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PREFACE

This book is based on an honors course in advanced calculus that we gave in the
1960’s. The foundational material, presented in the unstarred sections of Chap-
ters 1 through 11, was normally covered, but different applications of this basic
material were stressed from year to year, and the book therefore contains more
material than was covered in any one year. It can accordingly be used (with
omissions) as a text for a year’s course in advanced calculus, or as a text for a
three-semester introduction to analysis.

These prerequisites are a good grounding in the calculus of one variable
from a mathematically rigorous point of view, together with some acquaintance
with linear algebra. The reader should be familiar with limit and continuity type
arguments and have a certain amount of mathematical sophistication. As possi-
ble introductory texts, we mention Differential and Integral Calculus by R. Cou-
rant, Calculus by T. Apostol, Calculus by M. Spivak, and Pure Mathematics by
G. Hardy. The reader should also have some experience with partial derivatives.

In overall plan the book divides roughly into a first half which develops the
calculus (principally the differential calculus) in the setting of normed vector
spaces, and a second half which deals with the calculus of differentiable manifolds.

Vector space calculus is treated in two chapters, the differential calculus in
Chapter 3, and the basic theory of ordinary differential equations in Chapter 6.
The other early chapters are auxiliary. The first two chapters develop the neces-
sary purely algebraic theory of vector spaces, Chapter 4 presents the material
on compactness and completeness needed for the more substantive results of
the calculus, and Chapter 5 contains a brief account of the extra structure en-
countered in scalar product spaces. Chapter 7 is devoted to multilinear (tensor)
algebra and is, in the main, a reference chapter for later use. Chapter 8 deals
with the theory of (Riemann) integration on Euclidean spaces and includes (in
exercise form) the fundamental facts about the Fourier transform. Chapters 9
and 10 develop the differential and integral calculus on manifolds, while Chapter
11 treats the exterior calculus of E. Cartan.

The first eleven chapters form a logical unit, each chapter depending on the
results of the preceding chapters. (Of course, many chapters contain material
that can be omitted on first reading; this is generally found in starred sections.)



On the other hand, Chapters 12, 13, and the latter parts of Chapters 6 and 11
are independent of each other, and are to be regarded as illustrative applications
of the methods developed in the earlier chapters. Presented here are elementary
Sturm-Liouville theory and Ifourier series, elementary differential geometry,
potential theory, and classical mechanics. We usually covered only one or two
of these topics in our one-year course.

We have not hesitated to present the same material more than once from
different points of view. I'or example, although we have selected the contraction
mapping fixed-point theorem as our basic approach to the implicit-function
theorem, we have also outlined a “Newton’s method” proof in the text and have
sketched still a third proof in the exercises. Similarly, the calculus of variations
is encountered twice—once in the context of the differential calculus of an
infinite-dimensional vector space and later in the context of classical mechanics.
The notion of a submanifold of a vector space is introduced in the early chapters,
while the invariant definition of a manifold is given later on.

In the introductory treatment of vector space theory, we are more careful
and precise than is customary. In fact, this level of precision of language is not
maintained in the later chapters. Our feeling is that in linear algebra, where the
concepts are so clear and the axioms so familiar, it is pedagogically sound to
illustrate various subtle points, such as distinguishing between spaces that are
normally identified, discussing the naturality of various maps, and so on. Later
on, when overly precise language would be more cumbersome, the reader should
be able to produce for himself a more precise version of any assertions that he
finds to be formulated too loosely. Similarly, the proofs in the first few chapters
are presented in more formal detail. Again, the philosophy is that once the
student has mastered the notion of what constitutes a formal mathematical
proof, it is safe and more convenient to present arguments in the usual mathe-
matical colloquialisms.

While the level of formality decreases, the level of mathematical sophisti-
cation does not. Thus increasingly abstract and sophisticated mathematical
objects are introduced. It has been our experience that Chapter 9 contains the
concepts most difficult for students to absorb, especially the notions of the
tangent space to a manifold and the Lie derivative of various objects with
respect to a vector field.



There are exercises of many different kinds spread throughout the book.
Some are in the nature of routine applications. Others ask the reader to fill in
or extend various proofs of results presented in the text. Sometimes whole
topics, such as the Fourier transform or the residue calculus, are presented in
exercise form. Due to the rather abstract nature of the textual material, the stu-
dent is strongly advised to work out as many of the exercises as he possibly can.

Any enterprise of this nature owes much to many people besides the authors,
but we particularly wish to acknowledge the help of L. Ahlfors, A. Gleason,
R. Kulkami, R. Rasala, and G. Mackey and the general influence of the book by
Dieudonné. We also wish to thank the staff of Jones and Bartlett for their invaluable
help in preparing this revised edition.

Cambridge, Massachusetts L.H.L.
1968, 1989 S.S.
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CHAPTER 0

INTRODUCTION

This preliminary chapter contains a short exposition of the set theory that
forms the substratum of mathematical thinking today. It begins with a brief
discussion of logie, so that set theory can be discussed with some precision, and
continues with a review of the way in which mathematical objects can be defined
as sets. The chapter ends with four sections which treat specific set-theoretic
topics.

It is intended that this material be used mainly for reference. Some of it
will be familiar to the reader and some of it will probably be new. We suggest
that he read the chapter through “lightly” at first, and then refer back to it
for details as needed.

1. LOGIC: QUANTIFIERS

A statement is a sentence which is true or false as it stands. Thus ‘1 < 2’ and
‘4 + 3 = 5 are, respectively, true and false mathematical statements. Many
sentences occurring in mathematics contain variables and are therefore not true
or false as they stand, but become statements when the variables are given
values. Simple examples are ‘@z < 4°, ‘z < 7/, ‘¢ is an integer’, ‘3z2 + y* = 10".
Such sentences will be called statement frames. If P(x) is a frame containing the
one variable ‘2’, then P(5) is the statement obtained by replacing ‘z’ in P(x) by
the numeral ‘5’. For example, if P(z) is ‘¢ < 4’, then P(5) is ‘5 < 4’, P(\/2)
is 4/2 < 4’, and so on.

Another way to obtain a statement from the frame P (x) is to assert that P(x)
is always true. We do this by prefixing the phrase ‘for every «’. Thus, ‘for every
z, z < 4’ is a false statement, and “for every z, 2> — 1 = (x — I)(x + 1)’ is a
true statement. This prefixing phrase is called a wniwersal gquantifier. Syn-
onymous phrases are ‘for each ' and ‘for all 2’, and the symbol customarily
used is ‘(Vz)’, which can be read in any of these ways. One frequently presents
sentences containing variables as being always true without explicitly writing
the universal quantifiers. For instance, the associative law for the addition of
numbers is often written

c+W+2)=@+y +z

where it is understood that the equation is true for all z, y and z. Thus the
1
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actual statement being made is
V) (V) (V)lx + (y +2) = (@ + y) + 2]

Finally, we can convert the frame P(z) into a statement by asserting that
it is sometimes true, which we do by writing ‘there exists an z such that P(z)’.
This process is called existential quantification. Synonymous prefixing phrases
here are ‘there is an z such that’, ‘for some a’, and, symbolically, ‘(3z)’.

The statement ‘(Vz)(x < 4)’ still contains the variable ‘@’, of course, but
‘2’ is no longer free to be given values, and is now called a bound variable.
Roughly speaking, quantified variables are bound and unquantified variables
are free. The notation ‘P(z)’ is used only when ‘2’ is free in the sentence being
discussed.

Now suppose that we have a sentence P(z, y) containing two free variables.
Clearly, we need two quantifiers to obtain a statement from this sentence.
This brings us to a very important observation. If quantifiers of both types are
used, then the order in which they are written affects the meaning of the statement;
(Ay)(vVx)P(z, y) and (Vx)(3y)P(x, y) say different things. The first says that one y
can be found that works for all x: “there exists a y such that for all z...”.
The second says that for each x a y can be found that works: “for each x there
exists a y such that ...”. But in the second case, it may very well happen that
when z is changed, the y that can be found will also have to be changed. The
existence of a single y that serves for all x is thus the stronger statement. Ior
example, it is true that (Vz)(3y)(x < y) and false that (3y)(Vz)(x < y). The
reader must be absolutely clear on this point; his whole mathematical future is
at stake. The second statement says that there exists a y, call it yo, such that
(Vx)(x < yo), that is, such that every number is less than yo. This is false;
Yo + 1, in particular, is not less than yo. The first statement says that for each
we can find a corresponding y. And we can: take y = z 4 1.

On the other hand, among a group of quantifiers of the same type the order
does not affect the meaning. Thus ‘(Vz)(Vy)’ and ‘(Vy)(Vx)’ have the same mean-
ing. We often abbreviate such clumps of similar quantifiers by using the quan-
tification symbol only once, as in ‘(Vz, y)’, which can be read ‘for every x and y’.
Thus the strictly correct ‘(Vz) (Vy)(V2)[x + (y + 2) = (x + y) + 2]’ receives the
slightly more idiomatic rendition ‘(Vz, y, 2)[x + (y +2) = (x + y) + 2]’. The
situation is clearly the same for a group of existential quantifiers.

The beginning student generally feels that the prefixing phrases ‘for every x
there exists a y such that’ and ‘there exists a y such that for every 2’ sound
artificial and are unidiomatic. Thisisindeed the case, but this awkwardnessis the
price that has to be paid for the order of the quantifiers to be fixed, so that the
meaning of the quantified statement is clear and unambiguous. Quantifiers do
occur in ordinary idiomatic discourse, but their idiomatic occurrences often
house ambiguity. The following two sentences are good examples of such
ambiguous idiomatic usage: “Every z is less than some y” and “Some y is greater
than every x”. If a poll were taken, it would be found that most men on the
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street feel that these two sentences say the same thing, but half will feel that the
common assertion is false and half will think it true! The trouble here is that
the matrix is preceded by one quantifier and followed by another, and the poor
reader doesn’t know which to take as the inside, or first applied, quantifier. The
two possible symbolic renditions of our first sentence, ‘[(Vx)(x < y)](3y)’ and
‘(Vo)[(x < y)(3y)!, are respectively false and true. MNathematicians do use
hanging quantifiers in the interests of more idiomatic writing, but only if they
are sure the reader will understand their order of application, either from the
context or by comparison with standard usage. In general, a hanging quantifier
would probably be read as the inside, or first applied, quantifier, and with this
understanding our two ambiguous sentences become true and false in that order.

After this apology the reader should be able to tolerate the definition of
sequential convergence. It involves three quantifiers and runs as follows: The
sequence {x,} converges to x if (Ve)(AN)(Vn)(if n > N then |z, — x| < €).
In cxactly the same format, we define a function f to be continuous at a if
(Ve)(38)(Vx)(if [x — a] < 6 then |f(x) — f(a)] < €). We often omit an inside
universal quantifier by displaying the final frame, so that the universal quanti-
fication is understood. Thus we define f to be continuous at a if for every e
there is a § such that

if |Jz—al <3, then [f(x) — f(a)|] < e.

We shall study these definitions later. We remark only that it is perfectly
possible to build up an intuitive understanding of what these and similar
quantified statements actually say.

2. THE LOGICAL CONNECTIVES

When the word ‘and’ is inserted between two sentences, the resulting sentence
is true if both constituent sentences are true and is false otherwise. That is, the
“truth value”, T or I, of the compound sentence depends only on the truth
values of the constituent sentences. We can thus deseribe the way ‘and’ acts in
compounding sentences in the simple “truth table”

r Q P andQ
T T T
T I I
r T F
I I r

where ‘P’ and ‘Q’ stand for arbitrary statement frames. Words like ‘and’ are
called logical connectives. It is often convenient to use symbols for connectives,
and a standard symbol for ‘and’ is the ampersand ‘&’. Thus ‘P & @’ is read
‘P and Q.
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Another logical connective is the word ‘or’. Unfortunately, this word is used
ambiguously in ordinary discourse. Sometimes it is used in the exclusive sense,
where ‘P or Q' means that one of P and @ is true, but not both, and sometimes
it is used in the #nclusive sense that at least one is true, and possibly both are
true. Mathematics cannot tolerate any fundamental ambiguity, and in mathe-
matics ‘or’ is always used in the latter way. We thus have the truth table

P Q PorQ
T T T
T I T
F T T
Ir F I

The above two connectives are binary, in the sense that they combine fwo
sentences to form one new sentence. The word ‘not’ applies to one sentence and
really shouldn’t be considered a connective at all; nevertheless, it is called a
unary connective. A standard symbol for ‘not’ is ‘~’. Its truth table is obviously

P ~P

T r

I T

In idiomatic usage the word ‘not’ is generally buried in the interior of a
sentence. We write ‘z is not equal to y’ rather than ‘not (x is equal to y)’.
However, for the purpose of logical manipulation, the negation sign (the word
‘not’ or a symbol like ‘~’) precedes the sentence being negated. We shall, of
course, continue to write ‘z 5% y’, but keep in mind that this is idiomatic for
‘not (x = y)’ or ‘~(x = y) .

We come now to the troublesome ‘if ..., then...” connective, which we
write as either ‘if P, then @’ or ‘P = @’. This is almost always applied in the
universally quantified context (Vz)(P(z) = Q(z)), and its meaning is best
unraveled by a study of this usage. We consider ‘if z < 3, then x < 5’ to be a
true sentence. More exactly, it is true for all x, so that the universal quantifi-
cation (Vz)(zx < 3 => z < 5) is a true statement. This conclusion forces us to
agree that, in particular, 2 < 3=2 < 5, 4 <3=4 < 5, and 6 < 3=
6 < 5 are all true statements. The truth table for ‘=’ thus contains the
values entered below.

)

P Q P=qQ
T T T
T F -
F T T
F F T
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On the other hand, we consider ‘@ < 7= 2 < 5 to be a false sentence, and
therefore have to agree that ‘6 < 7 = 6 < 5’ is false. Thus the remaining row
in the table above gives the value ‘F’ for P = Q.

Combinations of frame variables and logical connectives such as we have
been considering are called truth-functional forms. We can further combine the
elementary forms such as ‘P = @’ and ‘~P’ by connectives to construct com-
posite forms such as ‘~(P = @)’ and ‘(P = Q) & (Q = P)’. A sentence has a
given (truth-functional) form if it can be obtained from that form by substitution.
Thus ‘z < y or ~(x < y)’ has the form ‘P or ~P’, since it is obtained from this
form by substituting the sentence ‘¢ < ¥’ for the sentence variable ‘P’. Com-
posite truth-functional forms have truth tables that can be worked out by
combining the elementary tables. IFor example, ‘~ (I = @)’ has the table below,
the truth value for the whole form being in the column under the connective
which is applied last (‘~’ in this example).

P Q ~P=0Q
T T [ T
T F [T I
F T [ T
F T |F| T

Thus ~(P = Q) is true only when P is true and Q is false.

A truth-functional form such as ‘P or (~P)’ which is always true (i.e., has
only “T” in the final column of its truth table) is called a tautology or a tautologous
form. The reader can check that

(P& P=Q)=Q and (P=Q) &@Q@=R)) = (P=R)

are also tautologous. Indeed, any valid principle of reasoning that does not
involve quantifiers must be expressed by a tautologous form.

The ‘if and only if’ form ‘P < @’, or ‘P if and only if @’, or ‘P iff @, is an
abbreviation for ‘(P = Q) & (Q = P)’. Its truth table works out to be

P Q P=Q

T T T
T F F
F T ¥
¥ F T

That is, P < Q is true if P and Q have the same truth values, and is false
otherwise.

Two truth-functional forms 4 and B are said to be equivalent if (the final
columns of) their truth tables are the same, and, in view of the table for ‘<”’,
we see that A and B are equivalent if A < B 1s tautologous, and conversely.
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Replacing a sentence obtained by substitution in a form A by the equivalent
sentence obtained by the same substitutions in an equivalent form B is a device
much used in logical reasoning. Thus to prove a statement P true, it suffices to
prove the statement ~P false, since ‘P’ and ‘~(~P)’ are equivalent forms.
Other important equivalences are

~({PorQ) & (~P) & (~Q),
(P=Q) & Qor (~P),
~(P=0Q) & P& (~Q).

A bit of conventional sloppiness which we shall indulge in for smoother
idiom is the use of ‘if’ instead of the correct ‘if and only if’ in definitions. We
define f to be continuous at z #f so-and-so, meaning, of course, that f is continuous
at x if and only if so-and-so. This causes no difficulty, since it is clear that ‘if
and only if’ is meant when a definition is being given.

3. NEGATIONS OF QUANTIFIERS

The combinations ‘~(Vz)’ and ‘(3x)~’ have the same meanings: something is
not always true if and only if it is sometimes false. Similarly, ‘~(3y)’ and ‘(Vy)~’
have the same meanings. These equivalences can be applied to move a negation
sign past each quantifier in a string of quantifiers, giving the following important
practical rule:

In taking the negation of a statement beginning with a string of quantifiers,
we simply change each quantifier to the opposite kind and move the negation
sign to the end of the string.

Thus
~(V2)(AY)(V2)P(z, y, 2) < (3x)(Vy)(32)~P(z, y, 2).

There are other principles of quantificational reasoning that can be isolated
and which we shall occasionally mention, but none seem worth formalizing here.

4. SETS

It is present-day practice to define every mathematical object as a set of some
kind or other, and we must examine this fundamental notion, however briefly.
A set is a collection of objects that is itself considered an entity. The objects
in the collection are called the elements or members of the set. The symbol for
‘is a member of’ is ‘€’ (a sort of capital epsilon), so that ‘x € A’ is read “z is a
member of A”, “x is an element of A”, “r belongs to A”, or “z isin 4”.

We use the equals sign ‘=" in mathematics to mean logical identity; A = B
means that A is B. Now a set A is considered to be the same object as a set B
if and only if A and B have exactly the same members. That is, ‘A = B’ means
that (Vz)(x € A & = € B).
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We say that a set A is a subset of a set B, or that A is included in B (or that
B is a superset of A) if every element of 4 is an element of B. The symbol for
inclusion is ‘C’. Thus ‘A C B’ means that (Vz)(x € A = x € B). Clearly,

(A=B) & (ACB)and (BC A).

This is a frequently used way of establishing set identity: we prove that A = B
by proving that A C B and that B C 4. If the reader thinks about the above
equivalence, he will see that it depends first on the equivalence of the truth-func-
tional forms ‘P < @’ and ‘(P = Q) & (Q = P)’, and then on the obvious
quantificational equivalence between ‘(Vz)(R & S)’ and ‘(V2)R & (Vz)S'.

We define a set by specifying its members. If the set is finite, the members
can actually be listed, and the notation used is braces surrounding a member-
ship list. For example {1, 4, 7} is the set containing the three numbers 1, 4, 7,
{x} is the unit set of x (the set having only the one object x as a member),
and {z, y} is the pair set of x and y. We can abuse this notation to name some
infinite sets. Thus {2, 4, 6, 8, ...} would certainly be considered the set of all
even positive integers. But infinite sets are generally defined by statement
frames. If P(x) is a frame containing the free variable ‘2’, then {x : P(z)} is the
set of all x such that P(x) is true. In other words, {x : P(x)} is that set A such
that

ye A & P(y).

Tor example, {x:x? < 9} is the set of all real numbers z such that 2% < 9,
that is, the open interval (—3, 3),and y € {x : 22 < 9} < y? < 9. A statement
frame P(x) can be thought of as stating a property that an object  may or may
not have, and {z : P(x)} is the set of all objects having that property.

We need the empty set &, in much the same way that we need zero in
arithmetic. If P(x) is never true, then {x: P(x)} = &. TFor example,

{x:x #z} = .

When we said earlier that all mathematical objects are customarily con-
sidered sets, it was taken for granted that the reader understands the distinction
between an object and a name of that object. To be on the safe side, we add a
few words. A chair is not the same thing as the word ‘chair’, and the number 4
is a mathematical object that is not the same thing as the numeral ‘4’. The
numeral ‘4’ is a name of the number 4, as also are ‘four’, 2 + 2’, and ‘IV’.
According to our present viewpoint, 4 itself is taken to be some specific set.
There is no need in this course to carry logical analysis this far, but some readers
may be interested to know that we usually define 4 as {0, 1, 2, 3}. Similarly,
2 = {0,1}, 1 = {0}, and O is the empty set <.

It should be clear from the above discussion and our exposition thus far
that we are using a symbol surrounded by single quotation marks as a name of
that symbol (the symbol itself being a name of something else). Thus ‘ ‘4’ ’ is a
name of ‘4’ (which is itself a name of the number 4). This is strictly correct
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usage, but mathematicians almost universally mishandle it. It is accurate to
write: let  be the number; call this number ‘’. However, the latter is almost
always written: call this number 2. This imprecision causes no difficulty to the
reading mathematician, and it often saves the printed page from a shower of
quotation marks. There is, however, a potential victim of such ambiguous
treatment of symbols. This is the person who has never realized that mathe-
matics is not about symbols but about objects to which the symbols refer. Since
by now the present reader has safely avoided this pitfall, we can relax and
occasionally omit the strictly necessary quotation marks.

In order to avoid overworking the word ‘set’, we use many synonyms,
such as ‘class’, ‘collection’, ‘family’ and ‘aggregate’. Thus we might say, “Let @
be a family of classes of sets”. If a shoe store is a collection of pairs of shoes, then
a chain of shoe stores is such a three-level object.

5. RESTRICTED VARIABLES

A variable used in mathematics is not allowed to take all objects as values; it
can only take as values the members of a certain set, called the domain of the
variable. The domain is sometimes explicitly indicated, but is often only im-
plied. For example, the letter ‘n’ is customarily used to specify an integer, so
that ¢ (Vn)P(n)’ would automatically be read “for every integer n, P(n)”. How-
ever, sometimes 7 is taken to be a positive integer. In case of possible ambiguity
or doubt, we would indicate the restriction explicitly and write ‘ (Vn € Z)P(n)’,
where ‘Z’ is the standard symbol for the set of all integers. The quantifier is
read, literally, “for all n in Z”, and more freely, “for every integer n”. Similarly,
“(In € Z)P(n)’ is read “there exists an n in Z such that P(n)” or “there exists
an integer n such that P(n)”. Note that the symbol ‘€’ is here read as the
preposition ‘in’. The above quantifiers are called restricted quantifiers.

In the same way, we have restricted set formation, both implicit and explicit,
as in ‘{n: P(n)}’ and ‘{n € Z : P(n)}’, both of which are read “the set of all
integers n such that P(n)”.

Restricted variables can be defined as abbreviations of unrestricted variables
by

(Vz € A)P(z) < ¥r)(zxe€ A= P()),
Az € A)P(x) < @(@2)(ze 4 & P(x)),
{re A:Plx)} = {z:2€ A & P(x)}.

Although there is never any ambiguity in sentences containing explicitly
restricted variables, it sometimes helps the eye to see the structure of the
sentence if the restricting phrases are written in superseript position, as in
(V€> %) (In€?). Some restriction was implicit on page 1. If the reader agreed that
(Vz)(z®> — 1 = (x — 1)(z + 1)) was true, he probably took z to be a real
number.
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6. ORDERED PAIRS AND RELATIONS

Ordered pairs are basic tools, as the reader knows from analytic geometry.
According to our general principle, the ordered pair <a, b> is taken to be a
certain set, but here again we don’t care which particular set it is so long as it
guarantees the crucial characterizing property :

<z,y> = <a,b> © r=aandy = b.

Thus <1,3> # <3,1>.

The notion of a correspondence, or relation, and the special case of a map-
ping, or function, is fundamental to mathematics. A correspondence is a pairing
of objects such that given any two objects x and y, the pair <z, y> cither does
or does not correspond. A particular correspondence (relation) is generally
presented by a statement frame P(x, y) having two free variables, with z and y
corresponding if any only if P(x, y) is true. Given any relation (correspondence),
the set of all ordered pairs <z, y > of corresponding elements is called its graph.

Now a relation is a mathematical object, and, as we have said several times,
it is current practice to regard every mathematical object as a set of some sort
or other. Since the graph of a relation is a set (of ordered pairs), it is efficient and
customary to take the graph to be the relation. Thus a relation (correspondence)
1s simply a set of ordered pairs. If R is a relation, then we say that x has the
relation R to y, and we write ‘wRy’, if and only if <z,y> € R. We also say
that x corresponds to y under K. The set of all first elements occurring in the
ordered pairs of a relation R is called the domain of R and is designated dom R
or D(R). Thus

dom R = {z: (Qy)<z,y> € R}.
The set of second elements is called the range of R:
range R = {y: (3x) <=z, y> € R}.

The tnverse, R~ of a relation R is the set of ordered pairs obtained by reversing
those of R:
R™'= {<Xx,y> : <y,z> € R}.

A statement frame P(z, y) having two free variables actually determines a pair
of mutually inverse relations R & S, called the graphs of P, as follows:

R = {<z,y>: P(x,y)}, S={<y,z>:Pxy)}.

A two-variable frame together with a choice of which variable is considered to
be first might be called a directed frame. Then a directed frame would have a
uniquely determined relation for its graph. The relation of strict inequality
on the real number system R would be considered the set {<z,y>: 2z < y},
since the variables in ‘z < 3’ have a natural order.

The set A X B= {<z,y> :x€ A &y B} of all ordered pairs with
first element in A and second element in B is called the Cartesian product of the
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sets A and B. A relation R is always a subset of dom B X range R. If the two
“factor spaces” are the same, we can use exponential notation: A2 = 4 X A.

The Cartesian product R? = R X R is the “analytic plane”. Analytic
geometry rests upon the one-to-one coordinate correspondence between R? and
the Euclidean plane E? (determined by an axis system in the latter), which
enables us to treat geometric questions algebraically and algebraic questions
geometrically. In particular, since a relation between sets of real numbers is a
subset of R2, we can “picture” it by the corresponding subset of the Euclidean
plane, or of any model of the Euclidean plane, such as this page. A simple
Cartesian product is shown in Fig. 0.1 (A U B is the union of the sets A and B).

Be

1 A A
AXB when A=(1,2]u[2}, 3] and B=[1, 1}]u{2}

Fig. 0.1 Fig. 0.2
If R is a relation and A is any set, then the restriction of R to A, R | A,
is the subset of R consisting of those pairs with first element in A :
R A= {<z,y>:<z,y> € Rand z € A}.

Thus R [ A = R N (A X range R), where C N D is the iniersection of the sets
C and D.

If R is a relation and A is any set, then the ¢mage of A under R, R[A], is
the set of second elements of ordered pairs in R whose first elements are in 4:

R[Al= {y: (Fr)(x € A & <z,y> € R)}.
Thus R[A] = range (R [ A), as shown in Fig. 0.2.

7. FUNCTIONS AND MAPPINGS

A function is a relation f such that each domain element z is paired with exactly
one range element y. This property can be expressed as follows:

<z,y> €fand <r,z> €f = y==2
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The y which is thus uniquely determined by f and z is designated f(x):
y=Jflx) & <z,y> €.

One tends to think of a function as being active and a relation which is not
a function as being passive. A function f acts on an element z in its domain to
give f(x). We take z and apply f to it; indeed we often call a function an operator.
On the other hand, if R is a relation but not a function, then there is in general
no particular y related to an element z in its domain, and the pairing of x and y
is viewed more passively.

We often define a function f by specifying its value f(z) for each z in its
domain, and in this connection a stopped arrow notation is used to indicate the

pairing. Thus z + z2 is the function assigning to each number z its square z%

f
<—2,4> <2, 4> + <4, 2>—1"

‘ ' T <4, —25
Fig. 0.3

If we want it to be understood that f is this function, we can write “Consider
the function f:x + z2”. The domain of f must be understood for this notation
to be meaningful.

If f is a function, then f~! is of course a relation, but in general it is not a
function. For example, if f is the function z — z2, then f~! contains the pairs
<4,2> and <4, —2> and so is not a function (see Fig. 0.3). If f~! ¢s a func-
tion, we say that f is one-to-one and that f is a one-to-one correspondence between
its domain and its range. Each z € dom f corresponds to only one y & range f
(f is a function), and each ¥ € range f corresponds to only one z € dom f (f ! is
a function).

The notation

fiA—B

is read “a (the) function f on A into B” or “the function f from A to B”. The
notation implies that f is a function, that dom f = A, and that range f C B.
Many people feel that the very notion of function should include all these
ingredients; that is, a function should be considered an ordered triple < f, 4, B>,
where f is a function according to our more limited definition, 4 is the domain
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of f, and B is a superset of the range of f, which we shall call the codomain of f in
this context. We shall use the terms ‘map’, ‘mapping’, and ‘transformation’
for such a triple, so that the notation f: A — B in its totality presents a mapping.
Moreover, when there is no question about which set is the codomain, we shall
often call the function f itself a mapping, since the triple <f, A, B> is then
determined by f. The two arrow notations can be combined, as in: “Define
fiR > Rby z— 22"

A mapping f: A — B is said to be injective if f is one-to-one, surjective if
range f = B, and bzjective if it is both injective and surjective. A bijective
mapping f: A — B is thus a one-to-one correspondence between its domain A
and its codomain B. Of course, a function is always surjective onto its range R,
and the statement that f is surjective means that B = B, where B is the under-
stood codomain.

8. PRODUCT SETS; INDEX NOTATION

One of the characteristic habits of the modern mathematician is that as soon as
a new kind of object has been defined and discussed a little, he immediately
looks at the set of all such objects. With the notion of a function from A4 to S
well in hand, we naturally consider the set of all functions from 4 to S, which we
designate S4. Thus R® is the set of all real-valued functions of one real variable,
and 8" is the set of all infinite sequences in S. (It is understood that an infinite
sequence is nothing but a function whose domain is the set Z* of all positive
integers.) Similarly, if we set @ = {1, ..., n}, then S™ is the set of all finite
sequences of length » in S.

If B is a subset of S, then its characteristic function (relative to S) is the func-
tion on S, usually designated X, which has the constant value 1 on B and the
constant value 0 off B. The set of all characteristic functions of subsets of S is
thus 25 (since 2 = {0, 1}). But because this collection of functions is in a
natural one-to-one correspondence with the collection of all subsets of S, Xp
corresponding to B, we tend to identify the two collections. Thus 25 is also
interpreted as the set of all subsets of S. We shall spend most of the remainder
of this section discussing further similar definitional ambiguities which mathe-
maticians tolerate.

The ordered triple <z, y, 2> is usually defined to be the ordered pair
< <z,y>,z>. The reason for this definition is probably that a function of
two variables x and y is ordinarily considered a function of the single ordered
pair variable <z, y>, so that, for example, a real-valued function of two real
variables is a subset of (R X R) X R. But we also consider such a function a
subset of Cartesian 3-space R3. Therefore, we define R® as (R X R) X R;
that is, we define the ordered triple <z, y, 2> as < <z, y >, z>.

On the other hand, the ordered triple <z, y, 2> could also be regarded as
the finite sequence {<1, x>, <2, y>, <3, 2>}, which, of course, is a different
object. These two models for an ordered triple serve equally well, and, again,
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mathematicians tend to slur over the distinction. We shall have more to say
on this point later when we discuss natural isomorphisms (Section 1.6). I‘or
the moment we shall simply regard R? and R® as being the same; an ordered
triple is something which can be “viewed” as being either an ordered pair of
which the first element is an ordered pair or as a sequence of length 3 (or, for that
matter, as an ordered pair of which the second element is an ordered pair).

Similarly, we pretend that Cartesian 4-space R* is R?% R? X R?, or
R'X R® = RX ((R X R) X R), etc. Clearly, we are in effect assuming an
associative law for ordered pair formation that we don’t really have.

This kind of ambiguity, where we tend to identify two objects that really are
distinet, is a necessary corollary of deciding exactly what things are. It is one
of the prices we pay for the precision of set theory; in days when mathematics
was vaguer, there would have been a single fuzzy notion.

