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Chapter VII.

DIFFERENTIAL EQUATIONS.

By W. Woolsey Johnson,

Professor of Mathematics in the U. S. Naval Academy.

Art. 1. Equations of First Order and Degree.

In the Integral Calculus, supposing y to denote an unknown

function of the independent variable x, the derivative of y with

respect to x is given in the form of a function of x, and it is

required to find the value of y as a function of x. In other

-words, given an equation of the form

^=/0)> or dy = f{x)dx, (i)

of which the general solution is written in the form

y - j f(x)dx, (2)

it is the object of the Integral Calculus to reduce the expres-

sion in the second member of equation (2) to the form of a

known function of x. When such reduction is not possible,

the equation serves to define a new function of x.

In the extension of the processes of integration of which

the following pages give a sketch the given expression for the

derivative may involve not only x, but the unknown function

y ; or, to write the equation in a form analogous to equation

(1), it may be
Mdx + Ndy = o, (3)

in which ikfand N are functions of x and y. This equation is

in fact the general form of the differential equation of the first

order and degree; either variable being taken as the independ-

ent variable, it gives the first derivative of the other variable
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in terms of x and y. So also the solution is not necessarily an

expression of either variable as a function of the other, but is

generally a relation between x and y which makes either an

implicit function of the other.

When we recognize the left member of equation (3) as an

"exact differential," that is, the differential of some function of

x and y, the solution is obvious. For example, given the equa-

tion

xdy -\-ydx = o,
(4}

the solution xy = C, (5),

where C is an arbitrary constant, is obtained by " direct inte-

gration." When a particular value is attributed to C, the result

is a " particular integral ;
" thusj = x~ x

is a particular integral

of equation (4), while the more general relation expressed by

equation (5) is known as the " complete integral."

In general, the given expression Mdx -j- Ndy is not an ex-

act differential, and it is necessary to find some less direct

method of solution.

The most obvious method of solving a differential equation

of the first order and degree is, when practicable, to ' separate

the variables," so that the coefficient of dx shall contain x

only, and that of dy, y only. For example, given the equation

(1 — y)dx-\- (1 -\- x)dy = o, (6)

the variables are separated by dividing by (1 -j- x)(i — y).

T , dx dy
Thus — — = o.

1 -j- x ' 1 — y
Each term is now directly integrable, and hence

log (i-\-x) -.log (1 — y) — c.

The solution here presents itself in a transcendental form,,

but it is readily reduced to an algebraic form. For, taking the

exponential of each member, we find

I -r- X
_ = e* = C, whence 1 -1- x = C(l — y), (7)

where C is put for the constant f.
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To verify the result in this form we notice that differentia-

tion gives dx— — Cdy, and substituting in equation (6) we find

- C(i -y)+i+x = o,

which is true by equation (7).

Prob. 1. Solve the equation dy -\-y tan x dx = o.

(Ans. y—C cos x.)

Prob. 2. Solve $- + Pf = a\ (Ans.
bl±± = ce^\

dx J
\ by — a J

Prob. 3. Solve f- = ^±-\ f
Ans. y = *±<-\

dx x +1 \
J

1 — Cx }

Prob. 4. Helmholtz's equation for the strength of an electric

current C at the time t is

C- — - - —
R R dt'

where E, R, and L are given constants. Find the value of C, de-

termining the constant of integration by the condition that its initial

value shall be zero.

Art. 2. Geometrical Representation.

The meaning of a differential equation may be graphically

illustrated by supposing simultaneous values of x and y to be

the rectangular coordinates of a variable point. It is conven-

ient to put/ for the value of the ratio dy.dx. Then /'being

the moving point (x,y) and <p denoting the inclination of its

path to the axis of x, we have

dy

The given differential equation of the first order is a relation

between/-, x, and y, and, being of the first degree with respect

to/, determines in general a single value of/ for any assumed

values of x and y. Suppose in the first place that, in addition

to the differential equation, we were given one pair of simul-

taneous values of x and y, that is, one position of the point P.

Now let P start from this fixed initial point and begin to move

in either direction along the straight line whose inclination
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is determined by the value of p corresponding to the initial

values of x andjy. We thus have a moving point satisfying

the given differential equation. As the point P moves the

values of x and y vary, and we must suppose the direction of

its motion to vary in such a way that the simultaneous values

of x, y, and p continue to satisfy the differential equation. In

that case, the path of the moving point is said to satisfy the

differential equation. The point P may return to its initial

position, thus describing a closed curve, or it may pass to infin-

ity in each direction from the initial point describing an infinite

branch of a curve.* The ordinary cartesian equation of the

path of P is a particular integral of the differential equation.

If no pair of associated values of x and y be known, Pmay
be assumed to start from any initial point, so that there is an

unlimited number of curves representing particular integrals

of the equation. These form a "system of curves," and the

complete integral is the equation of the system in the usual

form of a relation between x, y, and an arbitrary " parameter.''

This parameter is of course the constant of integration. It is

constant for any one curve of the system, and different values

of it determine different members of the system of curves, or

different particular integrals.

As an illustration, let us take equation (4) of Art. 1, which

may be written

dy y
dx x'

Denoting by 6 the inclination to

the axis of x of the line joining P
with the origin, the equation is

equivalent to tan <p = — tan 6, and

therefore expresses that P moves

in a direction inclined equally with

OP to either axis, but on the other

* When the form of the functions M and N is unrestricted, there is no

reason why either of these cases should exist, but they commonly occur among

such differential equations as admit of solution.
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side. Starting from any position in the plane, the point P
thus moving must describe a branch of an hyperbola having

the two axes as its asymptotes ; accordingly, the complete

integral xy = C is the equation of the system consisting of

these hyperbolas.

Prob. 5. Write the differential equation which requires P to move
in a direction always perpendicular to OP, and thence derive the

equation of the system of curves described.

Prob. 6. What is the system described when <p is the comple-

ment of til (Ans. *'-/= C.)

Prob. 7. If <p = 2O, show geometrically that the system described

consists of circles, and find the differential equation.

(Ans. 2xydx — (x" — y")dy.)

Art. 3. Primitive of a Differential Equation.

Let us now suppose an ordinary relation between x and y,

which may be represented by a curve, to be given. By differ-

entiation we may obtain an equation of which the given equa-

tion is of course a solution or particular integral. But by

combining this with the given equation any number of differ-

ential equations of which the given equation is a solution may

be found. For example, from

y = m(x — a) (1)

we obtain directly

zydy = mdx, (2)

of which equation (1) is an integral; again, dividing (2) by (1)

we have
2dy dx , .

-J =J^ (3)

and of this equation also (1) is an integral.

If in equation (1) m be regarded as an arbitrary parameter,

it is the equation of a system of parabolas having a common

axis and vertex. The differential equation (3), which does not

contain m, is satisfied by every member of this system of curves.
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Hence equation (i) thus regarded is the complete integral of

equation (3), as will be found by solving the equation in which

the variables are already separated.

Now equation (3) is obviously the only differential equation

independent of m which could be derived from (1) and (2), since

it is the result of eliminating m. It is therefore the " differ-

ential equation of the system ;

" and in this point of view the

integral equation (1) is said to be its "primitive."

Again, if in equation (1) a be regarded as the arbitrary con-

stant, it is the equation of a system of equal parabolas having

a common axis. Now equation (2) which does not contain a

is satisfied by every member of this system of curves; hence it

is the differential equation of the system, and its primitive is

equation (1) with a regarded as the arbitrary constant.

Thus, a primitive is an equation containing as well as x and

y an arbitrary constant, which we may denote by C, and the

corresponding differential equation is a relation between x, y,

and/, which is found by differentiation, and elimination of C if

necessary. This is therefore also a method of verifying the com-

plete integral of a given differential equation. For example, in

verifying the complete integral (7) in Art. 1 we obtain by differ-

entiation 1 = — Cp. If we use this to eliminate C from equa-

tion (7) the result is equation (6); whereas the process before

employed was equivalent to eliminating p from equation (6),

thereby reproducing equation (7).

Prob. 8. Write the equation of the system of circles in Prob. 7,

Art. 2, and derive the differential equation from it as a primitive.

Prob. 9. Write the equation of the system of circles passing

through the points (o, b) and (o, — b), and derive from it the differ-

ential equation of the system.

Art. 4. Exact Differential Equations.

In Art. 1 the case is mentioned in which Mdx -f- Ndy is an

" exact differential," that is, the differential of a function of x

andjy. Let u denote this function; then

du — Mdx + Ndy, \\)
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and in the notation of partial derivatives

dx Qy

Then, since by a theorem of partial derivatives = ,

dydx dxdy

dy Zx
• W

This condition must therefore be fulfilled by M and N in

order that equation (i) may be possible. When it is fulfilled

Mdx -\- Ndy = o is said to be an " exact differential equation,"

and its complete integral is

u = C. (3)

For example, given the equation

x{x -|- 2y)dx -\- {x* — y*)dy = o,

M=x(x+2y), N=x* -f, ?p = 2x, and ^- = 2x; the

condition (2) is fulfilled, and the equation is exact. To find the

function u, we may integrate Mdx, treating/ as a constant; thus,

***+*>= Y,

in which the constant of integration Y may be a function of y.

The result of differentiating this is

x'dx 4- 2xy dx -f- x*dy = dY,

which should be identical with the given equation ; therefore,

dY= y* dy, whence Y =\y* -\- C, and substituting, the com-

plete integral may be written

* + 3x'y = /+ C.

The result is more readily obtained if we notice that all

terms containing x and dx only, or y and dy only, are exact

differentials ; hence it is only necessary to examine the terms

containing both x and y. In the present case, these are

. 2xy dx A- x'dy, which obviously form the differential of x*y
;

whence, integrating and multiplying by 3, we obtain the result

above.

The complete integral of any equation, in whatever way it
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was found, can be put in the form u = C, by solving for C.

Hence an exact differential equation du = o can be obtained,

which must be equivalent to the given equation

Mdx + Ndy — o, (4)

here supposed not to be exact. The exact equation du =
must therefore be of the form

jx(Mdx + Ndy) = o,
(5)

where /< is a factor containing at least one of the variables x

andjj>. Such a factor is called an " integrating factor" of the

given equation. For example, the result of differentiating

equation (7), Art. I, when put in the form u = C, is

(1 —y)dx-\-{i -\-x)dy _ n

d-yf '

so that (1 — y*)~" is an integrating factor of equation (6). It

is to be noticed that the factor by which we separated the

variables, namely, (1 — y)~\i — x)~\ is also an integrating

factor.

It follows that if an integrating factor can be discovered,

the given differential equation can at once be solved.* Such

a factor is sometimes suggested by the form of the equation.

Thus, given (y — x)dy -\-ydx — o,

the terms ydx — xdy, which contain both x and y, are not ex-

act, but become so when divided by either x' or y
1

; and be-

cause the remaining term contains y only, y~' is an integrating

factor of the whole expression. The resulting integral is

log.r+ ^ = C.

Prob. 10. Show from the integral equation in Prob. 9, Art. 3, that

x~* is an integrating factor of the differential equation.

Prob. 11. Solve the equation x{x' + 3y
2
)dx -\-y{y

1
-\- ^x^dy = 0.

(Ans. x* + 6xY +/ = e.)

* Since fiM and hJV in the exact equation (5) must satisfy the condition (2),

we have a partial differential equation for fi; but as a general method of finding

H this simply comes back to the solution of the original equation.
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Prob. 12. Solve the equation y dy -\-xdx-\
, , , .

x +y
(Ans. ?-±£ + unT' * = e.)

2 X

Prob. 13. If u = c is a form of the complete integral and p. the

corresponding integrating factor, show that /*/(#) is the general

expression for the integrating factors.

Prob. 14. Show that the expression x°yP(mydx + nxdy) has the

integrating factor xkm ' L ' a
y

k""'^; and by means of such a factor

solve the equation y(y' -\- 2x')dx + x(x* — 2y')dy — o.

(Ans. 2x'y — y* = ex' .)

Prob. 15. Solve (x* -\- y')dx — 2xydy — o. (Ans. x* — y
% = «;.)

Art. 5. Homogeneous Equation.

The differential equation Mdx -\- Ndy = o is said to be

homogeneous when M and N are homogeneous functions of

x and j)/ of the same degree ; or, what is the same thing, when

dy y
-j- is expressible as a function of —

. If in such an equation

the variables are changed from x and y to x and v, where

y
v = —

; whence y = xv and dy = ;rafo -f- vdx,

the variables # and v will be separable. For example, the

equation
{x — 2y)dx -\- ydy = o

is homogeneous ; making the substitutions indicated and

dividing by x,

(1 — 2v)dx -f- v(xdv -\- vdx) = O,

a^ir vdv
whence - + (irzr^ = o.

Integrating, log x + log (v — 1) — ——- = C;

and restoring _y,

The equation Mdx -\- Ndy = o can always be solved when

log (y-x)- j--x = C.
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M and N are functions of the first degree, that is, when it is

of the form

{ax -\-by-\- c)dx -f {a'x + b'y + c')dy = o.

For, assuming x = x' + h, y = y' + k, it becomes

(«*'+*>'+ «A +W+ c>&'+(aV+*y+fl ,A+3,ife+c')^=^

which, by properly determining h and /£, becomes

{ax' + ^/')^' + {a'x' + £»r/,

a homogeneous equation.

This method fails when a\b = a':b', that is, when the

equation takes the form

{ax -f- by -\- c)dx -\- \m{ax -\- by) -j- c'~\dy = o

;

but in this case if we put z = ax -\- by, and eliminate y, it will

be found that the variables x and z can be separated.

Prob. 1 6. Show that a homogeneous differential equation repre-

sents a system of similar and similarly situated curves, the origin

being the center of similitude, and hence that the complete integral

may be written in a form homogeneous in x, y, and c.

