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ONE of the first efforts towards the formation of the Calculus of Functions is due to 
LAPLACE, whose solution of the functional equation of the first order, by means of two 

equations in finite differences, is well known. Functional equations were afterwards 
treated systematically by Mr. BABBAGE; his memoirs were published in the Transactions 
of this Society, and there is some account of them in Professor BOOLE'S Treatise on the 
Calculus of Finite Differences. A very important functional equation was solved by 
POISSON in his Memoirs on Electricity; which suggested to me the investigations I have 
now the honour to lay before the Society. 

I have commenced by discussing the linear functional equation of the first order with 
constant coefficients, when the subjects of the unknown functions are rational functions of 
the independent variable, and have shown how the solution of such equations may in a 

variety of cases be effected by series, and by definite integrals. I have then considered 
functional equations with constant coefficients of the higher orders, and have proved that 

they may be solved by methods similar to those used for equations of the first order. I 
have next proceeded with the solution of functional equations with variable coefficients. 

In connexion with functional equations, I have considered equations involving definite 

integrals, and containing an unknown function under the integral sign; the methods 

employed for their resolution depend chiefly upon the solution of functional equations, 
as effected in this paper. The Calculus of Functions has now for a long time engaged 
the attention of analysts; and I hope that the following investigations will be found to 
have extended its power and resources. 

Let the functional equation be 

nf +l2-8 nx+rx2} -p(x)=F(*x), 

where p is an unknown, and F a known function. 
Let 

n 2 
= r+r osz, 2r r 

and the equation becomes 
nn2 n 2 
2rr cos 2z}p{2 +r cos=} =--F{ + cos 

or if 

+n 
2 

Cz l(z), p{r+rcos 
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we shall have 

,(2~)-^()= + !- 2 cos z. pj(2z)- j(z) -F 
+2 cosz} 

Let 
1 

2 ~v+l 

then 
I\ 1n 2 1 

Let 
(n 2 1 C F +- cos O+ 1- 

then 

P 
( )- ^ (2I) -X(21P) 

and 

No (i) =X(2+1) +? (2 ) +a2X(2V+3)? +**? + 
Now 

7(x(if) +X(6=i))d& i( 2 
J0 1-2acos+a2 -l-c2( >) 

whence (a) is less than unity: then if 

and 

also +~ r-=(v+ l) log,2+ n log,2, 
also 

f(=X(t@) X(E-ie ), 
we shall have 

% 2V +),E27 - 2 cos 6 +o S_f(+)d' 
-f1 ( 9e(r--)0e + e- (-O)f 

= dOd( i ( ) E. - sin {f log, 2"+'+ng log 2}; 

aX ( +2x) +(2) +aX( + ) ?. 

(dddgf( ) ?( . )+6 ( 
XJo Jo E0 /e-l 7 

{sin (g log, 2")+ a sin (g log, 2"'+g log,2)+ a2sin ( log, 21+ 2g log, 2) + &c.} 

o Jo I 1--2a cos (g logs 2v+I) +a2 

Hence . 2 

** f,, dtf(etO.) +,-, - (-e OC 4 4 

1 -l 2 ag cos l - log, fi- a 

C log,fe + 2r~-n) logs' Cos-, . 4I--- 
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where 

)=F{ l+ cos cos O+)+ sinco ( --) 

+F 2r+- Cos cos (e+s?-) -t sincos (/-6-~). 

Next let the functional equation be 

Lt{ (il ?n) +n (4 -3) + 2+3} - =F( 
Let 

n 2 
_=- 4- __ cos z 

3r 4/ COS ) 

and the equation will be transformed into 
n 2 n f ) 22 

- 3r+-rcos 3z -~-r -^rcosz -= -r-+ -cos ; 

this may be written 
Lpe( 3z) --z(z)-= Xz(z) 

I 
Let 

31 

whence 

(3r) =X( 3l) +?%(ii+5) +a2X2 

The same method evidently applies, and we thus obtain the value of p(x). 
In the same way we may treat the equation 

(ao+l+a1x+a2+++ , . +* xm)-'?(x)=F (), 
where a, a2, aa ,... a,_ must be supposed given in terms of a,_, a. 