The device of indices, which is used frequently in mathematics, also has am-
biguous implications which we should examine. An indexed collection, as a set,
is nothing but the range set of a function, the indexing function, and a particular
indexed object, say x;, is simply the value of that function at the domain element 2.
If the set of indices is I, the indexed set is designated {z;:7 € I} or {x;}:er
(or {x;} 2, in case I = Z*). However, this notation suggests that we view the
indexed set as being obtained by letting the index run through the index set I
and collecting the indexed objects. That is, an indexed set is viewed as being
the set together with the indexing function. This ambivalence is reflected in the
fact that the same notation frequently designates the mapping. Thus we refer
to the sequence {x,}n-1, where, of course, the sequence is the mapping n > x,.
We believe that if the reader examines his idea of a sequence he will find this
ambiguity present. He means neither just the set nor just the mapping, but the
mapping with emphasis on its range, or the range “together with” the mapping.
But since set theory cannot reflect these nuances in any simple and graceful way,
we shall take an indexed set fo be the indexing function. Of course, the same
range object may be repeated with different indices; there is no implication that
an indexing is one-to-one. Note also that indexing imposes no restriction on the
set being indexed ; any set can at least be self-indexed (by the identity function).

Except for the ambiguous ‘{x; : € I}’, there is no universally used notation
for the indexing function. Since z; is the value of the function at ¢, we might
think of ‘z; as another way of writing ‘z(¢)’, in which case we designate the
function ‘2’ or ‘x’. We certainly do this in the case of ordered n-tuplets when
we say, “Consider the n-tuplet x = <=zj, ..., z,>”. On the other hand, there
is no compelling reason to use this notation. We can call the indexing function
anything we want; if it is f, then of course f(z) = z; for all <.

We come now to the general definition of Cartesian product. Earlier we
argued (in a special case) that the Cartesian product 4 X B X C is the set of
all ordered triples x = <=z, T3, 3> such that z; € 4,2, € B, and z3 €C.
More generally, A; X Ag X -+ X Ay, or [I7=; 4;, is the set of ordered n-
tuples x = <y, ..., 2,> such that z; € 4;for ¢ = 1,...,n. If we interpret
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an ordered n-tuplet as a function on @ = {1, ..., n}, we have

IIi=: 4; is the set of all functions x with domain # such that z; € A4;
forall 7 e 7.

This rephrasal generalizes almost verbatim to give us the notion of the
Cartesian product of an arbitrary indexed collection of sets.

Definition. The Cartesian product J];esS; of the indexed collection of
sets {S;:7 € I} is the set of all functions f with domain the index set I
such that f(z) € S; for all 7 € I.

We can also use the notation J]{S;:7 € I} for the product and f; for the
value f(7).

9. COMPOSITION

If we are given maps f: A — B and ¢: B — C, then the composition of g with f,
g © f, is the map of A into C defined by

(g o N) = 9(fx)) forall z e A.

This is the function of a function operation of elementary calculus. If fand g are
the maps from R to R defined by f(z) = z'/3 4+ 1 and g(x) = z?, then fo g(z) =
)V 4+ 1 =223+ 1,and g o flx) = ('3 + 1) = 2?3 + 22'3 + 1. Note
that the codomain of f must be the domain of ¢ in order for ¢ o f to be defined.
This operation is perhaps the basic binary operation of mathematics.

Lemma. Composition satisfies the associative law:
folgoh)=(fog)eh

Proof. (fo(goh)@ = flgeh)@) = flgh@)) = (Fog)(h) =
((fog)oh)(x) forall z € dom k. O

If A is a set, the identity map I4: A — A is the mapping taking every
x € Atoitself. Thus 4 = {<z,z> : z € A}. If f maps A into B, then clearly

felsy=f=1Ip-of.

If g: B — A is such that g o f = I4, then we say that ¢ is a left inverse of f and
that f is a right inverse of g.

Lemma. If the mapping f: A — B has both a right inverse » and a left
inverse ¢, they must necessarily be equal.

Proof. This is just algebraic juggling and works for any associative operation.
We have
h=1I40oh= (gof)oh=go(foh)=golp=y¢g. 0
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In this case we call the uniquely determined map ¢: B — A such that
fog= Igandgof= I, the tnverse of f. We then have:

Theorem. A mapping f: A — B has an inverse if and only if it is bijective,
in which case its inverse is its relational inverse f~1.

Proof. If f is bijective, then the relational inverse f~! is a function from B to 4,
and the equations fo f~' = Ip and f~! o f = I4 are obvious. On the other
hand, if f o ¢ = Ip, then f is surjective, since then every y in B can be written
y = f(g(y)). And if gof= I4, then f is injective, for then the equation
f(z) = f(y) implies that x = ¢(f(z)) = ¢(f(y)) = y. Thus f is bijective if it
has an inverse. [

Now let S(A) be the set of all bijections f: A — A. Then &(4) is closed
under the binary operation of composition and

1) fo(goh)= (fog)ohforallf g h e,
2) there exists a unique I € &(A4) such that fo I = I o f = fforall f€&;
3) for each f € © there exists a unique g € & such that fog = go f= I.

Any set G closed under a binary operation having these properties is called
a group with respect to that operation. Thus &(4) is a group with respect to
composition.

Composition can also be defined for relations as follows. If E C A X B and
SCBXC,then So RC A X C is defined by

<z,2> €S8R & (AE)(Kz,y> € R & <y,z> €08).

If R and S are mappings, this definition agrees with our earlier one.

10. DUALITY

There is another elementary but important phenomenon called duality which
oceurs in practically all branches of mathematics. Let F: A X B — C be any
function of two variables. It is obvious that if z is held fixed, then F(z, y) is a
function of the one variable y. That is, for each fixed « there is a function
h*: B — C defined by h*(y) = F(z,y). Then x — h” is a mapping ¢ of 4 into
CB. Similarly, each ¥ € B yields a function g, € C4, where ¢,(x) = F(z, y),
and y — ¢, is a mapping 6 from B to C4.

Now suppose conversely that we are given a mapping ¢: A — CB. For each
r € A we designate the corresponding value of ¢ in index notation as h%, so
that A* is a function from B to C, and we define F: A X B — C by F(z,y) =
K (y). We are now back where we started. Thus the mappings ¢: 4 — CB,
I': A X B—C,and §: B— C* are equivalent, and can be thought of as three
different ways of viewing the same phenomenon. The extreme mappings ¢ and
6 will be said to be dual to each other.
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The mapping ¢ is the indexed family of functions {h*:x € A} C CB. Now
suppose that § C C® is an unindexed collection of functions on B into C, and
define F:§ X B — C by F(f,y) = f(y). Then 6: B — C? is defined by ¢,(f) =
f(y). What is happening here is simply that in the expression f(y) we regard both
symbols as variables, so that f(y) is a function on § X B. Then when we hold y
fixed, we have a function on § mapping & into C.

We shall see some important applications of this duality principle as our
subject develops. For example, an m X n matrix is a function t = {¢;;} in
R™>% We picture the matrix as a rectangular array of numbers, where ‘’ is
the row index and ¢’ is the column index, so that ¢;; is the number at the inter-
section of the 7th row and the jth column. If we hold 7 fixed, we get the n-tuple
forming the ¢th row, and the matrix can therefore be interpreted as an m-tuple
of row n-tuples. Similarly (dually), it can be viewed as an n-tuple of column
m-tuples.

In the same vein, an n-tuple <fy, ..., f,> of functions from A to B can
be regarded as a single n-tuple-valued function from A to B”,

a— <fi(a),...,f.(a)>.

In a somewhat different application, duality will allow us to regard a finite-
dimensional vector space V as being its own second conjugate space (V*)*.

It is instructive to look at elementary Euclidean geometry from this point
of view. Today we regard a straight line as being a set of geometric points.
An older and more neutral view is to take points and lines as being two different
kinds of primitive objects. Accordingly, let A be the set of all points (so that A
is the Euclidean plane as we now view it), and let B be the set of all straight lines.
Let F be the ¢ncidence function: F(p,l) = 1 if p and [ are incident (p is “on” [,
lis “on” p) and F(p, l) = 0 otherwise. Thus F maps A X B into {0, 1}. Then
for each [ € B the function ¢;(p) = F(p, l) is the characteristic function of the
set of points that we think of as being the line I (¢;(p) has the value 1 if p ison [
and 0 if p is not on I.) Thus each line determines the set of points that are on it.
But, dually, each point p determines the set of lines I “on” t, through #ts char-
acteristic function A?(l). Thus, in complete duality we can regard a line as being
a set of points and a point as being a set of lines. This duality aspect of geometry
is basic in projective geometry.

It is sometimes awkward to invent new notation for the “partial” function
obtained by holding a variable fixed in a function of several variables, as we did
above when we set g,(z) = F(z, y), and there is another device that is frequently
useful in this situation. This is to put a dot in the position of the “varying
variable”. Thus F(a, -) is the function of one variable obtained from F(x, y)
by holding z fixed at the value a, so that in our beginning discussion of duality
we have

hx—_-F(x:')) gl/:F('}y)'

If f is a function of one variable, we can then write f = f(-), and so express the
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above equations also as h*(-) = F(z, -), g,(-) = F(-, y). The flaw in this notation
is that we can’t indicate substitution without losing meaning. Thus the value
of the function F(z, -) at b is F(x, b), but from this evaluation we cannot read
backward and tell what function was evaluated. We are therefore forced to
some such cumbersome notation as F(zx, -)|», which can get out of hand. Never-
theless, the dot device is often helpful when it can be used without evaluation
difficulties. In addition to eliminating the need for temporary notation, as
mentioned above, it can also be used, in situations where it is strictly speaking
superfluous, to direct the eye at once to the position of the variable.

For example, later on D.F will designate the directional derivative of the
function F in the (fixed) direction £ This is a function whose value at « is
DF(a), and the notation D;F(-) makes this implicitly understood fact explicit.

11. THE BOOLEAN OPERATIONS

Let S be a fixed domain, and let § be a family of subsets of S. The union of &,
or the union of all the sets in F, is the set of all elements belonging to at least one
set in §. We designate the union UF or Usegs 4, and thus we have

Us= {z: 34)x e 4)}, yeUse Q4@ ed).

We often consider the family § to be indexed. That is, we assume given a set I
(the set of indices) and a surjective mapping ¢ — A; from I to ¥, so that F =
{A;:7 € I}. Then the union of the indexed collection is designated U;er 4 or
U{4;:7e€I}. The device of indices has both technical and psychological
advantages, and we shall generally use it.

If F is finite, and either it or the index set is listed, then a different notation
is used for its union. If § = {4, B}, we designate the union A U B, a notation
that displays the listed names. Note that here we havex € A UB < xz € A or
xeB. If §= {4;:7=1,...,n}, we generally write ‘4; U A, U---UA,’
or ‘Ui A/ for Ug.

The intersection of the indexed family {4;};er, designated N;er 4;, is the
set of all points that lie in every A;. Thus

zeNd: & vz e d,).
el

TFor an unindexed family § we use the notation NF or N4es 4, and if § =
{A, B}, then NF = A N B.
The complement, A’, of a subset of S is the set of elements z = S not in
A: A’ = {255 : 2 @ A}. The law of De Morgan states that the complement of
an intersection 1s the union of the complements:
(0 4y =U .
€I €1

This an immediate consequence of the rule for negating quantifiers. It is the
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equivalence between ‘not always in’ and ‘sometimes not in’: [~(Vi)(z € 4;) &
(32)(x & A;)] says exactly that

T E (OAi)’ = xE U(Az")-

If we set B; = A and take complements again, we obtain the dual form:

(UierBy)’ = Nier(B).
Other principles of quantification yield the laws

20 (Y,4) = Ywna
from P & (32)Q(z) & (3x)(P & Q(x)),
Bu([] 4= BU4y,

Bn (ﬂ Ai) = IF]I (Bn A4y,
el €1

BU(U 45) = U (B U 4)).
€1 €1

In the case of two sets, these laws imply the following familiar laws of set algebra:
(AUB)Y = A'nB, (ANnB)Y=A4"UB (De Morgan),
ANnBUC)=(AnNB)U(ANn(0),
AuBnNC)=AuB)n4Aul).

Even here, thinking in terms of indices makes the laws more intuitive. Thus
(A1 N A4p) = A1 U A%

is obvious when thought of as the equivalence between ‘not always in’ and
‘sometimes not in’.

The family & is disjoint if distinet sets in § have no elements in common, i.e.,
if (VX,YS)(X #Y=XnNnY = ). Tor an indexed family {4;};cr the
condition becomes i # j = A; N A; = &. If § = {4, B}, we simply say that
A and B are disjoint.

Given f: U — V and an indexed family {B;} of subsets of V, we have the

following important identities:
P UB=Ussd, [0 B = N84,
and, for a single set B C V,
B = (FUBYY
For example,
zef [ B:] = i) e (] Bi o vi) (@) & B)
& Wi@e B »zel)f7Bi
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The first, but not the other two, of the three identities above remains valid
when f is replaced by any relation R. It follows from the commutative law,
(3z)(3y)A & (Jy)(3x)A. The second identity fails for a general K because
‘(3x)(Vy)’ and ‘(Vy)(3x)’ have different meanings.

12. PARTITIONS AND EQUIVALENCE RELATIONS

A partition of a set A is a disjoint family F of sets whose union is 4. We call the
elements of F ‘fibers’, and we say that & fibers A or is a fibering of A. For example,
the set of straight lines parallel to a given line in the Euclidean plane is a fibering
of the plane. If ‘T’ designates the unique fiber containing the point x, then
x — T Is a surjective mapping 7: A — F which we call the projection of A on .
Passing from a set A to a fibering F of A is one of the principal ways of forming
new mathematical objects.

Any function f automatically fibers its domain into sets on which f is con-
stant. If A is the Euclidean plane and f(p) is the z-coordinate of the point p in
some coordinate system, then f is constant on each vertical line; more exactly,
f~!(z) is a vertical line for every z in R. Moreover, z — f~!(x) is a bijection
from R to the set of all fibers (vertical lines). In general, if f: A — B is any sur-
jective mapping, and if for each value y in B we set

Ay=1""y) = {zed: f@) =y,

then § = {4,:y € B} is a fibering of A and ¢:y+— A, is a bijection from
B to §. Also ¢ o f is the projection m: A — &, since ¢ o f(z) = o(f(x)) is the
set Z of all zin A such that f(z) = f(x).

The above process of generating a fibering of A from a function on 4 is
relatively trivial. A more important way of obtaining a fibering of A is from
an equality-like relation on A called an equivalence relation. An equivalence
relation ~ on A is a binary relation which is reflexive (x ~ x for every x € A),
symmetric (x ~ y =y ~ x), and transitive (x ~ y and y ~ z =z ~ 2z). Every
fibering ¥ of A generates a relation ~ by the stipulation that x ~ y if and only if
z and y are in the same fiber, and obviously ~ is an equivalence relation. The
most important fact to be established in this section is the converse.

Theorem. Every equivalence relation ~ on A is the equivalence relation
of a fibering.

Proof. We obviously have to define T as the set of elements y equivalent to z,
T = {y:y ~ 2}, and our problem is to show that the family & of all subsets of A
obtained this way is a fibering.

The reflexive, symmetric, and transitive laws become

T ET, TEF=YET, and reyjandy ez = ¢ €L

Reflexivity thus implies that & covers A. Transitivity says that if y € z, then
r €7 = x €Z; that is, if y €%, then 7 Cz But also, if y €%, then z €7 by
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symmetry, and so ZCF. Thus y €z implies 7 = Z. Therefore, if two of our
sets @ and b_have a point z in common, then @ = F = b. In other words, if @ is
not the set b, then @ and b are disjoint, and we have a fibering.

The fundamental role this argument plays in mathematics is due to the fact
that in many important situations equivalence relations occur as the primary
object, and then are used to define partitions and functions. We give two
examples.

Let Z be the integers (positive, negative, and zero). A fraction ‘m/n’ can
be considered an ordered pair <m, n> of integers with n # 0. The set of all
fractions is thus Z X (Z — {0}). Two fractions <m,n> and <p, ¢> are
“equal” if and only if mq = np, and equality is checked to be an equivalence
relation. The equivalence class <m, n> is the object taken to be the rational
number m/n. Thus the rational number system Q is the set of fibers in a par-
tition of Z X (Z — {0}).

Next, we choose a fixed integer p € Z and define a relation E on Z by
mEn < p divides m — n. Then E is an equivalence relation, and the set Z, of
its equivalence classes is called the integers modulo p. It is easy to see that mEn
if and only if m and n have the same remainder when divided by p, so that in
this case there is an easily calculated function f, where f(m) is the remainder
after dividing m by p, which defines the fibering. The set of possible remainders
is {0,1,...,p — 1}, so that Z, contains p elements.

A function on a set A can be “factored” through a fibering of 4 by the
following theorem.

Theorem. Let g be a function on A4, and let & be a fibering of A. Then ¢
is constant on each fiber of & if and only if there exists a function § on &
such that g = go 7.

Proof. If g is constant on each fiber of &, then the association of this unique
value with the fiber defines the function g, and clearly ¢ = g o w. The converse
is obvious. U



CHAPTER 1

VECTOR SPACES

The calculus of functions of more than one variable unites the calculus of one
variable, which the reader presumably knows, with the theory of vector spaces,
and the adequacy of its treatment depends directly on the extent to which vector
space theory really is used. The theories of differential equations and differential
geometry are similarly based on a mixture of calculus and vector space theory.
Such “vector calculus” and its applications constitute the subject matter of this
book, and in order for our treatment to be completely satisfactory, we shall
have to spend considerable time at the beginning studying vector spaces them-
selves. This we do principally in the first two chapters. The present chapter is
devoted to general vector spaces and the next chapter to finite-dimensional
spaces.

We begin this chapter by introducing the basic concepts of the subject—
vector spaces, vector subspaces, linear combinations, and linear transforma-
tions—and then relate these notions to the lines and planes of geometry. Next
we establish the most elementary formal properties of linear transformations and
Cartesian product vector spaces, and take a brief look at quotient vector spaces.
This brings us to our first major objective, the study of direct sum decomposi-
tions, which we undertake in the fifth section. The chapter concludes with a
preliminary examination of bilinearity.

1. FUNDAMENTAL NOTIONS

Vector spaces and subspaces. The reader probably has already had some
contact with the notion of a vector space. NMost beginning calculus texts discuss
geometric vectors, which are represented by “arrows” drawn from a chosen
origin O. These vectors are added geometrically by the parallelogram rule:
The sum of the vector OA (represented by the arrow from O to A) and the
veetor OB is the vector 6—13, where P is the vertex opposite O in the parallelogram
having OA and OB as two sides (Fig. 1.1). Vectors can also be multiplied by
numbers: z(0A) is that vector OB such that B is on the line through O and
A, the distance from O to B is |z| times the distance from O to A, and B and 4
arc on the same side of O if x is positive, and on opposite sides if x is negative
21
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(OA+0B)+0C=0P+0C=0X OA+(0B+0C) =04+0G=0X

Fig. 1.3

(Fig. 1.2). These two vector operations satisfy certain laws of algebra,
which we shall soon state in the definition. The geometric proofs of these laws
are generally sketchy, consisting more of plausibility arguments than of airtight
logic. For example, the geometric figure in Fig. 1.3 is the essence of the usual
proof that vector addition is associative. In each case the final vector 0X is
represented by the diagonal starting from O in the parallelepiped constructed
from the three edges OA, OB, and OC. The set of all geometric vectors, together
with these two operations and the laws of algebra that they satisfy, constitutes
one example of a vector space. We shall return to this situation in Section 2.

The reader may also have seen coordinate triples treated as vectors. In this
system a three-dimensional vector is an ordered triple of numbers <z, rs, 3>
which we think of geometrically as the coordinates of a point in space. Addition
is now algebraically defined,

<z1, T2, 23> + <Y1, Y2, Y3> = <x1 + Y1, T2 + Y2, 23 + Y3 >,

as is multiplication by numbers, t<z;, xg, 3> = <ixy, {xs, txz3>. The
vector laws are much easier to prove for these objects, since they are almost
algebraic formalities. The set R? of all ordered triples of numbers, together with
these two operations, is a second example of a vector space.
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If we think of an ordered triple <z, x5, 3> as a function x with domain
the set of integers from 1 to 3, where x; is the value of the function x at 7 (see
Section 0.8), then this vector space suggests a general type called a function
space, which we shall examine after the definition. For the moment we remark
only that we defined the sum of the triple x and the triple y as that triple z
such that z; = z; + y; for every 1.

A vector space, then, is a collection of objects that can be added to each
other and multiplied by numbers, subject to certain laws of algebra. In this
context a number is often called a scalar.

Definition. Let V be a set, and let there be given a mapping <e, 8> +
a—+ 8 from V XV to V, called addition, and a mapping <z, a> — za
from R X V to V, called multiplication by scalars. Then V is a vector space
with respect to these two operations if:

Al. a+B+7)=(@+8B)+7 forall «,8,7€V.

A2. a+B8=F+a« forall o, V.

A3. There exists an element 0 € V such that « + 0 = « for all a € V.
A4. Tor every a € V there exists a 8 € V such that « + 8 = 0.

SI1. (zy)a = z(ya) forall z,yeR, aeV.
S2. (z + y)a = za+ ya forall z,yeR, acV.
S3. z(a+B) = za+ 28 forall z€R, a,p€V.
S4. la= a forall aeV.

In contexts where it is clear (as it generally is) which operations are intended,
we refer simply to the vector space V.

Certain further properties of a vector space follow directly from the axioms.
Thus the zero element postulated in A3 is unique, and for each « the 8 of A4
is unique, and is called —a. Also 0a = 0, 20 = 0, and (—1)a = —a. These
elementary consequences are considered in the exercises.

Our standard example of a vector space will be the set ¥ = R4 of all real-
valued functions on a set 4 under the natural operations of addition of two
functions and multiplication of a function by a number. This generalizes the
example R''%3 = R3 that we looked at above. Remember that a function f
in R4 is simply a mathematical object of a certain kind. We are saying that two
of these objects can be added together in a natural way to form a third such
object, and that the set of all such objects then satisfies the above laws for
addition. Of course, f + ¢ is defined as the function whose value at a is f(a) +
g(a), so that (f + ¢)(a) = f(a) + g(a) for all @ in A. For example, in R® we
defined the sum x + y as that triple whose value at ¢ is z; + y; for all 2. Similarly,
¢f is the function defined by (cf)(a) = c(f(a)) for all a. Laws Al through S4
follow at once from these definitions and the corresponding laws of algebra for
the real number system. Ior example, the equation (s + {)f = sf + {f means
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that ((s + t)f)(a) = (sf + tf)(a) foralla € A. But

(s +0f) (@) = s+ ) (f@) = s(f(@) + t(f(a))
= ($N(a) + @)(a) = (f + i)(a),

where we have used the definition of scalar multiplication in R4, the distributive
law in R, the definition of scalar multiplication in R4, and the definition of
addition in R4, in that order. Thus we have S2, and the other laws follow
similarly.

The set A can be anything at all. If A = R, then V = RR® is the vector
space of all real-valued functions of one real variable. If A = R X R, then
V = R®*® is the space of all real-valued functions of two real variables. If
A= {1,2} =2, then V = R2 = R? is the Cartesian plane, and if A4 =
{1,...,n} = 7@, then V = R™ is Cartesian n-space. If A contains a single
point, then R* is a natural bijective image of R itself, and of course R is trivially
a vector space with respect to its own operations.

Now let V be any vector space, and suppose that W is a nonempty subset of
V that is closed under the operations of V. That is, if « and 8 are in W, then so
is a + B, and if a is in W, then so is x« for every scalar x. IFor example, let V be
the vector space R of all real-valued functions on the closed interval [a, b] C R,
and let W be the set @([a, b]) of all continuous real-valued functions on [a, b].
Then W is a subset of V that is closed under the operations of V, since f+ ¢
and c¢f are continuous whenever f and g are. Or let V be Cartesian 2-space R2,
and let W be the set of ordered pairs x = <z, x2> such that x; + z, = 0.
Clearly, W is closed under the operations of V.

Such a subset W is always a vector space in its own right. The universally
quantified laws Al, A2, and S1 through S4 hold in W because they hold in the
larger set V. And since there is some 8 in W, it follows that 0 = 08 is in W
because W is closed under multiplication by scalars. For the same reason, if «
isin W, then so is —a = (—1)a. Therefore, A3 and A4 also hold, and we see
that W is a vector space. We have proved the following lemma.

Lemma. If W is a nonempty subset of a vector space V' which is closed
under the operations of V, then W is itself a vector space.

We call W a subspace of V. Thus €([a, b]) is a subspace of R'®" and the
pairs <zy, o> such that z; -- z, = 0 form a subspace of R% Subspaces will
be with us from now to the end.

A subspace of a vector space R* is called a function space. In other words, a
function space is a collection of real-valued functions on a common domain
which is closed under addition and multiplication by scalars.

What we have defined so far ought to be called the notion of a real vector
space or a vector space over R. There is an analogous notion of a complex vector
space, for which the scalars are the complex numbers. Then laws S1 through S4
refer to multiplication by complex numbers, and the space C* of all complex-
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valued functions on A is the standard example. In fact, if the reader knew what
is meant by a field F, we could give a single general definition of a vector space
over F, where scalar multiplication is by the elements of F, and the standard
example is the space V = F4 of all functions from A to F. Throughout this
book it will be understood that a vector space is a real vector space unless explic-
itly stated otherwise. However, much of the analysis holds as well for complex
vector spaces, and most of the pure algebra is valid for any scalar field F.

EXERCISES

1.1 Sketch the geometric figure representing law S3,
z(04 + 0B) = z(04) + z(0B),
for geometric vectors. Assume that x > 1.
1.2 Prove S3 for R3 using the explicit displayed form {1, z2, 3} for ordered triples.
1.3 The vector 0 postulated in A3 is unique, as elementary algebraic fiddling will
show. For suppose that 0" also satisfies A3. Then
0=0+0 (A3 for 0)
=040 (A2)
=0 (A3 for 0').
Show by similar algebraic juggling that, given «, the 8 postulated in A4 is unique.
This unique 3 is designated —a.
1.4 Prove similarly that 0 = 0, z0 = 0, and (—1)a = —a.
1.5 Prove that if za = 0, then either z = 0 or @ = 0.
1.6 Prove S1 for a function space R4. Prove S3.

1.7 Given that « is any vector in a vector space V, show that the set {za:z € R}
of all scalar multiples of « is a subspace of V.

1.8 Given that « and B are any two vectors in V, show that the set of all vectors
ra -+ yB, where z and y are any real numbers, is a subspace of V.

1.9 Show that the set of triples x in R3 such that 1 — 22 + 2x3 = 0 is a subspace
M. If N is the similar subspace {x:z1 -+ z2 + z3 = 0}, find a nonzero vector a in
M N N. Show that M N N is the set {za:z € R} of all scalar multiples of a.

1.10 Let A be the open interval (0, 1), and let V be R4. Given a point z in (0, 1),
let V, be the set of functions in V that have a derivative at x. Show that V. is a sub-
space of V.

1.L11 For any subsets A and B of a vector space V we define the set sum 4 + B by
A+B={a+B:a€ A and B € B}. Show that (A + B)+C = A+ (B+0).
112 If ACV and X CR, we similarly define XA = {za:2€ X and a€ A}.
Show that a nonvoid set A is a subspace if and only if A + A = A4 and R4 = A.
1.13 Let V be R2, and let M be the line through the origin with slope k. Let x be
any nonzero vector in M. Show that M is the subspace Rx = {ix:t€ R}.
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1.14 Show that any other line L with the same slope £ is of the form M -+ a for some a.
1.15 Let M be a subspace of a vector space V, and let & and 8 be any two vectorsin V.
Given A = o+ M and B = 8+ M, show that either 4 = B or ANB = .
Show also that A 4+ B = («+ 8) + M.

1.16 State more carefully and prove what is meant by “a subspace of a subspace is
a subspace”.

1.17 Prove that the intersection of two subspaces of a vector space is always itself
a subspace.

1.18 Prove more generally that the intersection W = [.er W; of any family
{W;:1 € I} of subspaces of V is a subspace of V.

1.19 Let V again be RV and let W be the set of all functions f in V such that f’(z)
exists for every x in (0, 1). Show that 11" is the intersection of the collection of subspaces
of the form V, that were considered in Exercise 1.10.

1.20 Let V be a function space R4, and for a point a in .1 let W, be the set of functions
such that f(a) = 0. W, is clearly a subspace. For a subset B C .1 let W be the set
of functions fin V such that f = 0 on B. Show that Wp is the intersection (Y.ep Wa.
1.21 Supposing again that X and 1 are subspaces of V, show thatif X 4- ¥ = V and
XNY = {0}, then for every vector { in V there is a unique pair of vectors £ € X
and 7 € Y such that ¢ = £+ ».

1.22 Show that if X and Y are subspaces of a vector space V, then the union X U Y
can only be a subspace if either X C Y or ¥ C X.

Linear combinations and linear span. Because of the commutative and associ-
ative laws for vector addition, the sum of a finite set of vectors is the same for all
possible ways of adding them. TFor example, the sum of the three vectors
ag, oy, a. can be calculated in 12 ways, all of which give the same result:

(aa + ab) + Qe = O¢ + (aa + Olb) == (ac + aa) + ay =— Qap + (Olc + aa); ete.

Therefore, if I = {a, b, ¢} is the set of indices used, the notation > ;er
which indicates the sum without telling us how we got it, is unambiguous. In
general, for any finite indexed set of vectors {e;:7 € I} there is a uniquely
determined sum vector > ;er a; which we can compute by ordering and group-
ing the ;s in any way.

The index set I is often a block of integers @ = {1,...,n}. In this case
the vectors a; form an n-tuple {a;}7, and unless directed to do otherwise we
would add them in their natural order and write the sum as >.;-; ;. Note
that the way they are grouped is still left arbitrary.

Frequently, however, we have to use indexed sets that are not ordered.
Tor example, the general polynomial of degree at most 5 in the two variables

‘s’ and ‘¢’ is
Z cijszt])
0<i45<5

and the finite set of monomials {s%’};; ;<5 has no natural order.
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* The formal proof that the sum of a finite collection of vectors is indepen-
dent of how we add them is by induction. We give it only for the interested
reader.

In order to avoid looking silly, we begin the induction with two vectors,
in which case the commutative law o, + ap = ap + a, displays the identity of
all possible sums. Suppose then that the assertion is true for index sets having
fewer than n elements, and consider a collection {«;:7 € I'} having n members.
Let 8 and ¥ be the sum of these vectors computed in two ways. In the com-
putation of B there was a last addition performed, so that g = (XZics, o) +
(XZies, @i), where {Jy, Jo} partitions I and where we can write these two
partial sums without showing how they were formed, since by our inductive
hypothesis all possible ways of adding them give the same result.

Similarly, ¥ = (XZiek, &) + (Xick, @). Now set

Ly = J;n Ky and Eir = Z a;,
‘ieij
where it is understood that £;; = 0 if Lj; is empty (see Exercise 1.37). Then
2 ies, = £11 + £12 by the inductive hypothesis, and similarly for the other
three sums. Thus

B = (£11 + £12) + (821 + £22) = (£11 4 E21) + (£12 4 £22) - Y,

which completes our proof. x

A vector 3 is called a linear combination of a subset A of the vector space V
if B is a finite sum >_ x;a;, where the vectors «; are all in A and the scalars z;
are arbitrary. Thus, if A is the subset {t"}g C R® of all “monomials”, then a
function f is a linear combination of the functions in A if and only if fis a
polynomial function f(t) = Y7 cit®. If A is finite, it is often useful to take the
indexed set {a;} to be the whole of A, and to simply use a 0-coefficient for any
vector missing from the sum. Thus, if A is the subset {sin{, cost, e’} of R¥,
then we can consider A an ordered triple in the listed ordering, and the function
3sint — e = 3-sint} 0-cost+ (—1)e’ is the linear combination of the
triple A having the coefficient triple <3,0, —1>.

Consider now the set L of all linear combinations of the two vectors
<1,1,1> and <0,1, —1> in R3. It is the set of all vectors s<1,1,1> -
t<0,1, —1> = <s,s+t, s — t>, where s and ¢ are any real numbers. Thus
L= {<s,st+ts—t>:<st>ecR?%. It will be clear on inspection that
L is closed under addition and scalar multiplication, and therefore is a subspace
of R3. Also, L contains each of the two given vectors, with coefficient pairs
<1,0> and <0, 1>, respectively. Finally, any subspace M of R® which
contains each of the two given vectors will also contain all of their linear combi-
nations, and so will include L. That is, L zs the smallest subspace of R® containing
<1,1,1> and <0, 1, —1>. Itiscalled the linear span of the two vectors, or the
subspace generated by the two vectors. In general, we have the following theorem.
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Theorem 1.1. If A is a nonempty subset of a vector space V, then the set
L(A) of all linear combinations of the vectors in A is a subspace, and it is
the smallest subspace of V' which includes the set A.

