXx =0,
(¢) If (ey,ey,...,e,) isa basis of E, the "C, elements
e;Ae; i<p 47.3)

form a basis for AP,
An outer product of two vectors is called a bivector,

Tensor algebra 47

48. Proper components of a bivector. Change of basis. According to
(46.2) the antisymmetric tensor T may be written
T =Y t/ene,.
i<j

Considered as an element of the space /" and referred to the basis
(47.3), this tensor has the "C, components 1Y (i < j). These compo-
nents are called the proper components of T. In order to distinguish
them from the n* components of T considered as an element of E
they are represented by #%2, where it is always understood that the
index i is less than the index j.

Let us determine the transformation properties of the proper com-
ponents on passing from the basis (e;) to another basis (e;) in Ej,. The
spaces E? and A will be referred to the bases (e; ® e;) and (e;- A ¢y)
respectively and, with the usual notation, we have

= AL ALY,
Therefore :
D= ¥ A"+ T AL AT,
K<l K>l
Interchanging the indices £’/ in the second term and‘ a'llowing for
the antisymmetry of the transformed components ' it follows
that
(D= 3 (4 a)—4bal)® D,
k<l
Thus the proper components of T transform under a change of basis
in E, according to

=
K<l

Ay Al

(k1)
(K0, (48.1)
Al A

49, Outer forms of order 2. We have seen that each vector space E,,
can be associated with a dual vector space, E,, of linear forms defined
on E,,. Outer products of order 2 can also be defined in E,; ; they are
the affine antisymmetric covariant tensors of order 2. These tensors
define a vector sub-space A% @ of E¥®, again having "C, dimensions.
DEFINITION: An outer form of order 2 is any element of A}®.
If E, is referred to a basis (e;) then we refer E,; to the dual basis ()
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and the spaces E; ® and 4@ to the bases (x'® x/) and (x/ A x/). An
element F of A, which has the components fy;in E; @ can be written

Hie= E _f(mxf/\).’“',
i<j
where faop=rfy fori<j.

The "C, quantities f(;, are the proper components of the form F.
Under a change of basis in E, they transform according to the
formulae

P ™ “9.1)
I | L5 :
The scalar quantity
I):J fayt® =13 zu fyt¥ (49.2)
<,

is said to be the value of the form F for an element T of A having
proper components 74,

If the tensor T varies over A% the quantity (49.2) constitutes a
linear form defined on A{?. Conversely, given a linear form defined on
AP, this can always be written

E; Sapt®@. (49.3)

The /% transform under a change of basis according to (48.1) and,
since (49.3) is a scalar, the f{;;, transform according to (49.1) and are
therefore the proper components of an element of A*®), So the affine
antisymmetric covariant tensors of order 2 can be interpreted equally
well as elements of ;@ or elements of the space [42]* dual to A2,

50. Completely antisymmetric tensors. In view of their importance
we have restricted ourselves so far to the study of antisymmetric
tensors of order 2. Analogous results can be shown to hold for
completely antisymmetric tensors of order g < n, that is for tensors
which are antisymmetric with respect to every pair of indices. Con-
travariant tensors of this type constitute a vector sub-space of E% in

"C, dimensions. "C, proper components are therefore sufficient to
define them.
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We begin by indicating the results for ¢ =n. A completely anti-
symmetric tensor of order n has only one proper component #!2-+,
Because of the antisymmetry the ordinary components of this tensor
are given by

rhh...h - shh...a‘-t(lz...n), (50'1)
where ¢ *---* is equal to zero if any two indices are equal, to + 1 if the
permutation (i, ,,...,i3) of theset (1,2,...,n) iseven and to — 1 other-
wise.

Under a change of the basis (e;) the proper component 7!2-++%
transforms according to the formula

!(12“'") s Ar(I'Z'...n‘) (50.2)
where 4 is the determinant
Ay AP ae AP
1 2
O B (50.3)

by S oA AR

51. Outer products in a Euclidean space. Suppose E, is a Euclidean
space. Then the various tensors defined by outer products of vectors
are Buclidean. The contravariant and covariant components of a
Euclidean tensor of order 2 are related by

ty = gngnt.

If the tensor under consideration is antisymmetric, its contra-
variant and covariant proper components are related by
4 gix Ejk

k<t| & it
as can readily be established by an argument similar to that given in
§46 and §48. The space A% has the structure of a Euclidean space,
its fundamental quadratic form having the coefficients (g2 — gn&;)-

For a completely antisymmetric tensor of order n, similar reasoning
shows that

@) ) (51.1)

{2, = gt12-™, (51.2)

where g designates the determinant constructed from the gj;.
4
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52. Adjoint tensor of a completely antisymmetric tensor. When E, is a
Euclidean space there is a particularly interesting completely anti-
symmetric tensor of order n which is directly associated with the
determinant g. For simplicity we assume the space to be properly
Euclidean.{

It is of interest to find a geometrical interpretation of g in the Euc-
lidean vector space of elementary geometry. If x, y, z denote three
arbitrary vectors with components x’, ', z' referred to an orthonormal
basis in this space, then the volume ¥ of the parallelopiped, which has
the three vectors X, y, z as edges, is equal to the absolute value of the
determinant

'

X
| v R
E s ot |
1
lz23

Z

LT

Its square
| Z6H? ZAy ZH
el Ty To T
z xizl' Z yizi E (ZE)Z l
can be written, in terms of invariants, as

x2 X'y X'z

. i (52.1)
2

Vi=|xy vy
X2 VI T

Now let (e;,e,,e3) be any basis of the space under consideration.
The elements of the determinant in (52.1) are just the g; which cor-
respond to this basis if e;, e,, e; are taken to be the vectors x, y, z.
Hence, if ¥ is the volume of the parallelopiped constructed on
(ey,e5,e3), we have

Vi=g.

Having established this result let us return to the proper Euclidean
space P, and make the change of basis which carries (e;) into (e;).

1 This ensures that the determinant g is positive and therefore simplifies
manipulations involving 1/g. (T.)
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How does the determinant g transform under this change of basis?
We know that its elements transform according to the tensor rule

gir = Al Al gy

1t then follows from a standard theorem on the multiplication of
determinants that, if g’ denotes the determinant formed from the
k'l
g =4
where 4 denotes the determinant (50.3) constructed from the Aj.
Taking the square root of both sides it follows that
1 1
— = 4| —- (52.2)
Ve 4 Vg
Let us limit further developments to changes of basis such that the
determinant 4 is positive. We say that this restricts us to bases which
have the same sense or handedness as (e;). Under such changes of
basis, the quantity 1/4/g transforms like the proper contravariant
component of a completely antisymmetric tensor of order n (see
(50.2)); according to (51.2) this tensor has the proper covariant com-
ponent 4/g. Its ordinary contravariant components may be written

1

friz...in f1is...in
€ =g — (52.3)
Vg
while its covariant components are given by
€his...ie = Eiis...0n V5 (52.4)

where the quantities €;,;, ;. are numerically equal to the e+,

Given a completely antisymmetric tensor T of order g(< ») with
components % or ., ; the completely antisymmetric
tensor T’ of order (n—g) obtained by contracted multiplication of T
with (52.3) is called the adjoint tensor of T. Its components are given
by

I""l'"i. e %ei:...iqiﬁx...i- rh."h’ (52.5)
1 Tk,

!fﬂ.x...in - q_l!e.fx..-lcf¢+l...

(52.6)

f'f""'
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The completely antisymmetric tensors of orders n and (n— 1) have
adjoint tensors which are respectively a scalar and a vector.

Consider, as an example, the Euclidean space of elementary
geometry, which we assume to be referred to an orthonormal basis so
that contravariant and covariant components are identical, Let x Ay
be a bivector of this space and consider its adjoint z. Denoting the
components of x, y, z by x/, y, z', the components of the bivector

X Ay are given by
P = Ry,
P = 3yl_x1,3
PIZ ] xlyz_x2yl
and if the determinant g is equal to unity (52.5) gives

! = 2y -2,
2 =x*yl=x'y’, (52.7)
B dpuan

In elementary vector analysis, the vector z is known as the vector
product of the two vectors x and y. The existence of such a vector
product is clearly related to the fact that the space of elementary
geometry is three dimensional.

CHAPTER 1V

Curvilinear Coordinates in Euclidean Space

I. DERIVATIVES AND DIFFERENTIALS
OF VECTORS AND POINTS

53, Vector derivative of a vector. Let E, be an n-dimensional vector
space. If a vector x in E, corresponds to each value 7 of a scalar
variable in the interval (a, b), we say that x is a function of # and write
x =),

We now introduce a positive definite quadratic form so that E, isa
proper Euclidean space. The variable vector X is then said to tend to
the zero vector (or more briefly, to tend to zero) if the scalar |x| tends
to zero. It is clear that this definition is independent of the particular
quadratic form chosen.

We say that the vector x(7) is a continuous function of tif, when ¢ is
increased by 41, the vector

Ax = x(t+40)—x(1)
tends to zero as A1 — 0. If there exists a vector x’ such that

Ax

e o

At

tends to zero as 41— 0, x’ is said to be the vector derivative of x for the
value ¢ of the variable. The vector

dg = x'dt

is called the differential of x and we write X’ as dx/dt.

These definitions are simple generalizations of the analogous
definitions of elementary vector calculus. The formulae for the
derivatives of a sum, of a product of a vector and a scalar, and of a

[53]
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vector function of a scalar function are formally identical with the well~
known formulae of elementary vector calculus and are demonstrated
inexactly the same way. This also holds for the derivative of the scalar
product.

54. Vector derivative of a point. Let &€, be an n-dimensional affine
point space. Consider a scalar # which varies over the interval (a,b).
If to each value of ¢ there corresponds a point M of €, M is said to be
a function of t and we write M = M(¢).

p—

If O is an arbitrary fixed point of &, the vector x = OM is a function
of ¢. Suppose that this vector has the derivative x'. It is obvious that
the vector x” does not depend on the choice of the fixed point O, but
only on M. In fact, if O’ denotes another arbitrary fixed point,

_— = —
OM = 00'+0'M
——
and, as OO0’ is fixed,

4 om) = L 0a = x.
dt dt
The vector x’ is termed the vector derivative of the point M and it is
represented by M’. The vector
dM = M'dt
is called the differential of M and we write M’ = dM/dt.

55. Vector functions of several scalar variables. As in elementary
vector analysis, a vector x can be a function of a number of inde-
pendent scalar variables «, 8, y. The concept of a partial derivative
can immediately be extended to such a vector function. As in ordinary
analysis the relation

®x 2x

Gadf 2P oa
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may be established provided that the partial derivatives are contin-
uous. The differential of such a vector function is given by

ox ox ox
dx = a—adfx'l' a—ﬁdB+ gd}’
If x is a function of ¢ through several scalar variables «(7), B(z), ¥(?)
its derivative is obtained in the same way as in ordinary analysis:

dx 3‘xdm+ ox d_ﬁ ox d_‘y
dt  éadt eBdrt  bydt’
The above remarks concerning the vector derivatives of a vector
apply equally well to the vector derivatives of a point.

II. CURVILINEAR COORDINATES IN A
EUCLIDEAN POINT SPACE

56. Curvilinear coordinates. Associated reference frames. We shall
restrict the remainder of this chapter to n-dimensional Euclidean
point spaces &, and we propose to study several geometrical ideas.
Let &, be referred at some moment to an arbitrary frame and denote
the coordinates of any point M with respect to this frame by (x').
We have already seen that there corresponds one, and only one, point
M of &,toeach system of nnumbers (x, x%, ..., x"), and conversely. In
order to distinguish these coordinates from those which are intro-
duced below we shall call them rectilinear coordinates.t

Consider 7 continuously differentiable functions fi(»',)?,...,»"
of n variables ' and put

x =i 2.. .y (= 1,2,...,n). (56.1)

These n functions are assumed to be independent so that, when the
variables (") vary over a domain 2’, the system of # equations (56.1)
can be solved for the ', giving

m ot i = 1,2,..50). (56.2)

+ The essential distinction between a rectilinear coordinate system and
a curvilinear one is that in the latter the reference frame (e;) is a function
of position while in the former it is constant. (T.)
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Here the point M, whose coordinates are (x'), varies over a certain
domain 2 of &,. Since the n functions (56.1) are assumed to be
independent, the functional determinant or Jacobian

of! of"|
ayl il 3y1

D(x', x3,....x") i
‘D(y’!yzi"'ly”) & =
of! af"

is different from zero in %’. This is also true of the functional deter-
minant

D(y'y2... "
D(x'x2...x")

which is the inverse of (56.3).

This demonstrates the existence of a one-to-one correspondence

between the points M of 2 and the variables () which range over 9.
If the functions f* are non-linear the »' cannot be interpreted as a
system of rectilinear coordinates. The point M is a function, many
times continuously differentiable, of the n scalar variables (). We
say that the space &, has been referred, in the domain 2, to a system
of curvilinear coordinates (3'). The curves traced out by a point M for
which only one of the () varies are called coordinate lines: n of these
intersect at any point M of &, In rectilinear coordinate systems the
coordinate lines are straight which accounts for the name given to
these coordinates.

Given a curvilinear coordinate system (»*) and a point M of &, we
associate with M a reference frame called the natural frame at M of the
system (»'). This reference frame has its origin at the point Mand its
vectors are given by

eM
e=g7 (=120, (56.4)

It is obvious that the system of n vectors e; is linearly independent
since the determinant of the components of these vectors referred to
the initial reference frame is the determinant (56.3) which is non-
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zero. The nvectors e;are manifestly collinear with the tangents to tht? n
coordinate lines which intersect at M. From (56.4) the vector dif-
ferential of M is given by

dM = e;dy’. (56.5)

In other words the n quantities dy’ are the contravariant components

of the vector dM in the natural reference frame of the system (') at M.
We speak of transforming the curvilinear coordinates if we sub-

stitute a new system of variables (»/) for the (). We then have

yj’ ] yi'(y'l,yz,“.,yn), J’f - yl'(yl"yz'.“_’yﬂ'), (56'6)

where the 3/’ are many times continuously differentiable functions of
the ¥, and conversely. When such a transformation of curvilinear
coordinates is made the natural reference system (M,e;) of the
system (") is replaced by the natural reference system (M, e ) of the
system (). It is easy to deduce the transformation rules which link
one reference system to another. From the formula for the derivative
of a function of a function we have, in fact

M i o M By’
TN T way
It follows that
8y' .
ej' = a—yT,e'-’
ay-"
and conversely e = Wef’

The basis (e;) of the Euclidean vector space associated with &, has
thus been replaced by the basis (ey) given by the linear transformation

e = A{.’ef; ey = A}:e;; (56.”

.y o'

e S e 56.8
where A’ o0 Aj 2y (56.8)

This may be stated formally as follows:

THEOREM: Each change of curvilinear coordinates is associated with
the change of natural reference frame at M defined by the relations
(56.7) and (56.8).
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57. Example of a curvilinear coordinate system. Consider the Euc-
lidean space, €5, of elementary geometry and let Oxyz be a Cartesian
reference frame. The cylindrical coordinate system and the polar
coordinate system in this space are examples of curvilinear coordi-
nates. The latter system, for example, is defined by

x = rsinfcosyl, y = rsinfsing, z = rcosé,

and, conversely
2
r= VO, § = tan~yfx, 0= tan 1Y)
b
Let us write

PWeir, Pa =
e

The coordinate lines at M are respectively the radius vector OM, the
circle of radius rsin @ through M with its centre on and plane perpendi-
cular to the axis Oz and the meridian circle, centre O, radius r, which
passes through M. The natural reference frame at M consists of e;,
the unit vector in the direction OM, e, tangential to the circle about
Oz and of length rsin 6, and e the vector tangent to the meridian and
of length r. We note that these three vectors are always orthogonal.

In general, when the n vectors e;of the natural reference system are
orthogonal, the curvilinear coordinate system is itself said to be
orthogonal.

58. The line element. If the Euclidezfm point space &, is referred to a
system of curvilinear coordinates ('), the vector 4 M has components
dy' with respect to the natural reference frame at M. The square of
this vector, or the square of the distance between two neighbouring
points, is therefore given by
ds? = gydy'dy’, (58.1)
where gy = ey
As the point M varies, the natural reference frame also varies. The
scalar products g; of two vectors of the reference frame are therefore

functions of the curvilinear coordinates of the point M. This is the
case, for instance, in the example of the previous section, where

ds® = dr*+r*cos® 0dy + r* db>. (58.2)
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The expression (58.1) is called the line element or metric. The
length of arc of any curve in €, can be calculated from a knowledge of

the metric. If the curve AT? is defined by giving the ¥'as functions of the
parameter 7 which varies over the interval (a,b) its length is given by

therintegral
dy' dy
B = K
= f ~/ ("" di dr) o

In the same way, the element of volume in this space is the volume of a
parallelopiped constructed from the vectors e, dy',e,dy?,....e,dy";
ie.

av = /(gD dv'd*dy’...dy", (58.4)

where g denotes the determinant of the g;. Finite volumes can be
determined from this by integration.

59, Tensor fields. A Euclidean vector space E,, is associated with the
Euclidean point space &,. Each reference frame of £, defines a basis
in E, and, consequently, bases for the various tensor powers of E,,.
For brevity we shall say that the components of a Euclidean tensor
with respect to such a basis are the components referred to the
corresponding frame of &,

Suppose that we associate with each point M of &, a Euclidean
tensor defined by its components referred to the natural frame at M
of the system (»"). We call this a tensor field in the system of curvilinear
coordinates (). The remainder of this chapter is devoted to tensor
analysis, which is essentially the study of tensor fields.

We have seen that, to each change of curvilinear coordinates there
corresponds a change of the natural reference frame at M defined by
(56.7), (56.8). If T, for example, denotes a tensor of order three with
the mixed components #7;, these components transform under a
change of curvilinear coordinates according to the tensor relations

= AL Al AL ™,
where the A’s are defined by (56.8).
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The quantities g;; are the covariant components of a tensor referred
to the natural frame at M. The fundamental tensor is therefore an
example of a tensor field and its components g;; transform according
to

gy = AF A gy

III. THE CHRISTOFFEL SYMBOLS

60. The fundamental problem of tensor analysis. Let the Euclidean
space &, be referred to a curvilinear coordinate system (y') and let its
metric be

ds* = gydy'dy’. (60.1)

In the study of tensor fields referred to curvilinear coordinate systems
the following difficulty is encountered: tensors associated with dif-
ferent points are referred to different reference frames and, in order to
compare tensors at neighbouring points with one another, it is neces-
sary to consider the variation of the reference frame between those
points.

Since

= €€,

if the metric (60.1) is a known function of position then we know the
form of the natural reference frame (e;) for the different points of &,
This leads us to pose the following problem:

Given the Euclidean space &, referred to a curvilinear coordinate
system (') and with the metric

ds* = gydy'dy’,

determine the natural reference frame (M +dM, e;+de;)T at the point
M+dM in the immediate neighbourhood of M in terms of (M, e)).
The natural frame (M4 d M, ¢;+ de;) will be completely determined
relative to (M, e;) if we know the contravariant components of the
vectors dM and de; referred to the basis (e;). The contravariant com-
ponents, dy’, of dM are given by
k]

dM = dy'e,. (60.2)

1 It is convenient to use the purely symbolic notation M+dM to
represent a point displaced by dM from the point M. (T.)
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We can also write
de! = t!)",'e;, (60.3)

where the w’; denote the contravariant components? of the de;. These
components are obviously linearly dependent on the dy*. We there-
fore have

oy = Ty (60.4)
where the I'y/; denote * functions of the variables (). Our problem

is therefore reduced to the determination of the n* functions I'y/; from
the [n(z+ 1)]/2 functions g;;.

61. Relations between the I',/;. (1) Given the line element (60.1), the
natural reference frame at every point M of &, satisfies

€;'e; = gy (6]..1)
It follows that
e,-de_,-l—ej'de; = dg,g.

