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^l PKEPACE.

I HAVE endeavoured, in tlie following treatise, to convey

vy as complete an account of the present state of knowledge on

the subject of Differential Equations, as was consistent witli

^ the idea of a work intended, primarily, for elementary instruc-

tion. It was my object, first of all, to meet the wants of those

who had no previous acquaintance with the subject, but I also

desired not quite to disappoint others who might seek for more

Kadvanced information. These distinct, but not inconsistent

I
aims determined the plan of composition. The earlier sections

V of each chapter contain that kind of matter which has usually

^ been thought suitable for the begnmer, while the latter ones

are devoted either to an account of recent discovery, or to the

discussion of such deeper questions of principle as are likely to

present themselves to the reflective student in connexion with

the methods and processes of his previous course. An appen-

dix to the table of contents will shew what portions of the

work are regarded as sufficient for the less complete, but still

not unconnected study of the subject.

The principles which I have kept in view in carrying out

the above design, are the following

:

1st, In the exposition of methods I have adhered as closely

as possible to the historical order of their development.

I presume that few who have paid any attention to the

history of the Mathematical Analysis, will doubt that it has

been developed in a certain order, or that that order has been,

to a great extent, necessary—being determined, either by steps

of logical deduction, or by the successive introduction of new

ideas and conceptions, when the time for their evolution had
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arrived. And tliese are causes wliicli operate in perfect har-

mony. Each new scientific conception gives occasion to new

applications of deductive reasoning; but those applications

may be only possible through the methods and the processes

which belong to an earlier stage.

Thus, to take an illustration from the subject of the follow-

ing work,—the solution of ordinary simultaneous differential

equations properly precedes that of linear partial difierential

equations of the first order; and this, again, properly precedes

that of partial differential equations of the first order which are

not linear. And in this natural order were the theories of

these subjects developed. Again, there exist large and A^ery

important classes of differential equations the solution of which

depends on some process of successive reduction. Now such

reduction seems to have been effected at first by a repeated

change of variables ; afterwards, and wdth greater generality,

by a combination of such transformations with others involv-

ing differentiation ; last of all, and with greatest generality, by
symbolical methods. I think it necessary to direct attention

to instances like these, because the indications which they

afibrd appear to me to have been, in some works of great

ability, overlooked, and because I wish to explain my motives

for departing from the precedent thus set.

Now there is this reason for grounding the order of exposi-

tion upon the historical sequence of discovery, that by so

doing Vv^e are most likely to present each new form of truth to

the mind, precisely at that stage at which the mind is most

fitted to receive it, or even, like that of the discoverer, to go forth

to meet it. Of the many forms of false culture, a premature

converse with abstractions is perhaps the most likely to prove

fatal to the growth of a masculine vigour of intellect.

In accordance with the above principles I have reserved

the exposition, and, with one unimportant exception, the ap-

plication of symbolical methods to the end of the work. The
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propriety of tills course appears to mc to be confirmed by an

examination of the actual processes to which symbolical

methods, as applied to differential equations, lead. Generally

speaking, these methods present the solution of the proposed

equation as dependent upon the performance of certain inverse

operations. I have endeavoured to shew in Chap, xvi., that

the expressions by which these inverse operations are symbol-

ized are in reality a species of interrogations, admitting of

answers, legitimate, but differing in species and character ac-

cording to the nature of the transformations to which the

expressions from which they are derived have been subjected.

The solutions thus obtained may be particular or general,

—

they may be defective, wholly or partially, or complete or

redundant, in those elements of a solution which are termed

arbitrary. If defective, the question arises how the defect

is to be supplied ; if redundant, the more difficult question

whether the redundancy is real or apparent, and in either

case how it is to be dealt with, must be considered. And
here the necessity of some prior acquaintance with the things

themselves, rather than with the symbolic forms of their ex-

pression, must become apparent. The most accomplished in

the use of symbols must sometimes throw aside his abstrac-

tions and resort to homelier methods for trial and verification

—not doubting, in so doing, the truth which lies at the bottom

of his symbolism, but distrusting his own powers.

The question of the true value and proper place of symboli-

cal methods is undoubtedly of great importance. Their con-

venient simplicity—their condensed power—must ever consti-

tute their first claim upon attention. I believe however that,

in order to form a just estimate, we must consider them in

another aspect, viz. as in some sort the visible manifestation

of truths relating to the intimate and vital connexion of

language with thought—truths of which it may be presumed

that we do not yet see the entire scheme and connexion. But,
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wliile tliis consideration vindicates to them a high position, it

seems to me clearly to define that position. As discussions

about words can never remove the difficulties that exist in

things, so no skill in the use of those aids to thought w^hich

language furnishes can relieve us from the necessity of a prior

and more direct study of the things which are the subjects

of our reasonings. And the more exact, and the more com-

plete, that study of things has been, the more likely shall

we be to employ with advantage all instrumental aids and

appliances.

But although I have, for the reasons above mentioned,

treated of symbolical methods only in the latter chapters of

the work, I trust that the exposition of them which is there

given will repay the attention of the student. I have endea-

voured to supply what appeared to me to be serious defects in

their logic, and I have collected under them a large number of

equations, nearly all of which are important,—from their con-

nexion with physical science or for other reasons.

2ndly, I have endeavoured, more perhaps than it lias been

usual to do, to found the methods of solution of differential

equations upon the study of the modes of their formation. In

principle, this course is justified by a consideration of the real

nature of inverse processes, the laws of which must be ulti-

mately derived from those of the direct processes to which

they stand related ; in point of expediency it is recommended

by the greater simplicity, and even in some instances by the

greater generality, of the demonstrations to which it leads. I

would refer particularly to the demonstration of Monge's

method for the solution of partial differential equations of the

second order given in Chap. xv.

With respect to the sources from which information has

been drawn, it is proper to mention that, on questions re-

lating to the theory of differential equations, my obligations

are greatest to Lagrange, Jacobi, Cauchy, and, of living
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In composing his Treatise on Differential Equations Pro-

fessor Boole found himself deeply interested in the subject

to which his first labours as an original investigator had

been devoted. In consequence he determined soon after the

publication of the volume to continue his studies and re-

searches with the design of ultimately reconstructing the

Treatise on a more extensive scale. During the last six

years of his life he worked steadily at this object; and he

was about to send the first sheets of the new edition to the

press when he was attacked by the illness which terminated

in his sudden and lamented death.

His manuscripts were entrusted to me early in the present

year. After careful consideration it seemed to me that the

best plan to pursue was to reprint the original volume, and

to collect into a supplementary volume the additional matter

which had been prepared for enlarging the work. The pro-

priety, I might almost say the necessity, of this course will

be shewn more conveniently in the preface to the supple-

mentary volume, which will soon be published.

The present volume then is a reprint of the original

Treatise with changes and corrections, some of which were

indicated in Professor Boole's interleaved copy, and some

of which have been made on my own authority. The

sheets have been carefully read by the Eev. J. Sephton,

Fellow of St John's College, as well as by myself; and I

trust that few misprints or errors will now be found in the

volume.

I. TODHUXTER.
St John's College, Casibkidge,

October, 1 86?.



PREFACE. IX

writers, to Professor De Morgan. For metliods and exam-

ples, a very large number of memoirs English and foreign

have been consulted : these are, for the most part, acknow-

ledged. At the same time it is right to add that, in almost

every part of the work, I found it necessary to engage more or

less in -original investigation, and especially in those parts

which relate to Eiccati's equation, to integrating factors, to

singular solutions, to the inverse problems of Geometry and

Optics, to partial differential equations both of the first and

second order, and, as has already been intimated, to symboli-

cal methods. The demonstrations scattered through the work
are also many of them new, at least in form.

In recent years much light has been thrown on certain

classes of differential equations by the researches of Jacobi

on the Calculus of Variations, and of the same great analyst,

with Sir W. E. Hamilton and others, on Theoretical Dy-
namics. I have thought it more accordant with the design

of an elementary treatise to endeavour to prepare the way
for this order of inquiries than to enter systematically upon

them. This object has been kept in view in the writing of

various portions of the following work, and more particularly

of that which relates to partial differential equations of the

first order.

GEOEGE BOOLE.

Queen's College, Cork,

February, 1859.
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DIFFERENTIAL EQUATIONS.

CHAPTEE I.

OF THE NATURE AND ORIGIN OF DIFFERENTIAL EQUATIONS.

1. What is meant bj a differential equation ?

To answer tliis question we must revert to tlie fundamental

conceptions of the Differential Calculus.

The Differential Calculus contemplates quantity as subject

to variation ; and variation as capable of being measured. In

comparing any two variable quantities x and ?/ connected by
a known relation, e.g. the ordinate and abscissa of a given

curve, it defines the rate of variation of the one, y, as referred

to that of the other, x, by means of the fundamental con-

ception of a limit ; it expresses tliat ratio by a differential

coefficient~ ; and of that differential coefficient it shews how
dx

to determine the varying magnitude or value. Or, again, con-

siderins; -f^ as a new variable, it seeks to determine the rate
° ax

of its variation as referred to the same fixed standard, the

variation of x, by means of a second differential coefficient

-T*^ , and so on. But in all its applications, as well as in its

theory and its processes, the primitive relation between the

variables x and y is supposed to be known.

In the Integral Calculus, on the other hand, it is the rela-

tion among the primitive variables, x, y, &c. which is sought.

In that branch of the Integral Calculus with which the student

^ B. D. E. 1
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13 supposed to be already familiar, tlie differential coefficient

— being given in terms of tlie independent variable a?, it is

die

proposed to determine tlie most general relation between y
and X. Expressing the given relation in tlie form

f>*(-) «'

the relation sought is exhibited in the form

i/ = l(f){x) dx + c.

In (1) we have a particular example of an equation in the

expression of which a differential coefficient is involved. But
(221

instead of having as in that example -,- expressed in terms of

£c, we might have that differential coefficient expressed in terms

of ?/, or in terms of x and y. Or we might have an equation

in which differential coefficients of a higher order, -^4 , -ts ?

&c., were involved, with or without the primitive variables.

All these including (1) are examples of differential equations.

The essential character consists in the presence of differential

coefficients.

The equations

d"^!! dif ^ , .

are seen to be differential equations, the latter of which con-

tains, while the former does not contain, the primitive vari-

ables.

And thus we are led to the following definition.

Def. a differential equation is an expressed relation in-

volving differential coefficients, ivith or icitliout tlie primitive

cariablesfrom which those differential coefficients are derived.
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That which gives to the study of differential equations its

peculiar value, is the circumstance that many of tlic most im-
jjortant conceptions of Geometry and Mechauics can only be
realized hi thought by means of the fundamental conception
of the limit. When such is the case, the only adequate ex-
])ression of those conceptions in language is through the me-
dium of differential coefficients,—the only adequate expression

of the truths and relations of which they are the subjects is in

the form of differential equations.

Species, Order and Degree.

2. The species of differential equations are determined
either by the mode in which differential coefficients enter into

their composition, or by the nature of the differential coeffi-

cients themselves. We may thus distinguish two great pri-

mary classes of differential equations, viz.

:

1st. Ordinary differential equations, or those in which all

the differential coefficients involved have reference to a single

independent variable.

2ndly. Partial differential equations, characterized by the
presence of 'partial dafferential coefficients, and tlierefore in-

dicating the existence of two or more independent variables
with respect to which those differential coefficients liave been
formed.

Thus an equation such as (2) or (3), involving no other

differential coefficients than ~j- , -^, &c. is an ordinary dif-
aju ajc

ferential equation, in which x is the independent, y the de-

pendent variable. An equation involving -^ and -y^ would,
ax a u

on the contrary, be a partial differential equation, having ;:;

for its dependent, x and y for its independent variables. The
dz dz . . 1 T^equation a;
j +y . = ;3; is a partial differential equation.
dx "^ dy ^ ^

^
The^ present chapter will be chiefly devoted to the con-

sideration of that class of ordinary differential equations in

1—2
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whicli there exists a single independent variable x, a single

dependent variable ?/, and one or more of the differential

coefficients of y taken with respect to x ; the presence of the

last element only, viz. the differential coefficient, being essen-

tial (Art. 1).

The two following equations, in addition to those already

given, will exemplify some of the chief varieties of the species

under consideration

:

dv

A. 1 + f^T^
(i).

{'-(DT

d^

= mx (5).

In (4) the independent variable x, the dependent variable

y, and the differential coefficient -~- are all involved; but,

while in the previous examples ~ appears only in the first

degree, in the present one it appears in the second degree

and under a radical sign. In (5) we meet with the second

dh/
differential coefficient -y'^o in addition to the first differential

dx'

coefficient -j- and the independent variable x.

The typical or general form of a differential equation of the

species just described is

4'^'2'g.-S)='> («)'

with the condition, already referred to, that one at least of tlie

differential coefficients must explicitly present itself. All the

above equations may at once be referred to the typical form
by transposition of their second member.
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3. Differential Equations are ranked in order and degree

according to the following principles.

1st. The order of a differential equation is the same as

the order of the highest differential coefficient which it con-

tains.

2ndly. The degree of a differential equation is the same
as the degree to which the differential coefficient which marks
its order is raised, that coefficient being supposed to enter into

i^iiQ equation in a rational form.

Thus the equation

\dx/ dx '

is of the first order and of the second degree.

The equation

d'']/ dif ,2

is of the second order and of the first degree.

The equation

J = V^(y-^3
(')'

reduced to the rational form

;2y-i-^- ••(«)'

is seen to be of the first order and second degree.

The ground of the preference wliich is to be given to

rational forms in the expression and in the classitication of

differential equations is, that a rational form is at the same
time the most general form of which an equation is sus-

ceptible. Thus (8) includes both the equations whicli would
be formed by giving different signs to the radical in (7).

The typical form of an ordinary differential equation of the

first order is evidently

/(-'^'S=^ (^)-
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4. When a differential equation is capable of being ex-

pressed in the form

in which the coefficients X^, X^,..,X^ and the second member
X are either constant quantities or functions of the indepen-

dent variable x only, the equation is said to be linear. Equa-
tions (1), (2) and (3) are thus seen to be linear, but (4) and (5)

are not linear. If we refer (3), after dividing both members
by x^, to the general form (10), we have

71 = 2, A>^, A> ^;,,

AVhen the coefhcients X^, X^, &c. in the first member of a
linear differential equation referred to the above general type
are constant quantities, the equation is defined as a linear

differential equation with constant coefficients. When those

coefficients are not all constant it is deiined as a linear dif-

ferential equation with variable coefficients. The distinction

is illustrated in the following examples:

ov d II ch]
X )
~~ — x-:--\- 4?/ = cos X,
dx dx ^

the former of which is a linear differential equation with
constant coefficients, while the latter would be described as

a linear differential equation with variable coefficients.

Meaning of the terms ^ general solution,'' '' comjjlete 'primitive^

0. In all differential equations there is, as has been seen,

an implied reference to some relation among variable quantities

dependent and independent; such reference being established

through the medium of differential coefficients. Now the chief

object of the study of differential equations is to enable us to
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determine whenever it is possible, and in tlie most general

manner which is possible, such implied relation among the

primitive variables. That relation, when discovered, is, by
the adoption of a term primarily applicable to the mode or

process of its discovery, called the solution of the equation.

Thus if the given equation be

x-j^ + y=cosx (11),

tlie following process of solution may be adopted. Zdultiply-

ing by dx, we have

xd?/ + ydx = cos xdx.,

and Integrating, since each member is an exact differential,

cc?/ = since + c (12).

The result is termed the solution, or, still more definitely, the

general solution of the equation. It involves an arbitrary

constant, c, by giving particular values to which a series of

particular solutions is obtained. The equations

xy — sin a?,

xy = since + 1,

are particular solutions of the given differential equation.

The term solution is still employed, even when the inte-

gration necessary in order to obtain in a finite and explicit

form the relation between the variables cannot be eft'ected.

Thus if we had the differential equation,

^%-y-'-''=^ c^)'

we should thence derive in succession

xdy — ydx _ e^dx

^ = f^^ + c (U),
x J x
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and the last result is called the solution of the given equation,

although it involves an integration which cannot be performed

in finite terms.

The relation among the variables which constitutes the

general solution of a differential equation, as above described,

is also termed its complete primitwe. The relation (14) in-

volving the arbitrary constant c is virtually the complete

primitive of the differential equation (13). It will be observed

that the terms ' general solution ' and ' complete primitive,'

though applied to a common object, have relation to distinct

processes and to a distinct order of thought. In the strict

application of the former term we contemplate the differential

equation as prior in the order of thought, and the explicit

relation among the variables as thence deduced by a process

of solution ; while in the strict use of the latter term the order

both of thought and of process is reversed.

Genesis of Differential Uquatioiis,

6. The theory of the genesis of differential equations from

their primitives is to a certain extent explained in treatises

on the Differential Calculus, but there are some points of great

importance relating to the connexion of differential equations

thus derived, not only with their primitive, but with each other,

Aviiich need a distinct elucidation.

Suppose that the complete primitive expresses a relation

between x, y and an arbitrary constant c. Differentiating on
the supposition that x is the independent variable, we obtain a

new equation which must involve -— , and which may involve

any or all of the quantities x, y and c. If it do not involve

c, it will constitute the differential equation of the first order

corresponding to the given primitive. If it involve c, tlien

the elimination of c between it and the primitive will lead to

the differential equation in question.

Thus if the complete primitive be

^ = ca; (1),
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we have on differentiation,

i- c^)'

and, eliminating tlie constant c,

y-^% (^)'

tlie differential equation of the first order of which (1) is the

complete primitive.

That primitive might have been so prepared as to lead to

the same final equation bj mere differentiation. Thus, re-

ducing the primitive to the form

^ = 0,
X

we have on differentiating and clearing the result of fractions,

which agrees with (3) . And generally, if a primitive involving

an arbitrary constant c be reduced to the form <^ (ic, y) = c,

the corresponding differential equation will be obtained by
mere differentiation and removal of irrelevant factors, i. e. of

fiictors which do not contain — , and do not therefore affect

the relation in which --,- stands to x and ?/. For it is. in that
dx ^

relation, as already intimated. Art. 2, that the essential

character of the differential equation consists.

It is to be observed that when the differentiation of a primi-

tive involving an arbitrary constant c does not of itself cause

that constant to disappear, the result to which it leads is still

a differential equation, only not that difierential equation of

which the equation given constitutes the complete primitive.

Thus, while the complete primitive of (3) is (1), that of (2) is

y — cx-\-G^ c being now the arbitrary constant,—arbitrary

as being independent of anything contained in the difierential
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equation. Indeed when we consider -^- = c as the differential

equation, tlie constant c, as entering into its complete primitive,

y = cx-\- c',

is not arbitrary, the value which it bears in the primitive

being determined by that which it bears in the differential

equation.

As another illustration of the same theory, the equation

y — ce"^ as complete primitive gives rise to the differential

equation of the first order

while the equation immediately derived from it by differ-

du
entiation, viz. -j- — c«e'''', has for its complete primitive

y = ce'''-\- c . To the last mentioned differential equation,

y = ce'''' stands in the relation of a particular primitive.

Second and Higher Orders,

1. It is shewn in the previous section that from an equa-

tion containing x and y with an arbitrary constant c, we can

by differentiation, and elimination (if necessary) of that con-

stant, obtain the differential equation of the first order, of which
the given equation constitutes the complete primitive.

In like manner an equation connecting a?, y, and two
arbitrary constants being given, if we differentiate twice, and
eliminate, should they not have already disappeared, the

arbitrary constants, we shall arrive at a differential equation

of the second order free from both the constants in question,

and of which the given equation constitutes the complete

primitive.

Thus, if we take as the primitive equation

y = ax^ + I)x (4),
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we find on difierentiation

%^^ax^l (5),

and, eliminating h between these equations,

dif

dx
(6),

a differential equation of the first order free from the constant

h. Differentiating this equation we have

d^y _
dx

and, eliminating a between the last two equations,

""
dx' ^"^ dx^ ^y ^ ^^'

a differential equation of the second order free from both

a and h.

In the above example the constant h was eliminated after

the first differentiation, and the constant a after the second.

But the same final result would have been arrived at if the

order of the eliminations had been reversed. Thus, if a be
eliminated between (4) and (5), we shall have

x^4- + lx-2y=^0,
dx •^

a differential equation of the first order, different in foiTn from

(6), and involving h instead of a. But on differentiating this

equation and eliminating Z>, we shall arrive at the same final

equation of the second order (7).

And generally the order in icliicli the constants are eliminated

does not affect the form of the final differenticd e<iuation,

Now a little consideration will shew that this is necessarily

the case. We are to remember that the generality which the

primitive derives from the presence of its arbitrary constants

consists only in this, that it is thus made to stand as the
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representative of an infinite number of particular equations, in

each of which these constants receive particular and definite

values. If in any one of the equ-ations thus particularized' we
further give to ic a definite value, definite values will also

7 rl'^

result for y, -r--) y4 ? ^c. Thus to a given abscissa of a

given curve, i.e. of a curve determined as to its species "by the

form of its equation, and as to its elements by the values of the

constants in that equation, correspond only definite values of the

ordinate y determining the corresponding points of the curve,

definite values of -,- determining the inclination of the tan-

gents at such points to the axis of x, and definite values of

y4 determining, in conjunction with the former, the measure of

curvature at the same points. In other words, the species of the

curve as defined by an equation of the form <p {x, y, a, h) =

being fixed, the values of y, -f^ , -y4 l^^^e a fixed dependence

on those of a, h and x.

And hence the equation
(f)

{x, y, a, h) =0 being given, any
processes of difierentiation, elimination, &c. applied thereto can

only serve, either 1st, to bring out or manifest the dependence

above referred to, or 2ndly, to modify the accidental form of its

expression; but in no sense to create such dependence or affect

its real nature. Xow this dependence of y, y , y4 upon a, 5,

and a?, involves the existence of three equations among six

quantities. Therefore the elimination which thus becomes

possible of two of those quantities, a, Z>, must leave a single

final relation between the remaining four, x, y, -~
^ -j\.

And this is the differential equation in question.

As another example, let us eliminate the arbitrary constants

c and c from the equation

y=ce^--fcV^ (8).
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Differentiatli'": we have

dy

dx
ace + Z*cV^ (9).

To eliminate c subtract from this equation the primitive

(8) multiplied by a ; we have

'^£-ay = {h-a)di' (10).

Again, differentiating

dx' dx ^ ^
'

and (to eliminate c) subtracting from this the previous equa-
tion multiplied bj h, we have

g_(„ + J)| + ,,, = (11),

the differential equation of the second order required.

If Ave had first eliminated c we should in the place of (10)

have obtained the equation

^£-hj=.{a-h)ce" (12).

Differentiating this and eliminating c we again obtain the

same final result (11).

That result is a differential equation of the second order, and

(8), involving both the arbitrary constants c and c, is its com-
plete primitive. The intermediate equations (10) and (12), each

of which contains one of the arbitrary constants, and from

each of which, by the elimination of that constant, the final

differential equation may be derived, are \X?> first integrals. As
the term primitive has reference to the direct processes of

differentiation, &c. by which a differential equation is formed,

the term integral has reference to the inverse process of

integration by which we reascend from a differential equation

to its primitive. Considered witli reference to these processes

the primitive is sometimes termed i]iQ final integral.
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It has been shewn that the order of suci^ession in which
arbitrary constants are eliminated is indifferent. It may be

added, and upon the same gromid, that the elimination may
be simultaneous. If we write the primitive (8) in the form
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Xow this Is the type of an ordinary differential equation of

the ^^'^ order, (6), Art. 2.

As, in the above process of differentiation and elimination,

we might have begun by eliminating any other of the con-

stants instead of c^, it follows that to a primitive containing

n arbitrary constants there belong n differential equations of

the first order, each involving n — 1 arbitrary constants. But
as those differential equations are all formed by mere pro-

cesses of elimination from two equations, viz. from the primi-

tive and its first derived equation, two only of them are

independent. Again, as the differential equations of the

second order are formed by eliminating two of the constants

Cj , c^ , . . . c„ , and as from n constants, n —-— combinations

of two constants can be selected, it is seen that there will

exist n —-— differential equations of the second order, each
A

containing n — 2 arbitrary constants. Of these equations

three only will however be independent, the whole system
being derived actually or virtually from the primitive and its

lirst and second derived equations;—actually if we differen-

tiate twice before eliminating; virtually if each differentiation

is followed by the elimination of a constant.

This process of deduction continued leads to the following

'

general theorems, viz.

:

1st. To a given jjrimitive involving x, y, and n arbitrary

, , T. 7z(n- 1) (71-2) ... (w-r +1) ,.^ .,
constants belonq —^

, ^
- ^ '- differential

eqiiations of the /^ order {r being any whole number less than

11), each involving n — r arbitrary constants, but of those e<2

tions r + 1 only will be independent.

ua-

2nd. There ivill exist one differential equation of the ?i*^

order free from arbitrary cotistants.

The converse of the latter truth, viz. that a differential

equation of the 7i^^ order implies the existence of a complete
primitive involving n arbitrary constants, will be established

in a future page.
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Criterion of derivationfrom a common primitive,

9. It is establislied in Art. 7, 1st, that from a primitive

equation involving two arbitrary constants arise two differen-

tial equations of the first order, each involving one of those

constants; 2ndly, that each of these differential equations of

the first order gives rise to the same differential equation of

the second order, of which the original equation constitutes

the complete primitive or final integral.

The second of the properties above noted constitutes a

criterion by which it may be determined whether two dif-

ferential equations of the first order, each involving an arbi-

trary constant, originate from the same primitive. We must
differentiate each equation, and then eliminate its arbitrary

constant. If the two results agree as differential equations of

d'^Tj

the second order, i. e. if they give the same value of -y^^

as a function of x, ?/, and y- , the differential equations of the

first order must have originated in the same primitive. Fur-
dii

thermore, that primitive will be obtained by eliminating -~

between the two differential equations given.

Ex. The differential equations of the first order

^ J-«^ = o w.

^-^yt-' (^)'

are both derived from the same primitive. Each of them
leads on differentiation and elimination of its arbitrary con-

stant to the differential equation of the second order,

^3.2.^(|)-.| = (3).



ART. 10.] FROM A COMMON PRIMITIVE. 17

The primitive, found by eliminating — from tlie given

equations, is

f-a-i^l (4),

a and h being arbitrary constants.

10. The differential equations of the first order which
constitute the first integrals (Art. 7) of a differential equation

of the second order (as, in the above example, (1) and (2)

are first integrals of (3)), may by algebraic solution be reduced

to the forms

^("2/. JS=« ^•5)-

^(-'^'i)=^ •(«)

Xow a function of the arbitrary constants a and Z>, as ^(a, V)^

is itself an arbitrary constant, and may be represented by c.

Hence any equation of the form

dxr ^ V
'-^^ dx

would, equally with (o) and (6), constitute a first integral of

the supposed equation of the second order. It is evident that

(7) is the general type of all such first integrals.

Thus the type of the first integrals of (3) would be

But any two first integrals included under tliis type and in-

dependent of each other would lead us, as is obvious, to tlie

same final integral (4), either under its actual or imder an

equivalent form.

While therefore, viewed as an independent system, the first

integrals of a differential equation of the second order are but

B.D.E. 2
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two, it is formally more correct to regard them as infinite in

number, but as so related that anj two of them which are

independent contain by implication all the rest.

Such considerations are easily extended to differential

equations of the higher orders.

Gej^metrvcal illustraticns,

11. Geometry, by its peculiar conceptions of direction,

tangency, and curvature, all developed out of the primary

conception of the limit, Art. 1, throws much light on the

nature of difterential equations.

As the simplest illustration let the equation of a straight

line

y = ax+h (1)

be taken as the complete primitive, a and h being arbitrary

constants.

Differentiating, we have

dy

Eliminating a, we find

and again differentiating

d.
'' (^)'

y-''%-^ ^^'

S=o w-

Of these equations, (1), which is free from arbitrary con-

stants, is the general differential equation of the second order

of a straight line; and (2) and (3), each of which contains one
of the original arbitrary constants, are the two differential

equations of the first order. ]\Ioreover, each of these dif-

ferential equations expresses some general property of the

straight line— (2), that its inclination to the axis is uniform

;

(3), that any intercept, parallel to the axis of y, between the
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straight line and a parallel to it through the origin will be of

constant length; (4), that a straight line is nowhere either

convex or concave;—and this property, which does not in-

volve, in the same definite manner as the others do, the con-

siderations of distance and of angular magnitude, is evidently

the most absolute of the three.

The equation of the circle is

{x-af+{y-lf=T' (J),

and if we regard a and h as arbitrary constants tlie corre-

sponding differential equation of the second order will be

^-^%
(6),

c£y

expressing the property that the radius of curvature is in-

variable and equal to r.

If we proceed to another differentiation, we find

which Is the general differential equation of a circle free from

arbitrary constants. And the geometrical property which this

equation also expresses is the invariability of the radius of

curvature, but the expression is of a more absolute character

than that of the previous equation (G). For in that equation

we may attribute to r a definite value, and then it ceases to

be the differential equation of all circles, and pertains to that

particular circle only whose radius is r . The equation (7)

admits of no such limitation.

Monge has deduced the general differential equation of

lines of the second order expressed by the algebraic equation

ax' + Ixy + cy' + ex -^-fij = 1

.
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It IS

'^l'.^V^ _ 45 ^/ f^/^ . 40 r^Y-
AxV dx' dx' dx' dx'

*
I dxV

~

But here our powers of geometrical interpretation fail, and
results such as this can scarcely be otherwise useful than as a

registry of integrable forms.

From the above examples it will be evident that the

higher the order of the differential equation obtained by eli-

mination of the determining constants from the equation of a

curve, the higher and more absolute is the property which
that differential equation expresses.

We reserve to a future Chapter the consideration of the

genesis of partial differential equations as well as of ordinary

differential equations involving more than two variables.

EXERCISES.

1. Distinguish the following differential equations accord-

ing to species, order, and degree, and take account of any
peculiarities dependent upon their coefficients.

(1) J-'y=-'.

^ ' cW xdx ^ '

.,. dz dz o?
(4) X --. ?/ ^- = — .

^ ^ dx ^ dy y

,^. d^u d\ d\
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_
2. Explain the tenii ' complete primitive,' and form the

differential equations of the first order of which the following
are the complete primitives, c being regarded as the arbitrary
constant, viz.

:

(1)
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(2) y — xp = a {if + p), and ?/ — ccp = 5 (1 + a;^^).

7. How many first, second, third, &c. integrals, belong

to the general differential equation of lines of the second

order given in Art. 11, and how many of each order are inde-

pendent ?

8. From the equation {y — hy^= Am {x — a) assumed as the

primitive, deduce 1st the differential equations of the first

order involving a and h as their respective arbitrary constants

;

2dly the general functional expression for all differential equa-

tions of the first order derivable from the same primitive.

9. Of what primitive involving two arbitrary constants

would the functional equation

^{y — 2]jx, p^x) = c,

represent all possible differential equations of the first order?

10. How many independent differential equations of all

orders are derivable from a given primitive involving x, y,
and n arbitrary constants?
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CHAPTER IL

ON DIFFERENTIAL EQUATIONS OF THE FIRST ORDER AND
DEGREE BETWEEN TWO VARIABLES.

1. The differential equations of wliich we sliall treat in

this Chapter may be represented under the general form

ax

J/ and ^ being functions of the variables cc and y.

In this mode of representation x is regarded as the inde-

pendent variable and y as the dependent variable.

We may, however, regard y as the independent and x as

the dependent variable, on which supposition the form of the

typical equation will be

i/^ + jVr=0.

For as any primitive equation between x and y enables us

theoretically to determine either ^ as a function of x^ or x as

a function of y, it is indifferent which of the two variables

we suppose independent.

It is usual to treat this equation under the form

Mix + l^dy = 0,

not however from any preference for the theory of infinitesi-

mals, but for the sake of symmetry.

The order of this Chapter will be the following. As the

sohition of the equation, if such exist, must be in the form of

a reLation connecting x and y, I shall first establish a prelimi-

nary proposition expressing the condition of mutual depend-
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ence of functions of two variables ; I shall then inquire what
kind of relation between x and y is necessarily implied by the

existence of a differential equation of the form

ax

I shall discuss certain cases in which the equation admits
readily of finite solution; and I shall lastly deduce its general

solution in a series.

Prop. i. Let V and v hs exj^Iici'f functions of the tioo vari-

alles X and y. Then, if V he expressible as a function of v,

the condition

dVdv_dVdv^^
dx dy dy dx ^ ^

will he identically satisfied. Conversely^ if this condition he

identically satisfied, V will he expressible as afunction ofv,

1st. For suppose V—^{v), Then

dV^ d(j>{v) dv^

dx dv dx '

dV_ d4>{v) dv

dy dv dy

'

Multiplying the first equation by -j- , the second by j- ,

and subtracting, we have

dVch__dV dv^^
dx dy dy dx

And this is satisfied identically ; since by the process of

elimination the second member vanishes independently both

of tlie form of t; as a function of x and y, and of the form of

Fas a function of v,

2ndly. Also if the above condition be satisfied identically,

Fwill be expressible as a function of v. For whatever func-

tions V and v may be of x and y, it will be possible by elimi-
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nating one of the variables x and y to express Fas a function

of tlie other variable and of v. Suppose for instance the

expression for Fthus obtained to be

V=^{x,^).

Then
dV
dx
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Conversely, supposing ?? to be a function of a? only, and (1)

to be identically satisfied, that equation reduces to

whence Fis expressible as a function oi v,

2. The eqiiation M+N -j- = always involves the existence

of a primitive relation between x and y of theform

/(^. y) = c,

m which c IS an arbitrary constant.

Let us first consider what is the immediate signification of

the equation

''^^%-' «•

We know that if Ace represent any finite increment of x, and

A?/ the corresponding finite increment of ?/, — will represent

A?/
the limit to which the ratio -~ approaches as Aa? approaches

to 0.

Let us then first examine the interpretation of the equation

J/+.Y^=0 (2).
Aic ^ ^

We have x^ = ~ y • The second member of this equation

being a function of x and ?/, since M and N are functions of

those variables, we may write

^ = '^(^,2/) (3),

the form of <^ (a?, y) being known when J/ and N are given.

Now if we assign to x any series of values, it is possible

to assign a corresponding series of values of ?/, any one of

which being fixed arbitrarily all the others will be determined

by (3).
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Thus let x^^ cc, , ir^-.-be the series of arbitrary values of a?,

and y^ an arbitrary value of y corresponding to x^ as the

value of cc, then, representing by Aa^^ the increment of a?^,

i.e. the value which being added to x^ converts it into cc^,

we have by (3)

therefore y, + Ay, = ?/„ + ^ [x^, y,) Ax^.

But as Ay^ represents the increment of ?/, coiTesponding to

Ax^ as the increment of x^ it is evident that y^ + Ay^ will be
the value of y corresponding to cc^ + Ait^^as the value of a;.

Eepresenting then this value of y by y^ we shall have

2/1 = ^0 + ^(^0.^0)^^0

= yo+^K.yo) K-^o) W-

In like manner we shall find

y.=yi + ^[^vy^ K-^J (5)»

but, 7/j being already determined by (4), ?/^ is determined, and,

continuing the operation, a series of values oi y will be deter-

mined, only one of which is arbitrary, while all tlie others are

assigned in terms of that arbitrary value and of the known
values of x.

If, for example, we have the particular equation

Ay={x + y) Ax,

and assign to x the series of values 0, 1, 2, 3, 4, &c., and
at the same time assume that when x is equal to 0, y is equal
to 1, we shall have the two following corresponding series of

values, viz.

x^ = 0, x^ = l, x,^=2, x^= 3, x,= 4, &c,

?/o
= 1> 2/1 = 2, ?/, = 5, y, = l'2, y,=27, &c.

By assigning a different value to y^, or by assuming arbi-

trarily tlie value of some other term of the series y^, y^, y^, c^c.

we should find another set of values of those quantities cor-

responding to the given values of x. But, in every such set,
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the values of all the terms but one will be determined by
a law.

Now if the intervals between the successive values of x are

diminished, while their number is proportionately increased,

each of the corresponding sets of values of x and y will more
and more approach to the state of continuous magnitude.
And, in the limit, to every conceivable value of x will corre-

spond a value of ?/, determined in subjection to a continuous

law—to a law however which permits us to assign one of the

values of y arbitrarily. The analytical expression of that

law will be the solution of the differential equation given.

3. To illustrate the same doctrine geometrically, if a:! and

y represent rectangular co-ordinates, any system such as the

above would represent a series of points of which the abscissae

having been assumed arbitrarily, the corresponding values of

y, except one, are determined by a continuous law. In the

limit, that series of points would approximate to a curve the

species of which as dependent upon the form of its equation

would be determined by a law, but an element of which, re-

presented by a constant in that equation, would be left arbi-

trary, so as to permit us to draw the curve through a given

point.

The form of the analytical solution thus indicated is

/{^,2/)=c (6).

The genesis of differential equations of the first order and
degree from equations of this description has already been
explained in Chap. I. Art. 6. It is evident that, as c is arbi-

trary, such a value may be assigned to it as to make a given
value of y correspond to a given value of x. If those corre-

sponding values are x^^ y^, we have only to assume

/k'^o) =c (7),

whence c Is determined. But c being once determined, all the

values of?/ depend upon those of cc, in obedience to the law
expressed by (6).
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Lastly it may be shewn that two distinct complete primi-

tives of Mdx + Ndy = cannot exist.

For suppose that there are two such primitives

w = c, V = C',

then by differentiating each

du du dy _ r. ^^
I

^^ ^ _ n .

dx dy dx ' dx dy dx '

whence, eliminatincr -j--
,' ^ dx^

du dv du dv _
dx dy dy dx '

which shews, by Prop. I, that v is a function of u. The
second equation is then equivalent to

and this is resolvable by solution into equations of the form

each of which is therefore only a repetition of the first sup-

posed complete primitive.

Certain cases m luliich the equation Mdx + Kdy = admits

offinite solution,

4. The equation Mdx + Ndy = can ahvays he solved when
the variahles in M and N admit of being sejparated; i. e, ichen

the equation can he reduced to theform

Xdx + Ydy = (8),

in \61iich X is a function of 's, alone, and Y a function of j
alone.

To solve the equation in its reduced form (8), it is only
necessary to integrate the two terms separately, and to equate

the result to an arbitrary constant. Thus the solution will be

^Xdx-\-^Ydy = c (9).
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On differentiating this result the arbitrary constant c dis-

appears, and (8) is reproduced.

Thus the solution of the equation

xdx + T/d?/ =

will be ——^ = c,
A

or, since c is arbitrary,

The solution of the equation

dx
^

^.y ^Q
1 + ic 1 -\ry

will in like manner be

log(l + rr)+log(l + ?/)=c;

a result which may be simplified in the following manner.

We have
log(l + a^)(l + ?/) = c;

therefore (1 + a?) (1 + ?/) = e^

But a function of an arhitrary constant is itself an arbitrary

constant. Hence we may write as the solution

{l + x){l+y) = C.

Indeed it frequently happens that solutions which present

themselves in a transcendental form admit of being reduced

to an algebraic form.

Thus also the solution of the equation

^^ ^+__^=0 (10)
V(i-^=) V(i-/)

bemg
^i\\~^x + sin"^^ = c,

we shall have, on taking the sine of both members of the

equation and replacing sin c by (7,

x^^'{l-y')^y^{l-x')=G (11),

which is algebraic.
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5. Different modes of mtegratlon will also give rise to

solutions wliicli at first sight appear to be discordant. Tlie

discordance however will be only apparent. Thus if we ex-

press the equation last solved in the form

— dx ^
— dy _= 0,

V(l-a;') V(l-/)

and integrate by means of the formula

— dx

h
cos ^x + const.,

^f{l-x')

we shall have

cosT^x + cos"^?/ = (7j

and, taking the cosine of both members,

xij-^{{l-x'){l-f)} = cosC, (12).

The last result may however be reduced to the form

x^{l-f)-^7/^{l-x') = smC, (13),

which, as sin C^ is arbitrary, agrees with the previous re-

sult, (11).

The constants C and Cj are seen to be connected by a

relation C= sin (7^ , which is independent of the variables x
and ?/.

And in general the test of the accordance of two solutions

of a differential equation, each involving an arbitrary constant,

is, that on eliminatwg one of the variables^ the other variahle

ivill disappear also, and a relation between the arbitrary con-

stants alone i^esidt.

Or expressing the solutions in the form

we may directly apply the test of equivalence

d_Vdv^_dVdv_^^
dx dy dy dx '

resulting from the proposition in Art. 1.
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6. It sometimes happens that the variables may be sepa-

rated by multiplying or dividing the equation by a factor.

Thus the equation

xdx ydy ^^
1 + 2/ 1 + iC

becomes on multiplying by (1 + x) (1 + J/),

x{l-\-x)dx-y [l+y)dy=^ 0,

in which the variables are separated. Integration then gives

x^ o? y y^ _

The most general form of equations in which the variables

can be separated by the process above mentioned is

XJ^dx-\-XJ^dy = ^ (14),

in which X^ and X^ are functions of x only, and Y^ and Y^

functions of y only. On dividing the above equation by
FjA'25 or, which amounts to the same thing, multiplying it by

the factor -y-y ,
we have

'^dx^^^dy^^ (15),

in which the variables are separated.

Ex. The equation x^J{^^y')dx-\-y sJi^-\- ^)dy = ^ is

thus reduced to

xdx ydy _
~^ oT — '-'1+

and lias for its complete integral

7. Sometimes too the variables in the equation

Mdx + Xdy =

admit of being separated after a preliminary transformation.
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Ex. 1. If in the equation {x — y^) dx + 2xydij=0^ we
assume y = \/{xz), we find

^ _ zdx -\- xdz

Substituting these expressions for y and dy in the given

equation, we have
dx ,— + cZ.^ = 0.
x

Therefore integrating and replacing z hj its value —

,

X

lo": a? + — = c.° X

Ex, 2. {y -x){l + x-)^ dy -n[l + /)^ dx = 0.

Assume 07 = tan ^, y = tan cj). Vie find

(tan (j) — tan ^) sec 6 sec^0 cZ^ — « sec^<^ sec^^ tZ^ = 0,

which reduces to

sm{(j>-e)d^-nde = 0.

Now let (j)-0 = ylr, then

sin '\{rd(j) = ?2c7(/) — WiZ'x/r,

nd-^jr
therefore dcf)

n — sin -v/r

'

ndylr

- sin

the integral in the second member is a known form.

whence <S>=\ ^^—r + c:
J n — sniY

It will be remarked that the transformations employed
in the above examples are not very obvious ones. They
would scarcely be suggested by the forms of the difter-

ential equations themselves. And in the present state of

analysis, it would be impossible to lay down any general di-

rection on the subject. There are however certain classes of

differential equations in which the nature of the required trans-

formation can be determined. Among them a foremost place
is due to homogeneous equations.

B. D. E. 3
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Homogeneous Equations,

8. The diiFerential equation Mdx + Ndy = is said to be

homogeneous when M and N are homogeneous functions of

X and
J/,

and are of the same degree.

Thus the equation

{?/ + V {x^ 4- y'^)]dx — xdy = 0,

is a homogeneous equation, M and N being here of the first

degree.

To integrate a homogeneous equation it suffices to assume

y = vx. In the transformed equation the variables x and v

Will then admit of separation.

Thus in the above example we should find

[vx + X \/(l \-v^)]dx — x {vdx + xdv) = 0,

whence dividing by x

V(l + v^) dx — xdv = 0,

from which result

dx dv

log X — log [v + ^/ {I + v^)] = c.

Replacing ?; by -
, we have

log X - log
l'^

^T"^ J

" '''

for the complete primitive.

As in Art. 5, the above solution admits of a simpler ex-

pression. Freed from transcendents and radicals, it gives

x' = 2Cy+C%

C being an arbitrary constant.

To demonstrate the above method generally, let us suppose

that M and N are homogeneous functions of x and y of the
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n^^ degree. We may then, in accordance with the known type

of homogeneous functions, Avrite

j/=."<^(|),.v=.y(9,

SO that the equation Mdx + Ndy = becomes on substitution

and division by the common factor a?",

'^($)d^ + ^($)dy=<^ (^•^)-

Now assuming y = vx, we have

^ = v, dy = vdx 4- xdv^
X

and the above equation becomes

</> {v) dx + '^jr (v) {vdx + xdv) = 0.

Or, {(j) {v) + v^lr {v)} dx -V yfr {v) xdv = 0.

Therefore

<Ix _tM^
(17),

whence on integrating

1°S- + L-7TX^Vt=^ (18)-
j (/) iv) + t'l/r {v) ^ ^

It is obvious from the symmetry of the relation between x
X

and y that we might equally employ the transformation - = v

and regard v and ;/ as the new variables. What is essential

in the method is the substitution, in place of the original vari-

ables X and y, of a new system of variables, consisting of one
variable of the old system, and of the ratio w^hich is borne
to it by the other variable of that system.

Ex. It is required to integrate the equation

[x - ^{xy) -y}dx + ^/{xy) dy = 0,

3—2
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by the direct application of (18). Here, n =1,

M= X - sj{xy) -y^x[\- V(v) - v],

N=s/{xy)=x^J[v),

Thus we have

^ [v) = 1 - y2 — V,

•f (v) = v^

and (18) gives

log X + f
\

J 1 — V'^

v-dv a
V + y^-

To effect the integration in the second term, let v = f.

Then
r v^dv _ r 2fdt

1- t

Hence finally, replacing thy ^

= rr7+t^^s(i-0 + 4iog(i + ^)

1 +iog(i-o+4iog(i-f).

-y—T + log {x^-y-')+i\0g (X-7J) = a
x^ — y^

9. The equation

{ax + hy + c) dx-\- {ax + h'y -^-c) dy = (19)

may be rendered homogeneous, either first by assuming

x = x-cc, y = ij'-/3,

and properly determining a and ^ ; or secondly by assuming

ax + hy + c = x, ax + h'y + c' = y'.
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The first transformation gives

[ax + hy - aa - Z>/3 + c) dx + [ax + Vy - aa-h'^ + c) dy = 0,

whence if a and /S be determined by the conditions

aa + Z>/3 = c,

a'a + Z^'/8 = c,

we shall have the homogeneous equation

[ax + ly) dx + (a'ic' -f Vy') dy = 0.

Making then y = vx we find

dx' {a-\-h'v)dv _ , .

x'^^ai- (b + a) V + ^»V" ^^'

which is directly integrable.

The second transformation gives

adx + hdy = dx\

adx + h'dy = dy\

whence determining dx and dy, the proposed equation assumes

the homogeneous form

(b'x — ay') dx' — {hx — ay) dy' = 0.

Both these transformations fail if ah'— ah = 0. But in this

case, since h' =—
-
, the proposed equation may be expressed

a
in the form

{ax + hy-\-c)dx+- (ax + hy + -r]dy = 0,

and the variables will be separated if we assume ax + hy = z,

and then adopt either z and x or z and y as the new variables.

These transformations are linear, and by one of the two

the proposed equation is usually solved.

50 6-^^
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10. The linear differential equation of the first order and
degree

i+^^=^ c^^)'

P and Q being functions of x, admits of being solved. When
§ = the solution is obtained by separating the variables

;

and when Q is not equal to 0, a solution may be founded
upon that of the previous and simpler case.

It must be observed that the linear equation (21), when
reduced to the form

[Py-Q)dx-Vdy = 0,

falls under the general type, Mdx + Ndy — 0.

1st, When § = 0, we have

Dividing by ?/, in order to separate the variables

^=-Pdx.
y

Therefore, log ^ = — 1 Pdx + c, which gives

= Ce-f^'-^ (22),

C being an arbitrary constant substituted for e'^. It has been

already observed that a function of an arbitrary constant is

itself an arbitrary constant ; see Art. 6.

2ndly, To solve the linear equation (21) when Q is not equal

to 0, let us assign to the solution the general form (22) above

obtained, but suppose C to be no longer a constant but a new
variable quantity—an unknown function of x, which must be
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determined in accordance with the new conditions to wliicli

the solution must be subject.

Substituting then the above expression for ?/ in (21), and
observing that, since C is now variable, we have

ax dx ax

there results

dx

Hence f-^^^O- .

Therefore G = fe-^^'^^ Qdx + c,

c being an arbitrary constant. Substituting this generalized

value of G in (22), we have finally

y = 6--^^''^'^(^^e^^'^Qdx^c^ (23),

the solution required.

It will be observed that if (? = 0, the above solution is

reduced to the form (22) before obtained.

The method of generalizing a solution above exemplified is

called the method of the varnatton of parameters, the term

parameter, by an extension of its use in the conic sections,

being applied to denote the arbitrary constants of the solution

of a diiFerential equation. It is only, however, in certain

cases that this method is successful. It is always legitimate

to endeavour to adapt a solution to wider conditions by a

transformation, which, like the above, only introduces a new
variable instead of an old one, or a new and adequate system

of variables in the room of a former system. But it is not

always that the equations thus obtained are, as in the above

example, easier of solution than those of which they take the

place.
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dx x +
Ex. 1

.

Given $? - -^ = {x-\-\Y

Here P^^^. Q = {x + \)\

Hence jP6?a; = -2 log (« + 1), e/'''^^= (aj + 1)-^

^ef'''' Qdx = \{x + \) dx = ^'^^^^^ + c.

Therefore 3/ = (a; + 1)'^ l^^l^ + 4 *

Ex.2. Given ^--^ = 6^(0^ + 1)".

Here we find jPdx = — n log (a: + 1),

ef^'^'^ix + ir,

[ef''''Qdx = je'dx = 6\

Therefore 3/
= (a; + 1)" (e'^ + c)

.

11. Equations of the form

P and Q being functions of x, are reducible to a linear form.

For, dividing by ?/", we have

Now let 2/'-" = 2, then

^ ' -^ dx dx

. ^dy 1 dz
whence 2, 5^=r^,te'

so that the equation becomes



ART. 12.J OF THE FIRST ORDER AND DEGREE. 41

1 dz

\— n dx
+ r^ = Q,

or J + (l-,OP. = (l-«)<?,

whicli is linear.

Ex. Given -/ -\—^-— = .

ax X -\-l 2

Here, dividing by t/^ we have

^ t^oj'^a^ + l 2 '

and, assuming y'"^ = z,

"
2 ^ "^

iC + 1

" 2^ '

dz ^ z
/ , 1N3

The solution of this equation, which is identical in form with

that of Ex. 1, is

(x + iy
, ,,2

,
'Ax + 1)* , ,,.

whence y—\ —7.

——-\-c[x^\)'
-\

General solution hy development

,

12. In the earlier portion of this Chapter it was esta-

blished, by considerations founded upon the nature and inter-

pretation of the equation

Mdx + Kdy = 0,

that it implied the existence of a primitive equation between

X, y, and an arbitrary constant. The examples of finite solu-

tion which have been given above, illustrate this truth. But
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a further and more complete illustration is afforded by the
presence of an arbitrary constant in the general integral of
the equation, as developed in the form of a series by Taylor's
theorem. This mode of solution we now proceed to exhibit.

From tlie given equation we have

di_ _M
dx~ N'

the second member of which, being a function of x and y, may
be represented byj/^ (a?, y). Thus we may write

i=fA^^y) (24).

And differentiating this equation

dx^ dx dy dx

the second member of which, being a function of x and ?/,

may be represented '^J fc^{x, y)- Thus we have, as a conse-

quence of (24),

S=/^(-^'^) (^^)-

Repeating on this equation the above process of differentiation

and substitution, we have

3=/3{-^>2/) (26),

wherein

And, continuing thus to repeat the same operation, we obtain
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a series of equations determining the successive clifFerentiaJ

coefficients of?/, in the form

g=/»(^.2/) (27),

the dependence oi /^{x, y) upon /„_j (a?, ?/), and hence ulti-

mately upon/^(;r, ?/), being determined by the general equa-

tion

f.{^,y)-'^^^-'^^fA-,y) (28).

Hence ^l/and JY being given, the expressions for

dy d^^i

are implicitly given also.

Now -r- , -rk •> &c. determine the coefficients of the several
dx dx

terms after the first in the development of y in ascending

powers of x, by Taylor's theorem, or more generally in as-

cending powers of x — x^, where x^ is a particular value oi x.

Leaving that first term arbitrary, the development is thus

seen to be possible, and the result, while constituting the

general integral of the given differential equation, shews that

that integral involves an arbitrary constant.

Actually to obtain the development, let </> {x) represent the

general value of y, and let y^ be the particular value of y
corresponding to some particular and definite value, a*o, of

the variable x. Then, writing (/> {x) in the form

we have, by Taylor's theorem,

y = <i> (^„) + <!,• (.r„) {x - X,) + <j>" (x,) ^^^3^ + &c. ... (29)

.

But </) {x^ is what y becomes when x = x^. Hence (/> (.rj = y^.

Again, (l>'{x^) is what —— , i. e. ~ , becomes when x = x^.

Hence ^'W =/i (^o' 2/o) ^7 (2^)- I^^ ^^^g manner (/>" (o-J is
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72

what y~ becomes when x — x^^ and is therefore equal to

/j(a?o,?/J. Determining thus the successive coefficients of

(29), we have finally

y = y. +/i (^0. 3/o) (^ - ^^o) +/2 (^0
. 2/o) ^^tI^ +

&c.. .
.
(30),

which is the general integral.

If we assume x^ = 0, and represent the corresponding value

of y by c, we have

3, = o+/(0,c)«+/,(0,c)j^ + &c (31).

Should however any of the coefficients in this development
become infinite we must revert to the previous form, and give

to Xq such a value as will render the coefficients finite, and
therefore justify the application of Taylor's theorem.

Virtually the integral (30) involves like (31) only one arbi-

trary constant. For in applying it we are supposed to give

to Xq a definite value, and this being done the corresponding

arbitrary value of y^, constitutes the single arbitrary constant

of the solution.

EXERCISES.

1. Integrate the differential equations :

(1) (1 + x) ydx + (1 - ?/) xdy = 0.

(2) {y' + xf)dx+{x'-yx')di/ = 0,

(3) xy{l + x^)dy-{i-\-y')dx = 0,

(4) (1 + f) dx-{y + V(l + /)} (1 + ^^)^ dy = 0.

(5) sin X cos ydx — cos x sin ydy = 0.

(6) sec'^ic tan ydx + sec^y tan xdy = 0.
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2. Different processes of solution present the primitive of

a differential equation under the following different forms, viz.

tan"^ {x + ^) + tan"^ {x - y) = c,

y'-x^-^\ = 2Cx,

Are these results accordant ?

3. Integrate the homogeneous equations :

(1) [y — X) chj + ydx = 0.

(2) {2 ^J[xy) -'x]dy^- ydx = 0.

(3) xdy — ydx — sj^x^ + y^) dx = 0.

(4) (^ — y cos - jdx + x cos - dy = 0.

(5) {Sy + Wx) dx + {5y + 7x) dy = 0.

4. Integrate the equations

:

(1) {2x-y + 1) dx+{2y-x- l) dy = 0.

(2) {Sy -7x + 7)dx+ {ly - 3a; + 3) J^ = ;

the former as an exact differential equation, the latter by re-

duction to a homogeneous form.

5. Explain what is meant by variation of parameters, and,

having integrated the equation x -j- — ay =0, deduce by that

method the solution of the equation x -^ —ay = x-\-l.

6. Integrate, by the direct application of (23) the linear

equations,

^^ dx'^ l-^x''^~ 2x[\-\-x')'

(2) x{l-x^)'lL^{:lx^-\)y = ax\

(3) ^ + ;/ ^ a? + \/(l-.y')



46 EXERCISES. [CH. II.

, . dy sin 2a;

(4) ^ + 2/cosa; =-^.

(5) (l +
:.')J

+ y = tan-x.

7. Shew that the solution of the general linear equation

-J + Py = Q may be expressed in the form

8. Shew that, <^ {x) being any function of x^ the solution of

the linear equation

willbe3/ = c6'^("^-^(a;)-l.

dti
9. Shew that if in the linear equation -^ -^-Py— Q we

represent
-f- by ^;, and then, differentiating and eliminating

y, form a differential equation between^:? and x^ that equation

will also be linear.

10. Integrate the differential equations

:

(2) 34-a.3 = .+ l.

(3) '^^ + 2x, = 2ax'z\

dz
(4) T" + ^ ^^^ cc = s" sin 2x.

(5) ^^ + y = rios^-
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CHAPTER III.

EXACT DIFFERENTIAL EQUATIONS OF THE FIRST DEGREE.

1. As the cases considered in the previous Chapter under
which the equation Mclx + Xdi/ = is integrable by the sepa-

ration of the variables, are but a small number of the cases

in which a solution expressible in Unite terms exists, Analysts
have engaged in a more fundamental inquiry of which the

following are the objects, viz.

1st, To ascertain under what conditions the equation

Mdx + Xcly =

is derived by immediate differentiation from a primitive of

the form f{x, y) — c, and how, when those conditions are

satisfied, the primitive may be found.

2ndly, To ascertain whether, when those conditions are not

satisfied, it is possible to discover a factor by which the equa-

tion Mdx-\-Xdy=^0 being multiplied, its iirst member will

become an exact differential.

These inquiries will form the subject of this and the follow-

ing Chapter.

Prop. I. The one necessary and sufficient condition under

which the first member of the equation Mdx + Xdy = is an

exact differential is

dM^dX ,j.

dy dx

Let it be considered in the first place what is meant by the

supposition that 3ldx + Xdy is an exact differential. It is

that j\I and X are partial differential coefficients with respect
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to X and ?/,—that there exists some function F, such that

f=-. «.

f=* «•

Any relation between M and N which we can derive inde-

pendently of the form of Ffrom the above equations will be

a necessary condition of Mdx + Kdy being an exact diiferential.

And conversely, any relation between M and N which suffices

to enable us to discover a function V actually satisfying the

above equations (2), (3), will be a sufficient condition of

Mdx-\-Xdy being an exact differential. And if the same
condition should present itself in both cases, it will be both
necessary and sufficient.

Differentiating (2) with respect to y, and (3) with respect

to X, we have

d^^d_M d^^dN ,^.

dydx dy ' dxdy dx

But the first members of these equations being, by a known
theorem of the Differential Calculus, equal, we have

dM_dN .

'd^-Tx ^^^*

This, therefore, is a necessary condition of Mdx + Ndy being

an exact differential. It is also, as will next be shewn, a

sufficient condition.

In the first place the function V, if such exist, must satisfy

the equation (2).

Integrating this equation relatively to x alone (since the

differentiation in -j- is relative to x alone), we have

V=\Mdx+C (6),
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C being a quantity which is constant relatively to x, so that
dC
-J— = 0. Hence, though C does not vaiy with Xy it may vary

with y, and there is nothing to limit the manner of its varia-

tion. It is therefore an arbitrary function of?/, and we may
write

V=JMdx + cl>{y) (7).

This is the most general form of V as a function of x and y,
which satisfies the equation (2).

In the second place Fmust satisfy the equation (3). Sub-
stituting in that equation the value of V given in (7), we
have

dfJIdx
^

d4){y) ^^
dy ' dy

Therefore #M=,Y_^f^.
dy dy

Whence ^[y) ^^{n-^-l^) dy ^. C (8),

C being simply an arbitrary constant, since, as the constant
of integration with respect to y it cannot contain y, and as

part of the expression for ^ {y) it cannot contain x,

IN'ow the integration in the second member is theoretically

possible (though its expression in finite terms may not be
dfVdx

possible) if the coefficient of dy, viz. N— -^—'-

, is a function

of y only, i. e. if its differential coefficient with respect to x
is 0. Expressing this condition, we have

dX d dfMdx
^^

dx dx dy ^
^'

j^^^
d dfMdx ^ d djMdx
dx dy dy dx

^dJI
""

dy
'

B. D. E. 4
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Tims the condition (9) becomes

^y^L^o (10).
ax ay

This then is a sufficient^ as it has before been shewn to

be a necessary condition of Mdx + J^dy being an exact diffe-

rential.

The substitution in (7) of the value of ^ [y) found in (8)

gives

F=/j/c?^+|(.V-^)A/+C (11).

Finally, supposing still the condition (10) satisfied, the

solution of the equation Mdx + Ndy = will be

^Mdx^\{N-^-^^dy=G (12). ,

2. The practical rule to which the above investigation

leads is the following.

To solve the equation Mdx + Ndy = when its first mem-
ber is an exact differential, integrate Mdx with, respect to x,

regarding y as constant, and adding, instead of an arbitrary

constant, an arbitrary function of y, which must afterwards be
determined by the condition that the differential coefficient of

the sum with respect to y shall be equal to N. Then that

sum equated to an arbitrary constant will be the solution

required.

Elx. 1. Given {x'' - Axy - 2?/) dx + (?/' - 4:xy - 2x^) dy = 0.

Here 21= x^ — A^xy — 2y^ and N=y'^ — ^.xy — 2^^, w^hence

dy ~ dx~ ^^^

and the first member of the given equation is an exact diffe-

rential.
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Kow \Mdx = j-2x\j-2fx + (l>{y) (1),

the arbitrary function ^ (?/) occupying, according to the rule,

the place of the constant of integration. To determine ^(y),
we have

^ jl
- 2xhj - 22fx + <^ (2/)} =2/= - ixy - 1x\

Whence ^=/,
dy -J'

Substituting this value in the second member of (1), and
equating the result to an arbitrary constant, we have

the solution required.

. Ex.2. Given ^-.^ + jl _ ^^H/ = 0.

Here J/= -—i__ , iV^= - - ^

Hence we find

dM_^ -y _dX
^y [x' + 7f)^~

d-^'

To obtain the complete integral we will on this occasion

employ directly the general form of solution (12). We have

Mdx = log [x + sjix" + 2f)],1^

'^ hidx '

kl'di/J y y\l{x'+ij-)'

(12)

\og[x + ^|{x" + y')]=c.

Ilonoe N—
j;

\3Idx = 0, so that (12) gives simply

4—3
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Substituting log C for c, and then freeing tlie equation from

logarithmic signs and from radicals, we have

f=C'-2Cx.

3. "We may in many cases either dispense with the appli-

cation of the criterion (1), or greatly simplify its application,

by attending to the two following principles, viz.

1st, If Mdx-\-Ndi/ can be divided into two portions, one

of which is manifestly an exact differential, it suf&ces to ascer-

tain whether the other is such.

2ndly, If Mdx + Ndy^ or that portion of it which, according

to the above principle, it may suffice to examine, can be re-

solved into two factors, one of which is manifestly the exact

differential of a function of x and ;/, which we will represent

by u, then when the other factor is expressible as a function

of w, we shall have an expression of the ioxmf[u)du which is

necessarily an exact differential.

Ex. Given {^ + -;j^^^ dx + ^^y- j:jijz^l dy^O.
^

This equation may be expressed in the form

xdx^-ydij + ^
,f 7 ^

"^N
= 0.

Now, xdx-\-ydy being an exact differential, it suffices to ex-
iidx xclit

amine whether the term ,, . g.- is such also.
y^J[y'-x)

This term may be expressed in the form of the product

y ydx — xdy

V(/-^') y
X

the second factor of which is the differential of - . If we
y

make - = u the product assumes the form -j- r, , which is

y ^
^

V(l-«*)
the differential of sin V.
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The complete primitive is therefore

——^ + sm ^ - = c.

^ y

4. The converse form of tlie property last noticed is of

sufficient importance to be stated as a distinct proposition,

namely.

Prop. II. If U and « be functions of x and y, and Udu be
an exact differential, then U will be a function of u.

For Udu = U^r dx-{- JJ -r-dy.
dx dy ^

Hence the second member being an exact differential wo
have by Prop. i.

, . dU du dUdu
therefore -7- -j -.—7- = 0.

ai/ ax ax dij

Therefore, by the proposition in the first Article of the second

Chapter, JJ will be a function of u.

EXEECISES.

1. {pi? + Sa^/) dx-\-[\f-\- Zx'y) dy = 0.

2. fn-'^'') Jaj-2^f7y = 0.

^ 2xdx [I Zx^\ ,

y' \y y >
"^

4. xdx + ydv + ^^y~y-J^ = 0.

5. {l + e^)dx + ^(l-
f\

dy = 0.

6. e^ {x" + ?/' + 2x) dx + 2ye'dy = 0.
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7. {71 COS {nx + my) — m sin [mx + ny)] dx

+ \m cos {rix + my) — n sin [mx + 72?/)} c7?/ = 0.

8. Shew, without applying the criterion, that the follow-

ing are exact differentials, viz.

_ ,
xdx + ydy

.
ydx — xdy ^

1st, ^-^ + ^—z ~ = 0.

{l + x' + f)^ x' +f
X

2nclly,
^^^ + y^y -M-^^-^y-\[ydx-xdy).

9. Integrate the above equations.

„^ -r . ,1 .• x'^dy — ayx''~'^dx __, ,

10. Integrate the equation —7-
2 _ 2a f- ^ Vo? = 0,

distinguishing between the different cases which present them-

selves according, 1st, as h and c are of the same or of opposite

signs ; 2ndl7, as a is equal to, or not equal to, 0.

11. Shew by the criterion that the expression

is generally an exact differential, and exhibit the functional

, , . , ^3/ , dN
lorms which -7— and -7- assume.

ay ax
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CIIAPTEE IV.

ON THE INTEGRATING FACTORS OF THE DIFFERENTIAL

EQUATION Mdx-^Xdy=(),

1. The first memLer of the equation Mdx + Ndy = not

being necessarily an exact differential, analysts have sought

to render it such by multiplying the equation by a properly

determined factor.

Thus the first member of the equation

(1 + y-) dx + xydy =

is not an exact differential, since it does not satisfy the con-

dition -i- = -^ , but it becomes an exact differential if the
ay ax

equation be multiplied by 2:c, and its integration, which then

becomes possible, leads to the primitive equation

The multiplier 2x is termed an integrating factor.

We propose in this Chapter to demonstrate that integrating

factors of the equation Mdx + Ndy = always exist, to in-

vestigate some of their properties and relations, and to shew

how in certain cases integrating fiictors may be discovered.

To complete this subject we shall, in the next following

Chapter, investigate a partial differential equation, upon the

solution of which their general determination depends, and

shall examine some of the conditions under which the solu-

tion of that equation is possible.
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2. To every differential equation of tlie form

Mdx + Nd7/ = 0,

pertains an infinite number of integrating factors, all of which
are included under a single functional expression.

It has been shewn, Chap. ii. Art. 2, that the above equa-

tion always involves the existence of a complete primitive of

the form

'^{^,y)=G (1).

Differentiating the last equation, we have

dyfr {x, y) ^

d-ylr {x, y) dy ^^ ,^.^

dx dy dx

The value of -—- determined as a function of x and ?/ from
dx -^

this equation must be the same as the value of— furnished by

the given differential equation expressed in the form

dx

Hence eliminating -j- between these equations we have

ds^r (x, y) dyjr (x, y)

dx dy

3r~~ N ;3).

Let IX be the value of each of these ratios, then

^^ (^> y) _ „ 7,7 ^±S^ _„xr
dx

"^^'^'
dy~'~^^'

As fiM and fxN are therefore the partial differential co-

efficients with respect to x and y of the same function -v/r {x, y),
the expression fjuMdx -^ fiNdy will be an exact differential.

Thus Mdx-\-Ndy is always susceptible of being made an
exact differential by a factor /x.
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3. The form of the complete primitive is however without

gain or loss of generality susceptible of variation. Thus the

primitive x'^ (1 + ?/^) = c, Art. 1, might, w^ithout becoming more
or less general, be presented in the forms

sin {x' (1 +y)} =c„ log K(l + 2/^)1 = c„

or in the functional form/{a7^(l +?/^)} = c, where c, c^, c^ are

arbitrary constants. And generally a complete primitive ex-

pressed in the form V= c may be expressed also in the form

f{y) = c, f{V) denoting any function of V. These variations

in the form of the complete primitive imply corresponding

variations in the form of the integrating factor, a special deter-

mination of which has already been given, Art. 1.

To investigate the general form under which all such

special determinations are included, let us suppose /x to

be a particular integrating facto"r of Mdx + Ndy^ and let

fiMdx + fiKdy be the exact difterential of a function -^ [x, y).

Then representing for the present ^fr {x, y) by v, we have

jjiMdx + ^Ndy = dv.

Multiply this equation by/(i;), an arbitrary function of v ; sucli

being, by Art. 4, Chap. III., the general form of a factor

which will render the second member an exact differential.

We have

fif{v) [Mdx + Xdy) =f{v) dv.

Now the second member of this equation being an exact dif-

ferential the first is so also. As moreover the first member of

the above equation can only become an exact differential

simultaneously with the second, the factor /jif(v) is the

general form of a factor which renders 2Idx + Ndy an exact

differential.

We may express the above result in the following theorem.

If /jl he an integrating factor of the equation Mdx + Xdy = 0,

and ifv = c he the complete primitive ohtained hy multij^Jying

the equation hy that factor and integrating, then /jf{v) will he

the typicalform of all the integrating factors of the equation.

Furthermore, /(v) being an arhitrary function of v, the num-
ber of such factors is infinite.
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Ex. The equation

{x'y - 2?/^) dx + [ifx - 2x^) dy = 0,

becomes integrate on multiplying it by the factor [—
)

, the

actual solution thus obtained being

y X

Hence the general form of the integrating factor of the equa-
tion is

fy'^Kf^xV'

4. From the typical form of the integrating factor of the
equation Mdx + Ndy = 0, it follows that if we know two par-

ticular integrating factors of the equation, the solution may be
infen-ed without integration.

For fjb being one of the factors given, the other must be of

the form /JLf{v). If we determine their ratio by division and
equate the result to an arbitrary constant we shall have

f{v)=c,

which, from what has been said in the preceding Ai'ticle, is a
form of the complete primitive.

5. It has been observed, Art. 1, that the discovery of an
integrating factor of the differential equation Jfdx + Ndy =
generally depends on the solution of another differential equa-
tion, but there are some cases in which it presents itself on in-

spection. The equation

ixy'^ -\-y)dx — xdy = 0,

becomes integrable on being multiplied by the factor -^ , and

this factor is at once suggested if we place the equation in

the form

y'^xdx + ydx — xdy = 0.
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We could thus, also by inspection, assign the integrating

factors of any equation of the form

T^dx + {x) {ydx — xdy) = 0,

and many other forms will readily suggest themselves. The
following analysis will however lead to results of greater

generality and importance.