Proof. Suppose first that A is finite. We can assume that we have indexed 4
in some way, so that A = {a;:¢ € I} for some finite index set I, and every
element of L(A4) is of the form Y ;er x;a;. Then we have

(X @) + (X yia)) = 2 (@5 + Yooy

because the left-hand side becomes 3_; (x;a; + y;;) when it is regrouped by
pairs, and then S2 gives the right-hand side. We also have

(X i) = 2(cxi)ay

by S3 and mathematical induction. Thus L(A) is closed under addition and
multiplication by scalars and hence is a subspace. Moreover, L(A) contains
each a; (why?) and so includes A. Finally, if a subspace W includes 4, then it
contains each linear combination 3 ;a5 so it includes L(4). Therefore, L(A)
can be directly characterized as the uniquely determined smallest subspace
which includes the set A.

If A is infinite, we obviously can’t use a single finite listing. However, the
sum (27 ;) + (01" y;B;) of two linear combinations of elements of A is
clearly a finite sum of scalars times elements of A. If we wish, we can rewrite it
as 211 zia;, where we have set 8; = anqj and y; = x,qjforj=1,...,m.
In any case, L(A) is again closed under addition and multiplication by scalars
and so is a subspace. [

We call L(A) the linear span of A. If L(A) = V, we say that A spans V;
V is finite-dimensional if it has a finite spanning set.

If V = R® and if 6!, 62, and 63 are the “unit points on the axes”, §' =
<1,0,0>, §* = <0,1,0>, and 6% = <0,0, 1>, then {5°}} spans V, since
x = <2, 29, 23> = <21,0,0> + <0,25,0> + <0,0, 23> = z,8' +
7267 + 238% = 3} 2:8" for every x in R®. More generally, if V = R™ and & is
the n-tuple having 1 in the jth place and 0 elsewhere, then we have similarly that
X = <Tp,...,T,> = Yi=; ;8" so that {6°}7 spans R”. Thus R" is finite-
dimensional. In general, a function space on an infinite set 4 will not be finite-
dimensional. For example, it is true but not obvious that €([a, b]) has no finite
spanning set.

EXERCISES

1.23 Given a = <1,1,1>,8 = 0,1, —1>,7 = <2,0, 1>, compute the linear
combinations o -+ 847, 3« — 28+ ¥, za+ yB-+ z¥. Find z,y, and z such that
za+ yB—+2zv = <0,0,1> = 8. Do the same for 8! and 62.

1.24 Given a = <1,1,1>,8 = <0,1,—1>, v = <1,0,2>, show that each of
a,f,7 is a linear combination of the other two. Show that it is impossible to find
coefficients x, y, and z such that za + y8 -+ 2v = 6.
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1.25 a) Find the linear combination of the set A = <t,t2 — 1,¢2 4 1> with coeffi-
cient triple <2, —1, 1>. Do the same for <0, 1, 1>.
b) Find the coefficient triple for which the linear combination of the triple A
is (¢t -+ 1)2. Do the same for 1.
¢) Show in fact that any polynomial of degree < 2 is a linear combination of ..
1.26 Find the linear combination f of {e!, et} C R® such that f(0) = 1andf’(0) = 2.
1.27 Find a linear combination f of sin z, cos z, and e* such that f(0) = 0, f'(0) = 1,
and f(0) = 1.
1.28 Suppose that a sin z + b cos z + ce? is the zero function. Prove that a = b =
c=0.
1.29 Prove that <1,1> and <1,2> span R2.
1.30 Show that the subspace M = {x:z; + 22 = 0} C R? is spanned by one vector.
1.31 Let M be the subspace {x:21 — x2+ 2r3 = 0} in R3. Find two vectors a
and b in M neither of which is a scalar multiple of the other. Then show that M is
the linear span of a and b.
1.32 Find the intersection of the linear span of <1,1,1> and <0,1, —1> in R3
with the coordinate subspace 2 = 0. Exhibit this intersection as a linear span.

1.33 Do the above exercise with the coordinate space replaced by
M = {x:z1+ z2 = 0}.

1.34 By Theorem 1.1 the linear span L(A4) of an arbitrary subset A of a vector space
V has the following two properties:

i) L(A) is a subspace of V which includes 4;

ii) If M is any subspace which includes A4, then L(A) C M.
Using only (i) and (ii), show that

a) ACB= L(A) CL(B);

b) L(L(A)) = L(4).
1.35 Show that

a) if M and N are subspaces of V, then so is M + N;

b) for any subsets A, BC V, L(4A U B) = L(A) + L(B).
1.36 Remembering (Exercise 1.18) that the intersection of any family of subspaces
is a subspace, show that the linear span L(A) of a subset A of a vector space V is the
intersection of all the subspaces of V that include A. This alternative characterization
is sometimes taken as the definition of linear span.
1.37 By convention, the sum of an empty set of vectors is taken to be the zero vector.

This is necessary if Theorem 1.1 is to be strictly correct. Why? What about the
preceding problem?

Linear transformations. The general function space R4 and the subspace
e([a, b]) of R™®¥ both have the property that in addition to being closed under
the vector operations, they are also closed under the operation of multiplication
of two functions. That is, the pointwise product of two functions is again a
function [(fg)(a) = f(a)g(a)], and the product of two continuous functions is
continuous. With respect to these three operations, addition, multiplication,
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and scalar multiplication, R* and €([a, b]) are examples of algebras. If the reader
noticed this extra operation, he may have wondered why, at least in the context
of function spaces, we bother with the notion of vector space. Why not study
all three operations? The answer is that the vector operations are exactly the
operations that are “preserved” by many of the most important mappings of
sets of functions. For example, define T:€([a, b)) — R by T(f) = ff () dt.
Then the laws of the integral calculus say that T(f + ¢) = T(f) + T(g) and
T(cf) = c¢T(f). Thus T “preserves” the vector operations. Or we can say that T
“commutes” with the vector operations, since plus followed by T equals T
followed by plus. However, T' does not preserve multiplication: it is not true in
general that T (fg) = T(f)T(g).

Another example is the mapping T:x+— y from R?® to R? defined by
Y1 = 2x; — X3 + 23, Y2 = x; + 3x2 — Sx3, for which we can again verify
that T(x +y) = T(x) + T(y)and T(cx) = ¢T(x). The theory of the solvability
of systems of linear equations is essentially the theory of such mappings 7'; thus
we have another important type of mapping that preserves the vector operations
(but not products).

These remarks suggest that we study vector spaces in part so that we can
study mappings which preserve the vector operations. Such mappings are
called linear transformations.

Definition. If V and W are vector spaces, then a mapping 7:V — Wis a
linear transformation or a linear map if T(a+ B) = T(a) + T(B) for all
a,B€V,and T(@a) = 2T (e) foralla eV, z € R.

These two conditions on T can be combined into the single equation
T(xa + yB) = zT(a) + yT(B) forall o,V andall z,yeR.

Moreover, this equation can be extended to any finite sum by induction, so
that if T is linear, then

T (%}I a’iai) = % VACD)

for any linear combination }_ x;a;. I'or example, f,f Clef) =2t e ff fi

EXERCISES

1.38 Show that the most general linear map from R to R is multiplication by a con-
stant.

1.39 For a fixed @ in V the mapping 2 — za from R to V is linear. Why?
1.40 Why is this true for o+ xa when z is fixed?

1.41 Show that every linear mapping from R to V is of the form a + za for a fixed
vector @ in V.
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1.42 Show that every linear mapping from R2 to V is of the form <z1, 22> —
r101 + Zoae2 for a fixed pair of vectorsa; and a2 in V. What is the range of this mapping?

1.43 Show that the map f+—> J2 () dt from C({a, b]) to R does not preserve products.

1.44 Let g be any fixed function in R4. Prove that the mapping T:R* — R4
defined by T(f) = ¢f is linear.

1.45 Let ¢ be any mapping from a set 4 to a set B. Show that composition by ¢ is
a linear mapping from R to R4, That is, show that T: R® — R4 defined by T'(f) =
fo ¢is linear.

In order to acquire a supply of examples, we shall find all linear transforma-
tions having R™ as domain space. It may be well to start by looking at one such
transformation. Suppose we choose some fixed triple of functions {f;}} in the
space R® of all real-valued functions on R, say f1(t) = sin ¢, f5(t) = cost, and
fa(t) = €' = exp(t). Then for each triple of numbers x = {z;}3 in R® we have
the linear combination 3., x:f; with {z;} as coefficients. This is the element of
R® whose value at t is 3.5 z,f:(t) = x1 sin t -+ x5 cos t + zze'. Different coefficient
triples give different functions, and the mapping x — 33 xifi = xy sin +
x5 cos + x5 exp is thus a mapping from R® to R®. It is clearly linear. If we call
this mapping T, then we can recover the determining triple of functions from 7'
as the images of the “unit points” & in R3; T(&) = ¥ 8if; = f;, and so
T(8Y) = sin, T(8%) = cos, and T(8%) = exp. We are going to see that every
linear mapping from R3 to R® is of this form.

In the following theorem {4°}} is the spanning set for R" that we defined
earlier, so that x = 37 x,8° for every n-tuple x = <zy,...,2,> in R™

Theorem 1.2. If {8;}1 is any fixed n-tuple of vectors in a vector space W,
then the “linear combination mapping” x +— > [ z;8; is a linear trans-
formation 7' from R” to W, and T(8’) = B; forj = 1, ..., n. Conversely,
if T is any linear mapping from R” to W, and if we set 8; = T(&°) for j =
1,...,n, then T is the linear combination mapping x + 27 Z:B;.

Proof. The linearity of the linear combination map T follows by exactly the
same argument that we used in Theorem 1.1 to show that L(A) is a subspace.
Thus

T(x+y) = ZIZ (x: + y:)B: = Zl: (x:B; + yiBs)

= 21: z:Bi + 21: yiB: = T(x) + T(y),

and

n

T(sx) = Z (s = 3 e = si’:j 2iBi = sT(x).

Also T(§°) = Y1, 8i8; = B, since 8 = 1 and & = 0 for ¢ # J.
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Conversely, if 7: R™ — W is linear, and if we set 8; = T(Bf) for all 7, then for
any x = <2j,...,Z,> in R” we have T'(x) = T(3 T z; §") = 2 1 x;T(8") =
> ¥ 2i8;. Thus T is the mapping x — > 7 z;8;. U

This is a tremendously important theorem, simple though it may seem, and
the reader is urged to fix it in his mind. To this end we shall invent some termi-
nology that we shall stay with for the first three chapters. If @« = {ay, ..., as}
is an n-tuple of vectors in a vector space W, let La be the corresponding linear
combination mapping x — > | z;a; from R™ to W. Note that the n-tuple «
itself is an element of W”. If T is any linear mapping from R” to W, we shall call
the n-tuple {T(6%)} 7 the skeleton of T. In these terms the theorem can be restated
as follows.

Theorem 1.2’. I'or cach n-tuple @ in W", the map La: R" — W is linear
and its skeleton is . Conversely, if T is any linear map from R” to W, then
T = L where B is the skeleton of 7.

Or again:

Theorem 1.2””. The map « +— La is a bijection from W™ to the set of all
linear maps T from R™ to W, and T +— skeleton (7) is its inverse.

A linear transformation from a vector space V to the scalar field R is called
a linear functional on V. Thus f— ff f(t) dt is a linear functional on V =
€([a, b]). The above theorem is particularly simple for a linear functional F':
since W = R, each vector 8; = F(5") in the skeleton of F is simply a number b;,
and the skeleton {b;}7 is thus an element of R". In this case we would write
F(x) = X7 byr;, putting the numerical coefficient ‘b, before the variable
‘7. Thus F(x) = 3z; — 3 -+ 4x3 is the linear functional on R? with skeleton
<3, —1,4>. The set of all linear functionals on R is in a natural one-to-one
correspondence with R” itself; we get b from F by b; = F(&°) for all 7, and we
get F from b by F(x) = Y bx; for all x in R™.

We next consider the case where the codomain space of T is a Cartesian
space R™, and in order to keep the two spaces clear in our minds, we shall, for
the moment, take the domain space to be R3. Each vector 8; = T(5%) in the
skeleton of T is now an m-tuple of numbers. If we picture this m-tuple as a
column of numbers, then the three m-tuples 8; can be pictured as a rectangular
array of numbers, consisting of three columns each of m numbers. Let ¢;; be the
7th number in the jth column. Then the doubly indexed set of numbers {¢;} is
called the matrix of the transformation 7. We call it an m-by-3 (an m X 3)
matrix because the pictured rectangular array has m rows and three columns.
The matrix determines 7' uniquely, since its columns form the skeleton of 7.
The identity T(x) = 33 2,T(8) = X3 ;8; allows the m-tuple T(x) to be
calculated explicitly from x and the matrix {t;;}. Picture multiplying the
column m-tuple B; by the scalar x; and then adding across the three columns at
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the 7th row, as below:
: /: : :
Yi | = x4 (tu +xo| tiz )+ x5 | tis

}.’ B1 B2 B3

Since ¢;; is the ith number in the m-tuple 8;, the ¢th number in the m-tuple
>3 x;B; is Yio, xjt;j. That is, if we let y be the m-tuple T'(x), then

3
Yi= 2 tix; for t=1,...,m,

j=1

and this set of m scalar equations is cquivalent to the one-vector equation
y = T(x).

We can now replace three by n in the above discussion without changing
anything except the diagram, and thus obtain the following specialization of
Theorem 1.2.

Theorem 1.3. Every linear mapping 7 from R"™ to R™ determines the
m X n matrix t = {{;;} having the skeleton of T' as its columns, and the
expression of the equation y = 7'(x) in linear combination form is equivalent
to the m scalar equations

n
y’l,:ztl]x] fOr i=l,...,’m.

j=1

Conversely, cach m X n matrix t determines the linear combination mapping
having the columns of t as its skeleton, and the mapping t — T is therefore
a bijection from the set of all m X n matrices to the set of all linear maps
from R™ to R™.

A linear functional F on R” is a linear mapping from R” to R!, so it must
be expressed by a 1 X n matrix. That is, the n-tuple b in R™ which is the skeleton
of F is viewed as a matrix of one row and n columns.

As a final example of linear maps, we look at an important class of special
linear functionals defined on any function space, the so-called coordinate func-
tionals. If V = R! and ¢ € I, then the ¢th coordinate functional 7; is simply
evaluation at 1, so that m;(f) = f(¢). These functionals are obviously linear. In
fact, the vector operations on functions were defined to make them linear; since
sf -+ tg is defined to be that function whose value at ¢ is sf(¢) 4- {g(¢) for all <,
we see that sf - tg is by definition that function such that m;(sf 4+ tg) =
smi(f) + tmwi(g) for all 2!

If V is R™, then ; is the mapping x = <=zy,...,Z,> > z;. In this case
we know from the theorem that m; must be of the form m;(x) = 27 bx; for
some n-tuple b. What is b?
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The general form of the linearity property, T'(3" ze;) = > a;T(e;), shows
that T and T~! both carry subspaces into subspaces.

Theorem 1.4. If T:V — W is linear, then the T-image of the linear span
of any subset A C V is the linear span of the T-image of A: T[L(A)] =
L(T[A]). In particular, if A is a subspace, then so is T[A]. Furthermore, if ¥
is a subspace of W, then T™![Y] is a subspace of V.

Proof. According to the formula T'(3 z;) = 3 x;T(a;), a vector in W is
the T-image of a linear combination on A if and only if it is a linear combination
on T[A]. Thatis, T[L(A)] = L(T[A]). If A is a subspace, then A = L(A) and
T[A] = L(T[A]), a subspace of W. TI'inally, if Y is a subspace of W and {a;} C
T7Y], then T(X z0) = X 2.T(a;) € L(Y) = Y. Thus ¥ xa; € T7Y]
and T ![Y] is its own lincar span. [

The subspace T7'(0) = {a € V:T(a) = 0} is called the null space, or
kernel, of T, and is designated N(T) or 91(T"). The range of T is the subspace
T[V] of W. It is designated R(T) or &(T).

Lemma 1.1. A linear mapping 7 is injective if and only if its null space
is {0}.
Proof. If T is injective, and if @ ## 0, then T'(a) # T'(0) = 0 and the null space
accordingly contains only 0. On the other hand, if N(T) = {0}, then whenever
a# B,wehavea — 3 # 0, T(e) — T(B) = T(a — B) # 0,and T'(a) # T(B);
this shows that T is injective. [

A linear map T:V — W which is bijective is called an ¢somorphism.
Two vector spaces V and W are isomorphic if and only if there exists an iso-
morphism between them.

Tor example, the map <cy, ..., c,> — 367" cipq2’ is an isomorphism of
R™ with the vector space of all polynomials of degree < n.

Isomorphic spaces “have the same form”, and are identical as abstract
vector spaces. That is, they cannot be distinguished from each other solely on
the basis of vector properties which they do or do not have.

When a linear transformation is from V to itself, special things can happen.
One possibility is that T can map a vector a essentially to itself, T(a) = za
for some z in R. In this case « is called an eigenvector (proper vector, character-
istic vector), and x is the corresponding ezgenvalue.

EXERCISES

1.46 In the situation of Ixercise 1.45, show that T is an isomorphism if ¢ is bijective
by showing that

a) ¢ injective = T surjective,

b) ¢ surjective = T injective.
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1.47 Find the linear functional l on R2 such that [(<1,1>) = 0and I(<1,2>) = 1.
That is, find b = <by, b2> in R?2 such that [ is the linear combination map

x — b1z + boxos.

1.48 Do the same for [(<2,1>) = —3 and I(<1,2>) = 4.

1.49 Find the linear T: R2 — R® such that T(<1,1>) = ¢ and T(<1,2>) = 3.
That is, find the functions f1(¢) and f2(t) such that T is the linear combination map
x — z1f1 + zof2.

1.50 Let T be the linear map from R2 to R3 such that T(8!) = <2, —1,1>, T(§?) =
<1,0,3>. Write down the matrix of T in standard rectangular form. Determine
whether or not 8! is in the range of 7.

1.51 Let T be the linear map from R3 to R3 whose matrix is

1 2 3
2 0o —1].
3 —1 1

Find T(x) when x = <1,1,0>; do the same for x = <3, —2,1>.

1.52 Let M be the linear span of <1, —1,0> and <0,1,1>. Find the subspace
T[M] by finding two vectors spanning it, where T is as in the above exercise.

1.53 Let T be the map <z, y> — <z -+ 2y, y> from R? to itself. Show that T'isa
linear combination mapping, and write down its matrix in standard form.

1.54 Do the same for T: <z, y,z> — <z — 2,z + 2, y> from R3 to itself.

1.55 Find a linear transformation T from R3 to itself whose range space is the span
of <1,—1,0> and <—1,0,2>.

1.56 Find two linear functionals on R* the intersection of whose null spaces is the
linear span of <1, 1,1, 1> and <1,0, —1,0>. You now have in hand a linear
transformation whose null space is the above span. What is it?

1.57 Let V = C([a, b]) be the space of continuous real-valued functions on [a, b],
also designated @O([a, b]), and let W = @1([a, b]) be those having continuous first
derivatives. Let D:W — V be differentiation (Df = f’), and define T on V by
T(f) = F, where F(z) = [Zf(t) dt. By stating appropriate theorems of the calculus,
show that D and T are linear, T maps into IV, and D is a left inverse of T (Do T is
the identity on V).

1.58 In the above exercise, identify the range of T and the null space of D. We
know that D is surjective and that T is injective. Why?

1.59 Let V be the linear span of the functions sin z and cos z. Then the operation
of differentiation D is a linear transformation from V to V. Prove that D is an isomor-
phism from V to V. Show that D2 = —I on V.

1.60 a) As the reader would guess, @3(R) is the set of real-valued functions on R
having continuous derivatives up to and including the third. Show that f — f""’ is a
surjective linear map T from C3(R) to C(R).

b) For any fixed a in R show that f — <f(a), f'(a), f”(a) > is an isomorphism
from the null space N(T) to R3. [Hint: Apply Taylor’s formula with remainder.]



36 VECTOR SPACES 1.2

1.61 An integral analogue of the matrix equations y; = > jtyrs, 1 = 1,...,m, is
the equation

1
g(s) = /0 K(s,0f®) dt, s€[0,1).

Assuming that K(s, t) is defined on the square [0, 1] X [0, 1] and is continuous as a
function of ¢ for each s, check that f — g is a linear mapping from ([0, 1]) to R,

1.62 For a finite set A = {a;}, Theorem 1.1 is a corollary of Theorem 1.4. Why?
1.63 Show that the inverse of an isomorphism is linear (and hence is an isomorphism).
1.64 TFind the eigenvectors and eigenvalues of 7: R2 — R2 if the matrix of T is

1 —1
—2 0]
Since every scalar multiple za of an eigenvector « is clearly also an eigenvector, it will
suffice to find one vector in each “eigendirection”. This is a problem in elementary

algebra.
1.65 Tind the eigenvectors and eigenvalues of the transformations T whose matrices

are
1 1 —1 —1 1 —1 2 1
-2 0]’ -1 —1)’ -2 2| —4 —2]

1.66 The five transformations in the above two exercises exhibit four different kinds
of behavior according to the number of distinct eigendirections they have. What are
the possibilities?

1.67 Let V be the vector space of polynomials of degree < 3 and define 7:V — V
by f — tf’(t). Find the eigenvectors and eigenvalues of 7.

2. VECTOR SPACES AND GEOMETRY

The familiar coordinate systems of analytic geometry allow us to consider
geometric entities such as lines and planes in vector settings, and these geometric
notions give us valuable intuitions about vector spaces. Before looking at the
vector forms of these geometric ideas, we shall briefly review the construction of
the coordinate correspondence for three-dimensional Euclidean space. As usual,
the confident reader can skip it.

We start with the line. A coordinate correspondence between a line L and
the real number system R is determined by choosing arbitrarily on L a zero
point O and a unit point @ distinct from O. Then to each point X on L is assigned
the number z such that |z] is the distance from O to X, measured in terms of
the segment OQ as unit, and z is positive or negative according as X and Q are
on the same side of O or on opposite sides. The mapping X — =z is the coordinate
correspondence. Now consider three-dimensional Euclidean space E3. We want
to set up a coordinate correspondence between E2 and the Cartesian vector
space R3. We first choose arbitrarily a zero point O and three unit points
@1, Q2, and Q3 in such a way that the four points do not lie in a plane. Each of
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the unit points Q; determines a line L; through O and a coordinate correspon-
dence on this line, as defined above. The three lines L, Lo, and L3 are called
the coordinate axes. Consider now any point X in E®. The plane through X
parallel to Ly and L3 intersects L, at a point X, and therefore determines a
number z, the coordinate of X; on L;. In a similar way, X determines points
X, on Ly and X3 on Lz which have co-
ordinates xp and x3, respectively. Alto-
gether X determines a triple X

Ly

x = <y, To, T3>

in R?, and we have thus defined a mapping
6: X — x from E® to R® (see Fig. 1.4).
We call 6 the coordinate correspondence
defined by the axis system. The conven-
tion implicit in our notation above is that
6(Y) is y, 6(A) is a, ete. Note that the
unit point @, on L; has the coordinate
triple 8! = <1, 0, 0>, and similarly, that

6(Qs) = 6> = <0,1,0>
and
0(Qs) = 8° = <0,0,1>. Fig. 1.4

There are certain basie facts about the coordinate correspondence that have
to be proved as theorems of geometry before the correspondence can be used to
treat geometric questions algebraically. These geometric theorems are quite
tricky, and are almost impossible to discuss adequately on the basis of the usual
secondary school treatment of geometry. We shall therefore simply assume
them. They are:

1) 6is a bijection from E* to R>.

2) Two line segments AB and XY are equal in length and parallel, and the
direction from A to B is the same as that from X to Y if and only if b — a =
y — x (in the vector space R®). This relationship between line segments is
important enough to formalize. A directed line segment is a geometric line seg-
ment, together with a choice of one of the two directions along it. If we interpret
AB as the directed line segment from A to B, and if we define the directed line
segments AB and XY to be equivalent (and write AB ~ XY) if they are equal
in length, parallel, and similarly directed, then (2) can be restated:

AB~XY @ b—a=y —x

3) If X 5 O, then Y is on the line through O and X in E? if and only if
y = ix for some ¢t in R. Moreover, this ¢ is the coordinate of Y with respect to X
as unit point on the line through O and X.
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y—=,y—x)=|XY?

(y,y) =|0Y|?

89 =x12+x%
|0X|2=r2=s2+23

Fig. 1.5

4) If the axis system in E3 is Cartesian, that is, if the axes are mutually
perpendicular and a common unit of distance is used, then the length [0X]| of
the segment OX is given by the so-called Euclidean norm on R3, |0X| =
(33 2212, This follows directly from the Pythagorean theorem. Then this
formula and a second application of the Pythagorean theorem to the triangle
OXY imply that the segments OX and OY are perpendicular if and only if the
scalar product (x,y) = Y o—, x: has the value 0 (see Fig. 1.5).

In applying this result, it is useful to note that the scalar product (x, y) is
linear as a function of either vector variable when the other is held fixed. Thus

3 3 3
(ex +dy,z) = 2 (cx; +dy)es = ¢ 3, xizs +d D yizs = ¢(x, z) + d(y, z).
1 1 1

Exactly the same theorems hold for the coordinate correspondence between
the Euclidean plane E2 and the Cartesian 2-space R2, except that now, of course,
(x,y) = iz = T1y1 + a2y

We can esasily obtain the equations for lines and
planes in E® from these basic theorems. First, we see
from (2) and (3) that if fixed points A and B are given, X
with A4 # O, then the line through B parallel to the
segment OA contains the point X if and only if there 0
exists a scalar ¢ such that x — b = fa (see Fig. 1.6).

Therefore, the equation of this line is A

x = ta+ b. Fig. 1.6

This vector equation is equivalent to the three numerical equations z; =
ait + b;, 7 = 1, 2, 3. These are customarily called the parametric equations of the
line, since they present the coordinate triple x of the varying point X on the line
as functions of the “parameter” ¢.
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Next, we know that the plane through B perpendicular to the direction of
the segment OA contains the point X if and only if BX 1 OA, and it therefore
follows from (2) and (4) that the plane contains X if and only if (x — b, a) = 0
(see Fig. 1.7). But (x — b, a) = (x, a) — (b, a) by the linearity of the scalar
product in its first variable, and if we set I = (b, a), we see that the equation of
the plane is

3
(x,a) =1 or > as =1
1

That is, a point X is on the plane through B perpendicular to the direction of
OA if and only if this equation holds for its coordinate triple x. Conversely,
if a # 0, then we can retrace the steps taken above to show that the set of points
X in E® whose coordinate triples x satisfy (x, a) = [ is a plane.

Fig. 1.7

The fact that R® has the natural scalar product (x, y) is of course extremely
important, both algebraically and geometrically. However, most vector spaces
do not have natural scalar products, and we shall deliberately neglect scalar
products in our early vector theory (but shall return to them in Chapter 5).
This leads us to seek a different interpretation of the equation 33 a;z; = I
We saw in Section 1 that x — Y3 a;x; is the most general linear functional f on
R3. Therefore, given any plane M in E3, there is a nonzero linear functional f
on R? and a number I such that the equation of M is f(x) = I. And conversely,
given any nonzero linear functional f:R® — R and any I € R, the locus of
f(x) = l is a plane M in E3. The reader will remember that we obtain the
coefficient triple a from f by a; = f(5%), since then f(x) = f(I? z;6%) =

{2 (6) = X} za.

Finally, we seek the vector form of the notion of parallel translation. In
plane geometry when we are considering two congruent figures that are parallel
and similarly oriented, we often think of obtaining one from the other by “sliding
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the plane along itself” in such a way that all lines remain parallel to their original
positions. This description of a parallel translation of the plane can be more
elegantly stated as the condition that every directed line segment slides to an
equivalent one. If X slides to Y and O slides to B, then OX slides to BY, so
that OX ~ BY and x = y — b by (2). Therefore, the coordinate form of such
a parallel sliding is the mapping x — y = x + b.

Conversely, for any b in R? the plane mapping defined by x—y = x+ b
is easily seen to be a parallel translation. These considerations hold equally well
for parallel translations of the Euclidean space E3.

It is geometrically clear that under a parallel translation planes map to
parallel planes and lines map to parallel lines, and now we can expect an easy
algebraic proof. Consider, for example, the plane M with equation f(x) = I;
let us ask what happens to M under the translation x — y = x 4+ b. Since
x = y — b, we see that a point x is on M if and only if its translate y satisfies
the equation f(y — b) = [ or, since f is linear, the equation f(y) = !, where
I = | -+ f(b). But this is the equation of a plane N. Thus the translate of A/
is the plane N.

It is natural to transfer all this geometric terminology from sets in E®
to the corresponding sets in R® and therefore to speak of the set of ordered
triples x satisfying f(x) = [ as a set of points in R® forming a plane in R3, and
to call the mapping x — x -~ b the (parallel) translation of R® through b, etec.
Moreover, since R? is a vector space, we would expect these geometric ideas to
interplay with vector notions. For instance, translation through b is simply the
operation of adding the constant vector b: x — x 4 b. Thus if M is a plane, then
the plane N obtained by translating M through b is just the vector set sum
M -+ b. If the equation of M is f(x) = [, then the plane M goes through 0 if
and only if I = 0, in which case M is a vector subspace of R? (the null space of f).
It is easy to see that any plane M is a translate of a plane through 0. Similarly,
the line {ta + b : ¢ € R} is the translate through b of the line {ta: t € R}, and
this second line is a subspace, the linear span of the one vector a. Thus planes
and lines in R® are translates of subspaces.

These notions all carry over to an arbitrary real vector space in a perfectly
satisfactory way and with additional dimensional variety. A plane in R®
through 0 is a vector space which is two-dimensional in a strictly algebraic sense
which we shall discuss in the next chapter, and a line is similarly one-dimensional.
In R3 there are no proper subspaces other than planes and lines through 0,
but in a vector space V with dimension n > 3 proper subspaces occur with all
dimensions from 1 to n — 1. We shall therefore use the term “plane” loosely to
refer to any translate of a subspace, whatever its dimension. More properly,
translates of vector subspaces are called affine subspaces.

We shall see that if V is a finite-dimensional space with dimension n, then
the null space of a nonzero linear functional f is always (n — 1)-dimensional, and
therefore it cannot be a Euclidean-like two-dimensional plane except when
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n = 3. We use the term hyperplane for such a null space or one of its translates.
Thus, in general, a hyperplane is a set with the equation f(x) = [, where f is
a nonzero linear functional. It is a proper affine subspace (plane) which is maxi-
mal in the sense that the only affine subspace properly including it is the whole
of V. In R? hyperplanes are ordinary geometric planes, and in R? hyperplanes
are lines!

EXERCISES

2.1 Assuming the theorem AB~ XY & b — a = y — x, show that 0C is the sum
of O4 and @, as defined in the preliminary discussion of Section 1, if and only if
¢ = b+ a. Considering also our assumed geometric theorem (3), show that the
mapping x+— 0X from R3 to the vector space of geometric vectors is linear and
hence an isomorphism.

2.2 Let L be the line in the Cartesian plane R? with equation z2 = 3z;. Express L
in parametric form as x = ta for a suitable ordered pair a.

2.3 Let V be any vector space, and let o and 8 be distinct vectors. Show that the
line through « and B has the parametric equation

E=18+ (1 —t)a, te R.

Show also that the segment from a to 8 is the image of [0, 1] in the above mapping.