Substituting for the de; from (60.3) and using (61.1) we obtain
Sik ‘"kri' 8k wk; = dgy. (61.2)

The form of (61.2) leads us to introduce the covariant components¥
wj; of de; in addition to the quantities w/; and the coefficients I'y;; of
dy* in the expression for w;. We then have

wy = Tgdy,

wj; = gjkwkf; Ly = gmT) v Ty=g"Thn.  (61.3)

where

A knowledge of the n* functions I'y; is thus equivalent to knowing
the n® functions I'/;. Using this notation (61.2) can be rewritten as

+ This terminology should not be taken to imply that the ' are the
components of a tensor (see § 63). (T.)
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Identifying the coefficients of dy* on both sides of (61.4) we obtain an
equivalent system of equations relating finite quantities:

where we have written
agi;
28y = —=
(247] ok

in order to emphasize the covariant nature of the suffix k.

The system (61.5) comprises as many equations as there are distinct
quantities &, gy. Since there are [n(n-+ 1)]/2 quantities g (61.5) con-
tains [#%(n+ 1)]/2 equations.

(2) The equations (60.2) and (60.3) give the differentials of the
point M and of the vectors e; respectively and are therefore integrable
and thus give second derivatives of M and of the e; which are sym-
metrical with respect to the indices of differentiation. Let us deter-
mine these integrability conditions for equations (60.2); we have

*M 2 (aM) oe;

oy aM\ayl) T gk
and substituting (60.3),
#M
v i Iiley (61.6)
Similarly
&M
o i Ifyey. (61.7)

Since the left-hand sides of (61.6) and (61.7) are equal we deduce
that

Rsoon ool
Ticyen = I'xey

and hence
rky=rh, (61.8)
which may, with the aid of (61.3), be written as
Ty = iy (61.9)
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The quantities I',’; are therefore symmetric with respect to their
lower indices and the quantities I'y; with respect to their first and last
indices. For each value of i the integrability conditions (61.9) give
[n(n—1)]/2 separate equations. The system (61.9) thus comprises
a total of [n*(n—1)]/2 equations. These equations added to the
[n*(n+ 1)]/2 equations (61.5) give a system of #* linear equations in the
II3 unknowns I‘kji'

The conditions for the integrability of the de; could be determined
in a similar manner. We shall show, however, that the n® relations
already obtained allow the calculation of the I'y; from the g;;and their
derivatives. It follows that the integrability conditions for the de; are
necessary criteria for the original problem to be soluble. This is
associated with the fact that given an arbitrary quadratic form with
variable coefficients there does not always exist a curvilinear coordin-
ate system in the Euclidean space &, which is consistent with the inter-
pretation of this form as the ds” of that space. We shall return to this
point later.

62. Explicit determination of the I'}/;. It is a simple matter to obtain
an explicit solution of the »* linear equations (61.5) and (61.9).
Allowing for (61.9), equations (61.5) may be written

Tip+ Ty = érgy (62.1)
Cyclic permutation of the indices gives

Fyji+ Ty = 2185 (62.2)

L+ i = 081 (62.3)

Adding (62.1) and (62.2) and subtracting (62.3) we obtain
2l = Orgy+ 018 — 98-
Using the notation ‘
[ki, /1 = 3(Prgy+ 0185k — Gi811)s (62.4)

this becomes
Ty = [ki, 1. (62.5)
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It is clear that the values of I'y; given by (62.5) satisfy (61.5) and
(61.9). Using (61.3) we obtain

Iy = g™ Ty = gki, h).
This suggests another bracket symbol defined by
i} = &"lki, i), (62.6)

Iy = (- (62.7)

The symbols defined by (62.4) and (62.6) are called Christoffel

symbols of the first and second kind respectively. They provide a means

of calculating the Iy ;;and I';/; from the g;;and their derivatives. This
completes the solution of our fundamental problem.

so that

63. Transformation of the I',/;. It isimportant to note that neither the
«’; nor the I';/; are the components of a tensor. Let us determine the
way in which these quantities transform under a change of curvi-
linear coordinates. The vectors of the natural reference frame trans-
form according to the relations
e; = Al ey,
and differentiating
de; = Al dep+dAl ey,
However, from (60.3),
de; = wlie;,  dep = w™ e,
giving
L (PR R v
wlie) = A " pe,p+dAf ep = (A Ayw™ p+ A} dA))e;.

Equating the coefficients of e; we see that the @, transform accord-

ing to the formulae
wly = AL Al ™+ 41.dAL. (63.1)
Expanding both sides of (63.1) in terms of the quantities I",/; we find
that
IJdy* = A% AL, T pdy™ + A4S 0, A dy*.
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Since the dy* are arbitrary displacements we can equate their co-
efficients on both sides of this equation. Hence the I';/; transform
according to the formula

T}y = Af Al AR T)p™ p+ Al 8 Af, (63.2)

which involves the second order derivatives of the functions defining
the transformation.

IV. ABSOLUTE DIFFERENTIALS AND
COVARIANT DERIVATIVES

64. Absolute differential of a vector. (/) Let us consider a field of
vectors vin &, defined by their contravariant components * and try to
determine the contravariant components of the differential dv of a
vector of the field for an infinitesimal variation of the point M. On
passing from M to M+ d M not only do the components v’ change, but
the natural frame is also modified in the way we have just seen. Since
the vector v is defined at all points of &, by the relation

v =dle,
we get by differentiation
dv = dv'e;+v'de;.
Substituting for de; from (60.3), and relabelling the indices,
dv = dv'e;+v*wiie;.

It follows that the contravariant components of the vector dv are
given by
Vol = dv'+ o', ok (64.1)

According to their definition the quantities Vo' transform like the
contravariant components of a vector, although this is evidently not
true of the quantities dv’. For this reason Vo' is called the absolute
differential of v'. dv is often loosely termed the absolute differential
of v.

5
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Partial derivatives may be introduced instead of differentials; Vo'
can be expressed as a linear differential form with respect to dy* as
follows

V'v'- = a,, v‘dyk+ I‘ki;,ﬂk a'y" = (3,‘!)"]' Fk';,ﬂ”) dy".
Now the dy* (which take arbitrary values) are the contravariant
components of a vector. Hence the quantities
V,‘v’ = 3kl‘Jf+ I’k’,,'v" (642)
are the components of a tensor, the index & being covariant. We call
this tensor the covariant derivative of the vector v. It should be noted
that, like the do', the &, %' do not form a tensor.

If the absolute differential or the covariant derivative of the vector
v is identically zero, all the vectors of the field are identical; in other
words the field is uniform.

(2) Suppose now that the vectors v of the field are defined in terms
of their covariant components »;. We propose to determine dv in
terms of its covariant components Ve, To this end we introduce an
arbitrary uniform field w with components w’ and form the scalar
product

W'y = Wl Vi
Since dw is zero, we have
wedv = W dv+odw!

and Vw! = dw'+ oW = 0,
so we obtain
wedv = wdvo;— w'yuwh,
or w Vo, = wido;— o"o)).
This equality holds for any values of the w', so we have
Vo, = do— ooy, (64.3)

Vo, is called the absolute differential of v;. Similar reasoning to
that above enables us to pass from differentials to derivatives and it
follows that

Viv; = 8vi—Tiivp, (64.4)
where the V. v; are the covariant components of the covariant tensor
derivative of the vector v.
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65. Absolute differential of a tensor. The preceding considerations
may be extended without difficulty to any field of tensors of order g.
Let us determine the differential of a tensor of the field, considered
as a vector of the space E{?, in terms of its components referred to the
natural frame (M, e;). We shall call this the absolute differential of the
tensor. To simplify the working we shall consider as an example a
tensor T of order 2 defined by a system of mixed components #;/. The
components of the absolute differential relative to (M, e;) are written
as Vt/.

Coi;ﬂder two arbitrary uniform vector fields v and w and form the
scalar t/v'w;. The differential of this scalar, for an infinitesimal varia-
tion of M, is given by

dtfv'w)) = V(t/v'w) = ¢/ +ViDo'w—t/o'w;
since the two vector fields are uniform.
On the other hand
d(tv'wy) = dt/v' wi+ 1/ do’ wy+ tlo'dw,
where, since the fields are uniform,
&' = —alpt, dw; = w"j Wpe
We conclude, on relabelling the summation indices, that
Vi/o'w; = (dt/ - 1) i+t ol wy,
Since this equality holds regardless of the values of v and wy it follows

that
vf’I - d[ij—whf tkj+ wj,, ffh. (65.1)

The quantity Vz/ can also be expressed as a linear differential form
with respect to the dy*. Using (60.4) we get
Vi) = @t - Tt + Tyt dy*
which may be written as
Vi) = Vi) dy¥,

where
Vit! = at/ =Tl + Tyt (65.2)
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It is clear that the quantities V ¢,/ are the components of a tensor.
We call this the covariant derivative of T. The general rules of composi-
tion for the absolute differential and for the covariant derivative of a
tensor may be inferred immediately from (65.1) and (65.2).

The usual rules hold for the absolute differential of a sum or pro-
duct of tensors. Absolute differentiation and contraction are obviously
permutable operations in the sense that the result is independent of
the order in which they are carried out. It follows that contracted
products differentiate according to the same rule as general tensor
products. There is an important result due to Ricci concerning the
absolute differential of the fundamental tensor g;;. This differential
is given by

Vgy = dgy—"igy— gy,

Using the equations (61.2), which were used in the determination of
the ’, ;» we see that the right-hand side is identically zero.

THEOREM : The absolute differential of the fundamental tensor g is
zero.

It follows immediately that absolute differentiation and the raising
or lowering of indices are commuting operations.

66. Acceleration vector of a moving point. Let us consider a moving
point M in the space &, whose position is a function of a scalar
parameter ¢ which we shall regard initially as the time in order to be
able to use the terminology of elementary kinematics. Then the
curvilinear coordinates (") of M are functions of 7 and the velocity
vector of M is given by

_dM

¥ = =

Since the vector dM has contravariant components dy’, the vector v
has contravariant components

dy’
o,
0P s (66.1)
The acceleration vector of M is the derivative of the velocity vector
dv
g 1

=E-
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Since dv has contravariant components Vo', the vector y has the con-
travariant components given by
Vo  dof dy®
i i h
_— e——— N — U —
Y @ A g

which becomes, using (66.1),
(Y D
YETal T g dr

If the acceleration of M is always zero its trajectory is a straight
line in &,. Hence the straight lines of &, are defined in terms of curvi-
linear coordinates () by the system of differential equations

a2y, dd
e

A convenient choice for the independent variable ¢ is the distance s
of a point of the line measured along the line from a fixed origin. The
functions y'(s) therefore satisfy the differential equations

dZ yi dyk dyh by

ds* ds ds
on a straight line in &,. Equation (66.3) was derived by making an
appeal to the existing ideas of elementary kinematics. More generally,
if ¢ represents any parameter it may be shown that the equation
represents straight lines in &, This point will be taken up again in
§76.

(66.2)

=0 (i=1,..,n) (66.3)

+ Iy 0

V. DIFFERENTIAL OPERATORS IN
CURVILINEAR COORDINATES

67. Gradient of a scalar function. Consider a scalar field defined by a
function ¢ of the curvilinear coordinates ¥ of the point M. The
absolute differential of this field reduces to the ordinary differential
d¢ of the scalar ¢, this differential being itself a scalar. The correspond-
ing covariant derivatives are given by 8, ¢. It is easy to verify that the
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;¢ transform under a change of coordinates like the covariant com-
ponents of a vector. This vector is called the gradient of the function
¢. We write

grad; ¢ = @, ¢. (67.1)

The contravariant components of the gradient of ¢ are given by
grad'¢ = g o 4. (67.2)
Beltrami has introduced the norm of the gradient given by
414 = "9, 9,4, (67.3)

which he calls the differential parameter of the first kind. In elementary
geometry, when the space is referred to Cartesian coordinates, this is

given by 242 20\ (o)
at = (3e) +(5) +()

68. Curl of a vector field. Consider a vector field v with covariant com-
ponents v;. We have seen that

Vv, = o= I (68.1)

Since the I"'s are symmetric in their lower indices we can interchange
the indices 7 and j in (68.1) to get

V,vj = a‘vj'—l}k!”k. (68-2)
Subtracting (68.2) from (68.1) we find
V,o]-vjv, = aﬂ)l—' a!ﬂf.
It follows that the quantities
6,0_,— ajﬂ,

are the covariant components of an antisymmetric tensor. This tensor
is called the curl (or rotor or rotation) of the vector v. We write

curl_,,-v = 3,0_,—3,0,. (68.3)

In elementary geometry the vector adjoint of the antisymmetric
tensor (68.3) is called the curl vector.
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69. Divergence of a vector field. Consider a vector field v with contra-
variant components o’. We call the scalar

divy = V0!
the divergence of the vector v. Since
VJ‘HI = 3ju'+ I}iﬁﬂ",
we have

divy = 3,—‘1’)f+ thﬂh. (691)

This formula may be rewritten using a simplified expression for the
quantities I'f;. Ricci’s theorem (§65) relating to the fundamental
tensor may be written in covariant form as

Vigy = ongy— L1815~ T8 = 0.
Contracted multiplication of this by g? gives

gﬂa.ﬁgu'- I",,'i—f',,-’_, =0,
or
iy = 38" o,y (69.2)

The form of the right-hand side of (69.2) brings to mind the
derivative of the determinant g. If «” denotes the cofactor of the
element g;;in g we have

opg = ol o,g; = ge¥ o,y
It follows that

10,6 2,v/l8]
M= =22, 69.3
=5 il P
Substituting (69.3) in (69.1) we obtain
divy = —— 3v/(l gl 69.4)

Vgl
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In curvilinear coordinates the following integral over an n-dimen-
sional domain £ may be used to introduce the multiple integral of
order n:

" 1 :
JdIVVdV e Jm alv(ghv] v(ghdy'...dy"

= J alv(ghody'...dy"

9

The last expression can be transformed into an integral over the
boundary of 2 which is just the flux of the vector field v passing
through this boundary.

70. The Laplacian of a function. In the space of elementary geometry
referred to a Cartesian coordinate system (x, y, z) the expression

32 d’ 32 95 32 ¢ ;
Ay = Fr +Ez +Ez = divgrad ¢
is often of interest. It is called the Laplacian of the function ¢ (or the
Beltrami differential parameter of the second kind).
More generally, given a scalar function ¢ of the variables y‘in &, we
call
4,4 = div grad ¢ (70.1)

the Laplacian of ¢. The preceding considerations enable us to deter-
mine an expression for the Laplacian of ¢ in terms of any system of
curvilinear coordinates. Using Ricci’s theorem

dy¢ = Vi(g"8¢) = gvvi(aj‘f’)-
It follows that
4dy¢ = gUeyd—Tfe,4). (70.2)

Using the expression (69.4) for the divergence we deduce the
following alternative form of the Laplacian which is often convenient
in practical calculations

1 :
43¢ = Vizl 2fv/(lgh e’ 4l. (70.3)

CHAPTER V

Riemannian Spaces

1. TANGENTIAL AND OSCULATING
EUCLIDEAN METRICS

71. Definition of Riemannian spaces. Let us consider an n-dimensional
point continuum ¥, which is many times differentiable. The best way
to visualize such a continuum is by imagining that it corresponds to a
dynamical system with » degrees of freedom. We assume that the
immediate neighbourhood of each point M, of ¥, can be represented
by a set of n coordinates y' capable of assuming all values in the
neighbourhood of the y¢ which are the coordinates of M. These co-
ordinates y, which serve to represent analytically a certain part of
V,, can obviously be chosen in an infinite number of ways. We shall
arrange in transforming from one system of coordinates ()") to an-
other ('), that the new coordinates are continuously differentiable
functions of the old (to a sufficient order), and conversely.
Let us associate the continuum ¥, with the metric given by

ds* = gydy'dy’ (71.1)

where the coefficients g;; are arbitrary functions of the y', subject only
to the condition of being continuously differentiable to a sufficiently
high order. If this metric does not satisfy the integrability conditions
given in §61, curvilinear coordinate systems cannot exist in &, such
that the metric of &, takes the form (71.1). In this case we say that the
metric (71.1) is non-Euclidean and that it defines ¥, as a Riemannian
space.

A Riemannian space is thus simply an n-dimensional continuum
with an arbitrary metric. Such a space is said to be properly Rieman-
nian if the metric is positive definite. The expression (71.1) can, quite
generally, be put into the form of an algebraic sum of # squares of
linear differential forms. The set of signs (+ or—) which precede the
squared terms in this sum is called the signature of the form.

[731
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72. Tangential Euclidean metric at a point. The simplest way of des-
cribing the geometrical properties of a Riemannian space is to identify
it locally, as far as possible, with a Euclidean space ¢,. To this end we
introduce the concept of a tangential Euclidean metric at a point
Mo of Vn'

Consider a Euclidean space &, with the same signature as V/,,and a
point M, of the Riemannian space with coordinates (¥¢). Suppose the
point My to correspond to a point mgof &, with a natural frame (m, e;)
which is subject only to the conditions

e;e; = (gylo (72.1)

where (gy)o designates the value at M, of the coefficients g; of (71.1).
Suppose that each point M in the vicinity of My in ¥, is brought

into correspondence with a point m in the vicinity of mgin &, in the

following way: if M has the coordinates (%) then m is defined by

—
mom = [(¥'—pd)+ Vi) (= yPle;, (72.2)

where the functions ¥}, are restricted to be at least of second order
with respect to the variables (»* — ¥§). We then say that the correspon-
dence defines a first-order representation of the vicinity of M. The
point  is said to be the image of M in the representation, m, being
naturally the image of M.

According to the formula (72.2) the point m is defined as a function
of the n scalar variables (%), It follows that the (') constitute a system
of curvilinear coordinates in the Euclidean space &€, in the neighbour-
hood of my. This system of curvilinear coordinates has the natural
frame at m, defined by the vectors

(e

which coincide with the frame (1, e;) given initially.
It follows from (72.1), if the metric of the Euclidean space &, in the
coordinate system () is designated by

ds* = gydy'ay! (72.3)
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then for ' = y§, we have
(Zyo = e;7¢; = (gylo- (72.4)

The metrics (71.1) and (72.3) thus have the same coefficients for
y' =y and are said to be tangential at y' = y4.
Let us make a general transformation of the (%) to new coordinates
(") and let (mq,e;) be the natural frame at m, for the coordinates
—_—

(»”). It follows at once that the vector mqm defined by (72.2) can also
be written as

ﬁ 2 ’. . g '’
mom = [0/ =) +EL (' = y0ley,

where the functions Z satisfy the same condition as the ¥. It is now
apparent that the concept of first-order representation is independent
of the system of variables employed or, as we shall say, it has an
intrinsic character.

In such a coordinate transformation the (&), change according to
the relations

(&o = (Ao (Ao (Er 1)
v _ F
where Af = "

In order that the concept of tangential Euclidean metric shall have an
intrinsic character it is necessary and sufficient that

(gpo = (AF)o(4))o(gr 1o

We are therefore led to adopt the convention that, in any coordinate
transformation, the coefficients g; of the metric of a Riemannian
space transform according to the relations

gy = AF &g (72.5)

Since the concepts of first-order representation and of tangential
Euclidean metric at a point have an intrinsic character we can extend
to Riemannian spaces some geometrical ideas which are Euclidean in
origin.
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73. Geomefrical ideas derived from tangential Euclidean metrics.
(J) Consider a point M; in the Riemannian space V, with the metric

ds? = gydy'dy’. (73.1)

Let &, be the tangential Euclidean space at Mj which we suppose to
be referred to the natural frame (m1y,e;) at mg associated with the
system of curvilinear coordinates (»%). The metric of &, at m is given
by the quadratic form

(gyody'dy’.