Special Determinations of Integrating Factors,

6. Whatever may be the constitution of the functions M
and N ^YQ have identically

But f+f = .log(.,),5-f = .log(f).

Hence,

Mdx+Ndy = i {{2Ix + Ny) d log xy + [2Ix - Xy) d log4 (1) •

The functions Mx + Ny and 2Ix — Ny appear in the second

member of this equation as the coefficients of exact differ-

entials. And upon the nature and relations of these functions

the inquiry will now depend.

Whatever may be the constitution of il/and iV^ some one,

and oiily one, of the following cases will present itself.

Either the functions Mx + Ny and 2Ix — Ny will be both

identically equal to 0, or one of them will be so and not the

other, or neither of them will be identically equal to 0. These
cases we will separately consider.

1st. The case of Mx + Ny and Mx — Ny being both iden-

tically equal to may be dismissed, as it would involve the

supposition that M and N are each identically equal to 0.
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2ndly. Suppose that one of the functions Mx + N?/ and
Mx — Nt/ is identically equal to and not the other, and first

let Mx + Ny be identically equal to 0, then (1) becomes

3Idx + Nd7/ = i{Mx-N7/)dhg-;
iJ

whence dividing by Mx — Ny,

Mdx + Ndy . j, x .^.

Mx-Ny -i'^^'-y ^'^'

!N"ow the second member being an exact differential the first

member is also one. In this case then 2Idx + Ndy is made

an exact differential by the factor -^ ^ . By parallel

reasoning it follows that if Mx — Ny is identically equal to

and not Mx + Ny^ an integrating factor of Mdx + Ndy will

be—i—
Mx + Ny'

And thus we are led to the following theorem.

Theorem. If one only of the functions Mx + Ny and
Mx — Ny is identicaUy equal to 0, the reci'procal of the other

function will he an integrating factor of the equation

Mdx + Ndy = 0.

3rdly. Let neither of the functions 2Ix + Ny and Mx — Ny
be identically equal to 0. Then first dividing the funda-

mental equation (1) by Mx + Ny, we have

Mdx + Ndy - ,, 1 Mx — Ny -,. x .„,
-^, ^^ = i^lof?a?v + i-r7 T# ilog-... (3).

. Mx^-lSy 2 ^ ^ ^ Mx-\-]Sy ^y ^
^

Now, by Art. 3, Chap. III. the second member of the

above equation becomes an exact differential (its first term

beino: already such) if ^^ ^ is a function of log - ; there-^ -^ ^ Mx + Ny y
X

fore if it is a function of - : therefore if it is a homogeneous
y

function of x and y of the degree 0, for the typical form of
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such a function is </>(-); tlierefore, finally, if J/ and J\" are

homogeneous functions of x and ?/ of a common degree. For
let M and N be homogeneous and of the n^^ degree. Then
Mx — Ny and Mx + Ny are each of the degree 7i+ 1, and

Vt ^ is of the deffree 0. Thus ilfandN beinoj homoireneous
Mx-\-^y ^ o o

functions of the n^^ degree, the second member, and therefore

the first member of (3), is an exact differential.

From this conclusion, combined with the previous one, we
arrive at the following theorem.

Theorem. The equation Mdx + Ndy = ivlien homogeneous

is made integrahle hy the factor — :r^ , unless Mx + Ny is

identically equal to 0, in which case -ry ^^ is cm integrating
t/

factor.

Always then the homogeneous equation Mdx + ^dy = is

made integrable either by the factor -^tt tt- » oi' T^Y the^ -^ 2Ix + Ny' -^

factor -Y7 TT" •

3Ix - Ny

In the second place, dividing the fundamental equation (l)

by Mx — Xy, we have

Mdx + Nchi , fMx -vNii T, ^ , x
—Tr T^=\\-Tr V^ " iO^XV + d loST

-

2Ix — ^y ^ \Mx -Ny ° ^^ ^ y

of which the second member, and therefore also the first

member, becomes an exact differential if 4-?? zr- is a func-Mx — Ny
tion of log xy ; therefore if it is a function of xy ; therefore,

finally, ifM and N are of the respective forms

M = F^{xy)y, N = F^{xy)x;
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since this supposition would give

3fx + Ny _ F^ {xy) + F̂ {xy)

Mx-Ny-F^{xy)-F^[xij)'

of which the second member is a function of the product xy.

Hence the following theorem.

Theorem. The equation Mdx + Ndy = is made integralle

ly the factor ^i v~ '
^^^^^ -^^ ^''^^ ^ ^^^ ^f *^^^ respectice

forms
M=.F^[xy)y, N= F,^[xy)x,

unless ' Mx — Ny is identically equal to 0, in which case

1
is an integrating factor.

Mx + Ny

Or the theorem might be thus expressed. Tlie equation

is made integralle hy thefactor

1

^y[FA^y)-FAxy)V

unless we have identically F^ (xy) — F^ (xy) = 0, in which case

1

^y{K{i^y)+F^{xy)]

is an integrating factor.

We may, however, remark that, in the particular case in

which F^{xy) — F^{xy) = 0, no factor is needed, as the dif-

ferential equation may then be expressed in the form

F^ (xy) {ydx + xdy) = 0,

the first member being manifestly an exact differential.

7. The results of tlie above investigation may be summed
up as follows.

If either of the functions Mx + Ny, Mx — Ny is identically

equal to 0, the reciprocal of the other function is an integrating
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factor of Mdx + Ndy = ; hut if neither of these functions is

equal to 0, then -.

^ ^ is an integrating factor for the

etiuation tvhen homogeneous, and -^t ^ an integrating

factor of the equation when suscejptihle of exj^ression in theform

F^ {xy) ydx + F^ {xy) xdy = 0.

Ex. 1. Given x\lx + (3x'?/ + 2/) dy=^0.

This is a liomogeneoiis equation, and its integrating factor

according to the rule above given will be

1

Thus we have, as an exact differential equation,

x'dx {^x'y-\-2f)dy _
x\+'6xY + 2y''^ x'+^xSf->r2y' ^ ^^^•

Eeferring then to Art. 2, Chap. ill. we have

r r x?dx

j j X -\- dxy + 2y

dx
2x X

jW+2/ x' + y

Differentiating this expression with respect to y, and com-
paring the result with the corresponding term in (]), y/e find

7

'

= 0, whence </>(?/) = const., and we have

or x'+2y'=C^{x'-\-y')

for the integral required.
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Ex. 2. Given [y + xi/^) dx+ {x — yx^) dy = 0.

This equation may be expressed in the form

(1 4- xy) ydx + (1 — xy) xdy = 0.

Hence its integrating factor, as given by the rule, will be

1 ^ 1

Mx — Ny (1 + xy) xy — (1— xy) xy

1
""

2afy'

'

Eejecting the constant J, we have, on multiplying the given

equation by ^,

,

Hence

xy xy^ "^

Now ISldy = -^—-, Hence the complementary function

^ [y) will be - log y. Thus we have

\ogx-\ogy---^G

for the integral required.

Ex. 3. Given {x^y"^ + xy^) dx — [x^y + xHf) dy = 0.

If we treat this as a homogeneous equation regardless of

the implied conditions, we find

Mx+Ny 0*

The rule however shews that when Mx-\-Ky is, as in the
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above example, identically equal to 0, -. , _ .^ represents an

integrating factor, which in the above case will be

1

The equation is thus reduced to

dx dy

^ y

whence we find y = cx as the complete integral.

8. From the theorems of the preceding article others of

greater generality may be deduced by transformation. Thus,

since the equation F^ [xy) ydx + F^ [xy) xdy = is made inte-

grable by the factor 7-^77

—

\ _ t^ 1

—
\\ ->

i* follows that the
xy\r^\xy) r^[xy)\

equation

jPj [iLiv) vdu + jPg {uv) udv =

is made inteOTable by the factor —t^ti—^
ttt
—d » ^ ^^^^ ^ uv [F^ {uv) - F^ {uv) j

'

V being any functions of x and y. Hence expressing du in

the form -j-dx+ -j-dyj and dv in the form -T-dx-\--^ dy^ we

see that the equation

is made inteo^rable by the factor ttt^—

r

^=r-^—rr ?
"what-° ^ uv[F^[uv)-F^{uv)\'

ever functions of x and y are represented by u and v. And,

on giving particular forms to these functions, particular con-

ditions of integration of the equation Mdx + Ndy = present

tlicmselves.

9. An integrating factor for homogeneous equations may
also be found by the following method, due to Professor Stokes,

who first pointed out the necessity of taking account of the

B. D. E. 5
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case in which Mx + ^y is identically equal to 0. ( Cambridge

Mathematical Journal, Vol. IV. p. 241. First Series.)

Suppose M and N to be homogeneous functions of x and y
of the degree n. Then we may write

ilf=a;"(^(v), iY=a;"A;r(v) (l),

where v stands for ^

.

X

Hence Mdx + Kdy = x''<^[v)dx-^x'''>^{y)dy (2).

But y = XV, therefore dy = xdv + vdx. Substituting this value

of dy in the second member, we have

Mdx + Ndy^x"" [j>{v) + v^\r {v)] dx + aj"-''^ (v) Jv...(3).

Two cases here present themselves.

First, the constitution of the functions ^ [v) and -^^ {v) may
be such that ^ (v) + i-v|r (v) may be identically equal to 0.

This will happen if 2Ix + Xy is identically equal to 0, since

V(l)
3Ix + Ky=:x''^'{^{v)+vf{v)] (4).

In this case the equation (3) reduces itself to

Mdx + Ndy = x""^' a/t iy) dv,

Mdx + Ndy , / V 7
or -^^^r-^='^[^)dv.

Now the second member being an exact differential the first

is so also, and Mdx H- Ndy is therefore made integrable by

the factor -—-TT-.

a;
^

Secondly, the constitution of ^{v) and ^/^(v) may be such

that </) (v) + v^ [v) is not identically equal to 0. And this

happens when Mx + Ny is not identically equal to 0.

In this case dividing both members of (3) by

a;"«{./.(r) + «t(«)),
we have

Mdx + Ndy _dx -^ (v) dv
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But the second member being an exact differential tlic first

also is such. Now
Mdx + Ndy _ Mdx + Ndy , . .

x''^'[c^{v) + vylr{v)]~ Mx + Ny ^ ^
^*

Here then Mdx + Ndy is made integrable by the factor

1

Mx + Ny

'

Combining these results together, we see that the homo-

geneous equation Mdx + Xdy = is made integrable by the

factor -TT T7- , unless the constitution ofM and N is such
Mx + Ny '

as to make that factor infinite. In the latter case —^, will be
X

an integrating factor, n being the degree of 31 and N
The form of the supplementary integrating factor as given

by the above investigation is different from that before ob-

tained. The results are however perfectly consistent.

For a more complete analysis of the problem which has for

its object the discovery of the integrating factors of a homo-
geneous equation we must have recourse to the method of the

next Chapter.

EXEKCISES.

1. Shew by the application of the theorem of Art. 1,

Chap. II. that the expression x'^y' + x^ + y^ + 2 {xy — 1) (x + y)
is a function of x and y, only as being a function of xy -\-x-^ y.

2. A particular integrating factor of the equation

2xydx + {y' — Sx^) dy = is y~*.

Prove this, and deduce anotlier integrating factor by the

formula established in Art. 6 for homogeneous equations.

3. Exhibit the general form under which all tlie integrat-

ing factors of the above equation are comprehended.
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4. Deduce in like manner the functional expression for all

the integrating factors of the equation

dx dy ^ (dx dy\— +-^ + 2 ^ =0.
X y \y xj

5. Obtain integrating factors for the homogeneous equa-

tions :

(1) xdy — ydx = \l{x^-\- y^) dx,

(2) (8?/ + \^x) dx + {hy + Ix) dy = 0.

(3) {x"" + 2xy - y^) dx + [f + "Ixy - x^) dy = 0.

(4) 2/^+(a.^ + a.'0j=O.

(5) [ a; cos - + 3/ sin -
)
^(Za; + (ajcos- — i/ sin— j a;<f^ = 0.

\ X XJ \ X Xf

Exhibit the corresponding integrals of the above equa-

'tlons.

6. The formula -^rj ^ fails to give an integrating

factor for the homogeneous equation —%—^2~ = ^- "What

formula oudit here to be employed and to what result does it

lead? ^ ^

7. Determine an integrating factor of each of the equations

(1) (ccy + xy) ydx + [o^y^ — 1) xdy = 0.

(2) {xY + xY-Vxy + l)ydx + [xY - xY -xy-\- l)xdy=0.
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CHAPTER Y.

ON THE GENERAL DETERMINATION OF THE INTEaRATIXG

FACTORS OF THE EQUATION 2Idx + Xdl/ = 0,

1, Prop. It is required to form a differential equation for

determining in the most o^eneral manner the integrating factors

of the equation Ildx + Xd?/ = 0.

Let /jU be any integrating factor of the aloove equation, then

since fiMdx + fiXdy is by hypothesis an exact diilerential, we
have by Prop. i. Chap. iii.

Hence

dx dy

j^d/jL
.

dy_ \r''^f^ ^^^^

dx dx " dy dy '

or, by transposition,

^^du. -nrdiM fdM dX\ ,,.

dx dy \dy dx J
"^

which is the equation required.

Xow this equation involves the partial differential co-

efficients of jjb taken with respect to x and y. It is therefore a

'partial differential equation. We have not the means of solv-

ing it generally, and it will hereafter appear that its general

solution would demand a previous general solution of the dif-

ferential equation Mdx + Xdy = 0, of which /j. is the integrating

factor. But there are many cases in which we can solve the

equation under some restrictive condition or hypotliesis, and

the form of the solution obtained will always indicate when
the supposed condition or hypothesis is legitimate.
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The following are examples of sucli solutions.

2. Let /i be a function of one of the variables only, e. g.

•). then since -p = 0, we hai
dij

suppose iJL = <j)(x), then since 7- = 0, we have from (1)

Therefore

or
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and the value of fx^ on this hypothesis, is

dx - dy

^ = ei'--~'' (4).

Ex. Let us inquire whether the equation

(3ic'4-6icy + 3/)c?a;+(2a;' + 3xy)^i/ = (5)

admits of an integrating factor which is a function of x only.

Making M= Zx^ + 6xy + 3?/', N= 2x'' + Sxi/, we find

dy dx 6a; + 6,y - {Ix 4- 3y) _ 1^

2Y ~ 2x' + Sa^y
~

a;

'

and this result being a function of x alone, the determination

of /L6 as a function of x alone is seen to be possible. From (2)

we now find
Cdx

fJi = 6^' = CX,

C being an arbitrary constant.

Now multiplying (5) by Cx, we have

C{{Sx^ + (jx'y + Sxy') dx + {2x' + Sx^y) dy] = 0.

The first member of this equation remains a complete differ-

ential whatever value we assign to G, If we make (7=1, and

integrate, we find

the integral sought.

The student may obtain also the same result by solving (5)

as a homogeneous equation.

The linear differential equation of the first order

i^^y-Q=' («)'

P and Q being functions of x, may be solved by the above

method.

For, reducing it to the form

(Py-Q)dx + dy=0 (7),
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we have M=^Py — Q, N= 1, whence

dM_dN
dy dx _

lY
^'

which being a function of x we find from (2)

Multiplying (7) by the factor thus determined, we have

ef'"" [Py - Q) dx + e/^"^ dy = 0,

the first member of which is now the exact differential of the

function

ef''^y-U''^Qdx,

Equating this expression to an arbitrary constant c, we find

y = e-f''^{c+^ef''^Qdx] (8),

which agrees with the result of Art. 10, Chap. ii.

3. Let it he required to determine the conditions under
which the equation Mdx + Ndy = 0, can he made integrahle hy
a factor ix which is a function of the product xy.

Eepresenting xy by v and making fjL
= (j){v), the partial dif-

ferential equation (1) becomes

ATJ'/ \dv -nrj'r \ dv fdM dN\
, , ,

whence, since "r = 2/, ^ = cc, we find

dM_dN
<f)

(v) _ dj/ dx
(9).

cj^iv) Ny-Mx

Thus the condition souo:]it is that the second member of the
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above equation be reducible to a function of v alone, i. e. of

xy alone. And the corresponding value of yu, is

CdM_dN
I

dy dx
^^^Ny-M.^

(10).

One case in which the above condition is satisfied is the

following, viz.

F^{xy)ydx + F^{xrj)xdy = (U).

Making M=F^{v) y, N=F^{v) x, and observing that since

dv dv ^ T
'^ = '"2/. ^ = 2/. ^ = «^, we find

dM_dN
± ± ^ F,{v)+vF'{v)-F, iv)-vF;{v)
Ny-M^ v[F,{v)-F,{v)}

f,{v)-fm+v{f:(v)-f;{v)}
v[F,{v)-F,{v)]

1 f;{v)-f;{v)

V F,(v)-F,{v)'

a function of v alone.

Multiplying by dv and integrating, we have

rd3f dN

i^-^ dv = -\ogv- log [F^{v) - FM-

Hence, //, v{FM-FM]
1

This accords with a result of Art. 6, Chap. IV.

Ex. 1. Thus the equation {x^if-\- 1) ydx + (a^y- 1) xdy=

becomes integrable on being multiplied by the factor -—

,

which is found by substituting in the previous expression

xY-{- 1 for F^{xy), and ofif -I for F^^{xy),
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The final solution is

-a;y+log^ = c.

Ex. 2. The equation

does not fall under the type (11), but the values which it fur-

nishes for M and N give

dM_dN
dy dx _ Ax^y - 1 — {4:y^x — 1)

Ny - Mx ~ 2^y - xy - (2^y - xy)

= _ 2___2
xy V

'

so that the condition of integrabilitj by a factor of the form

fixy) is satisfied. Hence

Multiplying the equation by this factor, and integrating, we
find for the primitive

xy

A, It IS required to investigate the conditions under which
the equation Mdx + N^dy = can he made integrahle hy a

factor fjb which is a homogeneous function of x and y of the

degree 0.

As fi must be of the form </>(-) let us represent - by v, and

then assuming fM = (j){v), and observing that

dv _ — y dv _1
dx ic^ ^ dy x^
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the partial differential equation (1) becomes

-^^-Wj-J/fwU(f-f)^W (12),
dy

_dM\
dy)

,(dN dl
6' (v) \dx dy

whence -j-j-r = —tt—--rr— •

(j) {v) MX + i\y

Thus the condition sought is that the second member of the

above equation should be a function of v, i. e. of - .

X

And the corresponding value of yu. is

I
\dx dy).

But since every function of - is homogeneous and of the
X

degree 0, with reference to the variables x and y, we may
express the above results in the following theorem.

In order that the equation Mdx + Ndy = may he made
integrahle hy afactor jx which is a homogeneousfunction ofx and

y of the degree 0, it is necessary and sufficient that the function

\dx dy J .

Mx + Ny ^^^^

should he also homogeneous and of the degree 0. This con-

dition heing satisfied, the value of fx icill he

fjL = e-^'^''"' (U),

lohere v stands for -
, and f{v) is what the function (13) is

X
reduced to hy this transformation.

The above investigation fails when the constitution of the

functions M and N is such that we have identically

Mx + Ny = 0.

An integrating factor for this case has already been found in

the preceding Chapter.
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We proceed to notice some of the consequences of the

above theorem.

It is evident that the condition which it involves will be

satisfied when J/and Nslyq homogeneous functions of x and ?/.

For, supposing them to be homogeneous and of the n^^^ degree,

the numerator and denominator of the fraction (13) will each

be of the {71 + ly^ degree, and the fraction itself therefore of the

degree 0, the condition required.

It is not however by homogeneous equations only that

this condition is satisfied, and it is sometimes worth while to

inquire into its applicability in other cases. Thus for the

equation

- + sec^ 1 dx — —„ du =
,2j x) f -^

we should find the integrating factor cos - .

X

6. It I's required to investigate the conditions under which

the equation Mdx + Ndy = can he made integrahle by a fac-

tor fjL, which is a homogeneous fanctio7i of the degree n.

Assuming fjL
= x'"(f>[-] , the partial differential equation (1)

becomes

N \ nx

=(f-f)-*ffi-
Dividing by x""'^ and transposing, we get

Mx + Ng

whence
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Let - = ?;, and suppose the second member to assume the

form/(v) ; then, multiplying both sides by dv and integrating,

we have

Hence ^i = x""^ {v) = x'^e-^'^'^'^

Thus we arrive at the following theorem.

Theorem. In order that the equation Mdx + Ndy = may
he made integrahle hy a factor /x, which is a homogeneous fane-

j|

tion ofX and y of the li}^^ degree^ it is necessary^ and it suffices,
'

that on making y = vx thefunction

.[dN dM\
xH-j j-] + nNx

(1^)Mx + Ky

sjwuld assume the form f{v). This condition heing satisfied,

the expression for /jl ivill he

^ = aj"e/-^(^)'^' (16).

It will be noted that the condition that (15) shall be a
function of t*, is the same as the condition that it shall be a

homogeneous function of x and y of the degree 0.

The theorem fails when Mx + Ny = 0, a case already con-

sidered.

Ex. 1. Required to determine whether the equation

[2x' + ^^x'y + ;y" - ^f) dx + (2^^ + Zxy"" + x" - x') dy =

admits of an integrating factor which is a homogeneous func-

tion of X and y.
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Here if= 2aj' + Zx^y ^f-y\ N= 2y' + Sxy'+ x'- x\

Hence, on substitution,

\dx dy J

Mx + Ny

- (n + 6) a;' + i^n + 6) ccy+ Inxif^ [n + 2) a;^- 2a;'y
"

2^3^ + 2ic'?/ + 2a?3/' 4- 2^' + cc''2/ + xy"-

"We are now to inquire whether there exists any value of n

which reduces the second member of the above equation to a

homogeneous function of x and y of the degree 0.

That member may be expressed in the form

-X {n + 6) a;' - (3?i + 6) xy^ - 2?i/- (n + 2) x'' + 2xy

x + y^ 2x'+2y' + xy

and it is now plain that if any value of 71 will answer the

required condition, it must be one which will make the terms
containing xy^ and x^ in the numerator of the second factor

vanish. Making then ?i = — 2, we have

— X 4.x^ + 4?/^ + 2xy _--2x
x + y 2x^ \-2y^ -{- xy x-\-y

- -^
"1 + 2;*

/;:? <^
•

Hence \j. = x "e'
x^i^^v)'

c

{X + yf
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Multiplying the given equation by this factor and integrating,

we find as the primitive equation

x-^y

In the case of homogeneous equations the condition in-

volved in the general theorem will be satisfied independently

of the value (f n, the particular case in which Mx + Ny =
excepted. It follows hence that with this exception we can

find an integrating factor of any proposed degree for the

homogeneous equation Mdx + Ndy = 0.

Ex. 2. Kequired two integrating factors of the respective

degrees and 1 for the equation

{^x + 2y) dx + xdy = 0.

First making il/= Sx + 2y, N= x, and w = 0, we have

,(dN dM\
\ax ay J _ ~^
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Multiplying by the second factor x and integrating, we
6nd ix? + y?y = G for the primitive.

Again, if in illustration of the remark of Art. 4, Chap. IV.,

we equate to an arbitrary constant the ratio of the second

factor to the first, we have

Q^[x-\-y^— constant,

which being equivalent to

^ (x + y) = constant,

agrees with the previous solution.

Let us next examine the general results to which the

theorem leads, when M and N are homogeneous and of the

7?t*^' degree.

The general forms of If.and N will be on putting v for -
,

Hence, observing that

^ = mx'^-'^l, {v) - x'^-'yf' (v),

we have on substituting in the expression for f[v), and
dividing numerator and denominator of the result by a?"'"^^,

4^(,,\ _ (^ + ^) -f {v) - vjr' (v) -
<f>'

{v)
^^^^~

(P{v)+vylr{v) ^ ^*

If we make ??, the value of which may be chosen at plea-

sure, equal to — w — 1, we have

^ ^ ^

^ {y) + v^ {v)

Multiplying by dv and integrating.

/.
f[v) dv = - log {^ [v) + vf {v)].
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Hence,

^n^/^'^)^"

c

C
Mx + Ni/

:i8).

And here again it results that the homogeneous equation

Mdx + Ndj/ = 0, may be made integrable by the factor

-ry ^, except in the particular case in which the con-

stitution of ilf and iVis such as to make Mx-\-Ny=0. More-
over this theorem is seen to be only a particular consequence

of the general theory of the integrating factors of homogeneous
equations.

Resuming (17) which we may write in the form

f( \ — (^ + ^^ + 1) '^ h^)—{^ (^0 + vylr'Jv)+_(p'_{v)

}

we have

by the substitution of which, combined with the previous re-

duction, the general value of fju becomes

-,jn+n+l Jm+n+l)J--
, , , ,

yl/{v)dv

^=

—

Aiic+jry
— (^^)'

which is the general expression for an integrating factor of the

ji^^ degree, supposing ii not equal to —m—\.

Ifwe noAv equate to an arbitrary constant the ratio borne by
the last value of /u, to the previous one (18), we have

r <if'v)dv •

B.D.E. 6
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wlilcli is readily reducible to

'"-'-k^Jwr'- «•

'Now this is the very solution of the homogeneous equation

3fdx + Ndi/ = 0, obtained by the direct assumption 7/ = vx, in

Art. 8, Chap. Ii.

We thus see that in the case of homogeneous equations the

employment of integrating factors conducts us, but by a more
lengthened route, to the same Jinal integrals as the direct

method of Chap. ii. It is difficult to lay down any general

rule as to the value of concurrent methods, but it would pro-

bably be not very remote from truth to say, that the peculiar

advantage of the theory of integrating factors consists rather

in its appropriateness for the investigation of conditions under

which solution is possible, than in the actual processes of solu-

tion to which it leads.

6. The following application of the theorem is of a more
general character.

The equation

F^dx + P^d^+ Q {xd}j-ydx)=Q (21),

where P^ and P^ are homogeneous functions of x and y of the

degree p, and Q is a homogeneous function of x and y of the

degree q.^ may be rendered integTable by a factor jm which is a

homogeneous function of x and y of the degree — ^ — 2.

Here il/=P,-ei/, N=P^-tQx.

Hence 2Ix -\-Ny = P^x + P^y.

Thus the denominator of (15) is the same as if J/ and JVwere
reduced to their first terms P^ and P^. And the numerator

remains the same also. For the addition which the second

terms of 21 and N, viz. — Qy and Qx make thereto, is

l"i«?^) + |(^+"«-'
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wliich, on effecting the differentiation, becomes

but Q being by lijpotliesis homogeneous of the g^^ degi'ee,

whence,

the above expression reduces to

X'{q + 71 + 2)Q,

and vanishes if n is made equal to —q — 2. Thus (15) as-

sumes the same form as if 21 and N were homogeneous of the

degree ^:>, and the condition of the theorem is satisfied.

7. All the applications which we have hitherto made
of the partial differencial equation (1) are of one kind. The
general problem which they exemplify is the following. Under
what condition does the equation Jldx + Xdy = admit of

being made integrable by a factor of the form </> (v) where v is

a known and definite function of x and y ? Let us examine
the general form of its solution.

!2).

The condition sought then is tliat the second member of this

equation should be a function of v, Representing that func-

tion by/(f) the corresponding value of yu, is

M = e/'"* (23).

Any special case may be treated either independently as in

the previous examples, or by directly referring it to the above
general form.

6—2

On
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Tims a direct reference to the above theorem shews that the
condition which must be satisfied in order that the equation
Mdx + Ndy — may admit of an integrating factor of the
form

(f)
[x^ + y) is that the function

dM_dN
dydx
2i\ic -M

should be a function of x^ + y. And the mode of determining
this point would be to assume x^ +y = v, and, thence deducing

y — v — x^, to substitute that value of y in the above function,

and see whether the result assumed the form f{v). The
equation (23) would then give the value of fx. And this mode
of procedure is general.

8. When by the discovery of an integrating factor the

possibility of solving a differential equation has been esta-

blislied, there is no more valuable exercise than to endeavour
to effect the same object by other means.

Let us take as an example the equation considered in

Art. 6, viz.

P^dx-\-P^dy-\- Q{xdy-ydx) =0 (24),

Pj and P^^ being homogeneous of the degree ^, and Q homo-
geneous of the degree q.
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and assumes on transposition and division the form

dx i/r iv) y iv) ,_„ ,

,

, ,

j

I_W ^ A, V I

y^ X^'^ . . . ('>lj\

dv (j) (v) + vyjr (v) (p {v) + v-^ {v)
'*" '^*

Now the reducibility of an equation of this form to a linear

form has been established in Chap. ii. Art. 11.

Under the general form (24) are virtually included some
remarkable equations which have been made the subjects of

distinct investigations.

Thus Jacobi has, by an analysis of a very peculiar character,

solved the differential equation. (Crelle's tfournal^ Vol. xxiv.)

{A + A'x + A'y) [xdy - ydx) - {B+ B'x + B"y) dy

^{C-^G'x+ G"y)dx=^0 (26).

If, however, we assume in that equation

x=^+a, y = 7] + P,

we can, by a proper determination of the constants a and ^,
reduce it to the form

(^1 + «'^) [^^V - ¥^) - (^? + ^V) d7) + (c? + c'77) d^ = 0,

which fiills under (24). On effecting the substitution in ques-

tion the equations for determining a and (^ will be found to be

a[A+ A'a + Jl'^) -{B + B'a + B"(3) = 0,

- ^ (^ + ^'a + A!'13) + + (^'a + C"/3 = 0.

The most convenient mode of solving these equations is to

write tliem in the symmetrical form

B+B'a + B"/3 a+C'a-\-C"l3
, ,

.. ..^= o = A + Aql + A /3,

then, equating each of these expressions to X, we find

A-\-\-A'a+A"l3 = 0,

B-\-{B'-\) a+^"/3 = 0,

C+C'a + {C"-\)i3=0,
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from \y1iIc1i eliminating a and ^ we liave the cubic equation

{A - \) {B - \) ( G"- X) - B"C [A-\)- A" C [B'- X)

'-A'B{C"-\) + A'B"C+A"BC'=0 (27).

If a value of \ be found from this equation, any two equa-
tions of the preceding system will give a and /3.

9. The present chapter would be incomplete without some
notice of a method which was largely employed by Euler.

That method consisted in assuming //, to be a function

definite in form as respects the variable y, but involving un-
known functions of x as the coefficients of the several powers
of ?/.

After the substitution of this form of /jl in the partial differen-

tial equation (1), the result is arranged according to the powers
of y, and the coefficients of those powers separately equated to

0. This gives a series of simultaneous differential equations

for the determination of the unknown functions of x. But for

the success of the method it is necessary that the primary
assumption for jul should have been chosen with some special

fitness to the object proposed. The following is an example.

Required the conditions imder which the equation

Fydx+{i/+Q)d7/=0

admits of being made integrable by a factor of the form

1

P, 5, B and S being functions of x.

In the partial differential equation (1), making

1
M=:Py, N=y-hQ, f,= f^lif + JSy'
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clearing tlie result of fractions and arranging it according to

the powers of y, we have

*(«2-«S)^-» M-

Whence, equating separately to the coefficients of the dif-

ferent powers of y, we have the ternary system

--S-S- (-).

^^^^S-<^f-f=« (^«).

^i'-«S- (-)•

The last equation gives S=cQ,c being an arbitrary constant.

Substituting this value of S in the equation obtained by
eliminating F from the first two equations of the system, we
find

(2c -B)dQ + 2 QdR = BdE,

or, regarding therein E as the independent and Q as the de-

pendent variable,

a linear equation of which the solution is '

Q = E-c-hc {E-2c)\

Hence we have

S^c{E-c)+cc {E-2c)%

and from the substitution of the value of Q in the first equa-
tion of the ternary system,

P=-c'(iJ-2c)g.
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These values of S, Q, and P, in which R is arbitrary, re-

duce the given differential equation to the form

{R-c + c {R-2cy-\- y] dy - cy {R-2c) dR = 0... (32)

,

and present its integrating factor in the form

1_ -

y' + Rf + [c {R-c)+ cc {R- 2cY} y
'

R being an arbitrary function of x.

For other examples the student is referred to Lacroix

(Traite dii Calcul Biff, et du Calcul Int. Vol. II. Chap. IV.)

The results of this method are usually of a very complex
character, while their generality is limited by the restrictions

which must be imposed in order to render the system of

reducing equations solvable. Thus Euler's equation above

considered is virtually only a limited case of the general

equation (21). If we assume

y -\- c = s, R — 2c = t,

it becomes

(s +t)ds + cctdt + c't {ids - sdt),

which evidently falls under that equation.

EXERCISES.

1. The following equations admit of integrating factors

of the form </> {x) , viz.

(1) {x''-i-y^ + 2x)dx + 2ydy=0.

(2) {x^+y^)dx-2xydy=0.

Determine these factors and integrate the equations.

2. The equation 2xy dx + (y^ — Sx^) dy = 0, has an inte-

grating factor which is a function of y. Determine it, and

integrate the equation.

3. Find those integrating factors of the equation

ydx -f {2y ^x) dy =



CH. Y.] EXERCISES. 89-

wliicli are homogeneous functions of x and y of the respective

degrees and — 2, and from the consideration of those factors

deduce the complete primitive of the equation.

4. For each of the following equations examine whether
there exists an integrating factor /x satisfying the particular

condition specified, and if so determine the factor, and integrate

the equation.

(1) y {p?-\- y^) dx + X {xdy — ydx) = 0, ^a a liomogeneous
function of the degree — 3.

(2) (y^ + axy"^) dy - ay^dx + {x + y) {xdy — ydx) = 0, fi as

in the previous example.

!) {y — x)dy + ydx — xd l-j = 0, /ll homogeneous of the

degree — 1.

(4) (x^ + y'^+l) dx — 2xydy = 0, /^ a function of y' ^ x^.

(5) ( ?/ - 3^y - 2x^) dx + (2?/'+ 3xY -x)dy=0, fia func-

tion of x^ + y,

(6) {x''+x'^y+2xy-y^-y^) dx+ (/+ xy"-+2xy-x'-x^)dy = 0,

fi a function of the product (1 -\-x) {l+y).

0) {^y^ — x) dx + (2?/^ — Qxy) dy = 0, /x a function of

x + y'.

5. The equation y {of + y") dx-\-x [xdy — ydx) =0 has an
integrating factor of the form e^ (/> {x^ + y"^). Determine it, and,

from the comparison of the result with that of (1) Ex. 4,

deduce the complete primitive.

6. The linear equation -jL-\- Py = Q having an integrating

factor of the form e/^'*^, deduce a corresponding expression

for an integrating factor of the equation

7. Prove that the equation

dii 2 dP -r»o
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where P is any function of x, has an integrating factor of the

form -. j^, Lacroix, Tom. ii. p. 278.

8. Deduce a similar expression for an integrating factor

of the equation -^+y'^ + —--^J>^=o. lb,

9. Investigate the conditions under which the equation

where P and Q are functions of Xj can be made integrahle

by a factor of the form-, ^, ,,„ , and determine the form

of/(aj).
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CHAPTER YI.

OF SOME EEMARKABLE EQUATIONS OF THE FIRST ORDER
AND DEGREE.

1. There are certain differential equations of the first

order and degree, to which, in addition to their intrinsic claims

upon our notice, some degree of historical interest belongs.

Among such, a prominent place is due to two equations

which, having been first discussed by the Italian mathema-
tician Pticcati and by Euler respectively, have from this

circumstance derived their names. To these equations, and to

some other allied forms, the present Chapter will be devoted.

Eiccati's equation is usually expressed in the form

2+^'''=-"' «•

But as both it and some other equations closely related to

it and possessing a distinct interest, may, either immediately
or after a slight reduction, be referred to the more general

equation

xf^-ay^hf=cx'^ (-)'

the discussion of which happens to be much more easy than
that of the special equations which are included under it, we
shall consider this equation first.

To reduce Riccati's equation under the general form (2),

it suffices to assume w = - . We find, as the result of this
X

substitution in (1),

^%ry + h-'=^ox-*'- (3),

which is seen to be a particular case of (2).
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Of the equation x y-—ciy-\-^y^— ca;".

2. The discussion upon whicli we are entering may be

divided into two parts. First, we shall shew that the equa-

tion is solvable when n — 2a. Secondly, we shall establish

a series of transformations by which a corresponding series of

other cases may be reduced to the above.

3. First. The equation x-j— ay -{-hy^ — ex"" is solvable

when n = 2a.

For, assuming y = x^v, we find on substitution

dv
x:«« J-+6:C'V = CX%

whence, dividing by a?^", we have

x'-'f^+hv'=cx''-\
ax

Now if n = 2a the above becomes

whence
dv dx

an equation in which the variables are separated. If we

restore to v its value ^ and transpose, this becomes

x^dy — ayx'^'^dx
^ a-n ^ ,,x

-

—

'I ^ ^ ,, + cc" Wa;=0 (4),
by: — ex V^v
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an exact differential equation, of wliicli the solution will be

Ce-^^ - 1

or y=[ — Y]xtanW—- —
b

according as h and c have like or have unlike signs.

4. Secondly. The solution of the equation

X
-J-

— ay ^- hxf = ca:;",

is always reducible by transformation to the preceding case

whenever —~—^ = ^*. a positive inteo^er.

For let y=^A-\—
, y^ being a new variable which is to

replace ?/, and A a constant whose value is yet to be deter-

mined. On substitution and arrangement of the terms we
have

-aA + hA'+(n-a + 2hA)- + h—,-^^=cx\..(5).

Now let -aA^ lA^ = 0, then ^ = - or 0. These values

of A we shall employ in succession.

5. First. If we assume A = j the above equation becomes

3/i yr 2/x
dx

Multiplying this equation by "~ and transposing, we have
X
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'Now tills equation is of tlie same fo7'm as the given equation

between y and x. The coefficients however differ, in that h

and c have changed their places, and a has become a-{- n.

And this transformation has been effected by the assumption

a x"

Hence, if in the transformed equation (6) we make a second

assumption
a + n x''

we shall have as the result

^%-(fl + ^")!/.+ i2/:= c^ (^)'

h and c again changing places, and a + 7i becoming a + 2??.

And the result of i successive transformations of the same
series will be to reduce the given equation either to the

form

x-^-(a + in)^ji+C7/.'=hx'' (8),

or to the form

^^-{^ + ^n)y, + hjt = cx'' (9),

according as the integer i is odd or even.

Xow by what has been established in Art. 3 the above
equations will be integrable if we have

n = 2 (a + in),

an equation which gives

71 — 2a . ..
-2^ = * (''^-

6. Secondly. If we assign to A its second value 0, (5)
becomes

ii-a) ~-\-h— --f^ = cx'
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Or, multiplying by ^ and transposing,

irJ'-(«-a)2/. + cy,^ = te" (11).

Now this equation for ij^ differs from tlie equation (G) obtained

for y^ in the previous series of transformations only in that a
in the coefficient of the second term has become — a. With
this change only then that series of transformations may be

adopted in the present instance. The change of a into — a

in the final condition (10) gives

71 + 2a .—

^

= *

as a new condition under which the equation in y is solvable.

If 2 = 1 this gives n = 1a^ the condition first arrived at, and
upon which the subsequent researches were based.

Collecting these results together we see tliat the equation

X -j— ay + hy"^ = cx'^ {s integrahle whenever —=— is aj^ositive
ax JiiT,

integer,

7. Let us now examine the form in which tlie solution is

presented.

If —-

—

-=L which is the condition arrived at in Art. 5,
2?i

we have the series of transformations

a x""

a + n

and finally

X
Vi-x

= h^—^ + - »

c '
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where h='b or c, according as i is odd or even ; and tlie effect

of these transformations is to reduce the given equation to one

or the other of the forms (8) and (9).

If in the above expression for y we substitute for y^ its

value in terms oi y^, in that result again, for y^ its value in

terms of y^ , and so on, we find

a

a + n

a + 2n
(A),

the last denominator being ^-^——- -\ . The value of

yi must then be determined by the solution of (8) or of (9),

these equations being now susceptible of expression as exact

^liiferential equations in the forms

"°"'''^^--^"+r)ff""''^" + a.-'-Va. = (B),
Cvj ~~ ox

^n.^y^- („ + .•„) yX-'-Wo^ ^ ^„..-.^^ ^ , (C).

Mlien therefore — = i a positive integer, the solution oftlie

equation x — — ay \- hy^ = cx"^ icill he expressed in theform of

a continuedfraction hy (A), the value of yi in the last denomi-
nator being given hy the solution of the exact differential

equation (B) or (C) according as i is odd or even.

Secondly, if ——— = i, which is the condition arrived at in
An

Art. 6, we have the series of transformations

n — a a^
Vi =— + — •
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2n — a x""

y.. =^^^4^ +| (12),

where h = 'b or c, according as i is odd or even. From these,

eliminating, as before, the intermediate variables y^, U-z^ "-1/^-1^

we find

__^
^ ~ n — a ic"

c 2?i — a cc"

b 3?i — a .^.

~~v~ ^^'

( 2. — 1 ) 7i — (Jj QC^
the last denominator being 1— . In this case,

however, the equation for y^ formed bj changing a into — a
in B and G will be

CVj —" Olio

or '^'
}; ,

^^;p + ic"'^Wic = (F)
byi —ex

according as ^ is odd or even.

When therefore —~— = i cc j^osttive integer, the solution of
^n

X -~—ay + hy'^ = ex" is expressed by (D), the value of yt in the

last denominator being given by the exact differential eq^uation

(E) or (F) according as i is odd or even.

Ex. Given cc ^^ — ?/ + ?/^ = a;^

B. D. E. 7
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71 + 2a ^ ^., n-2a
Here 7z = J,

« = 1, and as —^ =2 wlnle -^^ = -1.

the formula (D) and (F) must be employed. Assuming

therein a = 1, Z> = 1, c = 1, n = f, ^ = 2, we have

,, =_fL, = _^^_ (13),

2/2 "being given by the exact differential equation

iih:ZJmli^ + arid:c^O (14),

from which we find

2//-J

ilogf^) + 3^4 = C (15).

The elimination of y, between (13) and (15) gives

log
"-'^"!-'":-^ + 6.i = C (16),

which is the complete primitive.

Ex.2. Given ^ + w' = aj'i
'

ax

This is an example of Kiccati's equation. Assuming there-

fore u:='^,we find x~^--y + y'' = x^, which is identical with
X ax ^

the equation last considered. Substituting therefore in (16)

ux for 2/, we find after.reduction

iog
^"^!-'-"^: +6x*=c ^^^^_

3Ma;= + 3 + iix'
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General Observations,

8. The connexion between the two conditions for the

dy
solution of the equation x -j^ — ay -^ hy"^ = cjj", implied by the

,,,.., . n ±20, , . . _

double sign in the equation -—— = ^, may otherwise be

established as follows.

If the differential equation be written in the form

4l+^K^-f)=^"" ^''^'

it becomes evident that it is symmetrical with respect to

y and y — j . Assume then y — yas a new variable in place

of y, and writing ?/ — j = y', y = y'+ ji the equation becomes

or x^-j^--\-aiy + hy"' = cx" (20),

an equation which differs from the given equation only in that

y has become y', and a has changed its sign. Hence the

conditions 7i = -r-^— and n = -—. are mutually dependent,
2l — 1 2i — 1 ^ r J

and the value of y having been obtained for the former case,

its value in the latter will be found by changing therein a

into — ttj and finally adding j .

It is here also to be noted that instead of beginning with
x^

an assumption of the form y = A ] as in Art. 4, we might

x^
have commenced our reductions by the assumption y = ~ ,

the former of the above being proper for increasing by ?i, tiie

7—2



100 GENERAL OBSERVATIONS. [CH. VI.

latter for dhuinislilng by n the quantity a. And as the first

led directhj to the solution (A), so would the second have led

directly to the solution (D).

Lastly, it may be remarked that each of the above assump-

tions is only the inverse of the other. To increase the value

of a by 7i we had to employ the assumption

^i + —

,

which gives

of

and this indicates the form of the assumption for the case in

which a is to be diminished. Hence also by admitting nega-

tive as well as positive values of ^, the two forms of solution

might be replaced by a single one.

9. We have seen in Art. 1 that Eiccati's equation

ax

is reduced by the assumption w = - to the form

Hence the condition for the solution of Riccati's equation,

found by substituting in the final theorem of Art. 6, 1 for a

and m + 2 for «, will be

111 + 2 ±2 _ .

2m + 4 ~^'

whence

- =-2±^l (21),

{ being a positive integer.
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We maj give to the expression for rii anotlier form, viz.

— ^{ , , ,m = —. , ^ admittinsr of the value to2:ether with positive
2i± 1

' ^ ^ ^

integral values. In order to prove this, let it be observed
that two values of w included in (21) are

-ii , -4(/-l)'m = —.—r , and m —
2^- 1

' 2i- 1

If in the second of these values we change i — 1 into t, and
therefore t into ^+ 1, a change which merely involves that

we interpret i as admitting of the value as well as of posi-

tive inteofral A^alues, we find
'O'

'"=2?n ('-)•

"When 1 = this gives m = 0, and as this value also results

from the first of the expressions for m on making ^ = 0, we are

permitted in that formula also to regard ^ as admitting of tlie

same range of values. Hence, combining the two formulae in

a single expression, we have

"^ = 2711 (-')•

i being 0, or a positive integer.

10. Riccati's equation may also be reduced, and it usually

has been reduced, by a series of douUe transformations, of

which the following will serve as an example.

^uation being

We have

The equation beini? -^ + l>u'^ = ca?"' let m = y- + —~^ ^ dx hx X u.

du__^ 2 1_ du^

dx hx'' x'\t^ xhi'^ dx '

hic = ^—2 + -^ + -T—

2
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Substituting these values in tlie given equation, we have

Whence,

1

In this equation assume x = z'''^^, then

dx dz dx ^
' dz

^

h

x\'
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To establish, another condition of solution, assume in the
1 -^

given equation w = -
, aj = z'"^^ , then, after substitution and

reduction, we have

chj c
+ zrT-Ty =

dz wi + 1 -^ m + 1
'

which, by what has preceded, will be solvable if we have

m _ 4:1

4^
whence, m = —

2i+l

Combining these results it appears that Eiccati's equation is

— 4:1..
integrable if m = . , i being or a positive integer. This

agrees with (23).

It is manifest from the complexity both of the transforma-

tions above described and of the results to wliich they lead,

that Eiccati's equation is, in its actual form, far less adapted
for such transformations than the equation

to which it is so easily reduced.

11. Eiccati's equation becomes linear on assuming

_ 1 dw
hw dx

'

The transformed equation is

^t-5ca,»'«, = (25).

We shall consider it mider this form in a subsequent Chapter.
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ToRiccati's equation some otliers of greater generality may
be reduced "by a change of variables, e. g. the equation

^^Ix'^u^^cx'' (26),

by assuming cc"

Euhrs Equation.

It has already appeared that the solution of a differen-

tial equp.tion may sometimes be freed from transcendents

introduced by integration. An example of this has been
afforded in the instance of the equation

dx chi
+ „, \.., =0,

(Chap. II.), the solution of which is capable of being exhibited

in an algebraic form, although immediate integration intro-

duces the transcendental functions sin~^a.^, sin'^?/. The inquiry

is here suggested whether in any otlier cases the direct inte-

gration may be evaded, an inquiry the more important as our

means of integration are so limited. Euler succeeded in ob-

taining without direct integration the solution of the equation

d^
, ^ n

^/[a-\-hx-{^ ex' + ex'' +/x^) \/{a + h7/ + cif+ e/ +/]/*)

and of some related forms. The result belongs to the theory

of the elliptic functions, and may be established independently

by the methods which more peculiarly pertain to that theory.

But the method by which Euler arrived at that result demands
notice here.

12. To integrate the equation

^^^
. ^ = fn

^|{a-\hx^cx'\-ex^^fx'y ^{a^ly-^cifA-eif^fif) ^
^'

Representing the polynomials a + hx + cx^-{- ex^ +fx*y and
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a + hy-\- cif + ey^ -\-fy^ by X and Y respectively, tvc have to

integrate

-i^+^ = (2).

The ordinary solution of this equation in the sense of Art. 5,

Chap. I. would be

[ dx r dy ^

but it is our present object to obtain an algebraical relation

between x and y without performing the integrations above

implied.

Let -77-v^ = t^ then
[_dx__
iv(X)-''

J = V(X), | = -v(r) (3).

Also let a? + ?/=;;, x—y = q. AYe shall endeavour to form a

differential equation in which p and q are dependent variables,

and t the independent variable.

From (3) we have

J=V{X)-V{F) (4),

| = V(A') + V(r) (5);

therefore f^ = A'-r
dt dt

= 5^ + <-i>2 + i ci (Sjf + <f) + UpI (/ + 'f) - (6),

since the transformations x -\-y —p, ^ ~ y — 1 gi"^*®

X f={x-,j) (^'+ o^y+y) = J f^^)
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Again, from (3) we have

d^x ^ dsJjX) _ dx ds/{X) ^ 1 dX
df~ dt ~ dt dx '~ 2 dx'

df ~^dy'
•whence by addition

d^^lfdX dY\
df 2 \dx "^

dyl

= h + cjo-\-\e[f+cf) + \fp{f + ^') (7),

on effecting the differentiations and transforming as before

from X and y to ]) and q.

Multiplying (7) by q, and from the result subtracting (6),

we have

^ df dt dt 2
^^^^

Therefore

f df q' dtdt-^^"^-^^'

!N"ow multiplying both sides by j- ,

dt df fdpV dt ,
,

^nsdp . .

-7

—

Kit) ^T^^'""-^^^^
^^'

from which, each member being an exact differential, we
have on integration

(7 being an arbitrary constant.
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Hence J = ^V(<^+ ^i^ +//).

Therefore by (4)

sJ[X)-^{Y) = {x-y)^[G+e{x + y)+f{x+yf]...{%),

the integral required.

The student may apply the same process of transformation

and reduction to the equation

dx dy

V(a + hx+ cx^ + ex^ +fx') \l{a-\-hy^- cy" + ey^ +fy^)

= (10).

The resulting integral will be

V(.Y) + V(r) = (x-y)VlC + e(^ + 2/)+./(a;+^n...(ll).

13. It will probably appear that there is something arbi-

trary in the mode in which, in the above investigation, the

final differential equation (8) between p, q, and t, upon which

the solution of the problem depends, is formed. The analysis

which is subjoined may throw some light upon its real nature,

and shew of what general theorem that equation constitutes

an expression.

Prop. Whatever may be the form of the function <^ (x)

,

the following theorem of development holds good, viz.

<j>{^)-<j>ix)=A^{<j>'{y)+.p'(:x)} iy-x)

+ A,{<j>-iy)+'j>"'(^)](2/-^y

+ A,{4,^{y) + <j>'^{x)}(^-xy + &c....(12),

wherein A , A , A , &c. are the coefficients of the successive

powers of x, in the development of the function ——- in a

series of the form

A^x + A^x^ + A^x^ + &c.
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For let y = x-\- li, then, employing a well-known symbolical

form of Taylor's theorem,

d

^^ {e'^^+l)cl>{x)

h-
~ dx 1

dx

(fiix + ll)-^<ii{x)\

€ '^-l- 1

(13),

where A^^ A^, &c. have the series of values ahove described.

Hence, performing the differentiations and replacing x + h

by ?/, and Ji by ?/ — x, we have

+ A, {<}>'" {y) + <p-{x)}{y-xy + &c....{U),

which is the proposition in question.

The values of A^, A^, A^, &c. may be expressed by means
of Bernoulli's numbers, but they may also be calculated very

e"^— 1
simply by developing the exponentials in the fraction — ,

and then expanding the fraction itself by division. We
readily find

^^-2' ^^-~24' -^^-240' "^^ - 40320 '

'^'^•

When {x) is a polynomial of the fourth degree, we have

^^(^)=0, (li'''{x) = 0, &c.,
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and the theorem is reduced to the following, viz.

:

• -^{f"(z/)+f"(^)}(y-^r (15).

Now the differential equation (8) into whose origin we are

inquiring is merely a transformation of the last tlieorem.

We will on this occasion, and for the sake of variety, ex-

emplify the above remark in the solution of the differential

equation

in which
^{x) = a + 'bx-\-cx^ +ex^+fJ' (17),

<f>{y)=a-\-hj + cf-\-e7f-\-fy' (18).

Eepresenting either member of (16) by dt and assuming t as

an independent variable, substitute the values hence deter-

mined for (/) (a;), ^' (ic), 0'" (ic), &c. in the theorem (15). There
will result

J = V(.^(a^)i. J=V(</.(i/)I.

Hence ^(x) =
(J): <^ (^) = (|)^,

^ ^^^~dx \dt) ~dxJt\di

_ cPx

Lastly from (17) and (18)
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bj whicli substitution, (15) becomes

©-©=(f-S) (-•)-(/-*-!) (»-')

Or, transposing

(IT- (S'*(-!"(S+S) (/-A.|)(,-)-...(«).

Isow tlie very fo7nn of this equation suggests tbe transforma-

tion x+y =^:>j x — y = qy by which it becomes

2
whence multiplying by -§ ^ and integrating

therefore

L ^~y J

the integral sought.

EXEKCISES.

2. x^-ay^f = x"

.

ax

ax
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5. -^^— %^ = 1x ,

ax

6. Assuming the copclitlons for the solution of Riccati's

equation, Art. 9, investigate those under which the equation

y- + ^icV = cic" is integrable.

7. Assuming the conditions, Art. 6, under which

X -T- — ay + l>y^ = ex""

is integrable in finite terms, investigate those under which the

equation

is inteo-rable in finite terms.

8. Transforming the equation x -j- — ay -\- hif = cx^'^, by

assuming ic"= ^, an integrating factor may be found by Art. 6,

Chap. Y.

9. The equation -7- + lu^ = cx^' + -2 j inore general than
G/X X

Riccati's, is reducible to the form x -j^ — ay + h'y^— cV, con-

sidered in Art. 3, by an assumption of the form u —

'

.

10. Hence investigate the conditions under which the

former equation may be solved.

11. The same equation may be reduced to Riccati's form

by an assumption of the form y ^ Ax'^ -Y z^ {x) ^ followed by
a transformation affecting only x.
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12. Integrate tlie equation

dx cJi

V (a + J^ + cx'^-V ex"- -\-fx') ^{a-\- by + cif+ e/ +/y

"by the application of the theorem of Art. 13.

Ie3. Deduce from that theorem the following expression for

the value of a definite integral, viz.

:

240
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CHAPTER VII.

ox DIFFERENTIAL EQUATIONS OF THE FIRST ORDER, BUT

NOT OF THE FIRST DEGREE.

1. Eeferrinq to the general type of differential equations

of the first order, viz.

:

fUvM-o,
dx_

we have now to consider those cases in which -^ is so in-
dx

volved that the given equation cannot be reduced to the form

ax

already considered.

Freed from radicals the supposed equation will, however,
present itself in the form

n-2

+...+ P« = (1),

where P^, P.^^...Pn are functions of a? and y.

An obvious preparation for the solution of such an equation,

is to resolve its first member, considered as algebraic with
clii

respect to the differential coefficient -,— , into its component

factors of the first degree. If
^:>i, p^"'2'>n he the roots of (1)

thus considered, we shall have

^_«.Vly-^l..ff^,0 = (2),(1-^.) \dx V \dx

B.D.E. 8
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2\ , i^2'
• • -Pn l^eing supposed to be determined as known func-

tions of X and y. And it is now manifest that anj relation

between x and y which makes either one or more than one of

the factors of the first member to vanish, will be a solution of

the equation, and that no relation between x and y not pos-

sessins: this character will be such. Hence if we solve the

separate equations

^//
,, _o '^-79 -0 '^'^ -71 -0 f3^

d^-^'^-^^ dx ^'-'-^'"'dx ^--^ ^^^'

any one of the solutions obtained will be a solution of (2),

since it will make one of its factors to vanish. And if we
express the different solutions thus obtained, each with its

arbitrary constant annexed, in the forms

r,-c,= o, t;-(7, = o,... F„-a. = o,

any product of two or more of these equations will also be a

solution of (2), since it will cause two or more of its factors to

vanish.

Ex. Given the differential equation

Here the component equations are

dif

Tx^''^ = '^

and their respective solutions are

\o^y-ax-c^=^0
(5)^

io^y -{ax-c^ = ,.... (6).

Either of these equations is a solution of the given equation,

and so is their product

(logy-a^-cj (logy + aaj-g =0 (7).
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2. And here two important question.*? are suggested. First,

how is it that two arhitrarj constants present themselves in

the solution of an equation of the first order ? Secondly, is it

possible to express with equal generality the solution of the

equation by a primitive containhig a single arbitrary constant

in accordance with what lias been said of the genesis of

differential equations of the first order, Chap. i. Art. 6 ?

These are connected questions, and they will be answered
together.

The equation (7) implies that y admits of two values each
involving an arbitrary constant, but it does not imply that y
admits of a value involving two arbitrary constants. The
component factors of the solution separately equated to 0, as

in (5) and (6), give respectively

y^Cr, y^Cr- (8),

each of which involves one arbitrary constant only, and each
of which corresponds to a single factor of the given difterential

equation. The true canon is, not that a general solution of

an equation of the first order can involve only one arbitrary

constant in its expression, but that each value of y which
such a solution establishes involves in its expression only a

single arbitrary constant.

At the same time there is a real sense in which it remains

true that every difterential equation of the first order, wliat-

ever its degree may be, implies the existence of a complete

primitive involving a single arbitrary constant, and there is a

real sense in which such primitive constitutes the general

solution of the difterential equation. To reconcile these seem-
ing contradictions I shall shew that if we sup):)Ose the arbi-

trary constants c^ and c^ in (7) identical, and accordingly

replace each of them by c, we shall have an equation which
will be, first the true primitive of (4), in that it will generate

that equation by differentiation and the elimination of c,

secondly its general solution, in that no particular relation is

deducible from the solution (7) involving two arbitrary con-

stants which may not also, by the use of a lawful freedom of

interpretation, be derived from it.

S—

2
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Tims replacing c^ and c^ by c, we have

(log y — ax — c) (log y-\-ax — c) = () (9)

,

whence (log yY— c^j? — 2c log y + c' — O.

Differentiating, and representing -^ bj ^^^

2 loo- ?/ ^- - 2cfx - 2c^ = 0,

whence c = + io^: ?/.

Substituting this value in (9), we have

(^-?-)(?'--^)-'

which reduces to

aV(ay-/)=0.

Or, rejecting the factor aV which does not contain ^, and

replacing
i:>
bv -y-

,

ST-'V--
the differential equation given. Thus (9) is its complete

primitive.

Again, that solution is general. The two relations between

y and x which it furnishes are

y=Ce", y=Ce-" (10),

and these differ in expression from (8) only in that the arbi-

trary constant is here supposed to be the same in one as in

the other, but as it is arbitrary and admits of any value, there

is no single relation implied in (8) which is not also implied

in (10). And it is in this sense that the generality of the

solution is aflirmed.
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3. These illustrations will prepare the way for the de-

monstration of the general theorem which they exemplify.

TuEORE^r. If the differential equation of the first order and
d^ degree he resolved irito its comjyonent eciuations

dii
r. du ^ d'l

and if the complete primitives of these equations are V^ = c^,

V^= c,^,... J\ = c„, then the complete primitive of the given equa-
tion icill be

(T;-c)(T;-c)...(r„-c)=o.

Let lis first examine the case in which the proposed diffe-

rential equation is of the second degree, and therefore express-

ible in the form (j--pM-7^-po) = 0. Suppose that the
^dx ^V \du;

integral T"i = q is derived from the equation ~^—p^ = by

means of an integrating factor fx^ . Then d V^ = filj^ — 2\] dx.

In like manner we shall have d^\ = juj-: —pA dx. Now

taking the equation

(T';-c)(r,-o)=0 (11)

as a primitive, we have, on differentiating with respect to x
and 1/,

(T- -c)<n; + (T;-o)fn>o (12).

Therefore c = -—— rj^-^ ,

d]\-]-dV
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Substituting these values in (11), we have

{v^-r,ydv,dr,^o (13),

which gives (F,-F,)X;^,g|-2..)g-^,) = (U). •

And this, on rejecting the factor
(
J\ — V^Y/Jb^fM^ which does

not contain any differential coefficients, becomes identical with

the given differential equation. Hence ( F^ — c) {V^— c) =0
is the complete primitive of that equation.

To generalize this particular demonstration it would be

necessary to eliminate c between the equation

{r,-c){f\-c)...{V„-c)=0 (15),

and the equation thence derived by differentiation with re-

spect to X and y. The ordinary process of elimination, as

exemplified above in the particular case in which 7i = 2, would
be complex, but the result may be determined without dif-

ficulty by logical considerations. It will suffice for this pur-

pose to consider the case in which ?i = 3.

We have then as the supposed primitive

(F^_c)(F,-e)(F3-c)=0 (16),

and as the derived equation

(F.-c)(F3-c)f + (F3-c)(F.-c)5

+ (F.-c)(F,-c)g = (17).

Now (16) implies that some one at least of the equations

is satisfied.
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If tlie first of these equations is satisfied we have c = V^,

and substituting this value in (17) there results

{V,-Vd{y,-V,)dV^ = (18).

If the second equation of the system is satisfied, we have

in like manner

(r;-iQ(i';-K)cn;=o (lo).

If the third equation of the system is satisfied we have

0\-r,){r,-r,)dv, = o (20).

Hence the existence of (16) as primitive supposes the exist-

ence of some one at least of the equations (18), (19), (20), and
therefore of the equation

(v.-v.nv,-r.nv,-Krdv^dr,dv, = o (21),

which is formed by multiplying those equations together.

Conversely the supposition that the equation (21) is true,

involves the supposition that one at least of the equations

(18), (19), (20) is true.

The equation (21) is thevehre equivalejit to the result which
ordinary elimination applied to (16) and (17) would give.

The same process of reasoning applied to the more general

equation (15) as supposed primitive, would lead to a result

of the form

KdV^dK^...dV, = (22),

K being the product of the squares of the differences of

V V V

On comparison with (13) we see that in the particular case

of n = 2, this is not only equivalent to but identical with the

result of ordinary elimination in that case. And this identity

of form, though it is not necessary to our present pm-pose to

establish it, might be demonstrated generally.

Now d F, = fi^U^ - 2)}j dx, d i; = fi, H^ - i)}j dx, &c.
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Hence (22) gives

or, rejecting the factor KfM^/jL^.../jL^, which does not contain

differential coefficients,

Of this equation it has therefore been shewn, as was required,

that
(
J\ —c) {V^ — c) , . . {Vn — c) = constitutes the complete

primitive.

Here the component equations are

dy /«\4_ di/ f(f'\^_r.

dx \x) ' dx \x)
'

and their respective integrals are

y-c^-2sl[ax) = (2),

y-c, + 2VM = (3).

Replacing both constants bj c and multiplying the equations

together, we have

[y-cy-4.ax = (4),

as the complete primitive.

Now this primitive represents a series of parabolas, the

parameters of which are constant and equal to 4a, and the

axes of which are parallel to the axis of x] but the ver-

tices of which are situated at different points of the axis of

y, corresponding to the different values which may be given
to the arbitrary constant c. Of these parabolas the equations

(2) and (3), which may be written in the more usual forms

y - c, = 2 ^Jiax), y - c^= - "1 ^{ax),
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represent respectively the positive and the negative branches,

while the equation

{y-c,-2^|[ax)][y-c,\2^/{ax)] = (5),

represents the terms which would be found bj taking one
positive and one negative branch, hut not necessarily from
the same parabola. Thus there is no portion of the loci re-

presented by the apparently more general solution (5), which
is not also represented by the complete primitive (4). The
defect of generality, if as such it is to be regarded, consists

in this that while each branch of every curve in the series

is represented, tliose branches which belong to the same curve
are paired together.

4. There are certain cases in which differential equations

of the first order can be solved without the resolution of the

first member into its component factors. Of these the most
important are the following.

1st. When the given equation contains only one of the

variables x and y in addition to -— , being either of the form
uX

or of the form

^i^'f:r''

^(^-S)=«-

2ndly. When, involving x and y only in the first degree,

it is expressible in the form

x^ {p) + yf {p) = x^)^ ^'^lere 2^ =— *

.Srdly. When the equation is homogeneous with respect

to x and y.

These cases we shall consider separately.
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Equations involving only one of the valuables x and y

with ,- .

ax

5. In this case if, representing -^ by 2^1 ^^^ regarding

^ as a new variable, we form a differentieil equation between

p and the variable which does not enter into the original

equation, and integrate the equation thus formed, the elimina-

tion of 2> between the resulting integral and the original

equation will give the complete primitive required. For it

will express a relation between x, y, and the arbitrary con-
stant introduced by integration.

Thus if from the equation F{x^ p) = we deduce x =f{p>),
then, since dy=pdx^ we have

therefore yr= \pf\p) d]) + c (1).

After the integration here implied y will be expressed as a
function of p^ and c, and between that result and the original

equation p must be eliminated.

In like manner, if from F(y,p) = we deduce y=f[pj),
the equation dy=pdx givesf {p) dp=pdx, whence

dxJ^^dp,

whence

/^^ + (2),x
p

between which (after the integration has been performed) and
the original equation, p must be eliminated.

But these methods, though always permissible, are only
advantageous when it is more easy to solve the given equa-
tion, with respect to the variable x or y which it involves,

than with respect to p.
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Ex. 1. Given x=^l-{-]f.

Here chj = pdx =px ^^dj^ = Zp^dp
;

therefore y= r -^ <^ (3).

Now as tlie original equation gives p=(x— l)^, the com-
plete primitive found by substitution of this value in (3)

will be

y^l^{x-l)^+C
(4),

and it would be directly obtained in this form by integrating

the original equation reduced by algebraic solution to the form

dii , ^>i

This example illustrates the process but not its advantages.

Ex.2. Given a;=l +p+p^

Here dy —pdx =j)dp + 3^A//:>

;

therefore y--^ \- ~r +c (5),

between which and the original equation p must be eliminated.

We may do this so as to obtain the final equation between x
and ?/ in a rational form ; but, if this object is not deemed im-
portant, we may, by the solution of a quadratic, determine^
from (5) and substitute its value in the given equation.

Ex. 3. Given y^p'-\- 2/.

Here since pdx = dy we have

dx — - dy = 2dp + Gpdj)

;

therefore x = 2p + Sp^ + c.
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From this equation we find

_ -1 + \/(3a;+ C)
^~

3
'

(7 being an arbitrary constant introduced in the place of 1 — 3c;

and y will be found bj substituting this value of j:> in the

original equation.

Equations in which x andy are involved only in the first degree,

the typicalform being x(f) {p) +sy^ \p) = % {p).

6. Any equation of the above class may be reduced to a

linear diiferential equation between x and p, after the solution

of which, p must be eliminated.

The reduced equation is found by differentiating the given

equation and then eliminating, if necessary, the variable y. It

may liappen that such elimination is unnecessary, y disappear-

ing through differentiation.

Ex. Let us apply this method to the equation

y = xp+f{p) (1),

usually termed Clairaut's equation. ^
Differentiating, we have ^

whence [x+f{p)}£^ = o,

Kow this is resolvable into the two equations,

^+/{p)=0 (2),

i- (^)-

The second of these, which alone contains differentials of the

new variables x and p, is the true differential equation between
x and^.
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Integrating it we have jp — c^

and substituting this value of^ in (1),

y = cx-\-f{c) (4),

which is tlie complete primitive required.

But what relation does the rejected equation (2) bear to

the given differential equation (1), and what relation to its

complete primitive just obtained?

If we eliminate^; between (1) and (2) we obtain a new rela-

tion between x and y not included in the complete primitive

already found, i.e. not deducible from that primitive by
assigning a particular value to its arbitrary constant, and yet

satisfying the same differential equation, and, as we shall

hereafter see, connected in a remarkable manner with the com-
plete primitive. Such a relation between x and y is called a
singular solution. We shall enter more fully into the theory

of singular solutions in a distinct Chapter, but the following

example will throw some light upon their nature, as well as

il ustratc the process above described.

Ex. Given y = xj) +
m

Here differentiatinG: we have

From the equation -f =0, we have ^; = c, whence

y = cx + -^ (o),

the complete primitive. From the equation x—7. = 0, we have

P y©.
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and this value substituted in the original equation gives, after

freeing the result from radical signs,

?/^ = 4wic (6),

the singular solution.

Here the singular solution (6) is the equation of a parabola

whose parameter is 4m, and the complete primitive (5) is the

wall-known equation of that tangent to the same parabola

which makes with the axis of x an angle whose trigonometri-

cal tangent is c.

Xow, for the infinitesimal element in which the curve and

its tangent coincide, the values of x^ y, and -j- are the same

in both. And thus it is that the algebraic equations of the

curve and of its tangent satisfy the same differential equation

of the first order.

On the other liand, if (5) be regarded as the general equa-

tion of a system of straight lines, each straight line in that

system being determined by giving a special value to c in the

equation, the envelop or boundary curve of tlie system will

be determined by (6). Here the singular solution is presented

as the equation of the envelop of the system of lines defined

by the complete primitive.

7. In the second place let us consider the more general'

equation

Differentiating, we have

whence

or
dx _ f^{p)_ ^ ^ cf^'ip)
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a linear equation of tlie first order by vv^liich x may "be deter-

mined as a function of
ij.

The elimination of ^> between tlie

resulting equation and the given one will give the complete

primitive.

The typical equation

may be reduced to the above form by dividing by '^ {p), but

it may also be treated independently by direct differentiation.

Instead however of forming a differential equation between
X and p, we may form a diffei-ential equation between y and

p. Or, with greater generality, representing any proposed
function of p by t, we may form a differential equation be-

tween either of the primitive variables and t. Such a diffe-

rential equation will necessarily be linear with respect to the

primitive variable retained, and its solution must of course be
followed by the elimination of t. And this general procedure,

more fully to be exemplified when we come to treat of some
of the inverse problems of Geometry and of Optics, is often

attended with signal advantage.