Prob. 17. Solve xdy — y dx — ^{x* -\- y*)dx = o.

(Ans. x* — c
l — 2cy.)

Prob. 18. Solve {%y — jx -\- i)dx + {iy — J>x -f T,)dy = o.

(Ans. (jc — x + i)
2

(j + x — i)
5 = c.)

Prob. 19. Solve {x' -\-y')dx — 2xy dy = o. (Ans. x* — y* = ex.)

Prob. 20. Solve (1 + xy)y dx + (1 — xy)x dy = o by introducing

the new variable z = xy. (Ans. x = Cye*y.)

dy
Prob. 21. Solve -j-=ax-\-by-\-c. (Ans. abx-\-byjra-\-bc=Cebx

.)

Art. 6. The Linear Equation.

A differential equation is said to be " linear " when (one of

the variables, say x, being regarded as independent,) it is of

the first degree with respect to y, and its derivatives. The

linear equation of the first order may therefore be written in

the form
dy
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where P and Q are functions of x only. Since the second

member is a function of x, an integrating factor of the first

member will be an integrating factor of the equation provided

it contains x only. To find such a factor, we solve the equation

% + Py = o,
(
2
)

dy
which is done by separating the variables ; thus, — = — Pdx ;

whence log y = c — I Pdx or

y = Ce-f™*.
(3)

Putting this equation in the form u = c, the corresponding

exact equation is

e^
Pix

{dy -f- Pydx) = o,

whence e'
*

is the integrating factor required. Using this

factor, the general solution of equation (i) is

efivy = f/PdxQdx + C. (4)

In a given example the integrating factor should of course

be simplified in form if possible. Thus

(i -f- x^dy — (m + xy)dx

is a linear equation for y ; reduced to the form (i), it is

dy x m
7<ydx i+x*-' ' l+X*'

from which//» x dx I
, ,

^=-/l"Mi== -2 log(l+n

The integrating factor is, therefore,

fPdx I

r

whence the exact equation is

dy xy dx mdx

4/(1 + -O
~ (I + *')»

=
(I +*')*'
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Integrating, there is found

y mx
•(!+*') i/(l+^)K + C

or

y = mx -\- C \/(i + *')

An equation is sometimes obviously linear, not for y, but

for some function of y. For example, the equation

dy .

-j—f- tan y = x sec y

when multiplied by cos y takes a form linear for sin y ; the

integrating factor is e*, and the complete integral

sin y = x — i -|- ce
~ x

.

dy
In particular, the equation -j- -\- Py — Qy", which is known as

" the extension of the linear equation," is readily put in a form

linear for y
1 '".

dy ~

Prob. 22. Solve x'— -\- (i — ix)y = x 1
. (Ans. y = x*(i -\- cex).)

dy
Prob. 23. Solve cos x~ -\-y — 1 -f- sin x = o.

(Ans. _y(sec x -f- tan x) = x -\- c.)

dy
Prob. 24. Solve — cos x -\- y sin .r = 1.

(Ans. y = sin x + <: cos #.)

Prob. 25. Solve -^ = x*y' — xy. (Ans. 4 = *" + 1 +«*'•)

Prob. 26. Solve ^ = ^-5^. (Ans. - = 2 -/+ «"^a

.)

Art. 7. First Order and Second Degree.

If the given differential equation of the first order, or re-

lation between x, y, and p, is a quadratic for p, the first step

in the solution is usually to solve for p. The resulting value

of p will generally involve an irrational function of x and y\

so that an equation expressing such a value of p, like some of

those solved in the preceding pages, is not properly to be re-
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garded as an equation of the first degree. In the exceptional

case when the expression whose root is to be extracted is a

perfect square, the equation is decomposable into two equa-

tions properly of the first degree. For example, the equation

when solved for p gives 2p = -, or 2p — -; it may therefore

be written in the form

{2px - y){zpy -x) = o,

and is satisfied by putting either

dy y dy x— = — or -r- = —

.

ax 2x dx 2.y

The integrals of these equations are

y
% = ex and 2y

% — x* = C,

and these form two entirely distinct solutions of the given

equation.

As an illustration of the general case, let us take the equation

*=* ° r Jx= ±% 0>

Separating the variables and integrating,

Vx±\/y=±Vc, (2)

and this equation rationalized becomes

- y)' - 2<* + y) -f- c = o. (3).

There is thus a single complete integral containing one arbi-

trary constant and representing a single system of curves;

namely, in this case, a system of parabolas touching each axis

at the same distance c from the origin. The separate equa-

tions given in the form (2) are merely branches of the same

parabola.

Recurring now to the geometrical interpretation of a differ-

ential equation, as given in Art. 2, it was stated that an equa-

tion of the first degree determines, in general, for assumed

values of x and y, that is, at a selected point in the plane, a

single value of p. The equation was, of course, then supposed
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rational in x and y* The only exceptions occur at points for

which the value of p takes the indeterminate form ; that is,

the equation being Mdx + Ndy = o, at points (if any exist)

for which M = o and N= o. It follows that, except at such

points, no two curves of the system representing the complete

integral intersect, while through such points an unlimited num-

ber of the curves may pass, forming a "pencil of curves."

f

On the other hand, in the case of an equation of the second

degree, there will in general be two values of p for any given

point. Thus from equation (i) above we find for the point

(4, 1), / = ± \; there are therefore two directions in which a

point starting from the position (4, 1) may move while satis-

fying the differential equation. The curves thus described

represent two of the particular integrals. If the same values

of x and y be substituted in the complete integral (3), the re-

sult is a quadratic for c, giving c — 9 and c = 1, and these

determine the two particular integral curves, \/~x -\- Vy = 3,

and Vx — Vy = I.

In like manner the general equation of the second degree,

which may be written in the form

Lp + Mp +N= o,

where L, M, and N are one-valued functions of x and y, repre-

sents a system of curves of which two intersect in any given

point for which p is found to have two real values. For these

points, therefore, the complete integral should generally give

two real values of c. Accordingly we may assume, as the

standard form of its equation,

Pc* + Qc+ R = o,

* In fact f was supposed to be a one-valued function of x and y\ thus,

p = sin~'x would not in this connection be regarded as an equation of the first

degree.

f In Prob. 6, Art. 3, the integral equation represents the pencil of circles pass-

ing through the points (o, />) and (o, — b); accordingly^) in the differential equa-

tion is indeterminate at these points. In some cases, however, such a point is

merely a node of one particular integral. Thus in the illustration given in Art. 2,

p is indeterminate at the origin, and this point is a node of the only particular

integral, xy = o, which passes through it.
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where P, Q, and R are also one-valued functions of x and y.
If there are points which make p imaginary in the differential

equation, they will also make c imaginary in the integral.

Prob. 27. Solve the equation / +/ = 1 and reduce the inte-
gral to the standard form.

(Ans. (y + cos x)c* - 2c sin x + y — cos x = o.)

Prob. 28. Solves/ + 2xp - y = o, and show that the intersect-
ing curves at any given point cut at right angles.

Prob. 29. Solve {x* + 1)/ = 1. (Ans. cV* - zcxe* - 1.)

Art. 8. Singular Solutions.

A differential equation not of the first degree sometimes
admits of what is called a " singular solution

;

" that is to say, a

solution which is not included in the complete integral. For
suppose that the system of curves representing the complete
integral has an envelope. Every point A of this envelope

is a point of contact with a particular curve of the complete in-

tegral system ; therefore a point moving in the envelope when
passing through A has the same values of x, y, and p as if it

were moving through A in the particular integral curve. Hence
such a point satisfies the differential equation and will continue

to satisfy it as long as it moves in the envelope. The equation

of the envelope is therefore a solution of the equation.

As an illustration, let us take the system of straight lines

whose equation is

y = cx + j, (1)

where c is the arbitrary parameter. The differential equation

derived from this primitive is

y=P*+-p (2)

of which therefore (1) is the complete integral.

Now the lines represented by equation (1), for different

values of c, are the tangents to the parabola

f = Aax. (3)
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A point moving in this parabola has the same value of p as if it

were moving in one of the tan-

gents, and accordingly equation

(3) will be found to satisfy the

differential equation (2).

It will be noticed that for

any point on the convex side of

the parabola there are two real

values of p ; for a point on the

other side the values of p are

imaginary, and for a point on

the curve they are equal. Thus

its equation (3) expresses the

relation between x and y which must exist in order that (2)

regarded as a quadratic for p may have equal roots, as will be

seen on solving that equation.

In general, writing the differential equation in the form

Lp' + Mp+N=o, (4)

the condition of equal roots is

M * - 4LN = o. (5)

The first member of this equation, which is the " discrimi-

nant " of equation (4), frequently admits of separation into

factors rational in x andjy. Hence, if there be a singular solu-

tion, its equation will be found by putting the discriminant of

the differential equation, or one of its factors, equal to zero.

It does not follow that every such equation represents a solu-

tion of the differential equation. It can only be inferred that

it is a locus of points for which the two values of p become

equal. Now suppose that two distinct particular integral

curves touch each other. At the point of contact, the two

values of/, usually distinct, become equal. The locus of such

points is called a " tac-locus." Its equation plainly satisfies the

discriminant, but does not satisfy the differential equation. An
illustration is afforded by the equation
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of which the complete integral isf + (x — c)' = a\ and the
discriminant, see equation (5), isy(y — a*) = o.

This is satisfied by y = a, y = — a, and y = o, the first two
of which satisfy the differential equation, while 2 = o does not.

The complete integral represents in this case all circles of radius

a with center on the axis of x. Two of these circles touch at

every point of the axis of x, which is thus a tac-locus, while

y = a and y = — a constitute the envelope.

The discriminant is the quantity which appears under the

radical sign when the general equation (4) is solved for/, and
therefore it changes sign as we cross the envelope. But the

values of p remain real as we cross the tac-locus, so that the

discriminant cannot change sign. Accordingly the factor which

indicates a tac-locus appears with an even exponent (as y
1
in

the example above), whereas the factor indicating the singular

solution appears as a simple factor, or with an odd exponent.

A simple factor of the discriminant, or one with an odd ex-

ponent, gives in fact always the boundary between a region of

the plane in which/ is real and one in which/ is imaginary
;

nevertheless it may not give a singular solution. For the two

arcs of particular integral curves which intersect in a point on

the real side of the boundary may, as the point is brought up

to the boundary, become tangent to each other, but not to the

boundary curve. In that case, since they cannot cross the

boundary, they become branches of the same particular inte-

gral forming a cusp. A boundary curve of this character is

called a " cusp-locus "
; the value of / for a point moving in it

is of course different from the equal values olp at the cusp, and

therefore its equation does not satisfy the differential equation.*

Prob. 30. To what curve is the line y = mx -\- a 4/(1 — n?)

always tangent ? (Ans. y
1 — x* = a

2

.)

Prob. 31. Show that the discriminant of a decomposable differ-

* Since there is no reason why the values oip referred to should be identical,

we conclude that the equation Lp% + Mp + JV= o has not in general a singular

solution, its discriminant representing a cusp-locus except when a certain con-

dition is fulfilled.
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ential equation cannot be negative. Interpret the result of equating

it to zero in the illustrative example at the beginning of Art. 7.

Prob. 32. Show that the singular solutions of a homogeneous dif-

ferential equation represent straight lines passing through the origin.

Prob. 33. Solve the equation xp2 — 2yp -\- ax — o.

(Ans. x* — 2cy-\- ac
1 = o ; singular solution y* = ax'.)

Prob. 34. Show that the equation p
1 + 2xp — y = o has no sin-

gular solution, but has a cusp-locus, and that the tangent at every

cusp passes through the origin.

Art. 9. Singular Solution from Complete Integral.

When the complete integral of a differential equation of

the second degree has been found in the standard form

Pt+Qc + R = o (1)

(see the end of Art. 7), the substitution of special values of x

and y in the functions P, Q, and R gives a quadratic for c whose

roots determine the two particular curves of the system which

pass through a given point. If there is a singular solution,

that is, if the system of curves has an envelope, the two

curves which usually intersect become identical when the given

point is moved up to the envelope. Every point on the en-

velope therefore satisfies the condition of equal roots for equa-

tion (1), which is

Q- APR = o; (2)

and, reasoning exactly as in Art. 8, we infer that the equation

of the singular solution will be found by equating to zero the

discriminant of the equation in c or one of its factors. Thus

the discriminant of equation (1), Art. 8, or " c-discriminant," is

the same as the "^-discriminant," namely, y
3 — ^ax, which

equated to zero is the equation of the envelope of the system of

straight lines.

But, as in the case of the /"-discriminant, it must not be

inferred that every factor gives a singular solution. For ex-

ample, suppose a squared factor appears in the ^-discriminant.

The locus on which this factor vanishes is not a curve in cross-

ing which c and p become imaginary. At any point of it there
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will be two distinct values of p, corresponding to arcs of par-

ticular integral curves passing through that point ; but, since

there is but one value of c, these arcs belong to the same par-

ticular integral, hence the point is a double point or node.

The locus is therefore called a " node-locus." The factor repre-

senting it does not appear in the /-discriminant, just as that

representing a tac-locus does not appear in the ^-discriminant.

Again, at any point of a cusp-locus, as shown at the end of

Art. 8, the two branches of particular integrals become arcs of

the same particular integral ; the values of c become equal, so

that a cusp-locus also makes the c-discriminant vanish.

The conclusions established above obviously apply also to

equations of a degree higher than the second. In the case of

the ^-equation the general method of obtaining the condition

for equal roots, which is to eliminate c between the original and

the derived equation, is the same as the process of finding the

envelope or " locus of the ultimate intersections " of a system

of curves in which c is the arbitrary parameter.