The tensors which have components referred to the frame (g, e;)
in &, will be said to define tensors at the point M, of ¥, with respect
to the coordinate system (»*). On transforming from the coordinates
() to the (y”) the frame (my,e;) is replaced by (mq,e;) where

e = (4)oey, € = (Al)ge;, (73.2)

and the components 7, for example, of a third-order tensor trans-
form according to the usual rule

= (Ao (A)o (ARt ™ . (73.3)

The components of different kinds of tensor T can be derived from
on;:) another by contracted multiplication with the quantities (g;)oand
(g%)o

If, for the moment, we designate the point chosen in ¥, by M we
may omit the index zero from the above formulae. In this way the
complete Euclidean tensor algebra can be extended without modifica-
tion to vectors and tensors associated with a single point M of V,,. The
algebra of these tensors is simply carried over from the tensor
algebra of the Euclidean space &, by means of the tangential Euclidean
metric. In particular, denoting two vectors associated with M by vand
w, and their components by »’ and w' respectively, their scalar product
is given by

v-w = gyo'wl,
(2) The introduction of tangential Euclidean metrics at a point

also allows us to define, in Riemannian geometry, certain ideas
involving 1,...,n-dimensional domains of ¥,
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Suppose, for example, that the space ¥, is properly Riemannian.
Using the same notation as before the infinitesimal distance between
two points My, Min the Riemannian space is equal to the infinitesimal
distance in Euclidean space between the two image points

i i 2
mom® = (§;)ody'dy’ = (gyody dy! = MyM?>.
Using the infinitesimal distance between two points in the Rieman-
nian space given by
ds = +/(gydy'dy’)

we may derive by integration the length of a finite length of arc fﬁ? by
a formula identical with (58.3), i.e.

dy'd
B[ Jln

Consider an element of volume at the origin M, .This corresponds
to the volume element

dv = /|goldy'...dy

in the Euclidean space. We are thus led to adopt

av = /|gldy'...dy"

as the expression for the volume element in the Riemannian space.
The volume V of an n-dimensional domain will therefore be given by
the integral

¥ J' lgldy'...dv"

Analogous results could be given for various kinds of area.

It should be stressed that the notion of the tangential Euclidean
metric does not permit us to interrelate tensors associated with
different points of Riemannian space, even neighbouring ones.
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74. Osculating Euclidean metric at a point. Using the same notation
as in §72, let us take a first-order representation and consider the
point m, which is the image of M, determined by the curvilinear co-
ordinates »'. From (61.7) we have

Pm  [i)
w7 "‘“’

where the Christoffel symbols on the right-hand side are constructed
from the g;; of the Euclidean metric. This leads us to make the follow-
ing definition:

We say that a representation for the vicinity of M, is of second
order if it is of first order and if the formula (72.2) is replaced by
FR—

mom = [y'—y6'+%{jik}o(y’ -2)OF -+ ‘I’Es)(y'—ycﬁ)]ez, (74.2)

where the Christoffel symbols of the right-hand side are constructed
from the g;;and evaluated for y' = y{. The functions ¥ are restricted
to be at least of third order in the variables (" — yg) in the vicinity of
O"-yp=0.
Consider the metric
ds* = éudyidy-' (74.3)

of the Euclidean space &, referred to the system of curvilinear coordin-
ates (') defined by means of a second-order representation. Since the
representation is already of first order we have

om
') i

(&po = (gipo
It also follows, on differentiating (74.2), that

REARTM
PR P 17

Comparing this result with (74.1) evaluated at ' = y4 we obtain

{fik}o & {;—k}o

and consequently

Riemannian spaces 79

The Christoffel symbols of the first kind are therefore equal at
y' =y} and, from (62.1),

(@r&ydo = (Prgyo- (74.4)

We have just seen that the Riemannian metric and the Euclidean
metric (74.3) have the same coefficients and the same derivatives of
these coefficients at ¥* = yj. We can also show, as in the previous case,
that the concepts of second-order representation and of the osculating
metric have an intrinsic character. These concepts will be used to
define the absolute differential of a vector or tensor in Riemannian
space.

In order to gain a more concrete idea of this representation let us
consider a simple example. Locally curved surfaces set in Euclidean
space can be regarded as two-dimensional Riemannian spaces. Let S
be asurface, M a point on S and &, the tangent plane at M, Let each
point M of § in the vicinity of M, be put in correspondence
with the point m which is the orthogonal projection of M on &,. The
correspondence between M and m defines a representation of second
order; the metric of &', osculates with that of the surface at M.

75. Tensor fields in V,. Absolute differentiation. We associate a tensor
T with each point M of ¥V, in the following manner. Each point M is
associated with a frame compatible with the metric at that point; the
components of the tensor T can then be obtained with respect to such
a frame. If, for each point M, this set of components is given as a func-
tion of the coordinates ('), we say that we have a tensor field in V,,.
The g;; constitute such a tensor field.

In order to compare tensors associated with two neighbouring
points M and M of V,,itis necessary to inter-relate the corresponding
frames in &,. To this end we use a second-order representation in
&, in the neighbourhood of M and adopt the natural frames associ-
ated with the points mgy and m which are images of M and M. The
tensor associated with the point M is represented by the image tensor
defined by the components referred to the natural frame at m.

When we change the second-order representation, the functions
ngj are modified and the point m is replaced by a point which differs
from it only by a third-order infinitesimal vector, the (»'—yh) being
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the first-order infinitesimals. The vectors of the natural frame at m are

modified by vectors which are second-order infinitesimals or less. It

follows that the image tensor of the tensor associated with the point
M is defined to the same order of approximation.

Let Ty and T be two tensors associated with the points M and M
respectively. They have, in any second-order representation, two
image tensors whose difference is defined independently of the
particular representation considered to the second order in the
infinitesimals or less. The principal part of this difference between the
image tensors is called the absolute differential of the tensor T.

Consider, for example, a field of vectors in ¥, defined by their con-
travariant componentsv’, In a second-order representation the vector
field has image vectors, corresponding to the points My and M, whose
difference has contravariant components with respect to the natural
frame at m, given by

(Vﬂf)o = (dv’)o+(w'}.)ovﬁ,
where

¢ 0 i
(@' = { " h}dy". (75.1)

The Christoffel symbols on the right-hand side of this relation are
those of the osculating Euclidean metricand are therefore equal to the
Christoffel symbols of the Riemannian metric at y' = yi.

Suppressing the index 0, we see that since

i
wy = [k h} dy* = Tilyays, (75.2)

then the absolute differential of the vector v at M has the contra-
variant components

Vol = dov'+ 'y, (75.3)
As in Euclidean geometry the quantities
Vkv'f = ak'l)‘+ I‘kih!)h (75.4)

(where the I'}/, are as defined above) are the components of a tensor
called the covariant derivative of the vector v. If the vector field is
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defined by the covariant componentse; its absolute differential has the
covariant components

VU[ = dv,—- w",ﬂh

and the corresponding components of the covariant derivative are
given by
Vivy = 8v— Iy

The vectors at two neighbouring points M and M" are said to be
identical if their image vectors in a second-order representation are
identical; the absolute differential Vo' corresponding to the passage
from the first vector to the second is then zero.

The formulae which define the absolute differential or the co-
variant derivative of any tensor may also be extended to Riemannian
geometry using arguments similar to those above.

To summarize, the concepts of second-order representation and of
the osculating Euclidean metric permit the extension to Riemannian
spaces of the Euclidean tensor analysis relating to tensors associated
with neighbouring points. This holds for all the differential operators
we have studied. It is important to note, however, in the case of
vectors (for example), that when the absolute differential in Euclidean
geometry is an exact differential satisfying the usual integrability
conditions, there is no reason to suppose that this will also be true in
Riemannian geometry.

76. Acceleration vector of a moving point in V. Geodesics. In §66 we
considered the motion of a point in Euclidean space. Let us now con-
sider a moving point M in ¥, whose position is a function of a para-
meter ¢ which we shall interpret as the time. The velocity vector of M
has the contravariant components

i '

o= —

dt
and its acceleration vector y has the components

. er d2 yf . dyh alyk

y = ? = Ef-l- kh??‘ (76.1)
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If the acceleration of M is zero its trajectory is called a geodesic of
the Riemannian space V,. Generally geodesics are defined para-
metrically, for any ¢, by the solutions of the system of differential

equations
d2yt
dy" dy* :
dﬂ F"‘"dt A 0= 1250 (76.2)
Take as independent variable along a geodesic C the distance s
measured from some fixed origin of a point M along C. The vector u
with components
i
P e e
ds
is thus the unit vector collinear with 4M and tangential to the curve.
The geodesics are characterized by

V!
% = ‘%V W=k Vi =0. (76.3)
These equations show that transport along C between neighbouring
points leaves the vector u unchanged. Geodesics are therefore the
analogues in Riemannian geometry of straight lines in Euclidean space.
However, in &, straight lines are characterized by the following
property: a straight line between two points A and B corresponds to

an extremum of the length of arc 4B with respect to the lengths of arc
of all curves joining 4 and B. We may ask whether this is also true for
the geodesics of Riemannian geometry. For simplicity we shall study
a proper Riemannian space.

Consider, in terms of some parametric representation, an arc
joining two points 4 and B of V,,. If a and b represent the values of the

parameter f at A4 and B, then from §73 the length of arc AB is given by
the integral

b
[ virokya,
a
dy
o, ] Ii
where f=gyy"y" ¥ s
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The curves representing the extrema of this integral, the extremals,

are defined by the appropriate system of Euler’s equations in the
calculus of variations,

d(evf\ VS
d_t(—a-;;?) F-—O ( ,. .,n).

Carrying out the differentiations we obtain
Lol L a.
Z[T/}ay"] Vi~

o\ o 1df o

- c-f_t(ay") -5 2f dt 8y"

Since the parameter 7 is still arbitrary we take this to be the distance
s along the curves considered. Under these conditions

(76.4)

=— — Agrd = 1
yrmm, f=gyy"y (76.5)
and hence the system of differential equations (76.4) reduces to
d{ ef af
E( P ) 3y =), (76.6)

which are Euler’s equations for the function f. We deduce from
(76.5) that

of g
2y = 2gy»",

Hence (76.6) takes the explicit form

of
- s E T b

’jytk =0
(76.7)

d
a-‘(gyy”)— 3,8y y* =

and, on introducing the Christoffel symbols of the first kind

dy} rfork
i g +[jk,i]y"y"™ = 0. (76.8)
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After contracted multiplication by g this becomes
d 2 ylr dy" dyk
g e ="

which coincides with the geodesic equation (76.2) when ¢ = 5. We can
therefore formulate the following THEOREM: In Riemannian geo-
metry, geodesics are the curves defined by the extremals of the integral
representing the length of arc of any curve connecting two fixed points

of V.

1I. THE TRANSPORT OF EUCLIDEAN METRICS

77. Mapping a curve of ¥, on Euclidean space. Consider any curve
C of V, which is described parametrically. The coordinates »* of a
point M of C are functions of some parameter 7. Denote a certain
point on C by A; for example, that point which corresponds to the
value £ = 0.

Each point M of C is made to correspond to a point m with the
natural frame (m, e;) in the Euclidean space &, in the following way:

(1) To the point A there corresponds an arbitrarily chosen point
a with the frame [a, (e;)] whose orientation is not determined. The
magnitudes and relative inclinations of the (e;), are, however, well
defined by the relations

(e:)o'(ej)o = (gu)o (77.1)
where the (g;), are the coefficients of the Riemannian metric at the
point 4 (t=0).

(2) The point m and the vectors e;satisfy the equations
dm_df - de
& dr
where the (I",",)s, are the values of the Christoffel symbols at the
point M and are consequently functions of the single parameter 7.
The integration of the system of differential equations (77.2) with

the initial conditions (/) defines a point m and a frame (m, e;) foreach
value of ¢ and similarly for every point M of C. The path ¥ in &,

d k
= TDr o e a1.2)
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followed by m when M describes C is called the mapping (or develop-
ment) of C on the Euclidean space. If the initial conditions (/) are
varied the initial frame [a, (¢;)o] is changed and so is y.

As an example of such a mapping imagine a curve C to be traced on
a surface § and apply a developable surface to S along C. If this
surface is now laid on a plane it defines a plane curve y which can be
thought of as a flat map of C.

78. The transport of Euclidean metrics along a curve. We wish to
establish the following fundamental theorem concerning the mapping
yof C:

It is possible to find a metric in & , such that the numerical values of its
coefficients and their first derivatives along vy coincide with the numerical
values of the coefficients of the Riemannian metric and their first
derivatives at the corresponding points of C. In other words, it is
possible to construct a Euclidean metric which osculates with the
Riemannian metric simultaneously for all points of C.

In order to simplify the notation we make a coordinate transforma-
tion such that C is defined by the equations

AP =yiag,

and take »" to be the parameter 7. It will be convenient to use Greek
indices to represent the range of values (1,2,...,n—1) and Latin
indices to represent (1,2,...,n—1,n). With these conventions the
equations (77.2) which determine the mapping y of C take the form

dm de‘
3t T),e0ep (78.1)

Suppose that a correspondence is set up between each point P of
¥, in the vicinity of M and a point p of &, in the vicinity of m in the
following way: if P has the coordinates y* and m is the point of ¥
whose parameter is ", then the point p is defined by

=oul i A . Lok
mp = yey+ [T\ )0y Y+ Wi (0)le;,  (78.2)
where the ¥y, are of third order in the y*,




86 Elements of tensor calculus

Equation (78.2) defines the point p of & ,,as a function of the nscalar
variables (3'). The (»') therefore constitute a system of curvilinear
coordinates for &,,in the vicinity of y. The natural frame at m(y* = 0)
for this system of curvilinear coordinates is, from (78.1) and (78.2),
defined by the vectors

(3) o (2) -t
a0 " g @ T

which is to say that it coincides with the frame (m,e;) obtained in the
mapping. The metric of £,in the coordinate system (‘) has the scalar
products e;* e; as coefficients at m. Using (77.2) or (78.1) the quantities
e;-e; satisfy the equations

dle;e) = [(Ti"arleyen+ T alerepldy™  (78.3)

as M describes C.
On the other hand, according to the definition of the Christoffel
symbols, the Riemannian metric coefficients g; satisfy

dgy = (Tyy+ i) dy¥,

therefore
dgg = [T Dmgin+ T gl - (78.4)

The quantities e;*e;and g; thus satisfy the same differential system
as the point M describes C. Moreover, from (77.1), the initial condi=
tions at A4 are the same, It follows that

€' = gy
identically as M describes C. The Euclidean metric and the Rieman-
nian metric are therefore tangential at all points of C.
To demonstrate that they are osculating it is now sufficient to
establish that the quantities (I'/%;) ,x_o are the values of the Christoffel

symbols on y for the Euclidean metric. These symbols are the co-
efficients of e in (8%p)/(2y' 8y7). Now, using (78.2),

#p "y
(W)y“ﬂo = I\ Wyx=oen
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and from (78.1),

a2p ™ d (p 5. de; ™ e
(5757 ™ i) s = 5 = 0200

which completes the demonstration of our theorem. The Euclidean
metric obtained will be called the Euclidean metric transported along
C.

79. Geomefrical applications. A number of geometrical results can
be obtained from the concepts of mapping and the transport of
Euclidean metrics. We limit ourselves to a few of these.

Let Cbe a geodesicin the Riemannian space ¥, Each point M of C
is associated with the unit vector u tangential to C and, when we pass
from the point M to a neighbouring point of C the absolute differ-
ential of uis zero. Now this absolute differential is the same as that of
the vector image in &, assuming a representation of second order
in the vicinity of M (for example, that which defines the trans-
port of a Euclidean metric). The image vector is therefore simply the
unit tangent vector to the curve y which is the mapping of C. It
follows that the curve y is a straight line in &,. We may therefore state
the THEOREM:

The geodesics of a Riemannian space are those curves which map on
Euclidean space as straight lines.

Using thistheorem it is easy to deduce, in a purely geometricfashion,
that the geodesics of Riemannian space are the curves which define
the extreme length of arc between two fixed points, but we only
mention this in passing,.

Consider now any curve C of ¥, and suppose that a vector v(M) is
associated with each point M of C and is continuously variable as M
describes C. The absolute differential of v on passing from the point
M to a neighbouring point is equal to the difference between the
image vectors in &, for the representation associated with a Euclidean
metric transported along C. We are therefore led to measure the

finite geometrical variation of the vector v(M), on passing from a
point A to a point B along the curve, as the difference between the
image vectors of v(4) and v(B).
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Suppose a vector field v(M) to be given in V. The finite geometric
variation of a vector of the field in passing between two points 4 and
Bis, according to the above definition, dependent on the path Cin ¥,
taken between 4 and B.

III. CURVATURE TENSOR OF A
RIEMANNIAN SPACE

80. Mapping a quasi-parallelogram. In our study of Euclidean space
using curvilinear coordinates it was pointed out that, in order that a
differential quadratic form might define a Euclidean metric, it is
necessary for the conditions of integrability of the de; to be satisfied.
In Riemannian geometry these conditions do not, in general, hold.
We can, however, interpret the de; geometrically using a method due
to Cartan.

In order to evaluate the second derivatives of a scalar or vector
function of the variables () it is necessary to carry out two succes-
sive differentiations which correspond to distinct variations of the y*,
We generalize this procedure by introducing two distinct differenti-
ation symbols.

Starting with any values ' of the variables we introduce the arbi-
trary variations dy’. Let these variations define a differentiation
symbol 4. In a similar fashion let 8y’ be a second set of arbitrary
variations defining another differentiation symbol 8. Thus, starting
from the values (y'+dy’) of the variables and effecting the & differ-
entiation, we obtain the values

(V' +dy'+ 8y + 8dy'). (80.1)

If, starting with the values (»'+ 8)"), we perform the differentiation
d, we likewise obtain the values

O+ 8y + dy'+ dBy". (80.2)
These two sets of values are identical if we arrange that

dsy' = 8dy’. (80.3)
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We then say that the two differentiation symbols commute for scalar
functions or, more briefly, commute. If f(3") denotes a twice contin-
uously differentiable function of the ' then

& = &;f 8y!
and - dSf = eyf Sy'dy'+ 8, fddy’.
Using the symmetry of the second derivatives and (80.3) we have
dof = &df. (80.4)

We note, in particular, that the commutation property of the two
differentiation symbols holds for an arbitrary change of variables .

Consider two interchangeable differentiation symbols and, starting
from the point M of ¥, with coordinates y*, carry out the differentia-
tion dwhich changes M(»") to M+ dM(y'+dy’) and the differentiation
8 which changes M to M+ 8M(»'+ 8)"). We suppose that {M and M
are not collinear, which is equivalent to saying that dy’ and 8y are not
proportional. Starting from M+dM perform the differentiation &
which carries it to the point M’ with coordinates (80.1). Because of
the interchangeability of and 8, we obtain the same point M" as if we
had performed the differentiation d starting from M+ 8M, since the
coordinates (80.2) of the point reached coincide with (80.1). The
closed path defined by the four points (M,M+ dM, M’, M+ M) will
be called a quasi-parallelogram.

We now propose to map the alternative paths in the quasi-parallelo-
gram between M and M’ on the Euclidean space & ,. The point M cor-
responds to a frame (m, e;) in &,,. If we carry out first the differentiation
d and then the differentiation 8, we map the sides (M, M +dM) and
(M+dM,M") of the quasi-parallelogram. The frames (m,e;) and
(m+ dm,e;+ de;) are related by (77.2). Hence

dm = dy'e;, de; = w'(d)e,, (80.5)

where w” (d) denotes the differential form w"; evaluated at (y'+dy).
Mapping the side (M+dM,M’) then carries us from the frame
(m+dm,e;+de;) to the frame [my,(e});] with

—
mm; = dm+ dm+ ddm, }

(e;)l —efi= de,'+ 8e5+ Sde,-.
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Reversing the order of differentiation we pass first from the frame
(m, e;) to the frame (m+ 5m, e+ 8e;) with

om = 3y’e,, Se, = w",(S)e,,; (80-5’)
and then from this frame to [m3, (e}),] with
i
mmj; = dm+ dm-+ dom,
(e:-)z—e, = 3e,+de,-+d88,-.
It follows that [my,(e}),] to [m3,(e}),] are related by the formulae

—_—
mim; = dom— ddm, (80.6)
(e})2—(e))y = dde;—dde;, (80.7)

where we wish to evaluate the right-hand sides. We have
ddm—8dm = d(8y'e))—S(dy’e;) = 8y'de,—dy'Se,,
and from (80.5) and (80.5")
ddm—38dm = (I',*;dv* 8y'— I\ dy' 8y%) e),.

Interchanging the indices / and & in the second term on the right-hand
side and using the symmetry of the Christoffel symbols in their lower
indices we find that

ddm—8dm = (I, - I'l') dy* 8y'e, = 0. (80.8)

The two mappings thus lead to the same origin m’ for the final
frame. This is essentially due to the fact that the Christoffel symbols
are determined in such a way that the integrability conditions are
satisfied.