Ex. Given x + yp = ap^.

We shall reduce this to a differential equation between x
and ^9.

Differentiating, we have

then eliminating y by means of the given equation, we have

wliich may be reduced to the linear form

dx _ op

dp p{\+f) 1+/'
its integral being
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If in tliis equation we substitute ior j^ its value in terms of x
and y furnished by tiie given equation, i.e. if we make

^'~
2a

we shall be in possession of tlie complete primitive.

Had we chosen to form a differential equation between y
and ^, we should have, on differentiating the given equation

while regarding y as the independent variable,

dx 1
whence, replacing ^ by - and reducing,

J J.

dy p _ lai?'

dp H-;/^~ \-^f
'

therefore on intesrration

from which, as before, p must be eliminated. The final results

are of course identical.

Homogeneous Egiiations of the first order.

8. Equations which are homogeneous with respect to x
and y may be prepared for solution by assuming y = vx.

The typical form of such equations is

«=>(|.i')=0 (!)•

Assuming tlien -= r, and dividing hj x", we have

^{o,p) = (2).
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If we can solve this equation with respect to ^, we have

But, since y = xv

dv

Thus the transformed equation becomes

dv
^ /-/ N

, dv dx
whence 2^-^ ^ = ^>

v-f{v) X

an equation in which the variables are separated, and in the

integral of which it will only remain to substitute for v its

value - .

X

But if it be more easy to solve (2) with respect to v than

with respect to p, and if the result be

then restorino; to v its value -
, we have^ X

which is a particular case of tlie equation of the previous

section. Hence differentiating, we have

P=f{p)+¥'{p)%

from which results

B. D. E.

^ fip) -P '
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an equation in which the variables x and ]) are separated.

Between the integral of this equation and the given equation

f must be eliminated, and the relation between x and y which

results will be the complete primitive.

Ex. Given yp + nx = JsJ{y' -|- nx"") ^/[l +/).

Assuming y = vx, we have

vp + n = V(v' + w) V(l + /)»

the solution of which with respect to p gives

But P^^dx'^'"'

Therefore ^J = ± a/^"^^ ^^(«' + «)'

Integrating, we have

dv I (n
— 1\ dx

}?-\-n)~ ~\/ \ n ) X
'

log{^ + V(^^ + ^)} = ±y('^)log^ + ^;

therefore v + V(^' + ?0 = cst'^^ ,

or, replacing t; by -
,

y + ^J{f\nx') = cx'^''^^^''^^'

the complete primitive.
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Equations solvable hy differentiation,

9. A remarkable class of equations, the theory of which
has been fully discassed by Lagrange, deserves attention.

It has been shewn. Chap. I. Art. 9, that if two differential

equations of the first order, each involving a distinct arbi-

trary constant, give rise to the same differential equation of

the second order, they are derived from a common primitive

involving both the arbitrary constants in question.

Let us suppose these differential equations of the first orde;

to be reduced to the forms

'^(^'^'^sr" «'

^(-'^'2)=^ c^)'

and let the primitive obtained by the elimination of -~ be

^ (x, y, a, h) = 0. Lagrange has then observed that if wv
have any difterential equation of the first order of the form

'H*'2''£)' ^(^'^'2)}=° ^'-

its complete primitive will still be O {x, y, a, h) = 0, but with
the condition that a and h are no longer independent con-
stants, but are connected by the relation

F{a,h) = 0.

This is an obvious truth. For as, by hypothesis, the su])-

poscd i)rimitive <3p {x, ?/, a, b) =0 gives

^ (^^ 1/, ^ = cc, ^Uy/£) = h

it will convert (3) into F {a, b) = 0, and will therefore sati\/i/

that equation if a and b are connected by the relation

F{a,b) = 0.
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Moreover it contains virtually only one arbitrary constant,

for the relation F{a, h) = permits lis to determine h as a

function of a. Hence it will constitute the complete primitive

of (3). See also Chap. L Art. 10.

This result may he expressed in the following theorem.

If any differential eqiLation of the first order he expressible

ill the form
F{cl,,ir) = (4),

where (j) and ^fr are functions of x, y, -i- , such that the dif-

ferential equations

(\> = a, -^ = Z>,

are derivable from a single 'primitive involving a and h as

arlitrary constants, the solution of the given differential equa-

tion loill hefound hy limiting that primitive hy the condition

F{a,h) = 0,

so as actually or virtually to eliminate one of the arbitrary

constants.

Ex. Suppose that the given equation is

Vl'+©}=4^*''i) <"•

IS'ow the diflferential equations of the first order

'» + !'£— (-'•

Vl'-©]=' «•

are derivable from a common primitive; for, on difi"eren-

tiating them, we have respectively

, fdyY d'^y ^

dy

dx (^ /di/V dSA ^
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and these agree as differential equations of the .second order,

Chap. I. Art. 9. That common primitive, found Ly elimi-
dv

nating -j- between (2) and (3), is

Hence the primitive of the given equation is

y + (a. -ar ={/(«)- (4).

We might also proceed as in the solution of Clairaut's

equation. Differentiating the given equation, we have

VI-©]
^--^'l"+2'</i^jrf+l;sJ+^^j-«-

The second factor, which alone involves ~r^., , equated to 0,

gives on integration the primitive

as will be seen in Chap. x. Art. 1, in which the relation be-

tween b and a remains to be determined as before. The first

factor equated to constitutes the differential equation of the

singular solution, which will be obtained by eliminating -,-

between that equation and the equation given.

Clairaut's equation belongs to the above class. AYc may
express it in the form

^^~^dx~'^\dx

Now the differential equations

dy

dx '



134 EXAMPLES OF TRANSFORMATION. [CH. YII.

generate the same differential equation of the second order

and are derivable from the same primitive

y = l)X -\- a.

Examples of Transformation.

10. Well-chosen transformations facilitate much the solu-

tion of differential equations of the first order.

Ex. 1. Given -J^if^=f{x' + y')K Lacroix, Tom. II.

p. 292.

Assuming x =
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By the same transformation we may solve the equation

Ex. 2. Given (-£\ =Aaf + By\

To render the above equation homogeneous if possible,

let 2/
= 2" ; we find

(--i)^]=Ax'^ + Bz''K

This will be homogeneous with respect to z and x, if we
have

h [n — l) — a. — n/3,

equations from which we deduce

the former of which expresses a condition between the indices

of the given equation, the latter the value which must be
given to n when that condition is satisfied.

It appears then that the equation

a

can be rendered homogeneous by the assumption y = zP.

If the more general transformation y — z"^^ x = f^, which
seems at first sight to put us in possession of two disposable

constants, be employed, the necessity for the fulfilment of the

same condition between a, y8, and h, will not be evaded, the

ratio of the constants m and w, not their absolute values,

proving to be alone available.

Ex. 3. The equation of the projection on the plane xy of

the lines of curvature of the ellipsoid is
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Assuming x^=^s, 'if=tj the equation is reduced to one of

Clairaut's form, Art. 6. Its solution is

f^Cx^ = --^^.^ AG + 1

The equation maj also, without preliminary transformation,

be integrated by Lagrange's method, Art. 9. We may ex-

press it in the form

Acl)f + B(j> + ylr = (2),

where <^ =— ,
'^—y'^ —

V]^^-

Now ^'p — a^ y^ — ypx = h,

are derived from a common primitive y^ — ax^= 5. The solu-

tion of (2) will therefore be,

y^ — adi? = 1)

with the connecting relation between the constants^

Aal + Ba + h = 0.

And this will be found to agree with the previous result.

EXEECISES.

The following examples are chiefly in illustration of Arts.

1, 2, 3, 5.

1.



CH. VII.]
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15. y^x-J + ax

'«• -'2='©'

The following examples are in illustration of Art. 9.

18. .i=-/|/-w|

r ^
•in 1 ^ .

^^^

^

». ,-..|=/Hi)}.
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CHAPTER YIII.

ON THE SINGULAR SOLUTIONS OF DIFFERENTIAL EQUATIONS
OF THE FIRST ORDER.

*° 1. In the largest sense whicli lias been given to the term,

a singular solution of a differential equation is a relation

between the variables which reduces the two members of the

equation to an identity, but which is not included in the com-
plete primitive.

In this sense, the relation obtained by equating to some
common algebraic factor of the terms of the equation might
claim to be called a singular solution.

But, in a juster and more restricted sense, a singular solution

of a differential equation is a relation between x and y, which
satisfies the differential equation hy means of the values wJiich

if gives to the differential coefficients ^ , -j-^, &c., but is not

included in the complete primitive. In this sense the equa-
tion x^ + y^ = n^, is a singular solution of the differential equa-
tion of the first order

It reduces the members of that equation to an identity, but
not by causing any algebraic factor of them both to vanish.

xVt the same time it is not included in the complete primitive

y — cx = n\f{\-\-(r).

And this is the juster definition, because that which is

essential in the sin.2:ular solution is thus in a direct manner
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connected with that whicli is essential in the differential

equation. Def. Chap. I.

When it is said that a singular solution of a differential

equation is not included in the complete primitive, it is meant
that it is not deducible from that primitive hj g'iving to the

arbitrary constant c a particular constant value. But although

a singular solution is not included in the complete primitive,

it is still implied by it. Upon the possibility of satisfying a

differential equation by an infinite number of particular equa-

tions, each formed by the particular determination of an

arbitrary constant, rests the possibility of satisfying it by
another equation, to the formation of which each particular

solution has contributed an element. We have seen in

Chap. VII. how a singular solution, as representing the

envelope of the loci defined by the series of particular solu-

tions, possesses a differential element common with each of

them. We shall now see that this property is not accidental

—that it is intimately connected with the definition of a

singular solution.

It is important that the two marks, positive and negative,

by the union of which a singular solution of a differential

equation of the first order is characterized, and by the expres-

sion of which its definition is formed, should be clearly appre-

hended. 1st. It must ffive the same value of -^ in terms of x^ dx
and y, as the differential equation itself does. This is its

positive mark, a mark which it possesses in common with the

complete primitive, and with each included particular primi-

tive. 2ndly. It must not be included in the complete
primitive. This is its negative mark. Upon the analytical

expression of these characters the entii'e theory of this class of

solutions depends.

Among the different objects to which that theory has
reference, the two following are the most important. 1st. The
derivation of the singular solution from the complete primitive.

2ndly. The deduction of the singular solution from the differ-

ential equation without the previous knowledge of the com-
plete primitive. The theory of the latter process is so de-

pendent upon that of the former that it is necessary to consider

them in the order above stated.
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Derivation of the singular solution from the comjctlete primitive.

2. The complete primitive of a differential equation of the

first order, whatever may be the degree of the equation, is of

the form

j> {x, ?/, c) = 0.

If we give to c a particular constant value in this equation

we obtain a particular primitive. If we give to c a variable

value by making it a function of cc, or of?/, or of both, we, as

will immediately be shewn, convert the equation into any
desired relation between x and y. We propose then to deter-

mine c as variable, but as so varying that the resulting

relation between x and y shall continue to satisfy the differ-

ential equation.

The general effect of the conversion of c into a function of

X or of y must first be considered.

Prop. I. A primitive equation

^{x, y, c)=0

may, hy the conversion of c into a function of x he transformed

into any desired equation containing x and y together, or y
alone, hut not into an equation involving x without y.

Let the desired result of transformation be

^(^, 3/)=^^ orx(?/)=0,

involving y at least. Combining either of these equations

with the primitive we can eliminate ?/, and so obtain a rela-

tion between x and c which will determine c as the function

of x required.

It is evident however tliat the conversion of c into a func-

tion of X could not convert the primitive into an equation not

involving y. For a variable cannot be eliminated from an

equation, except by the aid of another equation which contains

that variable.



142 DERIVATION OF THE SINGULAR SOLUTION [CH. VIIL

Similarly the conversion of c into a function of y would

enable us to convert the given primitive into any desired

equation involving, of the two variables, at least x,

Ex. Let it be required to convert the equation y = cx into

x^-iry'^=lj by the conversion of c into a function of x.

Eliminating y from the given and the proposed equation,

we have

a;^+cV=l

,2\

whence c =———-.
x

This value of c substituted my — ex, converts it into

which is equivalent to a?^ + ^/^ = 1.

3. Let us now enquire what determination of c as a func-

tion of X will convert the primitive </) (ic, y, c) = into a

relation between x and y still satisfying the differential equa-

tion.

Now the complete primitive of a differential equation of

the first order is always by solution with respect to y reduci-

ble either to a single equation or to a series of equations of

the form

y=f{x,o) (1).

If we differentiate, regarding c as constant, we have as the

derived equation

dy df[x, c)

dx dx m.

and the elimination of c from this by means of the previous

equation gives us a value of -^ which satisfies the differentia;!

equation. That differential equation would then still be satis-

fied if c were regarded as variable, provided tliat the variation

were such as to leave unchanged the form of the relation be-
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tween x^ y and c in the primitive and in the derived equation.
For the nature of c does not affect the mode of the elimina-
tion.

Differentiating (1) then on the hypothesis that c is a func-

tion of Xy and representing the differential coefficient of c thus

considered by ( -7-
J

, we have

dy ^df{x, c)
^

df{x, c) (^^^\^^^ r^.

dx dx dc \dxj ^'^^'

And this will agree in form with the expression for f in (2)

•£ -J^^^ (-^j = 0. But to suppose (—] = would be to

suppose c a constant and to return to the ordinary primitive.

It remains therefore that for a singular solution we have

*i^=». "i- w-

This is the first analytical condition. What it means is that
if a fixed value be given to x in the primitive, y must not
vary for an infinitesimal variation of c. And by this condi-
tion c is to be determined as a function of x.

Now in accordance with the reasoning of Prop. i. the sub-
stitution of a function of x for c in a primitive which contains

?/, cannot lead to a resulting equation not containing ?/, tliough

it may lead to a resulting equation not containing x. Hence
dv

the condition -f-^O can only lead to those singular solutions

in the expression of which 9/ at least is involved. Had Ave

reduced the primitive to the form x=f{?/, c) we should, as is

evident from the principle of symmetry, have arrived at the
analytical condition

3^ =
' ^^'

a condition by which c would be determined as a function of
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y. And the substitution of sucli value or values of c in the

primitive would lead to all singular solutions in the expression

of which X at least is involved.

It will be remembered that what is essential to a singular

solution is that c should not admit of determination as a
constant wholly independent of the variables. But whether
it be determined as a function of x or as a function of y is

indifferent. The one form is usually, but not always, con-

vertible into the other by means of the primitive. Thus, if

the primitive be in the form ^ (cc, ?/, c) = 0, and c be deter-

mined in the form c=f{y), the elimination of ?/ between these

equations will generally enable us to determine c as a function

of X ; but it will not do so if, in the elimination of y, c should

disappear.

Thus if the primitive were

the value of c determined as a function of y by the condition

dx— = would be c = y, and this value of c is not expressible

by means of x, for on attempting to eliminate y between the

above equations c also disappears. Nor is it indeed possible

dv
in the above case to satisfy the condition

-f-
— ^- Hence it is

necessary in establishing a general method to take account of

loth the conditions (4) and (5).

And these conditions are sufficient, ^o other is implied.

The comparison of (2) and (3), from which the condition ;7^=

dx
was derived, leads also to the condition jr- = 0, but not to any

dif
other condition. The expressions which they furnish for -^

dfix, c)
become equivalent in two cases only, viz. 1st, if '

,

'—= 0,

the case first considered; 2ndly, if without supposing
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"^—- = 0, we have -"—-^
I -r- 1 intinitcsimal m com-

df(x, c)
parison with "^

^/
—

, and therefore if we have

~~d^^—d^=^ ^^)'

for, c being regarded as a function of x, and therefore variable,

the factor l-j-j cannot be continuously infinite. Now dif-

ferentiating the equation y=f{x, c) we have

, df{x, c)
J ,

clf(x, c) J
^y^d^'^^'-^-ii^'^' (')•

Hence, if we make cly = 0, we have

dx _ df{x, c)
_ df{x, c)

dc dc ' dx (8),

dx
so that (6) assumes the form 7- = 0. But, as a demonstration

of this condition, the above method is less general than the
previous one, for it assumes the possibility of expressing as a
function of x the value of c determined bj the condition
dx
-^ = 0. Now that value is primarily a function of ?/, and may

not be expressible at all by means of x.

It is well to note that the final criteria ~ = 0, — =
dc dc

are in effect analytical expressions of what logicians term con-
ditional propositions. The former expresses that // x be
assumed constant, 1/ will not vary for an infinitesimal varia-

tion of c ; the latter that {fi/ be assumed constant, x will not
vary for an infinitesimal variation of c.

4. Each of these conditions then

di/ ^ dx ^

dc dc

has its special case of failure. The former cannot lead us to

B. D. E. 10
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singular solutions in wliich y is not involved ; the latter can-

not lead to those in which x is not involved. It is proper

to shew that except in such cases of failure they are

equivalent.

As expressed by means of the primitive 3/ =/ (a;, c), these

conditions assume the forms

df{x, c) ^^ df{x. c)
,
df{x, c) ^^

dc
'

do ' dx '

^"^
dc ^' dc dx ^'

dy
and these are equivalent unless -^ be or infinite.

But -^ = implies that the singular solution is of the
dx ^

form

2^ = a definite constant,

and this is precisely that form of singular solution which the

dx
condition ;7- = fails to give.

Similarly -^ = go
, being equivalent to 3-= 0, implies that

the singular solution is of the form

a? = a definite constant,

and this is that form of singular solution which the condition

-f
= fails to give.

Thus the conditions -^ = 0, -^ = 0, although not necessarily

equivalent, do not lead to conflicting results.

When we cannot solve the primitive equation with respect

to y and x so as to enable us to form directly the expressions
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for -^ and y- , we maj proceed thus. Kepresenting the pri-

mitive
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-~ = GO
, are only to te used for purposes of convenience, and

never without reference to the more fundamental relations of

which thej take the place.

The following is a legitimate example of the application of

the subsidiary condition ^ = 0,

The complete primitive of the differential equation -^ = 2y^

is y= [x— cf. Here
(f)
= 7/— {x — cY, and, this being rational

and integral, the condition -j~ = gives 2 (x — c) =0, whence
etc

c = x, a value which, substituted in the primitive, gives 3/ =
a singular solution.

The condition ;t- = also gives c = x, and leads to the same

result. But, since the primitive solved with respect to x gives

x = c + y^, the condition -i- = cannot be satisfied. Thus the

singular solution is here obtained by means of the condition

—= 0, and not bv the condition -7- = 0.
dc '

'^ do

5. The chief results of the above investigation are com-
bined in the following Proposition.

Prop. II. Every singular solution of a differential equa-

tion of the first order may he deduced from its complete jjrimi-

tive hy giving therein to c a variable value determined from
that primitive hy either or both of the equations

i-4:- (•)•

And any solution ichich is thus obtained, and ichich cannot he

also obtained hy giving to c in the primitive a constant value, is

a singular solution.

The conditions (1) are equivalent, except when one only of
the variables x and y is involved in the singular solution; solu-
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(ions ini'olving only tJie variable y resulting only from the

condition -— = 0, and those involving only the variable x re-

dx
suiting only from the condition —- =0.

When the primitive, represented by
(f>
= 0, is rational and

integral ice may for convenience employ the single condition

^ = 0; but never without reference to the fundamental con-
dc '

J J

ditions (1).

In the statement of tlie above theorem the two following

particulars should be noticed.

1st. It supposes c to be determined as a variable quantity.

Now if c be obtained as a function of both x and t/, as it

generally will be if the condition -j- = be made use of, it

may be necessary by a subsequent elimination to reduce it to

a function of one of the variables, in order to assure ourselves

that it is not constant in virtue of the relation between x and

y established in the primitive.

2ndly. The theorem takes account equally of the positive

and of the negative characters of a singular solution. The
existence of a variable value of c determined by either of the

conditions (1) does not assure us that the resulting solution is

singular, unless constant values of c are at the same time

excluded.

Ex. 1. The equation ?/' - "Ixy
'J^

+ (1 + ^') (f^T= 1» ^^^

for its complete primitive y = cx-{-^{l — c^). Its singular

solution is required.

Here -^ = x 77- ^ . Hence / =0 frivQa for c the
dc V(l - c

)

^^c
^

variable value c = —rr^>—r^ , the substitution of which in the

primitive gives

y = V(-«' + i) (!)•
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This value of ?/ satisfies the given differential equation, and
it is evident on inspection that it is not included in the com-
plete primitive. Formally to establish this, we find on elimi-
nating y between that equation and (1)

solving which, with respect to c, we have the unique value

e = ——

—

—
, which, agreeing with the value of c before

\/ [X -]- 1)

employed, shews that c admits of no other value, and in

particular that it admits of no constant value. The solution

is therefore singular.

(Ix
The condition -7- = would, in the above example, give

c = -^
, and lead to the same final result.

We must be careful not to rely upon the condition -— = 0,

except under the circumstances specified in the general

theorem. This remark will be illustrated in the following

example.

Ex. 2. The complete primitive of the differential equa-

tion y =i^x + — , where ^ stands lor —
-

, is y — ex = 0,

and, if we represent its first member by ^, the elimination of

d^

dc

tion y"^ — Amx.

c between the equations ^ = 0, -^ = 0, gives the singular solu-

But, though this is not a procedure likely to be adopted, if

we reduce the primitive by solution to the form

^ -^^^ L - 2c = 0,
X '
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and then represent its first member by </>, we shall have

dy _ d^ d<b

dc do ' dy

X ~~ X sj^y^ — ^mx)

And here the singular solution y"^— Amx = 0, before obtained,

f7(jf>

dc
is seen to be dependent, not upon the vanishing of -

, but

upon the assumption of an infinite value by — .

The true ground of preference for the conditions r = ^j

dx .

-T- = 0, consists, however, not in the directness of their appli-

cation to irrational forms of the primitive, but in the plainness

of their geometrical interpretation, and still more in their fun-

damental relation to the problem of the derivation of the

singular solution from the differential equation—questions

hereafter to be discussed.

The following example is intended to illustrate that portion

of the theorem which relates to the negative character of a

singular solution.

Ex. 3. The complete primitive of the differential equation

is y = c[x — cy. The singular solution is required.

Here the condition -v- = gives
dc

{x -c){x- 3c) = 0,
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Avhence c = x^ ^^ o • These values of c, both of which a.

variable, reduce the primitive to the forms

2/ = 0, 2/ = ^,

and both these are solutions of the differential equation. Bu
while the latter of the two is not included in the complet

primitive, the former is included in it. If between the equa

tions

y = c{x-cy, y = 0,

we eliminate ?/, the resulting values of c will be

c = 0, c=x.

We see therefore that the solution to which we were 1

bj the assumption c = x is a particular integral. But it pc

sesses tlie geometrical properties of a singular solution e.

plained in the following Article.

Geometrical Interpretation.

6. Let y =/ [x, c) represent a fomily of curves the indi

vidual members of which are determined by giving difFeren

values to c. Then, adopting for a moment the language o

infinitesimals, the differentiation of y with respect to c implies

the transition from an ordinate y of one curve to an ordinate

y + -,- dc, corresponding to the same value of x, but belonging

to another curve of the series; viz. the curve obtained by
changing c into c + dc.

When we impose the condition ;j-= 0, we demand that this

transition shall not affect the value of the ordinate y corre-

dii
sponding to a value of x determined by the equation -/ =0,
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Hence the singular equation obtained by the elimination of

c between the e(^uations y=f{x,c), y=0, represents the

locus of such points of successive intersection.

In stricter language, the singular solution represents the

locus of those points which constitute the limits of position of

the points of actual intersection of the different members of

the family of curves represented by the equation ?/=/ (^, c\

always excepting the case in which that locus coincides with

a particular curve of the system.

(ill

And as at these limiting points the value of -j ^^ ^^^ '^^'^^

for the locus of the singular solution and the loci of primitives,

it follows that the former has contact with every curve of the

latter system which it meets. The locus of the singular solu-

tion is seen to be the envelope of the loci of primitives. The
envelope of the loci of primitives is the locus of a singular

solution, except when it coincides with one of the particular

loci, of which it forms the connecting bond.

Similar observations may be made with reference to the

condition -7- = 0.
ac

Derivation of the singular solution from the differential

equation,

7. We have found that the singular solution of a differen-

tial equation considered as derived from its complete primitive

possesses the following characters.

1st. It satisfies one of the conditions ^- — 0, -, =0.
dc dc

2nd. It is not possible to deduce it from the complete

primitive by giving to c a constant value.

It has also been shewn that the positive conditions are

equivalent except when the singular solution involves only

one of the variables in its expression.
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Now we shall endeavour to translate the above characters

from a language whose elements are x, y, and c to a language

whose elements are x, y, and ----
,—froni the language of the

complete primitive to the language of the differential equation.

If we differentiate with respect to x the complete primitive

expressed in the form

2/=/(^.c) (1),

we obtain the derived equation

^='^ •••(^)'

and substituting in this for c its expression in terms of x and

y given by the primitive (1), we have finally the differential

equation in the form

i> = ^{^,y) (3).

Thus the differential equation (3) is the same as the derived

equation (2), provided that c be considered therein as a func-

tion of ic and y determined by (1).

Accordingly we have •

|i„(3)=|in(.)x|in(l),

or ^P
ir^ (s) =.^l^^A ^^f^L^ .

dy ^ dxdc ' dc *

. ,,v dc ^ dy ^ df(x, c)
smce m ( 1)

— = 1 -^ -f = 1 -^ •'
, .

'
' ay dc do

or finally | =il°st W'
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provided that the value of the first member be derived from

the differential equation, that of the second member from the

complete primitive.

In like manner if we suppose the complete primitive ex-

pressed in the form

we shall have through symmetry the relation,

d /IN d , dx ,^.

TxKp) = Ty^°^Tc (^)'

the first member referring to the differential equation, the

second to the complete primitive.

The equations (4) and (5), which are rigorous and funda-

mental, establish a connexion between the differential equa-

tion and the complete primitive, and it now only remains to

(£fi doc
introduce the conditions -^ = 0, -j- = 0. We beffin with the

dc ' dc *

former.

diiWe have seen that when -,— = leads to a sin ovular solu-
> do ^

tion it does so by enabling us to determine c as a function of a?,

suppose c = X. Before proceeding to more general considera-

tions it will be instructive to make a particular hypothesis as

dy
to ih^form of the equation -^ = 0.

Suppose then this equation to be of the form

Q{c-Xr = (6),

m being a positive constant and Q a function of x and c, which
neither vanishes nor becomes infinite when c = X. This hypo-

thesis is at least sufficiently general to include all the cases in

which -/ = is algebraic.
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By (6) we have then

dQ dX
dp d , dii dx dx /„,

dy dx "^ dc Q c-X ^
'

and the second term of the right-hand member liavnig c —X
for its denominator and not containing c at all in its nume-

rator, is infinite. At the same time, we see that no such

infinite term would present itself were c determined as a con-

stant.

For Iet|=<3(c-«r,the„^logJ = g.ft the right,

hand member of (7) being now reduced to its first term.

The conclusion to which this points is that -j- is infinite for

a singular solution, but finite for a particular integral.

Again, suppose the value of c in terms of x and y fur-

nished bj algebraic solution of the complete primitive to be

c — 4>(x,y), then substituting this value in the equation

c — X= 6, we obtain the singular solution in the form

cl>{x,y)-X=0.

Now the same substitution gives to the infinite term in the

value of -/ the form
dy

dX
^^

(8).
<j>{x,y)-X

"\Ye see then, in the case of a singular solution correspond-

ins: to a determination c = X, that -y- as derived from the dif-

ferential equation becomes infinite owing to </> (.t, y) — X
occurring in a denominator. And, whatever modification of

form may be made by clearing of fractions or radicals, we may
still infer that, if u = be a singular solution derived from an
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algebraic primitive, the function -^ will become infinite, owing

to u presenting itself under a negative index.

The analysis does not however warrant the conclusion that

di)
any relation between x and y which makes y- infinite will

be a solution. If m be a negative constant, the second term

in the expression of y- is still infinite, but the prior condition

--'^ = is no longer satisfied. All we can affirm is that if

-f-z= cc ffives a solution at all it will be a sin<2rular solution,
dy "" ^

dx \ . , .

Since ^— = -
, it is evident that a sin^ijular solution ori^^Inat-

dy p
° °

ing in a determination of c in the form c= Y will make

-7^
(
-

) infinite.
dx \pj

A contrast between the conditions f^ = 0, -,'- = 0, and the
do dc

conditions y = co
, -r- ( —

j
= co

, is also developed. The former

lead to solutions, but not necessarily to singular solutions

;

the latter do not necessarily lead to solutions, but when they
do, those solutions are singular.

Ex. 1. G iven ^ - 2xp + 2y = 0.

Here p=x ± \/{x^ — 2y)

,

which becomes infinite if ?/ = '—
, and this satisfies the difior-

cntial equation. It is therefore a singular solution.

It may be objected against the above reasoning, not only
that it involves an assumption as to the form of the equa-
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tion -r = 0, but also that it takes no ^account of any pos-
ac

sibilities arising from the first term in the expression of

-^. But it serves well to illustrate what, in the vast ma-
dy
jority of instances, is the actual mode of transition from the

one set of conditions to the other. We proceed to consider

the question in a more strict and general manner.

8. AVhen -/- = determines c as a function of x, it recipro-

cally determines ic as a function of c, so that if a definite value

be given to c, a corresponding definite value or values will be

given to x. Let -y- be represented by yjr [x, c) , then

dp _ d . dy

dy dx ^ dc

= li„,it ^f]2gi±+A£J^i}2E±lM (9),

h approaching to 0.

Now for a singular solution ^fr {x, c) = 0, and this being,

from w^hat precedes, satisfied only by definite values of a?, cor-

responding to our assumed definite value of c, it follows that

•y^r [x-\- 7i, c) will not be equal to for any continuous series of

values of h however small ; neither then will log i/r (a? + ^, c)

retain continuously the value of \og'\^r{x, c), viz. — oo . Thus
the numerator of the fraction in the second member being
equal to the difi'erence between a finite and an infinite quantity

is infinite, and the limit of the fraction therefore infinite.

Hence we conclude that a singular solution considered as

derived from the primitive by the conversion of c into a function

of X, satisfies relatively to the difibrential equation the condition

dy

And in the same way it may be shewn that a singular solu-

tion derivable from the primitive by the conversion of c into a

function of y satisfies the condition -y- f -
j
= cc .
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Changing the order of the enquiry, let us now examine
whether there exist any other forms of solution satisfying the

condition -^ = co, -=- l-]=cc . If there be, it will be made

evident that more is involved in the definition of a singular

solution than we have yet recognized in our processes of

deduction, or else that the definition must be enlarged.

Expressing the condition -^ = cc , in the form

tM=- (-)'

we observe that it can be satisfied only in one of two ways,
viz. either independently of c, or by some determination of c,

and if the latter again only in one of two ways, viz. either by
the determination of c as a function of x, or by the determina-

tion of c as a constant.

We may pass over the case in which the above equation is

satisfied independently of c, because the relation obtained

would involve x only, whereas it has been shewn that

-^ = GO leads only to solutions involving y at least. We
may also pass over the case in which it is satisfied by the

assumption c = X, because such a value of c, if it lead to

a solution at all, can only do so by satisfying the condition

— = 0, and thus lead to the form of singular solution already

investigated. There remains only the case in which the

equation (10) is satisfied by a constant value of c.

Let then the equation (10) be satisfied hj c = a. The most
general assumption we can make respecting the form of its

first member is the following, viz.

^og-f=cl>{c)f{x,c),
dx "=" dc

where (/> (c) is a function of c which becomes infinite when
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assumes the constant value in question, and -^ {x, c) does

not become infinite for such value. Hence the most general

^^
dc

form of log ~ is

log^ =
J

</> (^) t (-^^ c)dx=^ (c) jyjr {x, c) dx.

To give to this expression the utmost generality, we must,

on effecting the integration with respect to ic, add an arbitrary

function of c. Thus we shall have

log^ = </> (c)
|j
t (^, c)dx-VxW| •

Therefore ^ = 6'^(c){/^(^, ^M^r+xCO},

ac

or, representing the function /'v/r(a:, c) dx + %(c) by ^{x, c).

This is the most general form of -V^ , as determined from

the primitive, which is consistent with the hypothesis that

,- 102: 1 becomes infinite for a constant value of c. Ac-
dx ^ dc

cordingly if, supposing the primitive to be given, we sought

to determine the singular solution by the condition -^ = 0,

we should be led to an equation of the form

or ^(c) ^(a^, c) = -cc (12).

Xow this equation is not satisfied by any value of c which
makes ^ (c) infinite, unless it give to ^ {x, c) an opposite sign
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to that of (/) (c). But this indicates in general the existence

of a relation between x and c. Thus suppose

<^ (c) = c, ^ (cc, c) = X,

Then (12) becomes

cx = — ^
^

which demands that c should receive the value -co or + go

according as x is positive or negative. In either case c is

constant, but it is a dependent constant—dependent for its

sign upon the sign of x. Thus the condition -^ = co may

indicate the existence of a species of singular solution derived

from the complete primitive bj regarding c, not as a conti-

nuous function of x, but as a discontinuous constant, the law
of its discontinuity being however such as to connect it with

the variations of x.

Ex.2. Given ^> = 2'-My.

Here we find

| = i(i + i°s^) ^^^)'

which is infinite if y = 0. And this proves on trial to be a

solution of the diff'erential equation, the true value of the

indeterminate function in the second member when ?/ =
being (Todhunter's I)if. Cal. Art. 158). Now the complete

primitive is ?/ = e'^. Hence we see that ?/ = is not a particu-

lar integral in the strict sense of that term. Tiie value to be
assigned to c is not icholly independent of x. We may there-

fore regard y=0 as a singular solution satisfying the condition

f = 00.
dy

9. We have said that, in general, the equation (12) in-

dicates the existence of a relation between x and c. A case

of exception however exists. Eepresenting </)(c) by C, sup-

pose 4> (a?, c), expressed in terms of x and C, to be capable of

development in descending powers of C: suppose, too, that

B. D. E. 11
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the first term of the development is of the form A C\ where
A is constant and r> — 1. Then as C approaches infinity,

(12) tends to assume the form

indicating that G, and therefore c, possesses more than one

value, real or imaginary. Here, then, the condition -^ = go

would accompany a solution possessing this singularity, viz.

that it corresponds to a multiple value of c, the arbitrary

constant in the complete primitive. It is in fact a species of

multiple particular integral.

Ex. 3. Given jp^ —pxy + y^ log ^ = 0.

T-r ^V + ?/ \/(^^ — 4 loO^ ?/)
Here p — ——. ^-"^

;

therefore

dp ^ x±>^{x^-^\o^ji) 1 . .

dy 2 "^V(^'^-4iog^) ^ ^'

and this is made infinite by ?/ = and by a?^ — 1 log ?/ = 0, that

is by y = ^^ y= e ' •

Both these satisfy the differential equation, and the second is

obviously a singular solution. To determine the nature of

the first let it be observed that the complete primitive is

y = e^^\

and that this reduces to ?/ = 0, irrespectively of the value of x,

by the assumptions c = + co and c = — go . Now this is the

only case in which two particular integrals agree. We might
in any case, by changing in the complete primitive of an

equation c into c^, get two values of c for a particular integral,

but then it would be for every particular integral. It is only

when the property is singular, tliat the condition -^ = co is

satisfied.
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It is obvious that one negative feature marks all the cases

in which a solution involving y satisfies the condition -/- = co .

It is, that tlie solution, while expressed by a single equation,

is not connected with the complete primitive bj a single

and absolutely constant value of c. In the first, or as it

might be termed envelope species of singular solutions, c re-

ceives an infinite number of different values connected with
the values of a; by a law. In the second it receives a finite

number of values also connected with the values of ic by a
law. In the third species it receives a finite number of values,

determinate, but not connected with the values of x.

If we observe that all the above cases, while agreeing in

the point which has been noted, possess true singularity, we
shall be led to the following definition.

Definition. A singular solution of a ditTcrential equation

of the first order is a solution, the connexion of which with
the complete primitive does not consist in the giving to c of

a single constant value absolutely independent of the value

of X.

Criterion of species.

10. It is a question of some interest to determine whether
a given singular solution, w = 0, of a differential equation, is

of the envelope species or not.

On the particular hypotheses assumed in Art. 7, it is shewn
that singular solutions of the envelope species possess the fol-

lowing character, viz. \i u = be such a solution, then -/-

ay
becomes infinite through containing a term in which u is

presented under a negative index.

Now inquiries which are scarcely of a sufficiently elemen-
tary character to find a place in this work, indicate (with very
high probability) that this character is universal and indepen-
dent of any particular hypothesis, and that it constitutes a
criterion for distinguishing solutions of the envelope species

from others.

11—2
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As an example of an hypothesis different from that of

Art. 7, let us 'suppose

iy Q
dc log (c —
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2nd. Relations mvolvinrj x, with or without y, ivhich mahe

-T-\-] infinite and only infinite^ and satisfy the differential

equation.

When a solution as al>ove defined is actually ohtained hy
equating to a factor which appears under a negative index in

the expression of
-J-

or -j—l-j it may he considered to lelong

to the envelope species of singular solutions. In other cases it is

deducihle from, the complete primitive hy regarding c as a con-

stant of multiple value,—its ptarticular values heing cither \st

dependent in some loay on the value of x, or Indly independent

of X, hut still such as to render the property a singular one.

We may add that there exist cases in whicli the characters

of different species of solutions seem to be blended together.

dr) • .

Thus ~ may admit of both a finite and an infinite value,

indicating a duplex genesis of the solution from the complete
primitive. It may also happen that the assumption of an

infinite value by -~- may be attributed, indifferently, either to

a negative index or to a logarithm. And then it sliould be
inquired whether or not the solution is of the envelope species,

but marked with some peculiarity arising from a breach of

continuity in the mode of its derivation from the complete
primitive.

The following examples are intended to elucidate particular

points either of theory or of method.

Ex. 1. Given (1 + x') (j^X- 2xy
'j^

+ y'-l = 0.

This equation, first discussed in Brooke Taylor's Methodus
Incrementorum, is remarkable as having afforded the earliest

instance of the actual deduction of a singular solution from a

differential equation (Lagrange, Calcul des Fonctions, p. 276).

We shall first explain Taylor's procedure, and afterwards

apply the above general Theorem.
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Taylor differentiates the equation, and finding

resolves this into the two equations

(H,.^)2_^ = 0, g = (1).

The second of these gives y = ax-\-h, which satisfies the

differential equation provided that h = ^J[l — a^). Thus the

complete primitive is

y = ax + V(l ~ ^^)'

The first equation of (1) gives, on eliminating ~- by means

of the differential equation,

and this he terms the singular solution {singularis qucedam
solutio prohlematis)

,

To apply to this example the general method, we find

_ xy±sj{x''-y'' + l)

Hence, ~f = -^-— \x T
ay X -^ 1

[

Introducing the condition -~ = cc
, we shoirld apparently

have the equations

cc' + 1 = 0,

hut of the second of these, as it does not involve y in its

expression, no account is to be taken. The first making

-^ infinite whether the upper or the lower sign be taken, and

satisfying the differential equation, is a singular solution.

Again, as also it is derived from the vanishing of a function

under a negative index, it belongs to the envelope species.

E I
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We may add that it might be found but less readily from the

condition -^ f
- ) = oo .

The following example is intended to illustrate the use of
the latter condition.

Ex.2. Given t^ = CC-".
ax

Hence, since p = x~", the condition -f- = co cannot be

satisfied.

d
The condition -^ ( — j

= go gives

and this is satisfied hy x = if n be less tlian 1, but is not

satisfied hy x = i( 7i be equal to or greater than 1.

Now the differential equation is satisfied hy x = 0, whatever

positive value we give to 7i, as may be seen by expressing it

dx
in the form -j- = x". We conclude therefore that x = 0, is a

singular solution of the proposed equation if 7i be positive and
less than 1, but a particular integral if 7i be equal to or greater

than 1. We infer too that the solution, when singular, be-

longs to the envelope species.

In verification, it may be observed that, if n be not equal

to 1, the complete primitive is

+ c,
^ 1-n

or

ISTow if n is less than 1, the index in the second member is

positive, and we cannot have x = unless the quantity under
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the index be made equal to 0. But this would give c = y.
Hence, ic = is a singular solution.

If n be greater than 1, the index in the second member
being negative we cannot have x — unless the quantity

under the index becomes infinite. But this it does if c is

infinite. Here then a; = is a particular integral.

If n be equal to 1, the complete primitive is

X — ce^,

and this is reduced to cc = by the assumption c = 0. Here
then also ic = is a particular integral.

The following example is intended to illustrate a class of

problems in which -^ admits of both a finite and an infinite

value.

Ex. 3. Given f - Ixifp + 4?/^ = 0.

Here we find

:p = xy^±^l{x'y-4.y^) (1).

Therefore

%_ J:
dy~ 2y^ r "^

V(^'-4?/^)
^+-^] i%

and this apparently becomes infinite when y = 0, and when

x^ - Ay- = 0, i. e. for

2/ = 0, 2/=^.

Let us inquire what are the true values of -J- .

1st. If y =— , we find, on substitution and reduction,

dy x'\
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which becomes infinite wliichsoever sign be taken. Hence,

y = — is a singular solution ; and, from the mode of its origin,

it is of the envelope species.

2ndly. If ?/ = 0, the value of -j- in (2) becomes infinite if

the upper sign be taken, but assumes the ambiguous form - if

the lower sign be taken. To determine its true value, we

may expand the fraction ^-j- in ascending powers of ?/^.

We thus find V(^'-4r)

-—= —'Ax -V [x ^ + &c.
(^y 2?/M V ^

which, as before, gives -^ = go when, taking the upper sign,

we make y = 0, but on taking the lower sign gives

dy ixf V a; I

2= - + terms containing positive powers of y.
X

2
And this expression, on making ?/ = 0, assumes the value - .

These results lead us to infer that the solution^ ?/ = 0,

originates in two distinct ways from the primitive, which is in

this case y= c^ {x- cf. It is evident that this is reduced to

y^O, by either of the assumptions c = and c = x. Hence

the solution ?/ = is a particular integral.

At the same time it is to be noted that this solution pos-

sesses all the geometrical properties of a singular solution.

The complete primitive represents an infinite system of para-

bolas whose axes are parallel to the axis of?/,—whose vertices

all touch the axis of x, which thus constitutes a branch of

their complete envelope,—and of whose parameters cach^ is

inversely as the square of the distance of the corresponding
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vertex from the origin of co-ordinates. Tlie nearer any par-

ticular vertex is to tlie origin, the more does the curve to

which it belongs approach to a straight line ; and the curve,

if we may continue thus to speak, whose vertex is at the

origin coincides Avitli the axis of x which is the envelope of

the series. It might in a certain real sense be said that the

particular and the general are here united.

The following example shews, though by no means in the

most extreme case, how slight may be the difference between
a singular solution and a particular integral.

Ex. 4. Given x-~ = y (}ogx + logy — 1),
ax

Representing -^- by p, we have

?/ (log X + log ?/ — 1)
^^''

'' ^ '

therefore ^i jo^^ + h^y
ay X

and tliis becomes infinite, 1st, if j/ = 0, 2ndly, if y — co

,

3rdly, if a; = 0.

The first only of these satisfies the differential equation,

the assumption y = reducing the indeterminate function

y log?/ in the second member to (Todhunter's Differential

Calculus, Art. 158). We conclude, that ?/ = is a singular

solution, but from the nature of its origin not of the envelope
species.

Now the complete primitive is y = — , and, judging from

this, it might at first sight seem as if ?/ = were a particular

integral corresponding to c = — co . We remark however that

the primitive is not reduced to y = 0, by the assumption

c = - CO
, unless x he positive. If ic is negative we must make

c = + CO to effect that reduction. In fact, the value of c which
reduces the complete primitive to the form 3/ = 0, though in-

dependent of x in all other respects, is dependent upon x for
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its sign, wliicli must always be opposite to the sign of x.

And this connexion, slight as it is, determines the character

of the solution.

The following example illu?;trates a mode of procedure

which may be adopted wlien -j- presents itself in the am-

biguous form -, while the differential equation cannot readily

be solved with respect to />.

Ex. 5. Given j)" - ixyp + 8?/^ = 0.

Differentiating with respect to y and p^ we find

dp _ Axp — 16y , .

d~y
~ Yf - 4.xy ^

^'

Equating to the denominator, we have p = ~~— , and,
v3

substituting this value in the differential equation, we obtain

a result resolvable into the following equations, viz.

2/ = ^^'. 1/ = ^ (2),

either of which satisfies the differential equation. On substi-

tution in (1), the former of these values of 3/ makes -j- infinite,

and is evidently a singular solution. The latter value of y

reduces -/- to the form - .

dy

To determine the real value or values of -/- when ?/ = 0, we

must obtain from the differential equation, regarded as a cubic

with respect to p, the three expressions for that quantity in

ascending powers of?/, substitute them in the second member
of (1), and then after reduction makey = 0.

It will somewhat simplify the process if we transform the

expressions by assuming^ = 2(//^. "VVe shall have

dp _ 2.T^-4?/^ ,.

dy'zfy^-xy^
^'^'
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while the differential equation will become

f-xt + y^ = (4),

which, expressed in the form

X X

gives, bj Lagrange's theorem,

X X

Substituting in (3), and retaining those terms only which
contain the lowest power of y, we have

dp _ -2^_2
^y — xy\ ^

Such is the value of —- corresponding to the value of t which

is given bj Lagrange's theorem.

That value of t vanishes with y. Its other values do not

vanish with ?/, but approach the limits + x"^ as y approaches

to ; for if in (4) we make y = 0, we find and + x^- for the

corresponding values of t. Kow if in (3) we make 3/ = 0,

t= ± ^/x^ we have

dp
-/ =co.
dy

From these results combined we infer that ?/ = is a par-

ticular integral, possessing the geometrical characters of a

singular solution. It originates in fact from the complete

primitive y = c(x — cY, either by making c = or c = x. And
that primitive, like the primitive of Ex. 3, represents a system
of parabolas enveloped by one of their own number.

Setting out from the primitive we find

d , d7/ 1 1

dx ° dc x — c X- 3c
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X
This expression becomes infinite when c = - corresponding to

o

4
the sino-ular solution ?/ = —- icl It becomes infinite when c = x.•&

27

2
and assumes the value - when c = 0,—these cases belonging

X
to the particular integral y = 0. All these determinations agree

wdth those of -^ obtained from the difi'erential equation.

The following is an example of a special geometrical pro-
blem generalized.

Ex. 6. Determine a curve such, that the area intercepted

between its tangent and the rectangular co-ordinate axes shall

be constant and equal to — .

The supposed area is aright-angled triangle wliose base and
perpendicular, being the intercepts cut off by the tangents from

the co-ordinate axes, are expressed by a; — ^
, and y — xp

respectively. We have therefore

{2j-xp)\x-^ = a\

Proceeding In the usual way the singular solution will be
found to be

representing an hyperbola, while the complete primitive repre-

sents the series of tangents by w^hose successive intersection

the curve is generated.

To generalize the above problem we might suppose ^func-
tional relation given between the intercepts. The differential

equation would assume the form

y-xp=f[x-^-
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Its complete primitive would always be determinable bj the

method of Art. 9, Chap. vii. Or. since x — ^ = - ^ , it is

easily seen that the equation is reducible to Clairaut's form

y-xp = ^{p).

The singular solution may then be found either as in

Chap, vii., or by the direct application of the condition

dp

Geometrical problems which are of a truly symmetrical

character frequently admit of this kind of generalization.

Memarhs on the foregoing theory.

12. As the theory of the tests of singular solutions which
has been developed in this Chapter differs in many material

respects from any that have been given before, it is proper to

shew in what its peculiarity consists. To this end it will be
necessary briefly to sketch the history of this portion of

analysis.

Leibnitz in 1694, Taylor in 1715 (see Ex. 1, Art. 11), and
Clairaut in 1734, had in special problems, and Euler in 1756

had in a distinct memoir entitled Exposition de quelques Para-
doxes du Calcul Integral, examined, more or less deeply,

various questions connected with the singular solutions of

differential equations. Taylor in particular had first recog-

nised the distinctive character of such solutions as set forth in

their definition. The problem of the deduction of the singular

solution from the differential equation seems however to have
been first considered in its general form by Laplace. The
same problem was subsequently investigated in a different

manner by Lagrange, and again in a still different way by
Cauchy. The state of the theory up to the present time w^ill

be adequately represented by a summary of the results to

which these several investigations have led.

1st. Laplace [Memoires de VAcadenne des Sciences, 1772),

employing the method of expansions, arrived at results which
agree, so far as they go, with those of this Chapter. They
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apply only to the envelope species of solutions, and the demon-
strations of them rest essentially on the hypothesis expressed

in (6), Art. 7.

Lagran,2,-e, with whom originated a more fundamental idea

of the method of the inquiry, was led to the less exact criteria

dp _ dp_
dy ^ dx

[Ccdcul des Fonctions, Le9on3 xiv—xvii.)

Cauchy, whose method was founded on the study of the

cases of failure of certain processes for obtaining the complete

primitive in the form of a series, was led to the conclusion

that a singular solution must satisfy one of the two following

conditions, viz.

d^j _0 dp _

together with a certain further condition, the application of

which depends upon a process of integration (^loiguo, Ccdcul,

Vol. IL p. 435).

Upon these results the following observations may be made,

I St. Although Laplace recognised the necessity of employ-

ing in certain cases the condition -y-
( — ) = co , for -y- = co

,dx \p)
'

dij

subsequent writers who have employed his method seem to

have invariably omitted this qualification.

2ndly. The supposed criterion -^^ = go , introduced by La-

grange, and since very generally adopted, as the proper accom-

paniment of y- = CO , is erroneous. If we should apply it to

Ex. 2, Art. 11, viz. p=x~'\ we should be led to the conclusion

that £c = is a singular solution whenever n is positive. We
have seen however, both from the application of the true test,

and by verification from the complete primitive, that ic = is

a singular solution only when n is less than 1.
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THe principle of Lagrange's method was the same as that

adopted in the present Chapter, and consisted in expressing
-J-

and -j- as derived from the differential equation, by means of

differential coefficients derived from the complete primitive

before the elimination of c. The fallacy which vitiated his

results consisted in assuming that these expressions become
infinite In consequence of the appearance of a vanishing factor

in their denominators [Calcul des Fonctions, pp. 229, 232).

Moigno, the expositor of Cauchy's views, also quotes La-

grange's method and results as presented by Caraffa, but

without involving any essential variation {Calcul, Tom. ii.

p. 719). Professor De Morgan, in perhaps the latest publi-

cation on the subject, adopts Lagrange's results, expressing,

however, only a qualified confidence in his method {Cam-
bridge FMlosopMcal Transactions, Vol. IX. Pt. ii. " On some
points of tlie Integral Calculus"). And he illustrates these

results by geometrical considerations which are sufficient to

shew that they contain at least a considerable element of

truth. Nor should this be thought surprising. For it is plain

that Lao-rano-e's condition -^ = go , and the true condition
^ ^ dx

—-
(
-

J

= CO , are equivalent, except when the singular solu-

tion makes p assume one of the forms and co . And such

cases do exist. Perhaps the peculiar difficulty of tliis subject

has consisted in the faint and shadowy character of the line

by which truth and eiTor are separated.

13. Of Cauoliy's tests the first, viz. 4^ = q, may certainly

be set aside. Whenever -,- assumes an ambiguous form its
di/

true value or values must be determined. This is ilkistrated

in some of the foregoing examples. Professor De Morgan's

observations on this subject in the memoir above referred to,

are deserving of attention. The final criterion, which is peculiar

to Cauchy's theory, seems to be founded upon what we cannot

but regard as an unauthorized position as to the meaning of
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a singular solution. Thus y = 0, the solution deduced hj the

criterion -^ = co from the differential equation jp — y logy, is

regarded by Cauchy as a particular integral. Xow although
when X is real the complete primitive logy = c6^ reduces to

^=0 by the assumption c = - co , it does not necessarily do so
when X is imaginary. Thus, if ic = 7r V(- 1), we must make
c = CO

, in order to give ?/ = 0. Cauchy's rule seems indeed
to have been designed, contrary to the general spirit of his

own writings, to exclude the consideration of imaginary
values.

Properties of Singular Solutions.

14. Various properties of singular solutions of the envelope
species have been demonstrated. Of these we shall notice the
most important.

1st. An exact differential eqiiation does not admit of a sin-

gular solution.

Let the supposed equation be

d(i>{x,y)
^

d(t>(x,y) dy^^
dx dy dx ^ ^'

and let y=f{x) be a relation actually satisfying it and
assumed to be singular. On this assumption the primitive

(f){x,y)=c must, on substituting for y its value /(a*), determine

c as a function of x and not a constant. Let F{x) be the value

of c thus determined, then <^ (x, y) = F(x) whence

#(^^ y) ^# {^, y) ^ ^ dF{x) ,^.

dx dy dx dx

which contradicts (1), since —i— cannot be permanently

equal to 0, unless F{x) is constant.

2ndly. It follows directly from the above that a singular

solution of a differential equation of the first order and degree^

onahes its integrating factors infinite.

For let the proposed equation be

Mdx + Ndy=0 (3),

B.D. E. 12
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and let yit be an integrating factor. Tlien

lJL[Mdx-tNdy) = (4),

will be an exact differential equation. Hence, a singular

solution of (3), while it makes the first member of that

equation to vanish, will not make the first member of (4) to

vanish. Now comparing these members, this can only be
through its making fx infinite.

Ex. The equation x + y~ =^-^ \J[x^ -^y^ — a^) has for its

singular solution x^ \-y'^= aJ^, An integrating factor is

and this the singular solution evidently makes infinite. Mul-
tiplying the equation by its integrating factor and transposing

we have the exact differential equation

dy
'^ dx dy

^/{x' + y^-d') dx

and this is not satisfied by x^-\-y'^ = a^, the singular solution

of the unrestricted differential equation.

Srdly. Eveji when we are unable to discover its integrating

factor^ a differential equation may he so prepared as to cease to

admit of a given singular solution of the envelope s])ecies»

This proposition is due to Poisson, and the following

demonstration, which is purposely given in order to illustrate

the nature of the assumption usually employed in the theory

of singular solutions, does not essentially differ from his.

Let us represent the singular solution by u = 0, and trans-

form the differential equation by assuming ic and x as variables

in place of ?/ and,ic. Suppose the new equation reduced to

the form

P=f{^,y) (5),

where p stands for -7- .

^ dx
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This equation is either satisfied or not satisfied hj u = 0.

If it is not satisfied, the preparation in question has already

been effected.

If it is satisfied, the second member f(x, u) contains some
positive power of w as a factor. Assuming that it can be

developed in ascending pos^Ve ye powers of u it becomes

p = Au"-+ Bu^+ ... + &C.

where A, B, C, &c. are functions of x.

Kow, for a singular solution -/- = x . Hence w = must
du

render

Aaii''-' + B/Su^-' + &c. = cc .

But this demands that there should exist at least one
negative power of u in the above development ; therefore

a— 1, whicli is the lowest index, must be negative; therefore

a being already positive must fall between and 1.

Hence we are permitted to express the differential equation

in the form

p = Qu%

where a is a positive fraction, and Q does not involve u either

as a factor or as a divisor.

Dividing by u'^, we have

du ^

Id,
or- -~u'— =Q.

Now u = makes u^-'^=0, since 1 —a is positive. Hence
the first member of the above equation vanishes, wdiile tlie

second, not containing u as a factor, does not vanish. In its

present form then the equation is no longer satisfied by u = 0.

AVe see also that the property of being satisfied by u =
has been lost in consequence of a transformation wliich,

exhibiting the singuUir solution in the form of a distinct alge-

braic factor of ihe equation, permitted its rejection. Sec Art. 1

.

12—2
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It has been shewn in the remarks on Clairaut's equation how,
in the process of ascending bj differentiation to an equation

of a higher order, a somewhat analogous effect is produced,

the singular solution seeming to drop aside under changed
conditions.

4thly. Lagrange has noticed that a singular solution will

generally mahe the value of-r^^, as deduced from the differen-

tial equation, assume the anibiguous form — . His demonstra-

tion, in the statement of which we shall endeavour to exhibit

distinctly the assumptions which it really involves, is sub-
stantially as follows. Let the differential equation expressed
in a rational and integral form be

F{x,g,2y)=0 (1),

then differentiating

dF^ dF , dF ^ ^^^^ +^^^ + ^^^ = ^ (2)-

-p. dp dF dF ,^.Hence -/- = — ^- -^ -_ = co (3).
ay ay d]}

Xow F being rational and integral, -^ and -y- are so also,

and therefore the above can only become infinite for finite

dW
values of a?, y, and ^j>, by supposing -— = 0. This reduces (2)

to the form
dF^ ,

dF ^ ^ ,,,_^^+^^^^ = (4).

Xow, as obtained from the differential equation,

dh/ _ dp dp dy

dx^ dx 2y dx

dF dFdy_

__ dx dy dx
~ —iP

—

'

dp
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an expression which the previous results reduce to the form -

.

We may remark that the condition -,^ = oo does not involve
ay

as a consequence dp=co in (2), so as to affect the legitimacy

of the deduction of (4). For -^ = oo expresses a conditional

proposition, whose antecedent is : li x be constant. Now in

the deduction of (4) x is not supposed to be constant.

Lagrange's demonstration is certainly only applicable to

the envelope species of singular solutions. Of such solutions

it expresses however an interesting property. For the dif-

ferential equation being geometrically common both to tlie

locus of the singular solution and to the locus of each parti-

cular primitive, the ambiguity of value of y-g at the point of

contact shews that that contact is not generally of the second

order.

In like manner, F{x, y, p) still being supposed rational and
integral, the equation

dF{x,y,p)_
dp

-^ ^^^'

shews by the theory of equations that the existence of a

singular solution implies in general the existence of a series

of points for which two values of ~ , usually different, come

to agree, viz. the values of -^ in any particular primitive,

and in the singular solution.O'

15. Mr De Morgan has made the very interesting remark,

that when the condition -/- = go , or -^ ( i^^ strictness -^—
1
=00

>

dy dx\ dxpj
does not lead to a solution of the differential equation, what it

does lead to is the equation of a curve which constitutes the

locus of points of infinite curvature (most commonly cusps)
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in the system of curves represented by tlie complete primitive

[Transactions of the Cambridge Philosophical Society, Vol. IX.

Part II.). Geometrical illustrations will be found in the

memoir referred to.

EXEECISES.

1. The complete primitive of a differential equation is

y-\- c = ^/ [x^+ y^— a') , where c is the arbitrary constant. Shew
that the singular solution is x^ -\- y"^ = a^, and that it may be
connected with the primitive by either of the equivalent rela-

tions c = —y and c = ^J[a^ — x^).

2. Why is the above singular solution deducible by the

dx dv
application of either of the conditions -7- = 0, -^ = 0?

3. Expressing the primitive in Ex. 1 in a rational and
integral iorm (^ [x, ?/, c) = 0, deduce the singular solution by

the application of the condition -~ = 0.

4r. The complete primitive of a differential equation being

x — a = {y — cy\ shew that the singular solution is deducible

dx
by the application of the condition -^ = but not by that of

the condition -,- = 0, and explain the circumstance.

5. The differential equation, whose complete primitive is

given in Ex. 1, may be exhibited in tlie form

[x"^ — a^) p^ — 2xyp — a?^ = 0.

Hence also deduce its singular solution and thereby verify

the previous result.

6. Form the differential equation whose complete primitive

is given in Ex. 4, and shew that the singular solution is de-

ducible by the application of the condition -y- - = co but not
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by that of the condition -j-=^, and explain tliis circum-

stance.

7. Sliew that tlie sinsruhar solutions in the last two ex-

amples are of the envelope species.

8. The differential equation y =px -\- — (Ex. 2, Art. 5)

lias y = cx-\-— for its complete primitive, and y"^ = 4.mx for its

c

singular solution. Verify in this example the fundamental

relation -/- = -^ \o^-^.
ay ax ac

9. Deduce both the singular solution and the complete

primitive of the differential equation y =px + \/ {TJ^ + d^p^), and

interpret each, as well as the connexion of the two, geometri-

cally.

10. The following differential equations admit of singular

solutions of the envelope species. Deduce them.

xY -2 [xy -'i) p -\- y"" =^0y

{y — xjy) [mp — n) = mnp,

y = {x-l)p-p\

11. The equation (1 - x^) p + xy -a = is satisfied by the

equation y = ax. Is this a singular solution or a particular

integral ?

12. The equation y =^ is satisfied by y = 0, which also

makes -^ (-j = co. Nevertheless y = is a particular inte-

gral Shew that this conclusion is in accordance with the

general Theorem (Art. 11).

IP). The equation p [x^ — I) = Ixy \o£^ y has a singular

solution which is not of the envelope species. Determine it.
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14. Determine also the complete primitive in the last ex-
ample, and shew how the singular solution arises.

15. The equation

{p-yY- 2^'y {p-y) = ^xY - 4a?y log y

is satisfied by 3/ = 0. Shew that this is a singular solution

hut not of the envelope species.

16. Find singular solutions of each of the following equa-
tions, and determine whether or not they are of the envelope
species.

1. p^+'22yx^=Ax^y.

2. xj)'^ — 2yp 4- 4ic = 0.

3. xjy = n (a;" + {y - x"") log {y - a;")}.

Geometrical Applications.

• In solving the following problems, the diiferential equation
being formed, its complete primitive as well as its singular

solution is to be found and interpreted.

17. Determine a curve such that the sum of the intercepts

made by the tangent on the axes of co-ordinates shall be
constant and equal to a.

18. Determine a curve such that the portion of its tangent
intercepted between the axes of x and y shall be constant and
equal to a.

19. Find a curve always touched by the same diameter of
a circle rolling along a straight line.

20. Find a curve such that the product of the perpendicu-
lars from two fixed points upon a tangent shall be constant.

(Euler. See Lagrange, Gale, des Fonctions, p. 282.)



CH. VIII.] EXERCISES. 185

(Representing the product by k^, and the distance between

the given points by 2m^ making the axis of x coincide with

the straight line joining them and taking for the origin of

co-ordinates the middle point, the differential equation is

[y-{x-\-m)p] [y-[x-'m)p]
^^^^

Its singular solution is

21. Deduce also the complete primitive of the above dif-

ferential equation,

22. If the primitive of a differential equation be expressed

in the form <^ (ic, y, a) — 0, the condition ;t^ = may be ex-

pressed in the form
d^y^ ^d^y^ ^ ^_ ^^^_ ^_

da ay

Hence it has sometimes been laid down that !
'

'

= co
ay

will lead to a singular solution. Raabe, in Crelles Journal

{TJeber singiddre integrale, Tom. 48), points out that this rule

may fail if at the same time
' ' —- should become in-

finite. Can it fail in any other case ?

23. Exemplify Raabe's observation in the equation

x + c-^ {6cy - 3c') = 0,

which is the complete primitive of Sxp"^ — Qyp -}- x + 2y = 0.

At the same time shew that the singular solutions are

y — x = and 3?/ + ic = 0. ( Crelle, lb.)

24. The complete primitive of a differential equation is

(c- X + yY - ^ {x + y) {c-x + yY +\ =0,
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Eepresenting its first member, which is rational and integral,

hy (j), the condition -j^ = assumes the form

3 (c - a? + ?/) (c - 3aj - ?/) = 0.

Shew that c — a? 4- ?/ = will not lead to a solution of the

differential equation at all, while c — 3x — i/ = will, and
explain this circumstance hj a reference to Art. 4.

Note. The reader is reminded that in all references to the general condi-

<fp . d n
tions y- = <» and -j- ( -)=oo, the oo means simply "infinity" irrespectively

of sign. See General Theoremi, Art. 11.
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CHAPTER IX.

ON DIFFERENTIAL EQUATIONS OF AN ORDER HIGHER THAN
THE FIRST.

1. The typical form of a differential equation of tlie n^^

order is given in Chap. I. Art. 2. We may, by solving it

algebraically with respect to its highest differential coefficient,

present it in the form

dx"~'^V'^' dx' dx''"'dx'-'J
^^^•

Its genesis from a complete primitive involving n arbitrary

constants has been explained, Chap. i. Art. 8.

Conversely, the existence of a differential equation of the

above type implies the existence of a primitive involving n
arbitrary constants and no more; and a primitive possessing

this character is termed complete.

The converse proposition above stated, is one to whicli

various and distinct modes of consideration point, but con-

cerning the rigid proof of which opinion lias differed. The
view which appears the simplest is the following. If, as in

Chap. IT. Art. 2, we represent by A{^(a*) the increment which
the function cf) (x) receives when x receives the fixed incre-

ment Ax, and if we go on to represent by A^</) {x) the incre-

ment which the function A<p {x) receives when x again receives

the same fixed increment Ax, and so on, then it is evident

that the values of A(^ {x), A'^(f){x), &c., are fully determinable

if the successive values of the function (/> {x) in its successive

states of increase are known. Thus since

A(/) {x) = <f){x + Ax) -(t){x),

we have by definition

A'cj) {x) = A {(/) {x + Ax)-(I> {x)}

= [(f){x + 2Aa:) - (^ (a; + Ax)] -
{(f)

(x + Ax) - cj) {x)]

= <f){x + 2Ax) -24,{x + Ax) -{-(pix),
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and so on. Conversely if

<P{x), A0(aj), A'cj>{x), &c.

are given, tlie successive values of the function (j){x), viz. the
values (j){x-\-Ax), ^{x-\-2Ax), &c., are thereby made deter-

minate. Geometrically we may represent </> (x) by ?/, the ordi-

nate of a curve, or of a series of points in the plane x, y^ and
therefore functionally connected with the abscissa x,

!N'ow the view to which reference has been made is that
which, 1st, presents the differential equation (1) as the limiting
form of the relation expressed by the equation

Aic«~-^r'^' A^' Ax'' '" Ax'^-'j ^
^'

A^ approaching to 0; 2ndly, constructs the latter equation
in geometry (the arithmetical or purely quantitative construc-

tion being therein implied) by a series of points on a plane, of

which the first n, viz. those which answer to the co-ordinates

X, x-\- Ax,.. . x-\-{n—\) Ax, have the corresponding values of

y arbitrary, while for .all the rest the values of y are deter-

mined; 3dly, represents the solution of the differential equa-
tion as the curve which the above series of points in their

limiting state tend to form. According to this view, the n arbi-

trary points in the constructed solution of the equation of
differences (2) give rise to one arbitrary point in the limiting

curve, accompanied hj n — 1 arbitrary values for the first

n — \ differential coefficients of its ordinate. And this mode
of consideration appears the simplest, because it assumes no
more than the definition itself demands of us when we attempt
to realize the geometrical meaning of a differential coefficient

as a limit. We may however add that when by the consi-

deration of the limit, the mere existence of a primitive has
been established, other considerations would suffice to shew
that in its complete form it will involve n arbitrary constants

and no more. The fact that each integration introduces a
single constant is a direct indication of the fact. An indirect

proof of a more formal character will be found in a memoir
by Professor De Morgan [Transactions of the Cambridge Fhi-
losopMcal Society, Vol. IX. Pt. II.).
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The atove theoiy may be illustrated by the form in which
Taylor's Theorem enables us to present the solution of a

differential equation of th.Q'n}'^ order, as will be seen in the

following Article.

Solution hy development in a series.

2. Reducing the proposed equation to the form

dx- -^V''^' dx' '"dx'^-'J
^^^'

and differentiating with respect to x, the first member becomes

J „;[ , while the second member will in general involve all

the differential coefficients of y up to -y-— . If for the last we

substitute its value given in (3), the equation will assume the

form

dx'^^'
J^^y^ dx'"' dx^^-'j

^^^•

Thus , ,^;( is expressible in the same manner as —{ , viz. in

terms of x, y, and the first 7i — l differential coefficients of y.

Differentiating (4) and again reducing tlic second member
by means of (3) we have a result of the form

^^n.. j^\^,y, ^^, -"dx'^-']
^^^'

and in this form and by the same method all succeeding dif-

ferential coefficients may be expressed.

Hence reasoning as in Chap. II. Art 12, we see that sup-

posing y to be developed in a series of ascending powers of

x — x^, where a:„ is an assumed arbitrary value of.r, the co-

efficients of the higher powers of ^ — ^^ beginning with {x — x^Y
will have a determinate connexion, established by means
of the differential equation, with the coefficients of the inferior

powers of x — x^^. The latter coefficients, n in number,
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"beginning with the constant term which corresponds to the

index 0, and ending with — -r -r^ ,
which is the

coefficient of [x — icJ^'S will be perfectly arbitrary in value.

To exhibit the actual form of the development let y^, 7/^y...

2/n-i be the arbitrary values assigned to y, -^^ , ... -
. „:^ when

X = x^. Also let /, /^, f^, &c. represent the values which the

second members of the series of equations (3), (4), (5) assume

when we make in them ic = x^; then

In this expression the arbitrary values of j/ and its w —

1

first differential coefficients corresponding to an assumed and

definite value of x, viz. t/^, Vv'-Vn-x ^i'^ the n arbitrary con-

stants of the solution, the values oi f^, fi^^^,
&c., being deter-

minate functions of these, and therefore not involving any
arbitrary element.

Any function of arbitrary constants is itself an arbitrary

constant, and thus it may be that an equation has effectively a

smaller number of arbitrary constants than it appears to have
from the mere enumeration of its symbols. As a general prin-

ciple we may affirm, that the number of effective arbitrary

constants in the solution of a differential equation while on the

one hand equal to the index of the order of the equation, is on
the other hand to be measured by the number of conditions

which they enable us to satisfy. Systems of conditions to be

thus satisfied will indeed vary in form, but there is one

system which we may consider as normal and to which all

other systems are in fact reducible. It is that which is de-

scribed above, and which demands that to a given value of x
a given set of simultaneous values of y and of its differential

coefficients up to an order less by 1 than the order of tlie

equation shall correspond. Conversely, the arbitrary constants
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of a solution may be said to be normal, when they actually
represent a simultaneous system of values of y and its succes-
sive diflferential coefficients up to the number required.