2.4 According to the Pythagorean theorem, a triangle with side lengths a, b, and ¢
has a right angle at the vertex “opposite ¢” if and only if ¢ = a2 + b2

b

Prove from this that in a Cartesian coordinate system in E3 the length |0X| of a
segment OX is given by

3
l0X|* = 3
1

where x = <z, x2, r3 > is the coordinate triple of the point X. Next use our geometric
theorem (2) to conclude that

3
0XL1O0Y ifandonlyif (x,y) =0, where (x,y) = D 2
1

(Use the bilinearity of (x, y) to expand |X — Y]|2.)

2.5 More generally, the law of cosine says that in any triangle labeled as indicated,
c2 = a?+ b2 — 2ab cos f.
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Apply this law to the diagram
X

OY

(x,y) = 2x|[y] cos 6,

to prove that

where (x, y) is the scalar product X3 xiy;, [x] = (x, x)1/2 = [0X], etec.

2.6 Given a nonzero linear functional f: R? — R, and given k € R, show that the
set of points X in E3 such that f(x) = k is a plane. [Hint: Find a b in R3 such that
f(b) = k, and throw the equation f(x) = k into the form (x — b, a) = 0, ete.]

2.7 Show that for any b in R3 the mapping X+ Y from E3 to itself defined by
y = x + b is a parallel translation. That is, show that if X+ Y and Z+— W, then
XZ ~ YW,

2.8 Let M be the set in R3 with equation 3r; — z2 + x3 = 2. Find triplets a and b
such that M is the plane through b perpendicular to the direction of a. What is the
equation of the plane P = M 4+ <1,2,1>7?

2.9 Continuing the above exercise, what is the condition on the triplet b in order for
N = M —+ b to pass through the origin? What is the equation of N?

2.10 Show that if the plane M in R3 has the equation f(x) = [, then A is a translate
of the null space N of the linear functional f. Show that any two translates f and P
of N are either identical or disjoint. What is the condition on the ordered triple b
in order that M +b = M?

2.11 Generalize the above exercise to hyperplanes in R”.

2.12 Let N be the subspace (plane through the origin) in R? with equation f(x) = 0.
Let M and P be any two planes obtained from N by parallel translation. Show that
Q = M+ P is a third such plane. If M and P have the equations f(x) = I; and
f(x) = l2, find the equation for Q.

2.13 If M is the plane in R3 with equation f(x) = [, and if r is any nonzero number,
show that the set product M is a plane parallel to M.

2.14 In view of the above two exercises, discuss how we might consider the set of all
parallel translates of the plane N with equation f(x) = 0 as forming a new vector
space.

2.15 Let L be the subspace (line through the origin) in R?® with parametric equation
x = ta. Discuss the set of all parallel translates of L in the spirit of the above three
exercises.

2.16 The best object to take as “being” the geometric vector AB is the equivalence
class of all directed line segments XY such that XY ~ AB. Assuming whatever you
need from properties (1) through (4), show that this is an equivalence relation on the
set of all directed line segments (Section 0.12).

2.17 Assuming that the geometric vector AB is defined as in the above exercise, show
that, strictly speaking, it is actually the mapping of the plane (or space) into itself that
we have called the parallel translation through AB. Show also that AB + CD is the
composition of the two translations.
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3. PRODUCT SPACES AND HOM(V, W)

Product spaces. If W is a vector space and 4 is an arbitrary set, then the set
V = W4 of all W-valued functions on 4 is a vector space in ‘exactly the same
way that R4 is. Addition is the natural addition of functions, (f + ¢)(a) =
f(a) + g(a), and, similarly, (zf)(a) = z(f(a)) for every function f and scalar z.
Laws A1 through S4 follow just as before and for exactly the same reasons. For
variety, let us check the associative law for addition. The equation f+4 (g + k) =
(f+¢) + h means that (f+ (¢ + h))(a) = ((f+¢) + k)(a) for all a € A.
But

(f + (g + W) (a) = fla) + (g + h)(a)
= f(a) + (9(a) + h(a)) = (f(a) + g(a)) + h(a)
= (f+9)(a) + k@) = ((f+9) + h)(a),

where the middle equality in this chain of five holds by the associative law for W
and the other four are applications of the definition of addition. Thus the
associative law for addition holds in W# because it holds in W, and the other
laws follow in exactly the same way. As before, we let m; be evaluation at ,
so that m;(f) = f(z). Now, however, m; is vector valued rather than scalar valued,
because it is a mapping from V to W, and we call it the sth coordinate projection
rather than the 7th coordinate functional. Again these maps are all linear.
In fact, as before, the natural vector operations on W+ are uniquely defined by
the requirement that the projections 7; all be linear. We call the value f(j) =
7;(f) the jth coordinate of the vector f. Here the analogue of Cartesian n-space
is the set W7” of all n-tuples @ = <ay, ..., an,> of vectors in W; it is also
designated W™. Clearly, a; is the jth coordinate of the n-tuple a.

There is no reason why we must use the same space W at each index, as we
did above. In fact, if W, ..., W, are any n vector spaces, then the set of all
n-tuples & = <ay, ..., a,> such that a;j € W; forj = 1,...,n is a vector
space under the same definitions of the operations and for the same reasons.
That is, the Cartesian product W = W; X Wy X -+ - X W, is also a vector
space of vector-valued functions. Such finite products will be very important
to us. Of course, R" is the product J]T W; with each W; = R; but R” can also
be considered R™ X R™™™, or more generally, I W,, where W,; = R™: and
2.7 m; = n. However, the most important use of finite product spaces arises
from the fact that the study of certain phenomena on a vector space V may
lead in a natural way to a collection {V.}T of subspaces of V such that V is
isomorphic to the product JI7 V;. Then the extra structure that V acquires
when we regard it as the product space J]T V; is used to study the phenomena
in question. This is the theory of direct sums, and we shall investigate it in
Section 5.

Later in the course we shall need to consider a general Cartesian product of
vector spaces. We remind the reader that if {W, : 4 € I} is any indexed collection
of vector spaces, then the Cartesian product [[.er W; of these vector spaces is
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defined as the set of all functions f with domain I such that f(z) € W; for all
1 € I (see Section 0.8).

The following is a simple concrete example to keep in mind. Let S be the
ordinary unit sphere in R, S = {x:Y>¥2? = 1}, and for each point x on S
let W, be the subspace of R? tangent to S at x. By this we mean the subspace
(plane through O) parallel to the tangent plane to S at x, so that the translate
W, + x is the tangent plane (see Fig. 1.8). A function f in the product space
W = Tlxes Wi is a function which assigns to each point x on S a vector in W,
that is, a vector parallel to the tangent plane to S at x. Such a function is called
a vector field on S. Thus the product set W is the set of all vector fields on S,
and W itself is a vector space, as the next theorem states.

Fig. 1.8

Of course, the jth coordinate projection on W = [[;es W; is evaluation
at j, m;(f) = f(j), and the natural vector operations on W are uniquely defined
by the requirement that the coordinate projections all be linear. Thus f+ ¢
must be that element of W whose value at j, w;(f + ¢), is m;(f) + 7;(g) =
f(7) + ¢(9) for all j € I, and similarly for multiplication by scalars.

Theorem 3.1. The Cartesian product of a collection of vector spaces can
be made into a vector space in exactly one way so that the coordinate pro-
jections are all linear.

Proof. With the vector operations determined uniquely as above, the proofs of
A1l through S4 that we sampled earlier hold verbatim. They did not require that
the functions being added have all their values in the same space, but only that
the values at a given domain element 7 all lie in the same space. [

Hom(V, W). Linear transformations have the simple but important properties
that the sum of two linear transformations is linear and the composition of two
linear transformations is linear. These imprecise statements are in essence the
theme of this section, although they need bolstering by conditions on domains
and codomains. Their proofs are simple formal algebraic arguments, but the
objects being discussed will increase in conceptual complexity.
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If W is a vector space and A is any set, we know that the space W4 of all
mappings f: A — W is a vector space of functions (now vector valued) in the
same way that R4 is. If A is itself a vector space V, we naturally single out for
special study the subset of WV consisting of all linear mappings. We designate
this subset Hom(V, W). The following elementary theorems summarize its
basie algebraic properties.

Theorem 3.2. Hom(V, W) is a vector subspace of WV,
Proof. The theorem is an easy formality. If .S and T are in Hom(V, W), then

(S + T)(xa + yB) = S(za + yB) + T(ze + yB)

= 28(e) + yS(B) + 2T(e) + yT(B) = x(S + T)(e) + y(S + T)(B),
s0 8 4 T is linear and Hom(V, W) is closed under addition. The reader should
be sure he knows the justification for each step in the above continued equality.
The closure of Hom(V, W) under multiplication by scalars follows similarly,

and since Hom(V, W) contains the zero transformation, and so is nonempty,
it is a subspace. [

Theorem 3.3. The composition of linear maps is linear: if 7 € Hom(V, W)
and S € Hom(W, X), then So T € Hom(V, X). Moreover, composition
is distributive over addition, under the obvious hypotheses on domains and
codomains:

S14+83)eT=8;T+4+830T and So(T1+Ts)=8SoT;+ 80T,
Finally, composition commutes with scalar multiplication:
c(8eT)= (cS)oT = 8o (cT).
Proof. We have
8o T(xa + yB) = S(T(za + yB)) = S(xT(a) + yT(B))
= 28(T()) + yS(T(B) = (S > T)(a) + y(S ° T)(B),
50 S o T is linear. The two distributive laws will be left to the reader. [

Corollary. If T € Hom(V, W) is fixed, then composition on the right by 7
is a linear transformation from the vector space Hom(W, X) to the vector
space Hom(V, X). It is an isomorphism if 7' is an isomorphism.

Proof. The algebraic properties of composition stated in the theorem can be
combined as follows:

(c181+caS2) o T = ¢3(Sy o T) + ca(Sz o T).

S o (e1Ty 4 c2T2) = c1(S o T1) + ca(S o To).
The first equation says exactly that composition on the right by a fixed 7 is a
linear transformation. (Write S o T as 3(S) if the equations still don’t look

right.) If T is an isomorphism, then composition by 7! “undoes” composition
by T, and so is its inverse. [
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The second equation implies a similar corollary about composition on the
left by a fixed S.

Theorem 3.4. If W is a product vector space, W = J]; W, then a mapping
T from a vector space V to W is linear if and only if m; o T is linear for
each coordinate projection ;.

Proof. If T is linear, then m; o T is linear by the above theorem. Now suppose,
conversely, that all the maps m; o T are linear. Then

7:(T(xa + yB)) = m; 0 T(xa + yB) = a(mso T)(a) + y(m; o T)(B)
= 2mi(T(a)) + ymi(TB)) = m:(xT(a) + yT(B)).

But if m,(f) = mi(g) for all 7, then f = ¢g. Therefore, T(za + yB8) = zT(e) +
yT(B), and T is linear. [

If T is a linear mapping from R” to W whose skeleton is {8,} ", then ;o T
has skeleton {m;(8;)}7=1. If W is R™, then m; is the ¢th coordinate functional
y > ¥, and B; is the jth column in the matrix t = {¢;;} of T. Thus m;(8;) = t,
and 7; o T is the linear functional whose skeleton is the zth row of the matrix of 7.

In the discussion centering around Theorem 1.3, we replaced the vector
equation y = T'(x) by the equivalent set of m scalar equations y; = 3 7=, t;;x;,
which we obtained by reading off the 7th coordinate in the vector equation. But
in “reading off” the 7th coordinate we were applying the coordinate mapping
5, or in more algebraic terms, we were replacing the linear map 7' by the set of
linear maps {m; o T}, which is equivalent to it by the above theorem.

Now consider in particular the space Hom(V, V), which we may as well
designate ‘Hom(V)’. In addition to being a vector space, it is also closed under
composition, which we consider a multiplication operation. Since composition
of functions is always associative (see Section 0.9), we thus have for multiplica-
tion the laws

Ao(BoC)= (AoB)o(,

Ao(B+C)= (A°B)+ (4-0),

(A+B)oC= (A°C)+ (B-C),
k(A o B) = (kA) o B = A o (kB).

Any vector space which has in addition to the vector operations an operation
of multiplication related to the vector operations in the above ways is called
an algebra. Thus,

Theorem 3.5. Hom(V) is an algebra.

We noticed earlier that certain real-valued function spaces are also algebras.
Examples were R* and €([0, 1]). In these cases multiplication is commutative,
but in the case of Hom(V) multiplication is not commutative unless V is a
trivial space (V = {0}) or V is isomorphic to R. We shall check this later when
we examine the finite-dimensional theory in greater detail.
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Product projections and injections. In addition to the coordinate projections,
there is a second class of simple linear mappings that is of basic importance in
the handling of a Cartesian product space W = J]rex Wi. These are, for each
J, the mapping 6; taking a vector « € W; to the function in the product space
having the value a at the index 7 and 0 elsewhere. For example, 6, for W; X
Wy X W3 is the mapping a — <0, a, 0> from Wy to W. Or if we view R3? as
R X R2, then 6, is the mapping <xs, x3> — <0, <z, T3> > = <0, Ts, 23> .
We call 6; the injection of W into ] Wi. The linearity of 6; is probably obvious.
The mappings =; and 6; are clearly connected, and the following projection-
injection identities state their exact relationship. If I; is the identity trans-
formation on W;, then

7Tj°0j=1j and 7Tj°05:0 if 1?5}
If K 1s finite and [ is the identity on the product space W, then

Z 0k o T, — I.

KEK
In the case JI['-; Wi, we have 650 mo(<ay, as, az>) = <0, az, 0>, and
the identity simply says that <ay, 0, 0> + <0, as, 0> -+ <0,0, ag> =
<ajy, as, az> for all aj, as, a3. These identities will probably be clear to the
reader, and we leave the formal proofs as an exercise.

The coordinate projections 7; are useful in the study of any product space,
but because of the limitation in the above identity, the injections 6; are of
interest principally in the case of finite products. Together they enable us to
decompose and reassemble lincar maps whose domains or codomains are finite
product spaces.

TFor a simple example, consider the 7' in Hom(R?, R?) whose matrix is

2 —1 1
1 1 41"

Then 7, o T is the linear functional whose skeleton <2, —1, 1> is the first row
in the matrix of 7', and we know that we can visualize its expression in equation
form, y; = 2x; — 22 + x3, as being obtained from the vector equation y =
T(x) by “reading off the first row”. Thus we “decompose” T into the two linear
functionals I; = m; o T. Then, speaking loosely, we have the reassembly
T = <11, ls>; more exactly, T(x) = <2x; — xy + 3, 21 + x3 - 423> =
<1(x), I3(x) > for all x. However, we want to present this reassembly as the
action of the lincar maps 6, and 6,. We have

<ll(x), ZQ(X)> = Bl(ll(x)) + 02(l2(x)) = (01 oy + 02 ° Wg)(T(X)) — T(X),

which shows that the decomposition and reassembly of 7' is an expression of the
identity 3> 6; o w; = I. In general, if 7 € Hom(V, W) and W = []; W, then
T; = m;o T is in Hom(V, W,) for each 7, and 7'; can be considered “the part
of T going into W,”, since T';(«) is the 7th coordinate of T'(«) for cach a. Then we



48 VECTOR SPACES 1.3

can reassemble the T’s to form 7T again by T'= > 60,0 T;, for 36,0 T; =
X 6;0om)oT=1eT=T. Moreover, any finite collection of T’s on a
common domain can be put together in this way to make a 7. IFor example,
we can assemble an m-tuple {T;}T* of linear maps on a common domain V to
form a single m-tuple-valued linear map 7. Given « in V, we simply define
T (a) as that m-tuple whose ith coordinate is T';(e) for ¢ = 1, ..., m, and then
check that T is linear. Thus without having to calculate, we see from this
assembly principle that T:x +— <2x; — xp 4 3, x; + x2 + 4x3> is a linear
mapping from R3 to R?, since we have formed T by assembling the two linear
functionals I;(x) = 2x; — x2 + 23 and la(x) = 21 + z2 + 43 to form a
single ordered-pair-valued map. This very intuitive process has an equally
simple formal justification. We rigorize our discussion in the following theorem.

Theorem 3.6. If T'; is in Hom(V, W,) for each ¢ in a finite index set I,
and if W is the product space [[;er W, then there is a uniquely determined
T in Hom(V, W) such that T; = ;o T for all 7 in I.

Proof. If T exists such that T; = m;o T for each ¢, then T = Iy o T =
(ZO;om)oT =3 8;0(mioT) =2 6;oT; Thus T is uniquely determined
as 3. 60;0 T;. Moreover, this T does have the required property, since then

7l'j°T= Wjo(zoiOTi)—:E(ﬂ'jOGi)oTi:Ij0Tj=Tj. D

In the same way, we can decompose a linear 7' whose domain is a product
space V = JIj=; V; into the maps T; = T o §; with domains V;, and then
reassemble these maps to form T by the identity T = > j=; Tj o m; (check it
mentally!). Moreover, a finite collection of maps into a common codomain
space can be put together to form a single map on the product of the domain
spaces. Thus an n-tuple of maps {7';}7 into W defines a single map T into W,
where the domain of T is the product of the domains of the T'/’s, by the equation
T(<ay,...,an>)= Y2 Ti(a)or T =37 T;om,;. Forexample,if T;:R— R?
is the map t+— t<2,1> = <2¢,t>, and Ty and T3 are similarly the maps
t—t<—1,1> and t— t<1,4>, then T = 33 T, o m; is the mapping from
R3 to R? whose matrix is

[2 —1 1]
1 1 4]

Again there is a simple formal argument, and we shall ask the reader to write
out the proof of the following theorem.

Theorem 3.7. If T; is in Hom(V;, W) for each j in a finite index set J,
and if V = [[jes V;, then there exists a unique T' in Hom(V, W) such
that T o 8; = T; for each jin J.

Finally we should mention that Theorem 3.6 holds for all product spaces,
finite or not, and states a property that characterizes product spaces. We shall
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investigate this situation in the exercises. The proof of the general case of
Theorem 3.6 has to get along without the injections 6;; instead, it is an application
of Theorem 3.4.

The reader may feel that we are being overly formal in using the projections
m; and the injections 6; to give algebraic formulations of processes that are
casily visualized directly, such as reading off the scalar “components” of a
vector equation. However, the mappings

X — T and x;— <0,...,0,2,0,...,0>

are clearly fundamental devieces, and making their relationships explicit now
will be helpful to us later on when we have to handle their occurrences in more
complicated situations.

EXERCISES

3.1 Show that R™ X R" is isomorphic to R**™,

3.2 Show more generally that if . n; = n, then [, R™ is isomorphic to R™.
3.3 Show that if {B, C)} is a partitioning of .1, then R4 and R X RC are isomorphic.
3.4 Generalize the above to the case where {.1;}] partitions 4.

3.5 Show that a mapping T from a vector space V7 to a vector space Tl is linear if
and only if (the graph of) T is a subspace of VX W

3.6 Let S and T be nonzero linear maps from V to W. The definition of the map
S -+ T is not the same as the set sum of (the graphs of) S and T as subspaces of VX TI".
Show that the set sum of (the graphs of) S and T cannot be a graph unless S = T.

3.7 Give the justification for each step of the calculation in Theorem 3.2.
3.8 Prove the distributive laws given in Theorem 3.3.

3.9 Let D:@l([a, b)) — €([a, b]) be differentiation, and let S: @([a, b]) — R be the
definite integral map f— J2 f. Compute the composition So D.

3.10 We know that the general linear functional / on R? is the map x — a1x; -+ asre
determined by the pair a in R?, and that the general linear map 7 in Hom(R?) is

determined by a matrix
¢ = tir ti2 '
to1  f22

Then /o T is another lincar functional, and hence is of the form x +— b2 -+ boas for
some b in R2. Compute b from t and a. Your computation should show you that
a > b is linear. What is its matrix?

3.11 Given S and 7 in Hom(R?) whose matrices are

[1 2] and 2 1],
3 4 0 1

respectively, find the matrix of So T in Hom(R?2).
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3.12 Given S and T in Hom(R2) whose matrices are

< = [811 812} and t = [tu 512]’
S21 S22 to1 t22
find the matrix of So 7.
3.13 With the above answer in mind, what would you guess the matrix of So T is

if S and T are in Hom(R3)? Verify your guess.

3.14 We know thatif T € Hom(V, 1) is an isomorphism, ten T~1 is an isomorphism
in Hom (1, V). Prove that

So T surjective = S surjective, So T injective = T injective,
and, therefore, that if T € Hom(V, W), S € Hom(1V, V), and
So T = Iy, ToS =1,

then T is an isomorphism.
3.15 Show that if S~ and T~ exist, then (So T)~! exists and equals 710 S—1,
Give a more careful statement of this result.
3.16 Show that if S and 7 in Hom V commute with each other, then the null space of
T,N = N(T), and itsrange R = R(T) are invariant under S (S[N]C N and S[R]C R).
3.17 Show that if « is an eigenvector of T and S commutes with 7, then S(a) is
an eigenvector of T and has the same eigenvalue.
3.18 Show that if S commutes with 7 and T—1 exists, then S commutes with 71,
3.19 Given that « is an eigenvector of T with eigenvalue x, show that « is also an
eigenvector of T2 = To T, of T and of T—! (if T is invertible) and that the corre-
sponding eigenvalues are z2, z*, and 1/x.

Given that p(f) is a polynomial in ¢, define the operator p(7'), and under the above
hypotheses, show that « is an eigenvector of p(T') with eigenvalue p(x).
3.20 If S and T are in Hom V, we say that S doubly commutes with T (and write
Sece T) if S commutes with every A in Hom V which commutes with 7. Fix T, and
set {T}"” = {S:SeccT}. Show that {T}” is a commutative subalgebra of Hom V.
3.21 Given T in Hom V and a in V, let N be the linear span of the “trajectory of «
under T” (the set {T"a:n & Z*}). Show that N is invariant under 7.
3.22 A transformation 7 in Hom V such that T = 0 for some n is said to be nilpotent.
Show that if T is nilpotent, then I — T is invertible. [Hint: The power series

is a finite sum if z is replaced by T']

3.23 Suppose that T is nilpotent, that S commutes with 7', and that S—! exists, where
S, T € Hom V. Show that (S — T)~! exists.

3.24 Let ¢ be an isomorphism from a vector space V to a vector space W. Show that
T — ¢o To ¢~ 1 is an algebra isomorphism from the algebra Hom V to the algebra
Hom W.
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3.25 Show the 7;’s and 6,’s explicitly for R3 = R X R X R using the stopped arrow
notation. Also write out the identity Y ;0 w; = I in explicit form.

3.26 Do the same for R? = R2 X R3.

3.27 Show that the first two projection-injection identities (r;0 8; = I;and 70 6; = 0
if 7 # 7) are simply a restatement of the definition of 6;. Show that the linearity of 6;
follows formally from these identities and Theorem 3.4.

3.28 Prove theidentity Y, 6; o =; = I by applying =; to the equation and remembering
that f = g if w;(f) = w;(g) for all j (this being just the equation f(j) = ¢(j) for all j).
3.29 Prove the general case of Theorem 3.6. We are given an indexed collection of
linear maps {7T;:7 &€ I} with common domain V and codomains {W;:7 & I}. The
first question is how to define T: V — W = []:; W;. Do this by defining T'(£) suitably
for each £ € V and then applying Theorem 3.4 to conclude that 7 is linear.

3.30 Prove Theorem 3.7.
3.31 We know without calculation that the map

T:x — <3x; — 22+ x3,x2 + 23, x1 — Hx3, 221 >

from R3 to R* is linear. Why? (Cite relevant theorems from the text.)

3.32 Write down the matrix for the transformation 7 in the above example, and then
write down the mappings T o 6; from R to R* (for + = 1,2, 3) in explicit ordered
quadruplet form.

3.33 Let W =[] W, be a finite product vector space and set p; = ;0 m;, so that
p;isin Hom W for all ¢. Prove from the projection-injection identities that > p; = I
(the identity map on W), p;o p; = 0 if ¢ # j, and p;o p; = p;. Identify the range
Ri = R(pi).

3.34 In the context of the above exercise, define 7' in Hom W as

n

Z MPr.

m=1

Show that a is an eigenvector of 7T if and only if « is in one of the subspaces R; and that
then the eigenvalue of a is .

3.35 In the same situation show that the polynomial
11T —iD=(T—Do---o(T —nI)
=1

is the zero transformation.

3.36 Theorems 3.6 and 3.7 can be combined if 7' € Hom(V, 1"), where both V and 1}~
are product spaces:

v=]lv, and w=]]w.
1

State and prove a theorem which says that such a 7 can be decomposed into a doubly
indexed family {7} when T;; € Hom(V;, W;) and conversely that any such doubly
indexed family can be assembled to form a single 7 form V to W.
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3.37 Apply your theorem to the special case where V = R” and IV = R™ (that is,
V= W; = Rforall7and j). Now T;is from R to R and hence is simply multipli-
cation by a number ¢;;. Show that the indexed collection {t;;} of these numbers is the

matrix of T.

3.38 Given an m-tuple of vector spaces {17} ', suppose that there are a vector space

X and maps p; in Hom(X, W), ¢ = 1,..., m, with the following property:
P. For any m-tuple of linear maps {7';} from a common domain space V to the
above spaces W; (so that T;€ Hom(V, W), ¢ = 1,...,m), there is a unique 7'
in Hom(V, X) such that T; = p,o T, ¢ = 1,...,m.

Prove that there is a “canonical” isomorphism from
m
w=]Iw: to X
1

under which the given maps p; become the projections ;. [Remark: The product space
1 itself has property P by Theorem 3.6, and this exercise therefore shows that P is an
abstract characterization of the product space.]

4. AFFINE SUBSPACES AND QUOTIENT SPACES

In this section we shall look at the “planes” in a vector space V and see what
happens to them when we translate them, intersect them with each other,
take their images under linear maps, and so on. Then we shall confine ourselves
to the set of all planes that are translates of a fixed subspace and discover that
this set itself is a vector space in the most obvious way. Some of this material
has been anticipated in Section 2.

Affine subspaces. If N is a subspace of a vector space V and « is any vector
of V, then the set N +a = {{ -+ a: €N} is called cither the coset of N
containing « or the affine subspace of V through « and parallel to N. The set N + «
is also called the franslate of N through . We saw in Section 2 that affine sub-
spaces are the general objects that we want to call planes. If N is given and fixed
in a discussion, we shall use the notation @ = N + «a (see Section 0.12).

We begin with a list of some simple properties of affine subspaces. Some of
these will generalize observations already made in Section 2, and the proofs of
some will be left as exercises.

1) With a fixed subspace N assumed, if ¥ € & then ¥ = a For if v =
a+ g, theny +9=a+ (go+1) €aso¥Ca. Alsoa+9=7+ (n —n9) €7,
soaC?Y. Thusa =7.

2) With N fixed, for any « and g, cither @ = 8 or @ and § are disjoint.
For if @ and 8 are not disjoint, then there exists a v in each, and @a = ¥ = 8
by (1). The reader may find it illuminating to compare these calculations with
the more general ones of Section 0.12. Here a ~ 8 if and only if « — 8 € N.

3) Now let @ be the collection of all affine subspaces of V; @ is thus the set
of all coscts of all vector subspaces of V. Then the intersection of any sub-
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family of @ is either empty or itself an affine subspace. In fact, if [A;}.er is
an indexed collection of affine subspaces and A; is a cosct of the vector subspace
W for each ¢ € I, then ;er A is either empty or a coset of the vector subspace
Nier Wi Torif B € Nier A;, then (1) implies that A; = 8 -+ W, for all 7, and
then NA; = 8+ NW..

4) If A,B €@, then A + B € @ That is, the set sum of any two affine
subspaces is itself an affine subspace.

5) If Ae @ and T € Hom(V, W), then T[A] is an aflinc subspace of W.
In particular, if t € R, then t4 € Q.

6) If B is an affine subspace of W and T € Hom(V, W), then 77 '[B] is
either empty or an affine subspace of V.

7) Tor a fixed « € V the translation of V through o is the mapping
So:V — V defined by S,(£) = £+ « for all £ € V. Translation is not linear;
for example, S,(0) = a. It is clear, however, that translation carries affine
subspaces into affine subspaces. Thus S,(4) = A + « and S8+ W) =
(a+8)+W.

8) An affine transformation from a vector space V to a vector space W is a
linear mapping from V to W followed by a translation in W. Thus an affine
transformation is of the form ¢ — T'(&) + 8, where ' € Hom(V, W) and 8 € W.
Note that ¢ — T'(¢ 4 ) is affine, since

T(§+a)=T(&)+8,  where g=T(a).

It follows from (5) and (7) that an affine transformation carries affine
subspaces of V into affine subspaces of W.

Quotient space. Now fix a subspace N of V, and consider the set W of all
translates (cosets) of N. We are going to see that W itself is a vector space in
the most natural way possible. Addition will be set addition, and scalar multipli-
cation will be set multiplication (except in one special case). Ior example, if N
is a line through the origin in R3, then W consists of all lines in R* parallel to N.
We are saying that this set of parallel lines will automatically turn out to be a
vector space: the set sums of any two of the lines in W turn out to be a line in W'!
And if L € W and ¢ # 0, then the set product ¢L is a line in W. The translates
of L fiber R3, and the set of fibers is a natural vector space.

During this discussion it will be helpful temporarily to indicate set sums by
‘+, and set products by . With N fixed, it follows from (2) above that two
cosets are disjoint or identical, so that the set W of all cosets is a fibering of V
in the general case, just as it was in our example of the parallel lines. From (4)
or by a direct calculation we know that @ +s 8 = a + 8. Thus W is closed
under set addition, and, naturally, we take this to be our operation of addition
on W. That is, we define - on W by @ + 8 = @& + 8. Then the natural map
m:a+— a from V to W preserves addition, w(a + 8) = w(a) + w(B), since
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this is just our equation a + 8 = a + 8 above. Similarly, if ¢ € R, then the
set product ¢ -5 @ is either i or {0}. Hence if we define @ as the set product when
t % 0and as 0 = N when ¢{ = 0, then 7 also preserves scalar multiplication,

m(ta) = (mw(a).

We thus have two vectorlike operations on the set W of all cosets of N,
and we naturally expeet W to turn out to be a vector space. We could prove this
by verifying all the laws, but it is more elegant to notice the general setting for
such a verification proof.

Theorem 4.1. Let V be a vector space, and let W be a set having two
vectorlike operations, which we designate in the usual way. Suppose that
there exists a surjective mapping 7': V. — W which preserves the operations:
T(sa + i8) = sT(a) + tT(B). Then W is a vector space.

Proof. We have to check laws Al through S4. However, one example should
make it clear to the reader how to proceed. We show that 7'(0) satisfies A3 and
hence is the zero vector of W. Since every 8 € W is of the form T'(a), we have

TO)+8=T0)+T(@=T0+ o) = T(x) = 8,

which is A3. We shall ask the reader to check more of the laws in the exercises. [

Theorem 4.2. The set of cosets of a fixed subspace N of a vector space V'
themselves form a vector space, called the quotient space V/N, under the
above natural operations, and the projection 7 is a surjective linear map
from V to V/N.

Theorem 4.3. If T is in Hom(V, W), and if the null space of T includes the
subspace M C V, then T has a unique factorization through V /M. That is,
there exists a unique transformation S in Hom(V /A, W) such that T =
So.

Proof. Since T is zero on M, it follows that T is constant on each coset 4 of 1/,
so that T[A] contains only one vector. If we define S(A) to be the unique
vector in T[A], then S(@) = T(«), so S o m = T by definition. Conversely, if
T = Rom then R(@) = R o m(a) = T(a),and R is our above S. The linearity
of S is practically obvious. Thus

S@+B) = Sla+8) = Tla+B) = T(x) + T(B) = S& + SB),
and homogeneity follows similarly. This completes the proof. [

One more remark is of interest here. If N is invariant under a linear map
T in Hom V (that is, T[N] C N), then for each « in V, T[a] is a subset of the
coset T'(a), for

Tla) = Tla + N] = T(a) +s TIN]C T(a) +s N = T(a).



14 AFFINE SUBSPACES AND QUOTIENT SPACES 55

There is therefore a map S:V/N — V /N defined by the requirement that
S(@) = T(a) (or Se 7 = m o T), and it is easy to check that S is linear. There-
fore,

Theorem 4.4. If a subspace N of a vector space V is carried into itself by a
transformation T in Hom V, then there is a unique transformation S in
Hom(V/N) such that Se 7w = mo T.