Now compare the vectors of the two frames with origin at m’. We
have

dde;—3de; = dlw"(8)e,]—8[w"(d) e;)
= [do"(®)— 8'(d)] e+ w* (8) dey— w (d) Se,,
and using (80.5) and (80.5")

dde;— 8de; = [dw™(8)— 8w (d) + w*(8) wi(d) — ¥ (d) w"(8)] e
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We write
d301—3de; = Q"‘e;, (80.9)
with
O = de"(8) — 800" (d) + w*(8) "1 (d) — ¥ i(d) " (8). (80.10)

For an arbitrary Riemannian metric, the quantities 2 are, in
general, different from zero and the frames associated with the two
mappings have different orientations; however, they have the same
form and magnitude since the scalar products of the vectors of these
frames are given by the coefficients of the metric at M’. The 2%, thus
define the rotation at m’ that is required to pass from one frame to the
other.

It is important to realize that the 2 are the components of a
tensor. A change of curvilinear coordinates corresponds to a change
of frame defined by

G A{e]'!

from which we deduce that
Se, = A{'Sej-+ SA{EJ-
and dde; = Af ddey+dA] Seyp+8A] dey+ddAf ep.

On interchanging the two differentiation symbols and taking the
difference between corresponding terms, it follows, since d and & are
interchangeable when acting upon the 47,

tﬁﬂi— Sde, = A{(dsej-—slkr),
and on introducing the 2%, as in (80.9)
Qe = Al Q pep = AJA}Q ey,

Identifying the coefficients of e; on each side we obtain the tensor
transformation
Q= AJARQY,.

We therefore state the following THEOREM:
The quantities Q"; are the components of a mixed tensor.
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81. The Riemann-Christoffel tensor. It can be shown that the quanti-
ties 2%, are bilinear forms with respect to the dy" and 8y°. The co-
efficients of these forms can be evaluated in terms of the Christoffel
symbols. We have

de"(®) = d(I'}";8y") = 8, T M;dy" 8y + I';dsy",
hence

de"(8)—8w"(d) = 2, T };dy"8y°— 2, T8y ay’,
and on interchanging the indices » and s in the second term on the
right-hand side

do”; (8)—8w"(d) = (8,1 "~ 8,T,")dy" 8y".
Furthermore
'i(®) &"(d) - ') "(®) = (I, T =T/, T My dy' 8y,

We conclude from (80.10) that the 2", can be expressed as the bilinear
form

Q' = R,y 8", (81.1)
where
R!h. s ™ arrahi"" 3,1’,",-}-11,",11,’,— I‘shlr‘r‘f- (81-2)

Since dy" and 8y° are the contravariant components of two arbi-
trary vectors and the 2*; are components of a tensor, it follows that
the quantities (81.2) define a tensor field in ¥,. The tensor R/ ,,,
which is obviously antisymmetric with respect to the indices r and s,
is called the Riemann-Christoffel tensor or curvature tensor of the
Riemannian space ¥,. The curvature of a Riemannian space V,, is
thus characterized by the fact that if two distinct paths with the same
extremities are mapped on Euclidean space starting with the same
initial frame, then the final frames have a different orientation.

It follows from (80.9) and (81.1) that the conditions for the integra-
bility of vectors may be expressed by the equations

R 4= 0. (81.3)
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Given an arbitrary quadratic differential form, the conditions
(81.3) have to be satisfied for it to be a metric in Euclidean space. It
can be shown that, when the corresponding manifold is topologically
equivalent to Euclidean space, these conditions are also sufficient to
make ¥, Euclidean; when this is not so, the Riemannian space for
which the conditions (81.3) are satisfied is said to be locally Euclidean.t
Such a space does not differ from a Euclidean space in its local
properties.

82. Covariant components of the Riemann-Christoffel tensor. In order
to carry out the calculation of the covariant components of the
curvature tensor in a simple manner we adopt the following purely
symbolic convention: an index which the covariant differential
operator V, does not act upon is said to be mute, and is written in
parenthesis, With this notation we can write

v'r-r'(i"‘.s') =9, ths'i'rrkl'rils

and consequently
th, ="V, T, (Jha)_v.rI' (i'hs)'

It follows, using Ricci’s theorem, that
Ry,s=gnR! s = V. Igul (ihs)]_ Vgl (r"r)],
or Rij,rs = Ve Ty jiy=Vs Ty jerr
Substituting the explicit form of the terms on the right-hand side
Ry ys = 8,Ty—8,Ty— T} Ty+T YTy, (82.1)

The second derivatives of the g;; only occur in the first two terms of
the right-hand side of (82.1). Let us write these terms explicitly:

arrﬂs - ar[issj] - i‘ar(asgfi'i' ai'gj.!_' ajg!s)z
asrﬁr = &ir,jl = '}a:(argu'*'aigjr'— ajgl'r s

t For example, the surface of a cylinder set in & is locally Euclidean, but
it is not topologically equivalent (i.e. homeomorphic) to a plane. (T.)
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which give by subtraction,

RU, rs = i(alrgjs'i‘ aj: Sir— ajrgl.f" ahgjr) —3'M(Frmjrih_ F.mq Pﬂr)-
(82.2)

Certain symmetry relations can be seen from equations (82.2). These
appear even more clearly in a conveniently chosen coordinate system.

83. Normal coordinates. Relations between the components of the
curvature tensor. Given a point M of ¥, carry out a change of vari-
ables from (%) to (z) which are such that the Christoffel symbols
vanish and the g; remain unaltered. Then, in a second-order repre-
sentation, the Euclidean space &, will be referred to a system of
rectilinear coordinates associated with the natural frame (m,e;) at M.
Since the natural frames at M for the (%) and the (z') are the same, the
components of a given tensor at M are the same in both systems of
coordinates. The coordinate system (z') is called the normal coordinate
system at M associated with the coordinates (). The use of such
normal coordinate systems is often valuable in avoiding lengthy
calculations in Riemannian geometry. We shall use them to establish
certain relations between the components of the Riemann-Christoffel
tensor.

The covariant components at M of the curvature tensor (which
have the same values in the two coordinate systems) are given in
terms of the normal coordinates at M by the relations (82.2) with the
Christoffel symbols omitted:

Ry rs = M0 g5+ 05581 — 052 8is— 21s8jr)s (83.1)

the quantities on the right-hand side being evaluated with respect to
the normal coordinates. We deduce that, for any coordinate system,{

RU. i Rr.r,t;s (83.2)
RU. Wi le. e R_H'. rse (83.3)
t These equations certainly hold in a normal coordinate system and,

being tensor equations, they must also hold in any other coordinate
system. (T.)
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Also, permuting the indices j, r, s, we obtain
Rir. o™ ‘&(aisgjr'*' ajrgls_ arsg{l_ ao‘grs)l
Ris,jr = 88 rs+ Orsy— 9js&ir— 21 8js)s
and adding these results
E R”' ”+ .R,',-, -Tf+ Ris,jr = 0. (83.4)
Equations (83.3) and (83.4) form a complete set of identities for the
components of the Riemann-Christoffel tensor: each identity con-
necting the components Rj; ,, is satisfied by a set of numbers Rj; ,,
restricted only by the conditions (83.3), (83.4). Every other identity is
an algebraic consequence of (83.3) and (83.4) — this is true in particular
of (83.2).

84. Second-order covariant derivatives of a vector. Given a vector
field in terms of the contravariant components " we wish to evaluate
the difference between V (V,2") and V (V,"). In Euclidean space this
difference is zero but in Riemannian geometry it depends upon the
curvature of the space. Consider a system of normal coordinates at
an arbitrary point M of ¥,. By definition, at any point of ¥,
Vo = a0t + I,
Since the coordinates are normal at M, the Christoffel symbols vanish
there and we have
V.V, = 8,,0"+ 8, o',
It follows that
Vr(VsUh)—V,(VrU") = (o, rshi"' asrrhi)vi-
However, in a normal coordinate system we have, from (81.2),
R!h. rs = arPa"l— as I‘rhl"
Therefore
V.V, 0" -V (V0" = R} , 0" (84.1)

Since the terms of this identity are tensors, (84.1) is valid for any
system of coordinates and for any point of ¥,. If it had been estab-
lished directly, the identity (84.1) might have been used to introduce

the Riemann-Christoffel tensor. This tensor was, in fact, originally
introduced in this way.
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85. The Ricci tensor. Let us investigate the tensors which can be
formed from the Riemann-Christoffel tensor by contraction. Since
the components R;; ,, are antisymmetric on the one hand with respect
to i and j and on the other with respect to r and s, contraction of i with
J, or of r with s merely results in a tensor which is identically zero.

Consider, however, the contraction of an index from the first group
with one from the second — using, for example, the second and third
indices. In this way we obtain the tensor

Ry= R} . (85.1)

This tensor is evidently symmetric with respect to the indices i and j,
since
Ry = g% Ry 1; = 8" Ryj,ix = & Ry i = Ry;.

If we contract either index of the first group with either one of the
second we always obtain either the tensor Ry; or its negative since,
from (83.3)

g™ Ry jn = 8" Ry iy = Ry

and & Ry jn = 8" Ryypy = —8" Ry iy = — Ry

The symmetric tensor Ry, whichplays a fundamentalrole in relativistic
gravitational theory, is known as the Ricci tensor. Using (81.2) and
(85.1) we can deduce the following expression for this tensor:

Contracting the Ricci tensor we obtain the invariant
R = R". = gURU (85.3)

which is called the scalar Riemannian curvature of the space V.

In the Riemannian space realized by an ordinary two-dimensional
locally deformed surface, the scalar Riemannian curvature is equiva-
lent to what is known, in differential geometry, as the total curvature
of the surface. This total curvature is known to depend only upon ds,
the line element in the surface.

86. Bianchi identities. There exist identities other than those implied by
(83.3) and (83.4), between the components V,R;; ,, of the tensor
derivative of the curvature tensor.
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In order to establish these important identities we again use a
system of normal coordinates at an arbitrary point M of V,. The
Christoffel symbols are then zero at M and using (81.2) we deduce by
differentiation that, at the point M,

* VR, =08,I'l-2,I'}, (86.1)
A cyclic permutation of the indices r, s and 7 gives
b Ri",:r = 0, Frht_ O Fahh
v, th. tr = O Prhl —Ops P:hi-
Adding these expressions we obtain
VoR' (VR VR, = 0, (86.2)

From their tensorial form these identities are obviously valid in any
coordinate system and for any point of ¥,. They are known as the
Bianchi identities.
Double contraction of (86.2) leads to an important consequence
relating to the Ricci tensor. Putting ¢ = / we obtain
- Vr Rfs+ V.f R.fr+ vh R:k, rs = 0,
then, contracting / and s,

_er"'vser"' Vh-th =0,

or 2V, R°.—V,.R= 0.
Using Ricci’s theorem this may be rewritten in the form
VJ(R*,— 3¢, R) = 0. (86.3)
It follows that the symmetric tensor
.5 = R,;—3g, R (86.4)
satisfies the identities
V8% =0. (86.5)

These identities are fundamental to relativistic gravitation theory in
which they are used to introduce conservation principles.
7



PART II: APPLICATIONS

CHAPTER VI

Tensor Calculus and Classical Dynamics

I. DYNAMICS OF HOLONOMIC SYSTEMS WITH
TIME-INDEPENDENT CONSTRAINTS

87. Configuration space as a Riemannian space, Consider a dynamical
system S with time independent holonomic constraints and »n degrees
of freedom. The set of configurations of such a system constitutes an
n-dimensional differentiable continuum which is called configuration
space. We describe S by the parameters (¢',...,¢") which form a
coordinate system in the configuration space. According to our
definition of S, its kinetic energy T is a positive definite quadratic
form in the time derivatives of the g;

i

2T = a:luq"q'J1 (q" = Ef;), (87.1)
dt

where the a; are functions of the parameters g'. We can associate the

dynamical system S with the proper Riemannian space V), defined by

the configuration space associated with the metric

ds* = 2TdP,
which may be rewritten
ds® = aydq'dq’. (87.2)

A definite point M of the configuration space corresponds to each
configuration of the system in such a way that a displacement of the
point M in the Riemannian space ¥V, is associated with every dis-
placement of the system. We propose to represent the motion of the
system S by that of a point in the Riemannian space.

[98]
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88. l.(hmnatics of the point M. Let us first complete the kinematic

considerations sketched in Chapter V. The velocity vector, v, of the

point M whose coordinates are ¢’, has the contravariant components
i _ dg'

o= = = !'.
a7

The covariant components of this vector are consequently given by

v; = ayq”’ S (88.1)
g - oy .
i aq"'

We thus see that the momenta p;, which continually appear in
analytical dynamics, are just the covariant components of the velocity
vector of the representative point M in the Riemannian space V.
Let us denote the unit vector tangential to the trajectory, C, of M by
u; this has the components

1.9
e e
Hence
Yy=ovu ﬂ—é
2 Ta’

and the magnitude of the velocity vector is given by

2 ds 3
o = (Er) =T (88.2)

Now consider the acceleration vector. Since u is a unit vector its
absolute differential, as M describes C, is perpendicular to it. Conse-
quently we may put

vid A

Fas s (88.3)
yvhere the n' denote the components of a unit vector normal to uand P
is a positive scalar quantity. The vector n will be called the principal
normal vector to C and p~! the curvature of C in V,. (88.3) is a
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generalization of Frenet’s first formula in elementary differential

geometry. Using
o = v,

and differentiating with respect to time, we have
’ V(vu) do . Vi'ds
b S e =y
dt dt ds dt
d o?

B i+ —nt 88.4
dtu+pn' (88.4)

Hence the acceleration vector y decomposes into a tangential and a
normal acceleration given by the same expressions as in classical
mechanics.

or ¥y =

89. Equations of motion. Let
Q,dq’

denote the infinitesimal amount of work done by the given applied
forces acting on S in a small arbitrary virtual displacement. This
expression is invariant under a change of parameters if the Q, are the
covariant components of a vector in ¥,,. The vector Q; is called the
generalized force vector. The motion of S is determined by the
Lagrange equationst

dfeT

oT
P; = Ei(@)_‘ — - Q;. (891)

Let us try to interpret the components of P;. We have

oT j

T
i ’ s rj ok
" a;q"”, = ¥da;9"'q".

-

aq'
Hence the P; have the explicit form

P = :‘*:(auqd) = iafajkqdq'k- (89.2)

 These equations are discussed in any elementary account of analytical

mechanics. They are derived from Newton’s laws of motion which relate
the forces to the acceleration of the individual particles of the system. (T.)
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However, from a calculation identical with that given in §76, we see
that the right-hand side of (89.2) is equal to
‘i
“u% +Lik, i1 q’%,

where the Christoffel symbols are defined in terms of the a;. We

deduce that
V‘!JJ Vv;

P = _— = —

il bl

Thus the quantities P;, which appear on the left-hand side of the

Lagrange equations, are just the covariant components of the

acceleration vector of M, and the Lagrange equations may be
rewritten as

= Yi- (89.3)

yi= 0O (89.4)

The equations of motion of M are thus obtained by equating the
acceleration vector in ¥, to the generalized force vector; that is by
writing down for M the precise generalization of the equation of
motion in particle dynamics and considering M to have unit mass.

Using (88.4) we may write the equations of motion as

dv  o?

:1; lli"r -; n = Q[. (89.5)
It follows that the generalized force vector is always coplanar with
the tangent and the principal normal of the trajectory of M.

If the Q; are zero, the point M has zero acceleration in ¥, which

implies that

dv 1

— =0, -=0,

dt P
The motion of S in the absence of forces is therefore associated with
the uniform motion of M along geodesics in ¥,

90. Energy integral. Suppose that the system S can be associated with
a time independent potential function U of the parameters q' which
satisfies

0= —§U.
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Then taking the scalar product of each side of (89.5) with the vector v
which has the components v’ = vu we find, allowing for the ortho-
gonality of v and m,

dv g au

1t follows that the equations of motion of M have a first integral
which is a generalization of the energy integral relating to a single
particle in elementary dynamics:

310*+U="h (k= const). (90.1)

According to (88.2) this is also the energy integral of the physical
system S.

91. Principle of Maupertuis. We retain the assumption which led to
an energy integral in the previous section and take a particular value
for the arbitrary constant appearing in the function U. It is then easy
to derive a generalization of the principle of Maupertuis regarding
motion in the absence of forces and to give a geometrical interpreta-
tion of this.

Consider a parametric representation of the motion of M in which
the coordinates ¢* and the time ¢ are expressed as functions of some
parameter 7. We suppose that the relation between = and ¢ is known,
and write

dr
7 = F, (91.1)
We have
qrf For ‘_@j — dq‘
dt d-r

and the quantities P; may be written

d dg\ F_ dg
P‘ = F[AFGU?;)—E a,ajk}:—;%‘]-
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Hence we deduce that the trajectory, C, of M can be represented in
terms of the parameter = as the solution of the system of differential
equations
d dq’ dg* U

=/ S 91.2
d-r(F"d) 21 dr F oy

The form of the left-hand side of (91.2) brings to mind the equations
which determine the extremals of

o = [ v(Faydd'agh, (©1.3)

where Fis a function of theg’. Let us determine the extremals of (91.3)
assuming Fto be a known function. These correspond to the geodesics
of the Riemannian metric

do* = Fds* = Faydq'dg’. 91.4)
We take o itself as parameter on these geodesics and, in order to
simplify the notation, we put
i
q - d_cr.

It follows from (76.7) that the differential equations which determine
the geodesics can be written

d
= (Fayd’)—4o(Fay)d’d* = o,

so that
d s b % +J ok -] ok
b (Fauq})_'i(alajk)q q° = ¥o;F)ayq’q". (91.5)
From (91.4)
Fa]kq.'q.k &= 1:
so that (91.5) may be rewritten
d s e
7o Fayd) =5 0apd’d* = 5. (91.6)
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We can identify (91.2) with (91.6) if we take

F = —2U+const.,
so that
&, F = —208;U.

Among all the trajectories which are solutions of (91.2) consider
those which correspond to a given value of the energy constant 4.
(88.2) substituted into (90.1) gives

2T = 2(h—U). (91.7)

The parameter 7 is completely determined on these trajectories
(apart from an additive constant) if we put

F = 2(h-U). (91.8)
Using (91.4), the parameter o is determined by

do

= +/(F.2T)
or, from (91.7),

do dr

P o o

The parameters o and = are therefore identical and the trajectories
under consideration satisfy the differential system (91.6), that is to say
they are the geodesics of the Riemannian metric

do® = 2(h—U)audq'dqj.

We now express this formally:

MAUPERTUIS’ PRINCIPLE: Given the form of the energy integral,
the trajectories of a dynamical system which are determined by a
particular value, h, of the energy constant are the geodesics of the
configuration space with the Riemannian metric

de* = 2(h—U)ds* = 2(h— U)aydq'dg’. (91.9)
These geodesics are given by
do
= = 2=, (91.10)
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92. Some applications. The introduction of Riemannian spaces
associated with the configuration spaces gives us a geometrical picture
for all problems concerning the dynamics of holonomic systems with
time independent constraints. The techniques of tensor calculus may
therefore be applied to such problems. The use of tensor methods in
analytical dynamics has resolved a certain number of problems for
which solutions could not be obtained using only the methods of
analytical dynamics. This is so, in particular, in the case of the problem
of the transformation of the equations of motion which was posed by
Painlevé and Levi-Civita and which can be formulated as follows:
Under what conditions do two systems S and S, which share the
same configuration space, have the same trajectories independently
of the way in which these trajectories are described in time ?¥

The stability of the motion of a dynamical system S is best dis-
cussed by reference to the configuration space ¥, with the metric
ds® = 2Tds* using a method analogous to Levi-Civita’s method of
geodesic spread.

We mention finally the research on reducible dynamical systems §:
a dynamical system is said to be reducible if, for a certain choice of
parameters ¢', its energy T can be expressed as the sum of the energies
of two systems having respectively r and (n—r) degrees of freedom

.
2T, = ? azg(d,...aNg*qP,

n
2T, = 3 bagla’™,...aMad P,
r+1
the potential function U also being the sum of two potential functions
Ul(qls“‘)qr)b Ul(q'+1,"‘iq")'

¥ PAINLEVE, ‘Sur la transformation des équations de la dynamique’,
Journ. de Math. (1894); LEvi-CiviTa, Sulle transformazioni delle equazioni
dinamiche’, Ann. di Mat. (1896); THomas, T. Y., ‘On the transformation of
the equations of dynamics’, Journ. of Math. Phys. (1946); LICHNEROWICZ,
*Sur la transformation des équations de la dynamique’, C. R. Acad. Sci.
(1946).