Ex. Given -^ = -j-^-y^* Kequired an expression for ij

in the form of a series such that when a; = 0, v and , shall
•^ ax

assume the respective values c and c'.

Differentiating, we have

dx^ dj? ^ dx

^aJ^^^'^'^dx'^ ^^^^^ equation,

by similar reduction, and so on. Hence, corresponding to .r=0,

we have the series of values,

dy
, d'^y , .,

g = c^+(l + 2c)c',

dx

and so on. Hence,

?/ = c + c a; +—-— ;k?

^^=c^+2c^+(l + 4c)c'+2c^

c^+(l + 2c)c' 3 c'+2c'+(l + 4c)r' + 2c'-^
, ,
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Finitely Integrahle Forms.

3. As tlie difficulty of the finite integi'ation of difierential

equations increases as their order is more elevated, it becomes

important to classify the chief cases in which that difficulty-

has been overcome.

It will be found that for the most part these cases are

characterized by some one or more of the following marks,

viz. 1st, Linearity, the coefficients being* at the same time

either constant or subject to some restriction as to form

;

2ndly, Absence of one or more of the variables or their differ-

ential coefficients; 3rdly, Homogeneity; 4thly, Expressibility

in the form of an exact differential or in a form easily re-

ducible thereto by means of a multiplier.

The subject of linear equations being of primary importance,

we shall devote the remainder of this Chapter to its discussion.

But as it will be resumed in another part of this work, and

in connexion with a higher method, we propose to notice here

only the more important general properties of linear equations,

and to illustrate them in the solution of equations with con-

stant coefficients.

Linear Equations.

4. The type of a linear differential equation of the n^^

order, (Chap. I. Art. 4), is

^^ +A.^{ + A,^...+X„^ =X (7),

in which the coefficients X^^X,^...Xn and the second member
X are either constant quantities or functions of the independent

variable x.

Considering, first, the case in which the second member is 0,

the following important proposition may be established.

Prop. If ?/j , ?/2 , . . . ?/„ represent n distinct values of y, which
individually satisty the linear equation,
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then will the complete value of y be

Cj, c.^,.--c„ being arbitrary constants. In other words the com-
plete value of y is the sum of n distinct particular values of y,
each containing an arbitrary constant.

For on substitution of the assumed general value of y
in (8), we have a result which may be arranged in the follow-
ing form, viz.

dx''
+ ^.^:^l + ^.jnM'- + X.i/.cU

+ c,

;>=o...(9).

dy. ..
6?" ..d"

j_n
, Y -^^b . X^ '^'^ + Y V

Now each line in the left-hand member of the above equa-
tion is, from the hypothesis as to the values of y^, ?/., ?/„,

equal to 0. Hence the equation (9) reduces to an identity,

and the theorem is established.

The problem of the complete solution of a linear equation
of the n^^ order whose second member is equal to is, there-

fore, reduced to that of finding n distinct particular solutions,

each involving an arbitrary constant.

5. Prop. To solve the linear equation with constant

coefficients when the second member is 0.

"Were the proposed equation of the first order and of the

form

its solution would be

y = ce

B. D. E. 13
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From tills result, and from the known constancy of form

of the differential coefficients of exponentials, we are led to

examine the effect of such a substitution in the equation

Assuming then y = Ce'"'', and observing that

d" [Ce'"''') _n/imx
dx''

we have, on rejection of the common factor Ce'"'', the equation

m'' + a^m''~' + a^rjr\.. + a„=0 (11),

the different roots of which determine the different values of

m which make y = 6V^ a solution of the equation given.

When those roots are real and unequal, we have, therefore,

on representing them by ??ij, m.^, ... w„, the system of 7i par-

ticular solutions,

7/ = c/n 7j= a/n ...:y= ae'""^ (12),

from which by the foregoing theorem we may construct tlie

general solution,

y=Cy-^+a/^-^\.. + C^e^'-'- (13).

The equation (11) by which the values of ??i are determined

is usually called the auxiliary equation.

Ex. Given ^,-3^ + 2?/ = 0.

Here, assuming y = C'e'"^, we obtain as the auxiliary equation

m"" - Sm +2 = 0.

Whence the values of m are 1 and 2. The corresponding

particular integrals are y = C^e", and y = (7^e^*, and the com-
plete primitive is
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G. If among tlic roots, still supposed unequal, imaginary
pairs present themselves, the above solution, though formally

correct, needs transformation. Let a ±h\/ — 1 represent one
of these pairs, then will the second member of (13) contain a

corresponding pair of terms of the form

which we may reduce as follows,

= Ce""^ (cos hx-\-'J - i sin hx) + C'e'"" (cos hx - V^^ sin Ix)

= (0+ C") e""cos 5^4- ((7- C) ^/(- 1) e^'^sin 6^,

or, replacing C + C and {C — C) \/
{— 1) by new arbitrary

constants A and B,

Ae'^'coshx + Be^'smhx (14).

Ex. Given -T7. - ^ ^- + 1-"Z/
= ^•

Assuming 7/ = C'e'"'', the auxiliary equation is

m""- 4,711 + 13 = 0,

whence »i = 2 + 3 V (— !)• 1'l^e complete solution therefore is

1/ = ^e^" cos 3x + Be"'' sin 3^.

7. Lastly, let the auxiliary equation have equal roots

whether real or imaginary, e.g. suppose m,^= m^. Then in

the general solution (13) the terms (7^6"'!'^+ (7/'"-^ reduce to a

single term
(
C^ + CJ e*''i''', and the number of arbitrary con-

stants is effectively diminished, since G^ + C^ is only equiva-

lent to a single one. Here then the form (13) ceases to be
general.

To deduce the general solution when ;/?., = m^ let us begin

by supposing m.^ to differ from 7??^ by a finite quantity /», and

13—2
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examine the limit to which the terms of the solution, then

really general, approach as h approaches to 0. Now

= e-^^ [a -\-Bx + Bh ^^- + &c.)
;

on replacing C^ + C^ and CJi bj A and B, new arbitrary con-

stants. This change it is permitted to make, however small

h may be, provided that it is not equal to 0. The limit to

which the last member of the above equation approaches as

h approaches to is

This then is the form which must replace (7^e'"''' + C./'-^ in

the o:eneral solution.

m,^, m^.Suppose next that there exist three equal roots w^,

Then the terms C/'^''- + C/'-^ + C/'-^'^ being replaced by

e^'^^^[A+Bx)-vC/'-%

make m.^ = m^ + Iz, The above expression becomes

^-.-^A^Bx^C^i')

= 6'"^^{^ + C3+ [B^ CJc)x+C,^^x^+
^3Y;|7^^^

+ &c.

= 6'"^-^(^' + i?'^ + CV + -^iC^+&C.) (15),

on making

A+C, = A\ i? + C,h = B\ ^ = C,

Here A\ B\ C being functions of the arbitrary constants

A, B, C provided that k is not actually 0, may themselves be
regarded as arbitrary constants. If we so consider them in
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(15) and then make h tend to 0, we see that tlie limiting

form of the expression is

And in precisely the same way, were there r roots equal to

7?2j, we should have for the corresponding part of tlie com-

plete value of ?/j the expression

e'"^^(^, + ^2ic + ^3.x^..+^X"') (16).

Thus the difference which the repetition of a particular root

m^ produces is that the coefficient of the exponential e'"'"" is

no longer an arbitrary constant, but a polynomial of the form
A^-\- A^x -\-&Q,.^ the number of arbitrary constants involved

being equal to the number of times that the supposed root

presents itself.

Ex. Give,4>-^-|^ + y = 0.
dx dx^ dx ^

Here, assuming y = Ce"'"", the auxiliary equation is

m^ — m^ — 771 + 1 = 0,

the roots of which are — 1, 1, 1. Thus, corresponding to the

root — 1, we have in y the term Ce''', while to the two roots 1,

we have the term [A + Bx) e^. The complete primitive tliere-

fore is

y=Ce-''-\-[A + Bx)e\

8. It follows from (16), that if a pair of imaginary roots

a ±h^—I present itself r times, the corresponding portion of

the complete value of y will be

( c; + (7,0^. . .

+

c^^-') e'^^^'^^-v (
c; + c> . .

.

+

c;x^') 6«'-^^^,

which, substituting for e^'"^"^ and e"^""^'^ their trigonometrical

values and finally making

c, + o;

=

A„ (c. - c;) v^i = b, , &c.,

assumes the form

{A^ + A^x . . . + A.x"'') e""" cos hx

+ {B^ + B^x...-\- B.x'--') e"^ sin hx.
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Hence, therefore, the repetition of a pair of imaginary roots

a±h^/—l changes also the two arbitrary constants of the

ordinary real solution into polynomials, each of which involves

a niimljsr of constants equal to the number of times that the

imaginary pair presents itself.

Ex. Give„3+2.'3 + «V=0.

Assuming y = 6V"'', the auxiliary equation is

nc" + 2?i'wi' + n'' = 0,

whence m has two pairs of roots of the form ±- n \/(— 1).

For one such pair the form of solution would be

y — A cos nx + B sin nx.

For the actual case it therefore is

y = {A^ + A^x) cos nx + {B^ + B^x) sin nx,

9, The above, which is the ordinary method of investi-

gating the form of the complete solution when the auxiliary

equation involves equal roots, rests on the assumption that a

law of continuity connects the form of solution when roots are

equal with the form of solution when the roots are unequal.
Now, though it is perfectly true that such a law does exist, its

assumption without proof of that existence must be regarded
as opposed to the requirements of a strict logic. In all legiti-

mate applications of the Differential Calculus it is wdth a
limit that we are directly concerned. Here it is with some-
thing which exists, and Vv'hich admits of being determined in-

dependently of the notion of a limit.

72 J
Thus if wx take as an example -^-^ — 2-~-\-y = 0, in which

CLX CtX

the auxiliary equation 9?i^ — 2m + 1 = shews that the values

of w are each equal to 1, we are entitled to assume as a par-

ticular solution
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Let us now substitute this value of?/ in the given equation

regarding C as variable, and inquire whether it admits of any-

more general determination than it has received above. On
substitution we find simply

wlicnee C=A-\-Bx, Thus while the correctness of the

solution furnished by the assumption of continuity is esta-

blished, it is made manifest that this assumption is not in-

dispensable.

We sliall endeavour to establisli upon other grounds tlie

theory of these cases of failure in a future Chapter. Mean-
while it may be desirable to shew that the form (IG) actually

satisfies the differential equation when r values of m are

equal.

In the given equation assume

y = Ce"V,

s being an integer less than r. Irom the theorem tor -j—^

it easily follows that the result will be of the form

f{,n) X'+/ (m) sx'-^ +/" (m) ''-^^^^~+ • • +/"'(«')

in whic]i/(7?2) represents the first member of (11). But that

equation having by hypothesis r equal roots, we know by the

theory of equations tliat

/(m)=0, /W=0,... /"W=0,
are simultaneously true. Thus the differential equation is

satisfied. And being satisfied for tlie particular value of?/ in

question it is satisfied by (IG), which is the sum of all such

values.

10. The results of the previous investigation may be sum-
med up in the following rule.
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KuLE. The coefficients heing constant and the second mem-
her 0, form an auxiliary equation hy assuming y = Ce'""*, and
determine the values of m. Then the complete value of y will

he expressed hy a series of terms characterized as follows, viz.

For each real distinct value of m there icill exist a term Ce^

;

for each pair of imaginary values a±h \l[—\), a term

Ae""^ cos hx + Be'"'' sin hx;

each of the coefficietits A, B, C being an arbitrary constant if
the corresponding root occur only once, hut a polynomial of the

(r—iy^ degree loith arhitrary constant coefficients, if the root

occur r times.

Lx. Given ^5-t4-2:t4 + 2t^ = 0.
dx' dx dx^ dx

Here the auxiliaiy equation is

m^ — m^ — 2m^ -\-'2m = Q,

wlience it will be found that the values of m are

0, 1, 1, -i±v'(-i).

The complete primitive therefore is

y=C+{C^+C^x)e'+ 6;e-" cos x + C.e"" sin x.

11, To solve the linear equation with constant coefficients

when its second member is not equal to 0.

The usual mode of solution is 1st to determine the com-
])lete value of y on the liypothesis that the second member
is 0; 2ndl7, to substitute its expression in the given equation

regarding the arbitrary constants as variable parameters;

3rdly, to determine those parameters so as to satisfy the equa-

tion given.

Supposing the given equation to be of the w^^ degree, n
[parameters will be employed. These may evidently be sub-

jected to any n—\ arbitrary conditions. Now that system of

conditions which renders the discovery of the remaining rela-

tion (involved in the condition that the given differential
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equation shall be satisfied) the most easy, is that whicli

demands that the formal expression of the n—l differential

coefficients

shall, like the formal expression of y, be the same in the sys-

tem in which c^, Cg,...^,, represent variable parameters, as in

the system in which they represent arbitrary constants.

The above method is commonly called the method of tlie

variation of parameters. It is, as we shall hereafter see, far

from being the easiest mode of solving the class of equations

under consideration; but it is interesting as being probably

the first general method discovered, and still more so from

its containing an application of a principle successfully em-
ployed in higher problems.

Ex. Given -~ + n^y = cos ax.

Were the second member 0, the solution would be

y = c^QO^nx -^ c^^uinx (a)

.

Assume this then to be the form of the solution of the equa-

tion given, Cj, c^ being variable parameters, but such that -^

shall also retain the same form as if they were constant, viz.

dy . ,,v

"T- = — c,n ^innx + cjico&nx [o).
dx ^ ^ ^

Now the unconditional value of -j^ derived from (a) is
ctx

dy .
_

dc, . dc,
J- — — c.n sm nx + cji cos nx + cos nx -r^ + sin nx -r^

,

ax ^ 2
^^^ ^^

which reduces to the foregoing form if we assume

dc, . dc^ ^ , .

cos nx -~-\- sm nx -r^ = (c).
ax dx

This then is the condition which must accompany {a).
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Xow differentiating [l) and regarding c^, c^ as variable, we
have

^'y
2 2 . . dc, dc^

-r^, — - c.n cos 7ix — cji sm ?2ic — n sni «a? -^^ + n cos ^la; -v-^ .

3 above values of y an

equation, we have

Substituting the above values of y and -y4^ in the given

dc.
,

^c^
,

,.— 7i sm nx~ + ?i cos ?ia7 y^ = cosa^ (a),

and this equation, in combination with (c), gives

dc. 1 . Jc., 1
-7-^ = cos ax sm na?, -r- = - cOs ax cos nx,
dx ' n dx n

y
1 fcos {n-{- a) x cos fw — a)x) ^

whence c, = - ^
^——^ + ^ >—\ + C,,

^ 2n [ n-\- a n — a ) ^

1 [sin {n -\- a) X sin [n — a)x
^ 2)1 [ n + a n — a

J
^

Lastly, substituting these values in [a) and reducing, we
have

cos ax ^ „ . , .

y = -7, 7, + C, cos7i:r + C^?>\nnx ie).
^ n ~ a" ^

^

This solution fails if n = a. But giving to (e) the form

cos ax — cos nx ^., ^ .

y = 5
^

{- C' cos nx + C, sm ??x,
"^ n —a ^

and regarding the lirst term as a vanishing fraction when « = a,

we find

X sm ?2a:^ „

,

^ .

y =— 1- C' cos nx + G' sm 7ia?.
•^ 2n ^

Or we might proceed thus. Differentiating twice the equation

d'y .

-TT + n~y = cos ?za7,

"^'^'Z
. .2 ^V _ ,2we <]ret -7- , + ?r -7^, = — n cos ??a:,° dx dx
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Ilcnce eliminating cos nx

an equation wliosc complete solution is •

y = {A 4- Bx) cos nx -{- {C + Dx) sin nx.

Substituting tliis in tlic given equation we find i?=0,

D = — , whence
2/1

y = AQO?>nx-\- iC {•---] smnxy

AvliicK agrees with the previous solution.

The latter method, which is general, consists in forming a

new equation of a higher order, but with its second member
free from that term which is the cause of failure. As by the

elevation of the order of the equation superfluous constants

are introduced, the relations which connect them must be
found by substitution of the result in the given equation.

12. To the class of linear equations with constant coeffi-

cients all equations of the form

(«+5^)«g+^(a+J^)»--^>+i?(«+fo)-gl^..+i3/ = A-,

A, B,...L being constant and X a function of x, may be

reduced. It suffices to change the independent variable by
assuming a + hx = e^

Ex. Given {a + Ixf -^., + h{a-\- hx) -j- + ?ry = 0.

Assuming a-{-hx = e\ we find

dx~~^^ dt'

dx'~ We dtl'
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Hence, hy substitution in the given equation, we have

the solution of which is

y—(jcosj--\- C sm
J-

,

in which it only remains to substitute for t its value log [a-\-hx),

13. Beside the properties upon which the above methods

are founded, linear equations possess many others, of which

we shall notice the most important. We suppose, as before, y
to be the dependent, x the independent variable.

1st. The complete value of ?/ when the linear equation has

a second member X will be found by adding to any particular

value of?/ that complementary function which would express

its complete value were the second member 0.

Representing the linear equation in the form (7), let ?/j be

the particular value of y which satisfies it, Y the complete

value which would satisfy it were the second member 0; and
assume y=y^-\- F. The equation then becomes

and this becomes an identity, the first line of its left-hand

member being by hypothesis equal to X, and the second line

equal to 0.

Ex. Thus a particular integral of the equation

being y= :^— , its complete integral is
a
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The above property, which relates to tlie generaJizwrj of a

particuhir solution, is important, because, as we shall hereafter

see, a particular solution of a linear equation may often be
obtained by a symbolical process which does not involve even
the labour of an integration.

2ndly. The order of a linear differential equation may
always be depressed by unity if we know a particular A'alue

of y which would satisfy the equation were its second member
equal to 0.

It will suffice to demonstrate this property for the equation

of the second order

3 + A'.| +X^ = A- (18).

Let y^ be a particular value of y when A'=0, and assume

y = y^v. Substituting, we have

S + A'.t. + A>,)„
dx^ " ^ dx

the first line of which is by hypothesis 0. In the reduced

equation let --- = u, then we have

2'.£+(^S+'^>>'=^^' (^^)'

a linear equation of the first order for determining u. And
this being found, we have

V =
I
iidx + c.

J

In the particular case in which X= 0, we find from (10)

tc =

whence y = ^j^(^C\ —^dx+ Cj (20).
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3rdly. Linear equations are connected by remarkable ana-

logies with ordinary algebraic equations.

This subject has been investigated chiefly by Libri and

Liouville, who have shewn that most of the characteristic

properties of algebraic equations have their analogues in linear

differential equations.

Thus an algebraic equation can be deprived of its 2nd,

3rd, . . .
7'^^ term by the solution of an algebraic equation of the

1st, 2nd, ...(/• — l)*^ degree. A linear differential equation can

be deprived of its 2nd, 3rd, ...r*^ term by the solution of

another linear differential equation of the Ist, 2nd, ... (r — 1)^*"

order.

This may be proved by assuming ?/ = ?'^i,
and properly de-

termining V so as to make in the resulting equation y^ assume

the required form.

Again, as from two simultaneous algebraic equations, we
can by the process for greatest common measure obtain a de-

pressed equation satisfied only by their common roots, so from

two simultaneous linear differential equations we can by a

formally equivalent process deduce a new equation of a de-

pressed order satisfied only by their common integrals.

This is best illustrated by example.

Ex. Required the common integrals, if any, of the

equations

d'^y ^ dy

ddu" dx

Differentiating the second equation and then eliminating

-^'(^ and -r4 , we find the depressed equation
dx^ dx"'

If we differentiate this we shall find that the result is

merely an algebraic consequence of the two equations last
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written, not an algebraically new equation. Thus tlic process

of reduction cannot be repeated. We have therefore

as the only common integral.

EXEECISES.

1. ^^-7^ + 12^ = 0.
dx^ dx

^ d'^y „dy

3. Integrate '^^ - 4 '^'3 + 6 ?| - 4 ^?^ + ^ = 0.*
dx'' dx^ dx^ dx -^

5. y^-3^ + 4?/=0, it being given that one of the

roots of the auxiliary equation, in — oiu' -\- 4 =0, is — 1.

C). -y^l
- 2 ,

-'( + 2 vi - 2y + ^ = 1

.

dx dx dx dx

^'
dx} "'"^dx^ -^

8. What form does the solution of the above equation

assume when h =1?

^- "^
dx^ ""d^-^'^'

-I ri / \ " d^V . f \ dy ,

10. {x + ci)-^-^(x + a)£-^C?/ = 0.

1 1. Intecrate ^ " 2^^^ + h'j'^ = 0.
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72 7

12. A particular integral of (1—^0 t^z~^~j: ~^^y = ^

h y= (7e"°'"~^^, find the complete integral by the method of

Art. 13.

13. The form of the general integral might in the above

case be inferred from that of the particular one without em-
ploying the method of Art. 13. Prove this.

14. It being given that

. / . cos x\ r^f sin X
;i/ = A[smx-h —— 1 +i) cos £c

~

d"^!! / 2 \
is the complete integral of the equation yK, +

[
1

^j ?/ = 0,

find the general integral of -~ + (

1
2 ) 3/ = ^^•

clx \ X /

15. Explain on what grounds it is asserted that the com-
plete integral of a differential equation of the 11^^ order contains

Qi arbitrary constants and no more.

16. Mention any circumstances under which it may be

advantageous to form, from a proposed differential equation,

one of a higher order. In deducing from the solution of the

latter that of the former, what kind of limitation must be
introduced?
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CHAPTEH X.

EQUATIONS OF AN ORDER HIGHER THAN THE FIRST,

CONTINUED.

1. 'We have next to consider certain forms of non-linear

equations.

Of the following principle frequent use will be made, viz.

When either of the i:)rimitive variables is icanting, the order of
the equation may he depressed hy assuming as a dependent vari-

able the lowest differential coefficient which presents itself in the

equation.

Thus if the equation be of the form

and we assume

^(-i-S)=« «=

I- (^)'

we have, on substitution, the differential equation of the first

order,

^(^'^'£)=« (^)-

If, by the integration of this equation, z can be determined
as a function of x involving an arbitrary constant c, {suppose
s = (a;, c)}, we have from (2)

"whence integrating

y=\(f>{x, c)dx-\- c.

B.D.E. 14
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If the lowest differential coefficient of y which presents

itself be of the second order, the order of the equation can be

depressed by 2, and so on.

A similar reduction may be effected when x is wanting.

Thus, if in the equation of the second order

4'!' 3)- W'

we assume -r = ;?, we have
ax '

d'^y _ dp _ dv dy dp

dx^ dx dy dx ^ dy
'

by means of which (4) becomes

-^(^'^^1') = ' ('^-

Sliould we succeed by the integration of this equation of

the first order in determining p as a function of y and c, sup-

dii
pose p = cf>{y, c), the equation ~ =;:>, will give

dx= ^y

v» hence

fv/'S + c (6).

Ex. Suppose 1+g) +2, || = 0.

Put -J- —v\ thus
dx -^

therefove f+i^^ = 0>

therefore log 3/ 4- log V (1 +i^") = constant,
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we have

dx dx^ dx '

and integrating

Hence

{2fYdy+G)i'

{2jrdy+q'-

As a particular example, let -^ = a^i/,

\
Case II. AVhen tlie given equation merely expresses a

(relation between two consecutive differential coefficients.

i Suppose the equation reduced to the form

dx''~J\dx'-') ^'^^'

then, assuming , ,J^ = ^, we have

dz

whence dx =
f(^)'

\m'^ (^«^:"'
'/(-)
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If, after effecting tlie integration, we can express z in terms
of X and c, suppose z =

(f>
{x, c) we have finally to integrate

^^~\ = <i>{x,c) (11),

which belongs to Case i.

But if, after effecting the integration in (10), we cannot

algebraically express z in terms of x and c, we may proceed

thus.

From
, ^_, = z, we have
ax'

^zdx

and finally,

dx'

zdz

/¥)'

_ [ dz f zdz

'-Imlwr-m '^''

the right-hand member indicating the performance of w — 1

successive integrations, each of which introduces an arbitrary

constant. If between this equation and (10) we, after integra-

tion, eliminate z, we shall obtain a final relation between y, x,

and n arbitrary constants, which will be the integral sought.

MakiniT nK = z, we have az ^ = V(l H-^^)? whence
'^ dx" dx ^

x = c^asj[l + z') {a).
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According to the first of the above methods, we should now
solve this with respect to s, and thus obtaining

^= l\(^-^
yr-jd^ A/ n ., /

li >

find hence

^=/V{(v)-4'^"'+''^+'^ •
(*)'

in which it only remains to eiFect the integrations. According

to the second method, we should proceed thus. Since

az dz ,

V(l+s)

= --^ ---^^og{z-\-^/{l-\-z)]+c,

CLZ dz
whence multiplying the second member by -jty^^^x ^^^ ^-^^

and again integrating,

2, = «J!_|V(l+^^)log{. + V(l+^01 + |^

+ ac ^/{l+z^)+c" (c).

The complete primitive now results from the elimination

of 2 between (a) and (c).

Case III. "When the given equation merely connects two

differential coefficients whose orders differ by 2.

Reducing the equation to the form

dy _ ^fd^'-^y

dxI'fm <*

Let ^2 = z, then

dz J., .

This form has been considered under Case i.
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It gives

=/ ^ , r"

If from this equation z can be determined as a fimction of

ir, (7, and C\—suppose z = cf) {x, C, C),—then

^J, = <l>{x,C,C'),

the integration of which by Case I. will lead to tlie required

integral. If z cannot be thus determined, we must proceed as

under the same circumstances in Case ii.

Ex. Gn'en«'J = ^.

Proceeding as above, the final integral will be found to be

Homogeneous Equations.

3. There exist certain classes of homogeneous equations

wdiich admit of having their order depressed by unity.

Class I. Equations which, on supposing x and 7/ to be cacli
7 J2

of the degree 1, -<- of the degree 0, -y^^ of the degree — 1, &c.,

become homogeneous in the ordinary sense.

Adopting the notion and the language of infinitesimals, the

earlier analysts described the above class of equations some-
what more simply as homogeneous with respect to tiie

primitive variables and their differentials, i. e. with respect

to X, y, dx, dij, d'y, &c.

All equations of the above class admit of having their

order depressed by unity.
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I
For if we assume x = 6^, y = e^z, we shall iind by the usual

f

'' method for the change of variables,

di/ dz
.

Tx = de-'' (^^)'

d£'~^ KdO'"^ do) •• ^^^^'

and so on. Here y is presented as of the first degree "with

respect to e^ which takes the place of x, while y- is of the

degree 0, and -.-{ of the degree — 1, with respect to e^. And

the law of continuation is obvious. Hence, from the supposed
constitution of the given equation, it follows that on substitu-

tion of these values the resulting equation will be homogeneous
with respect to e^, which will therefore divide out and leave

, . , dz d^Z p rni
an equation nivoiving only z, ,^ , -^ , &c. inat equation

will therefore have its order depressed by unity on assuming

J =;,.... (Art. 1.)

Let us examine the general form of the result for equations

of the second order.

Eepresenting the given equations under the form

^(-^'i'2)- (-).

we have, on substitution,

and from this equation, from what has been above said, e^ will

disappear on division by some power of that quantity, e.g. e"^.

But the effect of simply removing a factor is the same as that of

simply replacing such factor by unity. Xow to replace e"^ by
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unity is the same as to replace e^ by unity, and if wc do tliis
7 72

simply, i.e. without changing -^ and -^ , (17) will become

^(^'^'S+^'S+S)=« (^«)-

. . ,^ dz , d'z da du
,

Assuming then -jn = u, whence -y^ = —- = ^^ —- , we have
au do du dz

Fix, z, u + z, u ^^-\-ii) = (19),

an equation of the first order, which by integration gives

u = cj>{z,c) (20).

dz
Then since u = -,^ , we have

du

^ =/^^^' C^^)'

in which, after effecting the integration, it is only necessary

to write

^ = log.T, z = ^ (22).

The solution of the proposed equation is therefore involved

in (20), (21), (22).

Ex. Given nx^ ~^^=(y-x^].
dx- V ^^-^J

Substituting as above x = e^, y = e^z, we find, as the trans-

formed equation,

^d'z
. dz\ /dz-^'

*M TtF. +dO' ddJ \dd

dz
whence, making —y^ = u^ we have

^{u-J^-\-u) = ic' («),
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which resolves itself into the two equations,

^(^1 + 1) = ^^ ^ = ^-

The former gives on integration

z

Kow u='j^, whence
do

de=-^

therefore ^ = - log (^le"" + C) + C,

y

tion,

2' ="^^"^^!^ (i)>

and now replacing 6 bj log ir, and s by - , we have on reduc-

A and 5 being arbitrary constants. This is the complete

primitive.

The remaining equation w = 0, or ^tTi
= 0, gives z = c, or

y = ex, and this is the singular solution.

The equation (a) might have been directly deduced from
the given equation bv the general theorem (19), which indi-

cates that for such deduction it is only necessary to change
chi T d^y , du

xiol,y to z, ~ to u + z, and -^, to u ^ -Vu,

Class II. Equations which on regarding x as of the first

degree, y as of the ?i*^ degree, -^ of the (?i — 1)^^ degree, -y^ of

the {n — 2)^^ degree, &c., are homogeneous.

To effect the proposed reduction assume a? = e^, y = e^^z.

The transformed equation will be free from 6, and, on assum-
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dz .

ing -^ = w, will degenerate into an equation of a degree

lower by unity between u and z.

It is easy to establish that, if the given differential equa-

tion be

<-^'J'S)=« (-)'

the reduced equation for determining u will be

CtU
F[l, z, u + nz, u-^ + {2n-l) u + 7i {ri- 1) z] = 0... (24).

Suppose that by the solution of this we find

u = <f>{z,c) (25),

then since ^ ~ ^7^ »
^'^ have

e ^^/^-' ^-)'

II

in which it only remains to substitute log x for 6, and j^, for z.

Ex. Given c.'g = (..' + 2^2/) J -4/.

This equation proves homogeneous on assuming x to be of

the degree 1, 3/ of the degree 2, -,- of the degree 1, and

-y^^ of the degree 0.

Changing then, according to the formula (2-4), x into 1, y
di/ . , d^y . dii ,

into z. -y- into u-{-2z, and -r^., into ii -,—\- ?>u-{- 2z, we have
ax dx' dz

du
Uj^-\-^u + 1z={\-\- 2z) {u + 2z) - 4^' (<?),
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which is reducible to

This is resolvable into two equations, viz.

J + 2-2^ = 0, ^. = (6).

The first gives on integration

Hence, since -77, = u, we have
au

[z - If ± 6'

a 1 X -1 ^ — ^
. ' 1 1 z—l-c\ ,

^ = - tan '
h c , or — losr + c .

01

Hence, replacing 6 by log x, and z by '^-,
, we have

loga;=- tan ' -^^—^+c or — log "^

—

)- f-^ + c,
c ex 2c ^ y — {\ — c)x

the rational forms of the integral required.

The factor w = in [h) giving ~ =0, or z = c, leads to the

singular solution y = cx\

Class III. Equations which are homogeneous with respect
dy d^y

Properly speaking, tliis class constitutes a limit to the class

just considered. For when 7i becomes large, the quantities /?,

71 — 1, 71 — 2, the supposed measures of the degrees of y, -y-
^

t4 approach a ratio of equality.
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If we assume y = 6% we have

^^^^ii
dx dx

dx^

-^ = 6"^ (27),

"""IS-S^ »
All these being of the first degree with respect to e", it fol-

lows that after substitution in the proposed equation, that

function will disappear on division. Thus, if the given equa-

tion be

4'^'2'S)=« (^^)'

the transformed equation w^ill be

^f dz d^z fdz\') ^ , ,

dz
or, on assuming -^- = u,

f(x, 1,u,-^-\-u')^0 (31).dx

Integrating this equation of the first degree, we have

u = (j) {x, c)

;

therefore z= I ^ {x, c) dx + c (32),

in which it only remains to substitute for z its value log y.

Or we may assume at once y — e'''^. The transformed

equation between u and x will be of an order lower by unity

than the equation given.

Ex. Given«yg + J(|y=^7^^.

Assuming y = e-^"'^'', we find

(du
, 2^ W 7 2
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as would directly result from (29) and (30). Expressed in

the form
du u f h

dx a\/[e+x) \ aj

tills equation is seen to belong to the class discussed in

Chap. II. Art. 11.

On comparing the above classes of homogeneous equations

we see that Class ii. is the most general. It includes Class I.

as a subordinate species, and Class iii. as a limit.

It is proper to observe that Classes I. and ii. are usually

treated by a different method from that above employed.
Thus, in Class I., it is customary to make the assumptions

, dy d^y v d^y to p

-^ ' dx ' dx^ x' dx^ x''

On substitution x divides out, and there remains an equation
involving 7/ and the new variables t, u, v, iv, &c., which may be
reduced by successive eliminations to a differential equation

between two variables, and of an order lower by unity than the

equation given. But this method is far more complicated than
the one which we have preferred to employ.

Exact Differential Equations,

4. A differential equation of the form

is said to be exact if, representing its first member by V, the
expression Vdx is the exact differential of a function ZJ, which

is therefore necessarily of the form i/r Ix, y, --,- ... -j-^i

Thus ^ ^ ~ 2/^' ^ ~ ^^' = ^' ^^ ^^^ ^^^^^ differential

equation, its first member multiplied by dx being the differen-

tial of the function -J f-^j -ccy I, and the first member it-

self the differential coefficient of that function.
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Hence then a first integral of the above equation will be

The method of integrating an exact differential equation

which we shall illustrate, and which contains an implicit solu-

tion of the question whether a proposed equation is exact or

not
J
appears to be primarily due to M. Sarrus (Liouville, Tom.

XIY. p. 131, note).

Supposing the above an exact differential, we are by defini-

tion permitted to write

Now a first and obvious condition is that the hio-hest differ-

ential coefficient in an exact differential equation, being the

one introduced by differentiation, can only present itself in the

first degree. This condition is seen to be satisfied.

Representing the highest differential coefficient but one bv

p, we can express (34) in the form

dU= {i/ + Sxj) + 2?///) dx + (a;' + 21/2?) dp.

Xow let TJ^ represent what the integral of the term contain-

ing dp would be were^:> the only variable. Then

Assume, then, removing all restriction,

Subtracting this from (34)

dV-dJJ^^i^j^x'^^^dx (35).
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We remark that the highest differential coefficient -^^ has

now disappeared. We observe too that the next, viz. ~ is in-

volved only in the first degreet This is a consequence of the

fact that the proposed differential equation was really exact.

For the first member of (35) being the difference of two exact

differentials, and therefore itself exact, the second member is

so, and its highest differential coefficient is therefore of the

first degree. The integration of an exact differential involving

-r'o has, in fact, been reduced to that of an exact differential
dx'

involving only -^ as its highest differential coefficient. And

a similar reduction may be effected whatever may be the order

of the highest differential coefficient.

The integration of (35) gives

V-U = xy,

whence

A first integral of the given equation is, therefore,

^ii-^.^iiy+^^- (-)•

The general rule for the integration of an exact differential

dU, involving x, y, ~- , ... ^-f , is then as follows. Integrate

the term which involves -—{ in the first degree, as if ^^l{ were

the only variable^ and ~^, dx its differential. Representing the

result hy U^, and removing the restriction, dU—dU^ will he an

exact differential involving only x, y, —- , ... -ri^ • Bepeat
ax ax

the process as often as necessary. Then U will he expressed

hi/ the sum of its successively determined portions tf^, U„,

K &c.
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For tlie solution of an exact differential equation, it is there-

fore only needful to equate to c the integral of the correspond-

ing exact differential as found by the above process.

The failure of that process, through the occurrence of a

form in which the highest differential coefficient is not of

the first degree, indicates that the proposed function or equa-

tion is not ' exact.'

5. There is another mode of proceeding of which it is pro-

per that a brief account should be given.

Eepresentmg ^^, ;^, ... ^. , by ?/,,?/,, ...y„, it is easily

shewn by the Calculus of Variations, that if Vdx be an exact

differential, V being a function of ic, y,y^^.. .yr, , then identically

dy \dx) dy^ \dx) dy^
' '

' \dxj dy^
^'^

where
(
—

J
indicates that we differentiate with respect to x

regarding y^y^-t-^yn ^s functions of x. This condition was
discovered by Euler.

The researches of Sarrus and De Morgan, not based upon
the employmsnt of the Calculus of Variations, have shewn,

1st, that the above condition is not only necessary but suffici-

ent. 2ndly, that it constitutes the last of a series of theorems

which enable us, when the above condition is satisfied, to

reduce Vdx to an exact differential in form^ i. e. to express

it in the form

dU , dU . dU ' dU . .,_^,+ ^^3,+ _,/^^... + -^^^„_^ (^«)>

where x, y, y^, ...3/„_i
are regarded as independent. The inte-

gration of Vdx = in the form U=c is thus reduced to the

integration of an exact differential of a function of n -f- 1 inde-

pendent variables,—a subject to be discussed in Chapter xil.

[Camhridge Transactions^ Vol. IX.)

The condition (37) is singly equivalent to the system of

conditions implied in the process of Sarrus. The proof of this

equivalence a posteriori would, as Bertrand has observed, be

complicated. (Liouville, Tom. xiv.)

B. D. E. 15
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The solution of the difFerential equations of orders higher

tlian the first is sometimes effected by means of an integrating

factor ^i, to discover which we might substitute fx Ffor Fin (37),

and endeavour to solve the resulting partial differential equation.

Even here, however, the process of Sarrus would be preferable.

Miscellaneous Methods and Examples.

6. Many forms of equations, besides those above noted, can

be integrated by special methods, e. g. by transformations,

variation of parameters, redaction to exact differentials, &c.

Equations of the classes already considered can also sometimes

be integrated by processes more convenient than those above

explained.

,^ ^. d^i/ ,

Ex. I. Given -^ = ax -\- by.

Let ax + l)y = t. We find as the result, —^^ = ht d^ linear

equation with constant coefficients.

Ex. 2. Given (1 - ^')g - ,.J + q^y = 0.

Changing the independent variable by assuming sin~^a; = t,

d^V
we find -yy + fy = 0, whence the final solution is

y = c^ cos {q sin~^a;) + c^ sin {^ shr^a:) (39).

72 7

So too the equation (1 + ax^)^ +'^^T" ±O = ^> is re-

d^7i
ducible to the form —

; ± q'y = 0, by the assumption

/:

dx _
V(l + ctx')

Equations involving the arc s, whether explicitly or im-

plicitly, may be freed from it by differentiation or by change^

of independent variable.



ART. 7.] MISCELLANEOUS METHODS AND EXAMPLES. 227

Ex. 3. Given s = ax-\- hy.

Differentiating, we have a / U + ( "r.
) [

= « + ^ -r ;

, ^ dy al>±^/{a'+}r-\)
thcrctore --r

=
r

—

r'
~

>dx I — 0"

y= ~
i_i/

^ + ^-

d^'x
Ex. 4. Given ^t = «.

ds'

Assuming x as independent variable, we liave

d'x _dx d^dx_ fdsY d fds^
ds^ ds dx ds \dxj dx \dxj

ds\' d-'s _
dx) dx^

ds
We miglit here put for -^^ its value \![\ +2'*')^ ^^^ ^^ ^^^"^

a differential equation for determining p. Direct integTation,

however, gives

F = 2ax + c.

Whence we find

d!l_( 1 _iM
dx \2ax + c

y=
\ {

\

I) dx-^ c ',

which indicates a cycloid.

7. M. Liouville has shewn how to integrate the general

e([uation -fi+f{x) ^ + F{y) (~t ]
= ^> (Journal de Matlicma-

tiques, 1st Series, Tom. vir. p. 134).

Suppressing the last term, the resulting equation

15—2
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has for a first integral -,- = Q^-ff(x)dx^ -^^^ assume this to be
^ ax

a first integral of the given equation regarding C as an un-

known function of?/, then

~ G'cbj\cU -^^^dx'

Thus, the given equation becomes

]M^^^=' ^''^'

whence C = Ae-J^'y^''->.

'

Therefore '^ = Ae'^^''^^ ''' x e"-^^*^)
'^

;

ax

therefore ^ e^^^y^'y dy =a\ e'^^^''^'^ dx-\-B (41),

the complete primiti^'e sought.

8. Jacobi has established that when one of the first inte-

grals of a differential equation of the form ~-j\_=f{x-> y) is

known, the com]:)lete primitive may be found. The following-

demonstration of this proposition is due to Liouville, [Journal

de MatJmnatiqiies, 1st Series, Tom. XIV. p, 225).

n nrsi miegrai oe
'

atins:, ^yQ have

Let the given first integral be -/- =
(f> {^, y-> c). DifFerenti-

d'^y _ dxj) d(f) dy _ d6 , dcj)

dx"^ dx dy dx dx ^ dy '

(^ standing for ^ {x. y, c). Hence, comparing with the given

equation,

d<^
,
dd> ., .
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and difFerentiatlng with respect to c,

dxdc dc dy dydc

Now this is precisely the condition which must be satisfied

in order that the expression -—- {dy — ^dx) may be an exact

dlfferentiah Hence, the first integral expressed in the form
dy— (j)dx = 0, is made an exact differential by means of the

factor -~
. The complete primitive therefore is

/
fjdy-<f>dx) = c (42),

Some equations of great difficulty connected with the theory

of the elliptic functions are reduced to the above case in the

memoir referred to.

Singular Integrals,

9. Equations of the higher orders, like those of the first

order, sometimes admit of sijigular integrals, i. e. of integrals

not derivable from the ordinary ones without making one or

more of their constants variable.

We shall term such integrals singular solutions when they
connect only the primitive variables, but singular integrals

when they present themselves in the form of differential

equations inferior in order to the equation given.

And as the entire theory is involved in the theory of

singular first integrals, we shall speak chiefly of these, but

with less detail than in the corresponding inquiries of

Chap. Yiii.

Prop. Given a first integral with arbitrary constant of a

differential equation of the ?i^'' order, required the correspond-

ing singular integral.

Let the given equation be

^(^,^,y.,y....yn)=0 (43),
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where y^ stands for ~-
, y^ for -y^ , &c. Suppose the integral

given to be expressed in the form

yn-x^f{^, y. y, "-yn-,, c) (44),

c being an arbitrary constant. Differentiating as if c were

an unknown function of x,

_(lf_^df df_ Jf_ df dc^

y^"' dx^ dy^''^ dyj^''"'^ dy^^'^''-'^ dc dx'

Kow this reduces to the same form, i.e. gives the same
expression for ?/„ in terms oi x, y ... y„_^, c, as it would do if

c were constant, provided that we have -7-=0; and therefore,

tliis condition satisfied, the elimination of c will still lead to

the given differential equation (43).

An integral of the given equation will therefore be found

by attributing to c in the complete first integral (44), sucli

S Wlii SctLlteiJ' LiiC CUllUlLiUIl

press it

value as will satis-fj the condition ^ = 0, or, as we may ex-

%'=« (-)

And unless the value of c thus found is constant, the in-

tegral will be singular. The above process amounts to

eliminating c between (44) and (45), so that we have the

following rule.

Given a first integral of a differential equation of the n^^'

order, to deduce the corresponding singular integral, we must

eliminate c hetween the first integral in question and the equation

-- "— _ 0^ icJiere y^^ is the value of ^ „:^ expressed in terms

of x, y ... .^^ , iScc. l>y means of the given first integral.

If the proposed first integral is rational and integral in form,
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then representing it hy ^ = 0, it suffices to eliminate c between
the equations,

'^='>'S=o • (•«)•

It is unnecessary to dwell on the particular cases of exception

after what has been said on tliis subject in Chap. Viii.

Ex. 1. The differential equation

y - ^y.^ \,: y^- (]j,- ^yj'' - y' = ^^

has for a first integral

required the corresponding singular integral.

Differentiating the first integral with respect to h, we find

whence h — —jy— 2. , and this value substituted in the given

integral, leads to

or, on reduction, 16 (1 + x") 2j - d>x^ij^ - l^xy^ + x* - l(jy^ = 0.

In connexion with this subject, Lagrange has established

the following propositions

:

1st. Either of the first two integrals of a differential equation

of the second order leads to the same singular integral of that

equation.

2nd. The complete primitive of a singular integral of a

differential equation of the second order will itself be a sin-

gular solution of that equation, but a singular solution of a

singular integral will in general not be a solution at all of

that equation.



232 SINGULAR INTEGRALS. [CH. X.

The proof of these propositions will afford an exercise for

the student.

[See Lagrange's Legons sur h Calcul des Fonctions, Lecon
14°"" of the edition of 1806, or Lecon 15°"" of the edition of

1808. A note by Poisson on page 239 of the edition of 1808

should be consulted ; it relates to the second of the above
two propositions. See also Lacroix, Tome ii. pp. 382 and
390.]

10. We proceed to inquire how singular integrals may be
determined from the differential equation.

Expressing as before the first integral involving an arbitrary

constant in the form

yn-,=f[^,y,yr'-'yn..,c) (^7),

we have as the derived equation

^^^j€(-^c:.y^)|
(48),

the brackets in the second member indicating that in effecting

the differentiation y, ?/j,...y„ g, are to be regarded as func-

tions of X. The differential equation of the n^^^ order is found
from (48) by substituting therein, after the differentiation, for c

its value in terms of x,
3/, 3/^, ... y„_i, given by (47). The result

assumes the form

yn = i>{x, y,yx'"yn.,) (49).

Hence, we liave

f^^^ in (49) = -^ in (48) x -^ in (47),
^3/»_i

' ' dc df/„_^

or, representing f{x, y, y^.-.y^.^, c), by/,

dy, . _(dj\,df
dij^_^ \dxdcj ' dc'

Hence,

^.=(i^°="%') ("^'

provided that the first member be obtained from the differ-

ential equation, and the second member from one of its
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first integrals involving c as arbitrary constant. It is to be
borne in mind that in effecting the differentiation with respect

to X in the second member, we must regard y^ t/^, ... y^_^ as

functions of x,

Xow reasoning as in Chap. viii. since a singular solution

makes -^^ = 0, it makes its logarithm, and in general the

differential of its logarithm, infinite. Thus we arrive at the

following conclusion.

k. singular integral of a differential equation of the rt^^ order

(ifii

will in general satisfy the condition -~^ = qc , and a relation

which satisfies both this condition and tiie differential equation

will be a singular integral.

Ex. 2. Applying this method to the equation,

x"
y - ^Ux + ~^ y^- ^yx-^y^^-yi=^^

we find, on differentiating with respect to y^ and y^ only,

-1^+2 [y^ - xy^)] fhj^ + 1^
+ 2x (y, - xy^ - 2^j dy^ = 0,

whence
dy„ 2 (?/j — .-TT/J + X

'^•^^

^^- + 2x{y^-xy,)-2y.

Equating the denominator of this expression to 0, we find

_ a;" + 4.T?/j

^'~^{x' + 'l)'

and substituting this value in the given differential equation,

clearing of fractions, and dividing hj x~+l, which will present

itself as a common factor,

Ux^y + 16?/ - Sx^'y^ - Uxy^^ - Uy^" + a:' = 0,

a singular integral. The equation given and the result agree
with those of Ex. 1.
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13. Shew tliat tlie linear equation .
'^ + P ^ + Cy =-0,

belongs to one of the homogeneous classes, and is reducible to

an equation of the first order by assuming y = e-^"'^"'.

14. bolve the hnear equation ^.^ \- F-j--\- -j-- y = 0.

15. Mainardi has remarked (Tortolini, Vol. i. p. 7G), that

LiouvIUe's equation Art. 7, becomes integrable if multiplied

by the factor [-j-] . Applying this method, deduce the com-

plete primitive.

16. Liouville's equation may also be solved by suppressing

the second term and regarding the arbitrary constant in the

first integral of the result as an unknown function of x.

17. Shew that the equation y^ + -P -7^ + <?(^) is in-

tegrable in the following cases, viz. 1st, when P and Q are

both functions of x, 2ndly, when they are both functions ol //,

3rdly, when Pis a function oi x, and Q a function of^.

lb. Given
^^J

= a ^ ^ .

19. Given s = \/(^"+ 2/^) • (Transform to polar co-ordinates.)

20. Given s = a^ . Determine the relation between y
ax

and ic, so that when x = 0, we may have ^ = 0, and ,'
^
= 0.

21. Equations homogeneous with respect to x, ?/, and s can

be integrated by the assumption x — e^,y = e^u.

22. Given , + 3?/ ,-^ =0, required the complete primitive

relation between x and y,

23. s = ^\x^+2cx).

24 s = sl{f+inx').



236 EXERCISES. [CH. X,

25. Examine tlie solution of Ex. 24, when m = 1 and
Avhen m = 0.

72

27. Shew that cc -^.^ is an exact diifercntial coefficient.

28. Shew that ^/^ + (20^2/ " 1) f^
+ ^ 4^{ + ^' f^ = is an

exact differential equation, and deduce a first integral.

29. The equation ~^ +7-^^V2 becomes integrable by

means of the factor 2x^ ,- — 2xy. (Moigno, Tom. 11. p. 672.)

Deduce hence a first integral.

30. Deduce also the complete primitive.

31. Find a singular integral of the equation

iW
^dx^J X dx dx^

32. Hence deduce a singular solution of the given differ-

ential equation.

33. The complete primitive of the differential equation of

the second order in Ex. 31 is required.

34. A first integral of the differential equation of the

second order y-xy^-\--y^- {y^ - xy^)'- y^ = is

y -\- i- — a~\x^—{\ — 2a) xy^ — a" — y^ = 0, where y^ stands for

-y- . Hence deduce the singular integral. Shew that it agrees,

and ought to agree, with the result obtained in Art. 10.

35. Shew that the complete primitive of the above differ-

ential equation is y = - x^ + hx + a^ + P.
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36. The singular integral of the differential equation of

the second order, above referred to, has been found to be

U{l+x'')y-^xhj^-\(jxij^-\-x^-U2j{=0. Ex. 2, Art. 10.

Shew that this singular integral has for its complete 2:)rimitive

(16j/ + 4x' + x'f = x{l-^x'f- log {(1 + x'f -x]+ h,

li being an arbitrary constant—and that this is a singular

solution of the proposed differential equation of the second

order.

37. The same sin^-ular integral has for its singular solution

l^y-\-^x^ — x^ = 0. Prove this. Have we a right to expect
that this Avill satisfy the differential equation of the second
order ?

38. By reasoning similar to that of Chap. viii. Art. 14,

shew that a singular integral of a differential equation of the
form ?/„+/(x, ?/, ?/j ...?/„_J =0, will render the integrating

factor of that equation infinite.

39. Differential equations of the form -~ =f ( -.
J
can be

dx^ ~*^
\dx,

integrated by obtaining two first integrals of the respective

forms x=f\])^ c), y—f^ (p, c), and equating the values of p.

40. Prove the assertion in Art. 9, that a singular solution

of a singular integral of a differential equation of the second

order is in general no solution at all of the equation given.
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CHAPTEK XL

GEOMETRICAL APPLICATIONS.

1. In what manner differential equations afford the appro-

priate expressions of those properties of curves which involve

the ideas of direction, tangency or curvature, has been explained

in Chap. I. Art. 11.

Of the suggested problem in which from the expression of

a property involving some one or more of the above ele-

ments it is required to determine, by the solution of a dif-

ferential equation, the family of curves to which that property

belongs, some illustrations have also been given in the fore-

going Chapters.

Here we propose to consider that problem somewhat more
generally.

The following expressions furnished by the Differential

Calculus are convenient for reference.

For a plane curve referred to rectangular co-ordinates x and

y, representing also ^ by 'p,
^J by ^,

Tangent =^t^' . Subtan. = ^
.

V P
Normal = y [I +i^'0^' Subnormal = yp.

Intercept on axis x = x — -,
^

p
Intercept on axis y = y — xp.

Dist. from origin to foot of normal = a? + ?/;:>.

/jy U — (x •" (t) 7}

Perpendicular from (a, V) on tangent = ^^

n~4- ^u^ •

Perpendicular from (a, V) on normal = /TT^syr^ •
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Jtadius 01 curvature = + ^ ^^-^
.

9.

Co-ordinates (a, /3) of centre of curvature

To tliese may be added the well-known formulae for the dif-

ferentials of arcs, areas, &c.

It is evident from the above forms that problems which
relate only to direction or tangency, give rise to differential

equations of the first order—problems which involve the con-

ception of curvature to equations of the second order.

When tlie conditions of a geometrical problem have been

expressed by a differential equation, and that equation has

been solved, it will still be necessary to determine the species

of the solution—general, particular, or singular, as also its

geometrical significance.

2. The class of problems which first presents itself, is that

in which it is required to determine a family of curves by
the condition that some one of the elements whose expressions

are given above shall be constant.

Ex. 1. Eequired to determine the curves whose subnormal

is constant.

Here y -~ =a, and integrating,

f
'j-=rax-\-c,

y = {'lax + 2cf.

The property is seen to belong to the parabola whose para-

meter is double of the constant distance in question, and whose
axis coincides with the axis of x, while the position of the

vertex on that axis is arbitrary.

Ex. 2. Eequired a curve in which the perpendicular from

the origin upon the tangent is constant and equal to a.

Here we have
y-xp = a{\ -}-/)S
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an equation of Clairaut's form, of which the complete primi-

tive is

and the singular solution

The former denotes a family of straight lines whose distance

from the origin is equal to a, the latter a circle whose centre is

at the origin, and whose radius is equal to a. And here, as

was noted generally by Lagrange, the singular solution seems

to be, in relation to geometry, the more important of the two.

3. A more general class of problems is that in which it is

required to determine the curves in which some one of the

foregoing elements. Art. 1, is equal to a given function of the

abscissa x.

Ex. 1. Eequired the class of curves in which the subtan-

gent is equal tof(x).

Here we have

whence

2/=/(^)J;

Ji/ dx

Thus if the proposed function were x^, we should have
1

as the equation required.

Ex. 2. Eequired the family of curves in which the radius

of curvature is equal to/ {x) .

Here we have

d^
dx' _ 1

1 + {MV /W
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whence, multiplying by dx and integrating,

dy

dx __ f dx

dxX representing the integral of , . Hence we find by alge-

braic solution

dy X+G
dx~{i-{x+cy]''

'k
(X + C) dx ^

in Avhich it only remains to substitute for X its value, and
effect the remaining integration.

If/ {x) is constant and equal to a, we find

X+0=-+(7 = ^±^,
a a

_ r (x + aC) dx ^
y " J J\a'-ix-\-aGY\ ^ ^^'

sJ[cc^-{x-\-aCY

=.-[a'-{x + aCyf+C„

whence {y — CJ^+ {x + a Cy= d\

and tliis represents a circle whose centre is arbitrary in posi-

tion, and whose radius is a.

A yet more general class of problems is that in which it is

required that one of the elements expressed in Art. 1 should be
expressed by a given function of x and ?/.

An example of this class is given in Chap. vir. Art. 10.

4. We proceed in the next place to consider certain pro-

blems in which more than one of the elements expressed iu

Art. 1, are involved.

B. D. E.
, 16
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Ex. 1. To determine the curves in wliicli tlie radius of
curvature is equal to the normal.

If the radius of curvature have the same direction as the
normal we shall have

1 + r^^iT
1+ £ (1).

whence

dx'

y'MS-^-^ (^)-

The first side multiplied by dx is an exact differential and
gives

dy

whence again integrating

y' + x' = 2cx-\-c (3),

the equation of a circle whose centre is on the axis of x.

If the direction of the radius of curvatm-e be opposite to that

of the normal, it will be necessary to change the sign of the

first member of (1). Instead of (2) we shall have

4-J-(i)"-» -«.
and this equation not containing x, we may depress it to the

first order by assuming -r —p- The transformed equation is

, pdp dy
whence, , , .,

= —

2/
= c(l+/)l
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Substituting for
i)

its value -j- , we find on algebraic solu-

tion

d^= "^y

whence, x = c' + c\og [1/ + {7/^ — cy-}... (5).

This equation, reduced to the exponential form

a
"-'

y = 2^^"+^ ")' (6).

is seen to represent a catenarj.

The solution therefore indicates a circle when the direction

of the radius of curvature and of the normal are the same, but
a catenary when they are opposed. The latter curve has,

liowever, many properties analogous to those of the circle.

(Lacroix, Tom. ii. p. 459.)

Ex. 2. To find a curve in which the area, as expressed
by the formula fyclx, is in a constant ratio to the correspond-

ing arc.

We have y = C {I +7->^)%

which, agreeing in form with tlie last differential equation of

the preceding problem, shews that (5) represents the curve

required, and connects together the properties noticed in the

last two examples.

Ex. 3. Required the class of curves in which the length of

the normal is a given function of the distance of its foot from
the origin.

The differential equation is

y{l+ff=f{x + yp) (1),

and it belongs to the remarkable class discussed in Chap. vil.

Art. 9, where the complete primitive is given, viz.

y-+{x-af==[f{a)Y (2).

This represents a circle whose centre is situated on the axis of

a; at a distance a from the origin, and whose radius is equal to

IG—

2
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/(«). It is evident that this circle satisfies the geometrical

conditions of the problem.

But there is also a singular solution, found hy eliminating

the constant a between (2) and the equation derived from (2)

by differentiation with respect to a, viz.

x-a+f{a)f{a) = (3).

For instance, if f{a) = ivd' we have to eliminate a between
the equations

?/^ + (a? — CLf- = ??«,

2 (x - a) 4- n = 0,

from which we find

the equation of a parabola. While in this example the com-
plete primitive represents circles only, the singular solution

represents an infinite variety of distinct curves, each originat-

ing in a distinct form of the function /(a). Other illustrations

of this remark will be met with.

The above problem was first discussed by Leibnitz, who did

not, however, regard its solution as dependent upon that of a
differential equation, but, establishing by independent con-

siderations the equation (2), which constitutes in the above
mode of treatment the complete primitive of a differential

equation, arrived at a result equivalent to its singular solu-

tion by that kind of reasoning which is employed in the geo-
metrical theory of envelopes. Indeed it w^as in the discussion

of this problem that the foundations of that theory were laid

(Lagrange, Calcul des Fonctions, p. 268).

5. A certain historic interest belongs also to the two fol-

lowing problems, famous in the earlier days of the Calculus, viz.

the problem of ' Trajectories' and the problem of 'Curves of

pursuit.' These we shall consider next. They will serve to

illustrate in some degree the modes of consideration by wliich

the differential equations of a problem are formed when a mere
table of analytical expressions suffices no longer.
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Trajectories,

Supposino^ a system of curves to be described, the different

members differing only through the different values given to

an arbitrary constant in their common equation—a curve which
intersects them all at a constant angle is called a trajectory,

and when the angle is right, an orthogonal trajectory.

To determine the ortho_2:onal trajectory of a system of curves

represented by the equation

<i>[x,y,c)=0 (1).

Eepresenting for brevity (/> {x, y, c) by (/>, we have on differ-

entiating

-J- ax + -r ay = 0.
ax dy "^

Hence, for the intersected, curves,

dy _ d^ dcf)

dx dx ' dy
'

!N"ow representing this value by m^ and the corresponding

value of -~~ for the trajectory by m\ we have, by the condition

of perpendicularity, m =— . Hence for the trajectory

dy d(j) dcf)

dx dy ' dx^

d(f) , d(b 7 ^ , V

T/^'^-Zi'^^^''
' ("^)'

which must be true for all values of c. Hence the differential

equation of the orthogonal trajectory icill he found hy elimin-

ating c hetioeen (1) and (2).

Were the equation of the system of intersected curves pre-

sented in the form

<f>
{x, y, «, h) = 0,

a and h being connected by a condition

f{a,h)=0,
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we slionlcl have to eliminate a and h between tlie above two

equations, and the equation

d4> (x, ?/, a, h)
^^^

_ d4> {x, ?/, a, h) ^
^^

^^U
dx

"\Vc shall exemplify both forms of the problem.

Ex. 1. Required the orthogonal trajectory of tlie system

of curves represented by the equation y = cx'\

Here <^=y — ex"", whence by (2)

dx + ncx''~^ dy = 0.

Eliminating c,

xdx + nydy — ;

therefore x^ + nif = c,

the equation required. We see that the trajectory will be an
ellipse for all positive values of n except ;i = l,—an ellipse,

therefore, when the intersected curves are a system of common
parabolas. The trajectory is a circle if w = 1, the mtersected

system then being one of straight lines passing -through the

origin. The trajectory is an hyperbola if 7i is negative.

Ex. 2. Required the orthogonal trajectory of a system of

confocal ellipses.

The general equation of such a system is

•> 1^ 7 2 — -**

a

a and h being connected by the condition

2 7 2 7 2
a — b — h

,

Avhere li is the semi-distance of the foci, and does not vary from

curve to curve. Hence we have to eliminate a and h from the

above equations, and the equation

f,- dx - - 2 dy = ;
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the result is

the solution of which may be cleduced from that of Ex. 3,

Chap. yii. Art. 10, by assuming therein A = \, B = h^. We
find

and this may be reduced to the form

a^ and h^ being connected by the condition

Thus the trajectory is an hyperbola confocal with the given
system of ellipses.

6. When the trajectory is oblique, then 6 being the angle

which it makes with each curve of the system, and m and m
having the same significations as before,

m + tan 6m 1-m tan 6
'

or, substitutins: for m its former value—r~^ ~r- i
f^nd for m^ ax ay

its value ^- as referred to the trajectory, we have on reduction

^ #tan^-4^

dx 716 d6 ^^'

ay dx

an equation from which it only remains to eliminate c by
means of the given equation in order to obtain the differential

equation of the trajectory.

Ex. Kequired the general equation of the trajectories of

the system of straight lines y — ax.
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Here cj) = y — ax, whence by (3)

di/ _ tan 6 + a

dx 1 — a tan Q

_ X tan \- y
X — y tan 6

'

or {y-Vx tan 6) dx + {y tan 6 — x) dy = 0,

a homogeneous equation, an integrating factor of which being

T, , we have
03^+2/

ydx — xdi/
, ^ a?f?ic + ?/cZ?/

^—ij f^ + tan ^—r,—V^ = 0,
x' + y' x' + y^ '

whence integrating

tan-^ - + tan (9 log {x' + 2/')^ = c.

If we change the co-ordinates by assuming x =r cos </>,

2/
= r sin </>, we get

the equation of a logarithmic spiral.

The following example, which is taken from a Memoir by
Mainardi (Tortolini's Annali di Scienze Matematiche e Fisiclie,

Tom. T. 251), is chiefly interesting from the mode in which the

integration is effected.

Required the oblique trajectory of a system of confocal

ellipses.

Eepresenting the tangent of the angle of intersection by w,

we have to eliminate a and h between the equations

y X
a

i5 + ™a^
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The result may be expressed in the form

[nx + 2/ + [ny — x) p] [x - ny + {nx + y) p] - h^ {n —p)) (I + np^ .

To integrate this equation let us assume

x — ny-\- [nx + y) p =M {I + np)
,

M{nx + y + {ny — x)p]=h^ [n—p).

As these on multiplication reproduce the given equation

the assumption is legitimate.

Eliminating p from the last two equations, and dividing

by 1 + n^, we have

[x'+if + h')2I=x{M'' + li') (a).

Differentiating this equation and eliminating y and|9 from the

result by the aid of any two of the last three equations (it

is evident that two only are independent), we obtain a

differential equation between M and x, which is capable of

expression in the form

nd [xM) x _
[K\xM) - {xMf^^ ' Mf_M\^

X\ X J

[For (a) may be written thus

:

]\hf={x-M)[h'-xM) (c);

differentiating we have

therefore 2,f Jf+ ^-^^)^--^^ if^ dx M dx
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therefore 2y £m^ ^^
-^-

= ]^ _ ^ii/_ (^ _ J/) (mjt X^)

;

therefore 2?/ — il/+ -^—^ ^ -— = h'- 2x21+M\

But ^= ^^+7"^
,

therefore 2% (J/- iz?) + 2?zJ/y

+ ?^ (a^ - il/) \h' ~ 2xM+ il/^ - jj. {h' - 2P) '^~
I

;

therefore

y (i)p _ 7,^) + 2,1 {x - 21) {h' - x2r) +
'H

(A^ - 2P)~

= n{x- 21) j/r - 2x21+ 2P -j^iji'- 2P)^l
;

tlierefore {2P - 7r)
(^^

- «^ ^^) - n (x - 21) {2P - h')

= n(x-2I)l^iM^-P)^;

therefore '' (^- -^^) [^^+ ^^) +
2/
(x^- 2lj = 0;

therefore .i (x - 21) '^-^-^ + yx' ?- ^^=
0.

c/a; "^ dx X
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Hence by t]ie aid of (c) we obtain (5).]

Hence, by integration

'" *"^"\/{&r ')
+ ^°s ^,

1^. = c,

in which it is only necessary to substitute for 21 its value in

terms of x and y deduced from (a).

Curves of Pursuit.

7. The term curve of pursuit is given to the path which
a point describes when moving with uniform velocity toward
another point which moves with uniform velocity in a given

curve.

Let X, y be the co-ordinates of the pursuing point, cc', y the

simultaneous co-ordinates of the point pursued. Also let the

equation of the given path of the latter be

/(^',y)=o (J).

Now the point pursued being always in the tangent to the

path of the point which pursues, its co-ordinates must satisfy

the equation of that tangent. Hence,

y -y^dx^""
-^) W-

Lastly, the velocities of the two points being uniform, the

corresponding elementary arcs will be in the constant ratio of

the velocities with wliich they are described. Hence, if the

velocity of the pursuing point be to that of the point pursued
as 11 : 1, we have

n ^{dx" + chf) = >^{dx' 4- fZ/),

or, taking x as independent variable,

V{®)"-(S}Vl-0') <«•
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the sign to be given to each radical being positive or negative,

according as the motion tends to increase or to diminish the

corresponding arc.

From (4) and (5), when the form of the fmiction/ (a;', y) is

determined, x and y maj be found in terms of a?, ?/, and -,-^

,

and these values enable us to reduce (6) to an equation be-

tween ic, ?/,
-^

, -j^ . It only remains to solve this diifer-

ential equation of the second order. If the signs of the

radicals are both changed, the motion in each curve is simply
reversed, and the curve of pursuit becomes a curve of fliglit.

But the differential equation remaining unchanged, the forms
of the curves are unchanged, and only their relation inverted.

Ex. A particle which sets off from a point in the axis of x^

situated at a distance a from the origin, and moves uniformly

in a vertical direction parallel to the axis of ?/, is pursued by
a particle which sets off at the same moment from the origin

and travels with a velocity which is to that of the former as

n \ \. Required the path of the latter.

The equation of the path of the first particle being x = a,

(5) becomes

whence

Thus we have

dx ^ dx~^ ^ dx-

and the differential equation, both radicals being positive, is
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Hence,

v/h©]
•"-"•

Multiplying by die and integrating

I4m"-)---Jtherefore -- = - {c (a - r?^) ---[a-x)

Hence, if n be not equal to 1,

But if ?i be equal to 1, we have

dy _\ [x — a c
]

dx 2 ( c ic — rtj
'

whence
(x — aY c , , . ,

8. The class of problems which we shall next consider is

introduced chiefly on account of the instructive light which it

throws upon the singular solutions of difterential equations of

the second order.

Inverse Problems in Geometry and Optics.

The problems we are about to discuss are the followiuo:

:

1st, To determine the involute of a plane curve. 2ndly, To
determine the form of the reflecting curve which will produce

a given caustic^ the incident rays being supposed parallel.
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In botli tliese problems we shall have occasion in a parti-

cular part of the process to solve a differential equation of the

first order of the form

y-x<p {p) =ff-'4> {p)-<i>{p)f-'4> ip) (7),

in which (/> and/ are functional symbols of given interpretation,

and /'"' is a functional symbol whose interpretation is inverse

to that of the symbol/'. Thus, i^fix) = sin^, then

f {x)= cos X, f'~^ {x) = cosT^x,

It will somewhat less interrupt the theoretical obser-

vations for the sake of which the above problems are chiefly

valuable, if we solve the equation (7) under its general form

first.

Eeferring to Chap. vil. Art. 7, we see that (7) will become
linear if we transform it so as to make either of the primitive

variables the dependent variable, and either p or any function

ofp the independent variable.

Let us then assume

and transform the difi'erential equation so as to make x and v

the new variables.

Substituting v for (p {p) in (7), we have

y-xv=fr{v)-vf-^[v) (8).

Differentiating, and regarding v as independent variable,

But

dy dx ,_. , , dx
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Hence,

or,

^ _|.

^ ^ /'"' (^)

Hence, if for brevity we write

we have

cc = 6 - "/^ '^')

{ (7+ Je'/'

'^)
^/r' (f)/ '-^

[v) dv}

= €-'/' >; [C+e^ '^^ /'-' {v) - 16^ :^')

df'-' {v)},

whence

^-/'"'('•)=e-*'^'((?-/^*''-'<^/'-'Wl (10),

between which and (8), v must be eliminated.

If in those equations we make /'"^ {v) = t, they assume the

somewhat more convenient form,

2/-^/'w=/w-r(o>

and these may yet further be reduced to the form

a,^t^?L^m= J
lu).

From these equations it only remains to eliminate f, tlic

forms of/ and </> being specified, and that of yjr given by (9)

;

and this is apparently the simplest form of the solution.
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9. We shall now proceed to the special problems under
consideration.

To determine the involute of a plane curve.

It is evident from the equations which present themselves

in the investigation of the radius of curvature, that if x, y be

the co-ordinates of any point in a plane curve, and a?', y those

of the corresponding point in the evolute, then

7 72

where ;:> = -^ ,
2' = 7^ (Todhunter's Differential Calculus,

Art. 320). Hence, if the equation of the evolute be

y=/(^') (12),

we shall have on substituting therein for y' and x the values

above given,

y^^-f^-^^ (13),

a differential equation of the second order connecting x and y,
and therefore true for each point of the curve whose evolute is

Liiven. Of that evolute the curve in question is an involute.