Now suppose the system of curves to have for all values of

c* a double point, it is obvious that among the intersections

of two neighboring curves there are two in the neighborhood

of the nodes, and that ultimately they coincide with the node,

which accounts for the node-locus appearing twice in the dis-

criminant or locus of ultimate intersections. In like manner,

* It is noticed in the second foot-note to Art. 7 that for an equation of the

first degree p takes the indeterminate form, not only at a point through which all

curves of the system pass (where the value of c would also be found indeter-

minate), but at a node of a particular integral. So also when the equation is of

the «th degree, if there is a node for a particular value of c, the « values of c at

the point (which is not on a node-locus where two values of c are equal) deter-

mine n-\- 1 arcs of particular integrals passing through the point; and there-

fore there are n + 1 distinct values of p at the point, which can only happen

when/ takes the indeterminate form, that is to say, when all the coefficients of

the ^-equation [which is of the «th degree} vanish. See Cayley on Singular So-

lutions- in the Messenger of Mathematics, New Series, Vol. II, p. 10 (Collected

Mathematical Works, Vol. VIII, p. 529). The present t-neory of Singular Solu-

tions was established by Cayley in this paper and its continuation, Vol. VI, p. 23.

See also a paper by Dr. Glaisher, Vol. XII, p. 1.
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if there is a cusp for all values of c, there are three intersections

of neighboring curves (all of which may be real) which ulti-

mately coincide with the cusp ; therefore a cusp-locus will

appear as a cubed factor in the discriminant.*

Prob. 35. Show that the singular solutions of a homogeneous

equation must be straight lines passing through the origin.

Prob. 36. Solve $p'y' — 2X)f + 4/ — x* = o, and show that there

is a singular solution and a tac-focus.

Prob. 37- Solve yp
1 + 2Xp — y = o, and show that there is an

imaginary singular solution. (Ans. jc
s = 2cx + c

2

.)

Prob. 38. Show that the equation (1 — x2

)p
2 = 1 —y represents

a system of conies touching the four sides of a square.

Prob. 39. Solve yp
2 — 4xp -\-y = o ; examine and interpret both

discriminants. (Ans. c
1 + 2^(3/ — Sx2

)
— ^y1

-f-/ = o.)

Art. 10. Solution by Differentiation.

The result of differentiating a given differential equation of

the first order is an equation of the second order, that is, it

d %

y
contains the derivative t~t ; but, if it does not contain y ex-

plicitly, it may be regarded as an equation of the first order for

the variables x and/. If the integral of such an equation can

be obtained it will be a relation between x, p, and a constant

of integration c, by means of which p can be eliminated from

the original equation, thus giving the relation between x, y,

and c which constitutes the complete integral. For example,

the equation

fx + 2xy = *>+?, (I)

* The discriminant of Pcl -\- Qc -f- R — o represents in general an envelope,

no further condition requiring to be fulfilled as in the case of the discriminant

of Lp* -)- Mp 4- N — o. Compare the foot-note to Art. 8. Therefore where

there is an integral of this form there is generally a singular solution, although

Lp? -\- Mp-\-JV= o has not in general a singular solution. We conclude, there-

fore, that this equation (in which /., M, and N are one-valued functions of x

and y) has not in general an integral of the above form in which P, Q, and R
are one-valued functions of x and y. Cayley, Messenger of Mathematics, New

Series, Vol. VI, p. 23.
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when solved for j/, becomes

y = x+ Yp; (2)

whence by differentiation

i dp

The variables can be separated in this equation, and its inte-

gral is

Yp = C + e'*

C- e*

Substituting in equation (2), we find

which is the complete integral of equation (1).

This method sometimes succeeds with equations of a higher

degree when the solution with respect to p is impossible or

leads to a form which cannot be integrated. A differential

equation between p and one of the two variables will be ob-

tained by direct integration when only one of the variables is

explicitly present in the equation, and also when the equation

is of the first degree with respect to x and y. In the latter

case after dividing by the coefficient of y, the result of differ-

entiation will be a linear equation for x as a function of p, so

that an expression for x in terms of p can be found, and then

by substitution in the given equation an expression for y in

terms of p. Hence, in this case, any number of simultaneous

values of x and y can be found, although the elimination of p
may be impracticable.

In particular, a homogeneous equation which cannot be

solved for p may be soluble for the ratio y : x, so as to assume

the form y = x<p(p). The result of differentiation is

P = CP(P) + $'(/>)%:

in which the variables x and p can be separated.

Another special case is of the form

y = P* +AP), (I)
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which is known as Clairaut's equation. The result of differ-

entiation is

which implies either

dp
* +/'(/) = o, or

f-x
= o.

The elimination of p from equation (i) by means of the

first of these equations * gives a solution containing no arbi-

trary constant, that is, a singular solution. The second is a

differential equation for p ; its integral is p = c, which in

equation (i) gives the complete integral

y = cx +/(<:). (2)

This complete integral represents a system of straight lines,

the singular solution representing the curve to which they are

all tangent. An example has already been given in Art. 8.

A differential equation is sometimes reducible to Clairaut's

form by means of a more or less obvious transformation of the

variables. It may be noticed in particular that an equation of

the form

y = nxp + <f>{x, p)

is sometimes so reducible by transformation to the independent

variable z, where x = z* ; and an equation of the form

y = nxp-\- <p{y,p),

by transformation to the new dependent variable v = y". A
double transformation of the form indicated may succeed

when the last term is a function of both x and y as well as of/.

Prob. 40. Solve the equation $y = 2p
3 + $p*; find a singular

solution and a cusp-locus. (Ans. (x -f- y -j- c — i)* = -(#+*r)\)

Prob. 41. Solve 2y =xp-\— , and find a cusp-locus.
P

(Ans. «V — \2acxy + Scy
3 — i2x'y* + i6ax* = o.)

* The equation is in fact the same that arises in the general method for the

condition of equal roots. See Art. 9.
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Prob. 42. Solve (x* — a
2

)/ - zxyp +/ - a' = o.

(Ans. The circle x* -\-y* — o, and its tangents.)

Prob. 43. Solve y = — xp + x"p\

(Ans. c*x -j- c — xy = o, and i + 4*^ = o.)

Prob. 44. Solve p* — \xyp -)- 8y* = o.

(Ans. j = <:(.* — <r)
a

; 27^ = 4.x
8 and^ = o are singulai

solutions;^ = o is also a particular integral.)

Prob. 45. Solve x\y — px) = yp\ (Ans. / = ex" + c\)

Art. 11. Geometric Applications
; Trajectories.

Every property of a curve which involves the direction of

its tangents admits of statement in the form of a differential

equation. The solution of such an equation therefore deter-

mines the curve having the given property. Thus, let it be

required to determine the curve in which the angle between

the radius vector and the tangent is n times the vectorial

angle. Using the expression for the trigonometric tangent of

that angle, the expression of the property in polar coordi-

nates is

= tan nO.
dr

Separating the variables and integrating, the complete

integral is

r" = c* sin nff.

The mode in which the constant of integration enters here

shows that the property in question is shared by all the mem-
bers of a system of similar curves.

The solution of a question of this nature will thus in gen-

eral be a system of curves, the complete integral of a differential

equation, but it may be a singular solution. Thus, if we ex-

press the property that the sum of the intercepts on the axes

made by the tangent to a curve is equal to the constant a, the

straight lines making such intercepts will themselves consti-

tute the complete integral system, and the curve required is

the singular solution, which, in accordance with Art. 8, is the
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envelope of these lines. The result in this case will be found

to be the parabola Vx -f- Vy = Va.

An important application is the determination of the

"orthogonal trajectories'' of a given system of curves, that is

to say, the curves which cut at right angles every^curve of the

given system. The differential equation of the trajectory is

readily derived from that of the given system ; for at every

point of the trajectory the value of/ is the negative reciprocal

of its value in the given differential equation. We have there-

fore only to substitute — p~' for p to obtain the differential

equation of the trajectory. For example, let it be required to

determine the orthogonal trajectories of the system of pa-

rabolas
y* = 4ax

having a common axis and vertex. The differential equation

of the system found by eliminating a is

2 xdy = y dx.

dx dv
Putting —in place of -=-, the differential equation of

dy dx

the system of trajectories is

2xdx -\- ydy = o,

whence, integrating,

2Jr'+y = ?.

The trajectories are therefore a system of similar ellipses

with axes coinciding with the coordinate axes.

Prob. 46. Show that when the differential equation of a system

is of the second degree, its discriminant and that of its trajectory

system will be identical ; but if it represents a singular solution in

one system, it will constitute a cusp locus of the other.

Prob. 47. Determine the curve whose subtangent is constant and

equal to a. (Ans. ce* ~y.)

Prob. 48. Show that the orthogonal trajectories of the curves

rn=c" sinnti are the same system turned through the angle — about
272

the pole. Examine the cases n = 1, n = 2, and « = £.

Prob. 49. Show that the orthogonal trajectories of a system of
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circles passing through two given points is another system of circles

having a common radical axis.

Prob. 50. Determine the curve such that the area inclosed
by any two ordinates, the curve and the axis of .v, is equal to

the product of the arc and the constant line a. Interpret the
singular solution. ; .t

(Ans. The catenary y = \a{e"—e ").)

Prob. 51. Show that a system of confocal conies is self-orthog-

onal.

Art. 12. Simultaneous Differential Equations.

A system of n equations between n -\- 1 variables and their

differentials is a " determinate" differential system, because it

serves to determine the n ratios of the differentials
; so that,

taking any one of the variables as independent, the others vary

in a determinate manner, and may be regarded as functions of

the single independent variable. Denoting the variables by x,

y, z, etc., the system may be written in the symmetrical form

dx _dy _dz _X~Y~Z '

where X, Y, Z . . . may be any functions of the variables.

If any one of the several equations involving two differen-

tials contains only the two corresponding variables, it is an

ordinary differential equation ; and its integral, giving a re-

lation between these two variables, may enable us by elimina-

tion to obtain another equation containing two variables only,

and so on until n integral equations have been obtained.

Given, for example, the system

dx _dy __ dz ,

x z y'

The relation between dy and dz above contains the varia-

bles y and 2 only, and its integral is

jj/
2 — z* = a. (2)

Employing this to eliminate z from the relation between

dx and dy it becomes
dx _ dy
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of which the integral is

y+ V(/ + a
) = bx -

(3)

The integral equations (2) and (3), involving two constants

of integration, constitute the complete solution. It is in like

manner obvious that the complete solution of a system of n

equations should contain n arbitrary constants.

Confining ourselves now to the case of three variables, an

extension of the geometrical interpretation given in Art. 2

presents itself. Let x, y, and z be rectangular coordinates of

P referred to three planes. Then, if P starts from any given

position A, the given system of equations, determining the

ratios dx : dy: dz, determines the direction in space in which P
moves. As P moves, the ratios of the differentials (as deter-

mined by the given equations) will vary, and if we suppose P
to move in such a way as to continue to satisfy the differential

equations, it will describe in general a curve of double curva-

ture which will represent a particular solution. The complete

solution is represented by the system of lines which may be

thus obtained by varying the position of the initial point A.

This system is a " doubly infinite " one ;
for the two relations

between x, y, and z which define it analytically must contain

two arbitrary parameters, by properly determining which we

can make the line pass through any assumed initial point.*

Each of the relations between x, y and z, or integral equa-

tions, represents by itself a surface, the intersection of the two

surfaces being a particular line of the doubly infinite system.

An equation like (2) in the example above, which contains only

one of the constants of integration, is called an integral of the

differential system, in contradistinction to an " integral equa-

* It is assumed in the explanation that X, V, and Zare one-valued functions

of x,y, and *. There is then but one direction in which P can move when

passing a given point, and the system is a non-intersecting system of lines. But

if this is not the case, as for example when one of the equations giving the ratio

of the differentials is of higher degree, the lines may form an intersecting sys-

tem, and there would be a theory of singular solutions, into which we do not

here enter.
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tion " like (3), which contains both constants. An integral

represents a surface which contains a singly infinite system of

lines representing particular solutions selected from the doubly

infinite system. Thus equation (2) above gives a surface on

which lie all those lines for which a has a given value, while b

may have any value whatever ; in other words, a surface which

passes through an infinite number of the particular solution

lines.

The integral of the system which corresponds to the con-

stant b might be found by eliminating a between equations (2)

and (3). It might also be derived directly from equation (1) ;

thus we may write

dx dy dz _ dy -\- dz _ dn

x
'

" z ~
y y + z u'

in which a new variable u = y + z is introduced. The rela-

tion between dx and du now contains but two variables, and

its integral,

y+ z = bx, (4)

is the required integral of the system ; and this, together with

the integral (2), presents the solution of equations (1) in its

standard form. The form of the two integrals shows that in

this case the doubly infinite system of lines consists of hyper-

bolas, namely, the sections of the system of hyperbolic cylinders

represented by (2) made by the system of planes represented

by (4).

A system of equations of which the members possess a cer-

tain symmetry may sometimes be solved in the following

manner. Since

dx __dy _dz _ Xdx -f pdy -f- vdz

~X~~Y~~Z~ \X+nY+vZ '

if we take multipliers A, jn, v such that

\X+plY+vZ=0,

we shall have \dr -\- pdy+ vdz = o.

If the expression in the first member is an exact differential,
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direct integration gives an integral of the given system. For

example, let the given equations be

dx dy dz

mz — ny nx — Iz ly — mx '

/, m and n form such a set of multipliers, and so also do x,y

and z. Hence we have

Idx -\- mdy -\- ndz = O,

and also xdx -\-ydy-\- z dz — o.

Each of these is aty exact equation, and their integrals

Ix -\- my -\- nz = a

and x" +y + z' = V

constitute the complete solution. The doubly infinite system

of lines consists in this case of circles which have a common

axis, namely, the line passing through the origin and whose

direction cosines are proportional to /, m, and n.

dx dy dz
Prob. $2. Solve the equations -5 5 . = =

, and
x — y — z 2xy 2xz

interpret the result geometrically. (Ans. y=az, xl
-\-y'1 -\-z*=bz.)

t> u c 1
dx dy dz

Prob. 53. Solve —,— = —j— — ——

.

y -\- z z -j- x x -\-y

(Ans. V{x +y + z) = -JL_ = _±_.)
\ z ~- y x — z I

r, . . o 1
dx dy dz

Prob. 54. Solve ,-: r— = , —^ = -^—

.