EXERCISES

4.1 Prove properties (4), (5), and (6) of affine subspaces.

4.2 Choose an origin O in the Euclidean plane E2 (your sheet of paper), and let
L1 and L2 be two parallel lines not containing O. Let X and Y be distinct points on
Ly and Z any point on L. Draw the figure giving the geometric sums

0X+-0Z and OY-+0Z

(parallelogram rule), and state the theorem from plane geometry that says that these
two sum points are on a third line L3 parallel to L; and Ls.

4.3 a) Prove the associative law for addition for Theorem 4.1.
b) Prove also laws A4 and S2.

4.4 Return now to Exercise 2.1 and reexamine the situation in the light of Theorem
4.1. Show, finally, how we really know that the geometric vectors form a vector space.

4.5 Prove that the mapping S of Theorem 4.3 is injective if and only if N is the
null space of 7.

4.6 We know from Exercise 4.5 that if T is a surjective element of Hom(V, W) and
N is the null space of T, then the S of Theorem 4.3 is an isomorphism from V/N to W.
Itsinverse S—! assigns a coset of N to each # in 11". Show that the process of “indefinite
integration” is an example of such a map S—1. This is the process of calculating an
integral and adding an arbitrary constant, as in

/sinxdx = —cosr+ c.

4.7 Suppose that N and M are subspaces of a vector space V and that N C M.
Show that then M /N is a subspace of V/N and that V/M is naturally isomorphic to the
quotient space (V/N)/(M/N). [Hint: Every coset of N is a subset of some coset of M.]

4.8 Suppose that N and M are any subspaces of a vector space V. Prove that
(M + N)/N is naturally isomorphic to M/(M N N). (Start with the fact that each
coset of M N N is included in a unique coset of N.)

4.9 Prove that the map S of Theorem 4.4 is linear.

410 Given T € Hom V, show that T2 = 0 (T2 = T o T)if and only if R(T) C N(T).
411 Suppose that T € Hom V and the subspace N are such that T is the identity
on N and also on V/N. The latter assumption is that the S of Theorem 4.4 is the
identity on V/N. Set R = T — I, and use the above exercise to show that B2 = 0.
Show that if T = I+ R and R2 = 0, then there is a subspace N such that T is the
identity on N and also on V/N.
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4.12 We now view the above situation a little differently. Supposing that T is the
identity on N and on V/N, and setting R = I — T, show that there exists a
K € Hom(V/N, V) such that B = K o 7. Show that for any coset A of N the action
of T on A can be viewed as translation through K(A). Thatis,if £ E€ A andyp = K(1),
then T(§) = £+ .

4.13 Consider the map T: <y, x> +> <2y + 2r2, 22> in Hom R2, and let N be
the null space of R = T — I. Identify N and show that T is the identity on N and
on R2/N. Find the map K of the above exercise. Such a mapping T is called a shear
transformation of 1" parallel to N. Draw the unit square and its image under T

4.14 If we remember that the linear span L(.1) of a subset .1 of a vector space V can
be defined as the intersection of all the subspaces of V that include .1, then the fact
that the intersection of any collection of affine subspaces of a vector space V is either
an affine subspace or empty suggests that we define the affine span 1/ (1) of a nonempty
subset A C V as the intersection of all affine subspaces including 1. Then we know
from (3) in our list of affine properties that J/(.1) is an affine subspace, and by its
definition above that it is the smallest affine subspace including A. We now naturally
wonder whether M (A1) can be directly described in terms of linear combinations.
Show first that if « € /A, then M(A) = L(A — a) -+ «; then prove that M (1) is the
set of all linear combinations ) z.; on .1 such that > x; = 1.

4.15 Show that the linear span of a set B is the affine span of B U {0} .

4.16 Show that M (A 4+ v) = M (1) -+ 7Y for any ¥ in V and that M(xd) = 23 (A)
for any z in R.

5. DIRECT SUMS

We come now to the heart of the chapter. It frequently happens that the study
of some phenomenon on a vector space V leads to a finite collection of subspaces
{V;} such that V is naturally isomorphic to the product space []; V;. Under
this isomorphism the maps 6; ¢ w; on the product space become certain maps
P;in Hom V, and the projection-injection identities are reflected in the identities
> P, =1 P;oP;= Pjforall j,and P;o P; = 0if ¢ # j. Also, V; = range
P;. The product structure that V thus acquires is then used to study the phe-
nomenon that gave rise to it. For example, this is the way that we unravel the
structure of a linear transformation in Hom V, the study of which is one of the
central problems in linear algebra.

Direct sums. If Vi, ..., V, are subspaces of the vector space V, then the
mapping 7: <ay,...,a, > — 2.7 a; is a linear transformation from JI? V;
to V, since it is the sum m = .7 m; of the coordinate projections.

Definition. We shall say that the V;’s are independent if m is injective and
that V is the direct sum of the Vs if 7 is an isomorphism. We express the
latter relationship by writing V=V, ® --- ® V, = @} V..

Thus V = @}, V; if and only if 7 is injective and surjective, i.e., if and
only if the subspaces {V;}] are both independent and span V. A useful restate-
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ment of the direct sum condition is that each o € V is uniquely expressible as
a sum Y7 a;, with a; € V; for all 7; o has some such expression because the Vs
span V, and the expression is unique by their independence.

For example, let V = @(R) be the space of real-valued continuous functions
on R, let V, be the subset of even functions (functions f such that f(—z) = f(x)
for all z), and let V, be the subset of odd functions (functions such that f(—z) =
—f(x) for all z). It is clear that V, and V, are subspaces of V, and we claim that
V=7V, ® V, Tosee this, note that for any fin V, ¢(x) = (f(z) + f(—=2))/2
is even, h(zr) = (f(x) — f(—=))/2isodd,and f = g +h. Thus V = V, 4+ V,.
Moreover, this decomposition of f is unique, for if f = ¢; + h; also, where ¢,
is even and h; is odd, then ¢ — ¢; = h; — h, and therefore ¢ — ¢; = 0 =
hy — h, since the only function that is both even and odd is zero. The even-odd
components of e” are the hyperbolic cosine and sine functions:

(& — ¢
2

T = (e +26_ ) = cosh & -+ sinh z.

+

(4

Since 7 is injective if and only if its null space is {0} (Lemma 1.1), we have:

Lemma 5.1. The independence of the subspaces {V,;}7 is equivalent to the
property that if a; € V; for all 7 and >7 ; = 0, then o; = 0 for all 2.

Corollary. If the subspaces {V;}] are independent, a; € V; for all 7, and
2.1 a; is an element of V;, then a; = 0 for ¢ # j.

We leave the proof to the reader.
The case of two subspaces is particularly simple.

Lemma 5.2. The subspaces 4/ and N of V are independent if and only if
MnN = [0}.

Proof. fae M, e N,anda+ 8= 0,thena= —Be M NN. If MNN =
{0}, this will further imply that « = 8= 0, so M and N are independent.
On the other hand, if 0 % 8 € M N N, and if we set « = —8, then o € M,
Be N,and a + 8 = 0, so M and N are not independent. 0

Note that the first argument above is simply the general form of the unique-
ness argument we gave earlier for the even-odd decomposition of a function
on R.

Corollary. V= M @ N if and only if V= M + N and M AN = {0).

Definition. If V = M & N, then M and N are called complementary sub-
spaces, and each is a complement of the other.

Warning: A subspace M of V does not have a unique complementary subspace
unless M is trivial (thatis, M = {0} or M = V). If we view R? as coordinatized
lsuclidean 3-space, then M is a proper subspace if and only if M is a plane con-
taining the origin or M is a line through the origin (see Fig. 1.9). If M and N are
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Fig. 1.9

proper subspaces one of which is a plane and the other a line not lying in that
plane, then M and N are complementary subspaces. Moreover, these are the
only nontrivial complementary pairs in R®. The reader will be asked to prove
some of these facts in the exercises and they all will be clear by the middle of
the next chapter.

The following lemma is technically useful.

Lemma 5.3. If V; and V, are independent subspaces of V and {V}% are
independent subspaces of Vo, then {V;}} are independent subspaces of V.

Proof. If a; € V; for all < and 37 a; = 0, then, setting ag = Y% a;, we have
ai + ag = 0, with @9 € V. Therefore, a; = ¢ = 0 by the independence of
Vi and Vo But then a3 = a3 =--- = @, = 0 by the independence of
{V3}%, and we are done (Lemma 5.1). 0

Corollary. V =V, @ Vo and Vo= @i, V; together imply that
V=@ V.

Projections. If V = @}, V;, if w is the isomorphism <ay, ... , Q> >
a= 3 7a; and if m; is the jth projection map <eay,...,a,> +— a; from
i=1r Vito Vj, then (mj o 7™ )(a) = a;.

Definition. We call o; the jth component of a, and we call the linear map
P; = m; o ™! the projection of V onto V; (with respect to the given direct
sum decomposition of V). Since each « in V is uniquely expressible as a sum
a = 31 a; with o; in V; for all 7, we can view P;(a) = a; as “the part of
ain V,' 7,

This use of the word “projection” is different from its use in the Cartesian
product situation, and each is different from its use in the quotient space con-
text (Section 0.12). It is apparent that these three uses are related, and the
ambiguity causes little confusion since the proper meaning is always clear from
the context.

Theorem 5.1. If the maps P; are the above projections, then range P; = V;,
P;oP;=0for? # j,and 33 P; = I.

Proof. Since m is an isomorphism and P; = ;o 7!, we have range P; =
range m; = V;. Next, it follows directly from the corollary to Lemma 5.1 that
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if @ €V, then P;(@) = 0 for 7 # j, and so P;o P; = 0 for ¢ # j. Finally,
SiPi=Ytmon = (XCim)om ' =mor~! = I, and we are done. [J

The above projection properties are clearly the reflection in V of the pro-
jection-injection identities for the isomorphic space [} V..
A converse theorem is also true.

Theorem 5.2. If {P;}1 C Hom V satisfy > 7 P; = I and P;o P; = 0 for
i 5% 7, and if we set V; = range P;, then V = @j-,; V;, and P; is the
corresponding projection on V.

Proof. The equation « = I(a) = 3.} P;(a) shows that the subspaces {V}7}
span V. Next, if § € V;, then P;(8) = € for ¢ # j, since § € range P; and
P;oP; =0 if ¢ j. Then also P;8) = (I — Zix P)(B) = I(B) = B.
Now consider @« = 2.1 a; for any choice of o; € V. Using the above two facts,
we have Pj(a) = P;(3_7=, @) = X2.i=; Pj(a;) = a;. Therefore, o = 0 implies
that a; = P;(0) = 0 for all j, and the subspaces V; are independent.
Consequently, V = @} V,. Finally, the fact that = 3_ Pi(e) and Py(a) € V;
for all 7 shows that P;(«) is the jth component of « for every « and therefore that
P; is the projection of V onto V;.

There is an intrinsic characterization of the kind of map that is a projection.

Lemma 5.4. The projections P; are idempotent (P} = P,), or, equivalently,
each is the identity on its range. The null space of P; is the sum of the spaces
V;forjy # 1.

Proof. P} = Pjo (I — ¥ ;4;P;) = P;o I = P;. Since this can be rewritten
as P;(P;(a)) = Pj(e) for every « in V, it says exactly that P; is the identity
on its range.

Now set W; = X ;i V;, and note that if 8 € W;, then P;(8) = 0 since
PV;] = 0forj # 7. Thus W;C N(P;). Conversely, if P;(a) = 0, then a =
I{a) = X% Pj(a) = X jui Pj(e) € Wi Thus N(P;) C Wy, and the two spaces
are equal. [J

Conversely:

Lemma 5.5. If P € Hom(V) is idempotent, then V is the direct sum of its
range and null space, and P is the corresponding projection on its range.

Proof. Setting Q = I — P, we have PQ = P — P2 = 0. Therefore, V is the
direct sum of the ranges of P and @, and P is the corresponding projection on its
range, by the above theorem. Moreover, the range of @ is the null space of P,
by the corollary. [

If V= M @ N and P is the corresponding projection on M, we call P the
projection on M along N. The projection P is not determined by M alone, since
M does not determine N. A pair P and @ in Hom V such that P + @ = I and
PQ = QP = 0 is called a pair of complementary projections.
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In the above discussion we have neglected another fine point. Strictly
speaking, when we form the sum m = Y} m;, we are treating each m; as though
it were from J]7 V,; to V, whereas actually the codomain of m;is V. And we
want P; to be from V to V, whereas 7; o 7! has codomain V;, so the equation
Pj = mjom~! can’t quite be true either. To repair these flaws we have to
introduce the injection ¢;: V; — V, which is the identity map on V;, but which
views V; as a subspace of V and so takes V as its codomain. If our concept of a
mapping includes a codomain possibly larger than the range, then we have to
admit such identity injections. Then, setting #; = tj o m;, we have the correct

equations 7 = Y1 #;and P; = #; 0o w1,

EXERCISES

5.1 Prove the corollary to Lemma 5.1.

5.2 Let a be the vector <1,1,1> in R3, and let M = Ra be its one-dimensional
span. Show that each of the three coordinate planes is a complement of M.

5.3 Show that a finite product space V' = ]} V; has subspaces {W;}7 such that
W, is isomorphic to Vi and V = @f W.. Show how the corresponding projections
{P;} are related to the 7.’s and 6,’s.

5.4 If T € Hom(V, W), show that (the graph of) T is a complement of W’ =
{0} X Win VX W.

5.5 If lis a linear functional on V (! € Hom(V, R) = V*), and if a is a vector in V
such that l(a) # 0, show that ' = N @ 1/, where N is the null space of L and M = Ra
is the linear span of . What does this result say about complements in R3?

5.6 Show that any complement M of a subspace N of a vector space V is isomorphic
to the quotient space V/N.

5.7 We suppose again that every subspace has a complement. Show that if
T € Hom V is not injective, then there is a nonzero S in Hom V such that To S = 0.

Show that if T € Hom V is not surjective, then there is a nonzero S in Hom V such
that So T = 0.

5.8 Using the above exercise for half the arguments, show that 7 € Hom V is
wnjectiveif and only if 7o S = 0= S = 0and that T is surjective if and only if So T =
0= S = 0. We thus have characterizations of injectivity and surjectivity that are
formal, in the sense that they do not refer to the fact that S and T are transformations,
but refer only to the algebraic properties of S and T as elements of an algebra.

5.9 Let M and N be complementary subspaces of a vector space V, and let X be a
subspace such that X N N = {0}. Show that there is a linear injection from X to M.
[Hint: Consider the projection P of V onto 3 along N.] Show that any two comple-
ments of a subspace N are isomorphic by showing that the above injection is surjective
if and only if X is a complement of N.

5.10 Going back to the first point of the preceding exercise, let ¥ be a complement of
P[X]in M. Show that X N'Y = {0} and that X @ Y is a complement of N.

5.11 Let M be a proper subspace of V, and let {a;:7 & I} be a finite set in V. Set
L = L({as;}), and suppose that M + L = V. Show that there is a subset J C I such
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that {a;:7 € J) spans a complement of M. [Hint: Consider a largest possible subset J
such that M N L ({a;}7) = {0}.]
5.12 Given T € Hom(V, 1) and S € Hom (I}, X), show that

a) So T is surjective <> S is surjective and R(T) + N(S) = W;

b) So T isinjective & T is injective and R(T) N N(S) = {0};

¢) So Tisanisomorphism & Sissurjective, T'is injective, and W™ = R(T) ® N(S).
5.13 Assuming that every subspace of 7" has a complement, show that 7' € Hom V
satisfies T2 = 0if and only if 7 has a dircct sum decomposition V = M @ N such that
T =0on N and T[M]C N.
5.14 Suppose next that T3 = 0 but 72 5 0. Show that V" can be written as V' =
Vi@ Vo ® Vy, where T[V] C Ve, T[Vo] C Vs, and T = 0 on V3. (Assume again
that any subspace of a veetor space has a complement.)
5.13 We now suppose that T* = 0 but T*~! 5 0. Set N; = null space (77 for
i=1,...,n — 1,and let V1 be a complement of Nn_z in V. Show first that

TViINN,—2 = {0}

and that T[V1]C Na._1. Extend T[Vi] to a complement Vo of Nn_2 in N,_1, and
show that in this way we can construct subspaces Vi, ..., V, such that

V=@V, TV C Viqa for 7 < mn,

and
TV, = {0}.

On solving a linear equation. Many important problems in mathematics are
in the following general form. A linear operator T: V — W is given, and for a
given n € W the equation 7'(¢§) = n is to be solved for £ € V. In our terms, the
condition that there exist a solution is exactly the condition that n be in the
range space of T. In special circumstances this condition can be given more or
less useful equivalent alternative formulations. Let us suppose that we know
how to recognize R(T), in which case we may as well make it the new codomain,
and so assume that 7' is surjective. There still remains the problem of determin-
ing what we mean by solving the equation. The universal principle running
through all the important instances of the problem is that a solution process
calculates a right inverse to T, that is, a linear operator S: W — V such that
T o S = I, the identity on W. Thus a solution process picks one solution
vector £ € V for each 7 € W in such a way that the solving £ varies linearly with
n. Taking this as our meaning of solving, we have the following fundamental
reformulation.

Theorem 5.3. Let T be a surjective linear map from the vector space V'
to the veetor space W, and let N be its null space. Then a subspace M is a
complement of N if and only if the restriction of T to M is an isomorphism
from M to W. The mapping M +— (T | M)™" is a bijection from the set
of all such complementary subspaces M to the set of all linear right inverses
of T.
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Proof. It should be clear that a subspace M is the range of a linear right inverse
of T (amap Ssuchthat T' o S = I'y) ifand only if T [ M isan isomorphism to W,
in which case S = (T' [ M)™!. Strictly speaking, the right inverse must be from
W to V and therefore must be R = tjr o S, where ¢ is the identity injection
from M to V. Then (RoT)2=Ro(ToR)oT=RolIyoT = RoT,and
R - T is a projection whose range is M and whose null space is N (since R is
injective). Thus V=M @ N. Conversely, if V.= M & N, then T [ M is
injective because M N N = {0} and surjective because M + N = V implies
that W = T[V] = T(M + N] = T[M]+ T[N] = T[M] + {0} = T[M]. O

Polynomials in T. The material in this subsection will be used in our study of
differential equations with constant coeflicients and in the proof of the diagonal-
izability of a symmetric matrix. In linear algebra it is basic in almost any
approach to the canonical forms of matrices.

If p1(t) = X7 ait’ and py(f) = 3§ b;t’ are any two polynomials, then their
product is the polynomial

m+4n

p(t) = p1(O)pa(t) = ; et

where ¢, = Y iyj—r ab; = > aby_;. Now let T be any fixed element of
Hom(V), and for any polynomial ¢(¢) let ¢(T) be the transformation obtained
by replacing ¢ by T. That is, if ¢(t) = 4 cit*, then ¢(T) = X} ¢, T*, where, of
course, T" is the composition product 7 e T o - - - o T with I factors. Then the
bilinearity of composition (Theorem 3.3) shows that if p(t) = p1()p2(?),
then p(T) = p1(T) o po(T). In particular, any two polynomials in 7 commute
with each other under composition. More simply, the commutative law for
addition implies that

if p(®) = p1(®) +p2(),  then p(T) = pi(T) + po(T).

The mapping p(t) — p(T) from the algebra of polynomials to the algebra
Hom(V) thus preserves addition, multiplication, and (obviously) scalar multipli-
cation. That is, it preserves all the operations of an algebra and is therefore
what is called an (algebra) homomorphism.

The word “homomorphism” is a general term describing a mapping 6
between two algebraic systems of the same kind such that 6 preserves the
operations of the system. Thus a homomorphism between vector spaces is
simply a linear transformation, and a homomorphism between groups is a
mapping preserving the one group operation. An accessible, but not really
typical, example of the latter is the logarithm function, which is a homomorphism
from the multiplicative group of positive real numbers to the additive group of R.
The logarithm funection is actually a bijective homomorphism and is therefore
a group isomorphism.

If this were a course in algebra, we would show that the division algorithm
and the properties of the degree of a polynomial imply the following theorem.
(However, see Exercises 5.16 through 5.20.)
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Theorem 5.4. If p;(t) and p»(t) are relatively prime polynomials, then there
exist polynomials a;(¢) and a(f) such that

a1(t)p1(t) 4 a2(@)p2(t) = 1.

By relatively prime we mean having no common factors except constants.
We shall assume this theorem and the results of the discussion preceding it in
proving our next theorem.

We say that a subspace M C V is tnvariant under T € Hom(V) if T[M] C M
[that is, T | M € Hom(M)].

Theorem 5.5. Let T be any transformation in Hom V, and let ¢ be any
polynomial. Then the null space N of ¢(T) is invariant under 7, and if
¢ = q:1q2 1s any factorization of ¢ into relatively prime factors and N; and
N, are the null space of q;(T') and ¢2(7T'), respectively, then N = N; @ N.,.

Proof. Since T o ¢(T) = ¢(T) o T, we see that if ¢(T)(a) = 0, then ¢(T)(Ta) =
T(¢(T)(«)) = 0, so T[N]C N. Note also that since ¢(T) = ¢1(T) o g2(T),
it follows that any « in Ny is also in N, so Ny C N. Similarly, Ny C N. We can
therefore replace V by N and T by T [ N; hence we can assume that T € Hom N
and ¢(T) = ¢1(T) © ¢2(T) = 0.

Now choose polynomials a; and a so that a1q; + a2qs = 1. Since p — p(T")
is an algebraic homomorphism, we then have

a1(T) o qi(T) + as(T) o g2(T) = 1.

Set A; = a1(T), ete., sothat A; 0o Q; + Az o Qs = I,Q; o Q2 = 0, and all the
operators A, Q; commute with each other. Finally, set P; = 4;0Q; = Q0 A;
fori = 1,2. Then P, + Py = I and P,Py = PyP, = 0. Thus P, and P, are
projections, and N is the direct sum of their ranges: N = V; @ V,. Since each
range is the null space of the other projection, we can rewrite this as N =
N, ® N,, where N; = N(P;). It remains for us to show that N(P;) = N(Q,).
Note first that since Q; o P = Q,°Qo0 Ay = 0, we have Q; = Q01 =
Q1o (P1+ P3) = Q; 0 P;. Then the two identities P; = A;0Q; and Q; =
Q; o P; show that the null space of each of P; and Q; is included in the other, and
so they are equal. This completes the proof of the theorem. 0

Corollary. Let p(t) = I~ pi(t) be a factorization of the polynomial
p(t) into relatively prime factors, let 7' be an element of Hom(V), and set
N;= N(py(T)) fori=1,...,mand N = N(p(T)). Then N and all the
N, are invariant under T, and N = @~ N,.

Proof. The proof is by induction on m. The theorem is the case m = 2, and if
we set ¢ = [I®pi(t) and M = N(q(T)), then the theorem implies that
N = N,; ® M and that N; and M are invariant under 7. Restricting T to M,
we see that the inductive hypothesis implies that M = @i~, N; and that N; is
invariant under T for 7 = 2, ..., m. The corollary to Lemma 5.3 then yields
our result. [
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EXERCISES

5.16 Presumably the reader knows (or can see) that the degree d(P) of a polynomial
P satisfies the laws

d(P + Q) < max {d(P), d@)],
d(P-Q) = d(P) -+ d(Q) if both P and @ arc nonzero.

The degree of the zero polynomial is undefined. (It would have to be —e!) By induc-
tion on the degree of P, prove that for any two polynomials P and D, with D # 0,
there are polynomials Q and R such that P = DQ + R and d(R) < d(D) or R = 0.
[Hint: If d(P) < d(D), we can take @ and R as what? If d(P) > d(D), and if the lead-
ing terms of P and D are ax™ and bax™, respectively, with n > m, then the polynomial

PP=P— <§> Z"7"D

has degree less than d(P), so P’ = DQ’ -+ R’ by the inductive hypothesis. Now finish
the proof.]

5.17 Assuming the above result, prove that R and @ are uniquely determined by
P and D. (Assume also that P = DQ’ + R’, and prove from the properties of degree
that " = Rand Q" = @.) These two results together constitute the division algorithm
for polynomials.

5.18 If P is any polynomial
P@) = 2, aa”,
0

and if ¢ is any number, then of course P(f) is the number
> aud.
0

Prove from the division algorithm that for any polynomial P and any number ¢ there
is a polynomial @ such that

P(x) = (z — Q) + P(®),
and therefore that P(x) is divisible by (x — ¢) if and only if P(¢f) = 0.

5.19 Let P and @ be nonzero polynomials, and choose polynomials A9 and By such
that among all the polynomials of the form AP -+ B@ the polynomial

D = AoP + BoQ

is nonzero and has minimum degree. Prove that D is a factor of both P and Q. (Sup-
pose that D does not divide P and apply the division algorithm to get a contradiction
with the choice of 19 and By.)

5.20 Let P and @ be nonzero relatively prime polynomials. This means that if £ is a
common factor of P and Q (P = EP’,Q = LQ’), then E is a constant. Prove that
there are polynomials A and B such that A(x)P(x) + B()Q(x) = 1. (Apply the
above exercise.)
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5.21 In the context of Theorem 5.5, show that the restriction of ¢2(7) = Q2 to N
is an isomorphism (from N to Np).
5.22 An involution on V is a mapping T € Hom V such that 72 = I. Show that if
T is an involution, then V is a direct sum V = V; @ Vo, where T'(§) = £ for every
§€V1i(T=1on V) and T(§) = —& for every £ € Ve (T = —Ion Va). (Apply
Theorem 5.5.)
5.23 We noticed earlier (in an exercise) that if ¢ is any mapping from a set .1 to a
set B, then fr fo ¢ is a linear map T, from R? to R*. Show now thatif y: B — C,
then

T‘pw = T¢0 T‘p.

(This should turn out to be a direet consequence of the associativity of composition.)
5.24 Let .1 be any sct, and let ¢: .1 — A be such that ¢o ¢(a) = a for every a.
Then T,: fr fo ¢ is an involution on V = R (since Tpoy = Tyo T,). Show that
the decomposition of R® as the direct sum of the subspace of even functions and the
subspace of odd functions arises from an involution on R® defined by such a map
o:R—R.

5.25 Let V be a subspace of R® consisting of differentiable functions, and suppose
that V is invariant under differentiation (f€ V= Df € V). Suppose also that on V
the linear operator D € Hom V satisfies D2 — 2D — 31 = 0. Prove that V is the
direct sum of two subspaces M and N such that D = 3 on M and D = —I on N.
Actually, it follows that 3/ is the linear span of a single vector, and similarly for .
Find these two functions, if you can. (f = 3f=f = ?)

*Block decompositions of linear maps. Given 7 in Hom V and a direct sum
decomposition V = @} V,, with corresponding projections {P;}7, we can
consider the maps T;; = P; o T o P;. Although T; is from V to V, we may also
want to consider it as being from V; to V; (in which case, strictly speaking, what
is it?). We picture the T;;’s arranged schematically in a rectangular array
Similar to a matrix, as indicated below for n = 2.

Ty | Ti2

T2l T22

Trurthermore, since T = >, ; T:j, we call the doubly indexed family the block
decomposition of T associated with the given direct sum decomposition of V.

More generally, if T € Hom(V, W) and W also has a direct sum decomposi-
tion W = @™, W,, with corresponding projections {Q.}T, then the family
{T:;} defined by T;; = Q; o T o P; and pictured as an m X n rectangular array
is the block decomposition of T with respect to the two direct sum decompositions.

Whenever T in Hom V has a special relationship to a particular direct sum
decomposition of V, the corresponding block diagram may have features that
display these special properties in a vivid way; this then helps us to understand
the nature of T better and to calculate with it more easily.
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For example,if V=V @& V,, then V{isinvariant under 7T (i.e., T[V,] C V)
if and only if the block diagram is upper triangular, as shown in the following
diagram.

T

0

T12
T22

Suppose, next, that 72 = 0. Letting V' be the range of T, and supposing that
V1 has a complement V,, the reader should clearly see that the corresponding
block diagram is
0\ T12

0 | o,

This form is called strictly upper triangular; it is upper triangular and also zero
on the main diagonal. Conversely, if 7 has some strictly upper-triangular
2 X 2 block diagram, then 72 = 0.

If R is a composition product, X = ST, then its block components can be
computed in terms of those of S and 7. Thus

R, = P;RP;, = P,STP;, = P.S (Z PJ-> TP = Y, SiTjt.
j=1

Jj=1
We have used the identities I = Y /-, P; and P; = P?. The 2 X 2 case is
pictured below.
S11T11 + S12T21 ‘ S11T12 + S12T22

So1T11 4 Se2Ta1 | So1Trs -+ SaoTos

From this we can read off a fact that will be useful to us later: If 7' is 2 X 2
upper triangular (T2; = 0), and if T,; is invertible as a map from V; to
V(i = 1,2), then T is invertible and its inverse is

Ty ™' | =Ty ' Ty ™
0 Tao™!
We find this solution by simply setting the product diagram equal to
I; | 0
0|1,

and solving; but of course with the diagram in hand it can simply be checked to
be correct.

EXERCISES

5.26 Show that if 7€ Hom V, if V = @Bf Vi, and if {P;}} are the corresponding
projections, then the sum of the transformation Ty = P;o To Pjis T.



1.6 BILINEARITY 67

5.27 If S and T are in Hom V and {S;;}, {T:;} are their block components with
respect to some direct sum decomposition of V, show that S;;0 Ty, = 0if 7 5 1.

5.28 Verify that if T has an upper-triangular block diagram with respect to the
direct sum decomposition V = Vi @ Vg, then Vi is invariant under 7.
5.29 Verify that if the diagram is strictly upper triangular, then 72 = 0.

5.30 Showthatif V= V; ® Vo @ V3 and T € Hom V, then the subspaces V; are
all invariant under 7 if and only if the block diagram for T is

T11 0 0
0 Ta2 0
0 0 T3s

Show that T is invertible if and only if T is invertible (as an element of Hom V)
for each 1.

5.31 Supposing that T has an upper-triangular 2 X 2 block diagram and that T;;
is invertible as an element of Hom V; for ¢ = 1, 2, verify that T is invertible by form-
ing the 2 X 2 block diagram that is the product of the diagram for 7 and the diagram
given in the text as the inverse of 7.

5.32 Supposing that T is as in the preceding exercise, show that S = T~ must have
the given block diagram by considering the two equations To S = I and So T = I
in their block form.

5.33 What would strictly upper triangular mean for a 3 X 3 block diagram? What
is the corresponding property of T? Show that T has this property if and only if it has
a strictly upper-triangular block diagram. (See Exercise 5.14.)

5.34 Suppose that T in Hom V satisfies T" = 0 (but 7"~!  0). Show that 7T has
a strictly upper-triangular n X n block decomposition. (Apply Exercise 5.15.)

6. BILINEARITY

Bilinear mappings. The notion of a bilinear mapping is important to the un-
derstanding of linear algebra because it is the vector setting for the duality
principle (Section 0.10).

Definition. If U, V, and W are vector spaces, then a mapping
w: <§ > = o)

from U X V to W is bilinear if it is linear in each variable when the other
variable vs held fized.

That is, if we hold ¢ fixed, then 5 +— w(£, 1) is linear [and so belongs to
Hom(V, W)]; if we hold 5 fixed, then similarly w(£, 7) is in Hom(U, W) as a
function of £ This is not the same notion as linearity on the product vector
space U X V. Tor example, <z, y> — x 4 y is a linear mapping from R?
to R, but it is not bilinear. If y is held fixed, then the mapping =z +— x 4 y is
affine (translation through y), but it is not linear unless y is 0. On the other
hand, <z, y> + xy is a bilinear mapping from R? to R, but it is not linear. If y
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is held fixed, then the mapping x — yz is linear. But the sum of two ordered
couples does not map to the sum of their images:

Lz, y> + <u,v> = <z +u,y+ov> = @+ wy+o),

which is not the sum of the images, xy 4+ wv. Similarly, the scalar product
(x,y) = 2.7 xsy: is bilinear from R™ X R" to R, as we observed in Section 2.

The linear meaning of bilinearity is partially explained in the following
theorem.