Hence, \iy'=f{x') be the equation of a given curve, the

equation of its involute will satisfy the differential equa-
tion (13).

Xow suppose that nothing was known of the genesis of the

above equation, and that it was required to deduce its complete

primitive, and its singular solution, should such exist.

Upon examination the equation (13) will prove to be of a

kind analogous to that of Chap. Yii. Art. 9. If we assume

x-P'^^P'^ a (U),
2

l + if

.

y+'^-i (15),
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a and h being arbitrary constants, we shall find that each of

these leads by differentiation to the same differential equation

of the third order, viz.

3^2'-(l+/)^=0 *

(16),

where r stands for -r-^ . It follows hence, that a first intesrral
dx

of (13) will be found by eliminating q between (14) and (15),

and connecting the arbitrary constants h and a by the relation

h=f[a). Eliminating q, we find

x-a + {y-h)p = (17),

wherein making h=f{a), we have

^-«+{y-/(«)b = (18),

for the first integral in question. Again, integrating, we have

{x-ay+y-f{a)Y = r^ (19),

in which a and r are arbitrary constants. This is the complete

primitive of (13). It is manifest from its form that it repre-

sents, 'not the involute of the given curve, but the circles of

curvature of that involute. Indeed, that the complete primi-

tive cannot represent the involute might have been affirmed

a priori. The equation of the involute of a given curve cannot

involve in its expression more than one arbitrary constant

;

for the only element left arbitrary in the mechanical genesis

of the involute is the length of a string.

It remains to examine the singular solution of (13). This
is most easily deduced by eliminating a between the first

integral (18) and its derived equation with respect to a, viz.

between the equations

a^-« + {/y-/(^)h^ = (20),

-l-/^(«)i^ = (21).

From the second of these we have

B. D. E. 17
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Hence eliminating a from (20)

x + yp=r{~j)+pff-(~) (22),

whicli is the singular solution of (13), and the differential

equation of the first order of the involute sought.

This equation is a particular case of (7). If we express it

in the form

we see that it is what (7) would become on making

Hence comparing with the general solution (11) we have

^(^)=JiL=iog(.^+i)^
v +

V

Thus the system (11) becomes

"-'-
fit) uTfw¥~"

^''^-

The final solution is therefore expressed in the following

theorem.

Given the equation of a curve in tlie form y' =f {x) , that

of its involute is found hy eliminating tfrom the system (23).

10. Parallel rays incident, in a given direction, on a reflect-

ing plane curve produce after reflection a caustic whose equa-

tion is given. The equation of the reflecting curve is required.
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Let ZPbe a ray incident parallel to the axis of a? on a point
P in tlie reflecting curve SPM, Fig. I, PF Q the reflected ray
cutting the axis of cc in Q and touching the caustic S'P'M' in
P'. Let X, y be the co-ordinates of P, x\ y those of F. Let
the equation of the caustic be y' =f[x').

It is an easy consequence of the law of reflection that the
angle PQX which the reflected ray makes with the axis of x
is double of the angle PTX made by the tangent at P with
tlie axis of x. This at once gives us the equation

y — y _ 2j9

vv^here _p = y • Hence

y-y'-J^zi^-^') = (^ (24).

As, however, {x, y') is a point at which consecutiye re-

flected rays intersect, we are permitted to difterentiate the
above equation regarding x and y' as constant while x and y

vary. We thus obtain, representing -^ ^7 9.1

1 — 'p ^ (1 —;p)

1 ' 7^(1-/)
whence x —x= —

^ ^ ,

and a:' = aj+£iLlZ) (95).

Substituting this value in (24), we have

y ^-rz/'' 2^ -"T"'
2

whence y' = y -\-'^-
(26).

17—2
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Were tlie equation of the reflecting curve given and that of

the caustic required, it would only be necessary to substitute

in (25) and (26) the values oijj and q in terms of x and y derived

from the former, and then by eliminating x and y from the

three, to deduce the relation between x and y'.

Conversely, to determine the reflecting curve we must elimi-

nate X and y' from (25), (26) and the equation of the caustic,

viz. y =f{^')' ^'l^e result which is obtained by mere substi-

tution is

»-?=/!-'-V=} w.

a difl'erential equation of the second order, the solution of

which will determine in the fullest manner the possible rela-

tions between x and y which are consistent with the conditions

of the problem.

Were this equation given and nothing known respecting its

oria'in, we might at once infer that it is of a class analogous to

those of Chap. Vii. Art. 9. For writing

3/+f
= J,

-+^^V^=« (28),

we find that each of these leads by differentiation to the same

differential equation of the third order. For the first gives

9pr _
jjj

while the second oives

3i-^^ = 0,

3 3 {\-f)vr _
2 2^ 2q'

~^'

and these lead to the same value of the differential coefficient

of the third order r, viz.

V

this constituting the essential criterion of agreement between

differential equations of the third order.
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Accordingly, eliminating ri from (28) and afterwards making
})=f{a) by virtue of (27), we find

f{a)-y 2{a-x)'

<^r 2/-/(«)=^~.(^-«) (29),

wliicli is a complete first integral of (27). We see that it agrees,

and necessarily so, with (24), a only taking tlie place of x and
/(a) that of y.

The complete integral of (29) will he found to be

{y-fia)Y = Am(x-a)-\-4.m' (30),

771 being an arbitrary constant. And this is the complete

primitive of (27). If we substitute x for o, wliich we may
without loss of generality do, then f{a) =f[x') =9/', so that

the above equation gives

{y - y'Y = 4.m{x-x' + m) (31);

and this is evidently the equation of a parabola whose axis is

parallel to the axis of x, whose focus is upon the caustic curve,

but which is in no other way limited. The complete primitive

of (27) represents then a system of such parabolas.

It is plain that any such system does constitute a true solu-

tion of the problem, rays falling upon the interior arc of a
parabola, and parallel to its axis, being accurately reflected to

the focus.

It remains to deduce the singular solution of (27). Differ-

entiating its first integral (29) with respect to a, we have

whence a=f'~'(~^^,

and substituting this in (29)
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This is the differential equation of the involute. Its com-
plete integral may be deduced from tlie general solution in

Art. 8, by making cj) {p) = . _^ 2 , whence we have

= log(^/{l + ^-•^)+ll.

Hence the system (11) becomes

^^t- y-/W _ ^-/[i + V(i +/' [tfW dt

fit) i+vii+/'m "•^^^^'

froni which, after the integration has been effected, t must be
eliminated.

If, as before, we replace t by x\ and./{t) by y' and there-

fore /' {t) by y, , then, since we have

\^[li-f'{ty]dt = ds',

where s' represents the arc of the caustic, the above system
assumes the following form,

, V — V C — x — s ,^,.

"""^^^"77*:"
^
^'

dx' dx

from which, when s' is determined, x and ?/' must be elimi-

nated by means of the equation of the given curve.

From the above it appears that, the incident rays being
parallel, the reflecting curve can always be determined when
the caustic can be rectified.

We see also from the nature of the connexion between the

singular solutions and the ordinary primitives of differential

equations, that the reflecting curve is in reality the envelope of
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a system of parabolas whose axes are parallel to tlie direc-

tion of incident rays, whose foci are on the caustic, and

whose parameters are subject to such a relation as makes that

envelope to have contact of the second order with the curves

out of whose differential elements it is formed. It is not

merely an envelope, but an osculating envelope.

Analogy makes it evident that when the rays instead of

being parallel issue from a given point, the reflecting curve is

the osculating envelope of a system of ellipses, each of which

has one focus at the radiant point, and the other on the arc of

the caustic, the elliptic elements being further so conditioned

as to render such osculation possible.

Lastly, it is plain that the problem of caustics in its direct

and in its inverse form, as stated above, is in strict analogy

with the direct and the inverse form of the problem of curva-

ture, osculating parabolas and ellipses occupying the place and
relation of osculating circles.

The above examples might also be treated by a remarkable

method, the consideration of which will fitly close this Chapter.

Intrinsic Equation of a Curve.

11. There are certain problems, the solution of which is

much facilitated by the employment of what Dr Whewell has

happily termed, the intrinsic equation of a curve, viz. the

equation which expresses the relation between tlie length of an
arc and the anHe throuirh which it bends, the latter beins: in

more precise language the angle of deviation of the tangent

from the tangent at the origin. These elements are called

intrinsic because they are independent of any external lines of

reference, and it will be noted that they form a system dif-

fering essentially from all systems of co-ordinates which begin

by the defining of the position of a point, and in the applica-

tion of which a curve is contemplated as a collection of points.

The conceptions of lengtli and deviation upon wliich the

above system is founded, might be replaced by the not less fun-

damental conceptions of length and curvature, tlic equation of

the curve being then expressed in terms of its radius of curva-

ture at the extremity of an arc and the length of that arc. Or,
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in place of either of these systems, we might employ that which
defines a curve by the relation which connects the cm-vatm-e at

any point with the deviation of the tangent. Of the three

elements, length, curvature, and deviation, any two indeed

will together constitute an equivalent system. Euler, in a

particular class of problems, employed the combination last

described. Here we shall select the one first mentioned,

and shall borrow our chief illustrations of its use from the

memoir of Dr Whewell
(
Cambridge Philosoj)Mcal Transactions^

Vol. VIII. p. 659, and Vol. ix. p. 150).

Kepresenting by s the variable length of an arc the begin-

ning of which is assumed as origin, and by (/> the corresponding

angle of deviation, the intrinsic equation is of the form

s=f{^) (35).

Thus in fig. 2, /SP=5 and ATS= 0.

From this equation the ordinary equation in rectangular co-

ordinates may be found in the following manner. Still taking

the beginning of the arc as origin, let the tangent at that point

be taken as the axis of x, then will the element of the curve

ds be inclined at an angle ^ to the axis x. Its projection on

the axis of x will therefore be cos ^ds, and this being the dif-

ferential element of the co-ordinate x, we have

dx = cos (pds = cos
<f>f' (^) (f^, by (35).

Hence x— I cos^f {(j>) dcf) (36),

and by symmetry

3/=j'sin^/(^)# (37).

Between these equations after integration (^ must be eliminated;

the result involving cc, y and two arbitrary constants will be
the equation required.

It is worth while to notice that the above result may be
obtained independently of the consideration of a projection.

For since s= Hi + l-^j Y" dx, we have

/I +(i)"r^-=/<«.
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w!'«"ce \^l + (^J^^'dx=f{4>)d6 (38).

But, since -:- = tan cj), the above becomes

sec (j)dx=f {(f))
d(j),

dx = cos <^/' ((/)) d(^,

X = I cos (pf {(j)) d(f>,

and In like manner employing for s tlie equivalent formula

^=jsin(^/(<^)#,

which agree with the previous expressions.

xlnother consequence should also be noted. From ("38) we
/ /-7. . 2i 1 .7 J

{-©jWw ax

d'y

But T^ = -7- tan"^ [-Y-] = ^T—7 , whence
ax ax \axj f^fyX

"^
\d~x)

dxJ

i + ftax
Therefore i ~ =f' (^).

rZo?'^

Now the first member being the expression for the radius of

curvature p of the given curve, we have

P=/'W (39).

Tlius the radius of curvature is determined.
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12. Given the ordinary, to deduce tlte intrinsic equation

of a curve.

The values of s and <^ having been first expressed in terms
of the co-ordinates, it only remains to eliminate those co-

ordinates between the two equations thus formed and the

equation given.

Ex. To determine the intrinsic equation of the e;"|ui-

angular spiral.

The polar equation of the curve being r = (7e"'^, tlie arc s

beginning from ^ = is, by ordinary integration, found to be

m

Again, as the curve cuts all its radii at the same angles the

deflection of the arc between two radii vectores is equal to the

angle between the radii themselves. Hence the deflection of

the arc beginning with ^ = is measured by Q. Therefore

4> = 0, and the intrinsic equation becomes

m
From this it appears that any intrinsic equation of the form

s = a(e"^'^-l) (40)

will represent an equiangular spiral.

Given the intrinsic equation of a curve, to deduce that of its

evolute.

Considering the given curve as formed by the unwinding of

a string from its evolute, any arc of the former may be said to

correspond to that arc of the latter by the unwinding of the

string from which it is formed. Thus if s , (/>' represent ele-

ments of the evolute corresponding to 5, <^ in the given curve,

tlien the origin of s is that point of the evolute whose tangent

forms the radius of curvature at the origin of s.

This premised, it is evident that we shall have
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For the extreme differential elements of the arc of the evoliite

are respectively perpendicular to the corresponding^ extreme

differential elements of an arc of the given curve. Hence the

inclination of the former being equal to that of the latter, the

value of cf> is the same for both.

Secondly, any arc of the evolute is by a known property

equal to the difference of the radii of curvature of the ex-

tremities of the corresponding arc of the given curve. Hence
if p^ represent the radius of curvature at the origin of the

given curve, we shall have

«' = P-P.=/'(</')-/'W> V(39),

and, substituting (j)' for cj),

«'=/'(f)-/(o).

Dropping the accents, we may therefore afHrm that if the

intrinsic equation of a curve is s=f{(j)), that of its evolute

willbes=/(<^)-/(0).

Ex. The intrinsic equation of the logarithmic spiral is

s = a (e""'* - 1). Hence that of its evolute is

s = mae^'^ — ma

which also denotes a logarithmic spiral.

Given the intrinsic equation of a curve in the form s=f((f))

wherein /((/)) vanishing with (j> is supposed capable of expan-

sion in the form

f{^)=A^6 + A^f + A^cl>' + &c (41),

required the general intrinsic equation of the involute.

As to any curve there belong an infinite number of invo-

lutes depending on the different values given to that initial

tangent to the curve which forms the initial radius of curva-

ture of the involute, we shall represent the arbitrary value of

that initial tangent by C.

Now if s = F{^) be the intrinsic equation of the involute,

we have by the last proposition

F'{.t>)-F'{0) =/{<!>).
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But i^'(O), being the initial radius of curvature of tlie involute,

is equal to C. Hence the above equation may be expressed

in the form

whence F {<}>) = [f{^) d<i>+Cj>+ C\

A o

Hence F{ff)) vanishing vv^ith cj), we must have C = 0. Thus
the intrinsic equation of the involute, under the condition that

its initial radius of curvature is a, will be

s=jf{4>)d<l> + a4> (42).

If, for distinction's sake, we represent the arc of the invo-

lute bj s', the equation may be expressed in the form

s'=l{a + s)d(l> (43).

It is to be remembered that the lower limit of the integral is 0.

The following proposition from the memoir of Hr Whewell
referred to, will illustrate the application of the above theo-

rems.

Let any curve be evolved, and the involute evolved, and
the involute of that evolved, beginning each evolution from
the commencement of the curve last formed, and witli a " rec-

tilineal tail" which is of constant length for all. The curves

tend continually to the form of the equiangular spiral.

Let s, s', s", &c. be the successive curves, (/> the angle which
is the same for all, and let the tails represented in fig. 3, by
AA', A' A", A" A'", &G. be each equal to a.
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Then representing the equation of the given curve by

s=f[(j))^ we have for the first involute the equation

s' =
I

(a + s) d(j) = «(;£)+ |/(^) cZ^,

s" =j{a + s') dcp = acj, + ^,^+ jjf{(p) df,

s"'= j{a + s")dcj> = a^ +^^+j^ + jjjf{f)dc}>\

and in general

Now giving to /((/)) the form (41), we have

//{<^) #"
.n+2

1.2...(7i + l)^1.2...(7i + 2)^

We see then that the first 7i terms of the expression for s'"' in

terms of </> are unaffected by the form of the function /(</>),

while those which remain are affected with coefficients which
tend to 0. Thus the limiting form of (44) becomes

= a{ef-l) (45).

Now this is the equation of an equiangular spiral.

EXERCISES.

1. Determine the curve whose subtangent varies as tlie

abscissa.

2. Determine the curve whose normal varies as the square

of the ordinate.

3. Shew that the curve in which the radius of curvature

varies as the cube of the normal is a conic section.
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4. Find a curve in which the length of the arc is in a

constant ratio to the intercept cut off by the tangent from the

axis of X,

5. Shew that the above is a particular case of curves of

pursuit.

6. Find the orthogonal trajectory of a system of circles

touching a given straight line in a given point.

7. Find the orthogonal trajectory of the system of ellipses

defined by the equation -2 + y^ = 1, h being the variable

parameter.

8. Find the equation referred to polar co-ordinates of the

curve in which the radius vector is equal to m times the

length of the portion of the tangent intercepted between the

point of contact and a straight line drawn from the pole to

meet the tangent at a given angle.

9. Eequired the form of a pendent in Gothic architecture

supposed to be a solid of revolution, such that the weight to

be supported by each horizontal section shall be proportional

to the area of that section,

10. Eequired the curve in which 5 = ax^,

11. A curve is defined by this property; viz. that the

radius of curvature at any point is a given multiple (n) of the
portion of the normal intercepted between the point and the
axis of abscissa?; prove that the length of any portion of the
curve may be finitely expressed in terms of the ordinates of
its extremities. {Cambridge Problems, 1849.)

12. Find a differential equation of the first order of the
curve whose radius of curvature is equal to n times the nor-
mal, and shew that this is always integrable in finite terms if

n be an integer.

13. Shew that if w = 2 the cm've is a cycloid, \i n — 1 a
circle, ii. n — — l a catenaiy.

14. The curve whose polar equation is r^ cos mO = oT' rolls

on a fixed straight line. Assuming that straight line as the
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axis of X, shew that the locus of tlie curve described by tlie

pole of the rolling curve will have for its equation

(Frenet, Recueil d'Exercices sur le Calcul Infinitesimal)

Note. To solve problems like the above, we observe that if RTS, Fi^r. 4,

represent the given curve rolling on the given line OX, and APC the curve
described by the pole P, then taking OX for the axis of x, and putting OM=x,
MP— II, the straight line PT joining that pole with the point of contact will be
a radius vector of the given curve, but a normal of the described curve. Hence

^-^^hm\ <«>•

Again, PM is the pei-pendicular let fall from the pole upon the tangent of
the given curve, but the ordinate y of the required cm-ve. Hence

=y (^).

By means of (a), (5), and the equation of the given curve, eliminating r and
6, we obtain the differential equation of the curve sought.

15. In the particular case oim = \ the rolling curve will

be a parabola, the pole its focus, and the described curve a
catenary.

16. If m = 2, the rolling curve is an equilateral hyperbola,

the pole its centre, and the described curve an elastica.
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CHAPTER XII.

ORDINAEY DIFFERENTIAL EQUATIONS WITH MORE THAN
TWO VARIABLES.

1. The class of equations wliicli we shall first consider in

tliis Chapter, is represented by the typical form,

Pdx+ Qdy + Rdz = (1),

P, Q and R being functions of the variables x, y, z) and it

is usually termed a total differential equation of the first order

with three variables.

Possibly the first observation suggested by the examination
of this form will be, that it does not answer to the definition

of a differential equation, as the expression of a relation in-

volving differential coefiicients. Chap. I. And certainly it

does not exhibit their notation. If, however, we attempt to

attach a meaning to the general form (1), we shall perceive
that the idea of a limit is involved essentially. And if we
study its origin, we shall see that this idea may be expressed,
here as elsewhere, in the language of differential coefficients.

For (1) is not understood as implying simply that the

expression,

FAx+QAy + BAz (2),

approaches to the value when the increments Ax, Ay, Az
approach that value, true though it be that the vanishing
of the increments causes that expression to vanish with them.
But what (1) is always understood to express is, that in tlie

approach to the limiting state, (2) tends to vanish in conse-
quence of the ratios which the increments Ax, Ay, Az tend
to assume; it is, that if we represent (2) in any of the
equivalent forms

FAx + QAy + BAz . PAx + QAy +RAz ^ „

Ax ^^'
Ay'

^^'^^-

the limit of the ratio expressed by the first factor of each is 0.

And the problem of the integration of (1), is that ofthe discovery
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of the possible relation or relations among the primitive vari-
ables which will secure this result, supposing Aa^, A^/, A.-j to

be so restricted as to preserve such relations unviolated.

Now whether the primitive variables are connected by one
equation or by two simultaneous equations (we cannot\sup-
pose them connected by three equations without making them
cease to be variable), the relation (1) is fully expressible in the
language of differential coefficients. If there exist one primi-
tive rehation which, as we shall hereafter see, can only happen
under particular circumstances, then

, dz ^ dz ^

dz — -r- dx + -J- dy,
ax dif "'

while (1) is presentable in the form

dz =—^ dx — -P7 dy.

Hence, since dx and dy are independent, we have

dx~ R' dy~ R (^''

a system which in the supposed case is equivalent to (1). On
the other hand if, as Avill usually happen, two simultaneous
equations connect the primitive variables, e.g,

^{^,y^ ^)=0, ir(^x,7/, z)=^0 (4),-

then since we have

d(h dd> -, d6 ^-j^dx+ ---di/ + -fdz = 0,
dx dij ^ dz '

V^ dx -^^-i^ dy + ^J dz = 0,
dx d'j ^ dz

the elimination of dx^ dy, dz between these and the original

equation gives

/d(^ dyjr _ rZ</) c?"»/r\ /rZc^ dyfr dcf) d^lr

\dtj dz dz dy) \dz dx dx dz

+ n(;I^fy±f) = o (5).\dx dy dy dxj ^
'

B.D.E. 18
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a result wliicli is equivalent to (1), but is expressed in tlie

language of partial differential coefficients. As it constitutes

but a single relation between two unknown functions cjy and yfr,

one of the two may be considered arbitrary, and a particular

form being given to it, we should have a partial differential

equation for determining the other.

We propose indeed to discuss the equation (I) under its

actual form, but it is not unimportant to shew that it con-

stitutes no real exception to the definition of a differential

equation. Treated by the methods proper to partial differ-

ential equations, the forms (3) and (5) lead to the same
solutions as those investigated in this Chapter.

2. The foregoing remarks admit of geometrical illustrations.

If X, ?/, z and x + Ace, ij + A?/, z-hAz are the co-ordinates of

tvv'o points, the value of the expression FAx + QAj/ + BAz,
where P, Q, R are given functions of x, y, z, will depend
solely upon the positions of the points:

If we suppose the second point to approach the first along

any path^ the value of the above expression will approach to

in consequence of the quantities Ax, Ay, Az approaching to 0,

and independently of the ratios tvdiich they assume in vanish-

ing. But this is not in accordance with the understood

meaning of the equation (l).

The increments therefore not being independent, either they
are connected by one relation, in which case one point being
given the other must lie on the surface which that relation

determines, and its approach to the first must be made along

that surface, but is in no other way restricted; or the incre-

ments are connected by two relations, and then, the first point

being given, the second must be on the line determined by
those relations, and its approach to the first must be made
along that line, and therefore in a definite path.

3. These considerations suggest to us the following ques-

tions for analysis, viz.

:

1st. . Under what circumstances is the solution of the equa-
tion Pdx + Qdy -\- Rdz = 0, expressed by a single relation be-

tween the primitive variables—a relation which with the
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arbitrary constant of integration will represent a family of

surfaces;—and how is such a relation to be determined?

2ndly. How is the solution to be obtained when the above
condition is not satisfied?

These questions we shall next consider.

The equation Pdx + Qdy + Rdz = 0, derivahle from a single

primitive.

From the given equation, we have

P
dz = -j^dx--^dy (6).

But the existence of a single primitive involves the sup-
position that 5 is a function of x and y, and therefore that

we have

dx R' dij R ^^^*

. P
Hence, if -^ and -7^ do not contain z, we have by the

' R R ' -^

property of differential coefficients,

d_P__d Q
dy R dx R'

P Q
Should however -r-. and -^ both or either of them contain z.

It U
then, because we can still regard them as ultimately functions

of X and ?/, for z is such by hypothesis, we must change the

above into

d_P^ d^ d^P_d_ Q dz_d_Q
dy R dy dz R dx R dx dz R

'

Lastly, substituting here for -r and -^ their values given

in (7), effecting the differentiations, and reducing, we have

Kf-f)-«(S-S)--(f-^!)=« <').

an equation of condition which, when identically satisfied,

18—2
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indicates that tlie proposed equation admits of a single pri-

mitive.

4. To deduce the comjplete -primitive of the differential equa-

tion Fdx-\- Qdu-\-Rdz=i) lohen the equation of condition (8) is

satisfied.

The supposed primitive involving all the variables a?,

?/, z, it is evident that if we differentiate it on the hypothesis

that z is constant, we shall arrive at a result equivalent to

Pdx + Qdy = 0. It is also evident that if the primitive con-

tained a function of z for one of its terms, that term, whatever

the form of the function might be, would disappear in the dif-

ferentiation.

Conversely then if we integrate the equation

Pdx^- Qdi/ = (9),

rep-arding z as constant, and adding in tlie place of an arbitrary

constant an arbitrary function of z, we shall arrive at a result

which will necessarily include the complete primitive, and in

which it will only remain necessary to determine what form

must be given to the arbitrary function of z.

Thus, if the integrating factor of (9) be /i, and if, assuming

z constant, we write

/T17 ^ 7 N dV J dV ^

li{Pdx+Qdy) = j^dx + j-dij,

then will the complete primitive be of tlie form

V=-^{z) (10),

in which it only remains to determine (f){z). And this will bo

done by differentiating with respect to all the variables and
comparing with the given equation.

Differentiating (10) then with respect to x, y^ z, and trans-

posing we have

whence

^^7 _i_^^^ ^f^^ ^^*^^)l 7 a

dV d(t> (z)

dz
fjL {Pdx + Qdy) + ]-^ ^[ dz = 0.
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Now hy the given equation, PJx+ Qchj = — Piclz. SiiLsti-

tuting, and rejecting the common factor dz^ we have

^ dV dcf>(z) ^

whence

*#=?-"= (').

the second member of which must, on tlie hypothesis that a

single primitive exists, be reducible to a function of z by
means of (10). The solution of the equation thus reduced
will determine <^ (2;), the value of which substituted in (10)

will give the complete primitive.

Although we are fully entitled to affirm that the equation
determining <j>{z) must, whenever a single primitive exists,

be reducible to a form not involving x and ?/; it may be pro-
per to verify this conclusion a posteriori.

Let us then inquire under what condition the function

— fjuR^ can be freed from both x and y by means of the

equation V= <i>{z). Evidently this can onlv be the case when
dV .

'
.— /jlE and V are so related that, considered with respect to

X and y alone, the one is a function of the other. Thus we
have by the equation of condition (Prop. 1. Chap, ir.)

^ A i^- e) -^— (—- r] = o
dx dy \dz ) dy dx \dz ^ J

'

or

dV drV_ _ dV drV_ fdR d_V_dB d_V\

dx dzdy dj dzdx \dx dy dy dx)

^jt(i^'k_'lI'!t) = o (i^\
\dy dx dx dy I

' '

JNow smce -i— = uR -^— = aO, we liave
dx ^ dy ^
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dV dW dV d'V T.d , ^^ r>d , ry.

^YS.-^'S) (^•^)'

Thus also

(dRdV dRdV\ ^f^dR ^dR\ ,,,,

^Kdxdy-^-dx)=^[^^-^-dy) (^^)-

Lastly,

nf£-fS-^('3|-^|) (-)•

But since yu. is the integrating factor of Pdx -f Qdy we have

by Chap, iv.,

Q±:_pdf^^ fdP__d_Q\

dx dy \dy dxj '

which reduces (15) to the form

j^fdVd^_dVd.^ ,dPdQ-^
\dy dx dx dy) \dy dxJ

Substituting these values in (12) and rejecting the common
factor /A^, there results

dz dz dx dy ay dx

or

^(dQ dR\ ^(dR dP\ r>(dP dQ\ ^ ,^.

and this is identical with the equation of condition (8). The
conclusion is therefore established.

It follows also that it is not necessary in any proposed case

to apply directly the above equation of condition. It is im-

2}UcitJy involved in the very process of solution.

5. The results of the above investigation are contained in

the following Rule.
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Rule. Integrate the j^roposed equation on the hypothesii

that one of the variables is constant and its differential therefore

equal to 0, adding an arbitrary function of that variable in tlie

l^lace of an arbitrary constant. Then differentiating icith

respect to all the variables, determine the arbitrary function by
the condition that the result of such differentiation shall be equi-

valent to the equation given. The equation expressing such con-

dition will, if a single jpriniitive exist, be reducible by prevdo^is

results to a form in ivhich no other variable than the ona in-

volved in the arbitrary function will remain.

Ex. 1 . Given {y + o)'^ dx 4- zdy — {y + a) dz = 0.

Here P = {y -{. aY, Q = z, R — — y — a, values which identi-

cally satisfy the condition (8). The equation therefore admits
of a single complete primitive.

Regarding z as constant we have first to integrate the equa-

tion

(j + a)' dx + zdy = 0.

Dividing by (?/ + «)^, we have

7 zdii
dx+ .

'
^0,

(y + ^y

the solution of which is

X = 6 iz),

y + a ^ ^
^'

(^ [z) being an arbitrary function of z introduced in the place

of an arbitrary constant.

Now, differentiating with respect to all the variables, we

[y + a) ^ \y^a dz ]

or {y + af dx -Vzdy - L+ a + (^ + rt)' -^y [
dz = 0,

which agrees with the equation given, if we have

or -^V- = 0.
dz
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Here then 6 (.:•) = c and the complete primitive is

X =c (a).

If we commence by regarding y as constant we obtain by a

first integration

z-[y-^a)x=^[ij),

whence, differentiating and comparing with the giA^en equa-

tion,

chj y-\-a'

This eo[uation involves both x and y, but it is reducible by
the previous one to the form

dy y + a
'

cl(j) (y) dy
or — ^^^=—''—

^ (7/) 3/ + a '

of which the integral may be expressed in the form

h being an arbitrary constant. Hence, finally

2; = (?/ + a) X + 6 (?/ + a)

= [y + a)[x + h),

and this is equivalent to the former result (a),

Ex. 2. Given zdz -\-{x-a) dx = {A' -z''-{x- af]- dy.

Integrating as if?/ were constant we have

£'+[x-aY=(l>{y) (a).

Differentiating and comparing with the given equation

1 d(^ (V) f,o .> , NOli

= [V-<P(y)}Khy{a).

#(y) _
Hence,

{/i'-4>{y)]i '^y-
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Therefore integrating

h being an arbitrary constant. Hence determining (?/), and
substituting in (a), we have finally

wliere h is arbitrary.

Homogeneous Equations.

G. "When the equation Fdx + Qdy + Bdz = is liomo.^-e-

neous with respect to x, y, z, its solution will be facilitated by
a transformation similar to that employed for homogeneous
equations Avith two variables.

Assuming x = uz, y = vz, we obtain by substitution a result

of the form
d^L ^^Mdu + Ndv (18).

If L be equal to this simply gives

Mdu + Xd\^ = 0,

which can always be made integrable by a fixctor. If L be

not equal to we have

dz M -, N ^— = -^ da -\- -Y dv ]

Z h Li

and here the first member being an exact differential the

second will be such also if a complete primitive exist. After

integration, u and v must be replaced by their values -, '-
.

Ex. 3. Given {ay — hz) dx + [cz — ax) dy+{bx — cy) dz = 0.

This equation satisfies the equation of condition (8).

Assuming x = uz, y = vz it becomes simply

{av—h) die — {ait — c) do = 0,

du dv
or =

J ,mc — c av —
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the solution of whicli is

au— c ^
7
= ^>

av — o

whence the complete primitive sought will be

ax — cz ^
ay — bz

Ex. 4. Given

[if + y^ + ^') dx + (^' + xz-\- z^)dy + (x- + xj/ + y-) dz = 0.

Assuming x = uz, y = vz, we have on reduction

dz _ (i;' + V+1) dit + (?r + u + l)dv

z
~ ((a-^v+1) {uv + u + v)

'

dz du + dv (v 4- 1) du + [u + 1) c?y

or
Z U + V +1 uv -\-ic + v

v\'hence integrating

lo2;^ = lo2^ + (J.

= C',

Finally we have
xy -\- XZ+ yz

x + y + ^

for the complete primitive.

The last two equations might have been integrated without

preliminary transformation. (Lacroix, Tom. Ii. pp. 507—510).

Integrating factoids.

7. The equation Pdx + Qdy + Edz = can also, when
there exists a single complete primitive, be integrated by
means of a factor.

If [jb be that factor, then, since tlie expression

IJiPdx + [Ji Qdy + fiBdz
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must be an exact clifFerential, we must have

d{fiQ) ^ d(jMR) clifjiR) _d{fj,P)

dz dy ^ dx dz ^

d{ixP) _ difiQ)

dy dx '

equations to wliicli we may give the forms

4:-«l-(f-S)=»-
Multiplying these equations by P, Q, and R, respectively,

adding, and dividing by /x, we have

'(f-f)*«(S-S)+Mf-S)="-""'
the same equation of condition which was before obtained.

When this equation is satisfied a particular form of the

factor /x will frequently suggest itself.

In Ex. 3 the functions
(ay - bzf ' (cz - axf ' [hx - cyy

are integrating factors. In Ex. 4 the functions

and 7 — are inteGrratino; factors.
{xy + xz + yzY ° °

{x-\-ij + z)-

Equations not derivablefrom a single j^rinutive.

8. To solve the equation Pdx + Qdy + Rdz = 0, when the

equation of condition (8) is not satisfied.
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Ill this case the solution consists of two simultaneous equa-
tions between a?, y, z, one of which is perfectly arbitrary in

form.

For representing an assumed arbitrary equation in the form

f[x,y,z) = (20),

and diiferentiatin2\ we have

^/'fe Ih ^) 7 ,
df{x,y, z) dfix, y.

Xow these two equations enabling us, wlien the form of

/ («^j y^ ^) is specified, to eliminate one of tlie variables and
its differential, e.g. z and dz^ from the equation given, permit
us to reduce it to the form

Mdx 4- Ndy = 0,

J/ and N being functions of x and y. • Solving this, we obtain

an equation involving an arbitrary constant, and this equation

together with (20) will constitute a solution. By giving dif-

ferent forms to f{x, y, z) every possible solution may be ob-

tained. AVhat a solution thus found represents in geometrical

construction is the drawing, on a particular surface, of a
family of lines, each of which satisfies at every point the con-

dition Pdx+ Qdy + Bdz = 0. Now dx, dy, dz are propor-

tional to the directing cosines of the tangent line. Hence the

geometrical problem may be represented as that ofdrawing on a

given surface a family of lines, in each of which the directing

cosines cos </>, cos yjr, cos % at any point shall satisfy the con-
dition

Pcos(/)+ () cos i/r + i? cos % = (21).

Ex. Required the most general solution of the equation

xdx + ydy + c(^l-^,-^Jdz = (a),

which is consistent with the assumption that it shall represent

a series of lines traced upon the ellipsoid whose equation is

x^ f z''
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It will be found tliat (a) docs not satisfy the equation of

condition (8).

Differentiating (5), we have

xdx ydy zch

a^ 6" c^

, , c^ fxdx ydy
whence dz = — „ + ^ '^

z a^ ' h

fxdx ydy

X- 7/-^^
1-

a
2

J2

and this reduces (a) to

../. + y.?,-c=(^+^)=0 (c),

the integral of which is

indicating that the projections of the proposed family of lines

will be a certain series of central conic sections.

l^a = h = c = l the proposed equation admits of a single

primitive, viz. x^ -\-
y'^ + z^=\. And any line traced on the

surface of which this is the equation will satisfy the differen-

tial equation ; for the equation (c) by which the lines are

ordinarily determined is now reduced to an identity.

The above method of solution is due to Xewton. Monge
has however remarked that the general solution may be ex-

pressed by the equations (10) and (U) of xVrt. 4, viz. by the

simultaneous system

V=<j>(z) (22),

^-^^R = i>{z) (23),

where /jl is the integrating factor, and V the corresponding

integral of the expression Fdx + Qdy. It is indeed shewn iu
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that Article that (22) does satisfy the differential equation

provided that the condition (23) is satisfied. But there is no

2)ractical advantage in the employment of Monge's form.

Applied to the problem of drawing on a given surface lines

satisfying the condition expressed by the differential equation,

it makes the determination of the arbitrary function (^ [z)

itself dependent on the solution of a differential equation.

Thus in the example last considered we have, on giving to

fjL the value 2,

so that the general solution assumes the form

To a])ply this to the problem of drawing lines satisfying the

conditions of the problem on the ellipsoid

X' 7f Z' ^
,'

^^¥-^? = ' (^)'

it is necessary from the above three equations to eliminate x
and y. From the second and third which here suffice, we
have

whence (\> {z) = — z^ + C.

Therefore x" ^ y^^ j^ z"" =^ C (/).

The particular solution sought is therefore expressed by the

equations (e) and (/), which are together equivalent to the

previous solution expressed by {h) and {d).

Total differential equations containing more than three va-

riables.

9. It will suffice to make a few observations on the equa-

tion with four variables

Pdx-\- Qdy + Rdz+ Tdt = (24),

and to direct attention to the general analogy.
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Writing the above equation in the form

P , Q , R
,

dt = - -fj,dx --jj,cbj - -j,dz (2 )

,

it is evident that, in order that it should be derivable from a

single primitive, we must have

\dx) T~[dii)T' [dii)T~[dz)T' \dzjT~\dx T'

where f -j-
J

refers to x not only as appearing independently,

but also as implicitly involved in f ; and so on for the rest.

Effecting the differentiations, and substituting for
-f •> ~r ^

y their values implied in (25), we have

U.C dy)^ \dy dlj^^[dt dx)
I

\d^i/ dz J ^ \dz dt) \dt dij

J

^ ^ '

^(dP dR\ ^[dT dP\ ^(dR dT\ ^

which arc the equations of condition of existence of a single

complete primitive.

It is evident from the symmetry of the problem that the

equation

^(f-f)-«(S-'S-''(f-S)=«-<"'
must also hold here. But this is not a new condition. It

may be deduced from (2G), by multiplying the respective

equations of that system by R, P, and Q, and adding the

results.
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It is obvious that when there exist n variables, the number

of independent equations of condition is -~ —
,

being the number of ways of equating two partial differential

coefficients in a system in which n— 1 are contained.

The solution of any such equation may be effected by an
extension of the method adopted for equations with three

variables. We must integrate as if all but two of the varia-

bles were constant, adding, in the place of an arbitrary con-

stant, an arbitrary function of the variables which remain.

This function we must determine by differentiating with re-

spect to all the variables, and comparing with the equation

given. If a single primitive exist, such determination will be

possible. If a single primitive do not exist, we must, follow-

ing the analogy of the corresponding case for three variables,

endeavour to express the solution by a system of simultaneous

equations. And such is indeed its general form. Pfaff, in

a memoir published by the Berlin Academy 1814—15, has

shewn that, according as the number of variables is 2n or

2r + 1, the number of integral equations is n or n-\-l at most.

His method, which is remarkable, consists of alternate inte-

grations and transformations. For important commentaries
and additions see Jacobi {WerJce, Tom. I. p. 140), and Eaabe
{Crelle, Tom. xiv. p. 123).

Ex. Given {2x

+

3/^+ ^xt/^—t/^) dx+ Ixy dij—xdy^+ x'dy,^= 0.

If we suppose the variables t/^, y^? constant, we have to in-

{^x^y- -1- 2a'?/2 — y^ dx+ Ixydy = 0,

which, on substituting an arbitrary function of ?/j ,?/„ repre-

sented by
(f),

for an arbitrary constant, gives

X" + xy^ + x^y., — xy^^ = cf).

Differentiating with respect to all the variables, we have

{2x + ^" + 2xy.2 — yj dx + 2xydy — xdy^ + x^dy.^

dy^ -^^ dy,
^^

tegrate
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Comparing this with the given equation, we have

whence cj) = c and the solution is

x^ + X7/^ + x^i/2 — xy^ =c (a).

Had we begun bj making x and y constant, we should have
had as the result of the first integration,

^y-2-^y, = <i> W-

(^ denoting a function of x and y. Differentiating with respect

to all the variables and comparing with the given equation,

we should find

d(f> = — {2x + y^) dx — 2xy dy,

whence,
(f)
= — x^— xy^ + c,

the substitution of which in {b) reproduces the former solu-

tion (a).

Equations of an order higher than the first.

10. When an equation of the form

Adx'-\-Bdy'+ Cdz'-[-2Ddydz + 2Edxdz-{-2Fdxdy=:0...{2S),

is resolvable into two equations each of the form

Pdx + Qdy + Fidz = 0,

the solution of either of these obtained by previous methods,

will be a particular solution of (28), and the two solutions

taken disjunctively will constitute the complete solution, which

is therefore expressed by the i^roduct of the equations of

these solutions, each reduced to the form F= 0.

The condition under which (28) is resolvable as above, is

expj'essed by the equation,

ABC^2DEF-AD'-BE''- CF'=0 (20).

C.D.E. Id
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This is sliewn hy solving (28) witli respect to dx, and
assuming the quantity under the radical to be a complete

square.

Thus, the equation x^dx"^ + y^d]f- — z^dz^ + 2xydxdy = 0,

which will be found to satisfy the above condition, is resolv-

able into the two equations,

xdx + ydy + zdz = 0, xdx + ydy — zdz — 0,

whence, ic^ + 3/^ + 2;^= c ... (a), cc^4-y-s^ = c' (J).

Geometrically the solution is expressed by lines drawn in

any manner on the surface, either of the sphere (a), or of the

hyperboloid (Jj),

When the condition (29) is not satisfied, the proposed

equation does not admit of a single primitive, or of any dis-

junctive system of primitives. But it does in general admit
of a solution expressed by a system of simultaneous equations.

Thus, if we integrate the equation dz^ = nt^ {dx^ -^ dy^) , sup-

posing x constant, we find z = my + (7, or, replacing (7 by a

function of a?,

z = my + <^(^) y{c).

On substitution and integration, we find that this will

satisfy the proposed equation if we have

2y = ^>? TTTT (f>{x)-\-c {d),
"^

J <p [x] m^ ^

the system (c) {d) will therefore constitute a solution of the

equation given. We enter not into the question whether it is

the most general solution or not, proposing merely to exem-
plify the kind of solution of which the equation admits.

To this we may add that all equations which do not satisfy

the conditions of integrability, though they may present

themselves in the form of ordinary, have a far more intimate

connexion with partial difi'erential equations ; and that this

connexion affords the best clue to the solution of their theo-

retical difficulties. •
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EXERCISES.

^ dx dv dz

X — a y — z — c

2. [x-Zy- z) dx + (2?/ - Zx) dy + {z - x) dz = 0.

3. {y + z)dx+ {z + x)di/+ {x + y) dz = 0,

4. yz dx + zxdy + xy dz = 0.

5. [y + z) dx -\- dy + dz = 0.

6. ay^z^dx + hz^x^dy + cx^y'^dz = 0.

7. (a?^y - ^'- 2/^^) (^^ + i^f"- x^^ - ^'') dy + [xy '+ x^ij) dz=0.

8. (20^' + 2xy + 2:z;4;' + 1) J^ + cZy + 2zdz = 0.

9. (2a? + ?/' + 2a:2;) Jo; + 2:c^ dy - dw + ccW^ = 0.

10. Is the equation (1 + 2m) xdx + y {1 — x) dy + zdz =
derivable from a single primitive of the form (/> {x, y, z) =c '?

11. Shew that any system of lines described on the surface

of the sphere x^ + y^ + z^ = r'^, and satisfying the above equa-
tion, would be projected on the plane xy in parabolas.

12. Shew that Monge's method would, if we integrate

first with respect to x and z, present the solution of the equa-
tion of Ex. 10, in the form

\l + 2m)x' + z' = cl,(y), 2y {1 - x) = - cj,' (y)

.

13. Applying this form to the problem of Ex. 11, form
and solve the differential equation for the determination of

(f) {y), and shew that it leads to the result stated in that Ex-
ample.

14. Find the equation of the projections of the same
system of curves on the plane yz,

19-2
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CHAPTER XIII.

SIMULTANEOUS DIFFERENTIAL EQUATIONS.

1. We have hitherto considered only single diiferential

enuations. We have now to treat of systems of differential

equations.

Of such by far the most important class is that in which

one of the variables is independent and the others are depend-

ent upon it, the number of equations in the system being

equal to the number of dependent variables. Thus in the

chief problem of physical astronomy—the problem of the

motion of a system of material bodies abandoned to their

mutual attractions—there is but one independent variable, the

time ; the dependent variables are the co-ordinates, which,

varying with the time, determine the varying positions of the

several members of the material system ; while, lastly, the

number of equations being equal to the number of co-ordinates

involved, the dependence of the latter upon the time is made
determinate.

Such a system of equations may properly be called a deter-

minate system.

We propose in this Chapter to treat only of systems of

equations of the above class. And in the first instance we
shall speak of simultaneous differential equations of the first

order and degree, beginning with particular examples, and
proceeding to the consideration of their general theory.

Particular Illustrations.

2. The simplest class of examples is that in which the

equations of the given system are separately integrable.

Ex. 1. Given Idx + mdy -\- ndz = 0, xdx + ydy + zdz = 0.

Integrating separately, we have

Ix + my + nz = c, x^ + y^ + z'^ = c'

;

and these equations expressing the complete solution of the

given system may be said to constitute the primitive system.
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Another class of examples is that in which, wliile the equa-
tions of tlie given system are not all separately inte,a:rable,

they admit of being so combined as to produce an erjuivalent

system of equations which are separately integrable.

Ex. 2. Given -^ +_ = 1, -^/ = ^ +^ + -_ _ 1.

Here the first equation alone is separately integrable, and
gives

t c , .

^ = 3+^^ (<')•

Also by addition of the given equations, we have

dx + dy

dt
= x + y

therefore = dt,
X+7J

log{x + i/) =t-\-c' [h).

The primitive system is therefore expressed by (a) and {h).

In both the above examples we see that the number of

equations of the solution is equal to that of the equations of

the system given, and that each equation of the solution in-

volves a distinct arbitrary constant. And it is evident that

this must be the case whenever we can combine the given
equations into an equivalent system of integrable equations of

the first order. But as we have not proved that such combi-
nation is possible, the following question becomes important.

viz. what is the nature of the solution of a system of simulta-

neous equations of the first order and degree ?

This question will be considered in the next section.

General theory of simultaneous equations of the first order

and degree,

3. We shall seek first to establish the general theory of a

system composed of two equations between three variables,

and therefore of the form

Pdx-^ Qdy + Bdz^O,
}

.

P'dx+Q'dy-{-Il'dz = 0,] ^ ^'
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the coefficients P, P', &c. being functions of the variables,

or constants.

We design to consider the above system first, and with the

greater care, because there is scarcely any part of the general

theory which it does not serve to exemplify.

Peop. The solution of the system (1) can always he made to

depend upon that of an ordinary differential equation of the

second order hetween two of the primitive variables, and it

always consists oftwo equations involving tivo arbitrary constants.

By algebraic solution of the system (1) we have

, RF-PR' -. PQ'-QP' ,^.

^y^-QE^RQ^''^ ^''=QP7^RQ'^'" ^'^*

As the coefficients of dx in the second members of these

equations are functions of x, y, z we may express the reduced

system in the form

dy =
(f)

{x, y, z) dx^ dz = '^ {x, y, z) dx,

whence, regarding x as independent variable,

% = 4>{^,y,z) (3),

dz

Thus the given system enables us to express -^ and -^ by

known functions of x, y, z.

Now differentiating (3), still on the assumption that x is the

independent variable and representing for brevity
(f>

{x, y, z)

by <^, '^ (a?, y, z) by -v^, we have

d'^y _ d(f> d(f> dy d(j) dz

dx^ dx dy dx dz dx '

dz
or substituting for -,- its value given by (4),

^^#_^i^^_^ . # .^.

dx^ dx dy dx ^ dz
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7 ^2

This equation involves -j- and -^^ together with the quan-

tities -y- , -y-, -j^ and yjr, which arc known functions of x, y,

and z. Hence eliminating z by means of (3) we have a linal

equation involving -j^-
, ^ , x, and y. The complete primi-

tive of this differential equation of the second order will enable
us to express 3/ as a function of x and two arbitrary constants.

Suppose the value thus obtained for y to be

?/ = X(a^, c,,cj (6).

Then we have by virtue of (3)

(i>{x,y,z)= ^'
^J

'^
(7).

These two equations involving two arbitrary constants con-
tain the complete solution of the system given.

4. It is important to observe that the system (2) may be

expressed in the symmetrical form

dx _ dy dz

QR -R(y~RF^ PE " PQ - QF

'

If we represent the denominators of the above reduced
system by X, Y, Z, it becomes

dx _dy _ dz

x-y-z ^^"•

This, then, may be regarded as the symmetrical form of a

system composed of two differential equations of the first

order.

Again, the complete solution of such a system, as is expressed
by (6) and (7), consists of two equations connecting the varia-

bles x, y, z with two arbitrary constants. If we solve these

equations with respect to the constants, the solution assumes
the form

</>i(^>2/. ^)=c„ </). (^, 3/. ^) = ^2 ('^)-

Thus a system of two differential equations of the first

order may, without loss of generality, be presented in the sym-
metrical form (8), and its complete solution in the symmetrical
form (9).
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Ex. 1. Given

(5?/ + 9^) dx + dy-\-dz-= 0, (-4?/ + ?,z) dx + 2dij -dz = 0.

Here we find bj algebraic solution

li=-'^-'^ W'

whence -r^, = — 3 ^— 4 -y-

= -3|| + S^ + 20^,by(J).

Eliminating ;s by (a)j we have on reduction

a linear equation with constant coefficients whose complete

primitive is

y=C[e-''+C/'' (c).

Equating the value of -j hence determined with that given

in (a) we have

32j + Az=€,e-^+7C,6-''' {d).

The complete solution is therefore expressed by (c) and [d).

Theoretically it is of no consequence which of the primitive

variables we assume as independent. But practically the

question is of some importance as affecting the character of

the final differential equation.

Ex.2. Given -7- — 3a? + ?/ = 0, -~- — x — y = 0.

Differentiating the first equation we have

d^x dx dif _
~de

~ It^lx '

dii
from which eliminating -j- by the second equation we have

d'^x ^dx
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Hence eliminating y bj the first equation

d'^x , dx ,

df dt

Integrating

x={C+C't)e\
and this value of x substituted in the first equation gives

The last two equations constitute the primitive system.

We choose next an example in which the given system in-

volves functions of the independent variable in the second

members.

Ex. 3. Given ^ + 5a^ - 2^/ = e\ '^^ - a: + 6?/ = e\

Here, differentiating the first equation, we have

d'^x ^ dx ^ dii
,

dt' dt dt

dii
Eliminating ~ by the second equation of the given system,

we have

And, eliminating y by means of the first equation of the

system,

d^^x ^^ dx ^^ „ . ^ ^,

a linear differential equation of the second order whose solu-

tion is

Hence, by the first of the given equations,

2y-5x + 6'=-4. C^e-'' - 7 C^e"^' +
J^

e' -h ^- e='.

Tlie last two equations are the complete primitives of the

system given.
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5. The above theory may be extended to all systems which
are composed of n differential equations of the first order and
degree connecting n + 1 variables.

Assume x (independent) and x^, x^, ...x,^ (dependent) as the

variables of the system. Then there exist n differential

equations of the form

Pdx-\-F^dx^ + P^dx^...-VFJx^ = (10),

P, Pj, &c. being functions of the variables. These equations

exactly suffice to determine the ratios of the differentials dx,

dx^^ ... dx^i and thus assume the symmetrical form

dx _dx^ _dx^ _dx^

x-x~X'"~T. ^
''

X, X^ , &c. being determinate functions of the variables.

This premised, the solution of the system (11) depends upon
the solution of a single difterential equation of the n^^ order

connecting two of the variables.

Let us select for the two a? and x^^.

Now (11) gives

dx^^X^ dx^_X^ dx^_X^ ,.^.

dx X' dx~ X' '" dx~ X ^^''^•

Differentiate the first of these n — 1 times in succession, re-

garding X as independent variable and continually substituting

dx oif
for — , ... -~ their values as given by the w — 1 last equa-

tions of the above system. We thus obtain, including the

equation operated upon, n equations connecting

dx^ d\ d'^x^

dx ' dx"
' '

' dx""

with the primitive variables and therefore enabling us, 1st, to

express the above n difterential coefficients in terms of those

variables, 2ndly, by elimination of the n — 1 variables, x^, x^^

...Xn to deduce a single equation of the form

T-,/ dx^ d'^x^ d'^x\ ^ .^.



ART. 5.] PARTICULAR ILLUSTRATIONS. 299

Now tills being a differential equation of the n"^ order, tliere

exist, Chap. ix. Art. 1, n first Integrals involving n distinct

arbitrary constants and capable of expression in the form

FAx. X,.
âx

dx.

dx, <^V

[x,

dx^
"'

dxl"'

d^x, c?"~^:

dx ' dx^ dx''

a

= a (14).

d'x. a^' dx' dx'
'"

dx''-' J
" J

If in this system we substitute for —— , -y-^ ... . »-^ their

values In terms of the primitive variables above referred to,

we shall obtain a system of n equations of the form

^i(^, x^,x^..,x^) = C^
^1

^2 (^. ^X' ^2 ••• ^n) = C\
^ (15).

This is the primitive system sought.

And thus the following Propositions are established, viz.

1st, that a system of differential equations of the first order

connecting n + l variables is expressible in the symmetrical

form (11). 2ndly, that its complete solution depends on that

of an ordinary differential equation of the n^^ order (13).

3rdly, that that solution consists of n equations connecting the

primitive variables with n arbitrary constants and theoretically

expressible in the form (15).

These very important propositions were first established by

Lagrange, but the above demonstration of them is taken from

a memoir by Jacobi*.

It is not necessary, as is evident from the examples already

given, actually to determine the n first Integrals of the differen-

tial equation (13). The complete primitive and the successive

equations obtained from it by differentiation enable us to ac-

* Ucher die Integration der partiellen Differmtial-Glckliungen erstcr ordming.

Crelle, Tom. ii. p. '611.
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compllsh the same object. Neither is it always necessary to

proceed to differential equations of an order higher than the

first. This point will be illustrated in the following sections.

Linear equations of the first order loitli constant coefficients,

6. The characters here mentioned have reference only to

the dependent variables which are the true unknown quanti-

ties of the system. Thus the equation

dx 7 dy
, ,

.

would be described as linear and with constant coefficients.

The solution of any system of n such equations is by the

foregoing general method reducible to that of an ordinary

linear differential equation of the ri^ order with constant co-

efficients. And this method is in the two following respects

the best of all, viz. 1st, because of its fundamental character,

2ndly, because it leads directly to the expression of the values

of the dependent variables.

The solution of such a system may however also be effected

by the method of indeterminate multipliers, and this we
propose liere to exemplify. Its advantage is that it generally

presents the equations of the solution under a common type,

so that their discovery is made to depend upon the discovery

of a single general form.

dxi dti
Ex. Given -^ = «a; + 5y + c, -j-=ax-]-h'y-\rC.

Multiplying the second equation by an indeterminate quan-

tity ??i, and adding to the first, we have

dx + ondy , r\ /? 7/\ >

-J
= (a + 77ia ) x+ io + mo ) 7/ + c + 7nc

ctt

, ,. ( h + mh' c \-mc
= (a -1- ma )\x-\ —

-, y +
a -{-ma ^ a + ma

= (a + ma ) x + my -\ ~, [a),
^ ^ ^ ^ a-\- ma /
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provided that we determine m so as to satisfy the condition

[b).
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ing any linear homogeneous function of their numerators by
the same function of their denominators. Hence if we have a

system of equations of the form

X, ~ X, ~ X,~ T ^
^^'

in which we suppose t the independent variable, and T a

function of t only, then we shall have

dt _ dx^ + mdx^ . . . + rdx^ /. -x

T~ X, + mX,...+rX, ^
^'

Hence, should the first member be an exact differential, the

inquiry is suggested whether the multipliers m,...r cannot be

so determined, whether as functions of the variables or as

constants, as to render the second member such also. Now
wdien the system of equations is linear and with constant co-

efficients this can always be effected. It may be observed

that the cliaracter of the system is as manifest from inspection

of the symmetrical form (16) as of the ordinary form. If the

system be linear and with constant coefficients the denomina-

tors X^, X^^.,.Xn will, when considered with respect to the

dependent variables x^, x^^...x^^ be linear and with constant

coefficients.

In the employment of this method it is often of great ad-

vantage to introduce a new independent variable, and to con-

sider all the variables of the given system as dependent

upon it. We are thus enabled to secure the condition above
adverted to, of having one member of the symmetrical system

an exact differential.

17 ^. dx dy
JliX. (jriven

ax-\-hy-\-G dx + h'y + c'

'

Let us introduce a new variable t so as to give to the system
the form

dx dy dt , s—-
f,

- = — (a).
ax-{- by + c ax + oy -{- c t
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Here the tlilrd member being an exact differential, we shall
write

dt _ dx + mdy
t ax + b7/ + c + m {ax + J'y + c)

_ dx-\- rtidy

[a + ma) re + (^ + mh') y + c + mc

_ 1 {a + ma) dx + (a + ma) mdy
a + ma {a + md) x-\- {b + mb') y + c + mc

'

The second member of this equation will be an exact differen-

tial if we have

{a + md) m = b-\- mb' (Jj)^

the integral corresponding to each value of m thus determined
being of the form

log ^ + (7 =— -, log {(a + md) x-\-{b + mb') ?/ + c + mc'],^ a + ma ^ ^ ' '^ ^

'

or Ct = {aa; + 5^ + c + m {ax + Vy + c')}"^^'.

If the roots of the quadratic i^) are m^ and m^, we thus find

C^t =[ax + by-\-c-\- m^ {dx + b'y + c'^1"^'"'''

C.J. = {ax + by-\-c + m^ {dx + h'y + c')]

' ' (o),
1

I
a+m.,n

for the primitive equations of the system (a). Tliose of tlie

given system will be obtained by eliminating t. The result

assumes the remarkable form

{ax + by + c-i- m^ {dx + b'y + e) l"^'"'"' ^ , ,^

{ax + by + c + m^ {dx + b'y + c)}"^''''

Ex. 2. Given -^ =^ = -^, where

X= ax + by 4- cz + d \

Y=dx-\-b'y-i-cz + d' > (a).

Z = a"x+b"y+c"z-hd" J
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Introducing a new variable t, so as to give to the system the

more complete form

dt dx dy dz .,,

7=x=r=^ (*)=

, dt Idx + tndy + ndz
we have -- = —tt- r^r—

^

_ Idx + mdy + wd'^ . .

X {Ix + my + 7iz + r)

Provided that we assume

al + am + a"n =\l ^

hi + &'?;i + h"n = \m
cl + cm + c"n = \n

dl+ c^'m -\-d"n = X?' i

The first three of these may be written in the form

(a — X) 1 + am + a"n = 0\

hl + {h'-\)m +h"n = o[ (e),

cl + c'7n + [c" — \)n = 0}

Avhence eliminating I, m, n we have the well-known cubic

{a - X) {h' - X) (c" - X) - h"c {a - X)

— ca" ih' — X) — ha (c" — X) + dh"c + ci'hc =0 ... (/).

Now let the values of X hence found be X^, \^ \^ and the

corresponding values of I, m, n, r, be l^, m^, n^^ 7\, l^, tn^, &c.

then integrating (c) we shall have the system

i_

c,t = [l^x + m^ij + n^z + rj^i,

c^t = {l^x + m^ + n^z + r
J^-',

Hence eliminating t by equating its values, we find as the

general solution of the original system of equations
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[\x + m^rj + n^z + rj^^ = C {I^x + m^y + n,^z + rj^-^

i_

= C {I^x + m^y + n^z + 7-3)^3 . . . ^rj).

In the same way we may integrate the general system

dx^ _ dx^ _ dx^

X^ X^ X„ '

where Xj, X2,...A\, are any linear functions of the variaLles.

8. From the ahove results tlie solutions of various sym-
metrical systems in which the denominators are not linear

may be deduced. The most remarkable of such deductions is

the following.

Suppose that in the system

dx _ dy _ dz

ax + hy + cz ax + h'y + cz ax + h'y + c'z' " * ^

the solution of which is known from what precedes, we sub-

stitute

X = xz, y = yz\

X and y being new variables introduced in the place of x and

y\ The result is

zdx + xdz _ zdy + ydz _ dz

ax + hy + c a'x + h'y + c a"x + h"y + c"

'

to which we may obviously give the form

zdx zdy

ax-\-by-\-c—x (d'x + b"y+ c") dx-\-h'y \- c —y [a'x \-b''y-\- c")

dz

d'x + h"y + c"
*

Dividing the first equation of this system by s', we have

^ ^ (^Jl ^
/n^

ax+by-\-c—x {a"x+b"y-\-c") dx-\-b'y-\-c—y {a"x+b"y+c")

Now this on clearing effractions will be found to be of the same

form as Jacobi's equation {Crelle, Tom. xxiv. p. 1), whose

solution on other grounds has been explained, Chap. v. Art. 8.

B. D. E. 20
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We see that the solution of (h) is deducible from that of

the system («) by changing x into xz', y into yz ^ and elimi-

nating z

.

And just in this way the solution of any symmetrical

non-linear system of the form

^^\ ^*^2 dx^ , .

X^ — x^X X^ — x^X " X, — x^X

in which X, X^, X^,...X„ are linear functions of the variables

x^, x,^,...Xn may be made to flow from that of a symmetrical

system of the form

in which Xj, X^,...Xn_^_^ are linear homogeneous functions of

the variables ic^, x,^,...Xn+^. The general solution of the sys-

tem (18) seems to have been first obtained by Hesse {Crelle,

Tom. XXV. p. 171).

9. Lastly, certain systems of linear equations which have

not constant coefficients may be solved by the above method.

Thus the solution of the equations

(«),

^+T(ax + b^)=T,

where T, T^, T^ are functions of the independent variable,

may be reduced to that of an ordinary linear differential equa-

tion of the first order.

For proceeding as before, we find

^+J^) +y,T[x + my) = r, + mi; [b),

provided that \ and m be determined by the conditions

X = a + ??ia', \m = h + mh' (c).
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Hence eliminating \, we have

m {a-^ma) =h-\-mV [d),

which gives two values for m. Integrating [h) regarded as

a linear equation of the first order between x + my and t, and
substituting for \ its value in terms of m given by the first

equation of the system (c), we have

x+rmj = e-^^^'^y^' { G + /e^^-^^-V ^^ {T^ + m T^ dt] (e)

,

in which it remains to substitute for m its values given by {d).

^ n. dx 2
,

. ^ dy 1 , ^ .

Ex. Given ^ + -{x-7j) = l, ^^+-{x + oy) =L

The solution is

If in the system (a) we make T=l, it becomes a system of

equations with constant coefficients but possessed of second

members.

The general system analogous to (a) when the number of

variables is increased, may be solved by the same method.

It may be well to notice that the equivalent symmetrical form

is

(20),

where X^, X^,...Xn are linear homogeneous functions of the

dependent variables, and T, T^^...T^ are functions of t.

Treated under this form, it is obvious that its solution will

be made to depend upon that of a linear differential equation

of the first order, and an auxiliary algebraic equation of the

n^^ degree.

Equations ofan order higher than the first,

10. Any system of simultaneous equations of an order

higher than the first is reducible to a system of the first order.

20—2

dx^ dx^
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And this reduction though not always necessary for the pur-

pose of solution is theoretically important, because it enables

us to predicate what hind of solution is possible.

To eiFect this reduction it is only necessary to regard as a

new variable and to express as such by a new symbol, each

differential coefficient, except the highest, of each dependent

variable in the given equations. The transformed equations

will thus be of the first order, and the connecting relations of

the first order also; and the two together will constitute a

system of simultaneous equations of the first order.

Ex. Given the dynamical system



ART. 10.] HIGHER THAN THE FIRST. 309

And still more generalhj, the comi^lete solution of a system of
n differential equations containing n+\ variables of ichick one

is independent will consist of n equations connecting those

rariahles with a number of constants equal to the sum of the

indices of order of the several highest differential coefficients.

For let t be the independent and x one of the dependent
variables, and let the highest differential coefficient of x

d''x
which presents itself be -v^ . Tlien in the reduction of the

system of given equations to a system of equations of the first

( srder it is necessary to introduce n — 1 new variables con-

nected with X by the relations

dx dx^ dx,,.

dt'"^'' dt
~'^''"'

dt
~''"-^-

Thus the number of variables in the transformed system cor-

responding to X and its differential coefficients will be n, and
as a similar remark applies to all the other variables, it ap-

pears that the total number of variables of the transformed

system will be equal to the sum of the indices of the orders of

the highest differential coefficients of the several dependent
variables in the system given. Such then will be the number
of equations of the transformed system, and such the number
of constants introduced by their complete integration. Art. 5.

It is also evident that if from the equations by which
the complete solution is expressed we eliminate all the new
variables there will remain a number of equations equal in

number to the original equations, and connecting the primi-

tive variables with the constants above mentioned. Thus the

proposition is established.

The transformation above employed is further important,

because in the highest class of researches on theoretical dy-

namics it is always supposed that the differential equations of

motion are reduced to a system of simultaneous equations of

the first order.

At the same time it is not necessary for ordinary purposes

to effect this reduction. Difterentiation and elimination al-

ways enable us to arrive at a differential equation, higher in

order, between two of the variables. The method of indeter-
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minate multipliers maj also be sometimes used with advan-

tage. No general rule can however be given.

[The statement respecting the number of arbitrary constants

is not universally true. Suppose, for example, that there are

two simultaneous differential equations which connect x and y
with the independent variable t. Let one equation contain

differential coefficients up to ^ - and -^ inclusive ; and let

d^'x
the other equation contain differential coefficients up to -j-^

d^ii
and -^ inclusive : then it can be shewn that the number of

df
arbitrary constants involved in the solution is the greater of

the two numbers m-\- s and n + r. See Cournot, Traite EU-
mentaire de la Theorie des Fonctions... ISll. Vol. II. p. 318.]

^ ^ ^,. d^x
,

, d^ii , ,,
Lx. 1. U-iven -^ = aaj 4- oy, -^^ = ax-\-by.

1st method. Differentiating the first equation twice with

respect to f, we have

d^x _ d'^x , d^y

. , . d^y
Eliminating y and -j4 from the above three equations, we

have
d^x d^x
-^-(a+^>');^ ]r{aV-ah)x=^0 {a).

The complete integral of this linear equation with constant

coefficients will determine a?, whence y is given by the formula

1 fd^x

y=hKdf -''''.

2nd method. From the given equations we find

d'^x d^y , ,, ,^ ,,,-^+w-^ = {a-\-ma)x-\-{h + ml>)y

, ,. ( h + mh= {a + ma) [x -\ ,

\ a + ma
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Let X 4- my — u, then provided that we determine m by the

condition

h + ml)m= -, (b).
a + ma

we shall have

-~r^ = [a + ma ) u^

whence u = a^e^'^"^"'"^'^ + C^e-^-^'A

Let m^, m^ be the values of w given bj (h), then the complete

primitive system is

X + m^y = (7^e^"^'«^"''^' + C^e-f""^'^'''^^',

and this is really equivalent to the previous solution, though

more symmetrical.

Ex. 2. The approximate equations for the horizontal mo-
tion of a pendulum when the influence of the earth's rotation

is taken into account* are

de ^"^ dt^ I

-^

df dt I J

(«).

I representing the length of the pendulum, g the force of

gravity, and —r being equal to the product of the earth's

angular velocity into the sine of the latitude of the place.

As the equations have constant coefficients they admit of

complete integration. If we diiferentiate so as to enable us to

eliminate y, ~ and -~ , we find as the result

dt' ^''v i) df ^r ^
^'

* Jullien, Prohlemes de Mecaniqiie Rafionnelle, Tom. n. p. 233.



312 EQUATIONS OF AN ORDER [CH. XIII.

the complete solution of which is of the form

x = Acos {ii\t + a) + B cos [m^t -f /3) (c)

,

where A, a, B, ^ are arbitrary constants, and m^^, m^ are the

two roots, with signs changed, of the equation

From the above value of x that of y may be obtained by
means of the formula

I d^x I (

^

q\dx

which is readily deduced from the given equations.

The above system may also be solved by assuming

x = x cos rt + y' sin rt )

+ y' cos 7't)y — — x sm rt

The transformed equations are

(e).
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or r. Multiplying the above equations by dx^ dy^ dz respec-

tively, and integrating, we have

H©"-©"-©]=^-^ «.

B being an arbitrary constant.

. . . dR dR dr x dR n . .

Again, since -j~ = -^ -^ = ry , &c. the given system

of equations may be expressed in the form

d'^x _x dR d'^y _y dR d^^z z dR
df ~ T dr' df ~V dr ' l^f

~
r dr

'

Now if from each pair of equations we eliminate -,- , we

obtain

dSi d^x ^ d^^z d'^y „ d^x d^z ^

dt" ^ df ' ^ dt' dv ' dt' df '

of which it is evident that two only are independent. Inte-

grating these, we have

dy dx ^ dz dii .-, dx dz ^
dt ^ dt ^' "^ dt dt ^' dt dt

-'

Cj , Cg , C3 being constants.

Squaring the last three equations and adding, we obtain

a result which may be expressed in the form

or, by virtue of (^) and of the known value of ?%

dr
2r{R + B)-{^r^^j=A^ (c),

rdr

/ rdr
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Again, it is evident that hy means of (c) we can eliminate B
from each equation of the system {a). For (c) gives

Substituting which in the first of the given equations, we
have

'df~r\ T^ '^Tt dr dtj

XT d'^x d\ A^x ^
Hence ^__^_+__ = 0,

dt dt r T^

therefore r^ ^ r'4 f-^ + ^' - = 0.
dt dt \Tj T

Adt
If we now assume —^ = d(^, the above becomes

^,fx
r X

whence - = a^ cos ^ + ^i
sin ^ (/).

In like manner, we find

^ = ^2 cos <^ + &2 sin (^ (^),

ttgCOS (^ + Z^gSin^ .....(^),

T

Z

r

in which we must substitute for ^ its value, viz.