(b — c)yz (c — a)zx {a — b)xy

(Ans. x> +y + z* = A, ax' 4- bf + c& = £.}

Art. 13. Equations of the Second Order.

A relation between two variables and the successive deriva-

tives of one of them with respect to the other as independent

variable is called a differential equation of the order indicated

by the highest derivative that occurs. For example,

o+*>£+4+~=o
is an equation of the second order, in which x is the independent
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variable. Denoting as heretofore the first derivative by/, this

equation may be written

(i+*")^ + */ + ** = o, (i)

and this, in connection with

%=*• <2 >

which defines p, forms a pair of equations of the first order,

connecting the variables x, y, and p. Thus any equation of the

second order is equivalent to a pair of simultaneous equations

of the first order.

When, as in this example, the given equation does not con-

tain y explicitly, the first of the pair of equations involves only

the two variables x and/ ; and it is further to be noticed that,

when the derivatives occur only in the first degree, it is a linear

equation for/. Integrating equation (i) as such, we find

>=~ w + V(I + ?)
; (3)

and then using this value of/ in equation (2), its integral is

y = c
t
— mx + c

x
log O + 4/(1 + *')], (4)

in which, as in every case of two simultaneous equations of the

first order, we have introduced two constants of integration.

An equation of the first order is readily obtained also

when the independent variable is not explicitly contained in

the equation. The general equation of rectilinear motion in

d's
dynamics affords an illustration. This equation is — =/[s),

where s denotes the distance measured from a fixed center of

force upon the line of motion. It may be written — = f{s), in

ds
connection with •— = v, which defines the velocity. Eliminat-

dt

ing dt from these equations, we have vdv = f(s)ds, whose

integral is %v* = f/(s)ds + c, the " equation of energy " for

the unit mass. The substitution of the value found for v in the
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second equation gives an equation from which t is found in

terms of s by direct integration.

The result of the first integration, such as equation (3) above

is called a "first integral" of the given equation of the second

order ; it contains one constant of integration, and its complete

integral, which contains a second constant, is also the "com-

plete integral" of the given equation.

A differential equation of the second order is " exact " when

all its terms being transposed to the first member, that member

is the derivative with respect to x of an expression of the first

order, that is, a function of x, y and p. It is obvious that the

terms containing the second derivative, in such an exact differ-

ential, arise solely from the differentiation of the terms con-

taining/ in the function of x, y and p. For example, let it be

required to ascertain whether

(-*?£- 4+'=° a

is an exact equation. The terms in question are (1 — x1)—

,

dx

which can arise only from the differentiation of (1 — x')p.

Now subtract from the given expression the complete deriva-

tive of (1 — x')p, which is

(1 - s^y - 2x
dy

•{l Xi^ 2X
dx'

civ
the remainder is x^- ~\- y, which is an exact derivative, namely,

dx

that of xy. Hence the given expression is an exact differ-

ential, and

{i-^ + *y = c
t

(6)

is the first integral of the given equation. Solving this linear

equation for y, we find the complete integral

y = c,x + c
t 4/(1 - x'). (7)

Prob. 55. Solve (1 - x')^X - xf- = 2.
ax ax
(Ans. y = (sin

-1
x)' -f- c, sin"

1 x +O



ART. 14.] THE TWO FIRST INTEGRALS. 333

Prob. S 6. Solveg = J

.

(
Ans. y =

J + ,,**.)

Prob. 57. Solve -^ = a'x — tfy.

(Ans. a'x — d'y = A sin &x + £ cos A*.)

Prob. 58. Solvey^ + (4j£j
=1 . (Ans. / = *- + ,,* + ,,.)

Art. 14. The Two First Integrals.

We have seen in the preceding article that the complete
integral of an equation of the second order is a relation be-

tween x, y and two constants c, and c
2

. Conversely, any rela-

tion between x, y and two arbitrary constants may be regarded

as a primitive, from which a differential equation free from both

arbitrary constants can be obtained. The process consists in

first obtaining, as in Art. 3, a differential equation of the first

order independent of one of the constants, say c, , that is, a rela-

tion between x, y,p and c
t

, and then in like manner eliminating

c, from the derivative of this equation. The result is the equa-

tion of the second order or relation between x, y, p and q (q

denoting the second derivative), of which the original equation

is the complete primitive, the equation of the first order being

the first integral in which c
1

is the constant of integration. It

is obvious that we can, in like manner, obtain from the primi-

tive a relation between x,y,p and c,, which will also be a first

integral of the differential equation. Thus, to a given form of

the primitive or complete integral there corresponds two first

integrals.

Geometrically the complete integral represents a doubly

infinite system of curves, obtained by varying the values of c
t

and of c, independently. If we regard c
l
as fixed and c

3
as

arbitrary, we select from that system a certain singly infinite

system; the first integral containing c
t
is the differential equa-

tion of this system, which, as explained in Art. 2, is a relation

between the coordinates of a moving point and the direction

of its motion common to all the curves of the system. But
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the equation of the second order expresses a property involv-

ing curvature as well as direction of path, and this property

being independent of c
x

is common to all the systems corre-

sponding to different values of c
lt

that is, to the entire doubly

infinite system. A moving point, satisfying this equation,

may have any position and move in any direction, provided its

path has the proper curvature as determined by the value of q

derived from the equation, when the selected values of x, y
and/ have been substituted therein.*

For example, equation (7) of the preceding article repre-

sents an ellipse having its center at the origin and touching

the lines x = ± 1, as in the diagram ; c, is the ordinate of the

point of contact with x = 1, and c^ that of the point in which

the ellipse cuts the axis of y. If we regard c, as fixed and c,

as arbitrary, the equation represents the system of ellipses

touching the two lines at fixed points, and equation (6) is the

differential equation of this system. In

like manner, if c
2

is fixed and <r, arbitrary,

equation (7) represents a system of ellipses

cutting the axis of y in fixed points

and touching the lines x — ± 1. The

corresponding differential equation will be

found to be

(y - xp) V(i - x*) = cr

Finally, the equation of the second order, independent of c,

and c
2 [(5) of the preceding article] is the equation of the

doubly infinite system of conies f with center at the origin,

and touching the fixed lines x = ± 1.

* If the equation is of the second or higher degree in q, the condition for

equal roots is a relation between x, y and/, which may be found to satisfy the

given equation. If it does, it represents a system of singular solutions; each

of the curves of this system, at each of its points, not only touches but osculates

with a particular integral curve. It is to be remembered that a singular solu-

tion of a first integral is not generally a solution of the given differential equa-

tion ; for it represents a curve which simply touches but does not osculate a set

of curves belonging to the doubly infinite system.

f Including hyperbolas corresponding to imaginary values of c-i.
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But, starting from the differential equation of second order,

we may find other first integrals than those above which corre-

spond to c, and c
t . For instance, if equation (5) be multiplied

by p, it becomes

which is also an exact equation, giving the first integral

(i-x*y + y = c,;

in which c
%

is a new constant of integration.

Whenever two first integrals have thus been found inde-

pendently, the elimination of p between them gives the com-

plete integral without further integration.* Thus the result

of eliminating p between this last equation and the first inte-

gral containing c, [equation (6), Art. 13] is

1 12 9 2 2

y — 2c
t
xy -\- c

3
x = c, — c,

,

which is therefore another form of the complete integral. It

is obvious from the first integral above that c
3

is the maximum

value of y, so that it is the differential equation of the system

•of ellipse inscribed in the rectangle drawn in the diagram. A
comparison of the two forms of the complete integral shows

that the relation between the constants is c* = c? -f- c
t
'.

If a first integral be solved for the constant, that is, put in

the form <p(x, y, p) = c, the constant will disappear on differ-

entiation, and the result will be the given equation of second

order multiplied, in general, by an integrating factor. We can

thus find any number of integrating factors of an equation

already solved, and these may suggest the integrating factors

of more general equations, as illustrated in Prob. 59 below.

* The principle of this method has already been applied in Art. 10 to the

solution of certain equations of the first order; the process consisted of forming

the equation of the second order of which the given equation is a first integral

{but with a particular value of the constant), then finding another first integral

and deriving the complete integral by elimination of p.
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d'y
Prob. 59. Solve the equation —-5

-f- d'y = o in the form

y = A cos ax -\- B sin ax;

and show that the corresponding integrating factors are also inte-

grating factors of the equation

ax'
+ ay - X

'

where X is any function of x; and thence derive the integral of this

equation.

(Ans. ay = sin ax I cos ax . Xdx — cos ax I sin ax . Xdx).

Prob. 60. Find the rectangular and also the polar differential

equation of all circles passing through the origin.

+(S)'K-4 - -+£-)(a», K+/)g = 2

Art. 15. Linear Equations.

A linear differential equation of any order is an equation of

the first degree with respect to the dependent variable y and

each of its derivatives, that is, an equation of the form

where the coefficients P , . . . P„ and the second memberX are

functions of the independent variable only.

The solution of a linear equation is always supposed to be

in the form y =f(x) ; and if yx
is a function which satisfies the

equation, it is customary to speak of the function j/]( rather than

of the equation y = yn as an " integral " of the linear equa-

tion. The general solution of the linear equation of the first

order has been given in Art. 6. For orders higher than the

first the general expression for the integrals cannot be effected

by means of the ordinary functional symbols and the integral

sign, as was done for the first order in Art. 6.

The solution of equation (1) depends upon that of

„dny d"-'y
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The complete integral of this equation will contain n arbi-

trary constants, and the mode in which these enter the expres-

sion for y is readily inferred from the form of the equation.

For let y1
be an integral, and c, an arbitrary constant ; the re-

sult of putting y = cj
x
in equation (2) is ^ times the result of

putting y =y/, that is, it is zero; therefore c
1y l

is an integral.

So too, if y, is an integral, c
2y2

is an integral ; and obviously

also c
1y1

-\- c,yt
is an integral. Thus, if n distinct integrals ylf

j/a , . . . y„ can be found,

y = c,y, + w* + • • • + cHyu (3)

will satisfy the equation, and, containing, as it does, the proper

number of constants, will be the complete integral.

Consider now equation (i); let Fbe a particular integral of

it, and denote by u the second member of equation (3), which

is the complete integral when X = o. If

y = v+ u
(4>

be substituted in equation (1), the result will be the sum of the

results of putting y = Fand of putting y = u ; the first of

these results will be X, because Fis an integral of equation (1),.

and the second will be zero because u is an integral of equa-

tion (2). Hence equation (4) expresses an integral of (2); and

since it contains the n arbitrary constants of equation (3), it

is the complete integral of equation (1). With reference to

this equation F is called " the particular integral," and u is

called "the complementary function." The particular integral

contains no arbitrary constant, and any two particular integrals

may differ by any multiple of a term belonging to the comple-

mentary function.

If one term of the complementary function of a linear

equation of the second order be known, the complete solution

can be found. For let j/, be the known term ; then, if y = y,v

be substituted in the first member, the coefficient of v in the

result will be the same as if v were a constant : it will there-

fore be zero, and v being absent, the result will be a linear equa-

tion of the first order for v' , the first derivative o-f v. Under
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the same circumstances the order of any linear equation can

in like manner be reduced by unity.

A very simple relation exists between the coefficients of an

exact linear equation. Taking, for example, the equation of

the second order, and indicating derivatives by accents, if

is exact, the first term of the integral will be Py' Subtracting

the derivative of this from the first member, the remainder is

(P, — P„')y' -\- P*y- The second term of the integral must

therefore be (P
1
— P/)y ; subtracting the derivative of this ex-

pression, the remainder, (P
t
— P/ -{- P„")y, must vanish. Hence

P
t
— P/ + P„" = O is the criterion for the exactness of the

given equation. A similar result obviously extends to equa-

tions of higher orders.

Prob. 61. Solve x— (3 + x)-—\- $y — o, noticing that e* is

an integral. (Ans. y = c/x + cj^x" + $s* -j- 6x -j- 6.)

Prob. 62. Solve (x* — x)-p, + 2(2* -+- i)~ -f- 2y — o.

(Ans. (x — i)"y = c^x* — 6x* -\- 2x —• | — 4X 3

log x) + c^x\)

Prob. 63. Solve-3^3 + cos 6-jp — 2 sin 6-~ —y cos = sin 28.

(Ans. y = e~ sin eJ e sin
"{cfi + c,)dd + c,e

~ sin"
sin p — 1

Art. 16. Linear Equations with Constant

Coefficients.

The linear equation with constant coefficients and second

member zero may be written in the form

A.D'y + A
l
D'-y + ... + A uy= (1)

in which D stands for the operator -=-, D1
for -7-5, etc., so that

ax ax

D" indicates that the operator is to be applied n times. Then,

since Demx = memx , D'emx = mt
e
mx

, etc., it is evident that if
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y _ e
mx be substituted in equation (i), the result after rejecting

the factor e
mx

will be

A
t
m'' + A

l
»f- i + ...+A n = o. (2)

Hence, if m satisfies equation (2), e
mx

is an integral of equation

(1) ; and if wz,, m
t , . . .mn are n distinct roots of equation (2),

the complete integral of equation (1) will be

y = c^x -\- c^e"1** -(-...+ C*™"*. (3)

For example, if the given equation is

d'y dy-
ds-Tx - 2y = °'

the equation to determine m is

m1 — m — 2 = o,

of which the roots are m
x
= 2, mt

= — 1 ; therefore the in-

tegral is

y = c,?'* + c
t
e-».