1 Levi-CiviTa, *Sur Pécart géodésique’, Math. Ann. (1926); SYNGE, ‘On
the geometry of dynamics’, Trans. Roy. Soc., Lond. (1926).

§ STACKEL, C. R. Acad. Sci. (1895); THomas, T. Y., ‘ Reducible dynamical
systems’, Journ. of Math. Phys. (1947).
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Given a dynamical system S referred to any set of parameters (), it is
of interest to determine under what conditions it is possible to find a
set of parameters (g‘) which allow the reduction of the system.

The explicit solution of these problems goes beyond the scope of
this book and we refer the interested reader to the original papers. It
is worth noting that, to some extent, the considerations of previous
sections can be extended to non-holonomic systems with time
independent constraints.}

II. DYNAMICS OF HOLONOMIC SYSTEMS WITH
TIME-DEPENDENT CONSTRAINTS

93. Configuration space-time. Consider a dynamical system 2 having
n degrees of freedom and with time-dependent holonomic constraints.
Since the constraints are time dependent the possible configurations
of the system depend upon the instant of time under consideration.
We therefore substitute a configuration space-time for configuration
space, thatis a continuum ¥, ; with (n+ 1) dimensions which has the
parameters ¢’ (i = 1,...,n) of the system and the time ¢ = q°, as co~
ordinates. This coordinate system is restricted by allowing only
coordinate transformations of the type

" =% ¥ =q"+d(q)

Giizetc, = 1., m)
It will be convenient to write

d o
qu = i (ﬂ'.,etc. = 0,],-”9”)

dt
so that
dg'
A £ 1’ 7 = =,
q q ar
In this notation the energy of 2 is given by
‘ 2T = a,pq%q"P, (93.1)

¥ See, for example, the work by Synge just quoted.
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where the .8 are functions of the q". We associate the dynami.cal
system Z with the Riemannian space V.., defined by configuration
space-time with the metric

ds* = 2Tdr* = a,gdg*dgP. 93.2)

Each configuration of the system at time # corresponds to a com-
pleteiy determined point M of configuration space-time. Each
possible displacement of the system is associated with the displace-
ment of the point M in the Riemannian space ¥, . 1, this displacement
being defined by giving the n coordinates g* as functions of the
(n+1)-th coordinate g° = .

The velocity vector of M has the contravariant components
v*=g'* and its covariant components are given by

The ncomponentsv;are thus equal to the momentum components, p;,
of the system 2. The acceleration vector y has the covariant com-
ponents 3
v # ’
Yo = “uﬂ% = a,59"P+ By, laq". (93.3)
We note that ¢”° = 0. In particular it follows from (93.3) that
yo = a0;q" '+ Lik,01a" '™+ 2,a000"'+ }20a00.  (93.4)

94, Equations of motion. Once again let

Q,dq’

be the infinitesimal amount of work done in a small arbitrary virtual
displacement by the forces applied to Z. The motion of Z'is deter-
mined by the Lagrange equations
diary ar
= i) 5= 2 g

Multiplying these by ¢”’ and summing

af 49T\ (T ,; T 4\ _ o
f 2 ) o
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Usiqg Euler’s theorem for homogeneous functions, we have

L Y
g "

eT Fod EATRY o 3R o

also o ] s SUEST R
q aqfi q aqi dt aqo:

so that

dferyar' ar

Po B =il e e i e o
0 dt(@q') W dt 09" (94.2)

We now wish to interpret the quantities P, which appear in (94.1)
and (94.2). As in §89 we have

= aaﬁq”ﬁ+ [By, alqBq”.
Putting
P, =y,

the Lagrange equations (94.1) become

Yi= @ (94.3)
and (94.2) takes the form

dar 4
0T 2 Qiq". (94.4)

Equations (94.3) and (94.4) are the equations of motion of M in
V1. If the motion of S takes place in the absence of applied forces the
n components y; of theacceleration of S arezero, but y,is, in general,
different from zero and the corresponding trajectories of M in Voiid
cannot be interpreted in a simple geometrical manner.

95. Systems with a potential function. Suppose that the forces acting
on X are derivable from a potential function U(g° g, ...,q") which is
explicitly time dependent. We know that if we introduce the Lag-
rangian of the system

L=T-U,
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then the equations of motion of £ can be written
E(E)_fé g
di\egq’’] é&q' ?
Instead of ds® = 2Tdf?, it is now convenient to introduce the metric
do* = 2Ldr%. (95.1)
Absorbing the function U in the coefficient agy we write
2L = aup9q",
so that do® = aquq“dqﬁ.

All the formulae established in §93 and §94 remain valid in terms
of the metric (95.1) if we replace T by L and write Q; = 0. We thus have

. df eL éL
Yo = dt aqta aqa,’
and the equations of motion of the representative point M in the
space ¥, ., with the metric (95.1) can be written

dL
=0, Y= 7 (95.2)

96. Eisenhart’s theorem. Eisenhart has given a simple geometrical
interpretation of (95.2) by introducing a Riemannian metric with
(n+2) dimensions. If u =g""! denotes a supplementary parameter,
consider the improper Riemannian metric defined by

dr* = 2Ldr*+ 2dtdu, (96.1)

giving
dr* = aydq'dq’+2a0dq’ dg®+ ago(dg")* + 2dg°dg" . (96.2)
Among the geodesics of such a metric there are some which are
real and of zero length, that is with d=% = 0. For simplicity we shall

consider only these geodesics in what follows. If we write the metric
(96.2) in the condensed form

dr* = a,pdgidg® (A, B,etc. = 0,1,...,n+1)
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with
i =1, @EFT = arrrarr =0,

then the system of differential equations (96.2) which determine the
geodesics may be written

d2q? c
a3 +IBC, A]d-"—Bdi =0 (96.3)
When A = n+ 1, we have simply
d*t dt
P o 0, s a (a = const.). (96.49)
Using (96.1) and (96.4) it folIows that
du T 1
T 2 o -L = E’fl‘ (96.5)
and, by integration
4
t
= % der +b (b = const.). (96.6)
0
The differential system (96.3) may then be written
quB ququ
aﬂ,dtz+[ CA] -dT—o
When A4 = i we get
Yi=0
and, for 4 = 0,
2
wHr=0
or, using (96.5),
s O
Yo =

and we recover (9.5.2) which are the equations of motion of the
system Z. A consideration of the initial conditions enables us to
deduce the following theoremt:

& ;’BE)ISBNHART, ‘Dynamical trajectories and geodesics’, Ann. of Math.
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EISENHART’S THEOREM: All possible motions of a holonomic
system Z which admits a potential function can be obtained in the
following way: consider the metric (96.1); the possible motions of 2
correspond to the geodesics of this metric which satisfy the initial

conditions
3 du 1
g = b, (E)U ! —202_ (L)Ds

where a and b are arbitrary constants.

The trajectories of the representative point M of ¥, y are given in
configuration space-time by the projections of the geodesics of
(96.1) along the coordinate lines of the parameter u. The relation
(96.6) shows the connection between the variable # and the action of
the system. We remark finally that, given Eisenhart’s theorem, the
Hamilton-Jacobi theorem of analytical mechanics can be interpreted
in a particularly simple manner.

III. DYNAMICS OF CONTINUOUS MEDIA

97. Continuous media. In a later part of this chapter we propose to
indicate some applications of tensor calculus to the dynamics of
continuous media. This includes the hydrodynamics of fluids as well
as the study of the deformation of solids (theory of elasticity).
Historically, it was the work of the physicist Voigt on the deforma-
tion of crystalline media that gave rise to the idea of tensors and it is
to the theory of elasticity that they owe their name. This, of all the
classical theories, is probably the one where tensor methods have
proved most useful, thanks to the easy introduction of those curvi-
linear coordinates which are most appropriate to the physical
problems under consideration.} Lastly, the general equations for
continuous media which we shall establish are very important
because of Einstein’s use of them in general relativity theory.

From the microscopic point of view all physical media consist of
particles. Tt is possible, however, to adopt a macroscopic viewpoint
and to describe the behaviour of a continuous medium such as a

 See BRILLOUIN, L., Les tenseurs en mécanique et en élasticité (Masson,
1938), on this point.
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fluid or elastic solid by considering a small volume of the medium
rather than the individual particles. In the course of time, particles
enter and leave such a volume element, each particle obeying the
usual laws of mechanics. It is necessary to reformulate these laws in
such a way that the positionsand velocities of theindividual particles
do not appear. The volume elements considered must therefore con-
tain a sufficiently large number of particles in order that the mean
values of these quantities should be well defined. If the space is
referred to three arbitrary curvilinear coordinates y', y2, y* we assume
that it is possible to define a density of matter p and a vector velocity
v at the point M(y’) and at the instant 7. The variables (', 2 »*, f)are
known as the Euler variables.

98. Total and partial time derivatives. Let us consider a function of
position, g, in a continuous medium (for example, a scalar such as p,
or a component of a vector such as v, etc.) and suppose that we wish
to describe its evolution in time. This can be done in two ways:
either we describe its evolution in time at a fixed point M(»') so that
the derivative of g with respect to time is the partial derivative given by

oq (Bq)
ot ot y‘=const.’

or we can refer this evolution to a coordinate system which is tied
locally to the average motion of the matter. In the latter case the time
derivative of g is the total derivative

dq e oqdy' éqdy oqdy’
dr di o' dt etdr o dr

(98.1)

Introducing the contravariant components of v defined by

dy’

dr’

and using the usual notation for partial derivatives, this relation
becomes

i

dg _ ¢q
i Fr-l-via‘.q‘

dr (98.2)

e

T e —————

—
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If g is a scalar (98.2) can be written in vectorial form as

dqg _&q

i ar+v gradg. (98.3)
99. The continuity equation. The two purely kinetic quantities, p and
v, are not independent since the change of density in a volume element
is determined by the flux of matter which crosses the surface of this
element. This is expressed mathematically by the well-known con-
tinuity equation

)
2 HaivED =0, (99.1)
which may be expressed in tensor form as
&
+Vi(peh = 0, (99.2)

where the covariant differentiation is performed in a Euclidean space
of three dimensions referred to the curvilinear coordinates ',

100. Body and surface forces. In order to deal with the dynamics of
continuous media it is necessary to investigate the forces which are
exerted on the volume elements of the medium. Draw a closed surface
S inside the medium and consider the external forces acting on the
volume, ¥, of the medium enclosed by S. These forces fall naturally
into two classes:

(I) Body forces: these act directly on the different volume elements
of V. Choose an element d¥ of ¥ with mass dm = pdV. The forces
acting on this volume element are of the order of dm and hence dV;
we denote their resultant by

fdv,

where f, in general a function of position, is the body force per unit
volume.

(2) Surface forces: these are the forces acting on the surface which
arise from the action between the elements of the medium contiguous
to S on the outside and on the inside. If dS is a surface element then
it is acted upon by a force of order dS which we denote by

—Tds.




114 Elements of tensor calculus

This force depends only upon the position of the element dS in the
medium and not upon the rest of the surface which contains it. It is
generally inclined at an angle to the normal of the surface element dS;
when directed towards the interior of S it is called a compression and
in the reverse case, a tension.

101. The stress tensor. We now propose to investigate the variation
of the force TdS with the different possible orientations of dS.

To this end we refer the continuous mediumto a frame (0, x', x%, x%)

formed by three rectangular Cartesian coordinate axes. At any point
M of the medium consider three lines parallel to the axes and take
three infinitesimal elements along these. In this way we obtain an
elementary tetrahedron MABC whose faces MBC, MCA, MAB,
ABC will be denoted respectively by dS?, dS3!, dS'* and dS. If
oy, oy, &3 denote the components of the unit vector along the normal
to dS exterior to the tetrahedron we have

ds?® = aydS, dS* = 0,dS, dS" = ajdS.

The surface force acting on 4 BC differs only by higher order terms
from that which would be exerted on a similar parallel surface centred
at M. Consequently we denote by TdS the surface force exerted over
dS by the interior elements of the tetrahedron. The equality of action
and reaction implies that the force exerted over dS by the external
elements will be —TdS. }

The tetrahedron is therefore subjected to the body force fdV and
to the surface forces which act on its four faces and may be represented

by
©,3dS%, ©3,dS", ©,,dS"?, -Tas.

If we add to these the inertial force —ydm corresponding to the
acceleration of the point M of the medium, the elementary tetra-

hedron will be in equilibrium under the action of the complete system

of forces. Hence
—TdS+0,3dS% +03,dS* +©,dS"+ (f—py)dV = 0,
and dividing by dS,

dv
T = 0;03+230;3+230+ (f—PY)IS'
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Suppose that the lengths of the edges of the tetrahedron tend to
zero, then dV/dS tends to zero, and in the limit we have

T = 0;O33+ 02703+ 03045, (101.1)
We see that, if dS%°, dS>!, dS'? represent the components of the
bivectort defining the area dS, then
TdS = 0,;d5%+0,,d5* +0,,d5".
Hence, in our coordinate system x’, the components of the force TdS
are linear functions of the components of the bivector defining the
surface element dS. This result is obviously independent of the
particular coordinate system used.
Let us now refer the space to an arbitrary system of curvilinear
coordinates y. The contravariant components of the bivector defining
the element S are denoted by dS” and the contravariant components

of the force TdS are denoted by T'dS. According to the above result
there exists a set of quantities 8/ such that

T'dS = 16};ds¥.
In place of the bivector dS¥ it is convenient to introduce the adjoint}
vector whose covariant components do, are defined by
ds? = g, (101.2)

It can immediately be verified that (doy) is orthogonal to the surface
element dS and has the same magnitude. It follows that

T'dS = y8}m*day,
and writing * = 18ln*0,
we obtain the fundamental relations
T'ds = Mdo,, (101.3)

1t is clear that the quantities 7*' are the contravariant components
of a tensor since, whatever the numerical values of the covariant com-
ponents doy, the left-hand side of (101.3) is a contravariant vector.

t Defined in §47. (T.) 1 Defined in §52.
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The tensor £ so definedt is known as the stress tensor of the contin-

uous medium.
When the medium is a perfect fluid the stress tensor takes the form

M = pghl (101.4)
where p is the scalar pressure in the fluid at the point and time in-
stant considered and where the g*' are the components of the
fundamental tensor of the space.

102. General dynamical equations for continuous media. In the follow-
ing we shall assume that all the quantities introduced are both con-
tinuous and differentiable.

Consider again an arbitrary closed surface S within the medium
containing a region of volume ¥ and write down the usual conditions
for the resultant of the exterior forces and the forces of inertia acting
on this region of the medium to vanish. It is convenient, particularly
for writing down the moment conditions, to use an orthogonal
rectilinear system of coordinates x’.

Let ' be the components of the acceleration of the centre of mass
M(x") of an element of volume of ¥; the corresponding inertial force
acting on the element has components — py'dV. If TdS represents the
surface force exerted by theelementsinterior to S on the elements ex-
terior to Sitfollows from the vanishing of the resultant force on Vthat

j f f (fi=py)dv— _[ J' Hidg, = 0 (102.1)
v s
and, since the moment of the resultant couple also vanishes,
[[[ =y =i £ py'n1av-
vV
4 f f =X M doy, = 0. (102.2)
S

Using Green’s theorem to transform the surface integral appearing
in (102.1) we obtain

[[[ ri=pvi-ariyav =0
vV

T Note that in many English texts the stress tensor is defined with the
opposite sign. (T.)

(102.3)
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and (102.2) becomes
[[[ - py/ = a9y = s~ py'~ 21107 -
|

A J' J' J‘ @—-yav =0. (102.4)
v

Since (102.3) holds for any volume ¥ it follows from the continuity
of the integrand that this is identically zero, hence

py' = fi—8, 1" (102.5)
Using this relation (102.4) reduces to
J' J' f (- tihydv = 0,
v
for an arbitrary volume ¥ so that
- = 0. (102.6)

Equations (102.5) and (102.6) have been derived from the laws of
classical mechanics. The first set comprise the general dynamical
relations for continuous media, the second merely state that the tensor
¥ is symmetric with respect to its two indices.

It is easy to express the dynamical equations for continuous media
using an arbitrary curvilinear coordinate system. The equations

py' = fi=V, ¥ (102.7)
are invariant with respect to any change of coordinate system; they
also reduce to the equations obtained previously when using rect-
angular axes. They are therefore the desired generalization of (102.5).
We note that to any stress tensor 7 there corresponds a force density
per unit volume given by

K'= V.4, (102.8)
103. Alternative form of the equations for continuous media. Equations
(102.7) can be put into an interesting alternative form by writing out
the acceleration components y’ explicitly. These components are
simply the absolute total derivatives with respect to time of the
velocity vector v. Using (98.2), we have

i i
yl = % + I} okoh = -a;r + Il oto* 4o 8,0,
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2 i
or ¥ = 7’:+u" v, (103.1)

We deduce that

;
.'_a(fm)
PY =%

7]
+Vk(pv"v‘)—v'[§+ vk(pv’a],

and, since the bracketed term is zero by virtue of the equation of
continuity,
i #(pr’)

= ot

+Vi(pr*o).

We thus obtain a new formulation for the general dynamical
equations for continuous media:

Apv')
ot

+ Vi (pvfol+ 4 = 77, (103.2)

It was this formulation which suggested some of the postulates of
general relativity to Einstein.

The three equations (103.2) together with the equation of con-
tinuity determine the behaviour of continuous media under the action
of surface and other forces. The mechanical problem is, of course,
only defined when the % and the f? are known. The body forces are
determined by external circumstances such as the presence of a
gravitational field, whilst the stresses depend upon the internal
deformations of the medium and on the flux of matter. In the case of a
fluid, for example,

tik = Pk

where p is itself the function of p and temperature given by the
equation of state of the fluid.

The above equations can be used to derive an equation representing
energy transfer which expresses the fact that the energy contained in
an element of volume varies with the flux of energy passing through
the surface of the element.

CHAPTER VII

Special Relativity and Maxwell’s Equations

I. PHYSICAL PRINCIPLES

104. The Michelson-Morley experiment. A systematic treatment of
special relativity theory would take us beyond the scope of this book.
In this chapter we merely propose to indicate the bases of the theory
and to show the role played by tensor methods, particularly in the
theory of electromagnetism.

Historically, the theory of special relativity was a consequence of
the negative result of the Michelson-Morley experiment. Various
experimental facts had pointed to the existence of an ether at absolute
rest, which did not affect the motion of ordinary matter, and which
was the medium in which electromagnetic waves were propagated.
Among these facts was Fizeau’s experiment on the velocity of pro-
pagation of light in a material medium and the phenomenon of
aberration of light waves.

This picture of a stationary ether seemed to make it inevitable that
the value of the speed of light measured by an observer in motion with
respect to the ether would depend upon the magnitude and direction
of his velocity. If ¢ is the velocity of light and » is the collinear velocity
of the observer with respect to the ether then, according to classical
kinematics, the velocity measured by the observer would be (¢ —#) or
(e¢+wv) according to whether he moves in the same or the opposite
direction as the light. An observer ignorant of his velocity relative to
the ether would be able to determine this experimentally by emitting
light signals in all directions and measuring the time taken by these
signals to reach the surface of a sphere centred at the light source.
Any motion with respect to the ether would create an ‘ether wind’
which would affect the signals in such a way that the first one to reach
the sphere would have travelled along the direction opposite to the
motion and the last one would have travelled in the same direction
as the motion.

[119]
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This was the principle of the celebrated Michelson-Morley experi-
ment which attempted to find the motion of the earth with respect to
the ether. The velocity of the earth in its orbit is about 30 km/sec.
with respect to the Copernican reference frame which has its origin at
the centre of gravity of the solar system. After six months this velocity
is reversed. It might be that, at a certain instant, the unknown motion
of the Copernican axes with respect to the ether exactly cancels the
relative motion of the earth but this could hardly continue throughout
the year.

Using a well-known interferometer whose description we shall
omit, Michelson and Morley could have detected an ether drift of only
1-5 km/sec. In fact they observed no fringe shift within the limits of
experimental accuracy and the same experiment done at different
periods of the year always gave the same negative result. More recent
experiments have confirmed the original result.}

Experiment thus shows that the speed of light is independent of the
motion of the observer.