Theorem 6.1. If w: U X V — W is bilinear, then, by duality, w is equiv-
alent to a linear mapping from U to Hom(V, W) and also to a linear mapping
from V to Hom(U, W).

Proof. For each fixed n € V let w, be the mapping &+ w(§, 7). That is,
w,(£) = w(§, 1). Then w, € Hom(U, W) by the bilinear hypothesis. The
mapping g — w, is thus from V to Hom(U, W), and dts linearity is due to the
linearity of w in n when £ is held fixed:

Weyrag(§) = w( en + d§) = cw(E, 1) + dw(§, §) = cwy(§) + dwp($),

so that P

Similarly, if we define wé by wf(n) = w(§, 1), then £ — «f isa linear mapping
from U to Hom(V, W). Conversely, if ¢: U — Hom(V, W) is linear, then the
function w defined by w(£, 1) = ¢(£)(n) is bilinear. Moreover, wé = ¢(£), so
that ¢ is the mapping & — «f. 0

We shall see that bilinearity occurs frequently. Sometimes the reinterpreta-
tion provided by the above theorem provides new insights; at other times it
seems less helpful.

For example, the composition map <S8, T> — S o T is bilinear, and the
corollary of Theorem 3.3, which in effect states that composition on the right by
a fixed T is a linear map, is simply part of an explicit statement of the bilinearity.
But the linear map T — composition by 7' is a complicated object that we have
no need for except in the case W = R.

On the other hand, the linear combination formula "} x;a; and Theorem 1.2
do receive new illumination.

Theorem 6.2. The mapping w(x, @) = > x;0; is bilinear from R™ X V"
to V. The mapping « +— wa is therefore a linear mapping from V" to
Hom(R™, V), and, in fact, is an isomorphism.

Proof. The linearity of w in x for a fixed « was proved in Theorem 1.2, and its
linearity in « for a fixed x is seen in the same way. Then a — wa is linear by
Theorem 6.1. Its bijectivity was implicit in Theorem 1.2. [

It should be remarked that we can use any finite index set I just as well as
the special set 7 and conclude that w(x, &) = ;e @i is bilinear from R x V7!
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to V and that & — wa is an isomorphism from V? to Hom(R’, V). Also note
that wa = La in the terminology of Section 1.

Corollary. The scalar product (x, a) = >_] x;a; is bilinear from R” X R"™
to R; therefore, a — w, = L, is an isomorphism from R” to Hom(R", R).

Natural isomorphisms. We often find two vector spaces related to each other
in such a way that a particular isomorphism between them is singled out. This
phenomenon is hard to pin down in general terms but easy to describe by
examples.

Duality is one source of such “natural” isomorphisms. For example, an
m X n matrix {{;;} is a real-valued function of the two variables <7, 7>, and
as such it is an element of the Cartesian space R™ ™. We can also view {t;;} as
a sequence of n column vectors in R™. This is the dual point of view where we
hold j fixed and obtain a function of ¢ for each j. IFrom this point of view {¢;;}
is an element of (R™)®. This correspondence between R”™<® and (R™)7 is clearly
an isomorphism, and is an example of a natural isomorphism.

We review next the various ways of looking at Cartesian n-space itself.
One standard way of defining an ordered n-tuplet is by induction. The ordered
triplet <z, y, 2> is defined as the ordered pair < <z, y>-, 2>, and the ordered

n-tuplet <zxq,...,x,> is defined as < <xy,...,Tp_1>,2,>. Thus we
define R” inductively by setting R! = R and R® = R*™! X R.
The ordered n-tuplet can also be defined as the functionon @ = {1,...,n}

which assigns x; to . Then
LTy oo, Ta> = {<L<L x>, ..., <n, 2,7},

and Cartesian n-space is R” = R .
Finally, we often wish to view Cartesian (n -+ m)-space as the Cartesian
product of Cartesian n-space with Cartesian m-space, so we now take

LT1 ooy Tngm > as <K LTy oo 3 >y KTpgly - ooy Tngm > >

and R**™ as R™ X R™.

Here again if we pair two different models for the same n-tuplet, we have an
obvious natural isomorphism between the corresponding models for Cartesian
n-space.

Finally, the characteristic properties of Cartesian product spaces given in
Theorems 3.6 and 3.7 yield natural isomorphisms. Theorem 3.6 says that an
n-tuple of linear maps {T;}] on a common domain V is equivalent to a single
n-tuple-valued map 7T, where T(§) = <T1(¢),...,T.(§)> for all £€ V.
(This is duality again! T;(£) is a function of the two variables 7 and £.) And it is
not hard to see that this identification of 7' with {7';}7 is an isomorphism from
I1: Hom(V, W;) to Hom(V, I, W,).

Similarly, Theorem 3.7 identifies an n-tuple of linear maps {7';}} into a com-
mon codomain V with a single linear map 7' of an n-tuple variable, and this iden-
tification is a natural isomorphism from []} Hom(W,, V) to Hom([]} W,, V).
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An arbitrary isomorphism between two vector spaces identifies them in a
transient way. For the moment we think of the vector spaces as representing the
same abstract space, but only so long as the isomorphism is before us. If we
shift to a different isomorphism between them, we obtain a new temporary
identification. Natural isomorphisms, on the other hand, effect permanent
identifications, and we think of paired objects as being two aspects of the same
object in a deeper sense. Thus we think of a matrix as “being” either a sequence
of row vectors, a sequence of column vectors, or a single function of two integer
indices. We shall take a final look at this question at the end of Section 3 in the
next chapter.

*We can now make the ultimate dissection of the theorems centering
around the linear combination formula. Laws S1 through S3 state exactly that
the scalar product za is bilinear. More precisely, they state that the mapping
S: <z, a> — xa from R X W to W is bilinear. In the language of Theorem 6.1,
Ta = we(z), and from that theorem we conclude that the mapping a — w, is
an isomorphism from W to Hom(R, W).

This isomorphism between W and Hom(R, W) extends to an isomor-
phism from W™ to (Hom(R, W))", which in turn is naturally isomorphic to
Hom(R",W) by the second Cartesian product isomorphism. Thus W™ is natu-
rally isomorphic to Hom(R", W); the mapping is « +— La, where La(x) =
Z'll Ti0.

In particular, R™ is naturally isomorphic to the space Hom(R", R) of all
linear functionals on R", the n-tuple a corresponding to the functional w,
defined by w,(x) = 2.7 a;x;.

Also, (R™)™ is naturally isomorphic to Hom(R", R™). And since R™<% is
naturally isomorphic to (R™)", it follows that the spaces R™<" and Hom(R", R™)
are naturally isomorphic. This is simply our natural association of a transfor-
mation 7 in Hom(R™, R™) to an m X n matrix {{;}.



CHAPTER 2

FINITE-DIMENSIONAL VECTOR SPACES

We have defined a vector space to be finite-dimensional if it has a finite spanning
set. In this chapter we shall focus our attention on such spaces, although this
restriction is unnecessary for some of our discussion. We shall see that we can
assign to each finite-dimensional space V a unique integer, called the dimension
of V, which satisfies our intuitive requirements about dimensionality and which
becomes a principal tool in the deeper explorations into the nature of such
spaces. A number of “dimensional identities” are crucial in these further
investigations. We shall find that the dual space of all linear functionals on V,
V* = Hom(V, R), plays a more satisfactory role in finite-dimensional theory
than in the context of general vector spaces. (However, we shall see later in
the book that when we add limit theory to our algebra, there are certain special
infinite-dimensional vector spaces for which the dual space plays an equally
important role.) A finite-dimensional space can be characterized as a vector
space isomorphic to some Cartesian space R”, and such an isomorphism allows a
transformation 7' in Hom V to be “transferred” to R™, whereupon it acquires a
matrix. The theory of linear transformations on such spaces is therefore mirrored
completely by the theory of matrices. In this chapter we shall push much
deeper into the nature of this relationship than we did in Chapter 1. We also
include a section on matrix computations, a brief section describing the trace
and determinant functions, and a short discussion of the diagonalization of a
quadratic form.

1. BASES

Consider again a fixed finite indexed set of vectors @ = {a;: ¢ € I} in V and the
corresponding linear combination map La:x — ¥ xe; from R to V having «
as skeleton.

Definition. The finite indexed set {a;:7 € I} is independent if the above
mapping La is injective, and {a;} is a basis for V if La is an isomorphism
(onto V). In this situation we call {a;: ¢ € I} an ordered basis or frame if
I =7n=/{1,...,n} for some positive integer n.

Thus {a; : ¢ € I} is a basis if and only if for each £ € V there exists a unique
indexed “coefficient” set x = {x;:7 € I} € R’ such that ¢ = ¥ x;a;. The
71
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numbers x; always exist because {a;: ¢ € I'} spans V, and x is unique because
La is injective.

Tor example, we can check directly that b! = <2,1> and b? = <1, —3>
form a basis for R% The problem is to show that for each y € R? there is a
unique x such that

2
Yy = inbl = 131'<2, 1> +332'<1, —3> = <2.’61 +x2, ry — 3.’172>'.
1

Since this vector equation is equivalent to the two scalar equations y; =
2x; + x2 and y, = x; — 3z, we can find the unique solution x; = (3y; + y2)/7,
2o = (Y1 — 2y2)/7 by the usual elimination method of secondary school
algebra.

The form of these definitions is dictated by our interpretation of the linear
combination formula as a linear mapping. The more usual definition of indepen-
dence is a corollary.

Lemma 1.1. The independence of the finite indexed set {a;:7 € I} is
equivalent to the property that >.r z;a; = 0 only if all the coeflicients x;
are 0.

Proof. This is the property that the null space of La consist only of 0, and is
thus equivalent to the injectivity of La, that is, to the independence of {«;}, by
Lemma 1.1 of Chapter 1.

If {a;}7 is an ordered basis (frame) for V, the unique n-tuple x such that
£ = Y1 za; is called the coordinate n-tuple of & (with respect to the basis {a;}),
and z; is the ¢th coordinate of £&. We call z;a; (and sometimes ;) the tth component
of £. The mapping La will be called a basis isomorphism, and its inverse La *,
which assigns to each vector ¢ € V its unique coordinate n-tuple x, is a coordinate
isomorphism. The linear functional #+— z; is the jth coordinate functional;
it is the composition of the coordinate isomorphism # +— x with the jth coordi-
nate projection x — x; on R”. We shall see in Section 3 that the n coordinate
functionals form a basis for V* = Hom(V, R).

In the above paragraph we took the index set I to be @ = {1,...,n} and
used the language of n-tuples. The only difference for an arbitrary finite index
set is that we speak of a coordinate function x = {z; : ¢ € I} instead of a coordi-
nate n-tuple. i

Our first concern will be to show that every finite-dimensional (finitely
spanned) vector space has a basis. We start with some remarks about indices.

We note first that a finite indexed set {a;: ¢ € I} can be independent only
if the indexing is injective as a mapping into V, for if ay, = «;, then 3 2,0, = 0,
where z;, = 1, z; = —1, and x; = 0 for the remaining indices. Also, if {a;: ¢ € I}
is independent and J C I, then {«; :7 € J} is independent, since if 3 ; 20, = 0,
and if we set x; = 0 for t € I — J, then > jz;a; = 0, and so each z; is 0.
A finite unindexed set is said to be independent if it is independent in some
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(necessarily bijective) indexing. It will of course then be independent with
respect to any bijective indexing. An arbitrary set is independent if every finite
subset is independent. It follows that a set A is dependent (not independent) if
and only if there exist distinct clements @y, ..., @, in A and scalars xy, ..., 2,
not all zero such that > 2;0; = 0. An unindexed basis would be defined in the
obvious way. However, a sct can always be regarded as being indexed, by itself
if necessary!

Lemma 1.2. If B is an independent subset of a veetor space ¥ and 8 is any
vector not in the linear span L(B), then B U {8} is independent.

Proof. Otherwise there is a zero lincar combination, @8 - > 7 a8; = 0, where
B1, - . ., By are distinet elements of B and the coefficients are not all 0. But then
x cannot be zero: if it were, the equation would contradict the independence of
B. We can therefore divide by a and solve for 8, so that 8 € L(B), a contra-
diction. [ -

The reader will remember that we call a vector space V' finite-dimensional
if it has a finite spanning set {a;} 7. We can use the above lemma to construct a
basis for such a V by choosing some of the o;’s. We simply run through the
sequence {a;} 7 and choose those members that increase the linear span of the
preceding choices. We end up with a spanning set since {a;} ] spans, and our
subsequence is independent at each step, by the lemma. In the same way we
can extend an independent set {8} 7 to a basis by choosing some members of a
spanning set {a;}]. This procedure is intuitive, but it is messy to set up rigor-
ously. We shall therefore proceed differently.

Theorem 1.1. Any minimal finite spanning set is a basis, and therefore any
finite-dimensional vector space V has a basis. More generally, if {3;:7 € J}
is a finite independent set and {a; : 7 € I} is a finite spanning set, and if K
is a smallest subset of I such that {8;} ; U {a;} k spans, then this collection is
independent and a basis. Therefore, any finite independent subset of a
finite-dimensional space can be extended to a basis.

Proof. Tt is sufficient to prove the second assertion, since it includes the first
as a special case. If {8;} 7 U {a;} k is not independent, then there is a nontrivial
zero linear combination > ;8; + 2k x; = 0. If every x; were zero, this
equation would contradicet the independence of {8;} ;. Therefore, some xy is
not zero, and we can solve the equation for ap. That is, if we set L = K — {k},
then the lincar span of {8;} s U {a;} 1, contains ey. It therefore includes the whole
original spanning set and hence is V. But this contradicts the minimal nature of
K, since L isa proper subset of K. Consequently, {8,} s U {a;} k is independent. 0

We next note that R” itself has a very special basis. In the indexing map
i — a; the vector a; corresponds to the index j, but under the lincar combi-
nation map x — Y z,a; the vector «; corresponds to the function 8’ which has
the value 1 at j and the value 0 elsewhere, so that 3_; 8le; = a;. This function
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87 is called a Kronecker delta function. It is clearly the characteristic function Xp
of the one-point set B = {j}, and the symbol 6”7 is ambiguous, just as ‘X’
is ambiguous; in each case the meaning depends on what domain is implicit from
the context. We have already used the delta functions on R" in proving Theorem
1.2 of Chapter 1.

\n

Theorem 1.2. The Kronecker functions {47} }~; form a basis for R".

Proof. Since X7 2;5%(j) = x; by the definition of &*, we see that X bt is
the n-tuple x itself, so the linear combination mapping Lg: x — >_7 ;6" is the
identity mapping x + x, a trivial isomorphism. 0

Among all possible indexed bases for R", the Kronecker basis is thus singled
out by the fact that its basis isomorphism is the identity; for this reason it is
called the standard basis or the natural basis for R”. The same holds for R for
any finite set /.

Finally, we shall draw some elementary conclusions from the existence of
a basis.

Theorem 1.3. If 7' € Hom(V, W) is an isomorphism and « = {a;: ¢ € I}
is a basis for V, then {T(e;) : ¢ € I} is a basis for W.

Proof. By hypothesis La is an isomorphism in Hom(R", V), and so T ¢ La is
an isomorphism in Hom(R”, W). Its skeleton {7'(a;)} is therefore a basis for W. [

We can view any basis {a;} as the image of the standard basis {6} under
the basis isomorphism. Conversely, any isomorphism 6: R? — B becomes a basis
isomorphism for the basis a; = 6(8).

Theorem 1.4. If X and Y are complementary subspaces of a vector space V,
then the union of a basis for X and a basis for Y is a basis for V. Conversely,
if a basis for V is partitioned into two sets, with linear spans X and Y,
respectively, then X and Y are complementary subspaces of V. )

Proof. We prove only the first statement. If {a;:7 € J} is a basis for X and
{a; : i € K} is a basis for Y, then it is clear that {a; :4 € J U K} spans V, since
its span includes both X and Y, and so X + Y = V. Suppose then that
S suk Tioes = 0. Setting £ = Xy zio; and 9 = 2k T, We see that ¢ € X,
neY,and £ + 7 = 0. But then £ = 9 = 0,since X and Y are complementary.
And then z; = 0 for ¢ € J because {a;} s is independent, and z; = 0 for i € K
because {a;} g is independent. Therefore, {a;} syx is a basis for V. Weleave the
converse argument as an exercise. [

Corollary. If V = @} V., and B; is a basis for V;, then B = U} B; is a
basis for V.
Proof. We see from the theorem that B; U Beisa basis for V; @ V,. Proceed-
ing inductively we see that Ui_; B; is a basis for ®}=, Vi for j=2,...,n,
and the corollary is the case j = n. [
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If we follow a coordinate isomorphism by a linear combination map, we get
the mapping of the following existence theorem, which we state only in n-tuple
form.

Theorem 1.5. If B = {B8,}] is an ordered basis for the vector space V, and
if {a;}7 is any n-tuple of vectors in a vector space W, then there exists a
unique S € Hom(V, W) such that S(8;) = a; for<=1,...,n.

Proof. By hypothesis Lg is an isomorphism in Hom(R", V), and so
S = Lao (Lg)™ ! is an element of Hom(V, W) such that S(8;) = La(8%) = a;.
Conversely, if S € Hom(V, W) is such that S(8;) = a; forall 7, then S o Lg(8°) =
a;forall 7, sothat S o Lg = La. Thus S is uniquely determined as La o (Lg)™'. [

It is natural to ask how the unique S above varies with the n-tuple {a;}.

The answer is: linearly and “‘isomorphically’.

Theorem 1.6. Let {8;}7 be a fixed ordered basis for the vector space
V, and for each n-tuple & = {a;}] chosen from the vector space W let
Sa € Hom(V, W) be the unique transformation defined above. Then the
map « — Sa is an isomorphism from W" to Hom(V, W).

Proof. As above, Sa = La o 67!, where 6 is the basis isomorphism Lg. Now we
know from Theorem 6.2 of Chapter 1 that e + Lq is an isomorphism from W7
to Hom(R™, W), and composition on the right by the fixed coordinate isomor-
phism 67! is an isomorphism from Hom(R", W) to Hom(V, W) by the corollary
to Theorem 3.3 of Chapter 1. Composing these two isomorphisms gives us the
theorem. [

*Infinite bases. Most vector spaces do not have finite bases, and it is natural to
try to extend the above discussion to index sets I that may be infinite. The
Kronecker functions {§°: 7 € I} have the same definitions, but they no longer
span R’. By definition f is a linear combination of the functions §° if and only
if f is of the form 3 ey, ¢;8°, where I is a finite subset of 7. But then f=0
outside of I,. Conversely, if f € R’ is 0 except on a finite set Iy, then f =
Y ier, f(©)8". The linear span of {':7 € I} is thus exactly the set of all func-
tions of R’ that are zero except on a finite set. We shall designate this sub-
space Rj.

If {a;:7 € I} is an indexed set of vectors in V and f € Ry, then the sum
2 :e1 f(©)a; becomes meaningful if we adopt the reasonable convention that the
sum of an arbitrary number of 0’s is 0. Then 3 ;e; = X .er,, where I, is any
finite subset of I outside of which f is zero.

With this convention, La: f +— 3_; f(¢)a; is a linear map from Ry to V, as in
Theorem 1.2 of Chapter 1. And with the same convention, 3 .e; f(¢)a; is an
clegant expression for the general linear combination of the vectors a;. Instead
of choosing a finite subset I; and numbers ¢; for just those indices 7 in Iy, we
define ¢; for all 7 € I, but with the stipulation that ¢; = 0 for all but a finite
number of indices. That is, we take ¢ = {¢;: 7 € I} as a function in Rj.
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We make the same definitions of independence and basis as before. Then
{a;: i € I} is a basis for V if and only if La: Ry — V is an isomorphism, i.e., if
and only if for each £ € V there exists a unique x € Ry such that § = 2°; v

By using an axiom of set theory called the axiom of choice, it can be shown
that every vector space has a basis in this sense and that any independent set
can be extended to a basis. Then Theorems 1.4 and 1.5 hold with only minor
changes in notation. In particular, if a basis for a subspace A of V is extended
to a basis for V, then the linear span of the added part is a subspace N comple-
mentary to M. Thus, in a purely algebraic sense, every subspace has com-
plementary subspaces. We assume this fact in some of our exercises.

The above sums arc always finite (despite appearances), and the above
notion of basis is purely algebraic. However, infinite bases in this sense are not
very useful in analysis, and we shall therefore concentrate for the present on
spaces that have finite bases (i.e., are finite-dimensional). Then in one impor-
tant context later on we shall discuss infinite bases where the sums are genuinely
infinite by virtue of limit theory.

EXERCISES

1.1 Show by a direct computation that {<1, —1>, <0, 1>} is a basis for R2.

1.2 The student must realize that the ith coordinate of a vector depends on the whole
basis and not just on the ith basis vector. Prove this for the second coordinate of
veetors in R2 using the standard basis and the basis of the above exercise.

1.3 Show that {<1,1>, <1,2>} is a basis for V = R2 The basis isomorphism
from R2 to V is now from R2 to R2. Find its matrix. Find the matrix of the coordinate
isomorphism. Compute the coordinates, with respect to this basis, of < —1,1>, <0, 1 >,
<2,3>.

1.4 Show that {bi}% where b! = <1,0,0>, b? = <1,1,0>, and b?® =
<1,1,1>,is a basis for R3.

1.5 In the above exercise find the three linear functionals I; that are the coordinate
functionals with respect to the given basis. Since

3
X = Z li(x)bi,
1

finding the 1; is equivalent to solving x = ?yibi for the y/s in terms of
x = <21, T2, T3>

1.6 Show that any set of polynomials no two of which have the same degree is
independent.

1.7 Show that if {a;}] is an independent subset of V and T in Hom(V, W) is injec-
tive, then {T(a;)}7 is an independent subset of W.

1.8 Show that if T is any element of Hom(V, W) and {T'(a,)} ] is independent in W,
then {a;}7 is independent in V.
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1.9 Later on we are going to call a vector space V n-dimensional if every basis for
7" contains exactly n elements. If 17 is the span of a single vector @, so that 17 = Re,
then V is clearly one-dimensional.

Let {V;}7 be a collection of one-dimensional subspaces of a vector space V, and
choose a nonzero vector «; in 17; for cach 7. Prove that {a;)7 is independent if and

only if the subspaces {V;}7 are independent and that {a;}] is a basis if and only if
y 1 1 \

V=V,

1.10 Finish the proof of Theorem 1.4.

1.11 Give a proof of Theorem 1.4 based on the existence of isomorphisms.

1.12 The reader would guess, and we shall prove in the next section, that every
subspace of a finite-dimensional space is finite-dimensional. Prove now that a sub-
space N of a finite-dimensional vector space 17 is finite-dimenxsional if and only if it has
a complement /. (Work from a combination of Theorems 1.1 and 1.4 and direct sum
projections.)

1.13 Since {b"}? = {<1,0,0>, <1,1,0>, <1,1,1>} is a basis for R3, there is a
unique T in Hom(R3, R2) such that T(b!) = <1,0>, T(b%) = <0,1>, and
T(b3) = <1,1>. Find the matrix of 7. (Find T(&) for¢ = 1,2, 3.)

1.14 Find, similarly, the S in Hom R? such that S(b?) = &' for¢ = 1, 2, 3.

1.15 Show that the infinite sequence {t"} ¢ is a basis for the vector space of all poly-
nomials.

2. DIMENSION

The concept of dimension rests on the fact that two different bases for the same
space always contain the same number of elements. This number, which is
then the number of clements in every basis for V, is called the dimension of V.
It tells all there is to know about V to within isomorphism: There exists an
isomorphism between two spaces if and only if they have the same dimension.
We shall consider only finite dimensions. If ¥V is not finite-dimensional, its
dimension is an infinite cardinal number, a concept with which the reader is
probably unfamiliar.

Lemma 2.1. If V is finite-dimensional and 7' in Hom V is surjective, then T
is an isomorphism.

Proof. Let n be the smallest number of elements that can span V. That is, there
is some spanning set {a;}7 and none with fewer than n elements. Then {«;} 7 isa
basis, by Theorem 1.1, and the linear combination map 6:x — 2.7 xo; is
accordingly a basis isomorphism. But {8;}7 = {T'(«;)}7 also spans, since T is
surjective, and so T o 8 is also a basis isomorphism, for the same reason. Then
T = (T o 6) o 67" is an isomorphism. [J

Theorem 2.1. If V is finite-dimensional, then all bases for V' contain the
same number of elements.

Proof. Two bases with n and m elements determine basis isomorphisms
0: R™ — Vand ¢: R™ — V. Suppose that m < n and, viewing R™ as R™ X R" ™™,
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let m be the projection of R™ onto R™,
T(<LTy, oo e Ty oo ey Ty > ) = LTy eney T

Since T = 67! o ¢ is an isomorphism from R™ to R™ and T o 7: R — R" is
therefore surjective, it follows from the lemma that T o 7 is an isomorphism.
Then 7 = T~ ' o (T o ) is an isomorphism. But it isn’t, because w(6™) = 0,
and we have a contradiction. Therefore no basis can be smaller than any other
basis. [

The integer that is the number of elements in every basis for V is of course
called the dimension of V, and we designate it d(V). Since the standard basis
{67 for R™ has n elements, we see that R" is n-dimensional in this precise sense.

Corollary. Two finite-dimensional vector spaces are isomorphic if and only
if they have the same dimension.

Proof. If T is an isomorphism from V to W and B is a basis for V, then T[B] is a
basis for W by Theorem 1.3. Therefore d(V) = #B = #T[B] = d(W), where
#A is the number of elements in A. Conversely, if d(V) = d(W) = n, then V
and W are each isomorphic to R™ and so to each other. 0

Theorem 2.2. Every subspace M of a finite-dimensional vector space V is
finite-dimensional.

Proof. Let @ be the family of finite independent subsets of M. By Theorem 1.1,
if A € @, then A can be extended to a basis for V, and so #4 < d(V). Thus
{#4 : A € @} is a finite set of integers, and we can choose B € @ such that
n = #B is the maximum of this finite set. But then L(B) = M, because other-
wise for any « € M — L(B) we have B U {a} € @, by Lemma 1.2, and

#BU {a}) =n+1,
contradicting the maximal nature of n. Thus M is finitely spanned. U

Corollary. Every subspace M of a finite-dimensional space V has a comple-
ment.

Proof. Use Theorem 1.1 to extend a basis for M to a basis for V, and let N be
the linear span of the added vectors. Then apply Theorem 1.4. [

Dimensional identities. We now prove two basic dimensional identities.
We will always assume V finite-dimensional.

Lemma 2.2. If V; and V; are complementary subspaces of V, then d(V) =
d(Vy) +d(Vy). More generally, if V = @] V; then d(V) = X1 d(V,).

Proof. This follows at once from Theorem 1.4 and its corollary. 0

Theorem 2.3. If U and W are subspaces of a finite-dimensional vector space,
then d(U 4+ W) 4+ d(U N W) = d(U) + d(W).
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Proof. Let V bea complement of U N Win U. We start by showing that then V'
isalso a complement of Win U 4+ W. Tirst

VAEW=V4+(UnW)+W)=V+UnNW)+W=U+W.

We have used the obvious fact that the sum of a vector space and a subspace
is the vector space. Next,

VaAaW=VnUnW=VnUnW)= {0},

because V is a complement of U N W in U. We thus have both V + W =
U+ Wand VAW = {0}, and so V is a complement of W in U + W by
the corollary of Lemma 5.2 of Chapter 1.

The theorem is now a corollary of the above lemma. We have

d(U) + dW) = (AU N W) + d(V)) + dW) = d{U N W) +(d(V) + d(W))
=dUNW)+dU +W). D

Theorem 2.4. Let V be finite-dimensional, and let W be any vector space.
Let T € Hom(V, W) have null space N (in V) and range R (in W). Then R
is finite-dimensional and d(V) = d(N) + d(R).

Proof. Let U be a complement of N in V. Then we know that 7 | U is an
isomorphism onto R. (See Theorem 5.3 of Chapter 1.) Therefore, R is finite-
dimensional and d(R) + d(N) = d(U) 4+ d(N) = d(V) by our first identity. 0

Corollary. If W is finite-dimensional and d(W) = d(V), then T is injective
if and only if it is surjective, so that in this case injectivity, surjectivity, and
bijectivity are all equivalent.

Proof. T is surjective if and only if R = W. But this is equivalent to d(R) =
d(W), and if d(W) = d(V), then.the theorem shows this is turn to be equivalent
to d(N) = 0, that is, to N = {0}. O

Theorem 2.5. If d(V) = n and d(W) = m, then Hom(V, W) is finite-
dimensional and its dimension is mn.

Proof. By Theorem 1.6, Hom(V, W) is isomorphic to W" which is the direct
sum of the n subspaces isomorphic to W under the injections 8; forz =1, ..., n.
The dimension of W" is therefore .7 m = mn by Lemma 2.2. 0

Another proof of Theorem 2.5 will be available in Section 4.

EXERCISES

2.1 Prove that if d(V) = n, then any spanning subset of n elements is a basis.
2.2 Prove that if - d(V) = n, then any independent subset of n elements is a basis.
2.3 Show that if d(V) = nand W is a subspace of the same dimension, then W = V.
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2.4 Prove by using dimensional identities that if f is a nonzero linear functional on
an n-dimensional space V, then its null space has dimension n — 1.

2.5 Prove by using dimensional identities that if f is a linear functional on a finite-
dimensional space V, and if « is a vector not in its null space N, then V = N @ Ra.

2.6 Given that N is an (n — 1)-dimensional subspace of an n-dimensional vector
space V, show that N is the null space of a linear functional.

2.7 Let X and Y be subspaces of a finite-dimensional vector space V', and suppose
that T in Hom(V, W) has null space N = X N Y. Show that T[X + Y] = T[X] ®
T(Y), and then deduce Theorem 2.3 from Lemma 2.2 and Theorem 2.4. This proof
still depends on the existence of a T having N = X N Y as its null space. Do we know
of any such T'?

2.8 Show that if 17 is finite-dimensional and S, T € Hom V, then

SoT = I = Tisinvertible.

Show also that T oS = I = T is invertible.

2.9 A subspace N of a vector space V has finite codimension n if the quotient space
V/N is finite-dimensional, with dimension n. Show that a subspace N has finite
codimension n if and only if N has a complementary subspace 3 of dimension n.
(Move a basis for V/N back into V.) Do not assume V to be finite-dimensional.

2.10 Show that if N1 and N2 are subspaces of a vector space V with finite codimen-
sions, then N = Nj N N2 has finite codimension and

cod(N) < cod(Ni1) + cod(Ng).

(Consider the mapping £+— < %1, £2> when £; is the coset of N, containing £.)

2.11 In the above exercise, suppose that cod(N1) = cod(N2), that is, d(V/N1) =
d(V/Ng). Prove that d(N1/N) = d(N2/N).

2.12 Given nonzero vectors 8 in V and f in V* such that f(8) # 0, show that some
scalar multiple of the mapping & +— f(£)8 is a projection. Prove that any projection
having a one-dimensional range arises in this way.

2.13 We know that the choice of an origin O in Euclide&&space E3 induces a
vector space structure in E3 (under the correspondence X +— 0X) and that this vector
space is three-dimensional. Show that a geometric plane through O becomes a two-
dimensional subspace.

2.14 An m-dimensional plane 3/ is a translate N -+ o of an m-dimensional subspace N.
Let {8:} T be any basis of N, and set a; = B; -+ ao. Show that M is exactly the set of
linear combinations

m m
> @iy suchthat > a; = 1.
=0 0

2.15 Show that Exercise 2.14 is a corollary of Exercise 4.14 of Chapter 1.

2.16 Show, conversely, that if a plane M is the affine span of m - 1 elements, then
its dimension is < m.

2.17 From the above two exercises concoct a direct definition of the dimension of an
affine subspace.
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2.18 Write a small essay suggested by the following definition. An (m - 1)-tuple
{a;} 7 is affinely independent if the conditions

m

D zi; =0 and dzi=0
0 0

together imply that
z; =10 for all <.