The general equation (1) maybe written in the symbolic

form/(Z>) .y = O, in which /"denotes a rational integral func-

tion. Then equation (2) is f(m) = O, and, just as this last

equation is equivalent to

(in — m^[m — w,) . . . (m — mn) — o, (4)

so the symbolic equation /(D). y = o may be written

(D — m
t
)(D — «0 ... (£> — mn)y = o. (5)

This form of the equation shows that it is satisfied by each of

the quantities which satisfy the separate equations

(D — m^)y — o, (-D — m,)y = o . . . (D — m^)y — o; (6)

that is to say, by the separate terms of the complete integral.

If two of the roots of equation (2) are equal, say to m it two

of the equations (6) become identical, and to obtain the full

number of integrals we must find two terms corresponding to

the equation
[D - m,Yy = o

;

(7)

in other words, the complete integral of this equation of which

y x
== e

mi* is known to be one integral. For this purpose we
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put, as explained in the preceding article, y =y{<J. By differen-

tiation, Dy — De'"ixv = em*(m.v + Dv)
;
therefore

(D — m^emvcv — em*Dv. (8)

In like manner we find

(D — m
i
yem 'xv = e'"^D'v.

(9}

Thus equation (7) is transformed to Z)'v = o, of which the

complete integral is v = c
x
x -\-c

3 ; hence that of equation (7) is

y = *»*(<vH- c
t). (10)

These are therefore the two terms corresponding to the squared

factor (D — ;«,)* in f(D)y = o.

It is evident that, in a similar manner, the three terms

corresponding to a case of three equal roots can be shown to

be c"'^{c^ + c^x -j- c,), and so on.

The pair of terms corresponding to a pair of imaginary

roots, say m
l
= a -4- z/3, m, = a — z'/J, take the imaginary form

c^<L+iP>x _[_ c^o-im* — e°-x{c/Vx -\- c
2
e-^x).

Separating the real and imaginary parts of e'P" and e-'?", and

changing the constants, the expression becomes

eax{A cos ftx-\-B sin fix). (11)

For a multiple pair of imaginary roots the constants A and

B must be replaced by polynomials as above shown in the case

of real roots.

When the second member of the equation with constant

coefficients is a function of X, the particular integral can also

be made to depend upon the solution of linear equations of

the first order. In accordance with the symbolic notation

introduced above, the solution of the equation

dy
j-x

-ay = X, or (D - a)y = X (12)

is denoted by y = (D — a)~'X, so that, solving equation (12),.

we have

7^ X= e*
x f e~

a*Xdx ( 1 3)D — a rJ

as the value of the inverse symbol whose meaning is "that



Art. 16.] LINEAR equations, constant coefficients. 341

function of x which is converted to X by the direct operation

expressed by the symbol D — a." Taking the most convenient

special value of the indefinite integral in equation (13), it gives

the particular integral of equation (12). In like manner, the par-

ticular integral of j\D)y = X is denoted by the inverse symbol

-r-j—X. Now, with the notation employed above, the symbolic

fraction may be decomposed into partial fractions with constant

numerators thus

:

1 N N N
TTnyX = n

' X+ n X + • + TT^X>* ( x 4)
f(D) D — m

i
D — m

t
D — mn

in which each term is to be evaluated by equation (13), and

may be regarded (by virtue of the constant involved in the

indefinite integral) as containing one term of the complement-

ary function. For example, the complete solution of the

equation
d"y dy v-— — 2y = X
dx dx

is thus found to be

y = ^Je-^Xdx — \e-*Je*Xdx.

When X is a power of x the particular integral may be

found as follows, more expeditiously than by the evaluation of

the integrals in the general solution. For example, if X — x*

the particular integral in this example may be evaluated by

development of the inverse symbol, thus :

_ i_ _ 2_ _i \_ „»

= - i[i -K^ - &) +xp - ny - .
. .v

= -i[i -$D+ iD*- . . .]x* = -ix>+ $x-i.

* The validity of this equation depends upon the fact that the operations

expressed in the second member of

/(D) =(D- m,)(D - /»») + ...+(£> - m„)

are commutative, hence ihe process of verification is the same as if the equation

were an algebraic identity. This general solution was published by Boole in

the Cambridge Math. Journal, First Series, vol. n, p. 114- It had, however,

been previously published by Lobatto, Theorie des Characteristiques, Amster-

dam, 1837.
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The form of the operand shows that, in this case, it is only-

necessary to carry the development as far as the term contain-

ing D\
For other symbolic methods applicable to special forms of

X we must refer to the standard treatises on this subject.

d 2

y dy
Prob. 64. Solve 4£i-3^+>=°.

(Ans. y — ei*(Ax -f B) + ce~x.)

Prob. 65. Show that
î
^eax = -j^V"D A-D) Aa

)

and that , ,. sin (ax -f /?) = — sin (ax + /?).
A-ls I J \

a
)

Prob. 66. Solve (Z>
! + \)y — e

x -4- sin 2jc -4- sin a:. (Compare

Prob. 59, Art. 14.)

(Ans. y = A sin # -f- B cos # + £«* — \ sin 2* — \x cos *.)

Art. 17. Homogeneous Linear Equations.

The linear differential equation

A^% + A^"& + • • +^ = °. (1)

in which A , A iy etc., are constants, is called the "homogene-

ous linear equation." It bears the same relation to xm that

the equation with constant coefficients does to e
mx

. Thus, if

y=x'" be substituted in this equation, the factor xm will divide

out from the result, giving an equation for determining m,

and the n roots of this equation will in general determine the

n terms of the complete integral. For example, if in the

equation

„d*y
,

dy
X2-4 + 2*-/- — 2y = O
ax dx

we put y = xm , the result is m(m — 1) -(- 2m — 2=0, or

(m — \)(m -4- 2) = o.

The roots of this equation are m^ = 1 and m, = — 2.

Hence y = cjc -\- c
t
x~'

is the complete integral.

Equation (1) might in fact have been reduced to the form

with constant coefficients by changing the independent van'-
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able to 6, where x = ee , or 6 — log x. We may therefore at

once infer from the results established in the preceding article

that the terms corresponding to a pair of equal roots are of the

form
{c

l + c, log x)x"\ (2)

and also that the terms corresponding to a pair of imaginary

roots, a ± i/3, are

x°-[A cos (/J log x)-\- B sin (/J log x)~\. (3)

The analogy between the two classes of linear equations

considered in this and the preceding article is more clearly

seen when a single symbol $= xD is used for the operation of

taking the derivative and then multiplying by x, so that

8xm = mxm
. It is to be noticed that the operation x*!)

1
is not

the same as $' or xDxD, because the operations of taking the

derivative and multiplying by a variable are not "commu-
tative," that is, their order is not indifferent. We have, on the

contrary, x'W = $($ — 1) ; then the equation given above,

which is

(x'D'+ 2xD - 2)y = o,

becomes

[fl(0— i) + 2#— 2]j// = o, or (S — i)(S + 2> = o,

the function of $ produced being the same as the function of

m which is equated to O in finding the values of m.

A linear equation of which the first member is homoge-

neous and the second member a function of x may be reduced

to the form

f^).y = X. (4)

The particular integral may, as in the preceding article (see

eq. (14)), be separated into parts each of which depends upon

the solution of a linear equation of the first order. Thus,

solving the equation

x^--ay = X, or (« - d)y = X, (5)
ax

we find tA- X = ** fx- a~ lXdx. (6)

The more expeditious method which may be employed
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when Xis a power of x is illustrated in the following example

:

Given x* -4 — 2-=- = ^2

. The first member becomes homo-
dx ax

geneous when multiplied by x, and the reduced equation is

(S« _ 3^ = *•.

The roots of _/[$) =0 are 3 and the double root zero, hence

the complementary function is cj? -\- c, -j- c
3
log jr. Since in

general f(d)x' = /(r)xr
, we infer that in operating upon x3

we

may put -6 = 3. This gives for the particular integral

1 1 . 1 1 .

-:* = - ~ X ,

« - 3
«' 9^-3

but fails with respect to the factor # — 3.* We therefore

now fall back upon equation (6), which gives

x3 — xs
I x~ ldx = xs

log x.

The complete integral therefore is

y = <^
3 + ^ + f

s
log •* + i*

s
Jog #.

d"*y dy
Prob. 67. Solve 2Xi-Ai + 3*^ 3JC = x'K

Prob. 68, Solve [x'D 3 + 3;cZ>
2 + Z>).y = -

(Ans. y — c
l + ^ log x + c

s
{\og x)'' + £(log x)\)

(Ans. ^ = <:,.# + c,00^ + |*"0

1

x

Art. 18. Solutions in Infinite Series.

We proceed in this article to illustrate the method by

which the integrals of a linear equation whose coefficients are

algebraic functions of x may be developed in series whose

terms are powers of x. For this purpose let us take the

equation

* The failure occurs because x" is a term of the complementary function

having an indeterminate coefficient; accordingly the new term is of the same

form as the second term necessary when 3 is a double root, but of course with

a determinate coefficient.
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which is known as " Bessel's Equation," and serves to define

the "Besselian Functions."

If in the first member of this equation we substitute for y
the single term Axm the result is

A(m' — ri
l

)xm + Ax'"+\ (2)

the first term coming from the homogeneous terms of the

equation and the second from the term x'y which is of higher

degree. If this last term did not exist the equation would be

satisfied by the assumed value of y, if m were determined so as

to make the first term vanish, that is, in this case, by Axn or

Bx' n
. Now these are the first terms of two series each of

which satisfies the equation. For, if we add to the value of y
a term containing x'"+2

, thus_y = A xm -\- A
x
xm^2

, the new term

will give rise, in the result of substitution, to terms containing

x'"+2 and xm+i respectively, and it will be possible so to take

A
t
that the entire coefficient of x'"+2 shall vanish. In like

manner the proper determination of a third term makes the

coefficient of xm+,i in the result of substitution vanish, and so

on. We therefore at once assume

y = 2 A rxm+2r = A
a
xm -f- A t

xm+2

-f- A,x
m+4 -4- . . . , (3)

in which r has all integral values from o to 00 . Substituting

in equation (1)

2[{(m + 2rf— n, \A rxm+2r-\~ A rxm+2t
-
r+I)

] = o. (4)

The coefficient of each power of x in this equation must sep-

arately vanish ; hence, taking the coefficient of xm+2r , we have

[(,„ + 2r)
1 -« ,

]^ r + ^ r_,=o. (S)

When r = O, this reduces to m* — n 2 = O, which determines

the values of m, and for other values of r it gives

Ar = _
(m + 2r+ n)(m + 2r - n)

Ar-i ' ^
the relation between any two successive coefficients.

For the first value of m, namely n, this relation becomes

A
l

A
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whence, determining the successive coefficients in equation
(3),

the first integral of the equation is

ix' 1 x* "1

1 -7TT-,-> + 77, ,. T^ , „s ^n--..J. (7)-V, = -4.*"
8-fl2' T (« + 1)0 + 2) 2*. 2 !

"

In like manner, the other integral is found to be

^-^-"[ I +^rT^ + (w _ l)

I

(w _ 2) i^-, + ...],(8>

and the complete integral is j/ = A y 1

-4- B^yv
*

This example illustrates a special case which may arise in

this form of solution. If n is a positive integer, the second

series will contain infinite coefficients. For example, if n ~ 2,

the third coefficient, or £„ is infinite, unless we take B
a
= 0, in

which case B
2
is indeterminate and we have a repetition of the

solution jj/j. This will always occur when the same powers of

x occur in the two series, including, of course, the case in which

m has equal roots. For the mode of obtaining a new integral

in such cases the complete treatises must be referred to.f

It will be noticed that the simplicity of the relation between

consecutive coefficients in this example is due to the fact that

equation (1) contained but two groups of terms producing

different powers of x, when Axm is substituted for y as in ex-

pression (2). The group containing the second derivative

necessarily gives rise to a coefficient of the second degree in

;«, and from it we obtained two values of m. Moreover, be-

cause the other group was of a degree higher by two units, the

assumed series was an ascending one, proceeding by powers

of x\

* The Besselian function of the «th order usually denoted byJn is the value

of y\ above, divided by 2"»! if n is a positive integer, or generally by 2"F(«+i).

For a complete discussion of these functions see Lommel's Studien iiber die

Bessel'schen Functionen, Leipzig, 1868; Todhunter's Treatise on Laplace's,

Lamp's and Bessel's Functions, London, 1875, etc -

f A solution of the kind referred to contains as one term the product of the

regular solution and log x, and is sometimes called a " logarithmic solution.''

See also American Journal of Mathematics, Vol. XI, p. 37. In the case of

Bessel's equation, the logarithmic solution is the "Besselian Function of the

cecond kind.''
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In the following example,

d 2y dy y
-ds+ aTx - 2

x> = > <9>

there are also two such groups of terms, and their difference

of degree shows that the series must ascend by simple powers.