Various artificial hypotheses (the ether drag theory, Ritz’ theory of
the dependence of the speed of light on the motion of the source) were
put forward to explain this negative result. These were subsequently
vitiated by further experimental facts. However, it was the hypothesis
of the contraction of bodies in motion in the quantitative form put
forward by Fitzgerald which led physicists, notably Lorentz and
Einstein, to formulate the special theory of relativity.

105. Constancy of the speed of light. Lorentz and Einstein took the
results of the Michelson-Morley experiment as their starting point.
Since a Galilean frame is a system of axes moving uniformly along a
straight line with respect to the Copernican frame the result of this
experiment can be stated as follows: the speed of light is the same with
respect to all Galilean frames which coincide for short periods with
the system of axes fixed on the earth as it describes its orbit.

We are thus led to postulate the principle of the constancy of the
speed of light:

1 These were by Kennedy (1926), Piccard and Stahel (1926-8), Joos
(1930). Indirect confirmation was given by the observations of Ives (1938)
on the Doppler effect.
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The speed of light in vacuo measured with respect to any Galilean
frame is the same in all directions; this speed, of the order of 300,000
km/sec, will be denoted by c.

There might be disadvantages in basing a principle of such general-
ity on the result of a single type of experiment without the confirma-
tion of other types of experiment. However, the Michelson-Morley
experiment merely served to draw the attention of physicists to a
mathematical fact which had, until then, remained obscure. It had
already been pointed out by Poincaré that the equations of Newtonian
dynamics and Maxwell’s electromagnetic equations are not invariant
under the same group of transformations. An intrinsic conflict there-
fore exists between Newtonian dynamics and electromagnetic theory.

In order to resolve this conflict Einstein proposed to admit the
principle of the constancy of the speed of electromagnetic waves,
thus retaining the Maxwell theory, and to modify Newtonian
dynamics accordingly.

106. Newton’s and Einstein’s principles of relativity. In order to
improve our understanding of the above-mentioned conflict let us
return to Newtonian mechanics. Consider any two Galilean frames
whose relative velocity is represented by ». We can arrange, by a
suitable choice of coordinates, that the axis O’x’ of the second frame
slides along the axis Ox of the first, the axes O’y’ and Oz’ remaining
parallel respectively to the axes Oy and Oz of the first frame. Using
classical kinematics, we have that, if (xyz7) and (x"y"z’t") denote the
coordinates and time of the same event with respect to the two
Galilean frames, then

x = x—vt, ¥y =y, g =z f =t (106:1)

where we have chosen the same origin for ¢ and #. Combining
(106.1) with transformations which consist of pure spatial translations
and rotations combined with changes of the time origin we obtain the
most general transformation in classical mechanics, relating the
coordinates and time of an event in a Galilean frame to the coordinates
and time of the same event in any other Galilean frame. These trans-
formations form a group which is known as the classical Galilean

group.
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In Newtonian dynamics the various material points M, M, are
subject to forces which are derivable from a potential function which
depends only on the relative distances r,,, 713 etc. of the points at the
same instant of time. If v, denotes the acceleration of M, with respect
to a Galilean frame the corresponding equation of motion of M; may
be written

myY, = gradw,)d), etc.; P = D(rya, 113, €tC.).

Changing to another Galilean frame by means of a transformation
in the classical Galilean group we see immediately that

Y1 = Yi.ete,  rpp=rpetc,
and in the new frame the equations of motion become
my Ti = grad(M,)¢’, etc.; P = (p(fiz, r§3, th.).

The Newtonian equations of motion are thus invariant with respect
to the classical Galilean group. We conclude that, according to
Newtonian mechanics, no purely mechanical experiment carried out
within a Galilean system can determine the motion of this Galilean
system with respect to any other Galilean system.

This constitutes Newton’s principle of relativity. This principle does
not include electromagnetic phenomena since Maxwell’s equations
are not invariant with respect to the classical Galilean group.

The Michelson-Morley experiment and the principle of the con-
stancy of the speed of light led to the formulation of Einstein’s
principle of relativity:

No physical experiment — mechanical or electromagnetic — carried
out within a Galilean system can be used to demonstrate the motion of
this Galilean system with respect to any other Galilean system.

The idea of an ether at absolute rest thus loses all significance and is
eliminated. All the equations of physics, referred to Galilean frames,
must be invariant with respect to certain transformations which, in
particular, leave Maxwell’s equations invariant. These transforma-
tions form a group, known as the Lorentz group, which we now pro-
pose to study.
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II. THE LORENTZ GROUP AND
MINKOWSKI SPACE-TIME

107. Space-time. When we were studying dynamical systems with
time-dependent constraints in the previous Chapter it was found con-
venient to use the configuration space-time ¥, ;. Similarly, in order
to represent mechanical and electromagnetic phenomena taking
place in the world, it is natural to introduce a continuum ¥4 having
four dimensions, three spatial and one temporal, each point of which
corresponds to an event. This continuum is called space-time.

The space-time continuum can be referred to arbitrary systems of
curvilinear coordinates. If (»!,5% 3% 5% denotes one such coordinate
system it is possible to make coordinate transformations of the type

¥ =0V 070" (@=1,2,3,9), (107.1)

where the f* are restricted only to the extent of the usual conditions
of continuity, of single-valuedness and of differentiability.

In special relativity theory we assume that it is possible to refer at
least part of this continuum to a Galilean coordinate system defined
in the following way : let (x, ¥, z) be the coordinates of a point in space
with respect to a rectangular Galilean system of axes. The principle of
the constancy of the speed of light provides us with a natural time
scale which allows the definition of a time ¢ associated with an event
occurring at the point (x, y, z). The coordinates (x, y, z, f) are said to be
the Galilean coordinates of ¥,. We propose to find the transforma-
tion formulae

x=x(x'y'Zt) x' = x'(xyzf)
p— (xfyl zlrﬂ) yl — yJ(x zt
e i (107.2)
z=2z(x'y'Z't) z' = zl(xyzt)
= x"yYzt) t' = t(xyzt)

which enable us to pass from one system of Galilean coordinates
(x,7,z,1) to another (x",)",z', ).
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108. The Lorentz group. We now consider two Galilean coordinate
systems and express the infinitesimal displacement of an electro-
magnetic wave with respect to each of them.

In terms of the first system of rectangular coordinates, the spatial
line element is given by

do® = dx®+dy*+dz2

Consider, in this system, two neighbouring events (x,y,z,7) and
(x+dx,y+dy,z+dz,t + dr). If these two events define the infinitesimal
displacement of an electromagnetic wave we have, according to the
principle of the constancy of the speed of light,

s

dr

Hence, for any infinitesimal displacement of an electromagnetic wave,
the expression

ds* = Pdi*—do* = Cdir—dx*—dy*— dz (108.1)
is zero. The same expression, evaluated in the second coordinate
system,

ds/Z e C2 dt’z_do’z 'L, zdtfz__ dx.z_dy,z_dzfz
is also zero. Consider now an arbitrary infinitesimal displacement ata

point M in the two systems. A reasonable generalization of the
relation ds’? = 0 = ds® is given by

ds? = f(M)ds*,

where f(M) is a function of the coordinates of M and may also depend
on the relative velocity v of the two coordinate systems. More
explicitly

Ad?—dxt—dy?—dz? = f(x,y,z, (P d?— dx®—dy*— d7d).
(108.3)
When the relative velocity of the two Galilean systems is zero the
function /(M) must reduce to unity. It can be shown that the only

physically significant solutions of (108.3) are those in which f(M) is
always unity. Equation (108.3) therefore becomes

2dt?—dx*—dy?—dz? = PdiP—dx®—dy*—dz2 (108.4)
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We are thus led to consider all coordinate transformations (107.2)
which satisfy the condition (108.4) and therefore leave invariant the
differential quadratic form defined by (108.1). We also require them
to reduce to a transformation consisting of a pure spatial displace-
ment and a change of time origin when v=0. It is immediately
obvious that these transformations form a group: if any two transfor-
mations (107.2) leave the quadratic form (108.1) invariant, so does
their product; the inverse of such a transformation alsoleaves (108.1)
invariant. This group of transformations is known as the Lorentz
group.

The determination of the transformations of the Lorentz group is a
simple algebraic problem, the solution of which is outlined below. A
geometrical interpretation of the Lorentz group can also easily be
obtained. Put

u=ict, o =iet, @F=-1, (108.5)
then (108.4) takes the form
A+ dy? +d7* +du'? = dx*+dy*+dz?+du®.  (108.6)

The Lorentz group thus corresponds to the group of translations and
rotations in a proper Euclidean space of four dimensions. This can be
obtained by combining the translations

¥y =y+b, Z =z+e,

x = x+a, W = utd,

with the linear orthogonal transformations (rotations) of the four
coordinates (x,y,z, ).

According to its definition the Lorentz group contains transforma-
tions which consist of purely spatial displacements (which conserve
the form dx*+dy*+dz?) and changes of the time origin. We now
seek a particular transformation based on the trivial solutions already
obtained which generates the most general transformation of the
Lorentz group.

To this end we note that by adding a constant to each of the four
variables, which is equivalent to a translation of the axes Oxyzand a
change in the origin of the time #, the resulting functions (107.2)
which are necessarily linear, can also be made homogeneous. This
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implies that the origin of the first frame at time 7 = 0 coincides with
that of the second frame at ¢’ = 0. In a rectilinear translation of the
second frame with respect to the first, a straight line fixed in the
second frame and parallel to the relative velocity slides along a
straight line fixed in the first frame. By a suitable choice of the spatial
coordinates we can arrange that the O’ x’ axis slides along Ox in the
course of the motion, the directions of these two axes then being that
of the relative velocity. Rotating O’ x’y’z’ about 0’ x’ we can make
O’y’and O’ z’ parallel and in the same sense as Oy and Oz respectively.
This means that Oxyz at time = 0 coincides with O’x’y’z’ at time
=0,

Returning to the four-dimensional Euclidean space referred to the
orthonormal frames with coordinates (x,y,z,u) and (x’,)’,z",u"), we
are thus led to study rotations which simultaneously leave invariant
the plane defined by y = 0 or »* = 0 and the one defined by z=0 or
z' = 0; that is to say they leave invariant the orthogonal coordinate
axes corresponding to the variables z and y. We conclude, as in the
three-dimensional case, that

y=3 7=z (108.7)
The identity (108.6) now reduces to
dx*+du? = dx*+du?, (108.8)

and the transformation only concerns the two variables x and u.
Since the origins of the coordinates (x,#) and (x’,u’) coincide, the
identity (108.8) defines ordinary rotations in a plane

x' = xcos¢+using, } o

4

u = —xsing+ucosd,
where ¢ denotes an arbitrary angular parameter. Since » and ’ are

pure imaginary quantities, sin¢ is pure imaginary and cos¢ is real.
As tan ¢ is pure imaginary and dimensionless we write

tangb——,

Ty s RSO
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and substitute for ¢ the real parameter v having the dimensions of
velocity. It follows that

1 et i(vfe)
V(—¥cd)’ IR (s
Substituting these expressions into (108.9) and reintroducing the
variables 7 and ¢’, we obtain

cos¢ = (108.10)

P x—ot .4 t—vxfc?
R ) V(=)

We have thus established that the most general transformation of the
Lorentz group is obtained by combining the trivial transformations (pure
spatial rotations and translations) with the special transformation

PR - i Y t—B(x/c) (ﬁ " v)

revasml Y TP TR RE Ty c

(108.11)
This is known as the special Lorentz transformation.

It is obvious from (108.11) that = which, for physical reasons is
necessarily smaller than ¢ in absolute value, is such that every point
fixed in the second Galilean frame (the origin, for example) is moving
relative to the first frame with uniform velocity parallel to Ox. We
note that if B =w/c becomes negligibly small (108.11) reduces to
(106.1) which was used to define the classical Galilean group. When
v =0 the transformation (108.11) naturally reduces to the identity
transformation. The inverse formulae to those in (108.11) are given
by

g x' +ot’ . g P _r+B fc)
v(1-8% : 1 \/(1—132)
(108.12)

which only differ by the interchange of variables and the replacement
of v by — ».

It would take rather long to verify directly that Maxwell’s equa-
tions, in theirusual form, are invariant with respect to transformations
of the Lorentz group. This result is, however, a trivial consequence of
the simple tensor form into which we shallnow put these equations.
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109. Lorentz transformation in vector form. It is convenient to
rewrite the special Lorentz transformation in three-dimensional
vector notation.

We denote the velocity of the second frame with respect to the first
by v and the unit vector along Ox (and in the direction of v) by i,
hence
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vV = i,

Let r represent the position vector defining the point (x,y,z) with
respect to the origin O of the first frame and 1’ represent the analogous
quantity in the second frame. The vectors r and r’ may be written as

r = xi+ ry,
r' = x"i+ry,
where r; and r represent the components of r and r’ perpendicular to
i. Using the Lorentz transformation relations (108.12) we have

(109.1)

= x' 4ot
V-8’

We now wish to evaluate r in terms of r’, v and #. Combining
equations (109.1) we have

x Iy =TIj.

r=r+@x—x)i (109.2)
However
x_x" = _..xiti._x' = (—1_._1)x’+_'.{"_
V-5 VA-p Va-py
and Xi=@Di= vy
2]

Substituting these results into (109.2) we get the transformation
formula for position vectors:

-,

1 v v
r=r+|———-1|''v5+———-

(\/(1—;32) ) vt V(1-B%)

It is apparent that the three vectors r, r’ and v are always coplanar.

(109.3)

|
‘

(IR o~
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Using (108.12) the time transformation formula can obviously be
written

Special relativity and Maxwell’s equations

U+ (V)

v(1-83)
The- transformation equations in their vector form (109.3) and
(109.4) are useful in a great number of problems in special relativity.

We shall now use them to establish Einstein’s formula for the com-
position of velocities.

(109.4)

110. Relativistic composition of velocities. The composition of
velocities in classical kinematics is a simple matter: if v denotes the
velocity of a Galilean system S’ with respect to .S and if a material
point P moves with velocity u’ relative to S’ then its velocity relative
to S is given by

u=v+u, (110.1)

In special relativity the relation between u, v and u’ is much more
complicated. Using the notation of §109 the velocities of P with
respect to the two Galilean systems are given by

_dr , _dr

s

Differentiating (109.3) with respect to # we obtain-

dl' — ’+ ; 1 d_l" )‘ +—V_ E
a " | \va-p N\a) 2 va-plar’
and differentiating (109.4) with respect to 1’ gives
dt I+(u’-v)/c2_

dt ~ A(1-B)
Substituting this expression for dt/dt" in (110.2) we find

(110.2)

1

e a8l ;0 n g e WY
“‘1+(..f-wc=)(*’“ B+ -va-p, v+v),
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which shows that the three vectors u, u’ and v are coplanar. This
expression is easily transformed into the formula for the composition
of velocities, giving

1 u'v u'y

gt s senaglili e T — A2 Y ey
T o +(u'-vfc2)[( i ) i 8 )(" o v)] (110
in which the numerator is the sum of two vectors, one parallel and one
perpendicular to v. If B = /¢ is negligible compared to unity, equation
(110.3) has the limiting form of the classical relation (110.1). An
immediate consequence of (110.3) is the expression for the square of u

W -v)?: u??

—— ] (110.4)

1
W= [u'z +o+ 20" v+

T I+ VAP P

which is symmetrical in u” and v.

When the vectors u” and v are collinear uis also in the same direction
and the second term in the numerator of (110.3) is zero. We then
have the Einstein relation between the algebraic values of the three
velocities ‘

y ooy s R
=T Wd (110.5)

It is easily seen from (110.4) or (110.5) that it is impossible to exceed
the speed of light by combining two velocities less than or equal to c.
In particular putting & = ¢ in (110.4) gives

2 ’ 2
2 e iied Dauly WL o0y
%= [1+(u'-v,'c=)]2(l+ cz) HE

Thus, when u’ = ¢, it always follows that « = ¢ whatever the value of
v. This result obviously agrees with the principle of the constancy of
the speed of light.

111. Minkowski space-time. Equation (108.4) is equivalent to saying
that two neighbouringevents (x, y, z.f) and (x + dx, y + dv, z + dz, t +df)
define an expression

ds? = Adit—dx?—dy*—dz?, (111.1)
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which has the same value in all Galilean coordinate systems. We note
that, if the two events correspond to a displacement made with a
speed less than ¢, then ds? is positive.

We are thus led, in special relativity, to associate the continuum
V4 with the metric defined by the quadratic form (111.1). Since this
metric has constant coefficients with respect to the Galilean variables
and a signature (+ — — —), it therefore defines V) as an improper
Euclidean space. This space is known as Minkowski space-time and
ds is said to be the infinitesimal element of a finite interval between two
events.

The Galilean coordinates constitute an orthogonal rectilinear
coordinate system for this space. We obtain an orthonormal frame in
V4 if we substitute the variables

xXl=x, =y, =z x*=c (1112

for (x,y,z,f). The metric (111.1) then takes the form
de = (dx4)2 i (dxl)z o (de)Z e (dx3)2.
The variables x* are called reduced Galilean coordinates. We shall

make frequent use of them in what follows. It is convenient to intro-
duce the notation

ds? = mogdxdxf (a,B,ete. = 1,2,3,4) (111.3)
where
N8=0 @#PB), Nu=-m=-1=-13=1L

Naturally, Minkowski space-time can be referred to any system of
curvilinear coordinates. Its metric is then written as

ds? = g, gdy*dyP

where the g,,g are functions of the curvilinear coordinates y*,

III. DYNAMICS IN SPECIAL RELATIVITY

112. The unit velocity vector and the principle of inertia. Consider a
moving mass point P in Minkowski space-time whose velocity is, of
course, less than ¢. The motion of P can be defined by giving the
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coordinates y* as functions of a single parameter. We choose the
interval s measured along the trajectory of P in V. The vector

3
o = % (x = 1,2.3,8) 12.1)

which is obviously of unit length, is called the unit velocity vector.

Let us express the components of this vector in terms of reduced
Galilean coordinates. The components of an ordinary spatial velocity
vector are

d i
vl = d—’; G, etc. = 1,2,3). (112.2)
We conclude that

, dx e
= —_—= g —
S
s R ol
U =—=¢—-
ds ds

However, if v = B¢ denotes the magnitude of the velocity (112.2), we
can rearrange (111.1) to give

dt 1 1

ds V(2 —?) ~ ev/(1 _‘32)' (112.3)
It follows that
@ e L, - et b aie
VaSE) V-

Let the motion of P in Galilean coordinates be uniform and
rectilinear. The components #', and consequently the u*, are then
constant. We therefore have

du _ - dut

T T o ds

The world line of P is therefore a geodesic of (111.1) with positive ds*.
On the other hand the differential system describing the geodesics of
(111.1) may be written in Galilean variables as
&K d*y ¥ d*z

57 YA R 7 S

=0 (112.5)

=0,

o
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and each geodesic with positive ds® corresponds to a uniform recti-
linear motion with velocity less than c.

In Newtonian dynamics, the principle of inertia asserts that an
isolated mass point is always in uniform rectilinear motion with
respect to Galilean axes. In special relativity we preserve this principle
and reformulate it in the following invariant manner:

Principle of inertia: An isolated mass point follows a path which is a
geodesic with positive ds® in Minkowski space-time.

Geodesics with ds* = 0 correspond to straight lines traversed with
velocity ¢, that is to the paths followed by light rays. We thus see that
a simple relation exists between special relativity and the geometry
of Minkowski space-time.

113. The equations of motion. Consider the motion of a mass point P
under the action of a known force f which varies with the position and
velocity of P. According to Newtonian dynamics we have

dv
—=f, )
m (113.1)

where m denotes the mass of the particle and v is its velocity vector in
space. Using (113.1) we obtain the energy equation

< m?) =t (1132)

The Newtonian equations (113.1) and (113.2) are not invariant
under the Lorentz group which transforms from one Galilean
coordinate system to another in relativity theory. They must there-
fore be modified in order to comply with the demands of special
relativity. In this process we shall be guided by the requirement that
the new equations should reduce to the old ones for small velocities.