CAdt _ f Adr ..
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To this expression it would be superfluous to annex an arbi-

trary constant before that substitution. For each of the

second members of (/), [g), {h) is expressible in the form
(7 cos ((/) + C), in which (j> is already provided with an arbi-

trary constant

The solution is therefore expressed by means of (e) and (/),

which determine r and the auxiliary <^ as functions of t, and

^7 (/)j iSf)^ Wj '^hich then enable us to express x, y, z as

functions of t. As we have however made no attempt to

preserve independence in the series of results, the constants

will not be independent. If we add the squares of (/), (^),

(^), we shall have

1 = {a^ + a/ + al) cos* ^4-2 {ap^ + a]\^ + a^-^ sin <^ cos <\>

which involves the relations among the constants

The six constants in (/), (g), (h), thus limited supply the

place of only three arbitrary constants, and there being three

also involved in (e), the total number is six, as it ought to be.

In the same way we may integrate the more general system

d^x^ _ ^^ ^^^2 _ dR d^x^ _ dR
~W " dx^' It" ~dx„'"' df ~dx^'

where i? is a function of V (x^^ -{-xj^ ..c +ir„^). The results,

which have no application in our astronomy, are of the form
which the above analysis would suggest. Binet, to wliom
the method is due, has applied it to the problem of elliptic

motion. (Liouville, Tom. Ii. p. 457.) For all practical ends
the employment of polar co-ordinates, as explained in treatises

on dynamics, is to be preferred.

12. The following example presents itself in a discussion

by M. Liouville*, of a very interesting case of the problem of

three bodies.

* Sur un cas paiiiculier du Probleme des trois corps. Journal dc Mathcma-

tiques, Tom. i. 2nd series, p. 248.
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Ex. Given

-^ + w' {u - 3x {ux + vij)] = 0,

Avliere, for brevity, x is put for cos [at+ h), y for sin (a^+ h).

If we transform the above equation by assuming

ux + vy — Uj uy — vx = F,

we find, after all reductions are effected,

And these equations being linear and with constant co-

efficients, may be integrated by the process of the previ-

ous section.

EXERCISES.

2. J + 7a;-y = 0, J + 2x + 5y = 0.

dx , t
dy ^ „,

4, __ + oa; + 2/ = e« J + 3^-a, = e-.

cZ^ J?/ ,

o. z ,
= ~

, = dt.
'2y — 0X + e x — by + e
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CHAPTER XIV.

OF PARTIAL DIFFERENTIAL EQUATIONS.

1. Partial differential equations are distinguished by the
fact that they involve partial differential coefficients in their

expression, and therefore indicate the existence of more than
one independent variable. Chap. i. Art. 2.

The nature of these equations will be best explained by
one or two examples of the mode of their formation.

Ex. 1. The general equation of cylindrical surfaces is

x — lz = (j>{y — mz) (1),

</) being a functional symbol, and I and m constants deter-

mining the direction of the generating line. As this is a

relation connecting three variables we are permitted to regard

two of them as independent. Choosing x and y as the inde-

pendent variables, and differentiating with respect to them in

succession, z being regarded as dependent on them both,

we have

^dz .,

,

. dz . .l_Z_=_^^(y_,„,)^ (2).

-Z|=f (,-«.) (l-„.|) (3).

Eliminating the function (^' [y — mz) , there results

Tdz dz ^ ...

^^+'''zy=^ «'

the partial differential equation of cylindrical surfaces. Of
this equation (1) is termed the general primitive.

In the above example a linear partial differential equation

of the first order has been formed by the elimination of a
single arbitrary function.
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Ex. 2. If we assume as a primitive equation

z = ax -{- hy — ab (5),

and, regarding x and ^ as independent, differentiate with re-

spect to these variables in succession, we have

dz _ ^^ _ 7

dx ^ dy

Eliminating a and h by substitution in the primitive, there

results

dz dz dz dz ..

'=''T^-^yTy-d-xTy •(^)'

a partial differential equation of the first order, hut not linear.

Now this equation has been formed by the elimination not

of an arbitrary function but of two arbitrary constants. The
equation (5) is here, by way of distinction, called the com-

plete primitive. The epithets general and complete have been

employed by Lagrange to denote the two kinds of generality

which arise from arbitrary functions, and from arbitrary con-

stants, respectively.

Ex. 3. Given z = (j){y + ax) +'^iy — ax) , where (/> and -v/r

are arbitrary symbols of functionality.

Proceeding to differential coefficients of the second order

we find

-£.2 = ^'W [y + «^) +V {y - «^)I»

d'^z
—2 = </>" [y + «^) + '^"

{y - «^) ,

whence
dy'

d^
dx'

= «^:^ (7),

a partial differential equation of the second order and of the

first degree.

And. this equation has been formed by the elimination of
two arbitrary functions from the general primitive.
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These examples illustrate the usual, and what may per-

haps with propriety be termed the primary, modes of genesis

of partial differential equations, viz. the elimination of arbi-

trary functions, and the elimination of arbitrary constants.

It is to be noted that these modes are perfectly distinct.

Thus we might in Ex. 1, by specifying the form of the

function </>, eliminate the constants I and m from the primi-

tive (1), and the derived equations (2) and (3), instead of

eliminating the functional forms from the two latter; but the

result would differ in character, as well as in the mode of its

origin, from that which has been actually obtained. We
must bear in mind that when from a primitive equation of

given form different partial differential equations are derived, it

is owing to a difference of assumption as to what is to be re-

garded as arbitrary; so that we are not permitted to say tliat to

the same primitive, considered in the same sense of gencralitv,

different partial differential equations belong.

In Ex. 1, a partial differential equation of the first order has
been formed from a general primitive containing one arbitrary

function, and in Ex. 3 a partial differential equation of the

second order has been formed from a general primitive contain-

ing two arbitrary functions. These examples exhibit a certain

analogy with the genesis of ordinary differential equations, the

order of the equation being equal to the number of constants

in its primitive. But this analogy is not general. For let

be an assumed primitive containing two arbitrary functions

<j){u), '^{v), where ic and v are given functions of x, y, z.

Then representing the first member by F^ regarding x and y
as independent variables, and forming all possible derived

equations up to the second order, we have

dx ' dy
'

^_ d'F _ (IF_
dx'~ ' dxdy~ ' dy'~ '

which with the given equation make six equations. But tliese

containing the six functions

</)(w), A|r(r), f (?/), 'v|.'(y), cj,"[u), f"{r),

B.D.E. 21
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do not, in general, suffice to enable us by the elimination of

the latter, to form a partial differential equation of the second

order free from arbitrary functions.

We see then, 1st, that partial differential equations do not

arise from the elimination of arbitrary functions only; 2ndly,

that even as respects this mode of genesis, no general canons

exist similar to those which govern the connexion of ordinary

differential equations with their primitives. On both these

grounds it will be proper, in considering special classes of

equations, to examine their special origin and to seek therein

the clue to their solution.

Solution ofpartial differential equations,

2. Before proceeding to general theories of the solution of

partial differential equations, it may be noticed that there are

some equations of which the solution may be directly reduced

to that of ordinary differential equations.

This is the case when the partial differential coefficients

liave all been formed with respect to one only of the variables.

We can then integrate as if this were in fact the only inde-

pendent variable, provided that we finally introduce arbitrary

functions of the other independent variables in the place of

arbitrary constants. ^i ^ Q
. dz ^^^ ^^-'

Ex. 1. Given x + y -^- = 0. ^
^ ax

Multiplying by dx, integrating with respect to x, and add-

ing an arbitrary function of y, we have

x^

the solution required.

It is jjermitted in the above, and in all similar cases, to

complete the solution by adding an arbitrary function of y,
because, with reference to the integration effected, y is con-

stant; and it is necessary to add such a complementary fimc-

tion in order to obtain the most general solution, because an

arbitrary function of one of the variables is more general than

an arbitrary constant not involving that variable.
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dz
Ex. 2. Given y

-^
2x — 2z — y=0.

This equation may be expressed in the form

dz 2 ^ 2x

dy y y

Involving no differential coefficient with respect to x, it may-
be treated as a linear differential equation of the first order in

which y is the independent, and z the dependent variable;

only instead of an arbitrary constant we must add an arbi-

trary function of x. The final solution is

X -\- y -{ z = y'^(f>{x)

,

It sometimes happens that equations not belonging to the
above class are reducible to it by a transformation.

Ex. 3. Given ^|- = x' + y\

Let -^ — w, then we have
ax

dw 2,2

whence integrating with respect to ?/, and adding an arbitrary
function of ic,

w = x'y-\-'J^-ir^{x).

dz .

Restoring to w its value ~ , integrating with respect to Xy

and adding an arbitrary function of y, we have

X y y^x
^^[x)dx-\-^^{y).

Now ^ {x) being arbitrary, ^ ix) dx is also arbitrary, and may

be represented by xi^)^ whence

x^y + y^x
^ / \ . I / \^=

.4 +X(^)+t(3/)-

21—2
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Linear 2JCirtial differential equations of the first order.

3. When there are but three variables, z dependent, x and

?/ independent, the equations to be considered assume the

form

P, Q, and R being given functions of x, y, z, or constant.

This form we shall first consider.

Usually tlie differential coefficients ~ and -^ are repre-

sented \>j p and q respectively. The equation thus becomes

Fp-\-Qq=R (1).

The mode of solution is due to Lagrange, and was first

established by the following considerations.

Since ^ is a function of x and ?/, we liave

dz ='pdx^qdy.

Hence eliminating p between the above and the given equa-

tion, we have

Fdz - Edx = q{Pdy - Qdx) .

Suppose in the first place that Pdz — Rdx is the exact diffe-

rential of a function m, and Pdy — Qdx the exact differential

of a function v, then we have

du = qdv.

Now the first member being an exact differential, the second
must also be such. This requires that q should be a function

of V, but does not limit the form of the function. Represent
it by ^'(^)j ^^^sn we have du = (f)'{v)dv, whence

^ = *W (2).

The functions u and v are determined by integrating the

equations

Fdz - Rdx = 0, JPdy - Qdx = 0,
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sjmmetricallj expressible in the form

dx _ dy _ dz

~P~~Q~ll ^^^'

and of whicli the solution, Chap. xiii. Art. 5, assumes tlie

form
u = a, v = h (4),

a and h being arbitrary constants.

Dismissing the particular hypothesis above employed, La-
grange then proves that if in any case we can obtain two
integrals of the system (3) in the forms (4), then u = cf){v) will

satisfy the partial differential equation, in perfect indepen-

dence of the form of the function (j>.

We shall adopt a somewhat different course. We shall

first establish a general Hule for the formation of a partial

differential equation whose primitive is of the form u = (p{v)y

u and V being given functions of x, ?/, and z. Upon the solu-

tion of this direct problem we shall ground the solution of

the inverse problem of ascending from the partial differential

equation to its primitive.

Proposition. A primitive equation of the form u —
(l>{y)^

where u and v are given functions of x, y, z, gives rise to a
partial differential equation of the form

Pp-\-Qq = R (5),

where P, Q, R are functions of x, y, z.

Before demonstrating this proposition we stop to observe

that the form u = <^{y) is equivalent to the form

fill, v) denoting an arbitrary function of u and v. For solving

the latter equation we have u = (^{v).

It is also equivalent to

F[x,y,z,^{v)]=Qi,

(j) being an arbitrary, but F a definite functional symbol.
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For solving the latter equation with respect to <f)(v) we
have a result of the form

(j>{v)=F^{x, y, z), or <i>{v)=u

on representing F^{x, y, z) by u. Thus the proposition
affirmed amounts to this, viz. that any equation between x^ y,
and z which involves an arbitrary function will give rise to a
linear partial differential equation of the first order.

Differentiating the primitive w = ^ (t') , first with respect to

X, secondly with respect to y, we have

du du
, , , , fdv dv

du du ,, . . /dv dv

Eliminating
(f>'

(v) by dividing the second equation by the
first, we have

du du dv dv

dy dz _dy dz^
du du dv dv '

dx dz ^ dx dz^

or, on clearing of fractions,

(du dv du dv\ [du dv du dv\

\dy dz dz dy) ^ \dz dx dx dz)^

_ du dv du dv , .

dx dy dy dx

Now this is a partial differential equation of the form (5).

For u and v being given functions of x, y and z, the coefficients

of jt? and q, as well as the second member, are known. The
proposition is therefore proved.

As an illustration, we have in Ex. 1, Art. 1, u^x — lz,

v—y — mz, whence
^,. J..

I,

du
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Substituting these values in (6) there results,

Ip \- mri = 1

,

which agrees with the result before obtained.

4. The general equation (6), of which the above theorem
is a direct consequence, has been established by the direct

elimination of the arbitrary function. But the same result

may also be established in the following manner, which has

the advantage of shewing the real nature of the dependence of

the coefficients P, Q, R upon the given functions u and ?;.

Differentiating the equation u = (p{v) with respect to all the

variables, we have

du J du J dii ^ ,, , . fdv , dv y dv j

and as this equation is to liold true independently of the form
of the function <p{v), and therefore of the form of the derived

function <j>' (v), we must have

du J du J du J
„~1

dv T dv ^ dv J „
I

^
^^

--dx + ^- dy-\- -r dz — \

dx dy ^ dz J

whence we find

dx dy dz

da dv du dv du dv du dv du dv du dv

dy dz dz dy dz dx dx dz dx dy dy dx

(9).

Introducing now the condition that z is the dependent,

X and y the independent variables, we have

pdx 4- qdy — dz.

To eliminate the differentials, let the terms of this equation

be divided by the respectively equal members of (9), and we
have
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'du dv du dv\ fdic dv du dv\

^dy dz dz du) ^ \dz dx dx dzj
"

_ dii dv du dv . .

~ dx dy dy dx ^ ''

which agrees with (6).

Now if in the above general form we represent as before the

coefficient of p by P, that of q by Q, and the second member
by R, we see from (9) that P, Q, R are proportional to dx,

dy and dz, in the system (8). But that system is precisely

the same as we should obtain by differentiating the equations

u = a, v = h,

a and h being arbitrary constants. Hence, the partial differ-

ential equation whose complete primitive is u = (j)(v), may be
formed by the following simple rule.

EuLE. Forming the equations u — a, v = &, where a and h

are arbitrary constants, differentiate tJiem, and determine the

ratios of dx, dy, dz in the form

dx __ dy _dz . .

'F~'Q~R ^^^^*

Then icill Fp+ Qq=R he the differential equation required.

Or, tlie Eule may more briefly be stated thus. Eliminate

dx, dy, dz leticeen the three equations,

du = 0, dv=0, dz — pdx — qdy == (12).

It is worth wliile to notice that the partial differential equa-

tion here presents itself, like many other results of analysis, in

the form of a determinant.

Ex. The functional equation of surfaces of revolution, the

axis passing through the origin, is

Ix -f- my + nz = <j){x^ + y^+ z^)
;

their partial differential equation is required.
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Here, proceeding according to the Rule, we have

Idx + mdy + ndz = 0,

xdx + ydy + zdz = 0,

wlience

dx dy dz

mz —ny nx — Iz ly — mx

'

The partial diiferential equation therefore is

{mz — ny) p + {nx —Iz)q = Iy — mx.

5. We proceed in the second place to apply the above
results to the inverse problem of solution.

From what has been said of the origin of partial differential

equations of the form Fp+ Qq = E it is evident that their

solution will be effected by the following rule.

Rule. Form the system of ordinary differential equations

dx _dy _ dz

~F~"Q'~lt ^^^^'

and express their integrals in the forms u = a, v = h; then to ill

the equation u=f{v), ivherefis a symbol of arbitrary function-
ality^ express the solution required.

For, setting out from the assumed primitive, ti = f{i^, -we

should, by the application of the previous and direct Rule, be
led to the partial differential equation in question.

The difficulty of the process consisting tlierefore solely in

the integration of the system of ordinary differential equations

(13), is referred to the methods of the last Chapter.

Ex. 1. Given xp + yq = nz.

Here, the system of ordinary differential equations is

dx _ dy _ dz

X y nz^

and the variables therein are separated. The integrals may
obviously be expressed in the forms

X ' X
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Hence, the required solution is

indicating that s is a homogeneous function of x and y of

the v}^ degree.

Ex. 2. Given (mz — ny)p + {nx —lz)q = ly — rax.

Here the system of ordinary differential equations is

dx _ dy _ dz

mz — ny nx — Iz ly — mx
*

From these we readily deduce

Idx + mdy + ndz = 0, xdx + ydy + zdz = 0,

the integrals of which are

Ix + my + nz=aj x'^-{-y^+ z^= J,

the final solution is therefore

Ix + my + nz =^ (j) {x^ -^ y^ + z^).

Ex; 3. Given {y'x-2x')^ + (2y'-x^y)^ = 9(x'-f)f..

This is the partial differential equation on the solution of

which would depend the determination of the general inte-

grating factor of the equation {x^y — 2y*) dx + {y^x— 2x'^) dy = 0.

Chap. IV. Art. 3.

The system of ordinary differential equations is

dx _ dy _ d/ji

y'x - 2x'
~~

2y' -x'y'd {x^ - y') fju

The first equation of the system is

{x^y - 2y') dx + {y'x - 2x*) dy = 0,

(«).

and of this the complete solution is ^ , ^
)i

'^„..--

/
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We may also deduce from (a)

\x y I fi

of which the complete primitive is

x^y^lJL = c.

Hence the solution of the partial differential equation is

and this agrees with the result obtained by other considera-

tions in the Chapter referred to.

We may note that in this, as in all similar cases, the differ-

ential equation whose integrating factor is sought, presents

itself as one of the equations of the system on whose solution

the comj>lete determination of the factor rests.

To complete the theory of the linear partial differential

equation Pp + Qq = R it ought to be shewn that the solu-

tion u =f(y), or as it may be expressed,

F(u,v)=^0 (14),

includes every possible solution.

Let xi^j V) ^) = 0i 01* ^or simplicity % = 0, represent any
particular solution. Differentiating, we have

^ + ^p = ^ + ^^ =
dx dz-^ ^ dy dz^ '

and substituting the values of ^ and q hence derived in the

given equation

ax ay dz

Similar equations being obtained from the particular in-

tegrals u = a, v = b, we have, on eliminating P, Q, Ji,

dx fdu dv ^du dv\ dx fdu dv du dv\

dx \dy dz dz 'dyj dy \dz dx~ dx dz)

dz \dx dy dy dx)
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Now suppose the forms of u and v to be

u = ^[x,y, z), v = y\r{x,y, z) (16),

^{x, y, z) and -^{xy y, z) being given functions. From these

two equations some two of the quantities x, y. z may be de-

termined as functions of the other and of u and v. Suppose

x and y thus determined as functions of z^ w, and v; then by
substitution ^ (^j 3/j ^) becomes a function of z, u, and v, and

we may write

%(-^, J/>^)=Xl(^;«^;^)•

Hence we find

dx^djx^ du^dxy dv

dx du dx dv dx '

dx ^dx^ d^ j^dx^ dv^

dy du dy dv dy
'

dx ^do(^ du ^dx, dv^ _^dx,
^

dz du dz dv dz dz

Substituting these in (15) and reducing, we have

^%i (^^^ ^^ du dv\ _ /. X

dz \dx dy dy dx)

But, were the second factor of the first member equal to 0,

u would be a definite function of v and z (Chap. II. Art. 1) and
the equations (16) could not determine x and y as by hypothesis

they do. We have then —^ = 0, whence Xi does not involve

z. Thus, X being expressible as a function of u and v, the

equation ;!^
= is included in the general form (14).

6. The above theory may be obviously extended to partial

differential equations of the first order and degree involving

any number of variables.
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Let cc^, x.y..x^ represent the independent A^rlables and z
tlie dependent variable. Let moreover the primitive func-
tional equation be expressed in the form

u = (i>{i\, v^...n^;} (18),

where u, v^, v,^...v^^ are known functions of the variables.

Differentiating with respect to all the variables, and for

brevity representing </)(Vj, v^...v„_J by c^, we have

y d(b -, dd> y deb y

But (j) being an arbitrary function of tlie quantities i\, v^...i'„_^,

it is evident tliat the supposition that the above equation

is generally true involves the supposition that the system of

equations

du = 0, dvj^ = 0, di\^ = 0, . . .di\_^ = 0,

is true, a system of which the developed form is

du 7 du , du , -"I

-^ - dx...,-\- —- dx„ + -7 dz =
dx^ ^ dx^ dz

dv. , dv, y dv, 7 ^
^.^•••• + rf;^/^"+ J.<^"^^ (19).

^^^dx + '^'^>
doc +^ rf, =

Now this system may be converted into an equivalent sys-

tem determining the ratios of the differentials dx^ , dx,,. . .dx^, dz,

in the form

'•'- ''
(20),

dx^ _ dx^ _

where P^, P^...P^ and B are functions of the variabh^s or are

constants.

Introducing the condition that z is to be regarded as a func-

tion of iTj, x^y...x,^, we have

2Vlx^+2\^X2...-^2\dx,, = dz (21),
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wliere^,,^o.-.i?n are tlie several first differential coefficients of

z. Ancl now eliminating the differentials dx^, dx^^...dx^, dz

from (20) and (21) by division, we have

Pdh + P.P."''rPnPn= I^ (22),

for the partial differential equation sought.

Conversely, to integrate the above equation it is-only neces-

sary to form and to integrate the system (20). Representing

the integrals of that system in the forms

u = a, t\ = ^1, v^ = 0^, ... r^i = ^n-i

5

the final solution will be

u = (f>i^i,
V2'---0 ' (23)-

This solution may also be put in the form

^{u,v„v,,...v^,) = (24).

y dt , . dt , . dt
Ex. {y+z+t)-^-}-{z+x+t)--r+{x + 2j + t)-^^ = x + 9j-]-z,

Lagrange, Memoires de VAcademie Royale de Berlin, 1779,

p. i52.

Here the auxiliary system of equations is

dx _ dy _ dz __ dt

'y^\^Wt~ z^-x + t" x-\-y + t~ x + y + z'

which is reducible to the form

dt — dx _dt — dy _dt — dz _dx -V dy •\- dz -^ dt

x-t "" y-t ~ z-t ~ 'd{x + y + z + t)
'

each term being now an exact differential. The system of

integrals will evidently be

{x + y + z-\- t)^.

x — t y — t z — t

Or, representing the function x + y-{-z + t\ij S,

sHx-t)=c,, sHi/'-t) = c„ sHz-t) =
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Whence the complete integral symmetrically exhibited

will be

The solution of all partial differential equations of the form

where Zj, X^^..,Xr^ and Z are any linear functions of the

variables x^, x^,...x^, z, may be completely effected.

For it depends on the solution of the system of ordinary

differential equations

dx^ _ dx^ _ dx^ _ dz

which has been fully discussed in Chap. xiil.

Hesse has integrated the still more general equation which,

according to the above notation, would present itself in the

form

X — +X ^ +X ^
^ dx^ ^ dx^ '" '* dx^

-.^
f

dz dz ^^ \ __ V

where X^, X2,...X^2 are any linear functions of the variables.

(Crelle, Tom. xxv. p. 171.)

Non-linear eqiiations of the first order with three variables,

7. Partial differential equations of the first order with two
independent variables x^ ?/, and one dependent variable z, have

for their typical form

F{x,7/,z,p,q)=0 (1).

Those which are linear with respect to p and q, we have

considered apart. Those which are non-linear we proceed to
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consider. The genesis of an equation of this class from a com-

plete primitive involving two arbitrary constants has been

illustrated in Ex. 2, Art. 1 ; and the mode is general. From
a given primitive, involving a?, y, z with two arbitrary con-

stants, and from its two derived equations of the first order

formed by differentiating with respect to x and y respectively,

it is possible to eliminate both the constants. The result is a

partial differential equation of the first order. Conversely the

integration of such an equation consists mainly in the discovery

of its complete primitive—not that this is its only form of

solution, but because out of it all other forms may be de-

veloped. From the complete primitive involving arbitrary

constants arise, 1st, the general primitive involving arbitrary

functions; 2ndly, the singular solution. The terminology of

Lagrange is here adopted. {Calcid des Fonctions, Lecon xx.)

To deduce the complete primitive of a pcirtial differential

equation of the form F{x, y, z, j). q) = 0.

The existence of a primitive relation between x, y, z in-

volves tlie supposition that the equation

dz =pdx-\- qdy (2),

sliould satisfy the condition of integrability,

dy)~\dxl ^^''

wliere (^-] represents the differential coefficient of ^^ witii

respect to y on the assumption that^:> is expressed as a func-

tion of X and ?/, and f-^j the differential coefficient of ^ with

respect to ^, on a similar assumption as to the expression of q.

Xow regarding p for the sake of greater generality as a

tunction oi x, y^ z, z being at the same time an unknown
function of x and y, we have

dp\ _ dp dp dz

dy) dy dz dy

dp dp

ay dz
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Again, suppose that by means of the p:iven clifrerentlal

equation, q may be expressed as a function of x, ?/, z, p. Re-
garding in such expression z as a function of ^, y, and w as a
function of ic, y, and z, we have

idq\ _ dq dq dz dq fdp dp dz

\dxl dx dz dx dp \dx dz dx^

dx dz ^ dp dx dp dz
^

'

Substituting these values in (3), we liave on transposition

dp dx dy V dpi dz dx '^ dz ^
''

Now the coefficients — -, -
, 1~]?'^ ->

^^^^ '^^'^ second member

7 +i^ /
being known functions of x^ y, z, p, since q as

determined by the given equation is such, the above presents

itself as a linear partial differential equation of the first order

in wliicli p is the dependent and x^ y, z the independent
variables.

Applying therefore Lagrange's process, Art. 6, we have
the auxiliary system

dx
J

dz __ dp

dp ^ ^ dp) dx ^ dz

and this, it is to be observed, is a system o{ ordinarji differen-

tial equations between x, ?/, z^ and p. It may further be

noted that while it has been formed in order to secure the

integrability of the equation dz —pdx + qdy^ it also includes

that equation. For it gives

dz = [q - p '^ dy =pdx + qdy,

since by the equation of tlie first and second members

B. a E. 22
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Accorcllnglj if from tlie system (5) we can deduce a value

of j:» involving an arbitrary constant, that value together with

the corresponding value of q drawn from the given equation

will render the equation dz =pdx + qch/ integrable. Effecting

the integration we shall obtain an equation between x, y, z

and two arbitrary constants which will constitute a complete

primitive.

We say a and not tlie complete primitive, because the sys-

tem (5) may furnish more than one value oi p involving an

arbitrary constant, and so give occasion to deduce more than

one complete primitive. Lagrange had indeed proposed to

employ the general value oi ]) involving arbitrary functions,

furnished by the solution of the partial differential equation

(4). The sufficiency of a value involving only an arbitrary

constant was remarked by Charpit and subsequently recog-

nised by Lagrange.

The practical rule for the discovery of a complete primitive

of the equation F[x, y, z, p^ q)—0 is therefore the following.

Exjoress q in terms of x, y, z, ^:>. Substitute this value in the

auxiliary system (5), and deduce hy integration a value of p
involving an arbitrary constant. Substitute that value of p
with the corresponding value of q in the equation dz=p)dx-{-qdy,

also included in the auxiliary system (5), and again integrate.

Ex, 1. Eequired a complete primitive of the equation

z =pq.

Substituting - for q^ the system (5) becomes

z -^ 'Zz -^

The equation dp = dy gives p = y + a, whence q
y-\-a

Therefore dz — (u-\- a) dx + dy,

of which the integral is

z = [y + a)[x + h) (6),

a and b being arbitrary constants. This then is a complete

primitive.
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Another will be found hy employing the equation

integrating wliicli, we have

p=cz~, ^ = -,

whence dz = cz'i dx +— dy.
c ^

Integrating, we find

^ A 1
2z- = cx-{--y-\-e,

<5^' ^ = —— (0,

r being a new arbitrary constant. It will be found on trial

that both (6) and (7) satisfy the equation z —2^^-

8. Prop. Given a complete primitive of a partial differ-

ential equation of the first order, to deduce the general primi-

tive and the singular solution.

Expressing the complete primitive in the form

^=/(«^5y. «^ ^) Wj

a and h being its arbitrary constants, the partial differential

equation is itself obtained by eliminating a and h between the

above equation and the derived equations

^_ df{x,y, g, h) _ df{x, y, a, h)
^~

dx ' ^' dy '

or, as we may for brevity write,

if if m

Now reasoning as in Chap, viii., the effect of the elimination

will be the same if a and Z>, instead of being constants, are

22 2
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made functions of x and y^ so determined as to preserve to the

equations (9) tlieir actual form. But a and h being made
variable, we have

elf df da df dh

^ dx da dx dh dx '

_df dfda dfdb_
^ dy da dy db dy

'

Hence the equations for determining a and h are

d£da^df db^^
da dx db dx ^

^'

df da^df db^^
da dy db dy ^

^'

'Now this system may be satisfied in two distinct ways,

] st by assuming

!=«' f- (-)•

The values of a and b hence found lead, on substitution in

the complete primitive, to that solution which Lagrange terms

singular.

7/* 7 /»

2ndly, Supposing --^ and -^ not to vanish, we have, on

elimination of them from (10), (11),

da db da dh _ ^
, ^.

dx dy dy dx
^

Now this supposes either, 1st, that a and h are constant, which

leads us back to the complete primitive; or, 2ndly, that h is

an arbitrary function of a. Chap. ir. Art. 1. Again, multi-

plying (10) by dx and (11) by dy, and adding, we have

%da^-%dh = ^ (U).
da db
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rp
riius the system (10), (11) is now replaced by tlie system
(13), (U).

Making then, in accordance with (13), h = ^(a), the expres-
sion for z in (8) becomes

while (14) becomes

^/[^, y, «, </>(«)} = 0.

And these together constitute what Lagrange terms the gene-

ral jprimitive. To apply them it is only necessary to give a

particular form to <^(a), and then eliminate a. Hence the fol-

lowing theorem.

Theorem. A complete primitive of a partial differential

equation of the first order being expressed in theform

^=/{^>y;«, ^) (15),

the general primitive loill he obtained by eliminating a between

the equations

^^ df{x,y,a,<^{a) \ (16),

da J

the singular solution^ by eliminating a and h between (15) and
the equations

df[x, y, «, ^) ^ Q df{x, y, a.'b) ^^ ^
,^^x

da '

db ^
^'

It will be observed that the process for obtaining the general

primitive is virtually equivalent to that by which we should

seek the envelope of the surfaces defined by the corresponding

complete primitive, the constants a and b being treated as

variable parameters connected by an arbitrary relation, while

the ])rocess for obtaining the singular solution is that by
whicli we should seek the envelope of (15), supposing a and

b to be independent parameters.
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Tims, of the system of solutions which consists of a complete

primitive, a general primitive, and a singular solution, the

complete primitive must be regarded as forming the basis,

and the system itself geometrically interpreted includes the

surfaces represented by the complete primitive together with

the whole of their possible envelopes.

Ex. To deduce the general primitive and singular solution

of the equation z =2^1-

A complete primitive being

z= {y + a) [x + l) {a),

the corresponding general primitive will be expressed by the

system
z = {yJra)[x^(i>{a)] 1

= x-\-^[a)+{y-\-a)<i>'[a)) ^
^'

from which a must be eliminated when the form of ^[a) is

assigned. Another form of the complete primitive being

[cx + ^ + ef

' =
1 W'

the corresponding form of the general primitive will be

W:

from which c must be eliminated when the form of '^ (c) is

assigned.

To deduce the singular solution, we have from (a),

— = a* + & = 0,
da

dz
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Hence, h = — x, a = — y which, substituted in (a), gives
z = 0, a singular solution. The same result is deducible
from (c).

9. In the last example, two complete primitives, two cor-

responding forms of general primitive, and one common form
of singular solution are presented. Two systems of solution

appear, and the question arises: Does either system suflicc

alone .^ The answer is given in the following theorem.

Theorem. All possible solutions of a i:>artial differential

equation of the first order, are virtually contained in the system
consisting of a single complete primitive, with the derived gene-
ralptrimitive and singular solution.

As before, we shall represent the proposed differential equa-
tion and its given complete primitive in the forms,

F{x,y,z,p,q) = {) (18),

z=f{x,y,a,h) (19).

We shall also represent in the form,

^ = %(^.^) (20),

some solution of (18), of which nothing more is known than

that it is a solution. We are to shew that such solution is

included in the system of solutions of wliich the common
primitive (19) constitutes the basis.

If we represent for brevity the values of 2; in (19) and (20)

by /' and ^ respectively, we shall have, since both are solu-

tions of (18),

^[-'y'f''i'f)=' c^^)'

^(-^'<4'|)- (-)•

From the form of the above equations it appears tliat if

a and h are so determined as to satisfy two of the conditions.

(^f _ <^h ^f ^.Y
-^ '^' dx dx ' dy ay ^

9?.^



344 KOX-LINEAR EQUATIONS OF THE FIRST [CH. XIV.

they will satisfy the third. For suppose they satisfy the first

two, then the system (21), (22) may be expressed in the form

in which the truth of the third equation of (23) is involved.

Now, as (19) satisfies (18) whatever constant values we
assign to a and Z>, it still will do so if, after the differentiations

7 /• 7/»

by which y- and — are found, we substitute for a and h

any functions of x and y.

But a and h can be determined so as to satisfy two con-

ditions. Hence they can be determined so as to satisfy the

system (23). Differentiating the equation /=% on the hypo-

ilicsis that a and h are functions so determined, we have

df df da df dh _ d^

dx da dx db dx dx^

df dfda df_df^_d^
dy da dy dh dy dy

'

7/» 7 />

Here, -j- , -y- have the same values as in (23), being ob-

tained by differentiating as if a and h were constant. Hence,

reducing by (23), we have

df da df dh _ ^
da dx db dx

df da df db _^
da dy dh dy

(25).

But these are the equations (10) (11), Art. 8, by which the

system of solutions founded upon the complete primitive is

constructed.

The argument then is briefly this, li z = x (^' V) ^^ ^

solution of the given partial differential equation, it is possible

to determine a and b in the given complete primitive so as

to satisfy the equations (23) ; therefore so as to satisfy the
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equations (25) ; therefore so as to indicate a necessary in-

clusion of z~x (^5 y) ^^^ ^^^^ system wliicli is founded upon
the given complete primitive.

CoK. 1. Hence the connexion of a given solution with a

given complete primitive may be determined in the following

manner. Adopting the foregoing notation, determine the

values of a and h which satisfy the system (23). If those

values are constant, the solution is a particular case of the

complete primitive ; if they are variable, but so that the one

is a function of the other, the solution is a particular case of

the general primitive ; if they are variable and unconnected it

is a singular solution.

Cor. 2. Hence also any two systems of solutions founded

upon distinct complete primitives are equivalent. For each

is virtually composed of all possible particular solutions.

Ex. The equation z =^2', has for its complete primitive

z — {x-\-a) (^ + ^)j and for a particular solution z — ^^^^——^
.

What is the connexion of this solution with the complete

primitive ?

We have by (23),

(^ + «)(y + ^)=
J
—

,

y-\-x y + x

These equations are not independent, the first being the

product of the last two. Any two of them give

a == y^^ I

=

^~y

whence 5 = — a. Thus, the values of a and h being variable,

but such that J is a function of a, the proposed solution is

a particular case of the general primitive.

Some general questions, but of minor importance, rclatinG:

to the functional connexion of different forms of solution, will

be noticed in the Exercises at the end of this Chapter.



346 DEEIVATION OF THE SINGULAE SOLUTION [CH. XIY.

In quitting this part of the subject, we may observe that

there are two modes in which the questions it involves may
be considered. The first consists in shewing that the gain

of generality, which in Charpit's process accrues in the trans-

ition from the complete to the general primitive, is equal to

that which Lagrange's original but far more difficult process

secures by the employment of the general value of ^j> drawn
from (4), instead of a particular value drawn from its auxiliary

system. The proof of this equivalence, as developed with

more or less of completeness, by Lagrange and Poisson

{Lacroix, Tom. II. p. 564, III. p. 705), and recently by Prof.

De Morgan {Cambridge Journal, Vol. vil. p. 28), is, from its

complexity, unsuitable to an elementary work. The other

mode is that developed in the foregoing sections.

Derivation of the singular solution from the differential

equation.

10. The complete primitive expresses z in terms of x, ?/,

a, h. The differential equation expresses z in terms of x, y,

p, q^. Either is convertible into the other by means of the

two equations derived from the complete primitive by differ-

entiating with respect to x and y respectively. Hence it is not

difficult to establish the two following equations,

dp

dz

dg

dz

da
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Now the singular solution is deduced from the complete

primitive by means of the ecjuations

5« = ^' dh =
'' ^')'

and it is evident from the form of (26), that this will generally

involve the conditions

1 = 0' I- (-)•

Such then will generally be the conditions for determining

the singular solution from the differential equation.

The conditions (28) will not present themselves, should the

denominator of the right-hand members of (26) vanish identi-

cally. But it may be shewn that in this case the conditions

(27) do not lead to a singular solution. And analogy renders

it probable that icJienever the conditions (28) are satisfied the

result, if it be a solution at all, will be a singular solution.

The complete investigation of this point, however, would in-

volve inquiries similar to those of Chapter Yiii.

The Kule indicated is then to eliminate p and q fi-om the

differential equation hy means of the equations (28) thence de-

rived.

11. The following geometrical applications are intended to

illustrate the preceding sections.

Ex. 1. Eequired to determine the general equation of the

family of surfaces in which the length of that portion of the

normal which is intercepted between the surface and the plane

ic, ?/, is constant and equal to unity.

As the length of the intercept above described in any sur-

face is z (1 +^/ + q") -> we have to solve the equation

z'{l-\-f + q') = l {a).

Hence q = {z^- 1 —p^)'-, and the auxiliary system (5), Art. 7,

becomes, on substitution and division by (^~^— 1 —V^'-)

dx _ dij _ ^^ _ ^^^^ n \
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From the last two members we have on integration

c (1 - z')-

^-—z •

Substituting this, with the corresponding value of q^ derived

from (a)j in the equation dz =])dx-\- qdy wx have

dz= -^—-^— + (1 - cy—~-^y^
s z

integrating which in the usual way, we find

(1 _ ^2)i = _ c^ _ (1 _ ^^fy
_ c',

or, changing the signs of c and c',

{\-z^f = cx-i,\-efij-\-c (c),

which is a complete primitive. The corresponding form of the

general primitive will be

(l_,^)^=ea._(l_e^)^^ + ^(e) 1

= ic + c{l-c')~2^ + ^'(c)i

from which c must be eliminated.

..-*, i w.

But another system of solutions exists ; for from the first,

third, and fourth members of (6) we may deduce

jpdz + zd]^ + c?^ = 0,

whence p^ -f a; = a, from which, and from the given equation

determining^ and ^, we have to integrate

dz = dx + ^ — dy.
z z '^

The result is

(^-ar+(y-jr+^^=i (.),

a complete primitive. The corresponding general primitive is
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To deduce the singular solution from the differential equa-

tion {a) we have

I
= -^ (1 +/ + 2=) -f = 0, I

= _ 2 (1 +/ + r/P = 0,

whence p = 0, 2' = ; substituting which in (a) we find

Tlie above example illustrates the importance of obtaining,

if possible, a choice of forms of the complete primitives. The
second, of those above obtained, leads to the more interpret-

able results. It represents a sphere whose radius is unity and

whose centre is in the plane x, ?/, while the derived general

primitive represents the tubular surface generated by that

sphere moving but not ceasing to obey the same conditions.

The singular solution represents the two planes between wliicli

tlie motion would be confined. A\\ these surfaces evidently

satisfy the conditions of the problem.

Ex. 2. Required to determine a system of surfaces such

that the area of any portion shall be in a constant ratio

{in : 1) to the area of its projection on the plane xy.

The differential equation is evidently

1 +;/+ (f
= m^,

and it will readily be found that it has only one complete

primitive, viz.

z = ax + \/{m^ -a^ — l)y + h.

Thus the general primitive is

z = ax + sjiiii" - a^ - 1) 7/ +
(f)

(a),

and this represents various systems of cones and other develop-

able surfaces.
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Similar but more interesting applications may be drawn
from the problem of the determination of equally attracting

surfaces.

12. Attention has already been directed to the different

forms in which the solution of a non-linear equation may
sometimes be presented. It may be added that linear equa-

tions admit generally of a duplex form of solution. The ordi-

nary method gives directly the equation of the system of

surfaces which they represent; Charpit's method leads to a

form of solution which exhibits rather the mode of their

genesis.

Ex. Lagrange's method presents the solution of the equa-

tion

{mz — ni/)p + {nx — ^2) q = Jy — mx (a),

in the form

lx-\-my -^-nz = ^ {x" + y^ + z"^) (h),

the known equation of surfaces of revolution whose axes pass

through the origin of co-ordinates.

Charpit's method presents as the complete primitive of {a)

{x — cVf-{- (y — cmy+ {z —cnY = r'^ (c),

c and r being arbitrary constants. This is the equation of

the generating sphere. The general primitive represents its

system of possible envelopes.

These solutions are manifestly equivalent.

Symmetrical and more general solution ofpartial differential

equations of thefirst order,

13. The method of Charpit labours under two defects,

1st, It supposes that from the given equation q can be ex-

pressed as a function of a?, y] z, p] 2ndly, It throws little light

of analogy on the solution of equations involving more than

two independent variables—a subject of fundamental import-

ance in connexion with the highest class of researches on
Theoretical Dynamics. We propose to supply these defects.
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It will liave been noted tliat Cliarpit's method consists in

determining ^9 and ^ as functions of x, ?/, z, which render the

equation dz =j)dx + (idy integrable. This determination pre-

supposes the existence of two algebraic equations between
x^ y, z,p, q-, viz. 1st, the equation given, 2ndly, an equation

obtained by integration and involving an arbitrary constant.

Let us represent these equations by

F{x,y, z,p, q) = 0, ^{x,y, z,]j, q)=a.... (20),

respectively. And let us now endeavour to obtain in a general

manner the relation between the functions F and ^.

Simply differentiating with respect to x, ?/, z, p, q, and re-

dF d<^ dF d^
presenting ^-by X, ^ by X\ ^^;by P, ^ by P', &c.

we have Xdx + Ydy + Zdz + Pdp + Qdq = 0,

X'dx + Ydy + Z'dz + Pdp + Qdq = ;

or, substituting j^fZa; + qdy for dz,

{X+jyZ) dx + ( r+ qZ) dy + Pdp + Qdq = 0... (30),

{X'+pZ')dx+{Y' + qZ')dy+P'dp+ Q'dq = 0...{Zl).

But, representing for brevity ^^^ , ^^-|- and^ , by r, 5, t,

respectively, we have

dp = rdx + sdy\

dq = sdx + tdy )
.'

^

Substituting these values in (31) we have

{X'+pZ^rF + sQ')dx + {Y' + qZ' + sP'+fQ')dy = 0,

which, since dx and dy are independent, can only be satisfied

by separately equating to their coefficients. These furnish

then the two equations

-{Y' + qZ')=sP + tQ']
^'^'-
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IN'ow these equations are of tlie same /or??i as (32). Tliej

establisli the same relations between the functions

-{X'+pZ-), -[Y' + aZ'), P, Q, (34),

as (32) does between the differentials dp, dq, dx, dy.

It follows that if we give to dx and dy, wdiich are arbitrarj,

tlie ratio of the last two of the functions (34) then will dp and
dq have the ratio of the first two, so that the following w^ill be

a consistent scheme of relations, viz.

dx_dy_ dp _ dq

P'- Q ~ X'-^pZ' - Y' + qZ'
^^''^-

Now dividing the successive terms of (30) by the successive

members of (35) we have

{x+pZ) p' + ( r+ qZ) Q'-p {X' +pZ')

~Q{Y'-i-qZ')=0 (36).

This is the relation sought. It might be obtained by direct

elimination by multiplying the equations of (33) by P and Q
respectively, and the corresponding equations derived from (30)

by P' and Q' respectively, and subtracting the sum of the

former from the sum of the latter.

It is obvious too, and the remark is Important, that we
might pass directly from (30) to (36) by substituting for dx,

dy, dp, dq, the functions of (3-4), and that this substitution

is justified by the identity of relations established in (32)

and (33).

If in (36) we substitute for X, Y, &c. their values, and
transpose the second and third terms, we have

'^ ^\^_(^ ^\ ^ {'^^ ^\^
^dx -^ dz J dp \dx ^ dzj dp \dy ^ dz J dq

d^ d^\ dF ^

-dy^^^z)^q=' (^")-

Such is the relation which connects the functions F and ^.

When F is given it assumes the form of a linear partial differ-
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ential equation of the first order for determining ^. If from
its auxiliary system we can deduce any integral involving an
arbitrary constant, and such that in conjunction with the

given equation it enables us to determine /> and q as functions

of X, y, z, the subsequent integration of dz —j[)dx + qdy will

lead to a form of the complete primitive.

14. Analogy now points out the method to be pursued
for the solution of equations involving more than two inde-

pendent variables.

Prop. To deduce the complete primitive of the partial

differential equation

F {x^, x.^...x^, z, iJ^, jp^...^^;) ^^ (38),

,
dz dz

where ;,, =— , ...^„=„ .

In the first place we must seek to determine values of

^7j, 2?2? .-.pn ill terms of the primitive variables x^, x^...Xn, z,

such as will render integrable the equation

dz =Pidx^ -\-^^dx^... -i-j^dx,, (39).

Suppose one of the equations requisite in conjunction with

(38) for this determination to be

^ (x^, x^, ...x^, z, 2\,p,, ...2h)=a, (iO).

Then representing the first members of (38) and (40) by their

characteristics F and ^, difi:erentiating, and substituting for

dz its value given in (39), we have results which may be thus
expressed,

^ [fdF dF\ , dF
, ] ^

H[d^^^^Tz)^^^+d^M=' ^''^^

^ (fd^ d<t>\ , d^ , ] ^

H[d^^p^-d^)'^^'^dpM-'>

where Sj represents summation from z = 1 to i = }i.

J)ut smce^i = — , we have

B.D.E. 23
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^^^^~
dx^dx^ ^ dx^dx,^ ^"' dxidx,,

»•••••• V

Substituting this value in (42), we shall be permitted, in con-

sequence of the independence of the differentials dx^, dx^,...dxn,

to equate their respective coefficients to 0.

It is easy to see that the coefficient of dx,. will be

d^ d^ ^ d^ d'z

dxj. '-^ dz ' dpi dx^dXr

'

Equating this to 0, we have, on transposition,

__ /J^ d^]_^ d'^z d^
\dXj. -^ dzj ^ dxidxj. dpi

'

Hence, changing i into r and r into t,

-(^+ .^) =t-^^— (44)
\dxi ^* dz ) ^ dXfdxi d])^

Now comparing this with (43), and observing that

d'z ^ d'z

dxidx^ dxydxi
'

we see that the systems of differentials represented by dp^

and dxy. respectively are connected by the same relations as

the systems of functions represented by

(d^
,

d^\ . d^ ^. ,

Hence, by the reasoning of the previous example, it is per-

mitted to substitute in (41), for the differentials, the correspond-

ing functions, viz. — f-j— + 2^i -17 ) for dpi\ and -7— for dxi.

We thus find

H[d^,-'p^i^)df-dfXd^,^'''dz)r' (^^)'
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the summation extending from t = 1 to ^ = n. This is the

relation sought, and it is seen to be symmetrical with respect

to i^and <^. AVlien F is given, it becomes a linear partial

differential equation for determining ^. From its auxiliary

system of ordinary differential equations it suffices to obtain

n— I integrals,

^i = «x. ^•a=«2. •••^«_i = ««-i (-4G),

such as, in conjunction with the given equation, will enable

us to determine ^^, ^a^, ...j?„ in terms of the original variables;

then integrating (39), we sliall obtain the complete primitive

in the form

f{x^, a:,,...a?„, s, a„ o.,, ...oj =0.... (47).

All other forms of solution are hence deducible by regarding

a^, a^, ... a„ as parameters varying, independently or in sub-

jection to connecting relations, but so as to leave unaltected

tliQ forms ofj;^ p.,, .../?„.

It is proper to observe that the given equation F= is

itself included among the particular integrals of (45). In fact

F is one of the forms of 4> which make 4> = a a solution, as

will be found on trial. The given equation is therefore a

particular integral. And therefore the n — l integrals of the

system (46) must be independent of it in order to render the

determination of^;^, 2\,, •••i\ possible.

The equation (45) may be expressed as follows

:

^ (dFd^ dFd^\ dF^ d^ d^^ dF_
^' [dx, dp, dp] dxj "^

dz ^'^'
dp,

" dz ^'-^>, ~ ^-

And under this elegant form, obtained however by a more
complex analysis, the solution is presented by Brioschi [Tor-

tolini, Tom. vi. p. 426, Intorno ad una ])ropr{eta delle cqua-

zioni alle derivate parziali delprimo ordine).

The problem of the integration of partial differential equa-

tions of the first order, irrespectively of the number of the

variables, appears to have been first solved by Pfatf, but the

23—2
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most complete discussion of it will be fomid in a memoir by
Caucliy [Exercices d'Analyse, Tom. II. p. 238. Sur Vintegra-

tion des equations aux derivees ijartielles dii ^premier ordre), in

which the determination of the arbitrary functions of the

general primitive so as to satisfy given initial conditions is

fully considered. The connexion of the subject with Theo-
retical Dynamics was first established by the researches of

Sir W. Hamilton and Jacobi. The truth, illustrated above,

that the solution of a partial differential equation of the first

order is reducible to that of a system of ordinary differential

equations, and the truth that the solutions of certain systems

of differential equations (including that of dynamics) may be

reduced to the discovery of a single function defined by a

partial differential equation, are correlative. The researches

above referred to, together witli those of Liouville, Bertrand,

and Bour, founded partly upon their results and partly upon
the allied discoveries of Lagrange and Poisson concerning the

variation of the arbitrary constants in dynamical problems,

contain the most important of recent additions to our specu-

lative knowledge of Differential Equations. For this reason

we have dwelt upon their history. Fuller information will be

found in Mr Cayley's excellent Beport on the recent Pro-

gress of Theoretical Dynamics. {Rejport of British Associa-

tion, 1857.)

[In an Appendix to the first edition Professor Boole pre-

sented Art. 14 in the following form.]

Art. 14. The most important form of the problem of this

Article is the following, and the reader is requested to substi-

tute it for the one in the text, sufficient account not being there

taken of the conditions among the constants.

Required a value of z as a function of x^, x^, ... x^ which
shall satisfy the partial differential equation

F[x^, x^,...x^, z,i\,ix^, ...^„)=0 --.(I),

and shall, when ic„=0, assume 2. given form,

z^^{x^,x^,...x^_:^.. ...., (2).



Ar.T. M.] OF TAKTIAL DIFFERKXTIAL EQUATIONS. 3.j7

Eepresenting the second member of (2) by </>, and '^

by ^^5 &c., we shall have, when x,,= ()^

i\=i\^ i\='i>.^ .••7>«-i = </>«.!• (3),

for, in seekinjr the forms wliich -r^. -7— ,.•• -7—-- assume when
ax^ dx^ (lXn_^

x^= 0, we are permitted to make x^= in the general value of

z before differentiating.

Kow the auxiliary system of the linear equation, (45) in the

text, yields 2n integrals connecting ic^, ... a?„, 2, ^^^ .../>„

with 271 arbitrary constants. But since one of the integrals

is i^=c, and since to make this agree- with (1) we must
have c = 0, the 2n integrals will effectively contain 2?i —

1

arbitrary constants. This however being the number of

the variables contained in (2), (3), namely of the variables

a?i, ... a7„_i, ^, ^j, ... 2?„_j, we may express, and so replace,

these arbitrary constants by initial values of the above vari-

ables corresponding to cc„= 0.

Let fi,.--?n-i? ?5 T^'ij-'-TTrt.! be the new constants in question;

then, substituting these for the variables whose initial values

they represent in the n equations (2), (3), we obtain n condi-

tions connecting the above constants.

Thus we have finally 3?i equations, consisting of 2n inte-

grals with n equations of condition connecting the 2?i—

1

constants which those integrals contain. From these 3n

equations we can eliminate the above In — 1 constants toge-

ther with the n quantities p^^ p^,... p^- '^^^^ result will be a

final relation between z, x^, x^,...Xn, which will be the solu-

tion sought.

If we regard the function 4> {x^, a-g' ••• ^"-1) ''^^ arbitrary, the

above solution will constitute a general primitive ; but if we
give to it a particular form involving n arbitrary constants,

we shall obtain a complete primitive. (Gauchy, Exercices,

Vol. II. p. 238.)
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EXEECISES.

1. How are equations, in whicli all tlie differential coeffi-

cients have reference to only one of the variables, solved ?

dz V

3.

dx ^f-ar)'

dz _ y
dx x-i- z'

4. The ])artial differential equation of the first order whicli

results from a primitive of the form u=f{v), where ii and v

are determinate functions of x, t/, z, is necessarily linear.

Prove this.

5. Ojp-\-hq = l.

7.
7JJ)

+ Xq=Z.

8. x^p — X2/q -\-y^ = 0.

9. Integrate the equation of conical surfaces

{a — x)p-\- ip —y) q= c — z.

10. xzp + yzq = xy.

11. (/+ z"' - ar)p - 2xyq + 2xz = 0.

12. Required the equation of the surface which cuts at

right angles all the spheres which pass through the origin of

coordinates and have their centres in the axis of x.

It will be found that this leads to the partial differential equation of the last

problem.

^f 13. z —xy —yq — a {x^ + 3/^ + z^) ^,
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14. Find the equation of tlie surface wliIcK cuts at right

angles the system of ellipsoids represented by the equation

where D is the variable parameter. Lacroix, Tom. ii. p. C78.

15. Find the equation of a surface which belongs at once

to surfaces of revolution defined by the equation ijy
— qx = {),

and to conical surfaces defined by the equation j)x-\-qij = z.

In problems like the above we must regard the equations as simultaneous,

determine jp and 5 as functions of x, y, z, and substitute their values in the

equation dz=pclx + qdy, which will become integrable by a single equation if

the problem is a possible one, but not otherwise.

^- ch dz dz xif

17. Explain the distinction between a complete primitive

and a general primitive of a partial differential equation of

the first order.

18. Find the complete and the general primitive of

z =j)X + qij -\-pq.

19. Deduce a singular solution of the above.

20. i^:?=l.

21. q = x2o-{-f,

22. ShcAV from the form of its integral that <l=f{p)
belongs only to developable surfaces.

23. Deduce two complete primitives of

m =p^ + qy-

24. Deduce two complete primitives of

sip + V^ = 2^.
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25. Given two general primitives of a partial differential

equation of the first order, in the forms,

1st. z = F[x,y,a,^[a)], = -^ ,

2nd. z = ^ [x, ?/, c, a/t {6
d^\x,y,c,^{c)]

dc

shew that the dependence of the functions ^/r (c) and {a),

when the two primitives lead to the same particular integral,

may be determined by the following rule. Eliminate x and y
from any four independent equations of the system

dF_d^ dF^d^ dF_^ ^-0
' dx dx ^ dy dy ^ da ^ dc

The two resulting equations will involve the relation required,

and when the form of </> {a) is given, the elimination of a from
both will give a differential equation for determining the form

of i/r (c)

.

26. The equation z =2)q has two general primitives,

1st. z = {y + a)[x+cj,{a)], = —[{y + a] [x + cj, {a)}],

2nd. 4.z = [cx + ^+'ylr{c)Y, =
-^

{ex + ^ + f{c)Y;

shew hence that the relation between </> {a) and yjr (c) is ex-

pressed by the equations

cj>'{a) + \ = 0, cylr{c)-c'f'{c)=2a.
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CHAPTER XY.

PARTIAL DIFFERENTIAL EQUATIONS OF THE SECOND ORDER.

1. The general form of a partial differential equation of

the second order is

F{x,y, z,p, q, r, s, t)=0 0),

dz dz d'z d'z d'z
where p = -r •> <1= -r ^

^' = 7~2 ? ^ = ~i
—

t" 5 ^ = t^i •

^ dx ^ dy dx'^ dxdy' dy'

It is only in particular cases that the equation admits of in-

tegration, and the most important is that in which the differ-

ential coefficients of the second order present themselves only

in the first degree ; the equation thus assuming the form

Rr^^s^Tt=Y. (2),

in which i?, >S', T and V are functions of x, y, z^ ]) and q.

This equation we propose to consider. The most usual method
of solution, due to Monge, consists in a certain procedure for

discovering either one or two first integrals of the form

»=/W (3),

u and V being determinate functions of x^ ?y, -s", p^ q, and f an

arbitrary functional symbol. From these first integrals, singly

or in combination, the second integral involving two arbitrary

functions is obtained by a subsequent integration.

An important remark must here be made. Mongc's metliod

involves the assumption that the equation (2) admits of a first

integral of the form (3). Now tliis is not always the case.

There exist primitive equations, involving two arbitrary func-

tions, from which by proceeding to a second differentiation

both functions may be eliminated and an equation of tlie form

(2) obtained, but from wliich it is impossible to eliminate
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one function only so as to lead to an intermediate equation of

the form (3). Especially this happens if the primitive involve

an arbitrary function and its derived function together. Thus
the primitive

leads to the partial differential equation of the second order

r-t =
'i

(5),

but not through an intermediate equation of the form (3).

It is necessary therefore not only to explain Monge's method,

but also to give some account of methods to be adopted when
it fails.

2. It is not only not true that the equation (2) has neces-

sarily a first integral of the form (3), but neither is the converse

proposition true. We propose tlierefore, 1st, to inquire under

what conditions an equation of the first order of the form (3)

does lead to an equation of the second order of the form (2)

;

2ndly, to establish upon the results of this direct inquiry the

inverse method of solution. And this procedure, though some-

what longer than that usually followed, is more simple, because

exact and thorough.

Prop. 1. A 2^cirtial differential equation of the first order

of the form u=:f{v) can only lead to a partial differential-

equation of the second order of the form

Br + Ss + Tt=V. (6),

when u and v are so related as to satisfy identically the con-

dition

du dv du dv . .

dp dq dq dp

For, differentiating the equation xi —f{v) with respect to a;,

and observing that -j-=lo, 7/
~ *''

i
~ ^> ^^^® ^^^^Q
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du dit du du ^, , ,
(dv dv dv dv\

^ ^-^'cfo
^'"^

+ ^^ =-^ ('')U +^^fe +''^7^ +^V
In like manner differentiating ic=f(v) Avitli respect to y,

we have

da du du , '^^ _ /•'/ n A^^ dv dv
f^^\

dij -' dz dp dq '^ ^ ' \(2y -^ dz dp dqj
'

Eliminating /' (v) there results

fdu du du du\ /dv dv dv dv\

\ clx ^ dz dj? dq) \dy ^ dz dp jdqj

dv dv dv dv\fdu du du du\ ^ ,,^.

On reduction it will be found that the only terms involving

r, s, and t in a degree higher tlian the first will be those which
contain r^ and s^ The equation will in fact assume the form

Br + Ss+Tt+ U{rt-s')=V (9),

in which U=-j- ^—^. The forms of the other co-
aj) dq dq dp

efficients it is unnecessary to examine.

Now tliis equation assumes the form (G) when the condition

(7) is satisfied—and then only.

3. The proposition might also be proved in the following

manner. Since u =f{v) we have du =f' (v) dv, an equation

which, since f(v) is arbitrary, involves the two equations

du = 0, dv = 0. Hence

du -, du , die -, du -, du , ^ "1

-^~dx-\- -j- dv -\- -J- dz -\- -T- dp + -J- dq =dx du ^ dz dp -^ dq -^
, ^-^ ^ ^

[-...(10).
dv -, dv y dv ^ dv J dv ^
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Bat dz =pdx + qdy^ dp = rdx + sdy^ dq^ = sdx + tdy.

Whence on substitution

[dii du du dii\ , fdn du dii du\ ,

dv dv dv dv\ , /r/?j dv dv dv\ ,

ax ^ dz dp dqj \dy ^ dz dp dqj "^

Whence eliminating dx and dy, we have the same result as

before.

4. A consequence, which, though not affecting tlie present

inquiry, is important, may here be noted. It is that it would
be in vain to seek a first integral of the form u —f (v) for any
partial differential equation of the second order which is not

of the form (9).

Prop. 2. To deduce when possible a first integral, of tlie

form 2i=f(v), for the partial differential equation (6).

By the last proposition u and v must satisfy the condition

(7), which is expressible in the form,

du
_
du dv dv .

aq ' dp dq ' dp

Hence, if we represent each member of this equation by m,
we have

du _ du dv dv , .

dq dp'' dq dp

Substituting these values in (10), we have

du ^ du ^ du ^ du , -, , .

J"
(13)*

dv J dv J dv J dv ,j ,
,. .[

''

and we are to remember that this system, being equivalent

to du = 0, dv — modified by the condition (7), can only have
an integral system of the form,

u = a, v = h (1-4),
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a and b being arbitrary constants, and u and v connected by
the condition (11).

Making dz =j)dx \- qdij in (13), we liave

d)i diC\ 7 (du diC\ , du , ^ -, ^ ^

dx ^ dzj ' \d]j ^ dzj '^ dj)
I

/,.v

fdv dv\ 7 .
fdv dv\ y dv , ^ , , (U +^ rfij

'^^ + (^ + !? cfoj
'^^ + d^ ^'^P + '"^^) = "^ '

From these and from tlie equations

dp = rdx -{ sdij , dc[ = sdx + tdy (IG),

if we eliminate the differentials dx, dij, dp, dq, we sliall

necessarily obtain a result of the form (6). For in thus
doing we only repeat the process of Art. 3, with the added
condition (7).

To effect this elimination, we have from (16),

dp -\- mdq = (r + ms) dx + {s -{- mt) dij
;

or, rdx + s [dy + mdx) + tnidy = dp-\-md(j[ (17).

Now tlie system (15) enables us to determine the ratios of

dy and dp-\-mdq to dx, and these ratios substituted in (17),

reduce it to the form (G).

But in order that it may be, not only of the form (6), but
actually equivalent to (G), it is necessary and sufficient that

we have

dx _ dy 4- mdx _ ondy _dp + mdq .

H~^~S ~~W'~ V ^^^^•

This system of relations among the differentials must thus

include the equations (15). The same system (18), together

with the equation dz =pdx + qdy, must therefore include the

system (13). It must therefore in its final integral system
include the equations u = a, v = h with their implied con-

dition.
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We conclude then, that if the equation Rr \- Ss -\- Tt = V,

result from an equation of the first order of the form u=f{v),
the system (18), together with the equation,

dz —jpdx + qdy (19),

must admit of an integral system determining u and v in

equations of the form u = a, v = h.

To eliminate m from (18) we have, on determining its value

from the first and third members, substituting it in the

second and fourth, and reducing,

Fidif-8dxdy+Tdx^ = ...(20),

Rdpdy+Tdqdx- Vdxdy = (21),

and these, with (19), make three ordinary differential equations

among the five variables x, y, z, p^ q. But among five vari-

ables there ought to exist four ordinary differential equations

in order to render the final relations determinate. And this

confirms what was said in Art. 1, of the hypothetical

character of Monge's method. It is only when the proposed

equation originates in an equation of the form u=f(v), that

the above system admits of two integrals of the form,

u = a, V = h.

As (20) is of the second degree it will, unless it is a com-

plete square, be resolvable into two equations of the first

degree, and eitlier of these in conjunction with (21) and (19)

may lead to a final integral system determining u and v. It

follows that wlien the given equation admits of a first integral

at all, it will admit of two such—excepting the case in which

(20) is a complete square.

5. As yet no account has been taken of the quantity m.

The mode in which it is involved in the equation (18), leads

however to a remarkable consequence developed in the follow-

ing Proposition.

Prop. If by the last proposition we obtain two first in-

tegrals of the form

«.=/W, ". =^W (22),
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and if, regarding these as simultaneous, we determine^? and
q^

as functions of a?, y, z, tliose values will be such as to render

tlie equation dz =j)dx + fidy integrable, and thus to lead to

the second or final integral.

For simplicity, we shall represent u^—fiv^ by F^ and
u^—

(f> (^2) ^7 ^^' Thus the supposed first integrals are simply

F=0, ^ = (23).

Now reverting to the system (18), and representing the ratio

d?/ : dx by n, its first two equations assume the form,

1 _n-\-m _ nm
R~~~S~ ~ ^

'

and shew that m and n are the two roots of the equation

Hence, the value of the ratio dy : dx corresponding to one

of the first integrals (23), is the same as the value of m cor-

responding to the other.

Now for the value of m corresponding to the integral F=0,
we have by definition,

duj^ dv^

dq __ dq

du^

dp
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/d^ ^ (^^ ^ ]^
\dx dz ^ d]) del J

d^ d^ d^ ^^ \ ^ _
dj/ dz^ dp dq J "

Equating the value of dt/ : dx hence found to tliat of m
given in (24), we have, on reduction,

dFd^ dF d^ dFd^ dFd^
dp dx dq dy dp dz ^ dq dz^

dFd^ /dF d^ dF d^\ dF d^ ^
dp dp \dp dq dq dp J dq dq

In like manner equating the values of 7n corresponding to

the integral <^ = 0, and of dy : dx corresponding to the in-

tegral F=0, we have

dFd^ dFd^ dFd^ dF d^
dx dj) dy dq dz dp^ dz dq

dFd^^ /dFcl^ dFd^\dFd^^^^
dj) dp \dq dj) dp dq) dq dq

Subtracting (25) from (26), there results

dFd^_dFd^ dFd^_dFd^
dx dp dp dx dy dq dq dy

flFd^_dFd^\ fdFd^ _dFd^\ ^ .

^U-^ dp dp dzj^'^[dz dq dq dz J
^~ ^ '" ^''>'

Now this is identical with tlie equation (37), Chap. xiv.

Art. 13, expressing the very condition which must be fulfilled

in order that the values of p and q given by i^= 0, ^ = 0,

may render the equation dz=pdx + qdy an exact differential.

Hence the proposition is established.

It is interesting to observe that the two first integrals stand

in a certain conjugate relation. Each of them satisfies that

partial differential equation of the first order and degree which



AST. C] OF THE SECOND OliDER. 3G9

we should have to construct in attempting, by tlie process of

Charpit, to integrate the other. Hence also, althouij,h the

knowledge of Loth is desirable, that of eitlier is sufficient to

enable us to proceed by integration to the final solution.

6. The statement of Monge's method, as derived from the

above investigation, is contained in the following llule.

Rule. The equation being Iir + Ss+Tt= V, form first,

the equation

Ilchf-Bdxdy^ Tdx^ = (28),

and resolve it, supposing the first member not a complete
square, into two equations of the form

dj — m^dx = 0, d?/ — in/Ix = (-29).

From the first of these, and from the equation

Bd2Kli/+ Tdqdx- Vdxd?/ = (30),

combined if needful with the equation dz =pdx -i-qdf/, seek

to obtain two integrals u^ — a, t\ = h. Proceeding in the same
way with the second equation of (29), seek two other integrals

w^ = «, v^ = /8, then the two first integrals of the proposed

equation will be

«:=/iW> ».=/.('.) (31).

To deduce the second integral, we must eitlier integrate

one of these, or, determining from the two j) and q in terms

of X, ?/, and 2, substitute those values in the equation

dz — 'pdx + qdy^

wliich will then satisfy the condition of integrability. Its

solution will give the second integral sought.

If the values of w^ and m,^ are equal, only one first integral
will be obtained, and the final solution must be sought by
its integration.

"When it is not possible so to combine the auxiliary equa-

tions as to obtain two auxiliary integrals u = a, v = h, no first

integral of the proposed equation exists, and some other pro-

cess of solution must be soui2-ht.o

B. D. E. 2i
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We may observe tliat the determination of^:> and q from the
two first integrals is facilitated by the fact that u and v satisfy

the condition (7). Interpreted by Chap. ii. Art. 1, that con-
dition implies that j? and ^ enter, in some single definite com-
bination, into both u and v.

Ex.1. Given ^,-a^^ = 0.

Here R = l, S=0, T=-a\ F=0. Hence we have by
(28) and (30),

dif - a^dx^ = 0, dpdy — c^dqdx = [a).

The former of these is resolvable into the two equations

dy + adx=Oj dy—adx=0 (5),

of which the first gives y + ax = c, and at the same time

reduces the second equation of (a) to the form dj) + adq = 0, of

which the integral is ^ + a^' = ^' Thus a first integral of the

given equation is

p + aq = 6 {y + ax) (c).

Proceeding in like manner with the second equation of {h),

we find as another first integral

2:,-ari = '>ir{y-ax) {d).

From these two equations determining p and ^, the equation

dz =pdx + qdy becomes

^^^ ^(y+«^)+^(3/-Q^^) ^j.
J

</)(y + «a;)->/r(y-aa;) ,
^

Ji 2i(Jj

Or

7 _(j)(y + ax) [dy + ado^ — '^{y~ ^^) {^y ~ adx)

Hence if ^ j"<^ (t) dt = <j>, (<) and -^Jf (0 <^« =f. W,

we have

Here (jy^, -^^ are arbitrary functions since
<f>
and '^ are such.
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It is seen that, in each of the first integrals, the condition

(7) is satisfied, and assuming

2:> + aq —
(f) (^ + ax) = F, p — a^i — yjr {i/ — ax) = <J>,

it is easy to verify the condition (27).

Ex. 2. Given r + as-\-ht= 0.

Proceeding as before, we find

J) + 7iq = (f){y
— mx), p + mq = 'v/r (y — nx)^

as the two first integrals of the proposed, m and n being the

roots of the equation f — at + h = 0. Hence, determining p
and q, substituting in the equation ch —pdx + qdy^ integrating

and reducing we have

But when m and n are equal we have only one first in-

tegral, viz.

I) + mq = (?/
— mx) .

Treating this by Lagrange's process, we have the auxiliary

system

, dxi dz

m 9 (3/
— i^ix)

From the first two members we find y — mx — c. This

enables us to reduce the equation of the first and third to the

form

, dz

<p{c)

whence z = x<j) (c) + c\

Therefore, restoring to c its value,

z — x<j){i/ — mx) = c\

Thus we have for the final integral

z — X(^{y^ mx) ='^{y — mx).