We assume therefore at once

y = 2A rxm+r
. (io)

The result of substitution is

%\_{(m-\-r)(m+r-i)—2}A rx
m+r-2+ a(m+r)A rx

m+r - t'}= o. (u,

Equating to zero the coefficient of x'"
+r~2

,

{m-\-r-\- i)(m + r — 2}A r -\-a{m-\-r — i)A r- l = o, (12)

which, when r = o, gives

{tn-\-\)(m — 2)A
i
=o, (13)

and when r > o,

tfi —r- T — I

A r = — a-,
j

1

—

T-,
j

'-rA r .v (14)

The roots of equation (13) are m — 2 and m = — I; taking

m = 2, the relation (14) becomes

r+i
A

(r+3)r

whence the first integral is

A^ = A
a
x{i-

2
-ax +^a^- r̂6

a^ +...]. (i S>

Taking the second value wz = — 1, equation (14) gives

r — 2
,

r(V - 3)
r— I J

whence 2?, = B , and 5, = o *; therefore the second inte-

gral is the finite expression

*.y, = b^-\i -
\
ax ~\=B^rx - \ ]• (

i6)

*i?3 would take the indeterminate form, and if we suppose it to have a finite

value, the rest of the series is equivalent to £,),, reproducing the first integral.
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When the coefficient of the term of highest degree in the

result of substitution, such as equation (n), contains m, it is

possible to obtain a solution in descending powers of x. In

this case, m occurring only in the first degree, but one such

solution can be found ; it would be identical with the finite

integral (16). In the general case there will be two such solu-

tions, and they will be convergent for values of x greater than

unity, while the ascending series will converge for values less

than unity.*

When the second member of the equation is a power of x,

the particular integral can be determined in the form of a series

in a similar manner. For example, suppose the second mem-

ber of equation (9) to have been xi
. Then, making the sub-

stitution as before, we have the same relation between consecu-

tive coefficients; but when r = o, instead of equation (13) we

have
(in + \)(m — 2)A

a
xm-2 — xi

to determine the initial term of the series. This gives m = i\

and A
a
=

-f ; hence, putting in = \ in equation (14), we find for

the particular integral f

9-3 ' 9- n-3-5

A linear equation remains linear for two important classes

of transformations ; first, when the independent variable is

changed to any function of x, and second, when for y we put

vflx). As an example of the latter, let y = e~axv be substituted

in equation (9) above. After rejecting the factor e~", the

result is

<Fv dv 2v

dx* dx x*

Since this differs from the given equation only in the sign

*When there are two groups of terms, the integrals are expressible in terms

of Gauss's " Hypergeometric Series."

f If the second member is a term of the complementary function (for ex-

ample, in this case, if it is any integral power of x), the particular integral will

take the logarithmic form referred to in the foot-note on p. 346.

4 a

y = —x^
7

'ax+ J^-5-Z_aV -...!•
9-II.3.5 J
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of a, we infer from equation (16) that it has the finite integral

v = --{--. Hence the complete integral of equation (9) can:

be written in the form

xy — c
x
(2 — ax) -\- c,e-

ax
(2 + ax).

Prob. 69. Integrate in series the equation -~ + xy = o.

An, ^4-I^+L^- . . .)+^(.-
4
V+^_ . . .).);

Prob. 70. Integrate in series x'—,; 4- x'^- 4- (x — z)y = o.
ax ax ,J

Prob. 71. Derive for the equation of Prob. 70 the integral

y3
— e

x(x~ 1 + 1 + i*), and find its relation to those found above.

Art. 19. Systems of Differential Equations.

It is shown in Art. 12 that a determinate system of n differ-

ential equations of the first order connecting n -\- 1 variables

has for its complete solution as many integral equations con-

necting the variables and also involving n constants of inte-

gration. The result of eliminating n — 1 variables would be a

single relation between the remaining two variables containing

in general the n constants. But the elimination may also be

effected in the differential system, the result being in general

an equation of the nth. order of which the equation just men-

tioned is the complete integral. For example, if there were

two equations of the first order connecting the variables x and

y with the independent variable t, by differentiating each we

should have four equations from which to eliminate one vari-

able, say y, and its two derivatives* with respect to t, leaving

a single equation of the second order between x and t.

It is easy to see that the same conclusions hold if some of

the given equations are of higher order, except that the order

of the result will be correspondingly higher, its index being in

* In general, there would be »2 equations from which to eliminate « — r

variables and re derivatives of each, that is, (re — i)(re + i) = re
8 — I quantities

leaving a single equation of the reth order.
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dx
A
~di
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In general, the solution of a system of differential equations

depends upon our ability to combine them in such a way as

to form exact equations. For example, from the dynamical

system
d*x _ d'y d*z _ , ,

lf~ X' a7>-
V

' df~ Z' (I)

where X, Y, Z are functions of x, y, and z, but not of t,

we form the equation

dx dx dy ,dz dz dz— d~ 4- ~d —- -4- -rd—- = Xdx+ Ydy -4~ Zdz.
dt dt ' dt dt ' dt dt '

J '

The first member is an exact differential, and we know that for

a conservative field of force the second member is also exact,

that is, it is the differential of a function U of x, y, and z.

The integral

is that first integral of the system (i) which is known as the

equation of energy for the unit mass.

Just as in Art. 13 an equation of the second order was re-

garded as equivalent to two equations of the first order, so the

system (l)in connection with the equation defining the resolved

velocities forms a system of six equations of the first order, of

which system equation (2) is an " integral " in the sense ex-

plained in Art. 12.

„ , . dx dy
,

Prob. 72. Solve the equations = — = dt as a system Iin-— my mx
ear in /. (Ans. x = A cos mt-j-2? sin mt, y ~A smmt—B costnt.)

dz dy
Prob. 73. Solve the system -. \- ny = e

x
,
— -\- z = o.

(Ans. y = Aenx+ £r"x + -f— , « = - nAenx+ nBe ~ nx - f -.)

d'x dy
Prob. 74. Find for the system —j— = x<p(x, y), -rj- = y<p{x,y)

a first integral independent of the function <f>.

/ A
dy ^x .
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Prob. 75. The approximate equations for the horizontal motion

of a pendulum, when the earth's rotation is taken into account, are

d?x dy
,

gx d'y dx gy

df- 2rdF+i=°' d7 + 2r^+T = '

show that both x and y are of the form

A cos nj + B sin nj -\- C cos nj + D sin nj.

Art. 20. First Order and Degree with Three
Variables.

The equation of the first order and degree between three

variables x, y and z may be written

Pdx + Qdy + Rdz = o, (1)

where P, Q and R are functions of x, y and z. When this

equation is exact, P, Q and R are the partial derivatives of

some function u, of x, y and z ;
and we derive, as in Art. 4,

dP_d_Q dQ^dR_ dR^dP
(

.

dy
~ dx

:

dz dy' dx dz W
for the conditions of exactness. In the case of two variables,

when the equation is not exact integrating factors always exist;

but in this case, there is not always a factor u such that /.iP,

jaQ and pR (put in place of P, Q, and R) will satisfy all three

of the conditions (2). It is easily shown, that for this purpose

the relation

\dz dy' \dx aW ^dy dxl
u/

must exist between the given values of P, Q, and R. This is-

therefore the " condition of integrability " of equation (1).*

When this condition is fulfilled equation (1) may be inte-

grated by first supposing one variable, say z, to be constant.

Thus, integrating Pdx -(- Qdy = o, and supposing the constant

of integration C to be a function of z, we obtain the integral, so

* When there are more than three variables such a condition of integra-

bility exists for each group of three variables, but these conditions are not alt

independent. Thus with four variables there are but three independent con-

ditions.
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far as it depends upon x and y. Finally, by comparing the

total differential of this result with the given equation we de-

termine dC in terms of z and dz, and thence by integration the

value of C.

It may be noticed that when certain terms of an exact

equation forms an exact differential, the remaining terms must
also be exact. It follows that if one of the variables, say z

can be completely separated from the other two (so that in

equation (i) R becomes a function of z only and P and Q func-

tions of x and_y, but not of z) the terms Pdx -\- Qdy must be
thus rendered exact if the equation is integrable.* For example,

zydx — zxdy — y
2dz = o.

is an integrable equation. Accordingly, dividing by y'z. which
we notice separates the variable z from x and y, puts it in the

exact form
ydx — xdy dz

i
= o,

y z

of which the integral is x = y log cz.

Regarding x, y and z as coordinates of a moving point,

an integrable equation restricts the point to motion upon one

of the surfaces belonging to the system of surfaces represented

by the integral ; in other words, the point (x, y, z) moves in an

arbitrary curve drawn on such a surface. Let us now consider

in what way equation (i) restricts the motion of a point when
it is not integrable. The direction cosines of a moving point

are proportional to dx, dy, and dz; hence, denoting them by

/, m and n, the direction of motion of the point satisfying

equation (i) must satisfy the condition

Pl+ Qm+ Rn=. o. (4)

It is convenient to consider in this connection an auxiliary

system of lines represented, as explained in Art. 12, by the

simultaneous equations

dx _ dy __dz

~p~~Q~~R' (5)

* In fact for this case the condition (3) reduces to its last term, which ex-

presses the exactness of Pdx-\- Qdy.
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The direction cosines of a point moving in one of the lines

of this system are proportional to P, Q and R. Hence, de-

noting them by A, ju, v, equation (4) gives

XI -j- fxm -\- vn = o
(6)

for the relation between the directions of two moving points,

whose paths intersect, subject respectively to equation (1) and

to equations (5). The paths in question therefore intersect at

right angles; therefore equation (1) simply restricts a point to

move in a path which cuts orthogonally the lines of the auxili-

ary system.

Now, if there be a system of surfaces which cut the auxiliary

lines orthogonally, the restriction just mentioned is completely

expressed by the requirement that the line shall lie on one of

these surfaces, the line being otherwise entirely arbitrary.

This is the case in which equation (1) is integrable.*

On the other hand, when the equation is not integrable, the

restriction can only be expressed by two equations involving

an arbitrary function. Thus if we assume in advance one such

relation, we know from Art. 12 that the given equation (1)

together with the first derivative of the assumed relation forms

a system admitting of solution in the form of two integrals-

Both of these integrals will involve the assumed function. For

any particular value of that function we have a system of lines

satisfying equation (1), and the arbitrary character of the func-

tion makes the solution sufficiently general to include all lines

which satisfy the equation.f

Prob. 76. Show that the equation

(mz — ny)dx -f- (nx — lz)dy + (fy
— mx)dz = o

is integrable, and infer from the integral the character of the auxil-

* It follows that, with respect to the system of lines represented by equations

(5), equation (3) is the condition that the system shall admit of surfaces cutting

them orthogonally. The lines of force in any field of conservative forces form

such a system, the orthogonal surfaces being the equipotential surfaces.

f So too there is an arbitrary element about the path of a point when the

single equation to which it is subject is integrable, but this enters only into one

of the two equations necessary to define the path.
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iary lines. (Compare the illustrative example at the end of Art. 1 2!)

(Ans. nx — Iz — C(ny — mz).)

Prob. 77. Solve ysfdx — z'dy — e'dz = o. (Ans. yz =ex
{i-\-cz).)

Prob. 78. Find the equation which in connection with>» = /{x)
forms the solution of dz = aydx -\- My.

Prob. 79. Show that a general solution of

ydx = (x — z){dy — dz)

is given by the equations

y — z=(p(x), y= (x- z)<f>'(x).

(This is an example of " Monge's Solution.")

Art. 21. Partial Differential Equations of First

Order and Degree.

Let x denote an unknown function of the two independent

variables x and y, and let

_ df_ _dz
p ~ dx'

g ~dy
denote its partial derivatives : a relation between one or both

of these derivatives and the variables is called a " partial dif-

ferential equation " of the first order.' A value of z in terms of

.* and y which with its derivatives satisfies the equation, or a

relation between x, y and z which makes z implicitly such a

function, is a " particular integral." The most general equation

of this kind is called the " general integral."

If only one of the derivatives, say/, occurs, the equation

may be solved as an ordinary differential equation. For if y is

considered as a constant,/ becomes the ordinary derivative of

z with respect to x\ therefore, if in the complete integral of

the equation thus regarded we replace the constant of integra-

tion by an arbitrary function of y, we shall have a relation

which includes all particular integrals and has the greatest pos-

sible generality. It will be found that, in like manner, when

both p and q are present, the general integral involves an arbi-

trary function.

We proceed to give Lagrange's solution of the equation of
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the first order and degree, or " linear equation," which may be

written in the form
Pp+Qq = R,

(!)

P, Q and R denoting functions of x, y and z. Let u = a,in

which u is a function of x, y and z, and a, a constant, be an

integral of equation (i). Taking derivatives with respect to x

and y respectively, we have

3« . 3« 3« . 3^
3^+3^ =

°' 37+ 3^ = °'

and substitution of the values of / and q in equation (i) gives

the symmetrical relation

^ + G
37
+^ = a (2)

Consider now the system of simultaneous ordinary differ-

ential equations
dx dy dz

Let « = o be one of the integrals (see Art. 12) of this sys-

tem. Taking its total differential,

3«, ,3", ,
3k,—ax -+- —dy -+- —-dz = O

:

dx ^ dy
J ^ dz

and since by equations (3) dx, dy and dz are proportional to P,

Q and i?, we obtain by substitution

which is identical with equation (2). It follows that every

integral of the system (3) satisfies equation (1), and conversely,

so that the general expression for the integrals of (3) will be

the general integral of equation (1).

Now let v = b be another integral of equations (3), so that

v is also a function which satisfies equation (2). As explained

in Art. 12, each of the equations u = a, v = b is the equation

of a surface passing through a singly infinite system of lines

belonging to the doubly infinite system represented by equa-

tions (3). What we require is the general expression for any



Art. 21.] PARTIAL EQUATIONS, FIRST ORDER. 357

surface passing through lines of the system (and intersecting

none of them). It is evident that f{u, v) =/(a, b) = C is such

an equation,* and accordingly f(u, v), where / is an arbitrary

function, will be found to satisfy equation (2). Therefore, to

solve equation (1), we find two independent integrals u = a,

v = b of the auxiliary system (3), (sometimes called Lagrange's

equations,) and then put

u — <p{v), (4)

an equation which is evidently equally general with f(u, v) = O.