Equations (112.5) represent the motion of an isolated mass
point in relativistic form. They suggest that the relativistic equations
of motion should be formulated in terms of du®/ds rather than the
classical acceleration vector. In arbitrary curvilinear coordinates the
relativistic acceleration is given by the expression

Vu®

J! = E‘ (tx - 1,2,3,4).
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Let us characterize the inertia of a point P by a parameter my,
having the dimensions of mass, which we shall call the rest-mass of P.
We postulate the following form of the equations of motion

V o
moczd—’; = @%, (113.3)

where @~ is the relativistic generalization of the Newtonian force
vector. The coefficient ¢* has been introduced for reasons which will
appear shortly. The equations (113.3), which are the equations of
motion in special relativity, were first given by Minkowski.

Since 1 is a unit vector its absolute differential Vu* is orthogonal
to it. Then according to (113.3)

%y, = 0. (113.4)

Thus the vector @~ is always orthogonal to the unit velocity vector.

We now use Galilean coordinates and interpret equations (113.3)
by comparison with the Newtonian equations (113.1) and (113.2).
In such a coordinate system equation (113.3) can be written

du®
22 go,
= ds
and reintroducing the variable ¢, related to s by (112.3), we have
da¢
— = §*/(1-P.
Mo V(1-5%

Using (112.4) to evaluate the components #* as functions of the com-
ponents of the spatial velocity v we find

dif ol o oy, g
m"d_:(\/(l _pz)) = 0'v(1-5), (113.5)

d c ) " 2
mo—|————| = *v(1-59), 113.6)
iy P ]
which bear a simple relationship to the Newtonian equations.
Denoting the spatial vector whose components are

fl=o'y(1-p3, 113.7

Special relativity and Maxwell’s equations 135

by f, we may rewrite equations (113.5) in ordinary vector notation as

d v
—N——] =1 113.
"”w(va—ﬁ%) Sslete
which recalls the fundamental equation of Newtonian dynamics
(113.1) and reduces to it when B becomes negligible compared to
unity.
It is a little more complicated to interpret the right-hand side of
(113.6). The orthogonality condition (113.4) may be written in
reduced Galilean coordinates as

@4 A E @‘u',
i
or using (112.4) and (113.7),

ot “Z s = cxiby
VA-p) Lc(l-pH (1-PH

i

from which
f.
P va-p) = —-
Then (113.6) can be written
d my C2 _—y

The right-hand side of this equation is identical with that of the
classical mechanical relation (113.2); so the time variation of the
quantity
_ myc
v(1-p)
is equal to the work done by the force f. We are therefore led to
suppose that (113.10) defines the total energy of the mass point. It is
important to note that this energy does not reduce to zero as v tends
to zero. We write

E (113.10)

E= Eg"‘T,
where

1
Ey, = mocz, T= mor:z[

\/’(Tﬁ—z)_ l]. (113.11)




136 Elements of tensor calculus

Weshallcall Eythe rest energy of the mass point and Tthe relativistic
kinetic energy. For small values of

T = 3myc? B2 = mgr?.

Hence, for small velocities, E differs only by the constant E from the
ordinary kinetic energy of classical mechanics.

114. Momentum-energy vector and relativistic mass. The vector
P* = mocu®, (114.1)

which is collinear with the unit velocity vector, is called the momen-
tum-energy vector. According to (112.4) the components of this
vector are given by

. v 3 c S T
P s . P gt = —s " (LI
V-8 V- ¢
in reduced Galilean coordinates.
Introducing the momentum vector p whose components are p’, the

fundamental equation (113.8) may be written in the form
dp
— = f,
dt

This can be obtained from the Newtonian equation of motion (113.1)

by replacing mv by p. Thus the point P can be considered to have the
variable mass

(114.3)

TR L, O
T V(1-p

This quantity m is known as the relativistic mass of P. For small
velocities m reduces to the rest mass mg and, as v approaches the
velocity of light, m tends to infinity.

According to (113.10) the relativistic mass is equal to the total
energy E divided by ¢? while the rest mass is the rest energy divided by
¢ Tt thus appears that there is a direct correlation between mass and
energy in relativity theory which has no analogue in classical physics.
We now propose to investigate this relationship.

m (114.4)
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115. The inertia of emergy. Consider a complex material particle
referred to a Galilean frame S which is chosen in such a way that the
total momentum of the particle is zero. Suppose also that the particle
has the total energy E, relative to Sy; this is its rest energy.t The
momentum-energy vector of the particle then has the components

| &

ph=0, pb=
with respect to Sg.

Now consider another Galilean frame S moving with velocity v
relative to Sy. Carrying out a Lorentz transformation, we see that the
components of the momentum-energy vector with respect to S are
given by .

P Sl S ) oo SRR 5T 0
FPrava-py 7T Eva-p

It is clear from these relations that all the rest energy E, makes a
contribution to the spatial momentum vector as if it were a mass
Ep/c*. We are thus led to formulate the following principle:

A system having any form of rest energy Ey has a corresponding
inertial mass

(115.1)

o (115.2)
¢
This statement, which is known as the principle of inertia of energy, is
due to Einstein. The recognition of the equivalence of mass and
energy is, without doubt, the most fertile contribution that the special
theory of relativity has made to physics.

As an example of this principle let us suppose that the particle,
referred to S, is not subject to any forces and emits an energy 4Eqin
the form of electromagnetic radiation during a finite interval of time.
This might well be in the form of a spherical wave and the total
momentum with respect to Sy of the energy radiated would then be
zero. It follows that the particle, initially at rest with respect to Sy,
will remain so after emitting the radiation.

T This includes the interaction energy of the components of the ‘particle’
as well as the energy which corresponds to their masses. (T.)
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Now refer the description to the S frame. Since the particle and the
radiation constitute an isolated system, there will be conservation of
the total momentum-energy vector. Hence, the radiation has the
momentum

AEO v
Z v(1-p)

4E,
V(-5
with respect to S. The particle has thus supplied this momentum and
energy without changing its velocity. This is only possible if its rest-

and the energy

mass is changed. If m, denotes the rest-mass of the particle before the-

emission and my that after emission then we have the conservation
relations

L. L. ..
vI-8)  v(1-8) & v(1-B)
mOCZ m6c2 AEO

VA~ V- Va-p
which are both equivalent to
AE,

my = my——5 .
0 0 cz

The mass of the particle has thus been decreased by an amount equal
to the energy emitted divided by 2.

In Newtonian mechanics there are separate conservation laws for
the mass and energy of an isolated system. In relativistic mechanics,
however, there is a single law of conservation for the total energy of an
isolated system and the rest-masses of the constituents will alter every
time kinetic energy is transformed into other forms of energy, and
vice-versa. The rest-mass of a material particle remains constant as
long as its rest-energy is not altered by such changes. But the rest-
masses can change appreciably if the interaction energies are of the
same order of magnitude as the rest energies. In this way it is possible
to explain the mass defects observed in atomic nuclei and, in a general
way, the mass losses which occur in most nuclear reactions.
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The inertia of energy plays an important part in the understanding
of nuclear phenomena, which are the object of so much research in
contemporary physics. In these, energy is both materialized in the
form of elementary particles and liberated by the disintegration of
matter.

IV. RELATIVISTIC DYNAMICS OF
CONTINUOUS MEDIA

116. Equations for a system at rest. In order to obtain the relativistic
form of the equations of motion for a continuous medium, we intro-
duce an orthogonal Galilean frame S, which is at rest with respect to
some point Py of the medium. We then write down the equations at Py
in terms of Sy.

At P, all the components o' of the spatial velocity vector v are zero;
on the other hand the derivatives of these components are generally
different from zero. Denoting the unit velocity vector associated with
o by u%, it is clear that

W=0 =1 (116.1)

at Py It follows, using (112.4), that the derivatives of the «* are given
by

L | .
Hu' =-ayd!, u'=0, (116.2)
(4
since B = 0 at Py and
u*u, =0,

because «* is a unit vector.
The non-relativistic equations (99.2) and (103.2) take the form

o AW
%?+ak‘ --f,

(116.3)
p

8, 5% =0,
3t+ kP

in the system Sy and at the point Py, where p" denotes the ordinary
momentum vector per unit volume.
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Let us consider equations (116.3) from the point of view of mass-
energy equivalence. The ordinary momentum vector p’ = po' involves
only the energy corresponding to the matter density p. However we
know that in relativistic dynamics each form of energy must make its
contribution to the momentum vector. Here we shall consider, in
addition, only that energy which derives from the action of mechanical
stresses, avoiding, in particular, the case where an electromagnetic
interaction also occurs.

In order to evaluate the corresponding flux of energy, consider an
element of area dS whose ‘components’ are denoted by the doy,
defined by (101.2). From (101.3) there is a corresponding surface
force

T'dS = *do,,.

If the matter in the neighbourhood of this element of area moves
with the velocity v, having contravariant components ©/, the corre-
sponding work done is given by

z Ur 4 k!dﬂ'k.
Il
Introducing the covariant components of the velocity by means of the
spatial metric — (dx')?— (dx?)% — (dx®)? this becomes
—v; M doy,

In other words, a flux of energy traverses the element of area dS and
the vector defining this total energy flux has the components

pctvt =y,

where the first term corresponds to the density of matter p. The
relativistic relation between energy and mass [see (115.1)] implies

that the momentum vector per unit volume is the vector given above
divided by ¢*:

1
p= p'af—c—zv, o (116.4)

The components of this vector are zero at Py, but this is not true of
their derivatives which alone are involved in the equations of motion.
In order to obtain the relativistic equations of motion valid at P, in

1
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terms of the frame S, we substitute (116.4) for the vector p in the
classical relations (116.3). We thus have

@ o ik i
—|pv' =51 |+ 2" = f
Br(’w cgv.r k I
ap | !
Xia ,,'»__Urk)=o,
at Ic(P o2 !

and allowing for the fact that the o’ vanish at Py,

Bv’ Ia‘b'f 5 .
_____tll+a tlk o i,
Pot & ot " %
op . ki
— e p Ot == (@rv) ™ = 0.
2 TPk c2( %1

Let us now replace the derivatives with respect to ¢ by those with
respect to x* = cf. We obtain, with the usual notation for partial
derivatives,

1
PC 641}‘——3491.r"+ aktik =_fi,
(4
(116.5)
1
c34p+p8kvk—c—23,‘v,t"’ = 0,

which are the required equations of motion.

117. The equations of motion in tensor form. Starting from equations
(116.5) which are valid for the point Py with respect to the frame S,
we can determine the general tensor form of the equations of motion,
thus translating the classical equations (99.2) and (103.2) into
relativistic form.

The appearance of the tensor #* in the non-relativistic equations
(103.2) suggests that a corresponding symmetrical second-order
tensor must play an important role in the desired relativisticequations.
We therefore introduce the tensor which has the components

le=rlk, T“=T4‘=T“=0,
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at the point Py in the frame Sj, and which consequently satisfies the
tensor equation

_ T, =0, (117.1)
We also introduce the vector ®* which has the components
@l - fi, 454 = 0’

at the point Py in the frame Sy, and which is therefore orthogonal to
the unit velocity vector:

P uy = 0. (117.2)

We now verify that equations (116.5) can be put into the following
tensor form which is valid in an arbitrary curvilinear coordinate
system:

Vptutut + TV = @A, (117.3)

In fact, using the Galilean coordinate system Sj at the point Py,
equations (117.3) reduce to

Cpou+ ai* o, T =1 (A =1, (117.4)
Fogp+Ppiuf+ o, T*+0,T® =0 (A =4), @117.5

when account is taken of (116.1) and (116.2). It is easy to evaluate the
terms &) 7% appearing in (117.4) and (117.5). We have at P,

T* = ay(uy T*),
Then using (117.1) we have
ONug TH) = =), T%) = — & u, T,
so that BT = —a\u, T
Substituting this expression for 8y7* into (117.4) and (117.5) we
obtain

Czp 64u'+ ak f”‘— 64111 f” = f‘,
. (117.6)
A agp+ctpoguF—a,ur = 0.

Then using equations (116.2) we recover (116.5). Equations (117.3)
are the fundamental equations of relativistic dynamics for contin-

uous media. 7™ is called the relativistic stress tensor.
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118. The momentum-energy tensor. The form of the fundamental
equations (117.3) leads us to introduce the symmetric tensor

1
PM = pu‘\w“+;2-T'\-“, (118.1)
so that they may be rewritten as
1
vV, PM = @A 118.2
I (.'2 ( )

PM s called the momentum-energy tensor of the continuous medium.
We note that, because of (117.1),

P u, = pu,

This result can be interpreted by saying that the linear transformation
defined by the momentum-energy tensor has the unit velocity vector
as an eigenvector, the corresponding eigenvalue being p.

Let us now find the momentum-energy tensor for the case in which
the continuous medium is a perfect fluid. Using the notation of
(111.3) TM has the components

Tﬂc=tl'k=_mik TM=7-41=7-44=0
at the point Py in the frame S,. In arbitrary coordinates, since T
satisfies (117.1), these take the tensor form
T™ = —p(g ™=t ub).
Hence

phic (p+§) =L (118.3)

V. THE MAXWELL-LORENTZ EQUATIONS

119. The electromagnetic field tensor. Maxwell’s theory of the electro-
magnetic field in a vacuum and the Maxwell-Lorentz electron theory
involve an electric field vector E and a magnetic field vector H which
both vary with time. This representation is only useful, however,
when considering transformations which consist of spatial rotations
and translations and changes in the time origin. We shall now show
how the Maxwell-Lorentz equations which govern the electro-
magnetic field may be expressed in a particularly simple way by using
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tensors in V. An important feature of this tensor representation is
that it has led to a better understanding of the electrodynamics of
moving bodies.

Consider a particular reduced Galilean coordinate system
(x', x2,x3, x*) which corresponds to a rectangular coordinate system
Oxyz in space. It is well known that the electric and magnetic fields
can be defined in such a system by means of the vector potential A
and the scalar potential @ given by

H = curl A,

10A (119.1)

% = c ot

Let Ay, A,, A, represent the components of A along the axes Oxyz
and consider the four-vector ¢ which has the contravariant com-
ponents

¢1 = —A, ¢2 = —4,, ¢3 ==,

in the coordinate system (x!,x2 x% x* of V,. It therefore has the
covariant components

pr=A4, ¢2=A4, d3=4, $s= -9
The relations (119.1) can then be written in the form

Hy, = 33— 83, E, = 8,¢s— 249y,

Hy, = 83— 2, ¢3, E, = 8,¢4— 243,

H, = 8;¢y— 8¢, E, = 034~ 84 ¢3.

In other words, the six components of the vectors H and E in space
are given by the six covariant components of the antisymmetric
tensor

¢t=—D (119.2)

(119.3)

Fy, = 8¢,—2, %) (119.4)
in Vy. [n reduced Galilean coordinates we have explicitly
H, = Fp, E; = Fia,
H, = Fy, E, = Fy, (119.5)
H, = Fy, E, = F3

. B
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The components of H and E can also be expressed using the contra-
variant components of the tensor F),, as

o, = F%, E,= —F4,
H, = F, E, = —F%, (119.6)
H, = F? E, = —F*,

Thus in space-time the electromagnetic field is defined by an anti-
symmetric second-order tensor known as the electromagnetic field
tensor. F),, is the curl of ¢, which is called the four-vector potential.
The introduction of the electromagnetic field tensor defined by
(119.4) illustrates the fundamental unity of the electromagnetic field
and removes the apparent independence of the electric and magnetic
fields since, according to the tensor transformation law, the com-
ponents of the electric field vector referred to one Galilean frame
depend on both the electric and magnetic field components in any
other frame.

Consider, for example, two systems of Galilean coordinates (xyzr)
and (x'y'z't’). It follows from the equations (108.12) defining the
Lorentz transformation and from (119.5) that the components of the
electric and magnetic fields in the second system are given, in terms of
the components in the first system, by

Hx' = H.\'! Ex' e Exs
_ H,+BE, _ E,=BH,
rTva-py T va-py
_ H:—BE, _ E+pH,
TTva-py T va-py

The tensor form, (119.4), of equations (119.1) permits a natural
definition of the electromagnetic field in any system of space-time
coordinates whether rectilinear or curvilinear.

It will be seen that the four-vector potential ¢, is not uniquely
determined by the electromagnetic field. The gradient of an arbit-
rary scalar field can be added to any four-vector potential satisfying
(119.4) without modifying these equations. Thus ¢) may be replaced
by

=+ V. (119.7)
10
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This procedure was called a gauge transformation by Hermann Weyl.
Quantities, such as the electromagnetic field, which are left unchanged
by a gauge transformation are said to be gauge invariant.

120. The adjoint electromagnetic field tensor. We saw in §52 that an
arbitrary antisymmetric tensor can be uniquely associated with
another antisymmetric tensor called its adjoint. The adjoint electro-
magnetic field tensor is of order 4—2 = 2, and is defined by

F"P = }M7PF),, (120.1)

in any coordinate system.
Let space-time be referred to reduced Galilean coordinates. Then

g=—1and
M = Muvp,

where "*"P denotes the usual permutation indicator. In this way we
get a simple physical interpretation of the components of the adjoint
tensor in Galilean coordinates

F® =Fy=E,

F' = Fyy = E,, (120.2)
F' = F, 34 = E,.

F= Fy; = H,,
F’“ = F31 = Hy,
F* = F, = H,

The adjoint tensor F "t is therefore an alternative representation of
the electromagnetic field.

121. The electric current vector. The Maxwell-Lorentz theory of
electrons, expressed in terms of a Galilean frame, is formulated in
terms of the charge density p and the product of p with the velocity
of the charge v, i.e. pv. Suppose the charge to be at rest with respect
to a Galilean frame S, and let pg be the corresponding charge density
which obviously defines a scalar in V.

The quantity of electricity de occupying the volume element dV} is
given by

de = Po d Vo.
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This quantity of electricity must be invariant in V. The total charge
on an electron, for instance, is the same with respect to any Galilean
frame. Thus, for an arbitrary Galilean frame S, we have

de = pdV,

where dV denotes the volume element in S which corresponds to
dV, in S. It follows immediately from the equations of the Lorentz
transformation (108.11) that, if S, is moving with respect to S with
velocity v, we have

dv = /(1-pB3av,.

Hence

pV/ (1= B dVy = podVy,
and p is related to py by

Po
e T 121.1
The four-vector J* defined by the relation
d A
JA = pocu? (u“ = Eyr_)’ (121.2)

is called the electric current vector. Substituting the values (112.4) for
u)‘, we find that
o Pu”’zi I Po‘-‘z,
V(-89 Vv(1-p%
hence, using (121.1),
J = po, J4 = pe. (121.3)

122, The first set of Maxwell-Lorentz equations. The Maxwell-
Lorentz equations can be split into two sets. The first of these is given
in ordinary three-vector notation by
E
S S (122.1)
cat

divE = 4mp. (122.2)
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The x component of (122.1) is given by

oy’ gz ¢ of [4
and using (119.6) and (121.3) this may be rewritten

4
8 F2+ 8, FP 4 8, F14 = %’J‘.
We can therefore express (122.1) in reduced Galilean coordinates as

8,F = By (122.3)
C
Equation (122.2) can be written explicitly as
9E, OE, OE,
éx * ay g oz
or using (119.6) and (121.3), as

4r
8, F*"+9,F*2+ 0, F® = ?J‘.

= dmp,

It follows that the first set of Maxwell-Lorentz equations can,
using reduced Galilean coordinates, be written in the very simple
form

o, Fw =472 (122.4)
“ ¢
Since the coordinate system is rectilinear this is equivalent to
Vv, F¥ = 47 (122.5)
c

The tensor form (122.5) of Maxwell’s equations (122.1) and (122.2)
is also valid for any system of curvilinear coordinates.

123. The second set of Maxwell-Lorentz equations. Using Galilean
coordinates, the other set of Maxwell-Lorentz equations are given, in
three-vector notation, by

18H 1

curlE+--— =0, (123.1)
c ot
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divH = 0. (123.2)

The x-component of (123.1) gives
oE,_iE, 108,

dy  dr ¢ ot

or, uéing (120.2),
azFJIZ_I_ 33 F113+ 34Ftl4 =0

Thus the vector relation (123.1) can be translated into reduced
Galilean coordinates as

8 F'* =0, (123.3)
Similarly (123.2) can be written
oH, oH, oH,
éx 3 &y % oy,
and, again using (120.2), this becomes
HFM+ o, FP 10, F® = 0.