24—2
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Ex. 3. Given

(5 + c^)V - 2 (5 + cq) {a \- cp) s + [a {• cji)^ t = 0.

Here tlie auxiliary equations are

{p + cq) ^dy""+ 2 (5 + eg) {a + cp) dydx + (a + cp)'dx'^ ... (a)

.

ifi-\-cqydp)dy-\-{a + cpYdq^dx=^0 (&).

The first of these equations gives

{b -\- cq) dy + {a + c;p) dx = (c),

which the equation dz = pdx + qdy reduces to the form

adx + My + cdz — ;

whence

ax }- ly + cz = a {d).

Again, eliminating dy and dx from {b) and (c), we have

(p -{- cq) dp — [a + cp) dq = 0,

whence, integrating

^=^ w.h+ cq

Thus a first integral of the proposed equation is

a + cp
,

,
,

, , .

or

cp — C(f> {ax +hy-\- cz) q = h(f) {ax + hy + cz) — a;

and this must be integrated by Lagrange's process.

The auxiliary system is, on representing ^{ax+hy+cz) by ^,

dx _ _dy _ dz

c c(f) h(j) — a'

From these we find adx + hdy + cdz = 0, whence

ax + hy + cz = C,

and thus <j> {ax+ hy -\- cz) = (j) {C)

.



ART. 7.] OF THE SECOND ORDER. 373

Hence substituting dy= — <f)[C) dx,

whence y + ({> {C) x = C',

or 7/-\-x(f) (ax +h7/ + cz) = C.

Thus the final integral is

y + xcj) {ax + 1)7/ + cz) = ylr {ax -\-ly -\- cz).

This solution may also be expressed in the form

z = xcj)^ {ax + h7/ + cz) + yyfr^ {ax + !)?/ + cz)

,

in which it is in fact presented by Monge, {Application ds

VAnalyse d la Geometric^ Liouville's edition, p. 79). The
equation solved is that of surfaces formed by the motion of a

straight line which is always parallel to a given plane, and
always passes through two given curves.

7. In the above examples V is equal to 0, and this always
facilitates the application of Monge's method. The following

is an example in which V is not equal to 0.

Ex. 4. Given r—t = ^
x+y

The auxiliary equations being

dy"^ — dx^ = 0, djpdy — dqdx H ^ dxdy — 0,

one of the systems hence derived is

dy — dx=0, dp — dq-\ ^ dx = 0.

There is also another system, but it is not integrable in the

form u = a, v = h.

From the first of the above equations we get

y-x = a, ^I>-^^+^~r^ = ^y

the latter of which may, since dz =pdx + qdx, be reduced to

the form

d{2y-a) {p-q)+2dz=0,
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whence {2y — a) {j> — q)+2z = h,

or, replacing a'bj y-x,

{x ^-y){p-q)+2z = h.

Hence a first integral of tlie proposed equation will be

{x-^y)['p-q)+2z=f{y-x),

Now this being linear, we have, by LagTange's method, the

auxiliary system

dx _-'dy _ dz

x-\-y~ x + y~ f{ij-x)-2z'

The equation of the first two members gives y+x = a, and
this reduces the equation of the second and third to the form

— dy _ dz

a ~f{2y-a)-2z^

dz 2z _ f{2y — a)

dy a a '

or

•m r

whence z = le "f{2y — ajdy-h h.

The final integral will therefore be found by substituting in

the above, after integration, y-\-xiox a, and F{y + x) for h,

// 8. Monge's method fails in so many cases, owing to the

non-existence of a first integral of the assumed form u =/(v),
that it becomes important to inquire how its defects may be
supplied. And various methods, all of limited generality,

have been discovered. Thus Laplace has developed a method
applicable to all equations of the form

^, >Sf, T, P, Q^ Z^ and JJ being functions of x and y only,

—

which consists in a series of transformations, each of which
has the efiect of reducing the equation to the form

s-\-F;p-VQ(i-\-Zz^U,
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P, Q, Z and U "being functions of x and y, to which each

transformation gives new forms. It may be that among
these successive forms, some one will be found which will

admit of resolution into two linear equations of the first

order. But there are probably no instances in which this me-

thod has been applied in which the solution may not be

effected with far greater elegance, and witli far greater sim-

plicity, by the symbolical methods of the following Chapters.

And even Laplace's method is better exhibited in a symbolical

form. The subject will be resumed. See Chap. xvii. Art. 14.

The following sections contain miscellaneous but important

additions.

Miscellaneous Theorems.

9. Poisson has shewn how to deduce a particular iutegi'al -^
of any partial differential equation of the form

P=[rt-syQ (45),

where Pis a function of^, q, r, s, t, homogeneous with respect

to the three last, n a positive index, and Q any function of

X, y, z, and the differential coefficients of z of any order, which

does not become infinite when rt — s'^ = 0.

Assuming q_
= j>{p), we have

8 = 4,' {p)r, t = <j>'(p)s={<j>-(j>)Yr (46),

values which make 7't — s^ = 0. Hence, substituting in (-io), the

second member vanishes, while in the first, which is homoge-
neous with respect to r, s, t, some power of r only will remain

as a common factor. Dividing by that factor, we shall have

an equation involving only p, </)Qj>), and (j>'(p), i.e. p, q, and

~-
. Integrating this as an ordinary differential equation we

obtain a relation between p, q and an arbitrary constant; and

this, integrated as a partial differential equation of the first

order, gives the solution in question.

Ex. G'lYen r''-f = rt-s\
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Proceeding as aloove, we find 1 — {(/>' {p)Y = 0;

therefore 1 - {</)'(^)}^= 0,

whence -7^=±1, q=±p-rc;

therefore z — cy= <^{y ±x),

a particular integral.

The above method is applicable to all equations of the

second order which are homogeneous with respect to ?% s, t,

for then we have only to suppose (? = 0.

10. There exists in partial differential equations a remark-

able duality, in virtue of which each equation stands con-

nected with some other equation of the same order by relations

of a perfectly reciprocal character. As respects equations of

the first order the principle may be thus stated.

Suppose that in the given equation

(l>{x,y, z,p, q)=0 (47)

toe interchange x andp, y and ^, and change z into jpx -\-qy — z^

giving

^(p, q,px^-qy-z, x,7j)=0 (48);

then, if either of these equations can he integrated in the form
z = '\\r[x, y), the solution of the other icill he found hy elimi-

nating X and Y between the equations

_ d^{X, Y) _ d^ (X, Y)
'^~ dx ' y dY '

z = Xx-\- Yy-^lr{X, Y) (49).

For, since dz —jpdx \- qdy, we have

z —px + qy — j
{xdp + ydcf) (50).

Hence xdp + ydq is an exact differential. Represent it by
dZ, and assume Z for dependent variable. Assume also two
new independent variables X and Y, connected with the for-

mer ones by the relations X=p, Y= q. Then

dZ= xdp + ydq = xdX-\- ydY,
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-rx dZ dZ
Hence -j^=x, ~.= y,

Z=j [xdp + ydq) =2JX + q7j-z by (50)

;

therefore z =jpx + qy — Z= xX-\- yY— Z.

On examining the ahove equations we see that x, y, z, an!
X, F, ^are reciprocally related. Writing, side by side, the

equations which are conjugate to each other, we have

rr dz
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Each particular form assigned to / gives a distinct par-

ticular integral. If we assume/ f -^^ j
= a -^ + &, we find

from which, eliminating X and Y, we have z = {x — h){y — a),

and this is one form of the complete primitive assigned in

Chap. XIV. Art. 7. We may observe that the elimination

may be so effected as to lead to general primitives.

11. 1)1 equations of the second order toe should have, m
addition to the above transformations, to change

f g y
r into 2 > ^ ^'^^^ ~, 2 > ^ ^^^0 —^ 2 (51) J

rt — s rt — s rt— s ^ ^

in order to form the reciprocal equation. Then the second

integral of either being found in the form z = ylr{x, y), that

of the other will be found as before by eliminating X and

Y from (49). For since

_dZ^ _dZ_
'^~ dX' y~dY''

therefore dx = RdX+SdY, dy = SdX \- TdY,

. ,^ Tdx-Sdy j^ -Sdx-\-Bdy
whence dX — -Dm_ ni ->

^.-^ =—'FT— S^
— '

But X=p, Y=q, therefore

, Tdx--Sdy
dp = rdx + sdy = j^rp-S^ '

J ;j y ^j - Sdx-^Rdy
dq^sdx^tdy=

j^y_ ^2 >

whence, equating coefficients,

T -8 B
ET-S'' '"'BT-S'' '"BT-S''
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The extension of the theorem to higher orders involves no
difficulty.

12. It is an immediate consequence of the above, that any
equation of the form

^{lhq)r^it{p, q)s + xiP> q)t = (52)

can be reduced to an equation of the form

X{^,y)r-'ylr{x,y)s + (j>{x,y)t = (53),

usually more convenient for solution. Legendre's solution of

the equation

by the aid of the above transformation, will be found in

Lacroix (Tom. II. p. 623).

The same transformation makes the solution of any equa-

tion of the form Br+ Ss+Tt= V{rt - s') dependent on that

of an equation of the form

Br + Ss + Tt= F,

but with different coefficients. The subject of these transfor-

mations has been most fully treated by Prof De Morgan
{Cambridge Fhilosophical Transactions^ Vol. Viii. p. 606).

13. Legendre also shews how, by a transformation for-

mally resembling the above, to integrate the equation

Assuming s and t as independent variables, and v = sx + f?/ — q

as dependent variable, the equation is reduced to the form

where S and T are the values of -r and -y^ furnished by the

given equation. Lacroix^ Tom. ii. p. 631.
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EXERCISES.

1. To what condition must u and v be subject, in order

that u =f (v) may be a first integral of an equation of the

form Br +Ss+Tt= V?

Integrate by Monge's method the following equations

:

> 2. ccV + 2x^s + yH = 0.

3. q''r-2pqs+^H = 0.

4. Integrate jps — qr — 0.

5. Integrate by Monge's method the equation

q{l+q)r-{p + q+2^q)s+p{l+p)t = 0.

6. The solution of Ex. 3 may, by the law of reciprocity, be
made to depend on that of Ex. 2.

7. Monge's method would not enable us to solve the equa-

2p
tion r — t = -^,

X

8. Deduce by Poisson's method a particular integral of

(1 + ^V - 2^5 + (1 +f) i = ^'

9. Shew that the equations

rt-s'=:fip, q), and rt-s'={f{x, y)}'\

are connected by the law of reciprocity.

4:X
10. The solution of the equation r — t = (rt — s^)^ p+q ^ '

mav be derived from that of the equation r — t-\ ^ = 0.
•^ " x+y

Art. 7, Ex. 4.
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CHAPTER XVI.

SYMBOLICAL METHODS.

1. The term symbolical is, bj a restriction of its wider
meaning, applied more peculiarly to those methods in Ana-
lysis in which operations, separated by a mental abstraction

from the subjects upon which they are performed, are ex-

pressed by symbols in whose laws the laws of the operations

themselves are represented.

Thus
-J-

is written symbolically in the form -7- u, the sym-

bol -y- denoting an operation of which u is the subject. In

thus expressing an operation by a symbol, in studying the

laws of that symbol, and in founding processes and methods
upon those laws, we introduce no strange or novel principle

of Language ; for it is the very office of Language to express

by symbols the procedure of Thought.

Thus also we may write

du ( d \ , ,

5» + ''" = U+"J" ^^''

d\ du ^ (
d'^ d y\ .,

^^+«^ + ^'' = fe+"d.+T' ('^'

and so on. It will be observed that the symbol precedes the

subject on which it operates.

Operations may be performed in succession. Thus

d \/d
U+^, ^. +

^1^^

denotes that we first perform on the subject u the operation
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denoted by -j- + h, and then on tlie result effect the operation

denoted by y^ + (^. Thus a and h being constant, we have

— + ct] (-j~ -^h]u= ( -,- + a] (-^ + hu
ax J \dx J \dx J \ax

d fdu 7 \ fdu 7

dx \dx J \dx

d^u , -..du 7 ,„.

=&5 + («+^)^+«^'' (3).

When an operation is repeated, the number of times which
it is understood to be performed is expressed by an index
attached to the symbol of operation. Thus

d \(d

=^+2«^+''" w-

If in the second member of (3), as in the first, we separate

the symbols from their subject, we have

Now the symbolic expressions for the equivalent operations

performed upon u in the two members of this equation are in

formal analogy with the algebraic equation

(m + a) [m -\-h) u= [m^ + {a + h) m + ah} u^

and tliis is a particular illustration of a general theorem to the

statement and demonstration of which we shall now proceed.

2. If we compare the symbolical expressions

xlx + «)(i + 0' £+('^+^)|+«^ («)'
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whose equivalence is stated in, (5), we see that each involves

-J-
together with constant quantities. Each might therefore,

to borrow the language of analogy, be described as a function

of
-J-

and constant quantities, or more briefly as a function

of -^, and expressed in the form/fj-j. Again, each ex-

presses a system of operations in the performance of which

the presence of the symbol y- only indicates differentiation,

not integration. We may with propriety term any function

of -J- possessing this character a direct function of -y- . The

theorem in question is then the following.

Theorem. Any direct function of -j- and constant quan-

tities may be transformed as if -j- were itself a quantity.

In the first place it is evident that any direct function of

the symbol -7- according to the above definition is, in form,

what we should term a rational and integral function of -j-
,

were that symbol merely algebraic.

Now the laws, according to which algebraic symbols com-
bine witli each other in the composition of all rational and
integral expressions, are the following, viz.

Ist, the distributive, expressed by the equation

m {u-\-v) —mu+ mv (7),

2ndly, the commutative, expressed by the equation

ma = am (8)

,

Srdly, the index law, expressed by the equation

7wW = m"-^^ (9).
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These determine, and alone determine, the forms, or, to speak

more precisely, the permitted variety of form, of algebraic

expressions of the above class.

But the symbol j- , when employed in combination with

constant quantities to operate on subjects which are not con-

stant, is subject to laws formally agreeing with the above.

For we have

}ju + v) = ~u+^^v (10),

t
dV/dY (db / J\a+i

U i^T^ a^),dx) \dxj \dxj

the last of these, however, expressing, not any distinctive pro-

perty of the operation -v- , but only the fact that it is an

operation capable of repetition. These laws, in like manner,

determine the possible forms of symbolic expressions involv-

ing -J- with constants, and representing direct systems of

operations.

Hence the variety of form permitted in the one case is the

same as that permitted in the other. In other words, the

same transformations are valid.

Among the consequences of the above theorem the following

may be noted.

1st, We can reduce any symbolical expression of the form

j;^.- + «i^;^ + a2^^^, ...+«„, in which a^, a^,...a„ are con-

stants, to an equivalent expression of the form

d \ f d \ f d

<?x-"Vls-'"V-Ux-'"""
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where m^, m^^ ... m„ are the roots of the equation

??i" + a^7?i""^ -+- a^m'"''' . . . + r/,^ = 0.

2ndl7, The order, in which the component operations

d d d

are written, is indifferent.

Ex. Thus -T-^ — a-u = may be reduced to either of the

forms

0, (— -a)[— +a)zi = 0.
\c?j; / \dx J

Srdly, The complex operation

d^ . d^
dx"""^ 'dx''-'^^'doc

inn
dx

is itself, like the elementary operation -^, distributive; i.e.

representing that complex operation by /(y-j , we have

/(3(»-^^-)=/(i)-/©^ (^-^^

This conclusion may be verified, by substituting for/(-y-)

the expression for which it stands, and performing the opera-
tions.

Inverse Forms,

3. All that is said above relates to the performance of

operations, definite in character, upon subjects supposed to be
given. But an inverse problem is suggested, in which it is

required to determine, not what will be the result of perform-
ing a certain operation upon a given subject, but upon what

13.D.E. 25
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pubject a certain operation must be performed in order to lead

to a given result. Thus, in the equation

d

if u be given, the performance of the operation ;?- + « deter-

mines v, but if V be given, then the inquiry arises, what is

that unknown subject w, the performance of the operation

-y- + a upon which will lead to the result v?

As any procedure for determining u from v is inverse to the

procedure by which v is determined from w, analogy suggests

the notation

i^^T^ (^^)'

7 \-i

\- a] representing the inverse procedure in question,
dx J

but representing that procedure only in its inverse character,

i. e. conveying no information as to how it is to be performed,

but only telling us that it must be such, that if, having per-

formed it on V, we perform on the result the operation -j- + a

to which it is inverse, we shall reproduce v. For, substituting

in (14) the expression for u given in (15), we have

d \fd -1

dx J \ax J

Tlie inverse procedure is thus presented as one, the effect of
which the direct operation simply annuls. This is its definition.

Thus in Arithmetic, division is inverse to multiplication.

"What is meant by dividing a by J is the seeking of a third

number c, which when multiplied by h will produce a. And
the very procedure by which this is effected consists not in

any new and distinct operation for determining the subject c,

tut in a series of guesses, suggested by our prior general

knowledge of the results of multiplication, and tested by mul-

tiplication.
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And generally, if ir represent any operation or series of

operations possible when their subject is given, and then

termed direct, and if, in the equation 7ru = v, the subject u be

not given but only the result v, then we may write

And the problem or inquiry contained in the inverse notation

of the second member will be answered, when we have, by
whatsoever process, so determined the function u as to satisfy

the equation iru = v or tttt'^v = v. By the latter equation the

inverse symbol tt"^ is defined. Thus it is the office of the

inverse symbol to propose a question, not to describe an
operation. It is, in its primary meaning, interrogative, not

directive.

Suppose the given equation to be

(£+^'£-+^>='' ('•^)-

Then on the above principle of notation we should have

or, with not less propriety of expression,

1
u =

dx'' ' 'dx^'

tiie last two equations differing in Interpretation from (16), not
at all as toucliing the relation between u and t% but only as

more distinctly presenting u as the object of search.

Of what avail then, it may be asked, Is that analogy upon
which the expression of the last two equations is founded?

If a convention, it is at least a very natural one, that we
should express an operation performed upon a subject, by
attaching, in some way, the symbol denoting the operation to

the symbol denoting the subject. The order of writing, in

that family of languages to which our own belongs, has
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doubtless determined tlie mode of connexion actually adopted,

and wliicli is the same as if the symbol of operation were a

symbol of quantity employed as a coefficient or multiplier.

It comes to pass, moreover, that the formal laws of combina-

tion in the direct cases investigated in Art. 2 prove to be the

same for the symbol -j- as for a coefficient or multiplier. But

inverse symbols derive their meaning from the direct operations

to which they stand related: they are forms of interrogation,

the answers to which are to be tested by the performance of

the direct operations. Hence it may be inferred that the laws

for the transformation of inverse, expressions involving —
(XX

with constants will be the same as for the corresponding forms

of ordinary algebra. The analogy consists, not in the mere
adoption of a common notation, but, as all true analogy does,

in a similitude of relations.

If the equation [-^ a ) w = X be given, we have

4. Solution ofLinear Equations loith co7istant Coefficients,

A
dx

but, the known general solution of the given equation being

U = 6

we see that

^^
«) 'x^e-^je-^'^Xdx (17),\dx

an arbitrary constant being introduced by the integration in

the second member.

If X= 0, we have

i-«r-^=c/.- (18).

These results we shall have occasion to refer to.
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Ex. Xow suppose the given equation to be

d^u , ^. du

we have, on separating the symbols,

or, by Art. 2,

(i-«)(i-^)»=^^' (^')'

Hence [^ _
6j « = (^£ -.) X,

(i-f(i-r^ «
On comparing this with (19) we see that, in inverting a system
compos|ed of two operations performed in succession, the order

of the
' operations themselves is inverted. This is evidently

true whatever may be the number of successive operations,

the last to be performed being always the first to be inverted.

Fi'om (20) we might deduce the actual value of u by suc-

cessive applications of (17). Such was the method once em-
ployed. But it is better to proceed as follows.

From (19) we have

E-)(a-C-^' '^'-

No^v by the known theory of the decomposition of rational

frac tions

{(m - a) (m - b)}-' = N^ {m - a)-' + ^, {m - IT'...^ (22),

iV"^, ^^2 being functions of a and h, which may be determined

in various ways, but most directi?/ by multiplying both sides

of the', equation by [m — a) {in — h), and equating coefficients.
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Now the suggested transformation of the expression for u
given in (21) is

d \fd
dx J \dx -^)r^=^'(£-^)"'^+^'"<£-'r'''-(^^)-

And, from the very definition of inverse forms, the proper test

of the validity of tiiis transformation is, that the performance of

the direct operation I- ^)
(
t— ^) on the second member

shall reduce it to X,

Effecting this operation, and remembering in so doing that

-j a and -^ h are commutative, and that by definition

a) (-^ a\ X= A', the second member becomes

or (iv;+i^gg-(5.^^ + aiv;)x (24),

and this reduces to X if

.V, + -V, = 0, hN, + aN=-l (2iS)

\

But these equations for the determination of N^ and A^g ^^®

the same, and necessarily the same, as we should have fecund

by multiplying, as above indicated, (22), by {in -a) (m—b),
and equating coefficients. The two series of operations only

differ in that -p occupies in the one the place which m c Occu-

pies in the other. Determining Nj_, N^, we see that u may
be expressed in the form

d V'./d •-'
•

^

a — O] \dx «r^-(£-^r^} ^•^«)-
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Hence, by (17),

and as, on effecting the integrations, two arbitrary constants
will be introduced, this is the most general value of u.

5. In like manner if there be given the general linear

differential equation with constant coefficients

(£+^'£^+^=£^-+^«)''=^ c^^)'

and if we represent by a^, ^g, ... a„ the roots, supposed all dif-

ferent, of the algebraic equation

mr + A^nr'-\-A^m''-'\.,+A, = (29),

then the given equation may be expressed in the form

(£-"') (i-"J-(;^-"")" = ''^^'

whence

"-{(e-°0(e~"-)''-(;s-"-)}'^"

-;''.(i-".)"'-^-.G4-.r---(i--n-^--^-«-

the decomposition in the second member formally resembling

that of the rational fraction.

If the equation (29) have r roots equal to a, there will

exist in the resolved expression for u a series of terms of the

form

h(i-r-Mi-"r'---(£-r)-^-^^-<">'
• This theorem was first published in the Cambridge Mathematical Journal

(1st series, Vol. ii. p. 114), in a memoir written by the late D. F. Gregory, then

Editor of the Journal, from notes furnished by the author of this work, whose

name the memoir bears. The illustrations were supplied by Mr Gregory. In

mentioning these circumstances the author recalls to memory a brief but valued

friendship.
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or, which is preferable, a single term of the form

A^Bi^ci,...^n^Ml-A"x (32),dx dx^
' '

' dx^ V \dx

A, B,...R being determinate constants.

Now since, by (17), i^- S^ X=e''''{ e-'''' Xdx-,

therefore (^ " «)
' ^='(^ " ^)

' ^"/^""^^^

= e- L-- {e^^ L-- Xdx) dx

^ e"' [L--- Xdx\

Proceeding thus, we have

Ex.l. Given ^'! + 4'^ + 3^-4^^-4y =X
dx dx dx dx '^

This equation gives, on decomposing the complex operation

performed on ?/,

Wore . = {(i-^^y(£.l)g-l)rx.

Now, ^1 ^^
' =±!^ ^+ 1

w-f2)'(w+l)(m-l) 9(w+2J' 2(m+l) l«(m-lj
'

Therefore

9V rfj;

4 ;- + 1 1 1 e^'ili'Xdx'-

-

i 6-'je'XcIx + -€' je"Xdx.
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Ex.2. Given P^,+7l'u = X.
ax

Here w =
(
^r-g + w^ ) X.

But e"^V(-i)fe-"V(-^)XJaj

= [cos 7^a; + \/(— 1) sin wa;}
]

I cos nxXdx — V(— 1) 1 sin nxXdx\

= (cos ??a; - V(- 1) sin nx\ \ \ cos nxXdx\^^J{-^) \
sin ?iajA7Za:^

,

whence, on substitution and reduction,

u = - J sin nx \ cos nxXdx — cos tioj I sin nxXdxY .

6. When the second member X is a rational and integral

function of x, the final integration may be avoided. For,

representing the given equation in the form fi-j-] ic — X-\-0^

we have

HAW^MBY" <"'•

A particuhar value of the first term will be obtained bj de-

veloping ]/(^)r in ascending powers (so to speak) of -y-,

and then performing the diftercntiations on A" while the

general value of the second term will introduce the requisite

number of arbitrary constants.
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72

Ex. Given -j^ + 71%= l+x + x^.

Here « =g+„f (1 + . + .=) + g+„^ro

+ C^ cos 71CC + C^ Bin «.r

= 7i~^ {1 + X +x^) — 2?i~* + Cj cos nx + Cg sin 7ia;.

The validity of the transformation of the inverse form

{'T~i-^^^] ^7 development, as of its other transformation by

decomposition, is tested by performing on the result the direct

operation ~p-r^ + n^. We take occasion to notice that different

transformations, while equally valid, do not of necessity con-

duct us to solutions equally general, nor have we any right to

expect that they should. Each solution is an answer to the

question contained in the given inverse form, but that question

may admit of different answers, and no solution is general

which does not include them all.

The final integrations may also be avoided when X consists

of a series of exponentials of the form e*""" with coefficients

which are either constants, or rational and integral functions

of a?.

Since (-j-\ e"'"' = ??2"e"*'', we have, for all interpretable forms

ofyf-7-
j , the relation

the second member expressing the complete, because the only,

value of the first member when/ (-7-) is rational and integral,
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but a particular value of the first member when /'(-^
J

is

inverse, the test being as before.

Hence, if the given equation be/( t-) u = SA,,,€^'', we have
dxj

dxj\ ^ " ' K \clIX

= S^„.(/Wl-V'"'+j/g)fo (36).

the second term introducing the requisite number of arbitrary

constants.

Again, if, in any expression of the form /i 7- 1 e'^^A", we

convert -j- into — + -j^
, where -j^ operates on x only as

ax ax ax ax ^

contained in e"*^, and -7^ operates on x only as contained in A",

we have

Hence, dropping the suffix which is no longer necessary,

since A' alone follows the operative symbol, we have

/(S^"'^^'=^-V(;J + -)^l' (37).

When therefore X is a rational and integral function of x, a

particular value of the first member may be found from the
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second, by developing the functional symbol and effecting the

differentiations. And that particular value may be made
general, as in the following example.

Ex. Given -^ - 3 -y- + 2i* = a?e'"^
ax ax

I (m - 1) (to - 2) 1(to - 1) («j - 2) J'
dx ^ J

cce-' (2TO-3)e''"

(to- 1) (to - 2) [(to - 1) (to - 2)
j''

"*"
' "^ 2

Again, the theorem (37) relieves us from any diiSculty arising

from cases of failure referred to in Chap. ix. Art. 9.

Es. Given (^-aXu = e".

c.r X

€

4

c^-\-c^x... + c^^x + —
'2...n

AVhen the second member X involves terms of the form

Ao^o^mx, Bsinmx, &c., we may either substitute for them
their exponential values, or we may employ directly the easily

demonstrated theorem

f d^\ sm ., 2. sm
-r— 7nx = / (— m) mx,
\ax J cos '^ ^ ^ cos
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Ex. Given y^ + w^w = Sa„i cos [mx + ^)

.

Here u = f y^ + n^\ Xa,^ cos (ma; + ^) + f yr, + 7iM

^ «„, cos (mx +h)
, ^ , n •= 2,-^ ^-^

r, -+ C, cos 72X + C\ Sin Tiaj.

?r — m

In this example, however, the failing case which presents

itself when m = n, is most simply, though not most satis-

factorily, treated by the methods of Chap. ix. Art. 11.

The reduction of an integral of the 7i^^ order by the fore-

going theory is not devoid of elegance.

We have
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dx

)--&c.}^(»^^)_^g_^^3,_^^_^^.^

1 (,,n-.,.,^<^N"'

= ^-
• L"-' lxdx-in-\)x"-^ \Xxdx

1.2. ..(«-!} i J ^ ' )

the result In question.

From (38) we have the theorem

which is important in the transformation of differential equa-

tions.

Forms purely symbolical.

7. In any system in which thought is expressed by sym-
bols, the laws of combination of the symbols are determined

from the study of the corresponding operations in thought.

But it may be that the latter are subject to conditions of
possihility as well as to laws ivhen possible. And thus it may
be that two systems of symbols, differing in interpretation,

may agree as to their formal laws whenever they both express

operations possible in thought, while at the same time there

may exist combinations which really represent thought in the

one but do not in the other. For instance, there exist forms

of the functional symbol /] for which we can attach a meaning
to the expression f{ni), but cannot directly attach a meaning
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to the symbol /(^) • And the question arises : Does this

difference restrict our freedom in the use of that principle

which permits us to treat expressions of the form /(-r-j as if

,- were a symbol of quantity ? For instance, we can attach

no direct meaning to the expression e '^f{x), but if we de-

velope the exponential as if y- were quantitative, we have

=zf[x + h) by Taylor's theorem.

Are we then permitted, on the above principle, to make use of
symbolic language ; always supposing that we can, by the

continued application of the same principle, obtain a Jitial

result of interpretable form ?

!Now all special instances point to the conclusion that this

is permissible, and seem to Indicate, as a general principle, that

the mere processes of symbolical reasoning are independent of

the conditions of their interpretation. In the few Instances

we may have occasion to employ, verification will be easy.

We take occasion to notice that, whatever view may be taken
of this principle, whether it be contemplated as belonging to

the realm of a priori truth, or whether It be regarded as a
generalization from experience, it would be an error to regard
it as in any peculiar sense a mathematical principle. It

claims a place among the general relations of Thought and
Language.

On the principle above stated we should have

^'^'''V(-r,2/) = /= /V(-r,2/)
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And here, the expression e
'^'^ ^^

, which is without meaning
in itself, is to be regarded simply as the representative of the

expression

which has meaning. And the proper test of the validity of

the symbolic equation

dx dy __ dx dy

consists in substituting for each exponential form the series it

represents, and comparnig the finally developed results, just as

we shovild, by developing the exponentials, verify the alge-

braic equation,

It must be noted that -^ and -y- are commutative, and
ax ay

combine, in all respects, like symbols of quantity. We are not
a:+-- — d

permitted to write e '''=
e^'e'^'', because x and -y- are not

commutative.

8. The above principle is illustrated in the solution of the

following partial diiFerential equations.

. d\i ^d\ . .

Ex. Given ;^. - « j^2
= ^ (^: V) •

IIerez.= (|^-a^|.) <i>[x,y)

^ Ua-^y |e"^^|e~"^^^(^ {x, y) dx-e''''^^jr^"<}>[x,y)d^
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the forms of <J>j and ^^ being given by tlie equations

*^i i^y y) =\ ^ {pc,y-ax) dx-Y'y^r {7/),

^2 (^^ y)=ji'{^,y + O.X) dx + x (y)>

-y^ {y) and ^ iv) being arbitrary functions of y.

If
(f)

{x, y) = 0, we hence find

or, if we represent ^j^(^)% ^7 ^1(3^). and
^fx(y)(^!/

^y Xi ii/)>

^ = fAu + «^) + xAy- «^)-

As -v/r and X ^^ arbitrary, -v/r^ and Xi ^i'^ so too. This agrees
with the result on p. 370.

T^ ^. d'^u d^u d~u ^
Ex. Gmn^ + ^^.+;^ = 0.

We may put this in the form y-^ + ait = 0, where a stands

d^ d^ .

for -^ + -,^2 5
a^^^ integrate wdth respect to x, as if a were a

constant quantity. Eemembering that the two arbitrary con-

stants of the complete integral must then be replaced by two .

arbitrary functions of y, z^ we get the symbolical solution

Developing the cosine and the sine, and replacing

(d' d'\h
,

. .

by a new arbitrary function x {l/j ^)j ^^'^ have

B.D.E. 26
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x' fd' ,
d'V , ,

.

Under this form, the solution is presented by Lagrange in the

Mecainque Analyiique, Tom. ii. p. 320.

Generalization of the foregoing theory.

9. All equations, whatsoever their nature or subject, which
are expressible in the form

[ir''+Ay-'-\-Ay-\.. + A,:)u=^X (1),

where it is an operative symbol subject to the laws

irau = airu, ir {u + v) = 7ru + ttv, ir^ir^'u = tt"'^'' w,

a being a constant and u and v functions of x, admit of trans-

formations analogous to those of Art. 5.

Thus, since w = (tt" + Ay-^ + Ay^ . . . + A^^ X,

we shall have, when the roots a^, a^^...a^ of the auxiliary

equation

Tif + A^m""-^ + A^m""-'' . . . + ^„ =

are real and unequal, the transformation

u = N,{iT-ayX-^N^{ir-ayX..,-rK[^-aX'X...{^^\

the coefficients iV^, N^^ ... N^ being determined as in Art. 5.

The legitimacy of this transformation is proved by operating

on both sides of (2) with Tr^' + ^jTr""^ ... + ^n, and shewing
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that (1) is reproduced with the same conditions for deter-

mining iV^ , iVg , . . . iV^„ as if TT were a symbol of quantity. But
the question of its completeness, of its conducting, through the

performance of the inverse operations (tt— aj~\&c., to the

mo^i general solution of (1), is one that we are not called upon
to determine a priori. In all the cases we shall have to con-

sider, its completeness will be obvious.

Ex. The equation -j^,- {2x^-1) ~-\- {a? + x-l) u^O

is reducible to the form tt {ir — \) u = where 17 = ~j
— x.

Hence
u= (7r-l)''0-7r-'0.

Let (tt — 1)~^ = y, then, since (tt — 1) ?/ = 0, we have
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and therefore, in accordance witli the reasoning of Arts. 3

and 4,

/(7r)Wa=/Ww« (A
an equation of wliicli the second member expresses the com-

plete, because the only, value of the first member when/(7r)

is rational and integral, but a particular value when the first

member contains inverse factors.

Hence, if we have any equation /(tt) u = X^ where /(tt) is

of the form tt^ + A^'^ +^y' ... + A^, and X is a series of

homogeneous functions of the variables, suppose

X=X„+X,+ ...&c.,

we get

« = {/W}-^Y+{/(,r)l-0

= {/(,r)}-> a; + i/w)-' X, ... + !/w}-

= {/(«)}-' X„ + {/(i))-' X, ... + i/Wr 0, by [A).

To find the value of the last term, we proceed, as in Art. 5,

to reduce it to a series of terms of the form ^^(Tr — a)~*0,

* being the number of roots equal to a of the equation /(7/i) = 0.

Now it may, by an induction founded on successive applica-

tions of Lagrange's method for the solution of linear partial

differential equations of the first order, be shewn that

(TT-a)- = u, (log x^-' + v, (log x^-\.. + ic,.„. (B),

Uai v„, Wa being arbitrary homogeneous functions of

x^, x^, x^ of the a^^ degree.

To this result we may give the symmetrical form

(tt - a)-' = u,L'-' + vJP~' . . . + 2^„

,

L, M, &c. being logarithms of any homogeneous functions

which are not of the degree 0.

It remains to shew how it may be ascertained whether a

propo.sed partial differential equation can be reduced to the

ioim f {tt) u = X,
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Let us resolve each symbol y- , entering into tt, into two,

and let -,— represent -7- as operating on x^ only as entering

into M, and -j- only as entering into tt. Also let

It is easily seen then that tt = tt' + tt". We have therefore

ITU = (tt — tt") u = iru
;

therefore '7r''^u= (tt — tt") ttu (C),

But as tt", in (0), operates on the variables only as entering

into TT, which is a homogeneous function of those variables of
the first degree, we may replace it by unity. We have there-

fore tt'^u = (tt — 1) TTU. In the same way it may be shewn
that ir'^'u = (tt — r + 1) (tt — r -f 2) ... ttu. And thus it is seen
that any partial differential equation which is expressible in

the form /(tt) w = X, on the hypothesis that -p-
, j— , &c.

operate on the variables only as entering into u, is reducible

to the form
(f)

{it) u — X, independently of such restriction.

This reduction having been effected, the solution can be found
by means of [A) and [B]^ whenever the second member con-

sists of one or more homo^reneous functions oi x^.x,. ..,x .O 1 ' 2

'

H

Ex. ^ — + 2xy^^^+y ^^,-n{x^ + ,j^J^„u

= x- + i/ + x^

Here we have (tt'^ — mr' + n) u = x^ i-y^ + x^.

Therefore {tt (tt — 1) — wtt + n]u = x^ + t/^ -\- x^j

or (tt ~ w) (tt — 1) w = aj^ +2/" + ^^i
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whence

t, = {(tt - n) (tt - 1)}-^ [x^ + f + x'] + {(tt - n) (tt - 1)}"^

«^^ +/ .

-^^
...^,

(2-n)(2-l) (3-?i) (3-1)

Un , v^ denoting arbitrary homogeneous functions of the degree

n and 1 respectively.

10. We may, by simple transformations, reduce to the

above case various other classes of equations differing from

the above only as to the form of tt; e.g. the class in which

rj^^a^x^-^-Va^x^-^ ... + a„a;„^; but, passing over such

special forms, we shall consider the general equation/(7r) u = Z,

where

and each of the coefficients X^, X^,...X^, as well as Z", may
be any function whatever of the independent variables. And
we design to shew, first, how it may be determined whether a

given equation admits of reduction to the more general form

above proposed; secondly, how, then, to integrate it.

Suppose the given equation of the n*** order; then the

symbolical form in question, should the proposed reduction be

possible, will be

Now the highest differential coefficients in the given equation

will arise solely from the symbol tt", and the terms in which

they occur will enable us to determine the form of tt. Thus,

for two variables, we have

\ ax ayJ ax dxay ay

(ypdM ^dM\du (jifd^ ^dN\du
\ dx dy J dx \ dx dy J dy^
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in which the terms containing: -7-^ , -^—7-
, -—, are the same^ ax dxdy dy

as they would be, if, in the first member, -j- ,
-7- were sym-

bols of quantity. And this law is general for the highest

differential coefficients.

Again, the form of tt being determined, the values of

A^, A^, ... will, whenever the proposed reduction is possible,

be found by effecting the operations implied in the first

member of (4), and comparing with the first member of the

equation given.

Suppose the equation reduced to the form (4). Then, if

the auxiliary equation

m"" -h A^mT-' + A^m""^ ... + A^ = (5)

have its roots all unequal, we have a series of terms of the

form (tt — a)~^X; and each such term involves the solution of

a partial differential equation of the first order of the form

^^ du ,^ die ^ du ^

But, if the auxiliary equation (5) have equal roots, partial

differential equations of higher orders will present themselves.

We deem it therefore important to shew how this difficulty

may be avoided, or, to speak more precisely, how its solution

may be made to flow from that of the corresponding case of

linear differential equations with constant coefficients.

Introduce a new system of independent variables ^i , 3/3 , . • -^n

»

so conditioned as to give tt = -v- . To prove that such a sys-

tem exists, and to discover it, let us assume y^, y,^, ... y„, in

succession, as subjects of the above symbolical equation, and
examine whether the results are consistent. And first, assum-

ing yi as subject, we have
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Secondly, assuming ?/i, representative of any of the remain-

ing variables y^, y^, -" Vn^ ^^ subject, we have the equation

^•i;-^^t -^^"t=o (^)-

It follows from the above that, if we integrate the auxiliary

system

' X-X"'~~^n
•

^^'

the values of y^, y^,...y^ will be the first members of the

integrals of that system expressed in the form

And it follows from (6) that if, from the system

dx dx^ ^ , . .

X, x/- X, "^^^ •
^^^^'

differing from (8) only in that it contains one additional mem-
ber dy^^ we deduce an additional integral equation connecting

y^ with the original variables a?^ , x^^ ... ic„, that equation will

give the value of y^. We see that the number of distinct

auxiliary equations is precisely equal to the number of quan-
tities to be determined, so that the scheme is a consistent one.

The solution of the problem is therefore virtually dependent
on the partial differential equation (6), from the auxiliary

system of which, (10), it suffices to deduce n integrals, one
expressing y^ in terms oi x^^ x^^ . . . x^, the others determining

y^^ yz^ •'• yw) ^^ functions ot'.Tj, x„... x^, in the forms (9). To
the arbitrary constant in the value of ?/^ we may give any
value we please.

Introducing the new variables, the equation given now as-

sumes the form

/(^)^*=</>(yi.y2v2/«)»

which must be integrated as if u and y^ were the only varia-

bles, an arbitrary function of y^, y^, ... y^ being introduced in

the place of an arbitrary constant. Finally, we must restore

to
2/i , 2/2 > • • 'Vn tl^eii' values in terms of a?^ , x^, ... a?„.



ART. 10.] FOREGOING THEORY. 409

Ex. Given (1 - x'f ^' + 2 (1 - x') (I - xy) ^"^

+ il-xyY^^-^x[l-x^)J - {x+y-ix^y)| +,™=0.

Here, the form of the first three terms shews that we must

have TT = (1 — x'^) -7- + (1 — ^y) -j- , and the equation assumes

the form

(7r'+?i')zf = 0.

To avoid the difficulty arising from the imaginary factors

of TT^ + n^j let us assume two new variables, x and y', such

that we may have tt = -7-7 • Then by (10)

corresponding to which we have the integral systems

y-x , , //l + a;\ ,

Hence, if we assume

, , /fl-\-x\ ,
y-x

we get the transformed equation

therefore u = cos nx'cj) [y) + sin 7ixyfr(7j)j

or, restoring to x and ?/' their values,

— ~'{"'»S'\/(l'^)}*V(Sj
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EXERCISES.

1. 5^_2^ +^ = 6^
dx^ dx^ dx

dx dx

3. Determine the solution of the above equation when

dx dx

d^u ^du
, ^

5. -7-^ 4- 3 -7- + 2w = cos Twa;.

OtiC ctx

/ d y*
6. Solve the equation (-^ a) u = cos mx.

In the above example it will be most convenient to proceed thus

:

COS mx + « (if"
(S-)

= ^—^ f^+a] cos mx+e^ici + c^... -\-c„2ir-^).

7, Solve the equation f-j aj u — e' cos mx,

^dj'u ^ d'u ,
^d'u / du

^
du \

^d^u d^u
.

2^'w , a ,
oJ
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^y^ 10. Solve, hy the method of Art. 10, the equation

/ d d dV 2 ^

11. The solution of any equation of the form

d^u ,^ ,^ . du fdX ^„ „ , \

may be reduced to that of two linear equations of the first

order.
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CHAPTER XYII.

SYMBOLICAL METHODS, CONTINUED.

1. The classes of equations considered in tlie last chapter
might all be gathered up into the one larger class represented

f{ir)u = X,

77 being a symbol combining with constant quantities as if it

Avere itself a symbol of quantity. But linear differential equa-
tions do not, except under particular conditions, admit of

expression in this form. Those which are of the ordinary

species involve in their general expression two symbols, x and

y-, operating in combination on the sought and dependent

variable y ; and no substituted form of such equations is

general which introduces fewer than two symbols in the place

of X and y- . We propose in this chapter to employ a trans-

formation which is general, and which is adapted in a very
remarkable degree to the development of general methods of

solution. A somewhat fuller account of it will be found in

a memoir on a General Method in Analysis {Philosophical

Transactions for 1844, Part II.). Other principles and other

methods will also be noticed.

The following theorems, demonstrated in Chap. xvi. will

frequently recur.

f
I

If ic = e^, and if -7-, be represented by Z), then

x'^^ = D{D-\)...{D-n + l)u (1),

while the relations connecting ^ and e^, become

((
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f{D)e-'=f{m)e-' (2),

f{I))e-'u=e-'f{n + m)u (3).

The latter of these relations enables us to transfer the ex-
ponential e"*^ from one side of the expression /(2>) to the other,
by changing D into I) ± m, according as the transference is

from right to left or from left to right. Thus, as another form
of (3), we should have

e-'f{D)u=f{D-m)e-'u (4).

It is an immediate consequence of the above theorem that
eveiy linear differential equation ichich can he exjyressed in
the form,

(« + 5a; + c^^..)J+(a' + J'a; + cV...) j!!^+&c. = X...(5),

can he reduced to the symholical form,

UD)u+fSD).'>a+f,{D)e'u + &c. = T (G),

where T is a function of Q,

For, multiplying the given equation by cc", and assuming
ir = e^, the first term of the left-hand member becomes, by (1),

and this is reducible, by (4), to the form

aI){I)-\)..,{I)-n\\)u-\-h{J)-\){B-2). .,[!)- n) e'u

+ c[D-2)[D-Z)...[D-n-\) e'u + &c.,

each term of which is of the general form <f)[D)e^^u. The
other terms of the first member of (5) admitting of a similar

reduction, while the second member becomes a function of 6,

the equation itself assumes the symbolical form (6).

Ex. 1 . Given -r4 - n'w = 0.
dx'

Multiplying by ic^ and transforming as above, wc ^^i

D(D-l)u-nV'u = 0.
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Ex. 2. Given (1 + ax"")^ + «^^ ± *^'^ = ^ W-

Multiplying by cc^ we have, by (1),

(1 + ai') D{D-l)u + ae'^Du ± n'e'^u = e^^^ (e^).

But

e'^D {D-l)u = {D-2){D- 3) e'^u ; and e'^Du = (i> - 2) e'^u,

whence, substituting, and collecting together terms like with

respect to the exponentials, we have

D{D-l)u + [a [D - 2y ± n'] i' u = i'j> {/)

as the symbolical form.

To return from the symbolical to the ordinary form of a

differential equation, we must, by (3), transfer the exponentials

to the left of each symbolic function f{D), convert the latter

into a series of factorials of the form D [D - 1) ... (D — ?2 + 1),

and then apply the transformation (l).

Ex. 3. Given D [D -I) u-\- D [D + 1) eH^ 0.

AYe have in succession,

Therefore, dividing by x,

A symbolical equation which has only two terms in its first

member may be termed a binomial equation ; one which has

three terms a trinomial equation, and so on. We may deter-

mine by inspection to which of these classes an ordinary

diflferential equation is reducible. For multiplying it by such

a power of x as to permit its expression in the form
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where A, B, &c. are algebraic polynomials with respect to x;

the number of distinct powers of x involved in those polyno-

mials will determine the number of terms in the reduced

symbolical equation.

Ex. 4. Thus the equation

(a ^hx)-^, + {c+ ex) ^ + qu = 0,

being expressed in the form

(a + hx) x^ ^—2 + {(^^ + ^^'^) ^ ;7~ + iq^^) ^j

it is seen that its symbolical form will be trinomial, since

the terms within the brackets involve x in the degrees 0,

1, and 2.

Finite solution of differential equations expressed in

the symbolical form.

2. If we affect both sides of the symbolical equation (6)

with {f,{B)]-\ then for f,[D)y^{D) write (/>,(!)) &c., and for

{/„(i>j}"^ r write U, we shall have

u + ci>^{D)e'a-\-cf>,^{D)e-'u...+ ci>,^[D)e^hi=:U (7);

and under this form the equation will be discussed in the fol-

lowing section.

Pkop. I. The equation

u + «,(/) (Z>) ehi + a^(/) (D) (/) (i) - 1) e^^^^ .

.

+ a„(/)(i))^(i)-l)...</)(i)-n + l)e"^< = 27...(8),

may he resolved into a system of equations of theform

u -
q<i>

[D) e^a = U,

the values of q heing determined hy the equation

2" + «,f"^ + «,f-^... + a„ = 0.
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For

^ {D) </) (Z> - 1) e'hi = cj, [D) e'4> (D) e'u = {</> {!)) e']\

and in general

^{I))cp{D-l)...cl>{I)-n + l)e^'^ii= {(/) {D) 6^}"^i.

So that, if we represent tlie symbol cj) [D) e^ by p, the equation

in question becomes

therefore u = [l^-a^p + a.p' . . . + a„p")"' TJ

= {iv; (1 - <i,py + i^^ (1 - ^^)- . . . + .Y„ (1 - c^^pY] u,

provided that q^, q^... q^ are roots of the equation

2" + «if"' + «22"~'- •• + «« = 0,

and that N^, N^...N^ are of the forms

iv:=:
qr

' tel-^Jfel-^J-'-fe-^n)

^=- qr

Let (1 — q^pY^ U= u^, (1 — q.^pY^ U= u^, and so on, then

where, in general, iii is given by the solution of the equation

u,-q,cj,{D)e\=^U. (9).

The solution of the general equation (8) is therefore dependent
on that of the binomial equation (9).

When (p [D) is of the form D~^ the equation (8) corresponds

to the ordinary linear differential equation with constant co-

efficients. -
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Thus the equation u - ^,^_^ c^u = 0, whicli may
^^^

tegrated by the above process, is only the symbolical form c

the equation -j~ — (fu — (see Ex. 1) ; and its solution, ex-

pressed in terms of x^ is

2

In like manner the equation w +
-p.,f.
—r-v ^^u — has for

its solution, expressed in terms of ic,

u= C cos qx + C sin qx.

But, when ^ {D) is not of the form i)"\ the equation (8) will

represent an ordinary equation with variable coefficients.

Ex. 5. Given

{x" - Sx' + 2x') ~, + (4ic - ex') y + (2 + Qx) u = ax\

The symbolical form of this equation is

(Z> + 1) (i> + 2)w-3(Z) + l) [D-2)eht

+ 2 (Z> - 2) (Z) - 3) e-hi = ae"^

whence

D + 2 ' {D + 2){U + 1) („ + 9)(,i + i)'

or, puttms: -r, ^ = Pj "t ;:^7 Tn = -^i
'
^ "= i> + 2 ^' {n + 2){n + l)

'

(1 - 3p + 2p'o ?^ = r.

Hence w = -— t-^T={ - —— - "1^
1 - 3p + 2p~ \l-2p 1-pJ

= 2u^-u^^ («)»

where v^={l-2pyT, u, = {l-prT,

B. D. E. 27
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From the former we have

I) — ^ ae^^

whence {D + 2)u^-2 {D -2) e\= -^^;
and this gives

(,_2.^)5 + (2 + 2.),, =^ (^)-

In like manner we find, for Wg,

,(.-.=)J + (2+.)„, =^ W-

The values of u^ and z/g* determined from (h) and (c), and
substituted in {a), will give the complete solution.

If a = 0, we find

u
_ c^{i-2xy+c,{i-xY

X

3. We proceed to consider more fully the theory of the

binomial equation

u + ^{D)6'^u=U (10).

Peop. II. The equation u+ cj) [D) e^hi = U ivi'll he converted

into V + (j>{D + n) e^^v = F, hy the relations

For assume u = e^^y, and, substituting in the original equa-

tion, we have

therefore e^'^v + e"^^ [D + ?i) e^^y = C/; by (3),

Let Z7=e"^F; then the above becomes

as was to be shewn.
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Thus in any hmomml equation ice can convert
(f>
(D) into

(j){D + n), n heing any constant.

Prop. III. The equation u + (^{D) e^u =U vnll le converted

into V + -^ (Z)) e^^v = F", hy the relations,

where P^ . denotes the symbolicalproduct

^{D)
(f>
{D - r) (j) {D ^2r) ...

f{I))fll)-r)ylr{D-2r) ...*

For, assume u =f{B) v, and, substituting in the original

equation, we have

f{D)v + 4>{D)e^J{D)v=U;

therefore f{D)v + 4> {D)f{D - r) e'«y = U, by (4)

,

,+i(M^...„={/(z))rr .(11).

Comparing this with the equation v +^ {D) e^^v = F, we
have

therefore /(i)) = ig)/(i)-,.).

Hence fiD-r) = ^^^f{D-2r),

and so on; wherefore the value oif{D) will be represented

by the infinite product ? !^^, T L", t
/"!''/''

• Hence

(11) becomes

v+f{I)y^v=V
27—2
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with the relations

u-P^^v U=P^^V (12)

As this proposition is of great importance in the solution of

differential equations, it will be proper to examine the condi-

tions which its application involves. Evidently they con-

sist in such a choice of the form of -v/r [D) as will render the

symbolical product P^
, ) jy.

finite, and the transformed equa-

tion (11) integrable.

That the expression of P^ 7777: "^^7 ^^ finite, it is sufficient

that for every elementary factor %(i^) occurring in the nume-
rator there should correspond a similar factor ^ (i) + ir) in

the denominator, i being any integer or ; and vice versa

;

for

^ % (^ + /r) xi^ + ^'^') % {^ + (^* - 1) ^'}-
•

•

1

X{I) + ir)x{D+{i-l)r]...x{n-\-7y

wliicli is a finite expression. Again

^' X[r>-ir) ~x{D- ir) x{D- (» + 1) r}...

^x{D)xiD-T)...x[D-{i-\)r],

which is also finite ; the product of any number of such ex-

pressions is finite also.

Hence, if %(X>) be any elementary factor of <^ (D), it may be

converted into % (i) + ir) ;
for let ^ [D) = ^ {D) ^^ {D), and

let '^[D) = x[D ± ir) xX^)^ wherein %i(-D) denotes the pro-

duct of the remaining factors, then

p4>iD)_-p x(^)

't(^J "xi^t"-)'
Tvliicli is finite.
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Hence also, if (p [D) involve any factor of the form —^

it may be made to disappear ; for let ^ (Z>) = ^J^
. .

n^^ (Z>),

and let f {D) = Xi {D) , then

which is finite.

4. We see, then, that there are two distinct kinds of trans-

formation to which the Proposition may be applied. In the

first kind (/> [D) is converted into another symbolic function

•^ [D) without any loss of component factors, whetlier of nu-
merator or of denominator, but only Avith such change as

consists in the conversion of D into D ± ir. And here the

order of tlie transformed equation is the same as that of the

equation given, and, its solution introducing a sufficient num-
ber of arbitrary constants, no others need to be introduced,

either in the prior determination of V or in the subsequent

derivation of u. But in the second species of transformation

some component factor of (/> [D) (usually of the form y:—

y

where a — h is a multiple of r) is lost, and the transformed

equation being of an order lower than that of the equation

given, the deficient constants of its solution must be supplied,

either beforehand in the determination of V, or subsequently

in the derivation of u. If in the former, any constants,

sufficient in number, introduced by the performance oi

' U will serve the purpose. If in the latter, all

1 't(^).

the constants introduced by the performance of P^ pry-r

must be retained, but their subsequent relation must be de-

termined by means of the differential equation.

The reason why the constants connected with the disap-

pearing factors are arbitrary in V alone, is, that V enters into

no other equation than the one in whose solution those con-

stants are found. If, however, the entire series of constants

in V be retained, they will be reduced by the subsequent

differentiations in passing to the value of u.
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All tliat may seem obscure in the above statement will be

made clear by the following examples.

Ex. 6. Given -j-.^ + q~u ^= 0, an equation occurring in

the theory of the earth's figure.

The symbolical form is

Kow we may, by Prop, iii, directly reduce this equation to

the form

which, by Prop, i, is resolvable into two equations of the

first order. But it is better to assume as the transformed

equation

'^171^/'^ = ' (^)'

the solution of which is known already. Art. 2.

By Prop. II, assuming u = e~^^ w, we have

Again, by Prop. Ill, we can pass from (c) to {h) by assuming

Hence u = e''^ {D -1) {D - S)'v

on restoring x and putting for v its value in terms of x.
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Effecting tlie difFerentiations, we find

^
" "^

i(^~^ /
^^^ ^^"^ "^ "^'^ ~

"J"
^°^ ^^^ "^ ^'^1 ^'^'

We might have proceeded directly from (a) to (Z/) by Prop.

Ill ; but, had we done so, the final reductions would not have
depended on differentiations alone. Thus we sliould have had

p D{D-\) _ D-l
'' --^^ (D + 2) {D - S)^~n -{-

2^

= (I _ 3 (1> + 2)-^} v = {l- Se-'^I)-V^)v

whence, restoring x and giving to v its previous value, we
should be led to the same solution as before.

5. The two forms of solution above presented illustrate an
important observation, viz. that when in the transition from

</) {D) to yfr (D), by Prop, ill, the reductions consist in augment-
ing, if we may be allowed the expression, D in factors of the

denominator of (j) (i)), or in diminishing D in factors of the

numerator, they will be effected by differentiations ; while

those reductions which consist in augmenting D in factors of

the numerator of <^ (D), or diminishing it in factors of the de-

nominator, involve integrations. And it is one use of Prop, ii,

that it enables us, in many cases, so to prepare the given

symbolical equation that the final reductions shall depend on
differentiations.

Ex. 7. It is required to determine the symbolical form

and character of those differential equations of the n^^^ order,

the solution of which depends on that of the equation

The symbolical form of this equation Is

-^
^(i.-i)..!(i>-.-M)

-"-^- ^"^-

(J \ —

"

-—
J

A", i. e. the result
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obtained by writing e^ for x in the ?i*'^ integral of Xcix"^^ no
constants being added in the integration. From inspection

of (a), it is evident that the class of equations sought must, on

assuming x — e^, be expressible in the form

[D + aj (Z) + a^) ... (i> + a,.)

in which we shall suppose the quantities a^, a^..,an to be

ranged in the order of decreasing magnitude. Put u = e~''^^u^^

then by Prop, ii,

u,±-rrrrrr v^TTTT .e"\ = e"^^Z7 (c).

The first factor of the denominator of (j) [D) in (c) now
agrees with the first factor in that of 'y\r[D) in (a). In any of

the remaining factors we may, by Prop, ill, convert D into

D ± in, I being any integer,—hence, that they may all cor-

respond with the factors of -^/^ {D) , it is necessary that each of

the quantities

a^ — a^ + 1 ^3 — ttj + 2 ^4 — cii + S a„ — a^ + n — l .
^^

n n 71 n ^

should be equal to a negative integer or to 0. And in this

statement the conditions of finite solution are involved.

The value of u will be deduced from that of v by differenti-

ation, for since a^ — a^< — l,

P'
(/> +

~-
a,)
-{D-l){D-n + \)...{D + a,-a^ + n),

and so on for the remaining factors to Avhich P,i is to be
applied.

Lx. 8. Given -^
, u ± qhc = 0, where ^ is an

CCX X
integer.

This equation, which includes that of Ex. 6, presents itself

in various physical problems (Poisson, Theorie Mathematique
de la Chalexir, p. 158. Mossotti, on Molecular Action, c&c).
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Its symbolical form is

Hence, by the last example,

= e-^(Z)-l)(D-3)...(Z)-2^ + l)^' (J),

where v is given by -j-^ ± (fv — 0.

The expression (J) may be reduced to a more convenient

form, as follows.

Since f{J) -a) = e"^f{I)) e-«^ we have

~
' \ dO) ^

""

Hence, according as the upper or lower sign is taken in the

original equation, we have

1 / ^ d\- c, cos qx + c„ sin qx . .

« = ^'(^ SJ of»
('=)'

"=^r^j a?-^
;

('^)-

Ex. 9. Given p, -a'p,- i^i+iil' = 0.
ctx ciy X

Comparing this equation with the last, we see that its solu-

tion may be derived from {d) by changing therein q into

a—, and c^, c^ into arbitrary functions of y following the

exponentials. Hence we shall have
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""'^^^ V dx) W
__ 1 / 3 dV (l>{7/

-\- ax) + -v/^ (.y
— ax)

X

The reason wliy the arbitrary function (j){y) must be placed

after e^'^d'y and not before it, is that, in the derivation of the

exemplar form, the arbitrary constant takes its place after, and
not before e^"".

For g-,)-'o = e''(0'o = e''o.

Here indeed we may transpose the constant, but when q is

converted into a -y- we have

and here the arbitrary function cannot be transposed, since y
, d

and -r- are not commutative.
ay

The principle here illustrated, and which is a very important
one, is that all conclusions founded on community of formal

laws should stop short of interpretation. Thefoivn should be
kept distinct from the matter. There is perfect analogy between
the theorems

but not between the theorems

because in the formation of the latter interpretation has been
employed.
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The above example is one in which Monge's method of
solution would fail, except for the particular case of 1 = 0.

And this gives occasion to the remark that symbolical methods
are not, as they have sometimes been supposed to be, valuable
only as abbreviating the processes of analysis. There are in-

numerable cases in which they afford the only proper mode
of procedure.

Ex. 10. Given

This equation occurs in some researches of Poisson on definite

integrals. The symbolical form is

This equation is integrable in several distinct cases, but we
shall examine here the particular case in which n is an
integer.

Assuming as the transformed equation,

it being necessary to introduce V because the transformed

equation is of an order lower than that of the equation given,

we have,

w = P, ^ V

= {i) + 2n-2) (D + 271-4)... (i)+2)v (c),

= (i) + 2?i-2)(Z> + 2/i-4)...(Z) + 2)F.

The latter equation gives for V the general value,

of whicb it suffices to retain one term. Eetaining the first,
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substituting in [h), and operating on both sides with D+j^^
we get

(!) + p)v-{D + 2n - 2 -;p) e~^v = c,(p- 2) e'^^.

Eestoring x, and integrating, a value of v is found, involving
two arbitrary constants, whence u will be given by

« = ("i +
2'^-2)(^l

+ 2»-^)-(-£ + 2).....(cZ).

The proposed equation is also integrable when^j> is an odd
integer, and when 2;i— ;pis an even integer. In the former
case we maj assume as the transformed equation,

(I) + 2n-l-p)iD + 2n-l-p-l)
{D + p)[D+p-l) ' "-"'

which must be integrated by Prop. i. In the latter case we
must assume

V — e^^v = V;

but in this case two constants must be retained in V; viz. one
from each set of the reducing operations by which the factors

of (p [D) are made to disappear.

6. It will be observed that, in the foregoing examples,

we reduce the proposed symbolical equation by Propositions

II. and III, either directly to an equation of the first order, or

to a form which by Prop. I. is resolvable into a system of

equations of the first order. But there exist other equations

admitting of finite solution ; for example such as by Props. Ii.

and III. are reducible to either of the primary forms,

-^^f^iS^-"" (").

-'^^iSJH^--" M-

The former of these is the symbolical form of the equation

,, ov d% du „ ^
(1 + ax) -j-7. + cix-r- -^ nu = 0,
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wliicli Is reducible to -7-7 ± n^^ = 0, by the assumption

The latter is the symbolical form of the equation

{x' 4- a) x'g + {2x'-\- a)x^± nhi = 0,

which is reducible to -^ ± ?z-ii = 0, by the assumption

J x\/(x^ + a)^(x' + a)

Hence, the ordinary solutions of (13) and (14) will be
obtained by substituting

t^l—^ t={ ^^
j ^{l + ax')' J x^/{x' + a)

'

dhc
in the solution of the equation -y^ ± ^^^^ = ^'

It maybe added that the forms (13) and (1-1) are allied,

the one being convertible into the other by changing ^ to — ^.

Ex. 11. Given

The symbolical form is

''

l)[D-\) '
"-^•

If we apply Prop. 11. so as to convert D into D — m, and
then by Prop. iii. reduce the equation to the general form (13),

we shall obtain the final solution in the form

Jl\w = f -y-
j {^1 COS {([ sin~^ x) + (?2 sin (// sin ^ x)].
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7. Pfaff's Equation. The differential equation,

{a + hx-)x'^, + {c-tex^)x^+{f+gx'')u =X (a),

wliicli includes all binomial equations of the second order, has

been discussed by Euler, and, with greater generality, by
Pfaff [Disquisitlones Analyticce). We propose to investigate

the conditions under which it admits of finite solution.

It suffices for this purpose to consider the case in which

x=o. •

The symbolical form is then

^ + aD[D-l) + clJ+f ' u-0,...{b].

If 71 is not equal to 2, it is convenient to change the inde-

pendent variable by assuming nd = 20', whence

d _n d
de'~2dd"

71

So that changing n6 into 20', we must change Z> into - 1),

The result may be expressed in the form,

where a^ and a„ are roots of the equation,

lQ-n){"^-n-l) + e[^-n)+, = (d),

and /Sj, ySa ^^^ ^^o^s of the equation,

<^'^{f-^)^4^f=' (^)-

1st, By Prop. Ill, (c) can be immediately reduced to the form

MJ-..)(.P-a.-l)
'' + a(i>-^J(i>-^.-l)'



ART. 7.] EQUATIONS IN THE SYMBOLICAL FORM. 431

and then resolved into two equations of the first order, if we
have at the same time a^ — a^, and ^^ — yS^ odd integers.

2ndly, The equation can, by Prop, iii, be reduced to an
equation of the first order if any one of the four quantities

^i-A) «i-A2' 0^2-^' Wa-ft

is an even integer.

3rdly, It is easily shewn that by Props. 1 1, and ill. (c) is

reducible to the integrable form (13) if the quantities

y8j-A and a^ + a^- ^,- /S^

are both odd integers.

4thly, It is in like manner reducible to (14) if the quanti-

ties

flfj-ofa and cc^ + a^- 13^-/3.2

are both odd integers.

These results may be collected into the following theorem.

The equation (c) is integrable in finite terms, 1st, if any one
of the four quantities represented by a — /3 is an even integer

;

2ndlyj if any two of the quantities

are odd integers.

In this theorem the integral values are supposed to be
either positive or negative, and the even ones to include the

value 0,

The above results are equivalent to those of Pfaff, as pre-

sented with some slight increase of generality in a memoir by
Sauer {Crelle, Vol. ii. p. 93). PfafF's conditions are how-
ever exhibited in so complex a form as to render the com-
parison difficult. His method, it is needless to say, is wholly
different from the above.
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Symholical equations loMcli are not hinomial.

8. Althougli processes of greater or less generality may
be established for the treatment of equations which, when
symbolically expressed, involve more than two terms in the

first member, yet their reduction if possible by some preli-

minary transformation to the binomial form should always be

our first object. We purpose here to illustrate this observa-

tion.

Ex.12. Given ^= a
^^

Writing this equation in the form

(2c -xYx''^,-{-hy==a {2cx - x')\

we see at once that its symbolical form will not be binomiaL
Assuming y— {2c—xy\i, we have on reduction

^
^ aic ax 2c — X (2c — x)

Now let on be so determined as to make the numerator of

the third term divisible by its denominator. This involves

the condition

m{m-l)+-^, = (a),

while the differential equation becomes

cl^ii c7ii ax?
(2c -x)x^^,- 2mx'' ^ - m {m - 1) (2c -\-x)u= ^^^_^y.-i ,

of which the symbolical form is

{D-m) {D+m-l)u- -- [D+m-l) {D+m-2)e^u= ^ ^
2c' '

''
' ^ 2c{2c-eY

whence, operating on both sides with {D + m — 1)~\

{D-m)u-l- [D+m - 2) e^u = ^ e^^-'^^f D"^ e"-''^'^^ (2c - e^}'
JiC zc
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Kestoring x, and solving the equation, we have, on representing

2c — ic by X,

u = ax'^X'-^'^' ix-'^'X''''-^ jx'''X'-'^dx\

which integration by parts reduces to the form

a ix'^X'-'''' jx^'-x'-^'dx-x'-"' L'^^X'-'^'dx

^"^
2c(2m-l)

"'

a L'^X^-" jx'-'^X'^Ix -x'-''X"'lx'\X'-''dx

Therefore ?/ = —^ ——r -? ,
"^

2c {'2m - 1)

the integral required. It is to be noted that each integration

introduces an arbitrary constant. It is also seen that each

value of m derived from (a) leads to the same result.

The above equation occurs in the problem of determining

the tendency of an elastic bridge to break, when a heavy body,

e. g. a railway train, passes rapidly over it. The equation

between y and x is, on a certain hypothesis, that of the tra-

jectory described. See an interesting paper by Prof. Stokes

[CambiHdge Phil. Transactions, VoL VIII. p. 708).

Ex. 13. Given (1 - ix') ^{l- fi') j +n{n + 1) (1 - fj}) u

d% ^

Eepresenting ti \/(— 1) ^7 «> ^^i® equation may be ex-

the well-known equation of Laplace's functions.

Eepresenting -7-7

pressed in the form

(1 - H-rJ - 2/. (1 - f^') J + {« (« +1) (1 - /.') - «^« « = 0,

and it is evident that it would not, on assuming /x = e^, take

the binomial form.

Let then u={l~fiyv. We find, on substitution, and

division of the result by (1 — fxy^\

B.D.E. 28
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Let 4:r^ — a^=0. Then r=±-. Either sign may be taken.

Choosing the lower, we have

(1 -/.^)^ + 2 (a - 1) /.|^ + {n [n + 1) - a (a - 1)}^; = 0,

an equation which, on making /x = e^, assumes the symbolical

form

_ [D~-a + n-l){D-a-n-2) ^^ D{D-l) ^ ^ ^ ^^^'

To integrate this, assume

Then by Prop, iii.,

v = {D-a + n-l){p-a + n-2>)..,[D-a-n + l)w

='^"ili)>- ('^)'

while (c), resolved by Prop. I. and integrated, gives the solution

w = (1

+

^r^^ {4>) + (1 - /.)""x (</>) («).

yfr and x being arbitrary functional signs. This expression

for w having been substituted in (d),WQ must write TrV'(— 1)

for a, and interpret the result.

Now if, instead of '^(0) and %(^), we write i^{6'^V(-i)} and
^Je0V(-i)j^ as we are evidently permitted to do, and if we
observe that generally
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-4 m
we shall ultimately find

where Fl,, e*V.-«| = ^" (A l)"{(^+ ^y^(^')

+ (/^-mT%(^^j} a^)'

wliicli is the complete integral.

For a discussion of this result, and for the finite expression

for Laplace's functions to which it leads, the reader is referred

to a paper on the Equation of Laplace's functions in the

Camhridge Mathematical Journal. (New Series, Vol. I. p. 10.)

If in the equation (a) we make the third instead of the

fourth term to vanish, which gives for r the values - and

—- , and then assume ——^-—^r- = t. we shall obtain,
2 V(l-/^)

taking the second value of r, the symbolical equation

(D + n-lf-a' ,„ ^
"+ D[D-l) ''' = ''

Now by Propositions Ii. and ill. this is reducible to the inte-

grable form

•-%§^-"-'.
by the relation

2S—

2
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\dtj

Hence we find

«=(|)"\(<+v(i+or+c.!<+v{i+on.

whence u is known.