We will now consider the equation 
f( n-r) r2 + 2n2 + 2r (rr'-nr' - 2nn') + ((n -r) r' + 2rn'2) '2) 

/ ,( '-r)r2 + 2r'n2 +2rJ(r -n'r-2n, ) + ((n'-r')r 2+ 2r 2 -(x)=F(x) 
Let 

n +r cos z 
=n+ r- cos z 

Then the equation becomes 
f( n+rcos2z ) (n+rcosz n+rcosz) 

n+ rf, co0s 2z coszf Fn + r''cos7c4 

which may be treated as before: as we may write it 

p1(2z)- vP,0(z)=X.(z) 

Similar methods will evidently apply to the equation 

{bo aX+ a 
+b2 ... ()+ axmF( {oo + blx+ biae + +b.' / x -. 
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The general linear functional equation of the nth order with constant coefficients is 

(V,x)+wap((4k )+ b("-zx)+ ... + (+h4(x)+ k(x)=F'(x) 
where the subject ,x is supposed to be the same as in the preceding equations. 

Let x=X(z), and (xr)=X(z})=X(mz)- suppose; then 42(x)=Xm2Z, 43-=Xm3,Z &c., 
and the equation becomes 

pX(n + z) x+ apX(m "z)+ bpX(m 2z) + +. ( + '%(mz) + k+X(z) =F(z). 

Let z=-, and the equation becomes 

PX(m) +CI(Pxr+) +%(_+2) +k%(p+X) +x (D+) =F%(m+) 

This equation may be written 

{ +aS~+ b2 V + +... ^("-)+; ( =F(m ' 
or 

~**+- PX(c) 

+A{F (4X )-s) FX ( mv++X l) + Fa (1 fn+2) +&c.} {FX (me+n)-?&1 (Z2 f+F 1;i;)+u +a2E(l i+ M )V +&C. 

+3 X(M+) -FX(V+I) + mFX( ) +2}+& 

I + 
C- Cs ) -&C. 

(_aI)V 
+ 

(_)v+ U0 

whereA A,, A, &c. are certain functions of al, I2, ,3 &c., and C, C2, C,, &c. are 

arbitrary constants, from whence we at once obtain the value of p(x). 
We now proceed to consider functional equations with variable coefficients. And first 