Conversely, it may be shown that any equation of the form

(4), regarded as a primitive, gives rise to a definite partial

differential equation of Lagrange's linear form. For, taking

partial derivatives with respect to the independent variables

x and y, we have

~dt

9j + aF> = *(*>

"

9z,
_u

9z,J

3« ,
3« ., Adv dv "I

and eliminating <p'(v) from these equations, the term contain-

ing/^ vanishes, giving the result

(5)

3« du
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As an illustration, let the given partial differential equa-

tion be
(mz — ny)p + inx — lz)q = ly — mx, (6)

for which Lagrange's Equations are

dx __
dy dz

mz — ny nx — Iz ly — mx' "

'

These equations were solved at the end of Art. 12, the two

integrals there found being

Ix + my + nz — a and x' + y + *' = <J'. (8)

Hence in this case the system of " Lagrangean lines" con-

sists of the entire system of circles having the straight line

* — 1- — -
( ),

I
~~ m ~~

n y

for axis. The general integral of equation (6) is then

Ix -\- my -\- nz = 4>(x* -f- y
1 + z*)>

(
I0

)

which represents any surface passing through the circles just

mentioned, that is, any surface of revolution of which (9) is the

axis.*

Lagrange's solution extends to the linear equation contain-

ing n independent variables. Thus the equation being

the auxiliary equations are

dx^ dx
t _ _ dxn dz

—^

—

'-—- = o is the condition that <p (a function of x, y and s) is expressible

d(x, y, z)

identically as a function of u and v, that is to say, that = shall be an in-

tegral of Pp-\- Q<?= R.

* When the equation Pdx -f- Qdy + Rdz =0 is integrable (as it is in the

above example; see Prob. 76, Art. 20), its integral, which may be put in the form

V= C, represents a singly infinite system of surfaces which the Lagrangean

lines cut orthogonally ; therefore, in this case, the general integral may be de-

fined as the general equation of the surfaces which cut orthogonally the system

V — C. Conversely, starting with a given system V = C, u = f(v) is the gen-

eral equation of the orthogonal surfaces, if u = a and v — b are integrals of

dx I = dy I = dz I .

/ dx
y
l dy I dz
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and if u
t = c

x , u
t
= c% , . . . un = cn are independent integrals,

the most general solution is

f{u lt U
% , . 0. un) = o,

where /is an arbitrary function.

Prob. 8o. Solve xgt + yz~ = xy. ^Ans. xy- z> =f (-))
dz dz f

' "
' ins. xy— z~ = t

\yi

Prob. 8i. Solve (y -f- z)p -f- (z -f jc)^ = jc -f j\

Prob. 82. Solve (# + j)(/ — q) = z.

(Ans. {x r̂ y)\ogz—x—f(x+y).)
Prob. 83. Solve jc(^ — z)p +y(z — x)q = z(x —y).

(Ans. x -\-y -\- z = f{xyz).)

Art. 22. Complete and General Integrals.

We have seen in the preceding article that an equation be-

tween three variables containing an arbitrary function gives

rise to a partial differential equation of the linear form. It

follows that, when tbe equation is not linear in p and g, the

general integral cannot be expressed by a single equation of

the form <p(u, v) = o; it will, however, still be found to depend

upon a single arbitrary function.

It therefore becomes necessary to consider an integral hav-

ing as much generality as can be given by the presence of arbi-

trary constants. Such an equation is called a " complete in-

tegral" ; it contains two arbitrary constants (n arbitrary con-

stants in the general case of n independent variables), because

this is the number which can be eliminated from such an equa-

tion, considered as a primitive, and its two derived equations.

For example, if

(x - a)' + {y- by + z> = k\

a and b being regarded as arbitrary, be taken as the primitive,

the derived equations are

x — a -f- zp = o, y — b -f- zq = o,

and the elimination of a and b gives the differential equation

*(/ + <f + 1) = *.

of which therefore the given equation is a complete integral.
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Geometrically, the complete integral represents a doubly in-

finite system of surfaces ; in this case they are spherical sur-

faces having a given radius and centers in the plane of xy.

In general, a partial differential equation of the first order

with two independent variables is of the form

F{x, y, z, p, q) = o, (i)

and a complete integral is of the form

f[x, y, z, a, b) = o. (2)

In equation (1) suppose x, y and z to have special values,

namely, the coordinates of a special point A ; the equation

becomes a relation between p and q. Now consider any sur-

face passing through A of which the equation is an integral of

(1), or, as we may call it, a given "integral surface" passing

through A. The tangent plane to this surface at A determines

values of p and q which must satisfy the relation just men-

tioned. Consider also those of the complete integral surfaces

[equation (2)] which pass through A. They form a singly in-

finite system whose tangent planes at A have values of p and

q which also satisfy the relation. There is obviously among

them one which has the same value of p, and therefore also

the same value of q, as the given integral. Thus there is one

of the complete integral surfaces which touches at A the given

integral surface. It follows that every integral surface (not in-

cluded in the complete integral) must at every one of its points

touch a surface included in the complete integral.*

It is hence evident that every integral surface is the en-

velope of a singly infinite system selected from the complete

integral system. Thus, in the example at the beginning of

this article, a right cylinder whose radius is k and whose axis

lies in the plane of xy is an integral, because it is the envelope

* Values of x, y, and z, determining a point, together with values of/ and q,

determining the direction of a surface at that point, are said to constitute an

"element of surface.'' The theorem shows that the complete integral is "com-

plete " in the sense of including all the surface elements which satisfy the differ-

ential equation. The method of grouping the "consecutive" elements to form

an integral surface is to a certain extent arbitrary.
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of those among the spheres represented by the complete in-

tegral whose centers are on the axis of the cylinder. If we

make the center of the sphere describe an arbitrary curve in

the plane of xy we shall have the general integral in this ex-

ample.

In general, if in equation (2) an arbitrary relation between

a and b, such as b = <p(a), be established, the envelope of the

singly infinite system of surfaces thus defined will represent

the general integral. By the usual process, the equation of

the envelope is the result of eliminating a between the two

equations

f(x, y, z, a, 4>{a) ) = o,
âAx

, y, z, a, <f>(a)) = o. (3)

These two equations together determine a line, namely, the

" ultimate intersection of two consecutive surfaces." Such

lines are called the " characteristics " of the differential equa-

tion. They are independent of any particular form of the

complete integral, being in fact lines along which all integral

surfaces which pass through them touch one another. In the

illustrative exr.mple above they are equal circles with centers

in the plane of xy and planes perpendicular to it*

The example also furnishes an instance of a "singular so-

lution " analogous to those of ordinary differential equations.

*The characteristics are to be regarded not merely as lines, but as " linear

elements of surface," since they determine at each of their points the direction

of the surfaces passing through them. Thus, in the illustration, they are cir-

cles regarded as great-circle elements of a sphere, or as elements of a right

cylinder, and may be likened to narrow hoops. They constitute in all cases a

triply infinite system. The surfaces of a complete integral system contain them

all, but they are differently grouped in different integral surfaces.

If we arbitrarily select a curve in space there will in general be at each of

its points but one characteristic through which the selected curve passes; that

is, whose tangent plane contains the tangent to the selected curve. These char-

acteristics (for all points of the curve) form an integral surface passing through

the selected curve ; and it is the only one which passes through it unless it be

itself a characteristic. Integral surfaces of a special kind result when the se-

lected curve is reduced to a point. In the illustration these are the results of

rotating the circle about a line parallel to the axis of z.
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For the planes z = ± k envelop the whole system of spheres,

represented by the complete integral, and indeed all the sur-

faces included in the general integral. When a singular solu-

tion exists it is included in the result of eliminating a and b-

from equation (2) and its derivatives with respect to a and b,

that is, from 3/3/
f=°> da = °' db=°' (4)

but, as in the case of ordinary equations, this result may in-

clude relations which are not solutions.

Prob. 84. Derive a differential equation from the primitive

Ix + my -\- nz — a, where /, m, n are connected by the relation

f + m* + n* = 1.

Prob. 85. Show that the singular solution of the equation,

found in Prob. 84 represents a sphere, that the characteristics con-

sist of all the straight lines which touch this sphere, and that the

general integral therefore represents all developable surfaces which

touch the sphere.

Prob. 86. Find the integral which results from taking in the

general integral above /' -{-m
2 = cos

2
(a constant) for the arbitrary-

relation between the parameters.

Art. 23. Complete Integral for Special Forms.

A complete integral of the partial differential equation

F(x, y, z, p, q) = O (i)>

contains two constants, a and b. If a be regarded as fixed and

b as an arbitrary parameter, it is the equation of a singly in-

finite system of surfaces, of which one can be found passing

through any given point. The ordinary differential equation

of this system, which will be independent of b, may be put in

the form
dz = pdx -\- qdy, (2)'

in which the coefficients/' and q are functions of the variables

and the constant a. Now the form of equation (2) shows that

these quantities are the partial derivatives of z, in an integral

of equation (1); therefore they are values of p and q which
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satisfy equation (i). Conversely, if values oip and q in terms

of the variables and a constant a which satisfy equation (i) are

such as to make equation (2) the differential equation of a sys-

tem of surfaces, these surfaces will be integrals. In other

words, if we can find values of p and q containing a constant a

which satisfy equation (1) and make dz = pdx -\- qdy inte-

grate, we can obtain by direct integration a complete inte-

gral, the integration introducing a second constant.

There are certain forms of equations for which such values

of p and q are easily found. In particular there are forms in

which p and q admit of constant values, and these, obviously

make equation (2) integrable. Thus, if the equation contains

p and q only, being of the form

F(p, q) = o, (3)

we may put/ = a and q = b, provided

F{a, b) = o. (4>

Equation (2) thus becomes

dz = adx -\- bdy,

whence we have the complete integral

z = ax -\- by -f- c, (5}

in which a and b are connected by the relation (4) so that a, b

and c are equivalent to two arbitrary constants.

In the next place, if the equation is of the form

B=px + qy+f(p,q), (6)

which is analogous to Clairaut's form, Art. 10, constant values

of p and q are again admissible if they satisfy

z = ax + by+/(a, b), (7)

and this is itself the complete integral. For this equation is

of the form z =ax-\- by -\- c, and expresses in itself the rela-

tions between the three constants. Problem 84 of the preced-

ing article is an example of this form.

In the third place, suppose the equation to be of the form

F(z,p,q) = o, (8)
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in which neither x nor y appears explicitly. If we assume

q = ap, p will be a function of z determined from

F(z, p, ap) — o, say p = <p(z).
(
Q
)

Then dz =pdx -f qdy= o becomes dz — (p(z){dx -j- ady), which is

integrable, giving the complete integral

x+ay=fw)

+b' (I0)

A fourth case is that in which, while z does not explicitly

occur, it is possible to separate x and p from y and q, thus put-

ting the equation in the form

f&,P)=A(y,q)- (n)

If we assume each member of this equation equal to a con-

stant a, we may determine/ and q in the forms

/ = <plx, a), q = cpiy, a). (12)

and dz = pdx -\- qdy takes an integrable form giving

s — j <PM> aYx+f<t>.{y> a¥y + b. (13)

It is frequently possible to reduce a given equation by trans-

formation of the variables to one of the four forms considered

in this article.* For example, the equation x*p'
-\-f q' = £

may be written

(xdzV lydz\_
Kzdxl^ \zdyl ~ *'

*The general method, due to Charpit, of finding a proper value of^ consists

of establishing, by means of the condition of integrability, a linear partial dif-

ferential equation for/, of which we need only a particular integral. This may

be any value of p taken from the auxiliary equations employed in Lagrange's

process. See Boole, Differential Equations (London 1865), p. 336 ; also For-

syth, Differential Equations (London 1885), p. 316, in which the auxiliary equa-

tions are deduced in a more general and symmetrical form, involving both /

and q. These equations are in fact the equations of the characteristics regarded

as in the concluding note to the preceding article. Denoting the partial deriva-

tives of F(x, y, z, p, q) by X, Y, Z, P, Q, they are

dx dy dz dp dq

~P~~~
Z ~Q~ Pp+Qq

= ~X+Zp =
~^+Zq'

See Jordan's Course d'Analyse (Paris, 1887), vol. m, p. 318 ; Johnson's Differ-

ential Equations (New York, 1889), p. 300. Any relation involving one or both

the quantities p and q, combined with p=o, will furnish proper values of/
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whence, putting x' = log x, y' = log y, z' = log z, it becomes
/" + t" = i» which is of the form F{p', q') = o, equation (3).

Hence the integral is given by equation (5) when a" + 6* = 1;

it may therefore be written

z' = x' cos a -\-y' sin a -\- c,

and restoring x, y, and z, that of the given equation is

z = cxcos a
y

sin a
-

Prob. 87. Find a complete integral for/5 — q* = 1.

(Ans. a = x sec a +jy tan a -\- i.)

Prob. 88. Find the singular solution of z — px -f- qy + pq.

(Ans. z = — jy.

)

Prob. 89. Solve by transformation q — 2yp'.

(Ans. 2 = ax + «
2y + 2>)

Prob. 90. Solve z{p*—g2

) — x — y.

(Ans. s* = (* + «)» + (y -f <*)* + £.)

Prob. 91. Show that the solution given for the form F{z,p, q) = o
represents cylindrical surfaces, and that F{z, o, o) = o is a singular

solution.

Prob. 92. Deduce by the method quoted in the foot-note two
complete integrals of pq = px -f- gy.

(Ans. 22 =
(-J-

+ ay
J
+/J, and x = xy + y */(*' + a) + b.)

Art. 24. Partial Equations of Second Order.

We have seen in the preceding articles that the general

solution of a partial differential equation of the first order de-

pends upon an arbitrary function ; although it is only when
the equation is linear in p and q that it is expressible by a

single equation. But in the case of higher orders no general

account can be given of the nature of a solution. Moreover,

when we consider the equations derivable from a primitive con-

taining arbitrary functions, there is no correspondence between

their number and the order of the equation. For example, if

and q. Sometimes several such relations are readily found ; for example, for

the equation e=pg we thus obtain the two complete integrals

z = (y-\-a)(x + b) and 42 =(- + ay + /Sj .

x -^
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the primitive with two independent variables contains two ar-

bitrary functions, it is not generally possible to eliminate them

and their derivatives from the primitive and its two derived

equations of the first and three of the second order.