Let us examine the form of the solution, when, as is com-
mon in tlie expression of Laplace's equation, we replace /m by
cos 6. We find

^ = cot ^, -t:= — sin^^ -j-a
>

at ciu

whence t + sJ[l-\-e)= cot i 6,

Substituting, and observing that u= (sin^)"''~^i;;we have

u = (sin 6)-'-^ (sin'^^)"" [o. (cot
f)%

c, (tan
|)]

.

And hence, restoring to a its meaning, introducing arbitrary

functions for constants, and effecting one of the differentia-

tions, we may deduce the following solution of Laplace's

equation, viz.

:

u = (sin 6)-'' (sin 6 ~ sin Of F^ |e^V(-i) tan ^l

'"^

...(16)...{

n
e-«^V(-i)tan-

Under this singidarly elegant form the solution, obtained by
a different method, was given by Professor Donkin. {Philo-

sophical T^^ansactionSy for 1857.)
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Solution of linear equations hy series.

9. Prop. IV. If a linear differential equation whose second

memher is he reduced to the symbolicalform

f,{D) u +f,(D) e'u+f,{D) e^'u... +/„(Z)) e"";. = ... (17)

(Art. 1), then a particidar solution will he

u=Xu^e-' (18),

the value of the index m in the first term heing any root of the

equation f {m) = 0, the corresponding value of u„^ an arbitrary

constant, and the law of the succeeding constants heing expressed

hy the equation^

fH u^ +f iin) u„^^ +f (m) u,^^ ...+/„ {m) w,^„ = 0. .
.
(19).

For the form of u assigned in (18) will constitute a solution

of (17) if, on substituting that form for u in the first member
of (17) and arranging the result in ascending powers of e^,

each coefficient should vanish. And this, as we shall see,

will take place if the coefficients are subject to the relation

expressed by (19).

Assuming then u = Sw^je"'^, we find,

f,(D) u = tf,{D) K.^e"^ = 2/„(m) u^e"^, by (2),

and so on. In the first of these, we see that the coefficient of

any particular term e""^ is f{m)u,,,. In the second, the co-

efficient of e^"'"'^'^ is f{m + l)u„,, and therefore the coefficient

of €*"^ is /i(*^0*^»n-i' Ii^ the third, the coefficient of e'"^ is

fi ("^) ^'m-2 > ^^^ so on. Thus the aggregate coefficient of e"*^ is

/oH «^m +/, (m) u,^^ +f [m) u„^^^ ...+f {m) «„^„

,

and this, equated to 0, expresses the law (19).
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Let ii^e^'B be the first term in the developed value of u ; then
must we suppose u^_^ = 0, u^_^ = 0, &c. and (19) becomes

As, by hypothesis, Uy is not equal to 0, this gives f^ (r) = 0,

for the determination of r, and leaves w^ arbitrary. Hence
the proposition is established.

Thus there will, except in particular cases of failure here-

after to be considered, be as many distinct solutions of the

form (18), each involving an arbitrary constant, as there are

units in the degree of/^ {m) .

^ ^ ^ ^ . d^u a — ldu „
JliX. 14. (jTiven -j-r, = nu = 0.

ax X ax

The symbolical form is

Hence, we have u = ^u^x"^, the law of formation of the

coefficients being

m [m -a)u^- n^u^^ = 0, or u^ =—— -r u^_^ ,

while the initial exponent is or a. There are therefore two
ascending series, one beginning with (7, the other with Cic".

Thus we have

2 (2 — a) 2 . 4 (2 — a) (4 — a)

^^^
+2(a4-2)'^2.4.(a + 4)(a+2)+^'^-

10. When the equation f^ (m) = 0, has equal or imaginary
roots, the following procedure must be adopted. Let the

solution of the equation j^ (^) w = 0, be

u = AP+BQ+CR + &Q (20),

A^ By Cj &c. being the arbitrary constants. Substitute this
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value in the given differential equation, regarding A, B, C, &c.
as variable, and the result will assume the form

A'F+B'Q+C'E + iSic, = (21),

and will be satisfied if we have

A' = 0, B' = 0, O'=0, &c (22).

This will indeed become a system of linear simultaneous

equations for determining A, B, C, &c. And the solution of

this system in a series will be of tlie form

the law of formation of the coefficients a^, h^, c^, &c. being

expressed by a system of simultaneous equations formed from

(22), by changing therein every term of the form </> {D) e'^ A
into (j) {in) a„j_i, &c. {Philosophical Transactions.)

There is a particular case of exception to the above rule.

When two of the roots of /^ [m) = differ by a multiple of the

common difference of the indices of the ascending develop-

ment, the equation y^ {D) = 0, must be replaced by what that

equation would become were the roots in question equal.

-n . ^ ^

.

^"^ 1 du „

Ex. 15. Given -7-^ + - ^r- + qu = 0.

The symbolical form is •

D\i + q'e'^ar=0 (a).

Now B^u = gives u = A + BO. Substituting this value

in (a), regarding A and B as variable, we have

D'A + q\'' A + 2Z>i? + {B'B + q'e'B) = 0,

which furnishes the two equations,

B'A + q'e''A + 2DB = 0, D'B + q'e'^B=0,

whence A = ta„, e"'^ B= tb,^ e"'^ with the relations

m\, + q'a^_^ + 2mh^ = 0, m'b^ + q^h,,^^ = 0,
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and therefore,

^"»
m{m'-\-4.n') ' "^"^

'm {m' + An')
^^^'

Thus the solution assumes the form,

u = cos {n log cc) {a^ + ag^?'^ + «4^* + &c.)

+ sin (w log x) {h^ + K^x" + h^x^ + &c.),

wherein a^ and &,, are arbitrary, and the succeeding coefficients

determined by (c).

The fundamental equation (19), written in a reversed order,

determines the law of the formation of the coefficients in

those solutions of (17) which are expressible in descending

powers of x. The number of such solutions will be equal to

the degree of the equation /„ [m) — 0, but their respective first

exponents will be its roots severally diminished by n.

For the extension of the above theory to the case in which

the given differential equation has a second member X, the

reader is referred to the original memoir.

Theory of Series.

11. The relations which enable us to express the integrals

of differential equations in series, enable us also to reduce the

summation of series to the solution of differential equations.

Thus, from Proposition iv. it appears that if w = ^u^x''\ where

the law of formation of the successive coefficients, is

/„(m)w.^+/,(m)t._,...+/.(m)w_ = (23),

the value of u will be obtained by the solution of the differ-

ential equation,

/o (^) ^^+/ {D) e^c ... +/„ (D) rt. = (24).

We suppose here /, (m),f (w).../, {m), to be polynomials,

and that the series is complete; i.e. contains all the terms

which can be formed in subjection to its law expressed by

(23), the first exponent being therefore a root of /^ (w) = 0.
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Y/hen the series is incomplete, the first member of the differ-

ential equation will be the same as for the complete series,

while the second member will be formed by substituting in

the first member, in the place of u, the series which it repre-

sents. It is obvious that all the terms will disappear, except
a few derived from that end of the series where the defect of

completeness exists, so that the second member of the differen-

tial equation will be finite.

Ex. 17. Let

u = l x^ H ^ -x^ ^ — ' x\ &c.
1.2 1.2.3.4 1.2.3.4.5.6 '

Here zi = ^u^x^\ with the relation,

n^ - (771 - 2y
m (m — 1)

Or,

m (m- 1) u^- {(m-2y -n'} u^, = 0,

and we observe that the series is complete, the first index
being a root of ?m (wz - 1) = 0.

Hence, the differential equation will be

I)(D-l)u- {{I)-2y-7i'} i^u = 0,

of which the solution, expressed in terms of a?, is

w = Cj cos [n sin~^a?) + c^ sin {n sin~^ x).

The constants must be determined by comparison with the
original series. We thus find c^ = 1, c^ = 0.

The following is a species of application which is of frequent
use in the theory of probabilities.

Ex. 18. The series



ART. 11.] THEORY OF SERIES. 443

occurs as the expression of the probability that an event

whose probability of occurrence in a single trial is ^, and of

failure 5', will occur at least a times in a + 6 trial^.

Representing the series within the brackets by w, and
assuming ^ = e^, we liave u = Sw^e"*^, where

mu^ — (m + a - 1) u^^ = 0.

Hence, we shall have

1 .2 ...

or, restoring ^,

du a _ a (a + 1) ...(« + &) ^
dq 1-q 1.2...& 1-q

Integrating which, we have

.^(i-gr{c- "("+'^--/;+^) £g>(i-grvgi.

Now the first term of the development of this expression in

ascending powers of 5' will be C; whence, comparing with the

bracketed series, we have (7=1. Substituting, and observing

that p = '^ — q, the expression for the probability in question

becomes

_ a{a + l) ... {a + h)

1.2. ..6

To this Ave may however give a more symmetrical form.

For

/' a' (1 - i)'-'dq = (£
-
£)

q' (1 - qr\dq

by a known theorem of definite integration.

Substituting in (a) , and observing that

a[a + l) ...
{
a-\-h

) _ T (a + h + 1)_

1.2. ..6 ~T{h-{-l)T{ay

[\'{l-qrdq {a]

J
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we find

or, as it maj be otherwise expressed,

r»"%=i¥{i^|S| «.

The peculiar advantage of this form of expression is that,

precisely in those cases in which the series becomes unmanage-
able from the largeness of a and h^ the integrals admit, as

Laplace has shewn, of a rapid approximation [Tlieorie Ana-
lytique des Prohahilites).

Ex. 19. The function (1 — 2v cos w + O'*" heing expanded
in a series of the form ^^, + 2 (^.^cos o) + ^2C0S 2a) ... +&c.),
it is required to determine A^.

We have

(1 - 2v cos (o + v')-'' = {1 - ve^'^'^-'X" X {1 - ve-'^^^-'Y-

Expanding each factor, and seeking the common coefficient of
g»-a,v(-i) and e~^"^^^"^^ in the product, we find, putting t = v^,

where generally,

m (m ^T)u^-(7ii^-n- 1) [m -\-n-\-r-l) w„^, = 0,

^^^^^" ^^= -^—r:2Tr^^
•

Hence the differential equation will be,

Z) (D + r) w - (Z) + n - 1) (D + w + r - 1) e^w = 0,

D{I) + r)

Now this can, by Prop, iii, be reduced to the fonn,

v-e%= F,
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by the relations,

u= {D-Vn-l)...{D + l)[D-\-n + r-l)...{D + r + l)v,

F={(i) + n-l)... {D -rl) [D + n + r -I) ... [D + r + l)Y'U,

In determining Ffrom the latter equation, it suffices to in-

troduce two arbitrary constants, one from each of the two sets

of inverse operations. The final sokition, in the obtaining of

which the only difficulty consists in the reductions, is

12. When, in the series S^^,,,^"*, the coefficient u^ is a ra-

tional function of m invariable in form, the summation is most
readily effected in the following manner.

Let the series be 2(/) (m) x"'; then putting x = e^,

= 0(i))26'"^ (25).

Hence, if the summation is from 7n = to 77i = infinity,

we have

but if the summation is from m = a to ??i = h inclusive,

u = (t>{D)

-n «^ T . 4a;^ 5x* Qx^ pEx. 20. Let „ = ^-^^ +^-^ + 3-^, + &c.

Here <^ {m) =
111 [m — l) {in — 2)

'

ii)->-2(i)-ir+-5(i?-2r|-^
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The final result is

Generalization of the foregoing theory,

13. As Propositions I, ii, iii, are founded solely on the

particular law of combination of the symbols D and e^, ex-

pressed by the equation

they remain true for any symbols ir and /j, whatever their

interpretation, which combine according to the same formal

law; viz.

f{7r)p'^u=py{7r + m)u (26).

Thus, supposing the law obeyed, the symbolical equation,

w + 0(7r)/3"w= U (27),

can, by Prop. ill. considered in its purely formal character, be

transformed into

V + yfr {tt) p^'v = V (28),

by the assumption,

Y (tt) Y (tt)

The corresponding transformations flowing from Proposi-

tions I and II, it is unnecessary to state.

Now the law (26) is obeyed, not alone by the pure symbols

D and e^, but by certain combinations of those symbols. Thus,

if we assume

'7r = D-n(f>{D)e', p = <f>[D)e'

the law will still be obeyed. And the importance of the

remark consists in this, that an equation which, when ex-

pressed by means of the symbols D and e^, is not a binomial,

may assume the binomial form for some other determination

of TT and .0.
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If in (26), we make m=l, wehsiYe f{7r)pu = pf('7r+l)u,

which shews that p may be transferred from the right to the

left of /(tt), if we, so to speak, add to tt the constant incre-

ment 1. This then suggests the more general law,

f{7r)pu=pf{7r+A7r)ic (29),

where Att represents any constant quantity regarded as an
increment of tt. In connexion with tiiis theory, the following

proposition is important.

Prop. Supposingf (x) to represent afunction icliich admits

of expansion in ascending positive and integral powers of x,

it is required to develope f {tt -\- p) in ascending powers of p^

IT and p being symbols which combine in subjection to the

law (29).

By successive applications of (29) we have, m being a

positive integer,

f{'n)p''\^,^py{7^ + m^'7^)u (30),

of which another form is p^fi^r) u =f{7r — iiiAtt) p^u. Again,
since y(7r + p) is, by hypothesis, expressible in a series of the

form
A^ + A^(tt -t p) + A,^{7r + pY i- &c.

we shall have

{'jT i- p)f{7r + p)=f{7r + p) {ir-h p) (31),

for either member becomes, on substituting fov fijr + p) the

above form,

A (tt + /)) + A^ {it + pY + &c.

Now, let the form of the unknown and sought expansion
of / (tt + p) in ascending powers of p, be

/{^ + P) =/o (t) +/. (tt) p +/, (tt) p= + &c (32),

the Ksubject u being understood tliougli not expressed.

Then, b7 (31),

(tt + p) S/,. (tt) p" = S/,. (tt) p" (,r + p)

.
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But

(tt + p) tf^ (tt) p- = tirf^ {tt) p- + tpf^ (tt) p-

= S7r4(7r)p-+:£/;.(7r-A7r)p"-

in which the coefficient of p"^ is

^/.W+/«.-x(^-A7r) (33).

Again,

SX (tt) p- (tt + p) = ^y;. (tt) p-TT + 2/^ (tt) p-^'

= S^ (tt) (tt - mAtt) p- + ^/,, (tt) p

in which the aggregate coefficient of p"' is

fm W (tt- wiA-Tr) +/„_, (tt).

Equating this with (33), we have

'rrfm i'rr) +fm-^ (tt - Att) = (tt - mAtt)/, (tt) +/,_, (tt),

whence

•^- (^) -m A^^

if we define A/(7r), not, as is usual, 'by/(7r+ Att) -/(tt), but

hy /(t^) —/(tt" — Att). The above equation determines the

law' of derivation of the coefficients /^ (tt), f^ (tt), &c. It only

remains to determine /„ (tt).

That /„(7r)=/(7r) may be shewn by induction from the

particular cases in which

/(7r + p)=7r4-p, (7r + p)^&c.

or, with more formal propriety, thus

:

Let Pj
= np, where w is a constant,

/W Pi =/W ^P = ^^M P

= npfiir - Att)
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Comparing the first and last members, we see that ir and p^
combine according to the same law as it and p.

Thus, we have,

/(^ + P.) =/o W +/i (^) Pi +/. M P' + &C.

foMi fi My ^^* being the same as in (32).

Or,

/{n- + np) =/„ (tt) +/. (^) n/> +/, (,r) nV + &c.

;

so that, making w = 0, we have^ (tt) =/(7r).

Determining then the successive coefficients by (34), we
have finally,

N r>; s ^fM 1 AY(7r) .

• ^ ^^(-)p^4-&c (35),
1.2.3 (Att)

wherein it is to be remembered, that

A/(7r)^/(7r)-/(7r-A7r)

Att Att

When Att = 0, the symbols tt and p become commutative,
and (35) assumes the form of Taylor's theorem.

As a particular application of the above, suppose that we
have given the trinomial equation

^])'+aD + h)u+(cD + e) ehc +fe'^a = {a),

and that we desire to ascertain whether this can be trans-

formed into a binomial equation by assuming

TT = D — 7we^, p = 6^,

assumptions which satisfy the law

/{7r)p = pf{ir+}).

Here we have i) = tt + mp,

whence f{D) =/(^) +^ ,np + ] ^g^ my + &c.,

E.D.E. 29
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where A7r = l, and

Hence i)^ + aD + & = tt'^ + ^tt + Z> + (27r - 1 + a) mp + m'p'

,

cD + e = CTT + e -f cnip.

Thus (a) becomes

{tt^ + a-TT + & + (27r -l+a)mp + m^p^} u

+ (CTT + e + cmp) pu +fp^u = 0,

or 7r'+a7r+&+ {(2m+c)7r + m(a-l)+e}p + (?^'+cm+/)p'=0,

and this reduces to a binomial equation, 1st, if ??i be a root of

the quadratic equation

2ndlj5 if it be possible to satisfy simultaneously the equations

2m + c = 0, m{a- l) + e = Oj

equations which imply the condition

26 - c (a - 1) = 0.

The discussion of the binomial equation when obtained in-

volves no difficulty.

For a discussion of the general trinomial equation of the

second degree, the reader is referred to the original Memoir.

Laplace's transformation ofpartial differential equations,

14. Laplace has developed a method for the reduction of

the partial differential equation

Br+Ss+Tt + Fp+ Qq+Zz= U (36),

B, 8, T,...Z7 being functions of x and y, which is deserving

of attention from its great generality.

One of the auxiliary equations in Monge's method is

Jld2^^ _ Sdxdj/ + Tdx' = 0.
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Let two integrals of this equation be

<j> {x, y) = C, yjr (x, y) = c',

and assume two new variables, f and 77, connected with x and

y by the equations

i-=<i>{x,y), 'n
= ^\r{x,y).

The student will have no difficulty in proving that the given

equation will assume the form

Z, il/, N, F being functions of f and 77. The theory of the

reduction of this equation is then contained in the following

propositions

:

1st, The equation (37) may be presented in the form

Hence, if the condition

N-L3£-^ = (39)

be satisfied, and we assume ly- + L] z = z', we shall have

F.01-^^y
The solution of the given equation is then dependent on that

of two partial differential equations of the first order.

2ndly, Inverting the order of the symbolic factors, the

equation is also solvable if we have

N-LM--^- = (40).
arj

3rdly, The equation (37) can be transformed into a series

of other equations of the same form, and tlierefore integrated,

if, for any of those equations, the condition (39) or (40) is

satisfied.

29-2
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For, expressing it in the form (38), let, as before,

ii^^)-' (")•

Then
(J-

+ II\ z' + (N-LM- ^) z = V,

whence z =

which is of the form

d^

A, B, C "being functions of f and 77. Substituting this ex-

pression for z in (41), we have a result of the form

^''^' dz dz
^L'^-\-M'^-\-N'z'=r (42).

d^ dr\ c?f dt]

Thus the form (37) is reproduced, but with changed coeffi-

cients. Hence the equation is integrable if either of the fol-

lowing conditions is satisfied, viz.

N'-L'M'-^ = 0, N'-L'M'-^=0 (43).
a^ dr] ^ ^

If neither be satisfied, the process of transformation may be
indefinitely repeated, and should an equation be obtained in

which either of the relations (43) is satisfied, the solution may
be found. It has indeed been asserted that "if the given
equation be integrable, we shall finally get an equation in

which this essential condition is satisfied" (Peacock's Exam-
ples, p. 464). The state of our knowledge of the conditions of

finite integration does not however warrant this confidence.

A discussion of the equation

dz „dz

d^z
^
^ d'^z

.
d'z ^^dx -^dy qz ^r , s

dx' dxdy dy' hx + ky Qix+kyY ^ '
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by Laplace's method is given in Lacroix (Tom. ii. pp. 611

—

614), but it is far too long and too complex to find a place

here. The best mode of treating the equation is probably the

following. Let s and t be two new variables connected with
X and 2/ by the linear relations

Jix + k7/ = Sj 7/ + mx = t,

of which one is suggested by the form of the given equation,

while the other is adopted in order to put us in possession of

a disposable constant m. Transforming, and making in the

result s = e^, we obtain the symbolical equation

{AD{D-l)-vED^-g]z-\-j^[B{D---l)-^F]e'z-\-C^,^^^

in which

A = ah^-\- bilk + ck\ B = 2ahn + 5 (A + hm) + 2cA',

The equation will be a binomial one, if m be determined so as

to make (7=0. We have then

am^ + Jwi + c = 0,

while the symbolical equation (h) becomes

and is integrable if the following condition is satisfied, viz.

B-F A-E±^J[{A-Ef-^]—
Ti -^. ^^ = an mte^rer or 0.B '2A ^

This condition will be found to include the one to which
Laplace's method leads.

At the same time it is seen that the equation (h) assumes
the binomial form under other conditions than the above; e.g.

if we have simultaneously

^ = 0, F=0,

from which, by elimination of m, we find

/ (2aA + hh) - e {fill + 2c/v) = 0.
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This condition being satisfied, and m determined, tlie sym-
bolical equation becomes

and is integrable if the two roots of the equation

Am (m - 1) + Em + g =
difier by an odd integer. There are probably other cases de-

pendent on the reduction of Art. (13).

In one respect Laplace's transformation possesses a gene-
rality superior to that of all others. For its tentative applica-

tion fewer restrictions on the coefficients of the given equation

are necessary. But, that the application may succeed, other

conditions seem to be demanded which render the estimation

of the true measure of its generality difficult. And, in parti-

cular instances, it is seen that it is less general than the

method of the foregoing sections.

Miscellaneous Notices.

15. Of special additions to the theory of the solution of

differential equations by symbolical methods, the following
may be noticed.

1st, Professor Donkin has shewn that, if /(a?) be any
function capable of development in powers of x, then whatever
may be the interpretations of the symbols tt and p, we have

fip-^7rp)u = p-y{^)pu (44).

This is evident from the consideration of such cases as the

following:

{p-^TTpy — p~^7rpp~^7rp = />~V^/?,

(p-Vp)-' = p-v-'(p-r'=rv>
We are thus enabled to generalize many important theorems.

Thus, since |^ +^'(x)lu=^ e"^^^) ~ e'^^'^u, we have

/{i +^'H}—/(i)e-^>. (^5)>

{Camhridge Mathematical Journal^ 2nd Series, Vol. V. p. 10.)
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2ndl7, Mr Hargreave, observing that tlie symbols y- and

— X are connected by the same laws as x and -j-
,
(the proof of

ctx

this will afford an exercise for the student), has remarked that
if in any differential equation and its symbolic solution we

change x into -y-
, and -7- into — x, we shall obtain another

form accompanied by its symbolic solution. (Philosophical

Transactions for 1848, Part I.)

Applying this law of duality to the known solution of the

linear differential equation of the first order, it is easy to shew
that the equation

x<^ {D)u + f [D) u = X
has for its symbolic solution,

u = {6{D)}-'e^^''^x-'e-^^''^X (46),

where ^ (D) =|l|g Ji>,

a form which had before been established on other grounds,

[Philosophical Magazine, Feb. 1847). Many other illustrations

of the same law will be found in the memoir of Mr Hargreave
referred to.

Srdly, The method by which the development off{7r-\-p) is

obtained in Art. 13, leads to other and similar results, of which
the following is among the most interesting, viz.

the coefficients of the expansion in the second member follow-

ing the law of Taylor's theorem, and the function F (x) being

equal to e^^"'''' f{x). {Cambridge Mathematical Journalj 1st

Series, Vol. iv". p. 214.)

The last theorem enables us to integrate at once any equa-

tion of the form,
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where F(x) is a rational and integral function of x. For let

an expression always finite under the conditions supposed.

Then the given equation assumes the form

f{7r)u = X,

where tt = aj + -r- , and may be treated "by the method of the

last section.

Other examples of the expansion of functions whose symbols
are non-commutative—some of them admitting of a similar

application—will be found in the memoir of Professor Donkin
above referred to, and in an interesting memoir by Mr Bron-
win [Cambridge MathematicalJournaly Vol. III. p. 36).

4thly, Many important partial differential equations of the

second order admit of reduction to the form

du dv du dv _
dx dy dy dx '

whence an integral u =f[v) may be deduced. Thus the

equation

dp dq dg^ dp J^ ^ dp \aq dp J (.Ig,

where ^ and ^/r represent any given functions of^ and 2, may
be expressed in the form

d[^-x) djyfr-y) d{<f>-x) d {jr - y) ^ ^ ^

dx dy dy dx '

whence (j)
— x = F('\jr—y) is a first integral. Mainardi has

shewn that nearly all the equations which occur in Monge's
Application de VAnalyse a la Geometrie^ admit either of the

above reduction, or of a purely symbolical mode of solution.

[Tortolini, Vol. V. p. 161).

5thly, The Author is indebted to Mr Spottiswoode of Oxford

for an interesting communication on the laws of combination

of symbols which are at the same time linear with respect
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rl fJ

to -7- ,

-J-
, &c. and linear with respect to a?, y, &c. The

following is one of the results. If, assuming

d , d d d

a partial differential equation can be presented in the form

on the assumption that -7- and -^- operate onlj on the subject ity

then it can be expressed in the form F[7r^, 'n;^)u = 0, indepen-

dently of such restrictive hypothesis. It might be added, that

all such equations are reducible to equations with constant

coefficients, by assuming

iog(«^+y)4=x', iog(^)*=y.

To the above might be added many other special deductions,

isolated now, but destined perhaps, at some future time, to be

embraced in the unity of a larger theory.

EXERCISES.

1

.

Integrate x^-j-^ + ^x-^ ^Vw = 0.

2. Integrate {x'-x')^-{x + Sx') ^| + (1 - x) u = 0.

3. Eiccati's equation is reducible to the form

Hence investigate the conditions of integrability.

The symbolical form is w + jr-y, e("»+-^* w= 0; and this may either be

reduced directly by Prop. III. to a form integrable by Prop, i, or, by assuming

{m + 2)d=2d', converted into a particular case of Art. 7 in the Chapter.
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4. The equation -^-^ + - -3- + 5m = is integrable in finite

terms if a is an even number.

5. The equation -77^ 4— -t- = hx'^u is integrable in finite

4 ii + r)
terms if m =— ~

, where i is a positive whole number

or 0.

6. The more general equation

d^u r du /, ^ c

tZoj^"^ a ax \

which includes the above, is integrable in finite terms if

i being a positive whole number or 0. (J^Ialmsten, Gamlridge
Mathematical Journal, 2nd Series, Vol. V. p. 180.) Verify this.

7. As an illustration of the theory of disappearing factors,

integrate the equation

(^^ + ^^^)5+{(« + 3)2a.^ + (6-z+l)a.}J

\-[{a + l)q^x-U]u = 0,

8. The equation (1 - ax'^) -i^^ — Ix -^ — cy = is inte-

grable in finite terms in the following three cases ; viz.

1st, If - is an odd integer

;

2ndly, If . / jf 1
j
+ — [

is an odd integer;

is an even integer.
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9. Integrate tlie partial differential equation

dx^ dif X dx

10. The partial differential equation

is integrable in finite terms if ^ = . . {Legendre. See

Lacroixj Tom. ii. p. 618.) Verify this.

11. Shew that the sum of the series

1.2...?za; + 2.3...(w4-l) ic^..+^ (p + 1) ... {p -\- n - I) x^

may be expressed in the form

/dV X^-X^
\dx) 1 — x

12. Sum the series

72 7

13. The equation (a + hx) -^^ + (/+ (jx) -^ + ngu =

is integrable in finite terms if n is an integer.

Apply the method of Art. 13 to reduce the symbolical equation to a bino-

mial form. Or assume a + hx = t.

14. The differential equation

can be integrated in finite terms, whatever function of x is

represented by Q, (Curtis, Cambridge Mathematical Journal,

Vol. IX. p. 280.)
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The equation may be expressed in the form

\dxj ( x^ ]

Let e-'"^'^ u = V', then compare the resvilting form with Ex. 8 of the Chapter.

15. Shew generally that, if we can integrate the equation

we can integrate f[-^+ Q]u-}-(J){x)u = X.

16. We meet the equation

d'y 1- 3g^ dy 1_
dc'

"^ c-c' dc l-c^^-^'

in the theory of the elliptic functions (Legendre's modular
equation). Shew that it is not integrable in finite terms, but

is integrable in the form y =A+B log c, where A and B are

series expressed in ascending even powers of c.

17. Prove the following generalization of Prop. iir.

18. Prove the following still more general theorem,
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CHAPTER XVIII.

SOLUTION OF LINEAR DIFFERENTIAL EQUATIONS BY
DEFINITE INTEGRALS.

1. The solution of linear differential equations by definite

integrals was first made a direct object of inquiry by Euler.

His method consisted in assuming the form of the definite

integral, and then, from its properties, determining the class

of equations whose solution it is fitted to express. Laplace
first devised a method of ascending from the differential equa-
tion to the definite integral. And Laplace's is still the most
general method of procedure known. Its application is how-
ever not wholly free from difficulties, due partly to the present

imperfection of the theory of definite integrals, partly to an
occasional failure of correspondence in the conditions upon
which continuity of form in the differential equation and con-
tinuity of form in its solution depend. Indeed it ouglit never
to be employed without some means of testing the result

a posteriori, e. g. by comparison with the solution of the pro-

posed differential equation in series. Frequently indeed it is

possible to deduce the solution in definite integrals from the

solution in series without employing Laplace's method
at all.

Laplace's method is applied with peculiar advantage to

equations in the coefficients of which x enters only in the first

degree, and of which the second member is 0. Expressing
any such equation in the form

^*(i)'^+^Glj"='^ ^'^-

we must assume

w = I ( Tdt,

T being a function of t, the form of which, together with the

limits of integration, must be determined by substituting the
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expression for u in the proposed differential equation. Effect-

ing this substitution, we have a result which may be thus

expressed,

or, since

\xe'''4>{t) Tdt+L''''>lr[t)Tdt = () ...(2).

Of this however, the first term is, by integration by parts,

reducible to the form

Thus, (2) assumes the form

e«<^(«)r-/6«{J[<^(0r]-twr}*=o (3),

and will therefore be satisfied, if we make

~[<l>{t)T]-^{t)T=0.

The former of these equations has reference only to the

limits ; the latter, expressed in the form

gives on integration,

and determines T in the form

^ {t) T= Ce-^"'

"JW'
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Thus, we have

u=CJ
6

^{t) ^' W'

the limits of integration "being determined by the equation

e ^f^') =0 (5).

Should this equation have n distinct roots, these may
evidently be so disposed as to give n — 1 distinct particular

integrals.

Such is the general statement of Laplace's method. Applied
to an equation in the coefficients of which the highest power
of X involved is the 7i**\ it would make the determination of

T depend on the solution of a differential equation of the 'n}^

order. Other practical limitations may be noted. For in-

stance, the method is only directly applicable to the expression

of integrals which produce on development series of a certain

form. Thus, if we develope the exponential in the assumed
expression for w, we have

u=j Tdt+xj Ttdt +^2 iTedt + &c.

an expansion in which positive and integral powers of x alone

present themselves. Integrals of different forms may, however,

by preparation of the differential equation, be brought under
the dominion of the method. These and other points we pro-

pose to illustrate by the detailed examination of a special but
very important example, particular forms of which arc of very
frequent occurrence in physical inquiries. We shall first, in

accordance with what has above been said, determine the

different kinds of solution in series of which the equation

admits. This part of the investigation is intended to be
supplementary to Art. 9 of the last Chapter.

-r, r^' d"u du „
Ex. Given x j^ + ^ d^

— 2 ^^^ = 0-
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Solutions expressed in Series,

2. The symbolical form of the above equation is

"-
i>(Z>+.-i)

-'^"=Q («)•

Hence, if an integral be expressible in the form 'Zu„^x'^,

the law of formation of the coefficients u^ will be

"' m(w + a-l) ^^^'

while the lowest value of m will be 0, or 1 — a. Thus, except

in a particular case to be noticed hereafter, the comjDlete in-

tegral will be

" = -^i^ + 27lTT)+ 2.4(« + l)(a + 3) +
'^'=-'

The two series in the general value of u are evidently con-

vergent for all values of x. As this question of the conver-

gency of series is sometimes important in connexion with the

solution of differential equations, the reader is reminded that

according as, in the series of terms or groups of terms

Uq+U. + U^-^&C,

the ratio —~ tends, when n is indefinitely increased, to a

limit less or greater than unity, the series is convergent or

divergent; when the ratio is less than unity but tends to unity,

we must apply a system of criteria developed by Professor De
Morgan (Differential and Integral Calculus, p. 325*).

* That this system virtually includes previous special results has been

proved by Bertrand {Liouville, Tom. vii. p. 35) ; that it is a legitimate deve-

lopment of the fundamental principles of Cauchy has been established by

Paucker {Crelle, Band. xlii. p. 138).
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When a is an odd integer, the general integral will involve

a logaritlim. In particular if a= 1, we shall have

u = a^+a,x''-\-a^x'+&c. + logx{h^-\-h^x^+h^x'+&c.) ... (9),

a^ and h^ being arbitrary constants, and tlie succeeding coeffi-

cients determined by

07i\,, + 2mh,, - c/a^, = 0, m'h^ - q%^,^ =0 (10}

.

The symbolical equation (6), indicates by its form that

there are no solutions expressible in descending powers of x,

and infinite in one direction only—i. e. beginning with some
finite exponent, and presenting a series of exponents thence
descending. But the equation may be transformed so as to

admit of a solution of this kind. For, assuming u = e"^\-,

we shall liave

d^v , ^ . dv

and of this the symbolical form will be found to be

I){l) + a-l)v-2q{D + ^-l)e'v=0 (11);

whence, if v be developed in a scries of the form Sr„j,x"*, the

law of derivation of the coefficients will be

{m + « - 1) v^ - 2q {m + ^ - 1) v.

It follows from this that there will be two ascending and
convergent series for v, and one descending and divergent

series. The law of the latter series is by changing ni into

m + lj more conveniently expressed in the form,

(m + 1) (??2 + a)

B. D. E. 30
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Hence, the first exponent will be — -
, and the ultimate

value of tt will be

If we assume ii = e'^^'v, and proceed as above, we shall obtain

for V the symbolical equation,

D{D + a-l)v+2q{D + ^--[)6'v = (13),

and as this differs from the previous equation for v, only by a

change of sign affecting q, we at once deduce a second value

of u, in the form

u= Ee'''x . jl - -r^-j^ + YTiqV ^"j ^^^^'

the terms within the brackets being alternately positive and

negative.

Both the descending series are finite when a is an even

integer, and though for all other values of a they are infinite

and ultimately divergent, yet if x be large they begin with

being convergent, and may under certain circumstances be

employed for numerical calculation.

Thus, we have obtained two solutions expressed in ascend-

ing series always convergent, and two solutions involving

series expressed in descending powers of x, and ultimately

divergent.

As concerns the convergent series for v, derivable from the

transformed equations (11) and (13), we may remark that

when multiplied by the developed exponentials, they will only

reproduce the convergent series ioru already obtained in (8).

One observation yet remains. We have seen that each of

the assumptions u = €^% and u=6~^''v, transforms the proposed

differential equation into another of which the solution in a
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descending scries is finite wlien the given equation admits of

finite integration. Tliis species of transformation is frequently-

possible. To accomplish it we must assume u = Qv, the form
of Q being determined by the solution of that differential

equation upon which, by Props, ii. and iii. Chap, xvii., the

solution of the proposed equation, when possible in finite

terms, is dependent.

Solution of the Equation hy Definite Integrals.

3. Comparing the proposed equation,

d^U du o r. / X

with the general form (1), we have

Hence,

Substituting these values in (4), we have

u= Cje^'(e-qf''dt (16),

while for the limits of integration, (5) gives

Hence, supposing a positive, and confining our attention for
a

tlie present to the factor {t"- q^, which alone determines t in

perfect independence of x, we find t= ±q. Thus,

u=c{\^'{e-qj"dt,

30—2
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Assuming then ^ = ^ cos 6, and changing the sign of the

arbitrary constant,

u=C\ e'''"'^ {sin ey-'cW (17),

and this, as its form suggests, and as we shall hereafter shew,

is an expression for the particular integral represented by the

first convergent series in the general value of u, given in (8).

To deduce another integral, let ns in the symbolical equa-

tion (6), assume u = e^^~">^v. We find

" ^ e'% = (18).{n + i-a)n

Hence, a value of v may be determined from tliat of u by
changing a — 1 into 1 — a; i.e. by changing a into 2 — a.

Thus we have, for the second particular integral,

u = C^x'-" ["e^" ^°^ ^ (sin ef" dO,

provided that 2 — a he positive.

Hence, «/a lie hetween and 2, we have for the complete

integral,

u= c, [V ^°^^ (sin ey-^do-v c.x'-'' fV^^« (sin ey-'^de . . . (19).

If a= l, the two particular integrals in the above expression

merge into one. To deduce the true form of the general

integral, we may proceed thus,

« = ["e^- ^-e {C^ (sin ey-' + C, [x sin (9)'^ dO,
-

=
f
> -«{^ (sin er + B (^'"^)°"'-j^^'"^)'"°]

de,

on replacing C^ and C^ by two new arbitrary constants,

A and B,
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Now when a= 1, we find by the usual mode of treating

vanishing fractions,

(sin(9rM^sin6>)'"
1 r , . c^2^-—

^_\
— = log [x (sm ey].

Thus,

w=["e^-'='^««^[^ + ^log(aj(sin^)"}]fZ(9 (20).

This is tlie complete integral of the equation,

^dZ+d:«-2^''='' (2^)'

and a similar form exists for all cases in which a is an odd
integer.

4. AVe proceed to the cases in which a is fractional and
does not lie between the limits and 2. By the application

of Props. II. and ill. Chap, xvii., this case can be reduced to

the case in which a does lie between the limits and 2. First,

suppose a negative ; then we may assume a= a —2n, where
a lies between and 2, and n is a positive integer. In this

case, the first term of (19) will need transformation. Xow the

symbolical equation (6), becomes
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And this particular expression for u must replace the first

term in the general value of u given in (19). The differen-

tiations maj obviously be performed under the integral sign.

As a particular illustration suppose a to lie between and
— 2, then ?z = 1, a = a' — 2, whence

d , ^ d

ax ax

The particular value of u which must replace the first term

in the general value (19), will therefore be

u=GT(x^^+a+ 1\ 6^^^«^^ (sin ey^'de.

Effecting the differentiations, and substituting in (19), we
have, for the general value of u^

u= C,r e'i^'^' ^ {qx cosd + a+l) (sin 6^'' dO
-)

-hC^x'-'^j^e^^'''^ {sin ey-'de.

Secondly, when a is greater than 2, the assumption

u = e^'-'^^v, i.e. u = x'-"v,

in effect converts a into 2 — a. Compare (6) and (18). In
effect, therefore, it converts a into a negative quantity, and
reduces the present case to the preceding one.

It remains only to notice that wdien a is an even integer,

the complete integral is expressible in finite terms. Chap. xvii.

Art. 3.

Collecting these results together, we see that, according as

a is an even integer, a fraction, or an odd integer, the complete
integral is expressible in finite terms, or by definite integrals

producing on development two algebraic series, or by definite

integrals producing on development two series, one of which
is multiplied by the factor log x. AYe propose before going
farther to verify these results.
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Verification.

5. If in the solution (19), Ave developc the exponentials,

and for brevity write

[''(cos 6)'" (sin ey-'dd=A„„ ["(cos ^)"^(3in oy-''de=B,„...{2^),

we shall have

^ = C'.X 7-^^ qV + G,x'-^t
, f

-
f'^'"

(25;

,

^ 1.2...??z^
^ 1.2...??*^

the summation denoted by ^ extending to all positive integral

values of m, from w = to ??i = co . Thus the general value

of u is expressed by two series, whose equivalence to the

series given in (8), it remains to establish.

^o\v, when m is odd, ^^ = 0, B„, = 0, the positive and

negative elements in each integral mutually destroying each

other. Again, by a known formula of reduction,

/
/ z)N«w . n^n in {cos 6^'' {sin Of

in + n

^1^ [fcos er-' (sill eyde.

Supposing the limits and tt, the term free from the sign

of integration vanishes at each limit when ii is positive, and

we have, changing ?i successively into a — 1 and 1—a,

'Now let the coefficient of x"^ in the first scries in (I'o), be

represented by w„,, then

u = C ^'^— u = C '"--^

therefore
"""^ =

,

^'^7
,

= —--i- by (26).

%n-i wi {m — \) ^'1,„_2 m [m + a — 1) -^ ^
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N'ow this is tlie law of the coefficients assigned in (7).

And just in the same way may the second series in (25) be

verified. Thus the development of the general solution (19),

produces the two convergent series of the solution in Art. 2.

The verification of the solution (20), though somewhat
more difficult, may be effected on the same principles.

Developing the exponential, and assuming

r (cos 6y'd0 = E„„ [" (cos ^)"(log sin 6) cW = F^,
- -^

we shall have

,4^ +^^)q'cc' + logxt ,^q"'x'... (27),
l.2,..m 1.2...m/^ ° 1.2...m^ ^

the summation extending to all even integral values of m,
from m = to m = go .

Now it may be shewn that

and it will be found that these relations establish, for the

coefficients of the series involved in (27), the same laws of

successive derivation as are assigned in (10).

The verification of the solution (22), involves no difficulty.

Solution hy Definite Integrals resumed.

6. In Art. 3, we found for the equation of the limits,

e^{f-(ff=0 (29),

from which, in order to determine the limits in perfect in-

dependence of X, we rejected the factor e"^. In the discussion

of the same problem in the great work of Petzval*, now in

course of publication, that factor is retained, giving, according

* Integration der Linearen Differentialgleichungen mit constanten und verdn-

derllchen coefficlenten.



ART. 6.] INTEGEALS RESUMED. 473

as X is positive or negative, the additional limit -co or go .

And thus the following solutions are arrived at, viz.

:

u = C^ r e^' {f-rff~\jt-\- C, [ \^\e-i'f~\U (30),

wlien X is positive, and

U=^CS e'='{e-q'f~'dt-\- 6; \e^ {f-c/f\lt (31),
J -q - g

when X is negative. It will be observed that it is in their

second terms that the above expressions for u differ from the

expression given in (19), and the question arises, what do
those second terms really represent? We propose here to

consider this question.

Supposing X positive, we have to examine the term

Now this expression, on assuming t = — q{l+0), so as to

make the limits of integration and co , and performing re-

ductions affecting only the arbitrary constant, becomes

or.

-

C^-,^1 e-''^ {29 + e^f'^cW (32).

It is easy to see that this cannot produce either of tlic par-

ticular integrals represented hj ascending developments in (8).

For, if w^e develope the exponential under the sign of inte-

gration, the coefficient of cc'" in the factor represented by the

definite integral, will be

j_ji_ r(2(9+<97^ de.

But, m and a being positive, it is manifest that the cxpre:

sion is infinite.
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We may, however, expand the definite integral in descend-

ing powers of x. Developing the binomial in ascending
powers of 6^ and integrating by the well-known theorem

r(x)

/,

(32) assum^es the form

IN'ow observing that F (- +
1

J = - F [-) &c., substituting

and merging the common factors in the arbitrary constant

we have

a \a fa \fa S\a/a ^^

2qx 1.2. [2qx)
J

^ ^

which agrees with (12). Exactly in the same w£iy Petzval's

second integral for the case in which x is negative, represents

the other descending and divergent series (14).

7. We thus see the true nature of the distinction between
Petzval's form of solution, and those obtained in Art. 2.

The latter represent the two converging and ascending-

series derived immediately from the differential equation.

The former represents one of those series accompanied by
the divergent series derived from a transformed differential

equation*.

* Spitzer, in a recent Memoir in Crelle's Journal (Vol. Liv. p. 2 SO), shews

that when the coefficients of the differential equation

{a. + hx)
^
J + (ai + l,x) ^+{ao + hox)y=0

satisfy the condition a-Jjo-dobi — h^, the solution will be

where
I faM^a^u+a^

I

I
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It is known that in the employment of divergent series an
important distinction exists between the cases in which the

terms of the series are ultimately all positive, and alternately

positive and negative. In the latter case we are, according to

a known law, permitted to employ that portion of the series

which is convergent for the calculation of its entire value.

Now, a being positive, the series (12) assumes this character

when X is positive, the series (14) when x is negative. But
these are precisely the cases in which these series are repre-

sented by Petzval's integrals.

When, for the calculation of an element dependent on the

solution of a differential equation, ascending and descending

series are both employed (the former for small, the latter for

large values of the independent variable), it is necessary to

determine the connexion of the constants. For this purpose

the expressions of the series by definite integrals may be of

importance. On this, and on other points connected with this

subject, the reader is referred to two most instructive Memoirs
by Prof. Stokes*, in which some of the equations of this chap-

ter are applied to physical problems.

Palatial Differential Equations.

8. Some of the most interesting applications of the above

method occur in the solution of partial differential equation?.

The following is an example.

Ex. Kequired the most general solution of the equation

d^u d^u <^i(' _ r.

and the limits are given by

The deduction of this as a limiting case of the general solutioji may serve as

an exercise to the student. It will be proper to assume a.2-\rl'iX= v ^ the inde-

pendent variable.

Spitzer expresses surprise that Petzval has not arrived at the above solution.

We see however that it has no proper place in Petzval's actual scheme.

» On the Numerical Calculation of a Class of Definite Integrals and Infinite

Series. Cambridge Philosophical Transactions, Vol. ix. Part i. p. 166.

On the Effect of the Internal Friction of Fluids on the Motion of Pendulums.

Ibid. Part ii. p. 8.
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wliicli can bo expressed in terms of z and r, supposing

Tliis equation, with its supposed condition, presents itself

in the problem of determining the attraction of a solid of revo-

lution on an external poiut, and in the problem of the motion
of an incompressible fluid, disturbed by the motion of a solid

of revolution in the direction of the axis of revolution z.

The transformed equation is easily found to be

d'^u du d^u ^ . .

'd^ + Tr^'-d^'^'
(^^)-

Now the solution of the equation

d^u du „

u = |'"e"-'°»« VI-") [A +B log ()• (sin 0)'}] dd.
*

Hence, replacing $' by ^ , and A and B by arbitrary func-
CLZ

tions of z, we have, for tlie solution of (34),

tc = {^
e'""

'^'^ ^'"'
[^ [z) + ^|^ [z) log {r (sin ^)^}] d9,

-'

or, by tlie symbolical form of Taylor's theorem,

ic = jcf) [z + r cos e V(- 1)1 dd

+ [V[^ + rcos6>V(-l)}log^'(sin6')'}^(9 (35).
'^

Such is the complete integral.

In all physical problems involving partial differential equa-

tions the determination of the arbitrary functions so as to

satisfy given initial conditions is a matter of great importance,

and sometimes, where discontinuity presents itself, of great
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difficulty. But tliough some general principles might be stated,

the subject is best studied in the concrete application.

In applying the above solution to the problem of attraction

it is required to determine the arbitrary functions so tliat when
r = we should have u = F{z). Now, since, when r = 0, log?-

is infinite, it is necessary to suppose -v/r [z) = 0. AVe have then

F{z)=rcj>{z)de = 7rcp{z).
-'

Thus the solution under the proposed limitation becomes

u=- rF{z + 7- cos e V(- 1)} de,

FarsevaTs Theorem.

9. Equations whose symbolical form is binomial generally

admit of solution by definite integrals. PfafF's equation lias

thus been treated by Euler. (Lacroix, Tom. in. p. 529.) The
very beautiful theorem of Parseval, which makes the limit of

the series AA' + BB' + GC + &c. dependent upon the limits

B' C
of the series A -\- Bu -{- Ciir + &c. and A A f- - .- -1- <S:c.,

u u

should be noticed.

Suppose that, for all values of xi^ real and imaginary,

A^Bu-^ Ou' ... =</)(iOj

Then, multiplying the equations together,

AA'-\-BB'+CC' + ...^tlaJr + ^] = c|,{u)^|r{u).

Assume, in succession, u = e^^^ ^^ and u = e ^^^ ^\ and add
the results.
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We find

2 {AA' + BB'+CC' + ...)+2t (a„ cos mO) + 22 (A« cos mO)

Now multiply bj t?^, integrate between tbe limits and tt,

observing that I (cos md) dO = 0, and divide the result by

27r. then

1 Tt

AA'+ BB'+ ... = l-l\cf> {€^V(-)} ^

+ cj> {e-^V(-^'} ^ (e-^V(-^^}] de (36),

vrhicli is the theorem in question.

Solution of Differential Equations hy Fourier s Theorem,

10. As Fourier's theorem affords the only general method
known for the solution of partial differential equations Avith

more than two independent variables (and such are the equa-

tions upon which many of the most important problems of

mathematical physics depend), we deem it proper to explain

at least the principle of this application, referring the reader

for a fuller account of it to two memoirs by Cauchy *.

As a particular example, let us consider the equation

d^u ncifd^u d^u d^viX ^ ,^^,

W-^\M^-df^di) = '' (^^)-

Let u — <^ {x, y, z, t) represent any solution of this equa-

tion. By a well-known form of Fourier's theorem,

* Sur VIntegration d*Equations Lineaires. Exercices d'Analyse et de Phy-

sique Mathematiqu£, Tom. I. p. 53.

Sur la Transformation et la Reduction des Integrales Generales d'un Systeme

d'Equations Lineaires aux differences partielles. Ibid. p. 178.
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successive applications of wliicli enable us to give to u the

form

w= i_^
[[III)

e^^^"'^^(«, ^, c, i)dailhdcd\diidv (38),

— 00

where A = (a - x)\^- i^) — y) y^ \- [c — z) v.

Substituting this expression in (37), and observing that

from the form 2:iven to A we have

(S+|+S^^^^-'=^-^^'-"(-^^--^-^')'
^ d' _ d'

da

we have
oo

(^ being put for ^ {a, h, c, t). This equation will be satisucd

if </) be determined so as to satisfy the equation,

Hence, integrating and introducing arbitrary functions of

a, h. c in the place of arbitrary constants, we have the par-

ticular integrals,

</, = e--V<-)^^ («, J, e), <^ = 6-^^W(-/^^ («, h, c) ... (39),

where J5 = (X- + yu," + i/-)^

Substituting the first of these values in (38), and merging

tlie factor —-, in the arbitrary function, we have
yvr-*

u = ^u+5;.e)v(-i)^^(«^
Z^, S)dadMcd\diidv... (40),

a particular integral of the proposed equation. It may easily

be shewn that the employment of the second value of </> given
in (39) would only lead to an equivalent result.
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To complete the solution, we observe that if, representing

77. + -p + 7;2 ^7 -^j we make t = e^, so as to reduce the

given equation to the symbolical form,

then, by Propositions 11. and ill. Chap. xvii. the transforma-

.. ..dv dv .,, .

tionz.= e^^ = ^-, will give

D{D-l

which is of the same form as the equation for u. Hence,
V admitting of expression in the form (40), we have on merely
changing the arbitrary function,

'' "
^llllli

^'^"^""''^ ^'"''
"^^ ^''' ^' ""^ dadhdcdXdfidv...

. (41).

— X

The complete integral is thus expressed by the sum of the
particular integrals (40) and (41). The sextuple integral by
which the above particular values of u are expressed admits
of reduction to a double integral leading to a form of solution

originally obtained by Poisson. Cauchy eifects this reduction
by a trigonometrical transformation. It may be accomplished,
and perhaps better, by other means; but this is a matter of

detail which does not concern the principle of the solution.

We may add, that when the function to be integrated becomes
infinite within the limits, Cauchy's method of residues should
be employed. The reduced integral in its trigonometrical

lorm, together witli Poisson's method of solution, which is

entirely special, will be found in Gregory's Examples, p. 504.

Cauchy's method is directly applicable to equations with
second members, and to systems of equations. The above
example belongs to the general form

d\ T-r
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where^ is a function of ->-
, -j-

, ;t- . For all such equations

the method furnishes directly a solution expressed by sextu])le

integrals, Avhich are reducible to double integi'als if H is

homogeneous and of the second degree. In the above example
the double integration proves to be, in eifect, an integration

extended over the surface of a sphere whose radius increases

uniformly with the time. Integrals of this class are pecu-

liarly appropriate for the expression of those physical effects

which are propagated through an elastic medium, and leave no
trace behind.

MISCELLANEOUS EXEECISES.

1. The complete integral of the equation

is expressible in the form it, = Ae^"" + Be'^'^, A and B being

series which are finite when n is an integer. (Tortolini,

Vol. V. p. 161.)

2. The definite integral I cos{7i (d — xsm6)] dd, can be
J

evaluated when n = ± (t + -j, where ^ is a positive integer or 0.

(Liouville, Journal, Tom. Yi. p. 36.)

Kepresenting the definite integral by u, it will be found that u satisfies an

equation of the fonn -7-5= ( -4 + -2 ) «•

The subject of the evaluation of definite integrals by the solution of differ-

ential equations has been treated with great generality by Mr Kussell {Philo'

sophical Transactions for 1855.)

3. If ^; = a be the equation of a system of curves, v being
d^v d%

a function of x and y which satisfies the equation -7-3 + -y-:^ = 0,

and \i u = ^ be the equation of the orthogonal trajectories of

the system, then u may be found by the integration of an

B. D. E. 31
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exact differential equation of the first order, and when found

will satisfy the equation -^-^ + -^ = 0.

The above theorem is applied by Professor Thomson to the problem of

determining the forms of the rings and brushes in the spectra produced by

biaxal crystals. {Cambridge Journal, 2nd Series, Vol. i. p. 124.)

4. The normal at a point P of a plane curve meets the

axis in G, and the locus of the middle point of PG is the

parabola y^ = Ix. Find the equation to the curve, supposing

it to pass through the origin. ( Cambridge Problems.)

5. The normal at any point of a surface passes through

the line represented by y = ^ = - . Find the differential

equation to the surface, and obtain the general integral. {lb.)

6. Prove that the differential equation of the surfaces

generated by a straight line which passes through the axis

of Zy and through a given curve, and which makes a constant

angle with the axis of s, is

iK£+2/^ = V(^' + 2/Vota. (lb.)

7. Integrate the above equation.

8. Express by a definite integral the series,

Form the differential equation by Chap. xvii. Art. 11, and then apply

Laplace's method, Chap, xviii. The result is u= — l^cos{x cos 6)d9. (Stokes,

CaTiibridge Transactions, Vol. ix. p. 182.)

9. Hence express the series in a form suitable for calcu-

lation when X is large.

Proceeding according to the directions of Chap, xviir. the complete integral

of the differential equation expressed by descending series will be

u= x~^{{A cosx + Bsmx)R + {A sin ic - -B cos x) ^},

]^2 32 ]2 32 52 ^2
where Ji=,i . ___.^+ __^__:_^^_&c.
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The values of A and £ for the particular integral in question will be

A =B=Tr~^. These are deduced from the consideration that, when x tends to

infinity, we have, in the limit,

2

IT

w

J
^ cos {x cos 6) do = (ttx)"^ (cos oj + sin x). {Ihid.

)

The above series occurs in several physical problems.

10. The complete integral of the equation,

^ li'
"^ ^"^ "^ ^^) sf "^ ^^^•'^^ "^ ^'^'^ ^ "^'

may be expressed by a finite formula involving general differ-

entiation. (Attributed to Liouville.)

Assume y^ze^^ 2~ ; then, by a proper determination of a and /3, the equa-

tion may be reduced to the form

The symbolical equation obtained by assuming x— e^ will be binomial, and the

integration in the required form may be effected by Prop. ill. Chap. xvii.

11. Equations of the form

may be reduced to the form,

'^S)^+^(3^='^ W'
considered in Chap, xvili.

Assume x'"=i, y=t^z; the determination of Z; will be foftnd to depend on

the equation Jc{J: -1)171^ + k{m{m -1) + mAi} + A(,= 0.

Petzval, Lineareii Differentialgldchungen, Pt, 1st, p. 105. Riccati's equa-

tion is included in the above.

12. Equations of the form

(a,+ h, log x) x' ^, + [a, + \ log x)x-^-\- (a,+ Zi, log a:) w =

Are reducible to the form {m), {Ih. p. 112.)

31—2
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13. The complete integral of the equation

•I a

where p is a prhnitive root of p""^^ = l, and C, C^, €^...0^,

satisfy the condition (7+ (7^+ Cg ... + O„ = 0, but are other-

wise arbitrary. (Jacobi, Crelles Journal, Vol, X. p. 279.)

14. The determination of the orthogonal trajectory of any
system of straight lines on a plane, involving in their general

equation one variable parameter, can be determined by the

solution of an exact differential equation between x and y.

This interesting proposition, together with the following demonstration, was

communicated to the author by Professor Donkin, with whose permission it is

published.

The equation of the given system can always be expressed in the fonn

x sin ^ - y cos ^= {d)y or, putting cos d = u, sin d= v,

vx-uy-F{u^ v) = Q (1),

u''-tv^-l = Q (2).

The equation of the trajectory will then be

udx+vdy=0 (3),

u and V being determined from (1) and (2) as functions of x and y.

Now, if we represent the first members of (1) and (2) by i^and $ respec-

tively, then, in order that (3) may be an exact differential equation, we must

have, in virtue of (37) Chap. XIV.

dFd^_dF d^ dFd^_dFd^_
dx du du dx dy dv dv dy~~

and this will be found to be identically satisfied. Hence (3) is an exact differ-

ential equation, as was to be shewn. The proposition applies generally to the

problem of involutes. Thus, the tangents to a circle being represented by

TX-uy=a, u^+ v^= l,

the equation (3) "vdll become

{x V(a:^ + y^- a^) - ay} dx + {y ^/{x^ + y^ - a-} + ax] dy_
x^+y^

This is exact, and determines, on integration, the system of possible involutes.
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15. To determine the connexion of the integrals of any
system of simultaneous differential equations expressible in

the form
dx_dF dji^clF

^
dt die ' dt dv

(Adu __^dF dv __dF
dt dx ' dt dy

where i^ is a given function of x. y, u and v.

The complete solution will evidently consist of four equations determining

ar, y, u, V as functions of t, and four arbitrary constants.

Suppose that there exists an integral of the form ^ = c, where •!> is a func-

tion of X, y, u, V, not involving t. Then, diflferentiating, we have

d^ dx d^ dy d^ du d^ ^^'_n
dx dt dy di dv, dt dv dt '

or, substituting for — , -~^ , &,c. the values given in (1),

d^dF d^ dF_d^ dF_d^ dF
dx du dy dv du dx dv dy

Now this equation is identically satisfied if ^ = F. Hence one integral will

be F—a, where a is an arbitrary constant.

Suppose now that another integral not involving t can be found. Then

representing it by $= 6, and observing that (2) is identical with the equation

(4) in the last problem, it is seen that if, from the two equations F=a, <J>= &,

vv-e determine u and v as functions of x, y, a, h, the expression ndx + vdy will be

an exact differential. Hence, if f{udx + vdy) — x, we have

"=% ^=1 <^)-

Now differentiating the integral F= a with respect to a, and regarding u, v,

as functions of x, y, a, h, we have

dF du dF dv

du, da dv da *

or, putting for , , -^ their values given in (1), and for u, v their values

given in (3),

d^x^ dx^d^x_ dy^^
dadx dt dady dt

'
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whence, integrating,

S=' + ' (*'•

c being an arbitrary constant. Since the form of % is known, this constitutes

a third integral.

Lastly, differentiating F—a with respect to h and proceeding as above, we

find

db=' ^'^'

e being an arbitrary constant. And this is the fourth integral.

The above is a simple illustration of the methods of Theoretical Dynamics

referred to in Chap. XIV. Thus the equations for the motion of a body

attracted towards fixed centres (all in one plane) are

d-x_ dR d^y_ dR
di^~'~~dx' 'di'~~~dy'

R being a function of x, y, and the co-ordinates of the fixed centres. These
equations may be expressed in the form

dx dy

du _ dR dv_ dR
dt dx' dt dy'

Now, if we represent the function | (u^ + v^) + Rhy F, the above equations

assume the general form (1).

It was intimated in Chap. XIY. that the solution of the equations of Dyna-

mics is finally dependent on the obtaining of the complete primitive of a non-

linear partial difierential equation of the first order ; and this was previously

shewn to depend on the integration of an exact differential equation the coeflB-

cients of which were determined by the solution of a linear partial differential

equation of the first order. Now all this agrees with what has been exemplified

above. For the last two integrals, (4) and (.5) are derived, by mere differentia-

tion, from x> vv'hile x is found by the integration of an eocact difi'erential equa-

tion whose coefficients, u and v, are obtained from equations which satisfy the

linear partial difi'erential equation (2).

The student is especially referred to the original memoirs by Sir "W. E.

Hamilton {On a General Method in Dynamics. Philosophical Transactions,

1834—5), to various memoirs by Jacobi contained in his collected works or

scattered through Crelle's Journal, and to the recent memoirs of Prof Donkin

{On a Class of Differential Equations inchiding those of Dynamics. Philosophi-

cal Transactions, 1854— 5). Liouville's Journal is rich in valuable memoirs on

the subject.
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ANSWERS.
The following table does not contain answers to all the

questions proposed in the Exercises, but to a selected number
of them, thought amply sutiicient for ordinary requirements.

CHAPTER I.

2. (1) 7/=|pa; + V(l+/). (PIere,^. =
J).

(2) ii-ay=e^\ (3) (1 + a;') ^9 + y = tan"' a:.

(4) rrp + 3/ = 2/'loga7. (5)
yp"" -\- 2xp == y

.

(6) y = x2)+<j>{2)).

3. (l)and(2) g + ^,^y = 0.

6. (1) {x-af + (y-bY==l.

(2) hx — ay =^ ah {xy — 1)

.

^ m '2m , m,,f 2m\
8. X Ty

— a, y =0, X -z=f[y .

jr ' '^. p p" -^ V p J

9. {y — cf — ^.cx,

CHAPTER II.

1. (1) \o^xij^rX-y = c. (2) log^-^^=c.

(3) (l + a.^)(l+^^ = ca.l

W -^(^-^log(l + /)-log{^+ V(l + r)}=^.

(5) cos y — c cos X. (6) tan a: tan y — c.

2. Yes. 3. (1) ?/ = ce~^ (2) ?/ = ce"^^^'\

(3) ^'=c^+2c^. (4) a;=ce"""'. (5) Q/+a-)^(7/+2a:)'=c.
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4. (1) x^-xy^-'if+x-y^c, (2) (ij-x-\-\Y[y-\-x-lY=^c.

5. y = (7aj"+r-^-i. 6. (2) y = ax + cx^/{l-x'),

(4) 2/
= sina;-l + ce"^'°^

(5) ?/ = taii-'a;-l + ce-^^^'\

10. il) z=[c^(l-x^)-a]-\ (2) .^ = 06--^--^,.

(3) 2 = {ce^^' + |(2a;^+l)}-^ (5) 7/= (c:i? + loga?+ir.

CHAPTER III.

1. x'^-^xY+y'=C, 2. x^-y'= cx, 3. x^-rf= cy\

o? + ?/" ?/
-

4. ^ + tan"-=c. 5. a3 + ve^ = c.

6. e"" {x-+ ?/^) = c. 7. sin (?2X + my) + cos (??ia7 + ny) = c.

9. V(l+rr^+/) + tan-^-= c, sm-W{x'+y')+sm-'-+e'=c.

10. Assuming? 4 = ^j '^e liave —-, =—\- C
^ X } G — bV a

CHAPTER IV.

^' y'-^Y y'^\ f r
4. xyf{x^^xy-f).

Complete primitive is x' -\- xy — y"^ = c,

5. (1) Integrating factor,

—

. Solution, a;^=c^+2c^.
X\J \X -\-y j

(2) Integrating factor, ^-j^-^^^,.

Solution, (2/ + a;)'(y + 2x)' = c.
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W ^ = ^/\/(^ + 5)- (^) ^cos| = c.

(]. 7/ = ex is the complete primitive.

7- (1) zttt::^- (2) ^ «^,2

^i/(^i/ + l) xy -^rxy

CH2VPTER V.

1. (1) 6^ (2) 1 2. 2/-^ (3) €^andl

4. (2) ,A '
(3) 2/-V. (4) (l+2/'-a;')-

(5) (a;' + y)-^ (C) (x + y + a;^/)-^ (7) {x + y'^)

2 ^2^-2

2\-3

7. If s + P=y tlie equation becomes -j- + 2Pz = — z^,

Avliicli is of the general form of 6.

9. When'^g =— .^. Then/(a:)=--^.
n dx Q •^ ^

'
(4

CHAPTER VI.

Equations 1 to 5 must be reduced to the form

(111

x-j- — a]j^ hif = ca;"", of which the solution is

according as h and c are like or unlike in sign. In 1 we find

1 = 1, and the solution by (A) is y = a+ —
,
where y, is

given by changing, in the first of the above solutions, a into

-a,l into 1, c into 1. In 2, i = 2; apply (A). In 3 apply (D).
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_
7. V(/5'-4a7)+n(z + i) = 0, ^ being any inteo-er posi-

tive, negative, or 0.

^' ^^"-(2^^ + l)3/ +¥ = c^"^', where A is a root of

the equation hA^ +A — h = 0.

10. Compare with p. 95.

CHAPTER YII.

1. (y - 2aj - c) {7/-dx-c) = 0.

2. (?/-aloga;-c) (y + alogo^-c) =0.

5. Eliminate j:> by means of a log2^ + 2^/^; + c = x.

12. Complete Primitive 7/ = cx-\- c — c'.

Singular Solution ?/ =
^

4

13. Complete Primitive, y = cx^-\/{lr- aV)

.

2 2

Singular Solution, -% + ^=l. 14. cc" + ?/' = co:.

16. Eliminate « by aj = ^-^^—^ (c + a sin"^ »).

17. By a;= —-^—y, (c +- + atan~'»).

19. {x-ay+{7j-f{a)Y^l. 21. a^-^/(a)=q/(a)(:r^-l).
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CHAPTER VIII.

4. Singular Solution x = a,

6. Differential equation, w =—-—-,.

11. Particular Integral.

13. Singular solution y = ; complete primitive y = 6*"'*'"^^

-x"
16. (1) Envelope species, y = —— .

(2) Envelope species, y"^ == 4x^.

(3) Not of envelope species, y = x".

17. Singular solution, sJx-\- sjy =^ a,

18. Singular solution, x'^-^y^ — cCK

19. x = cos~^y^~ + {y - y"")^.

CHAPTER IX.

19r 4- 7
1. y = ci^+ce'\ 2. y = ci' + ce'''-\-

'^^J
.

4. ?/ = (Cj + c^ic) cos a? + (("3 + c^a:) sin x.

5. ?/ = ce"'' + (q + c^o?) e^"^.

6. ^ = <"i
cos oj + c^ sin a; + (^3 + c^x) e*" + 1.

9. ?/ = ca;'' + - . 10. y = c{x-]- af + c' (x + af,
X
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11. y = e'^ {ccos (a^ \/^) +c'sm (ic V^)].

12. y = ce''^'°-'^+c,6"'^'^-'^

14. Add x^ to tlie previous value of y.

CHAPTER X.

1. ?/ = — — sin a: + c + ex.

\/{c+^/y)

4. y = c log x + c. 5. 3/ = CcC" +

9. a; = -log{c?/+/(c)}+c'.

14. 7/ = e--^^^^(//^'^^(7^^+0'). 19. y = c:c.

20. 2/ = -a + i(a6"+ae "). 22. cc + c + (c,^ -/')^ = 0.

23. ?/ = c log {a; + c + V(^' + 2ca?)} + c'.

32. (y_o)^-|; = o. 33. 2/ =lg + a^a.+J
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CHAPTER XL

1. x = cy\ 2. x^c = \\oz{ny^^{inf-\)\.

4. 2cx + c =1

h—a l+a

h — a b + aj

'

6. Let if = 2cx — x^ represent the circles, then the tra-

jectoiy is x^ = 2c'7/ — y^,

7. y'+ x'^—c = 2a^ log x. 8. An equiangular spiral.

10. 4.a?/ + c = 2ax V(4aV - 1) - log [2ax + VC'iaV - 1)J.

CHAPTER XII.

1. {x-a){y-h){z-c) = a

2. x^ + 2f - 6x7/ - 2xz + z^=C. 3. yz ^^ zx \- xtj = c.

5. e^iy-]-z)=c. 6. ^ + ^ + ^=(7.
X y z

X y
\ J I

9. a?' + cr?/^ — 2iJ + cc^^ = c.

10. No.

CHAPTER XIII.

1. aj = ce ^ -
1 , 7/ = (c^ + cj e '

.

2. ?/ = €~" (c cos ^ + c sin ^

,

ic = —- [(c + c') sin i + (c - c) cos ^].
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5. x + y = ce~" + - + - ,

O D

7. aj = i + 4c,e^' + 4c,e-'' - Zc/-''^' - c/ iV7

2/ = TT + ^i^ +^^^ -14
C„6 — C46

CHAPTEE XIV.

it

5. z = - + (f){a7/ — hx), 6. z = €''(f){x — y),
a

y
7. 2 = (x+2/)</.(.T=-/). 8. 2 = ^^+,^(^y).

11. a^^ + 2/^+;^' = ;s^^'^

13. a; + V(^' + 2/' + ^^) = ^'""0(|). 15. z = csJ{x'-\-if\

18. Complete Primitive z — ax-\-'by^a'b. 19. ^ = — xy.

20. ^ = aaj + -^- + &. 21. z^axi' ^""-i' ^l,
a 2

23. z=xij-\-y^J{x^-'0^)-\-h and s =^^ + -^^ + Z*.
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CHAPTER XV.

y\ . .L fy

8. ^ =<t>{x+ai/) +.y V(- 1 - a').

CHAPTER XVI.

111 — o??i + 6

3«? sln??2x— (??i^— 2) cos?7ia? ^ o-

10. 2* = COS {n log cc) </) K ,
-

)
+ sin {n log a:) "^/^ (

-

11. Assume -7- + X= tt.
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CHAPTER XYII.

1. u = ce^(a; - 1) - c'e^(a; + 1).

^ cP . d\c + c' \o^

X

2. w = cc^ —r— + X
daf dxj 1 — X

7 ^
(dyc,-cJx'-^l + qxY-'dx

12,
cZV

(•S>-

THE END.
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