2.19 A polynomial on a vector space V is a real-valued function on V which can be
represented as a finite sum of finite products of linear functionals. Define the degree
of a polynomial; define a homogeneous polynomial of degree k. Show that the set of
homogeneous polynomials of degree k is a vector space Xj. ’
2.20 Continuing the above exercise, show that if k; < k2 < --- < ky, then the
vector spaces {X;,,.}IlV are independent subspaces of the vector space of all polynomials.
[Assume that a polynom'ial p(t) of areal variable can be the zero function only if all
its coefficients are 0. For any polynomial P on V consider the polynomials p,(t) =
P(ta).]

2.21 Let <a, 3> be a basis for the two-dimensional space V, and let <\, u > be the
corresponding coordinate projections (dual basis in V*). Show that every polynomial
on V “is a polynomial in the two variables A and p”.

2,22 Let <a,B> be a basis for a two-dimensional vector space V, and let <\, u>
be the corresponding coordinate projections (dual basis for V*). Show that

<2 N, p? >

is a basis for the vector space of homogeneous polynomials on V of degree 2. Similarly,
compute the dimension of the space of homogeneous polynomials of degree 3 on a
two-dimensional vector space.

2.23 Let V and W be two-dimensional vector spaces, and let F' be a mapping from
V to W. Using coordinate systems, define the notion of F being quadratic and then
show that it is independent of coordinate systems. Generalize the above exercise to
higher dimensions and also to higher degrees.

2.24 Now let F: V — W be a mapping between two-dimensional spaces such that
for any u,vE€ V and any I € W* I(F(tu + v)) is a quadratic function of ¢, that is, of
the form at? -+ bt + c¢. Show that F is quadratic according to your definition in the
above exercises.

3. THE DUAL SPACE

Although throughout this section all spaces will be assumed finite-dimensional,
many of the definitions and properties are valid for infinite-dimensional spaces
as well. But for such spaces there is a difference between purely algebraic
situations and situations in which algebra is mixed with hypotheses of continuity.
One of the blessings of finite dimensionality is the absence of this complication.
As the reader has probably surmised from the number of special linear functionals
we have met, particularly the coordinate functionals, the space Hom(V, R)
of all linear functionals on V plays a special role.
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Definition. The dual space (or conjugate space) V* of the vector space V is
the vector space Hom(V, R) of all linear mappings from V to R. Its elements
are called linear functionals.

We are going to see that in a certain sense V is in turn the dual space of
V* (V and (V*)* are naturally isomorphic), so that the two spaces are sym-
metrically related. We shall briefly study the notion of annihilation (orthogonal-
ity) which has its origins in this setting, and then see that there is a natural
isomorphism between Hom(V, W) and Hom(W*, V*). This gives the mathema-
tician a new tool to use in studying a linear transformation T in Hom(V, W);
the relationship between T and its image T* exposes new properties of 7' itself.

Dual bases. At the outset one naturally wonders how big a space V* is, and we
settle the question immediately.

Theorem 3.1. Let {8;}7 be an ordered basis for V, and let &; be the corre-
sponding jth coordinate functional on V: &;(¢) = z;, where £ = 2_7 x:8:.
Then {§;}} is an ordered basis for V*.

Proof. Let us first make the proof by a direct elementary calculation.

a) Independence. Suppose that X7 ¢;&; = 0, that is, 2°7 ¢;8;(¢) = 0 for
all £€ V. Taking ¢ = B8; and remembering that the coordinate n-tuple of 8;
is 8, we see that the above equation reduces to ¢; = 0, and this for all 7. There-
fore, {&;}" is independent.

b) Spanning. Tirst note that the basis expansion £ = 3 x;8; can be re-
written £ = Y &;(£)8;. Then for any N € V* we have \(§) = 2.7 L&:i(§),
where we have set I; = A(8;). That is, A = X [;&;. This shows that {&;} ] spans
V*, and, together with (a), that it is a basis. 0

Definition. The basis {&,} for V* is called the dual of the basis {8;} for V.

As usual, one of our fundamental isomorphisms is lurking behind all this,
but we shall leave its exposure to an exercise.

Corollary. d(V*) = d(V).

The three equations
F= Y &(H)B:;, A= L NBI&;  AN&) = X NB) - &i(8)

are worth looking at. The first two are symmetrically related, each presenting
the basis expansion of a vector with its coefficients computed by applying the
corresponding element of the dual basis to the vector. The third is symmetric
itself between ¢ and .

Since a finite-dimensional space V and its dual space V* have the same
dimension, they are of course isomorphic. In fact, each basis for V' defines an
isomorphism, for we have the associated coordinate isomorphism from V to R™,
the dual basis isomorphism from R™ to V*, and therefore the composite isomor-
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phism from V to V*. This isomorphism varies with the basis, however, and there
is in general no natural isomorphism between V and V*.

It is another matter with Cartesian space R™ because it has a standard
basis, and therefore a standard isomorphism with its dual space (R™)*. It is
not hard to see that this is the isomorphism a +— L,, where L,(x) = > 7 a;x;,
that we discussed in Section 1.6. We can therefore feel free to identify R™ with
(R™*, only keeping in mind that when we think of an n-tuple a as a linear
functional, we mean the functional L,(x) = 37 a:x;.

The second conjugate space. Despite the fact that ¥ and V* are not naturally
isomorphic in general, we shall now see that V ¢s naturally isomorphic to V** =
(V*)*

Theorem 3.2. The function w: V X V* — R defined by w(¢,f) = f(§) is
bilinear, and the mapping ¢ — «* from V to V** is a natural isomorphism.

Proof. In this context we generally set £** = wf, so that £** is defined by
£¥*(f) = f(¢) for all f € V*. The bilinearity of w should be clear, and Theorem
6.1 of Chapter 1 therefore applies. The reader might like to run through a
direct check of the linearity of & — £** starting with (c; &1 4 c2£2) **(f).

There still is the question of the injectivity of this mapping. If a # 0, we
can find f € V* so that f(a) # 0. One way is to make a the first vector of an
ordered basis and to take f as the first functional in the dual basis; then f(a) = 1.
Since a**(f) = f(a) # 0, we see in particular that «** 2 0. The mapping
£ — £** is thus injective, and it is then bijective by the corollary of Theorem
2.4. 0

If we think of V** as being naturally identified with V in this way, the two
spaces V and V* are symmetrically related to each other. Each is the dual of
the other. In the expression ‘f(£)’ we think of both symbols as variables and
then hold one or the other fixed for the two interpretations. In such a situation
we often use a more symmetric symbolism, such as (£, f), to indicate our inten-
tion to treat both symbols as variables.

Lemma 3.1. If {\;} is the basis in V* dual to the basis {e;} in V, then
{oF*} is the basis in V** dual to the basis {\;} in V*.

Proof. We have af*(\;) = \j(a;) = 8}, which shows that o* is the ith coordi-
nate projection. In case the reader has forgotten, the basis expansion f = >~ ¢;);
implies that of*(f) = f(a;) = (X ¢j\;) () = ¢;, so that of* is the mapping
S O

Annihilator subspaces. It is in this dual situation that orthogonality first
naturally appears. However, we shall save the term ‘orthogonal’ for the latter
context in which V and V* have been identified through a scalar product, and
shall speak here of the annihilator of a set rather than its orthogonal com-
plement.
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Definition. If A C V, the annihilator of A, A®, is the set of all fin V* such
that f(o) = O for all @ in 4. Similarly, if A C V*, then

A° = {a e V:f(a) = 0forall fe A}.
If we view V as (V*)*, the sccond definition is included in the first.

The following properties are easily established and will be left as exercises:

1) A°is always a subspace.

2) ACB= B°C A°.

3) (L(A))° = A°.

4) (AUB)° = A°n B°.

5) A C A

We now add one more crucial dimensional identity to those of the last
section.

Theorem 3.3. If W is a subspace of V, then d(V) = d(W) + d(W°).

Proof. Let {8;}7 be a basis for W, and extend it to a basis {8} for V. Let
{\;) 7 be the dual basis in V*. We claim that then {\;},+; is a basis for W°.
Iirst, if j > m, then X\;(8;) = 0 for e = 1,...,m, and so \; is in W*° by (3)
above. Thus Ami1,-.., A} CW° Now suppose that f€ W°, and let f =
Y i, ¢c;\; be its (dual) basis expansion. Then for each ¢ < m we have ¢; =
f(8:) = 0, since 8; € W and f € W°; therefore, f = 35,41 ¢;\;. Thus every fin
W is in the span of {\;}m+;. Altogether, we have shown that W° is the span of
N4y, as claimed. Then d(W°) + d(W) = (n — m) +m = n = d(V), and
we are done. [

Corollary. A°° = L(A) for every subset A C V.

Proof. Since (L(A))° = A°, we have d(L(4)) + d(A°) = d(V), by the
theorem. Also d(A°) + d(4°°) = d(V*) = d(V). Thus d(4°°) = d(L(4)),
and since L(A) C A°°, by (5) above, we have L(4) = A°°. 0

The adjoint of T. We shall now see that with every T in Hom(V, W) there is
naturally associated an element of Hom(W*, V*) which we call the adjoint of
T and designate T* One consequence of the intimate relationship between T
and T* is that the range of T* is exactly the annihilator of the null space of
T. Combined with our dimensional identities, this implies that the ranges of T
and T* have the same dimension. And later on, after we have established the
connection between matrix representations of 7' and T'¥, this turns into the very
mysterious fact that the dimension of the linear span of the row vectors of an m-
by-n matrix is the same as the dimension of the linear span of its column vectors,
which gives us our notion of the rank of a matrix. In Chapter 5 we shall study a
situation (Hilbert space) in which we are given a fixed fundamental isomorphism
between V and V*. If T is in Hom V, then of course T* is in Hom V*, and we
can use this isomorphism to “transfer” T* into Hom V. But now T' can be com-
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pared with its (transferred) adjoint T*, and they may be equal. That is, T may
be self-adjoint. It turns out that the self-adjoint transformations are “nice” ones,
as we shall see for ourselves in simple cases, and also, fortunately, that many
important linear maps arising from theoretical physics are self-adjoint.

If T € Hom(V, W) and I € W*, then of course o T € V*. Moreover, the
mapping ! — 1o T (T fixed) is a linear mapping from W* to V* by the corollary
to Theorem 3.3 of Chapter 1. This mapping is called the adjoint of T and is
designated T*. Thus T* € Hom(W*, V*) and T*(l) = lo T for all l € W*.

Theorem 3.4. The mapping 7'+ T* is an isomorphism from the vector
space Hom(V, W) to the vector space Hom(W*, V*). Also (T o 8)* =
S* o T* under the relevant hypotheses on domains and codomains.

Proof. Everything we have said above through the linearity of T +— T* is a
consequence of the bilinearity of w(l, T) = l o T. The map we have called T*
is simply w7, and the linearity of T'+— T* thus follows from Theorem 6.1 of
Chapter 1. Again the reader might benefit from a direct linearity check, begin-
ning with (¢;T'; + ¢c2T'2)*(1).

To see that T +— T'* is injective, we take any T # 0 and choose @ € V so
that T'(e) % 0. We then choose ! € W* so that I(T(a)) 5 0. Since I(T(a)) =
(T*()) («), we have verified that T* 5 0.

Next, if d(V) = m and d(W) = n, then also d(V*) = m and d(W*) = n ~
by the corollary of Theorem 3.1, and d(Hom(V, W)) = mn = d(Hom(W*, V*))
by Theorem 2.5. The injective map T +— T* is thus an isomorphism (by the
corollary of Theorem 2.4).

Finally, (T o S)*l =10 (To8S) = (loT) oS = S*(1o T) = S*(T*()) =
(8* o T*), so that (T o 8)* = S* o T*. [

The reader would probably guess that T** becomes identified with T under
the identification of V with V** This is so, and it is actually the reason for
calling the isomorphism £ — £** natural. We shall return to this question at the
end of the section. Meanwhile, we record an important elementary identity.

Theorem 3.5. (R(T*))° = N(T) and N(T*) = (R(T))".

Proof. The following statements are definitionally equivalent in pairs as they
occur:l € N(T*), T*() = 0,10 T = 0,1(T(¥)) = Oforall £ € V,l & (R(T))".
Therefore, N(T*) = (R(T))°. The other proof is similar and will be left to the
reader. [Start with « € N(T) and end with « € (R(T*))°.] O

The rank of a linear transformation is the dimension of its range space.
Corollary. The rank of T* is equal to the rank of T.

Proof. The dimensions of R(T) and (N(T))° are each d(V) — d(N(T)) by
Theorems 2.4 and 3.3, and the second is d(R(T*)) by the above theorem.
Therefore, d(R(T)) = d(R(T*)). O
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Dyads. Consider any T in Hom(V, W) whose range M is one-dimensional. If 8
is a nonzero vector in M, then x — 8 is a basis isomorphism 6: R — M and
6~'o T:V — R is a linear functional A€ V*. Then T = 6o X and T(§) =
N(&)B for all £. We write this as T = A(-)B, and call any such T a dyad.

Lemma 3.2. If T is the dyad A\(-)B, then T* is the dyad B**(-)A.

Proof. (T*D)(§) = (I o T)(§) = UT(¥) = IN&)B) = UBN(§), so that
T*() = (BN = B**(D)\, and T* = B**(-)A. O

*Natural isomorphisms again. We are now in a position to illustrate more
precisely the notion of a natural isomorphism. We saw above that among all the
isomorphisms from a finite-dimensional vector space V to its second dual, we
could single one out naturally, namely, the map ¢ — £** where £¥*(f) = f(§)
for all fin V*. Let us call this isomorphism ¢y. The technical meaning of the
word ‘natural’ pertains to the collection {¢y} of all these isomorphisms; we
found a way to choose one isomorphism ¢y for each space V, and the proof that
this is a “natural” choice lies in the smooth way the various ¢y’s relate to each
other. To see what we mean by this, consider two finite-dimensional spaces V
and W and a map T in Hom(V, W). Then T* is in Hom(W*, V*) and T** =
(T*)* is in Hom(V**, W**). The setting for the four maps T, T**, oy, and ¢w
can be displayed in a diagram as follows:

T

y—mW

‘Py
T**

V**

Py

W**

The diagram indicates two maps, ¢w o T and T** o ¢y, from V to W** and we
define the collection of isomorphisms {¢y} to be natural if these two maps are
always equal for any V, W and T. This is the condition that the two ways of
going around the diagram give the same result, i.e., that the diagram be com-
mautative.

Put another way, it is the condition that T' “become” T** when V is identi-
fied with V** (by ¢y) and W is identified with W** (by ow). We leave its proof
as an exercise. .

EXERCISES

3.1 Let 6 be an isomorphism from a vector space V to R". Show that the functionals
{m; o 6} form a basis for V*.

3.2 Show that the standard isomorphism from R" to (R™)* that we get by composing
the coordinate isomorphism for the standard basis for R" (the tdentity) with the dual
basis isomorphism for (R™* is just our friend a > I,, where lo(x) = > ! a;z;. (Show
that the dual basis isomorphism is a+— > 7 a:m;.)
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3.3 We know from Theorem 1.6 that a choice of a basis {8;} for V defines an isomor-
phism from W™ to Hom(V, W) for any vector space W. Apply this fact and Theorem
1.3 to obtain a basis in V*, and show that this basis is the dual basis of {8,}.

3.4 Prove the properties of A° that are listed in the text.

3.5 Find (a basis for) the annihilator of <1,1,1> in R3, (Use the isomorphism
of (R3)* with R3 to express the basis vectors as triples.)

3.6 Find (a basis for) the annihilator of {<1,1,1>, <1,2,3>} in R3,
3.7 Find (a basis for) the annihilator of {<1,1,1,1>, <1,2,3,4>} in R%.
3.8 Show thatif V = M @ N, then V* = M° ® N°.

3.9 Show that if M is any subspace of an n-dimensional vector space V and d(J) =
m, then M can be viewed as being the linear span of an independent subset of m
elements of V or as being the annihilator of (the intersection of the null spaces of) an
independent subset of n — m elements of V*.

3.10 If B = {f;}7{" is a finite collection of linear functionals on V (B C V*), then its
annihilator B° is simply the intersection N = [1} N; of the null spaces N; = N(f,)
of the functionals f;. State the dual of Theorem 3.3 in this context. That is, take W
as the linear span of the functionals f;, so that W C V* and W° C V. State the dual
of the corollary.

3.11 Show that the following theorem is a consequence of the corollary of Theorem 3.3.

Theorem. Let N be the intersection [} N; of the null spaces of a set {fi}} of
linear functionals on V, and suppose that g in V* is zero on N. Then g is a linear
combination of the set {f;}].

3.12 A corollary of Theorem 3.3 is that if W is a proper subspace of V, then there is
at least one nonzero linear functional f in V* such that f = 0 on W. Prove this fact
directly by elementary means. (You are allowed to construct a suitable basis.)

3.13 An m-tuple of linear functionals {f;}]" on a vector space V defines a linear
mapping a+—> < fi(a), ..., fm(@) > from V to R™. What theorem is being applied
here? Prove that the range of this linear mapping is the whole of R™ if and only if
{f}T is an independent set of functionals. [Hint: If the range is a proper subspace IV,
there is a nonzero m-tuple a such that 3.7 a;z; = 0 for all x € W.]

3.14 Continuing the above exercise, what is the null space N of the linear mapping
ar> < fi(a), ..., fm(a) >? If g is a linear functional which is zero on N, show that ¢
is a linear combination of the f;, now as a corollary of the above exercise and Theorem
4.3 of Chapter 1. (Assume the set {f;}T independent.)

3.15 Write out from scratch the proof that T* is linear [for a given T in Hom(V, W)].
Also prove directly that T+ T* is linear.

3.16 Prove the other half of Theorem 3.5.

3.17 Let 6; be the isomorphism a+— o** from V; to V** for ¢ = 1, 2, and suppose
given T in Hom(V1, V2). The loose statement T = T** means exactly that

T** = @50 Toafl or T**o0 0, = G20 T.

Prove this identity. As usual, do this by proving that it holds for each o in V7.
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3.18 Let 6: R® >V be a basis isomorphism. Prove that the adjoint 8* is the coordi-
nate isomorphism for the dual basis if (R™)* is identified with R™ in the natural way.
3.19 Let w be any bilinear functional on V X 1. Then the two associated linear
transformations are T:V — W* defined by (T(£€)®) = w(§ n) and S: 1 — V*
defined by (S(m)(§) = w(& ). Prove that S = T* if W is identified with W**.
3.20 Suppose that fin (R™* has coordinate m-tuple a [f(y) = 2T ay:] and that T
in Hom(R™®, R™) has matrix t = {¢;;}. Write out the explicit expression of the number
f(T(x)) in terms of all these coordinates. Rearrange the sum so that it appears in
the form

g(x) = 2 bas,
1

and then read off the formula for b in terms of a.

4. MATRICES

Matrices and linear transformations. The reader has alrecady learned something
about matrices and their relationship to linear transformations from Chapter 1;
we shall begin our more systematic discussion by reviewing this earlier material.
By popular conception a matrix is a rectangular array of numbers such as

tll t12 PR t]n
t21 t22 e tgn
tml tm2 L tmn

Note that the first index numbers the rows and the second index numbers the
columns. If there are m rows and n columns in the array, it is called an m-by-n
(m X m) matrix. This notion is inexact. A rectangular array is a way of picturing
a matrix, but a matrix is really a function, just as a sequence is a function. With
the notation @ = {1, ..., m}, the above matrix is a function assigning a num-
ber to every pair of integers <7, 7> in M X @. It is thus an element of the set
R™ % The addition of two m X n matrices is performed in the obvious place-
by-place way, and is merely the addition of two functions in R™ 7. the same is
true for scalar multiplication. The set of all m X n matrices is thus the vector
space R™<7 a Cartesian space with a rather fancy finite index set. We shall use
the customary index notation ¢;; for the value t(7, j) of the function t at <7, 5>,
and we shall also write {t;;} for t, just as we do for sequences and other indexed
collections.

The additional properties of matrices stem from the correspondence between
m X n matrices {¢;;} and transformations T' € Hom(R", R™).

The following theorem restates results from the first chapter. See Theorems
1.2, 1.3, and 6.2 of Chapter 1 and the discussion of the linear combination map
at the end of Section 1.6.
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Theorem 4.1. Let {t;;} be an m-by-n matrix, and let t’ be the m-tuple that
is its jth column forj = 1, ..., n. Then thereis aunique 7T in Hom(R", R™)
such that skeleton T = {t’}, i.e., such that T(8’) = ¢/ forallj. T is defined
as the linear combination mapping x — y = 37, z,;t’, and an equivalent
presentation of T is the collection of scalar equations

n
y,=2tijxj for 1=1,...,m.
j=1

Each T in Hom(R", R™) arises this way, and the bijection {t;;} — T from
R™™ to Hom(R™, R™) is a natural isomorphism.

The only additional remark called for here is that in identifying an m X n
matrix with an n-tuple of m-tuples, we are making use of one of the standard
identifications of duality (Section 0.10). We are e treating the natural isomorphism
between the really distinct spaces R™<* and (R™)™ as though it were the identity.

We can also relate T' to {¢;;} by way of the rows of {tij}. As above, taking
ith coordinates in the m-tuple equation y = 3_7-; x;t/, we get the equivalent
and familiar system of numerical (scalar) equations y; = X"_, t;,z; for
t=1,...,m. Now the mapping x — > %_, ¢;z; from R" to R is the most gen-
cral linear functional on R™. In the above numerical equations, therefore, we
have simply used the m rows of the matrix {¢;;} to present the m-tuple of linear
functionals on R™ which is equivalent to the single m-tuple-valued linear
mapping 7' in Hom(R", R™) by Theorem 3.6 of Chapter 1.

The choice of ordered bases for arbitrary finite-dimensional spaces V and W
allows us to transfer the above theorem to Hom(V, W). Since we are now going
to correlate a matrix t in R™<* with a transformation 7 in Hom(V, W), we shall
designate the transformation in Hom(R™, R™) discussed above by T.

Theorem 4.2. Let {o;}7 and {8;} T be ordered bases for the vector spaces V
and W, respectively. Tor each matrix {¢;} in R™% let T be the unique
element of Hom(V, W) such that T(e;) = X7, ti8; for j=1,... ) M.
Then the mapping {t;;} + T is an isomorphism from R™<" to Hom(V, W).

Proof. We simply combine the isomorphism {t;;} — T of the above theorem
with the isomorphism T +— T = ¢ o T o ™! from Hom(R", R™) to Hom(V, W),
where ¢ and ¢ are the two given basis isomorphisms. Then 7 is the transforma-
tion described in the theorem, for T(a;) = ¥(T(¢™(a)))) = ¢(T(5)) =
V(t) = ¥, t;;8;. The map {t:;5} = T is the composition of two isomorphisms
and so is an isomorphism. [

It is instructive to look at what we have just done in a slightly different way.
(Giiven the matrix {t;;}, let 7, be the vector in W whose coordinate m-tuple is the
Jth column t7 of the matrix, so that T; = 2721 t;;8:;. Then let T be the unique
clement of Hom(V, W) such that T(a;) = 7;forj = 1,...,n. Now we have
obtained T' from {¢;;} in the following two steps: T corresponds to the n-tuple
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{r;}7 under the isomorphism from Hom(V, W) to W™ given by Theorem 1.6,
and {7,}7 corresponds to the matrix {t;;} by extension of the coordinate isomor-
phism between W and R™ to its product isomorphism from W™ to (R™)".

Corollary. If y is the coordinate m-tuple of the vector 5 in W and x is the
coordinate n-tuple of ¢in V (with respect to the given bases), then n = T(§)
if and only if y; = 2.7 tijxj fore = 1,...,m.

Proof. We know that the scalar equations are equivalent to y = T(x), which is
the equation y = ¢! o T o ¢(x). The isomorphism ¢ converts this to the
equation n = T(¢). U

Our problem now is to discover the matrix analogues of relationship between
linear transformations. For transformations between the Cartesian spaces R"
this is a fairly direct, uncomplicated business, because, as we know, the matrix
here is a natural alter ego for the transformation. But when we leave the Car-
tesian spaces, a transformation 7 no longer has a matrix in any natural way, and
only acquires one when bases are chosen and a corresponding T on Cartesian
spaces is thereby obtained. All matrices now are determined with respect to
chosen bases, and all calculations are complicated by the necessary presence of
the basis and coordinate isomorphisms. There are two ways of handling this
situation. The first, which we shall follow in general, is to describe things
directly for the general space V and simply to accept the necessarily more compli-
cated statements involving bases and dual bases and the corresponding loss in
transparency. The other possibility is first to read off the answers for the
Cartesian spaces and then to transcribe them via coordinate isomorphisms.

Lemma 4.1. The matrix element #; can be obtained from T by the formula
tr; = (T (@),
where py is the kth element of the dual basis in W*.
Proof. ue(T(a;)) = me(Xrey tijBs) = Titijun(Bi) = Liti; 8 = tyj. O

In terms of Cartesian spaces, T(4%).is the jth column m-tuple t/ in the
matrix {t;;} of T, and t; is the kth coordinate of t’. From the point of view of
linear maps, the kth coordinate is obtained by applying the kth coordinate
projection i, so that tx; = mx(T(¢87)). Under the basis isomorphisms,
becomes ux, T becomes T, &' becomes a;, and the Cartesian identity becomes
the identity of the lemma.

The transpose. The transpose of the m X n matrix {t;} is the n X m matrix
{t¥} defined by % = t;; forall ¢, j. The rows of t* are of course the columns of t,
and conversely.

Theorem 4.3. The matrix of T* with respect to the dual bases in W* and
V* is the transpose of the matrix of T.
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Proof. If s is the matrix of 7%, then Lemmas 3.1 and 4.1 imply that
sji = o5 (T () = of*(uio T)
= (ui o T)(ej) = pi(T(e)) = t;5. O

Definition. The row space of the matrix {¢;;} € R™ 7 is the subspace of R™
spanned by the m row vectors. The column space is similarly the span of
the n column vectors in R™.

Corollary. The row and column spaces of a matrix have the same dimension.

Proof. If T is the element of Hom(R", R™) defined by T(6’) = t/, then the
set {t’}7 of column vectors in the matrix {¢;;} is the image under T of the stan-
dard basis of R", and so its span, which we have called the column space of the
matrix, is exactly the range of 7. In particular, the dimension of the column
space is d(R(T)) = rank T.

Since the matrix of 7'* is the transpose t* of the matrix t, we have, similarly,
that rank 7™ is the dimension of the column space of t*. But the column space
of t* is the row space of t, and the assertion of the corollary is thus reduced to
the identity rank 7* = rank 7, which is the corollary of Theorem 3.5. []

This common dimension is called the rank of the matrix.

Matrix products. If T € Hom(R", R™) and S € Hom(R™, RY), then of course
R = 8o T € Hom(R" R, and it certainly should be possible to calculate the
matrix r of B from the matrices s and t of S and T, respectively. To make this
computation, we set y = T'(x) and z = S(y), so that z = (S o T)(x) = R(x).
The equivalent scalar equations in terms of the matrices t and s are

n m
Yi= 2 tah and 2= D Sk,

h=1 i=1
s0 that
m n n m
2= D Ski 2 tintn = > (E Skitih> Zh.
i=1 k=1 h=1 \i—1
But zx = X5 s fork = 1,...,1 Taking x as &, we have

m
Tk; = Z Skitij for all k& and ]
'L.=1

We thus have found the formula for the matrix r of themap R = So T:x — z.
Of course, r is defined to be the product of the matrices s and t, and we write
r=s-torr = st.

Note that in order for the product st to be defined, the number of columns
in the left factor must equal the number of rows in the right factor. We get the
clement r; by going across the kth row of s and simultaneously down the jth
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column of t, multiplying corresponding elements as we go, and adding the
resulting products. This process is illustrated in Fig. 2.1. In terms of the scalar
product (x,y) = X7 zy: on R, we see that the element r1; in r = st is the
scalar product of the kth row of s and the jth column of t.

(I by m) X (m by n) = (! by m)
T
|
6
|

C n | ]

|

’ . | - | "
kth rowt-o©—————— - E;J ____________ fﬁj___

1
jth column

s . t = T

Fig. 2.1

Since we have defined the product of two matrices as the matrix of the
product of the corresponding transformations, i.e., so that the mapping T — {¢;;}
preserves products (S o T+ st), it follows from the general principle of
Theorem 4.1 of Chapter 1 that the algebraic laws satisfied by composition of
transformations will automatically hold for the product of matrices. For
example, we know without making an explicit computation that matrix multipli-
cation is associative. Then for square matrices we have the following theorem.

Theorem 4.4. The set M, of square n X n matrices is an algebra naturally
isomorphic to the algebra Hom(R™).

Proof. We already know that T — {t;;} is a natural linear isomorphism from
Hom(R™) to M, (Theorem 4.1), and we have defined the product of matrices
so that the mapping also preserves multiplication. The laws of algebra (for an
algebra) therefore follow for M, from our observation in Theorem 3.5 of Chapter
1 that they hold for Hom(R™). O

The identity I in Hom(R") takes the basis vector 87 into itself, and therefore
its matrix e has & for its jth column: e’ = &°. Thus e; = 8} = 1if ¢ =
and e;; = 8 = 0if 7 # j. That is, the matrix e is 1 along the main diagonal
(from upper left to lower right) and 0 elsewhere. Since I — e under the algebra
isomorphism T + t, we know that e is the identity for matrix multiplication.
Of course, we can check this directly: 37— tijejx = tir, and similarly for mul-
tiplying by e on the left. The symbol ‘e’ is ambiguous in that we have used it
to denote the identity in the space R™<" of square n X n matrices for any n.

Corollary. A square 7 X n matrix t has a multiplicative inverse if and only
if its rank is n.
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Proof. By the theorem there exists an s € M, such that st = ts = e if and
only if there exists an S € Hom(R") such that S T = T oS = I. But such
an S exists if and only if 7 is an isomorphism, and by the corollary to Theorem 2.4
this is equivalent to the dimension of the range of T being n. But this dimension
is the rank of t, and the argument is complete. [

A square matrix (or a transformation in Hom V) is said to be nonsingular
if it is invertible.

Theorem 4.5. If {o,)}7?, {8;}7, and {¥:}} are ordered bases for the vec-
tor spaces U, V, and W, respectively, and if T € Hom(U, V) and
S € Hom(V, W), then the matrix of S o T is the product of the matrices
of S and T (with respect to the given bases).

Proof. By definition the matrix of S o T'is the matrix of So T =Xx""o (S0 T) 0 ¢
in Hom(R™, R?), where ¢ and X are the given basis isomorphisms for U and W.
But if ¢ is the basis isomorphism for V, we have

ReT = (x"eSoy)o@  oTop) =80T,

and therefore its matrix is the product of the matrices of S and T by the defini-
tion of matrix multiplication. The latter are the matrices of S and T with respect
to the given bases. Putting these observations together, we have the theorem. [

There is a simple relationship between matrix products and transposition.

Theorem 4.6. If the matrix product st is defined, then so is t*s* and
t*s* = (st)™

Proof. A direct calculation is easy. We have

m m
(st = (st = 2 skitis = 2 st = (") .
io1 i1

Thus (st)* = t*s*, as asserted. [

This identity is clearly the matrix form of the transformation identity
(So T)* = T*o S* and it can be deduced from the latter identity if desired.

Cartesian vectors as matrices. We can view an n-tuple x = <2q,...,%,>
as being alternatively either an n X 1 matrix, in which case we call it a column
vector, or a 1 X nmatrix, in which case we call it a row vector. Of course, these
identifications are natural isomorphisms. The point of doing this is, in part, that
then the equations y; = 3_j-1 {;;x; say exactly that the column vector y is the
matrix product of t and the column vector x, that is, y = t- x. The linear map
T: R™ — R™ becomes left multiplication by the fixed matriz t when R™ is viewed as
the space of n X 1 column vectors. For this reason we shall take the column
veetor as the standard matrix interpretation of an n-tuple x; then x* is the
corresponding row vector.
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In particular, a linear functional F € (R™)* becomes left multiplication by
its matrix, which is of course 1 X n (F being from R” to R'), and therefore is
simply the row matrix interpretation of an n-tuple in R™. That is, in the natural
isomorphism a +— L, from R” to (R™)* where L,(x) = >} a;z;, the functional
L, can now be interpreted as left matrix multiplication by the n-tuple a viewed
as the row vector a*. The matrix product of the row vector (1 X n matrix) a*
and the column vector (n X 1 matrix) x is a 1 X 1 matrix a*- x, that is, a
number.