It follows that the second set of Maxwell-Lorentz equations can be
rewritten using reduced Galilean coordinates as

3, FM = 0. (123.4)
Since the coordinate system used is rectilinear this is equivalent to
V, F¥ = 0. (123.5)

This tensor form is again valid for any system of coordinates. The
similarity between (122.5) and (123.5) will be noted.

Equations (123.1) and (123.2) are simple consequences of (119.1);
they merely express the fact that E and H are derivable from a vector
potential A and a scalar potential @. Equations (123.5) can be written

V(MPF,) = 0. (123.6)
However, remembering (69.3), we can easily verify that

V, P = 0,
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Then equations (123.6) take the form
P Y, F,, =0
and, on multiplying by 1/|g|, they become
APy F,, = 0. (123.7)
The covariant derivative V, F, , may be written
ViFp= 8B Bty Frg=L,  Fre
From considerations of symmetry
ML =0, NPT, =0,
hence, using an arbitrary system of coordinates, Maxwell’s equations
(123.5) may be written
P, F,, = 0. (123.8)
These equations have the explicit form
OuFypt 8 Fout8pFuy = 0,
where p, v, p denote three distinct indices. They are the necessary

conditions for the existence of a four-vector ¢, such that F, is its
curl.

124. Charge conservation. Taking the divergence of (122.1), dif-
ferentiating (122.2) and combining the equations thus obtained
leads to the following expression for the law of charge conservation:

8,
a—f+div(pv) -0 (124.1)

It is easy to reduce this law to its general tensor form. Consider
first a system of reduced Galilean coordinates. The first set of Max-
well-Lorentz equations can, according to (122.4), be written as
4

e
Differentiating with respect to x? (and carrying out the appropriate
summation) we obtain

8, FM = JA (124.2)

4ar
A _ A
EA#FP———CG;‘J.
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However, taking account of the antisymmetry of F M and inter-
changing the repeated indices A and p, it follows that
HuFM = —8), FFh = —p, PP = —0) F¥ = 0,
Hence, in reduced Galilean coordinates,
8yJ* = 0, (124.3)

which is an alternative form of (124.1). Referring space-time to an
arbitrary curvilinear coordinate system, (124.3) becomes

V) JA = 0. (124.9)
This is the general tensor form of the law of charge conservation.

125. The Lorentz force density. Returning to Galilean coordinates,
let K be the force density given by the Maxwell-Lorentz theory; that
is the force exerted on the charge contained in unit volume. This is
given in three-vector notation by the well-known formula

K= pE+&: A H. (125.1)
The x-component of (125.1) is

v
K, = pEx+’%’ H,—WTZH,.
Expressing this relation in terms of the contravariant components of
the electromagnetic field tensor and the covariant components of the
current vector we get

1 1
Ky = “UsFU 4+ PP =03 FP) = —J, PP
The components K* of the space vector K are therefore given by
1
P, ¥ i
K= cJ'“ b 1 i
A fourth component K* may be introduced to complete the set
K, K%, K3, We then write

1

K A
K* = CJ”F*‘ ’ (125.2)

this tensor form being valid in an arbitrary coordinate system.
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In terms of reduced Galilean coordinates the fourth component
K* becomes

1
K= S[ L FAL LF2 4+ 1, P,
[
According to (125.1) this may be written in three-vector notation as
1 1
k%= —pv:E = -K:-v.
¢ ¢

Apart from the factor 1/e, K* thus represents the work per unit time
and volume which corresponds to the force density K.

The four-vector defined by (125.2) is known as the Loreniz force
density. Since F M s antisymmetric

1
A A\.u. -
KJy = -F¥ LTI, =0,
A " A
and we see that the force and current four-vectors are orthogonal.

126. The momentum-energy tensor of the electromagnetic field. Con-
sider a continuous medium formed by the aggregate of a large
number of charged particles — electrons for example. If the number is
sufficiently large the effects due to individual particles will be
negligible. We therefore consider the total electromagnetic field
acting on an individual particle to be given independently of the
behaviour of the particle and represent it by FM_ The continuous
medium is thus subject to the Lorentz force density given by (125.2).

It follows that the equations of motion of the continuous medium
are given by (118.2) with the substitution ®* = KA

1

V P = ;K". (126.1)

It is possible to put the right-hand side of this equation into a
similar form to that of the left-hand side. Substituting the current
vector J* given by (122.5) into (125.2) we obtain

1
K, = _Z;F)'FVPFMD'

"——T
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Therefore
47Ky = —VP(F,\FF“P)+F*‘PVPF,\F.

The second term on the right-hand side gives
FUPY  Fy, = §(FPPV  Fp, + FPEV  Fyo) = JFPP(V,Fp, + VY, Fp)),

where we have interchanged repeated indices-and used the anti-
symmetry of F),. However, from the second set of Maxwell’s
equations in the form (123.7), we have

VPF)‘F+VFFPA+VAFFP =0
for any set of indices A, p, p. Hence
FFPY,F), = —4FFPV\F,, = —1V)(FFPF,)),
and we obtain the expression
—4mK) = V,(F), F')+1V)(F,g F*)
for the Lorentz force density. Relabelling the indices we have
—47K) = V,(— F), FF + gk F g FP),

We are thus led to introduce the symmetric tensor

1
My, = gy, F*®F 5~ F),F, (126.2)
and equations (126.1) take the simple form
Y, (PY 4+ M) = 0. (126.3)

Since the right-hand side is zero, M accounts for the electro-
magnetic interactions and may therefore be added to P™ to obtain
the total momentum-energy tensor of the continuous medium. M),
defined by (126.2), is known as the momentum-energy tensor of the
electromagnetic field. In reduced Galilean coordinates the compo-
nents of this tensor comprise the components of the Maxwell stress
tensor, the components of the Poynting vector and the energy (Il
density of the electromagnetic field. '

11



CHAPTER VIII

Elements of the Relativistic Theory
of Gravitation

127. Gravitation. The notion of gravitation is based essentially on the
following experimental fact: all material bodies interact with one
another at a distance. This interaction is described simply and pre-
cisely in terms of attractive forces within the framework of classical
mechanics. Such a description is, however, not in accord with the
relativistic requirementst previously introduced.

We shall refer to the law of motion of an infinitesimal test body,
which is shielded from all electrical and contact interactions, as the
basic law of gravitation. It is an experimental fact that, when the test
body is not too far away from other material bodies, its motion differs
appreciably from the uniform motion in a straight line which is
implied by the principle of inertia. Consider the space-time manifold
¥, and suppose that it has the metric (111.1). We assume that the
basic law of gravitation is directly linked with the form of ds” and is
strictly determined by it. Then, as the Galilean ds® has constant
coefficients, the basic law must be everywhere the same with respect
to a Galilean frame. When the test body is far from other material
bodies it satisfies the principle of inertia; this holds everywhere if the
test body is completely isolated. Thus, according to the above
hypothesis, a Galilean ds” is only capable of representing a universe
devoid of matter, which is therefore also devoid of gravitation.

In order to represent a universe with gravitation, Einstein intro-
duced metrics which were more general than the Minkowski metric
(111.1) of special relativity theory. He considered Riemannian space-
times, the metrics of which were supposed to determine the basic
law of gravitation.

How is it possible to envisage such a relationship ? We have seen in
§112 that, in a universe without gravitation, the geodesics of the line

+ For a discussion of this point see Chapter X of Introduction to the
Theory of Relativity, by P. G. BERGMANN (Prentice-Hall, 1942). (T.)
154
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elements with positive ds> define the motion of a material test body
and those for which ds* = 0 define the paths of light rays. We now
extend this idea to the more general ds® introduced by Einstein. We
postulate:

Tltg geodesic principle : for any distribution of mass and energy, the
geodesics of the line element of V, define the motions of material test
bodies and the paths of light rays.

12§. The. metric of general relativity. In Einstein’s conception, the
universe is represented by a four-dimensional Riemannian space ¥,
which has the metric

ds* = g,\”dyhdy“‘ (128.1)

with signature (+ — — —). ds is called the infinitesimal element of
the interval in space-time. The physical interpretation of the coordin-
ates and of the element of interval ds must be made in terms of the
taqgential or osculating Euclidean metrics at a point. At any particular
point it is possible to bring such a Euclidean metric into the simple
Minkowski form (111.3).

Theteng Aes which correspond to a particular system of coordinates,
are f_'um.:tions of the y"‘. They define completely the basic law of
gravitation in terms of this system by the geodesic principle. For this
reason they are called the gravitational potentials. The derivatives of
these potentials, which appear in the geodesic equations as the
Christoffel symbols, define the gravitational field in the coordinate
system under consideration.

The essential problem in the general theory of relativity is the
dete_'.rmination of the gravitational potentials which correspond to
various states of matter in motion.

1.29. Einstein’s equations. Einstein was led to partial differential equa-
tions limiting the generality of the gravitational potentials by two
essential requirements: on the one hand these equations must
generalize the equations of Laplace and Poisson which govern the
Newtonian potential; on the other hand they must be expressible in
the form of relations between tensors in V,. We assume that they may
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be written in the form of a relationship between two symmetric
tensors

S = X0 (129.1)

where y denotes a constant factor associated with a universal gravita-
tional constant. The tensor Q s is taken to describe the energy dis-
tribution at each point (this being zero in matter free regions). It
therefore generalizes the right-hand side of Poisson’s equation.

In order to take account of all forms of energy we identify O, with
the total momentum-energy tensor which was studied in §118 and
§126. In the case of a continuous medium with electromagnetic
interactions we therefore write

Oy = Py + M), (129.2)

If we introduce an osculating Euclidean metric at a point in ¥ the
results obtained in our study of special relativity become valid locally
for the space-time of general relativity. In particular Q;‘# satisfies
equations (126.3) for the transfer of energy and momentum through
a continuous medium, i.e.

v, 0% =0, (129.3)

This equation may be interpreted by saying that the tensor QM is
conservative. 1t may be compared with (124.4) which represents the
conservation of charge.

We assume the tensor S™ appearing on the left-hand side of
(129.1) to have a purely geometrical significance, which is to say that
it only involves the metric (128.1) and its derivatives. 4 priori the ten
S )u cannot be independent. Disposing of the arbitrariness which
exists in the coordinate system (y’\) determines the values of four of the
potentials. The remaining six potentials would then have to satisfy
ten independent conditions if the quantities Sy, were completely
independent.

Since Q),, is conservative (129.1) implies that
v, s% =0, (129.4)

which gives the four relations linking the ten functions S ,. We also
expect the field equations to be generalizations of the second-order

E B
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differential equations of Laplace and Poisson. In fact, the following
two conditions are sufficient to determine the geometrical tensor Sy :
i (I) The quantities S). depend only upon the gravitational poten-
tials and their first and second-order derivatives. They are linear with
respect to the second-order derivatives.
(2)- The quantities S A Satisfy the conservation equations

V¥ = 0.

From the considerations of §85 and §86 we are already aware of a
tensor which satisfies the above conditions. This is given by

R,\F,_%EA#R,

where R),, is the Ricci tensor and R is the scalar Riemannian curva-
ture of the Riemannian space (128.1). Elie Cartan has shown that the
only tensors satisfying the above conditions are given by

Siu = MRy, — gy (R+K)],

where' h and k are constants. The corresponding partial differential
equations may be written

Ry —1e)(R+K) = x0),

if we suppress the superfluous factor . Except in certain very special
cosmological studies one is only concerned in general relativity with
ec;uaﬁPns where k is zero (which were first given by Einstein).
Einstein’s gravitational equations are therefore given by

Ryu—te3 R = xQ), (129.5)
or, in the absence of gravitating matter,
RAF—}g,\“R =0 (129.6)
Equations (129.6) are equivalent to
Ry, =0, (129.7)

as these equations immediately imply that R = 0,
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130. The momentum-energy tensor. The momentum-energy tensor
Q). which appears on the right-hand side of the Einstein equations
should describe completely the distribution of matter and energy in
motion. It is necessary, as in Newtonian mechanics, to be content
with an incomplete description which corresponds to a tensor @, of
restricted complexity. This tensor contains various terms which
correspond to the different kinds of energy : rest-mass energy, kinetic
energy, energy deriving from stresses, and from the electromagnetic
field etc. In the presence of matter the term which is experimentally
the most important is that which corresponds to the rest-mass
energy.

We note that, because of the non-uniformity of Riemannian space,
one cannot suppose material bodies to be rigid as in classical
mechanics. We are thus forced to consider models which are hydro-
dynamical in origin; this is why the study of continuous media plays
such an important role in the relativistic theory of gravitation.

Many forms of the momentum-energy tensor are commonly used
in relativistic gravitational theory. Consider first a continuous
medium such that interactions in the interior of the medium are
negligible and there are no electromagnetic interactions. The cor-
responding form of the momentum-energy tensor is given by

QA" = pu’\ ut, (130.1)

where p is the density of the matter at rest and where u” is the unit
velocity vector of the matter distribution at the point considered.
The tensor (130.1) corresponds only to the rest mass and kinetic
cnergy.

If interactions defined by a stress tensor Ty, exist inside the medium
we have

1
oM = puAu'“+;2T)“". (130.2)
In particular, in the case of a perfect fluid (118.3) gives
oM = (p+c£2) =L, (1303)

where p denotes the pressure.

3
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The lines in ¥4 which are everywhere tangential to the unit velocity
vector «? are called the flow lines of the distribution of matter.

The electromagnetic field in the absence of matter gives rise to the
momentum-energy tensor defined by (126.2).

131. Conservation equations inside matter. Let us apply the conserva-
tion equations

V.o =0 (131.1)

to the momentum-energy tensor given by (130.1): it follows that
Y, (pu) u + put V1 = 0. (131.2)

However, since u is a unit vector, we have

v, ut = 0.
Hence, after contracted multiplication by u), (131.2) gives

V. (pu*) = 0, (131.3)
and

utV,ut = 0. (131.4)

The geometrical interpretation of these equations is very simple:
(131.3) states that the divergence of the vector put, the generalized
matter flux, is zero; this is the equation of continuity for the matter.
(131.4) states that the flow lines are geodesics of ds, this result being
directly related to the geodesic principle. Analogous but more com-
plicated results have been given by Eisenhart and Lichnerowicz for
the case in which there is an internal stress in the medium.

In view of the scope of this work we are forced to restrict the
present discussion to these relatively elementary considerations, and
to refer the reader who desires a more detailed account to the special-
ized treatises listed in the bibliography.
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grounding in the relativity theory used in quantum field theories.
(3) and (4) are modern treatises written (in a most stimulating and
cp]ourful style_) from a geometrical point of view. (5) sets out con-
cisely the main aspects of modern research in general relativity
theory. The_: remaining books, (6) to (12), are standard treatises with
an emphasis on general relativity.




Index
Absolute differential, 65 ff. Covariant, 19
in a Riemannian space, 80 derivative, 66, 68, 95
Acceleration vector, 68, 81 Curl, 70

Adjoint E-M field tensor, 146
Adjoint tensor, 50
Affine space, 24
Affine sub-space, 26
Affine tensor, 31
algebra, 37
Angle between vectors, 17
Antisymmetric tensors, 39, 42, 45

Basis, 4
change of, 8, 22, 33, 47
dual, 10
sense of, 51
Beltrami differential parameter, 70,
72
Bianchi identity, 97
Biduality, 11
Bivector, 46
Body forces, 113

Charge conservation, 150

Christoffel symbols, 60 ff.

Complementary vector sub-spaces,
7

Completely antisymmetric tensors,
48

Configuration space, 98
Configuration space-time, 106
Conservation equations, 138, 159
Conservative tensor, 156
Continuity equation, 113
Continuous media, 111, 139
Contracted multiplication, 38
Contraction of indices, 37
Contravariant, 19
Co-ordinate lines, 56
Copernican frame, 120

Curvature tensor, 88 ff.
Curvilinear co-ordinates, 55 ff.

Development of a curve, 85

Differential of a vector, 54

Differential of a point, 54

Differential operators in curvilinear
co-ordinates, 69 ff.

Divergence, 71

Duality, 9, 22

Dual space, 10

Einstein’s equations, 157

Einstein’s principle of relativity,
122

Eisenhart's theorem, 109

Elasticity, 111

Electric current vector, 146

Electromagnetic field tensor, 143
adjoint of, 146

Electromagnetic potentials, 144

Energy flux, 140

Energy integral, 101

Energy transfer, 118

Equations of motion, 100, 107
for continuous media, 116 ff.,

139 ff.

relativistic, 133 ff.
transformation of, 105

Euclidean point space, 27

Euclidean tensor, 40

Euclidean tensor algebra, 43

Euclidean vector space, 13
proper, 15

Euler variables, 112

Extremals, 83

162

Index 163

First-order representation, 74
Flow lines, 159

Four-vector potential, 144
Frenet’s formula, 100
Functional determinant, 56
Fundamental tensor, 42

Galilean frame, 120

Gauge, 146

General relativity, 154 ff.
Geodesic, 81

Geodesic principle, 155
Geodesic spread, method of, 105
Gradient, 70

Gravitation, 154 ff.
Gravitational potentials, 155

Hamilton-Jacobi theorem, 111
Holonomic systems, 98 ff.
Hydrodynamics, 111

Image, 74

Inertia of energy, 137
Inertia principle, 133
Integrability conditions, 62
Interval, 131

Jacobian, 56

Lagrange equations, 100, 107

Laplacian, 72

Line element, 58

Linear form, 9

Locally Euclidean, 93

Lorentz force density, 151

Lorentz group, 122, 124 ff.

Lorentz transformation, 127
in vector form, 128

Mapping of a curve, 84
Mass-energy equivalence, 137, 140
Maupertius’ principle, 102
Maxwell-Lorentz equations, 143 ff.
Metric, 59, 155

Michelson-Morley experiment, 119

Minkowski, 123, 130, 134

Mixed tensor, 35

Modulus of a vector, 16

Momentum, 99

Momentum-energy tensor, 143,
152, 158

Momentum-energy vector, 136

Natural reference frame, 56

Newton’s principle of relativity,
122

Norm, 15, 21

Normal co-ordinates, 94

Order of a tensor, 32
Orthogonality, 15
Orthonormal systems, 17
Osculating Euclidean metric, 78
Quter products, 45 ff.

Partial derivative, 54

Point space, Euclidean, 27
Poynting vector, 153

Proper Euclidean vector space, 15
Proper Riemannian space, 73

Rank of a tensor, 32
Rectilinear co-ordinates, 55
Reduced Galilean co-ordinates, 131
Reducible dynamical systems, 105
Reference frame in affine space,
25
Relativistic composition of velo-
cities, 129
Relativistic kinetic energy, 136
Relativistic mass, 136
Rest-energy, 136
Rest-mass, 134
Ricci tensor, 96, 157
Ricci's theorem, 68
Riemann—Christoffel tensor, 92
Riemannian curvature, 96, 157
Riemannian spaces, 73 ff.
volume and distance in, 77
Riemannian space-time, 154
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Scalar product, 13, 21

Schmidt orthogonalization proce-
dure, 18

Schwartz inequality, 16

Second-order representation, 78

Signature, 73

Space-time, 123

Special relativity, 119 ff.

Speed of light, constancy of, 120

Stability of motion, 105

Stress tensor, 114, 142

Summation convention, 13

Surface forces, 113

Symmetric tensors, 39, 42

Tangential Euclidean metric, 74
Tensor, absolute derivative of, 67
Tensor addition, 37
Tensor, adjoint, 50
Tensor algebra, 29 ff.
Tensor character, criterion of, 35,
38
Tensor, completely antisymmetric,
48
covariant derivative of, 68
definition of, 31
Euclidean, 40

Index

Tensor field, 59, 79

Tensor multiplication, 37

Tensor, order of, 32

Tensor product, 29

Tensor, rank of, 32
symmetric and anti-symmetric,

39, 42

Time-dependent constraints, 106

Time-independent constraints, 98

Transformation formulae, 26, 34,
127

Transport of Euclidean metrics,
85 ff.

Triangular inequality, 28

Unit velocity vector, 132

Vector derivative of a point, 54

Vector derivative of a vector, 53

Vector, Euclidean, 13

Vector functions of several scalar
variables, 54

Vector product, 52

Vector space, 1 ff.

Vector sub-space, 4, 7
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