Instead of a primitive containing two arbitrary functions,

let us take an equation of the first order containing a single

arbitrary function. This may be put in the form u = <p(v),

u and v now denoting known functions of x,y,z,p, and q.

(p\v) may now be eliminated from the two derived equations

as in Art. 21. Denoting the second derivatives of z by

_ ?fz_ _ _tfz_ ,_9!fr ~
dx>'

s ~ dxdy' ~ ay
the result is found to be of the form

Rr + Ss-\- 7V+ U(rt- s°) = V, (i)

in which R, S, T, U, and V are functions of x, y, z, p, and q.

With reference to the differential equation of the second order

the equation u = 0(w) is called an " intermediate equation of

the first order "
: it is analogous to the first integral of an ordi-

nary equation of the second order. It follows that an inter-

mediate equation cannot exist unless the equation is of the

form (i); moreover, there are two other conditions which

must exist between the functions R, S, T, and U.

In some simple cases an intermediate equation can be ob-

tained by direct integration. Thus, if the equation contains

derivatives with respect to one only of the variables, it may be

treated as an ordinary differential equation of the second order,

the constants being replaced by arbitrary functions of the

other variable. Given, for example, the equation xr — p = xy,

which may be written

xdp — pdx = xy dx.

This becomes exact with reference to x when divided by x',

and gives the intermediate equation

p =yx\og x -f- x<p(y).

A second integration (and change in the form of the arbitrary

function) gives the general integral

z = iyx* log x + x'<?>(y) + f(y).
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Again, the equation p-\- r -\-s= i is already exact, and
gives the intermediate equation

which is of Lagrange's form. The auxiliary equations* are

dx = dy = "- —

,

x _ B _j_ 0(j,y

of which the first gives x — y = a, and eliminating x from the

second, its integral is of the form

z = a-\- <p(y) +e~ yb.

Hence, putting b = ip(a), we have for the final integral

z = x + 0O) + e-*ip{x — y),

in which a further change is made in the form of the arbitrary

function <p.

Prob. 93. Solve t — q = e*-\-ey.

(Ans. z =y{ey — ex) + <p(x) + e'ip{x).)

Prob. 94. Solve r -\- p* =y'.

(Ans. z — logf^^O') - e' xy
] + t/>(y).)

Prob. 95. Solve y*(s — t) = x.

(Ans. z=(x +y) logy + <p[x) -f if,(x
| y).)

Prob. 96. Solve /^ — qr = o. (Ans. jc = 0(j>) + 'p(z).)

Prob. 97. Show that Monge's equations (see foot-note) give for

Prob. 96 the intermediate integral / = <p(z) and hence derive the

solution.

* In Monge's method (for which the reader must be referred to the complete

treatises) of finding an intermediate integral of

Rr + Ss + Tt = V
when one exists, the auxiliary equations

Rdy1 — Sdy dx + Tdx* = o, Rdp dy+ Tdq dx = Vdxdy

are established. These, in connection with

dz = pdx+ qdy,

form an incomplete system of ordinary differential equations, between the five

variables x, y, z, p, and q. But if it is possible to obtain two integrals of the

system in the form u = a, v = 6, u = <p(v) will be the intermediate integral.

The first of the auxiliary equations is a quadratic giving two values for the ratio

dy : dx. If these are distinct, and an intermediate integral can be found, for

each, the values of p and q determined from them will make dz = pdx -\- qdy

jntegrable, and Sfive the general integral at once.
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Prob. 98. Derive by Monge's method for q*r — 2pqs + p*t =
the intermediate integral/ = q 4>{z), and thence the general integral.

(Ans. y + x<p(z) = f(z).)

Art. 25. Linear Partial Differential Equations.

Equations which are linear with respect to the dependent

variable and its partial derivatives may be treated by a method

analogous to that employed in the case of ordinary differential

equations. We shall consider only the case of two independ-

ent variables x and y, and put

dx' dy

so that the higher derivatives are denoted by the symbols Zf,

DD' , D", D\ etc. Supposing further that the coefficients are

constants, the equation may be written in the form

f(D, D')z = F{x, y), (1)

in which f denotes an algebraic function, or polynomial, of

which the degree corresponds to the order of the differential

equation. Understanding by an "integral" of this equation

an explicit value of z in terms of x and y, it is obvious, as in

Art. 15, that the sum of a particular integral and the general

integral of

/(£>, D')z = o (2)

will constitute an equally general solution of equation (1). It

is, however, only when f(D, D') is a homogeneous function of D
and D' that we can obtain a solution of equation (2) containing

n arbitrary functions,* which solution is also the "comple-

mentary function" for equation (1).

Suppose then the equation to be of the form

d"z
,

d"z
,

,
. d"z . .

^s=+^s=^+---+^ = * (3)

and let us assume z = <p(y -\- mx), (4}

* It is assumed that such a solution constitutes the general integral of an

equation of the Kth order; for a primitive containing more than n independent

arbitrary functions cannot give rise by their elimination to an equation of the

Kth order.
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where m is a constant to be determined. From equation (4),

Dz = m<p'(y -\- mx) and D'z = <p'(y -f- mx), so that Dz = mD'z,

D'z = mW'z, DD'z = mZ>'>, etc. Substituting in equation (3)

and rejecting the factor D'"z or <p
(n\y -\- mx), we have

A m» + A
l
m»- 1 + ... + A„ = o (5)

for the determination of m. If m
x , m„ . . . m„ are distinct roots

of this equation,

* = 0i(7 + mS) +<P,(J> + *«,#) + . . . + 0„O + w„^) (6)

is the general integral of equation (3).

d'z d'z
For example, the general integral of -j-j — -^-, = o is thus

found to be z = 0(j/ -\- x) -\- tp(y — x). Any expression of the

form Axy -\- Bx -\- Cy -\- D'\s a particular integral ; accordingly

it is expressible as the sum of certain functions of x -\- y and

x — y respectively.

The homogeneous equation (3) may now be written sym-

bolically in the form

(D - m,D')(D - mJD') ...(£>- mnD')z = o, (7)

in which the several factors correspond to the several terms of

the general integral. If two of the roots of equation (5) are

equal, say, to *«,, the corresponding terms in equation (6) are

equivalent to a single arbitrary function. To form the general

integral we need an integral of

(D — m
x
DJz = o (8)

in addition to 0(y -\- m,x). This will in fact be the solution of

(D — m^D')z = <p(y -\- m,x); (9)

for, if we operate with D — mJD' upon both members of this

equation, we obtain equation (8). Writing equation (9) in the

form

p — mjj = <p{y + mx),

Lagrange's equations are

dy _ dz

giving the integrals y -f- m x
x = a, z = x<p{a) -\- b. Hence the

integral of equation (9) is

z = xcp(y + m
x
x) -\- ip(y -\- m

x
x), (10)
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and regarding cp also as arbitrary, these are the two independ-

ent terms corresponding to the pair of equal roots.

If equation (5) has a pair of imaginary roots m = jj, ±_iv

the corresponding terms of the integral take the form

<p{y -\-fxx -\-ivx) -j- tp(y -4- fxx — ivx),

which when and tp are real functions contain imaginary

terms. If we restrict ourselves to real integrals we cannot

now say that there are two radically distinct classes of inte-

grals ; but if any real function of y -4- l*x -4- ivx be put in the

form X-\-iY, either of the real functions X or Fwill be an

integral of the equation. Given, for example, the equation

d*z d*z __

ax1+ ay~°'

of which the general integral is

z = <p(y -f- ix) -4- tp(y — ix)
;

to obtain a real integral take either the real or the coefficient

of the imaginary part of any real form of <p(y -j- ix). Thus, if

(pit) = e* we find ey cos^r and ey sin x, each of which is an

integral.

As in the corresponding case of ordinary equations, the

particular integral of equation (1) may be made to depend

upon the solution of linear equations of the first order. The

inverse symbol yz yj,F{x, y) in the equation corresponding

to equation (14), Art. 16, denotes the value of z in

{D — mD')z = F{x, y) or p — mq = F{x, y). (11)

For this equation Lagrange's auxiliary equations give

y -\- mx = a, z = / F(x, a — mx)dx -f- b = F,(x, a) -4- b,

and the general integral is

z = F£x,y -4- mx) -\- <p(y -\- mx). (12)

The first term, which is the particular integral, may there-

fore be found by subtracting mx from y in F{x, y), inte-
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grating with respect to x, and then adding mx to y in the

result.*

For certain forms of F{x, y) there exist more expeditious

methods, of which we shall here only notice that which applies

to the form F(ax -\- by). Since DF(ax -j- by) = aF(ax -f- by)

and D'F(ax -f- by) = bP\ax -f- by), it is readily inferred that,

when/(D, D') is a homogeneous function of the rath degree,

/(£>, D')F{ax + by) = f(a, b)F*\ax + by). (13)

That is, if t = ax -f- £jj/, the operation of /(Z>, Z)') on F{t) is

equivalent to multiplication by/"(«, £) and taking the rath de-

rivative, the final result being still a function of t. It follows

that, conversely, the operation of the inverse symbol upon a

function of t is equivalent to dividing by f{a, b) and integrating

n times. Thus,

jijhr)
F{ax+ h) =7<h)ff- • -fmdtn -

(H)

When ax -\- by is a multiple of y -\- 111
x
x, where m

x
is a root of

equation (5), this method fails with respect to the correspond-

ing symbolic factor, giving rise to an equation of the form (9),

of which the solution is given in equation (10). Given, for ex-

ample, the equation

d^z
,
d2z d'z . . . . .

,

dx>+dx-dy
- 2

d? = Sin {X -A + Sm <* +»
or (Z? — Z7) (Z? + 2Z?> = sin (x — y) -\- sin (* + j/).

The complementary function is 0(j + x) -f- ^-(;/ — 2;r). The

part of the particular integral arising from sin (x —y), in which

« = 1, b = — 1, is / /sin tdf — - sin (jt — y). That aris-

* The symbolic form of this theorem is

D -m/yF(*'
yS

>
= emXD

' I '' mxD'F^
x

'
y}dx

corresponding to equation (13), Art. 16. The symbol *«*D' here indicates the

addition of mx to y in the operand. Accordingly, using the expanded form

of the symbol,

emxD'F{y) = (i + mx — + —f- J\
+ '

• ') ^W = F^+ mx">>

the symbolic expression of Taylor's Theorem.



372 DIFFERENTIAL EQUATIONS. [CHAP. VII.

ing from sin [x -\-y) which is of the form of a term in the com-

plementary function is jz jr, cos (x -\-y), which by equa-

tion (10) is — \x cos (x-\-y). Hence the general integral of

the given equation is

z = (p(y + x) + f(y - 2x) + | sin (x —y)- \x cos
(x -\-y).

If in the equation /{£>, D')z — o the symbol f(D, D'), though

not homogeneous with respect to D and D ', can be separated

into factors, the integral is still the sum of those corresponding

to the several symbolic factors. The integral of a factor of

the first degree is found by Lagrange's process ; thus that of

(D — mD' — a)z = o (15}

is z = e
ax

cf){y -f- mx). (16)

But in the general case it is not possible to express the

solution in a form involving arbitrary functions. Let us, how-

ever, assume
3=a*x + k

y, (17)

where c, h, and k are constants. Since Dekx+iy = ke''
x+l*

and D'ehx+ky — kehx + h , substitution in f'{D, D')z = o gives

cf{h, k)e
hx + ky = O. Hence we have a solution of the form (17)

whenever h and k satisfy the relation

f(k, k) = o, (18)

c being altogether arbitrary. It is obvious that we may also

write the more general solution

z=2cehx+my
, (19)

where k = F(h) is derived from equation (18), and c and h admit

of an infinite variety of arbitrary values.

Again, since the difference of any two terms of the form

e
kx + F<-li>y with different values of h is included in expression

(19), we infer that the derivative of this expression with respect

to h is also an integral, and in like manner the second and

higher derivatives are integrals.

For example, if the equation is

d^z dz

dx'' dy ~ '
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for which equation (18) is A" — k = o, we have classes of in-

tegrals of the forms

e
hx + h*y, e

hx + hXx+ 2/iy),

e"
x + h\{x + 2hyY + 2jj/)], e"

x + h\(x + 2hy)
a+ 6y(x + ihy)\

In particular, putting A = owe obtain tfu. algebraic integrals

c
x
x, c

1
(x

1
-\-2y), c

t
(x'-\-6xy), etc.

The solution of a linear partial differential equation with

variable coefficients may sometimes be effected by a change of

the independent variables as illustrated in some of the exam-

ples below.

Prob. 99. Show that if m
l

is a triple root the corresponding

terms of the integral are x'(p(y -f- m^x) -f- xip(y-{- m^x)-\- xiy+n^x)-

pi c 1

d
"
z ^z ^z

Prob. 100. Solve 2—

—

3—— 2—

-

a
= o.

c 1
9'*

,

3"*
.
3

3

* 1
Prob. 101. Solve , + 2 4- —- = -j-.

3^ 3y 3x3/ ' 9/ *
(Ans. 2 = 0(x) + ip(x -f j) -f xj(* +jc) — ^ log #.)

Prob. 102. Solve (Z>
2 + 5Z>Z>' + 6Dn)z = ( v - 2a:)"

1
.

(Ans. a = 0(j> — 2x) + ^(_v — 3X) -|- x log (jy — 2a:).)

Prob. 10?. Solve ——; — . - + ^ 2=0.
•*

3a:
2

dxdy ^ 3je

Prob. 104. Show that for an equation of the form (15) the solu-

tion given by equation (19) is equivalent to equation (16).

v , „. l3*2 I 32 I 3 22 I 32
Prob. 105. Solve — r~j s^ = ~i^ ;

5" by transposi-
a: 3a: jc' 9.x jy 3/ /3/

don to the independent variables x* and /.

a u c c 1 a3
3

'sr
1

3*z
1
2^z

Prob. 106. Solve *— + «*_ +y^r = o.