let the equation be 

(x)--(x)k{c+e }- F(x), 

where X(x) and F(x) are known rational functions of (a). 
Let 

a + bu,, 

~~~~~~~ thenu then 
a + bu, 
c + eu, 

Suppose a solution of this equation of finite differences to be 
A+Bz 

u- C + E 

268 



ME. W. H. L. RUSSELL ON THE CALCULUS OF FUNCTIONS. 

the equation becomes 

Let 
u- (- ?-( )( +Z) ( + z)(83 + ) ...' 

and the equation may then be written 

z ir(1 +Z) a2 + Z)3+P(O 2) ... r(cr1 +z+l z)r((2+ + r + )r(x++ 1) . . 
aT r(z + + i) rp +z + i 

( + 
. 3+r(jj+z)r(3+z)r-(3 r(, +)+ .)r(4+z+ F)rua+~+).. 

r(, +z)r(p,+z)r(3+z )... 
Hence 

"(Uv +c.-Ft ?,-? I - (02 +z) ( +z) (F+), (-1 + Z)( + 
+lzj()f2+Z)(c02+Z+ l)+ +2) 

c r(p,3+z)r(.2+z... T Ta T(';+X4r(?(2+~):.. 

Fu, is a rational function of (z), and may therefore be decomposed into a series of 
terms of the form 

/t1 + k^i + k2 s+ -F " ** 

Hence 
1 (a+(1 + ) (2 + Z)( .1 1 + &^e 

Ih,+kz+ (1+z)(p2+z)(33+z) . ,. +k((z + 1)+ 

c r(4 +)r(, + ) (&, + ()3,+ X) ... 
1 (at?zlz)(oet+z)(3+z). . . 1 

A(!3+Z1(f2+ Z)(fa+).+.. k,+ka(z?1)+ &cz 

c+ az r( + Z) rP(2 + Z) r(C + Z) 

We may obtain a multiple integral which shall be equivalent to any of the above 

series, by remembering that 

e(oe+1)(e+2)...+ (a+n-1)_ rr -j 

1 . 1Pf 3 
0 

etsdv 

(3+l )( + 2) .*. (J+ -l)-=2wJ_.(l+ iv)a+' 

also 
- =r ^ '\ ?E-v(+ kn)dv, h+kn 

and summing accordingly. We may hence immediately deduce the value of p(x). 
It is evident that the functional equation 

4t'() ( )=r(x), DCC(aC+L+xI)- (I.t + C C ) =F) 

DCCCUL:I. '2 o0 
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when 4v and F1 are known functions of (x), may be reduced to the form 

(-a+bx+cx2)- op,(x) =F(x)~(a+bx+cx2) 
by making 

~,(p)=+(x)(px). 
The second equation has already been considered; it becomes, therefore, interesting 

to ascertain what equations are included under the form of the first equation, in other 
4/(,) 

words, to consider what forms the algebraical expression p(a+ bx+c2) can possibly take. 

The following are a few of them:- 

V/(x+2 V/ac-b) x--a x--a2 {x-_2bx+b -_4ac 
V/a+ Vc.x a(b + cx) (2a+b +cx x(6b + cx)' a-Cx 

Many others may, in like manner, be imagined; and the same methods, mutatis 
mutandis, apply to functional equations of the higher orders with variable coefficients. 

I now come to the consideration of equations involving definite integrals, when the 
equation contains an unknown function under the sign of definite integration. 

Let us take the equation 

I' FF,(() + F2(a). 2- 

Jo F3(C) +F4(a)xl +s(- (().)=F(c) 
where p(x) is an unknown function of (x) not containing (a), F,(ac), F(a). * ., F,(a) rational 
functions of (a) which is supposed to vary independently of (x), to determine P(x). 

Suppose the equation can be written in the form 

S A(x)dx 1f -(x )2 (1 -) 
Jo 1 2 1 -2X(l - 22) + (a)2 12( -2) + 2 

where 
X(x)= (= )/1-2. 

Let x=sin , and the equation reduces to 

j$dox(sin 2) { X-2a cos 0 + (xa)-2+ -l cos 0 a=1 F() 
or if (1 - 2) (Asin D 

^-oJdO. 1 -2e cos 1- 

we find 
AX(a) + ^(a)= 2F(a). 

Suppose the solution of this equation be determined by the former investigations to be 

4(.) = f()), 
then 

o 1 - 2a cos+in 0 
5o fll-^2, co!O- +-:)-=f(a)? 

Assume 
X sin - =a?t+a cos O+a, cos 20+a3 cos 30+ ..., 
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then since 
1 -a2_ 

1 -2a cos d + 1 -20 cos -2 cos 2-t+ ..., 
we have 

(ao+a,a +a2M2 +...)=f(o); 

?ao+ +al2s +... =a(6) 

ao+a,+s-o+aj-27o +... - 
=f(s-). 

Hence 

X (sin V)-2 + } 

whence p(x) can be determined. 
Similar treatment will of course apply to the equation 

S Fl a+F2ax2 + F3a.x4+ . . 
Fr(a) + Fn+l()+ ... )=F(a), 

but the functional equation employed for its solution (when possible by this method) 
will be of a higher order. 

Let us, lastly, consider the equation 

o Fj(x)p(x?(oc))- F(o), 
to find p, where F1x is a known function of (x) not containing (a), and (a) varies 
independently of (x). 

Let ,(a)=P3, then a=---'3, and the equation becomes 

JS1:i')(x)=-P F-1(P). 
Let 

(x)=A+Axp+Ax2P + .., 
then we shall have 

AoS1 dxF,x+A,I dx . xF(x). P+&A2Sdxx2F(x). 3+... 

=F-,'O+F'4t-'O . +Flr-'O . 1. '; 
then 

_ F+-4IO) A _F ,+-,o A r+ -!o. 
S?dxFi1' '1 dx.xF(x) 

Hence 

F+-'o F',-'O F"t%-'O 2 F"-'11O 0 

tJ= rT a .=dxx. +d.Fx1 1.2 Sdx' . . Fr. 

' 

1. 2.3 
* ' 

e being any variable. 
Now suppose 

0 1 

and that we are able to express X(n) by a definite integral, so that 

x(n)=Jf(v)(x(v))ndV, 
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the integral being supposed to have certain finite limits, we shall have 

@(t)=j- /f()F- 'w(ik(v)). dv. 
Thus if 

So(X+ I)(x(M))= F(h), 
we have 

)l)= ed F-'()+ i3 F -'- T dvF,.-u> 
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