Let us now see what these observations say about 7*. The number L, (T (x))
is the 1 X 1 matrix a*tx. Since L,(7(x)) = (T*(L,))(x) by the definition of
T*, we sce that the functional T*(L,) is left multiplication by the row vector
a*t. Since the row vector form of L, is a* and the row vector form of T*(L,) is
a*t, this shows that when the functionals on R” are interpreted as row vectors,
T* becomes right multiplication by t. This only repeats something we already
know. If we take transposes to throw the row vectors into the standard column
vector form for n-tuples, it shows that 7* is left multiplication by t*, and so
gives another proof that the matrix of 7* is ¢*.

Change of basis. If p:x—> £ = 3 Tz,8;and 0:y — £ = Y} y,8 are two basis
isomorphisms for V, then A = 67! o ¢ is the isomorphism in Hom(R"™) which
takes the coordinate n-tuple x of a vector £ with respect to the basis {8;} into the
coordinate n-tuple y of the same vector with respect to the basis {8/}. The
isomorphism A is called the “change of coordinates” isomorphism. In terms
of the matrix a of A, we have y = ax, as above.

The change of coordinate map A = ! o ¢ should not be confused with the
similar looking 7 = 6 o ¢™'. The latter is a mapping on V, and is the element
of Hom(V') which takes each g; to g%

T/

R™ R™
@1 ¥
T
A -~ »
v w B
J (5 s 2
R* >*R"  Fig.2.2

We now want to see what happens to the matrix of a transformation
T € Hom(V, W) when we change bases in its domain and codomain spaces.
Suppose then that ¢, and ¢, are basis isomorphisms from R to V, that ¥, and y»
are basis isomorphisms from R™ to W, and that t’ and t”’ are the matrices of T
with respect to the first and second bases, respectively. That is, t’ is the matrix
of T = (Y1) 7' o T o ¢; € Hom(R", R™), and similarly for t”. The mapping
A = ¢3 "' o ¢y € Hom(R™) is the change of coordinates transformation for
Vi if x is the coordinate n-tuple of a vector & with respect to the first basis
[that is, £ = ¢1(x)], then A(x) is its coordinate n-tuple with respect to the second
basis. Similarly, let B be the change of coordinates map ¢3 ' o ¢, for W. The
diagram in Fig. 2.2 will help keep the various relationships of these spaces and



2.4 MATRICES 95

mappings straight. We say that the diagram is commutative, which means that
any two paths between two points represent the same map. By selecting various
pairs of paths, we can read off all the identities which hold for the nine maps
T, T', T", ¢1, 02, A, ¥1, ¥, B. For example, T’ can be obtained by going back-
ward along A, forward along 7, and then forward along B. That is, " =
Bo T o A™L. Since these “outside maps” are all maps of Cartesian spaces, we
can then read off the corresponding matrix identity

t” = bt'a™},

showing how the matrix of 7' with respect to the second pair of bases is obtained
from its matrix with respect to the first pair.

What we have actually done in reading off the above identity from the
diagram is to eliminate certain retraced steps in the longer path which the
definitions would give us. Thus from the definitions we get

BoT o A7 = (3 o) o (il eTop)o(pilogs) =93 oTopy=T"

In the above situation the domain and codomain spaces were different, and
the two basis changes were independent of each other. If W = V, so that
T € Hom(V), then of course we consider only one basis change and the formula
becomes

t'=a-t'-a’l

Now consider a linear functional F € V*. If £’ and f’ are its coordinate
n-tuples considered as column vectors (n X 1 matrices), then the matrices of F
with respect to the two bases are the row vectors (f')* and (f”)*, as we saw
earlier. Also, there is no change of basis in the range space since here W = R,
with its permanent natural basis vector 1. Therefore, b = e in the formula
t” = bt'a”!, and we have (f")* = (f')*a~! or

£ = (a_l) *

We want to compare this with the change of coordinates of a vector ¢ € V,
which, as we saw earlier, is given by

These changes go in the oppositive directions (with a transposition thrown in).
For reasons largely historical, functionals F in V* are called covariant vectors,
and since the matrix for a change of coordinates in V is the transpose of the
inverse of the matrix for the corresponding change of coordinates in V*, the
vectors £ in V are called contravariant vectors. These terms are used in classical
tensor analysis and differential geometry.

The isomorphism {t;;} — T, being from a Cartesian space R™ % is auto-
matically a basis isomorphism. Its basis in Hom(V, W) is the image under the
isomorphism of the standard basis in R™ ™, where the latter is the set of
Kronecker functions &' defined by &%(;,7) = 0 if <k,I>  <i,7> and
3*'(k, 1) = 1. (Remember that in R4, §* is that function such that 4°(b) = 0
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ifb # aand 6%(a) = 1. Here A = M X 7 and the elements a of A are ordered
pairs @ = <k, 1>.) The function &' is that matrix whose columns are all 0
except for the Ith, and the lth column is the m-tuple §*. The corresponding
transformation Dy, thus takes every basis vector o; to 0 except o; and takes o
to Br. That is, Dyi(a;) = 0ifj # [, and Dyi(ey) = Br. Again, Dy, takes the Ith
basis vector in V to the kth basis vector in W and takes the other basis vectors
inV tooO.

If £ = 3 @iy, it follows that Dy(§) = 8.

Since {Dyy) is the basis defined by the isomorphism {¢;;} — T, it follows
that {¢;;} is the coordinate set of 7' with respeet to this basis; it is the image of T
under the coordinate isomorphism. It is interesting to sce how this basis expan-
sion of T" automatically appears. We have

re =1 <Z 1l’jaj) = 2 al(ey) = 2 tijeiBi = 25 tiiDij(8),
2,7 )

j=1 j=1
so that
T = Z tiiDyj.
7,7

Our original discussion of the dual basis in V* was a special case of the
present situation. There we had Hom(V, R) = V* with the permanent stan-
dard basis 1 for R. The basis for V* corresponding to the basis {a;} for V7
therefore consists of those maps D; taking o; to 1 and «; to 0 for j ¢ I. Then
Di(§) = Di(X xjej) = a7, and Dy is the Ith coordinate functional &;.

Iinally, we note that the matrix expression of 7€ Hom(R", R™) is very
suggestive of the block decompositions of T' that we discussed carlier in Section
1.5. In the excrcises we shall ask the reader to show that in fact Th; = D

EXERCISES

4.1 Prove that if w: 17X T"— R is a bilincar functional on T~ and T:T — T°*
is the corresponding lincar transformation defined by (T(n))(€) = w(§, 1), then for
any basis {a;} for 1" the matrix ¢;; = w(a;, ;) is the matrix of 7.

4.2 Verify that the row and column rank of the following matrix are both 1:
—5 2 3
—10 4 6]
4.3 Show by a direct calculation that if the row rank of a 2 X 3 matrix is 1, then so
is its column rank.
4.4 Let { fg}? be a linearly dependent set of €2-functions (twice continuously differ-
entiable real-valued functions) on R. Show that the three triples <f;(x), f; (), fi (z) >

are dependent for any x. Prove thercfore that sin ¢, cos ¢, and ¢ are linearly indepen-
dent. (Compute the derivative triples for a well-chosen z.)
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4.5 Compute

5 —2 3 1 s

4 1 2 —3|Xx
16 —1 4 8.0
4 2

4.6 Compute

—
S o

b d —b
X .
d] [—c aJ
From your answer give a necessary and sufficient condition for
a b]?
c d

4.7 A matrix a is idempotent if a> = a. Find a basis for the vector space R??2 of
all 2 X 2 matrices consisting entirely of idempotents.

to exist.

4.8 DBy a direct calculation show that

is invertible and find its inverse.

4.9 Show by explicitly solving the equation

a b RE: y| |1 0

c d z w 0 1
that the matrix on the left is invertible if and only if (the determinant) ad — bc is not
zero.

4,10 Find a nonzero 2 X 2 matrix

whose square is zero.

4,11 Find all 2 X 2 matrices whose squares are zero.

4.12 Prove by computing matrix products that matrix multiplication is associative.
4.13 Similarly, prove directly the distributive law, (r +s) -t =r-t+s-t.

4.14 Show that left matrix multiplication by a fixed r in R™<7 is a linear transforma-
tion from R™® to R™<?. What theorem in Chapter 1 does this mirror?

4.15 Show that the rank of a product of two matrices is at most the minimum of their
ranks. (Remember that the rank of a matrix is the dimension of the range space of its
associated 7T'.)

4.16 Letabeanm X n matrix, and let bbe n X m. If m > n, show that a - b cannot
be the identity e (m X m).
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4.17 Let Z be the subset of 2 X 2 matrices of the form

Y

Prove that Z is a subalgebra of R2¥2 (that is, Z is closed under addition, scalar multipli-
cation, and matrix multiplication). Show that in fact Z is isomorphic to the complex
number system.

4.18 A matrix (necessarily square) which is equal to its transpose is said to be sym-
melric. As a square array it is symmetric about the main diagonal. Show that for any
m X n matrix t the product t - t* is meaningful and symmetric.

4.19 Show that if s and t are symmetric n X n matrices, and if they commute, then
s - tis symmetric. (Do not try to answer this by writing out matrix produets.) Show
conversely that if s, t, and s - t are all symmetric, then s and t commute.

4.20 Suppose that T in Hom R?2 has a symmetric matrix and that T is not of the
form cI. Show that T has exactly two eigenvectors (up to scalar multiples). What
does the matrix of T become with respect to the “eigenbasis” for R2 consisting of these
two eigenvectors?

4.21 Show that the symmetric 2 X 2 matrix t has a symmetric square root s (s = t)
if and only if its eigenvalues are nonnegative. (Assume the above exercise.)

4.22 Suppose that t is a 2 X 2 matrix such that t* = t—1. Show that t has one of
the forms
a b a b
—b a]’ b —al’
where a2+ b2 = 1.

4.23 Prove that multiplication by the above t is a LEuclidean isometry. That is,
show that if y = t - x, where xand y € R?, then ||z| = [jy|, where |jz|| = (2] -+ 23)1/2,

4.24 Let {Dyj} be the basis for Hom(V, W) defined in the text. Taking 1" = V,
show that these operators satisfy the very important multiplication rules

Dijo Dy =0 if j#rk,
Dito Dy = Da.

4.25 Keeping the above identities in mind, show that if I ¢ m, then there are trans-
formations S and 7 in Hom V such that

SoT —To8 = Dy
Also find S and T such that
SeT —To8 = Dy — Dy

4.26 Given T in Hom R", we know from Chapter 1 that T = X, ; Ti;, where T;; =
P;,TP;and P; = 6.m;. Now we also have

T = Z tx1Dy1.
kl

Show from the definition of D;; in the text that P;D;;P; = D;; and that P;DuP; = 0
if either 7 # k or j # . Conclude that T;; = t;;D,;.
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5. TRACE AND DETERMINANT

Our aim in this short section is to acquaint the reader with two very special
real-valued functions on Hom V and to describe some of their properties.

Theorem 5.1. If V is an n-dimensional vector space, there is exactly one
linear functional X on the vector space Hom(V) with the property that
MS o T) = N(T o S) forall S, T in Hom (V) and normalized so that \(I) = n.
If a basis is chosen for V and the corresponding matrix of 7' is {t;;}, then
MT) = Y%, t;;, the sum of the elements on the main diagonal.

Proof. If we choose a basis and define M(T) as 27 t;;, then it is clear that M is a
linear functional on Hom(V) and that A(I) = n. Moreover,

MSoT) =2 (Z 'S'ijtji) = 3 sitii = 2 tissij = MT ° S).
)

i=1 \j=1 2,7=1

That is, each basis for V gives us a functional A in (Hom V) * such that N\(So T) =
MT o 8),\(I) = n,and M(T') = X t;; for the matrix representation of that basis.

Now suppose that u is any element of (Hom(V))* such that u(S o T) =
w(T o 8) and u(I) = n. If we choose a basis for V and use the isomorphism
9: {t;;} — T from R™” to Hom V, we have a functional » = p o 6 on R™™
(v = 6*u) such that v(st) = »(ts) and v(e) = n. By Theorem 4.1 (or 3.1) v is
given by a matrix ¢, »(t) = 2.7, ¢iitij, and the equation v(st — ts) = 0
becomes X7 k=1 Cij(Siktk; — Sjktrs) = O.

We are going to leave it as an exercise for the reader to show that if [ # m,
then very simple special matrices s and t can be chosen so that this sum reduces
to ci, = 0, and, by a different choice, to ¢c;i — ¢mm = 0.

Together with the requirement that v(e) = n, this implies that ¢;, = 0 for
l# mand cpm = 1form=1,...,n That is, »(t) = 27 tmm, and v is the
X of the basis being used. Altogether this shows that there is a unique A in
‘(Hom V)* such that A\(S o T) = X(T o S) forall Sand T and A\(I) = =, and that
M(T) has the diagonal evaluation as }_ ¢;; in every basis. 0

This unique X is called the trace functional, and N(T) is the trace of T. It is
usually designated tr(T).

The determinant function A(T) on Hom V is much more complicated, and
we shall not prove that it exists until Chapter 7. Its geometric meaning is as
follows. Tirst, |A(T)| is the factor by which T multiplies volumes. More pre-
cisely, if we define a “volume” v for subsets of V by choosing a basis and using
the coordinate correspondence to transfer to V the “natural” volume on R”,
then, for any figure A C V, v(T[A]) = |A(T)| - v(4). This will be spelled out in
Chapter 8. Second, A(T) is positive or negative according as T preserves or
reverses orientation, which again is a sophisticated notion to be explained later.
For the moment we shall list properties of A(T') that are related to this geometric
interpretation, and we give a sufficient number to show the uniqueness of A.
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v T(A]

A4 7
M

Fig. 2.3

We assume that for each finite-dimensional vector space V there is a func-
tion A (or Ay when there is any question about domain) from Hom(V) to R such
that the following are true:

a) A(Seo T) = A(S) A(T) for any S, T in Hom(V).

b) If a subspace N of V is invariant under 7' and T is the identity on N and

on V/N (that is, T[a] = @ for each coset @ = a + N of N), then
A(T) = 1. Such a T is a shearing of V along the planes parallel to N.
In two dimensions it can be pictured as in Fig. 2.3.

¢) If Visadirect sum V = M + N of T-invariant subspaces M and N, and
fR=T[Mand S= T [ N, then A(T) = A(R) A(S). More exactly,
Ay(T) = Am(R) An(S).

d) If V is one-dimensional, so that any 7 in Hom (V') is simply multiplication
by a constant c¢7, then A(T) is that constant cr.

e) If V is two-dimensional and T interchanges a pair of independeﬁt vectors,
then A(T) = —1. This is clearly a pure orientation-changing property.

The fact that A is uniquely determined by these properties will follow from
our discussion in the next section, which will also give us a process for calculating
A. This process is efficient for dimensions greater than two, but for 7 in Hom(R?)
there is a simple formula for A(T") which every student should know by heart.

Theorem 5.2. If T is in Hom(R?) and {t;;} is its 2 X 2 matrix, then
A(T) = tiitae — tiator-

This is a special case of a general formula, which we shall derive in Chapter 7,
that expresses A(T) as a sum of n! terms, each term being a product of n numbers
from the matrix of 7. This formula is too complicated to be useful in computa-
tions for large n, but for n = 3 it is about as easy to use as our row-reduction
calculation in the next section, and for n = 2 it becomes the above simple
expression. There are a few more properties of A with which every student
should be familiar. They will all be proved in Chapter 7.

Theorem 5.3. If T'isin Hom V, then A(T*) = A(T). If §is an isomorphism
from V to Wand S = 6o T o 67, then A(S) = A(T).
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Theorem 5.4. The transformation 7 is nonsingular (invertible) if and only
if A(T) # 0. '

In the next theorem we consider 7 in Hom R", and we want to think of A(T)
as a function of the matrix t of 7. To emphasize this we shall use the notation
D(t) = A(T).

Theorem 5.5 (Cramer’s rule). Given an n X n matrix t and an n-tuple y,

let t |; y be the matrix obtained by replacing the jth column of t by y. Then

y=t-x = D(t)z; = D(t|;y)

for all j.

If t is nonsingular [D(t) # 0], this becomes an explicit formuala for the

solution x of the equation y = t- x; it is theoretically important even in those
cases when it is not useful in practice (large n).

EXERCISES

5.1 Finish Theorem 5.1 by applying Exercise 4.25.

5.2 It follows from our discussion of trace that tr(T) = D t,; is independent of the
basis. Show that this fact follows directly from

tr(t-s) = tr(s- t)

and the change of basis formula in the preceding section.

5.3 Show by direct computation that the function d(t) = t11t22 — ti12t21 satisfies
d(s-t) = d(s) d(t) (where s and t are 2 X 2 matrices). Conclude that if V is two-
dimensional and d(T) is defined for T in Hom V by choosing a basis and setting
d(T) = d(t), then d(T) is actually independent of the basis.

5.4 Continuing the above exercise, show that d(T) = A(T) in any of the following
‘cases:

1) T interchanges two independent vectors.

!

sShow next that if 7 has none of the above forms, then T = R o S, where S is of type
(1) and R is of type (2) or (3). [Hint: Suppose T(a) = B, with & and 8 independent.
l.et S interchange o and (3, and consider R = T o S.] Show finally that d(T) = A(T)
for all 7in Hom V. (V is two-dimensional.)

5.5 If t is symmetric and 2 X 2, show that there is a 2 X 2 matrix s such that
#* = s71 A(s) = 1, and sts~! is diagonal.

2) T has two eigenvectors.
3) T has a matrix of the form

5.6 Assuming Theorem 5.2, verify Theorem 5.4 for the 2 X 2 case.
5.7 Assuming Theorem 5.2, verify Theorem 5.5 for the 2 X 2 case.
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5.8 In this exercise we suppose that the reader remembers what a continuous func-
tion of a real variable is. Suppose that the 2 X 2 matrix function

alt) = [all(t) alz(t)]
az1(t) a22(t)

has continuous components a;;(t) for ¢t € (0, 1), and suppose that a(t) is nonsingular
for every ¢t. Show that the solution y(f) to the linear equation a(t) - y(t) = x(f) has
continuous components y1(¢) and y2(¢) if the functions z1(¢) and z2(¢) are continuous.

5.9 A homogeneous second-order linear differential equation is an equation of the

form
v+ a1y’ + aoy = 0,
where a; = a1(t) and ap = ao(t) are continuous functions. A solution is a @2-function

f (i.e., a twice continuously differentiable function) such that f”(¢) + a1(t)f'(t) +
ao(®)f(t) = 0. Suppose that f and g are @2-functions [on (0, 1), say] such that the

2 X 2 matrix
[ f(® g(®) ]
f(®) g’

is always nonsingular. Show that there is a homogeneous second-order differential
equation of which they are both solutions.

5.10 In the above exercise show that the space of all solutions is a two-dimensional
vector space. That is, show that if A(f) is any third solution, then 4 is a linear combi-
nation of f and g¢.

5.11 By a “linear motion” of the Cartesian plane R? into itself we shall mean a con-
tinuous map x +— t(z) from [0, 1] to the set of 2 X 2 nonsingular matrices such that
t(0) = e. Show that A(t(1)) > 0.

5.12 Show that if A(s) = 1, then there is a linear motion whose final matrix t(1) is s.

6. MATRIX COMPUTATIONS

The computational process by which the reader learned to solve systems of
linear equations in secondary school algebra was undoubtedly “elimination by
successive substitutions”. The first equation is solved for the first unknown, and
the solution expression is substituted for the first unknown in the remaining
equations, thereby eliminating the first unknown from the remaining equations.
Next, the second equation is solved for the second unknown, and this unknown is
then eliminated from the remaining equations. In this way the unknowns are
eliminated one at a time, and a solution is obtained.
This same procedure also solves the following additional problems:

1) to obtain an explicit basis for the linear span of a set of m vectors in R";
therefore, in particular,

2) to find the dimension of such a subspace;
3) to compute the determinant of an m X m matrix;
4) to compute the inverse of an invertible m X m matrix.
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In this section we shall briefly study this process and the solutions to these
problems.

We start by noting that the kinds of changes we are going to make on a
finite sequence of vectors do not alter its span.

Lemma 6.1. Let {a;} T be any m-tuple of vectors in a vector space, and let
{8:}T be obtained from {a;}T by any one of the following elementary
operations:

1) interchanging two vectors;
2) multiplying some «; by a nonzero scalar;
3) replacing a; by a; — za; for some j # ¢ and some z € R.
Then
L({B:}T) = L({ei} D).

Proof. If af = a; — zaj, then a; = «; + za;. Thus if {8;}7 is obtained from
{a;} T by one operation of type (3), then {a;}7 can be obtained from {8;}™ by
one operation of type (3). In particular, each sequence is in the linear span of
the other, and the two linear spans are therefore the same.

Similarly, each of the other operations can be undone by one of the same
type, and the linear spans are unchanged. 0

When we perform these operations on the sequence of 70w vectors in a
matrix, we call them elementary row operations.

We define the order of an n-tuple x = <z,,...,2,> as the index of the
first nonzero entry. Thus if 2; = 0 for ¢ < j and x; # 0, then the order of x
is J. The order of <0,0,0,2, —1,0> is 4.

Let {a;;} be an m X n matrix, let V be its row space, and let n; < ny <
-+ - < my be the integers that occur as orders of nonzero vectors in V. We are
going to construct a basis for V consisting of & elements having exactly the
-above set of orders.

If every nonzero row in {a;;} has order >p, then every nonzero vector x in
V has order > p, since x is a linear combination of these row vectors. Since some
vector in V' has the minimal order ny, it follows that some row in {a,;} has order
n;. Wemove such a row to the top by interchanging two rows. We then multiply
this row x by a constant, so that its first nonzero entry x,, is 1. Let a',..., a"
be the row vectors that we now have, so that a' has order n; and a}, = 1. We
next subtract multiples of a' from each of the other rows in such a way that the
new ith row has 0 as its n;-coordinate. Specifically, we replace a’by a® — ., - a'
for 7 > 1. The matrix that we thus obtain has the property that its jth column
is the zero m-tuple for each j < n, and its n;th column is ' in R™. Its first row
has order n;, and every other row has order >n;. Its row space is still V. We
again call it a.

Now let x = 3T c;a’ be a vector in V with order n,. Then ¢; = 0, for if
¢y # 0, then the order of x is n;. Thus x is a linear combination of the second
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to the mth rows, and, just as in the first case, one of these rows must therefore
have order n,.

We now repeat the above process all over again, keying now on this vector.
We bring it to the second row, make its np-coordinate 1, and subtract multiples
of it from all the other rows (including the first), so that the resulting matrix
has 82 for its noth column. Next we find a row with order nz, bring it to the
third row, and make the nsth column &3, etc.

We exhibit this process below for one 3 X 4 matrix. This example is dis-
honest in that it has been chosen so that fractions will not oceur through the
application of (2). The reader will not be that lucky when he tries his hand.
Our defense is that by keeping the matrices simple we make the process itself
more apparent.

o —1 2 3] _ [z 2 4 -2 __ 1 1 2 —I
2 2 4 =2/ q) |0 -1 2 3 @ |0 -1 2 3
2 4 0 3 2 4 0 3 2 4 0 3]
o2 1 12 ]
3) |0 —1 2 31 @ |0 1 —2 -3
0 2 —4 5 0 2 —4 5
ot 4 2] 10 4 2]
3) |0 1 —2 =31 @) |0 1 -2 -3
0 0 0 11 0 0 0 1]

T L A S

@ [0 1 -2 o0

0 0 o0 1]

Note that from the final matrix we can tell that the orders in the row space
are 1,2, and 4, whereas the original matrix only displays the orders 1 and 2.

We end up with an m X n matrix having the same row space V and the
following special structure:

1) For 1 < j < k the jth row has order n;.

2) If k < m, the remaining m — k rows are zero (since a nonzero row would
have order >n;, a contradiction).

3) The n;th column is &

It follows that any linear combination of the first k rows with coefficients
¢1, ..., C has ¢; in the njth place, and hence cannot be zero unless all the
¢;’s are zero. These k rows thus form a basis for V, solving problems (1) and (2).

Our final matrix is said to be in row-reduced echelon form. It can be shown to
be uniquely determined by the space V and the above requirements relating its
rows to the orders of the elements of V. Its rows form the canonical basis of V.
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A typical row-reduced echelon matrix is shown in Fig. 2.4. This matrix is 8 X 11,
its orders are 1, 4, 5, 7, 10, and its row space has dimension 5. It is entirely 0
below the broken line. The dashes in the first five lines represent arbitrary num-
bers, but any change in these remaining entries changes the spanned space V.

We shall now look for the significance of the row-reduction operations from
the point of view of general linear theory. In this discussion it will be convenient
to use the fact from Section 4 that if an n-tuplet in R™ is viewed as an n X 1
matrix (i.e.,, as a column vector), then the system of linear equations y; =
21 a5zt = 1,...,m, expresses exactly the single matrix equationy = a- x.
Thus the associated linear transformation A € Hom(R", R™) is now viewed as
being simply multiplication by the matrix a; y = A(x) ifand only if y = a - x.

1--00-0--0-
10 -0- -0 -
L
1 -0--0 -
L——q
11 --0 -
L———1

L 1 Fig. 2.4

We first note that each of our elementary row operations on an m X n
matrix a is equivalent to premultiplication by a corresponding m X m elementary
matrix u. Supposing for the moment that this is so, we can find out what u
is by using the m X m identity matrix e. Since u-a = (u-e)- a, we see that
the result of performing the operation on the matrix a can also be obtained by
premultiplying a by the matrix u - e. That is, 7f the elementary operation can
be obtained as matrix multiplication by u, then the multiplier is u - e. This
argument suggests that we should perform the operation on e and then see if
premultiplying a by the resulting matrix performs the operation on a.

If the elementary operation is interchanging the 7¢th and j,th rows, then
performing it on e gives the matrix a with ug, = 1 for k # 45 and k = j,,
Uigjo = Ujgip = 1 and ug; = 0 for all other indices. Moreover, examination of
the sums defining the elements of the product matrix u - a will show that pre-
multiplying by this u does just interchange the 7¢th and joth rows of any
m X n matrix a.

In the same way, multiplying the ¢oth row of a by ¢ is equivalent to pre-
multiplying by the matrix u which is the same as e except that u,, = c.
I'inally, multiplying the joth row by x and adding it to the 74th row is equivalent
to premultiplying by the matrix u which is the identity e except that w;;, is =
instead of 0.
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These three elementary matrices are indicated schematically in Fig. 2.5.
Each has the value 1 on the main diagonal and 0 off the main diagonal except as
indicated.

— ) Jo - — 7 - — Jo T

AN 1\

) G\l o to
Jo 1 "\
- - L — L p—

Fig. 2.5

These elementary matrices u are all nonsingular (invertible). The row inter-
change matrix is its own inverse. The inverse of multiplying the jth row by ¢
is multiplying the same row by 1/c. And the inverse of adding ¢ times the jth
row to the 7th row is adding —c times the jth row to the <th row.

Ifu', u? ..., u? is a sequence of elementary matrices, and if

b=u?-u?'.....-ul,

then b - a is the matrix obtained from a by performing the corresponding
sequence of elementary row operations on a. If ul, ..., u? is a sequence which
row reduces a, then r = b - a is the resulting row-reduced echelon matrix.

Now suppose that a is a square m X m matrix and is nonsingular (invertible).
Thus the dimension of the row space is m, and hence there are m different orders
ny,...,n; That is, k = m, and since 1 < ny < ng < -+ < Ny = m, we
must also have n; = 7, ¢ = 1, ..., m. Remembering that the n;th column in r is
8% we see that now the sth column in r is §* and therefore that r is simply the
identity matrix e. Thus b-a = e and b is the inverse of a.

Let us find the inverse of

i
3 4

by this procedure. The row-reducing sequence is

Lw el el 9

The corresponding elementary matrices are

B |
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The inverse is therefore the product

| | R o PR R g

Check it if you are in doubt.

Finally, since b - € = b, we see that we get b from e by applying the same
row operations (gathered together as premultiplication by b) that we used to
reduce a to echelon form. This is probably the best way of computing the inverse
of a matrix. To keep track of the operations, we can place e to the right of a to
form a single m X 2m matrix a | e, and then row reduce it. In echelon form it
will then be the m X 2m matrix e | b, and we can read off the inverse b of the
original matrix a.

Let us recompute the inverse of

F

by this method. We row reduce

getting

1 2011 0 — 1 2| 1 o

3 4]0 1] ® o —2|—3 1
— 1 o] -2 1
DN P

from which we read off the inverse to be

[_2 1]
3 _1]°
2 2

Finally we consider the problem of computing the determinant of a square
m X m matrix. We use {wo elementary operations (one modified) as follows:

—_—
~
Ml
~

|
[«
Lol V]

Njed =t

[N

| E—

1’) interchanging two rows and simultaneously changing the sign of one of
them;

2) as before, replacing some row «; by a; — ra; for some j # i.

When applied to the rows of a square matriz, these operations leave the determi-
nant unchanged. This follows from the properties of determinants listed in
Section 5, and its proof will be left as an exercise. Moreover, these properties
will be trivial consequences of our definition of a determinant in Chapter 7.

Consider, then, a square m X m matrix {a;;}. We interchange the first
and pth rows to bring a row of minimal order n; to the top, and change the sign
of the row being moved down (the first row here). We do not make the leading
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coefficient of the new first row 1; this elementary operation is not being used
now. We do subtract multiples of the first row from the remaining rows, in order
to make all the remaining entries in the n;th column 0. The n;th column is now
¢18', where ¢, is the leading coefficient in the first row. And the new matrix has
the same determinant as the original matrix.

We continue as before, subject to the above modifications. We change the
sign of a row moved downward in an interchange, we do not make leading
coefficients 1, and we do clear out the n;th column so that it becomes c;6",
where ¢; is the leading coefficient of the jth row (1 < j < k). As before, the
remaining m — k rows are 0 (if k < m). Let us call this resulting matrix
semireduced. Note that we can find the corresponding reduced echelon matrix
from it by k applications of (2); we simply multiply the jth row by 1/¢; for
j=1,...,k Ifsis the semireduced matrix which we obtained from a using
(1’) and (3), then we shall show below that its determinant, and therefore the
determinant of a also, is the product of the entries on the main diagonal: TIi-; .
Recapitulating, we can compute the determinant of a square matrix a by using
the operations (1’) and (3) to change a to a semireduced matrix s, and then
taking the product of the numbers on the main diagonal of s.

If we apply this process to
1 2
3 4

1 2] — |1 21 —= |1 0

[3 4] ®) [0 —2] ®) [0 —2]’
and the determinant is 1 - (—2) = —2. Our 2 X 2 determinant formula, applied
to

we get

gives1-4 —2:3=4—6= —2.

If the original matrix {a;;} is nonsingular, so that k = m and n; = ¢ for
i=1,...,m, then the jth column in the semireduced matrix is ¢;6%, so that
sjj = ¢;, and we are claiming that the determinant is the product T/, ¢; of the
leading coefficients.

To see this, note that if T is the transformation in Hom(R") corresponding
to our semireduced matrix, then T'(87) = c;87, so that R™ is the direct sum of n
T-invariant, one-dimensional subspaces, on the jth of which 7' is multiplication
by ¢;. It follows from (c) and (d) of our list of determinant properties that
A(T) = 1% ¢; = 117 sj;- This is nonzero.

On the other hand, if {a;;} is singular, so that k = d(V) < m, then the mth
row in the semireduced matrix is 0 and, in particular, sy, = 0. The product
I1: si; is thus zero. Now, without altering the main diagonal, we can subtract
multiples of the columns containing the leading row entries (the columns with
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indices n;) to make the mth column a zero column. This process is equivalent
to postmultiplying by elementary matrices of type (2) and, therefore, again
leaves the determinant unchanged. But now the transformation S of this matrix
leaves R™~! invariant (as the span of &',..., 8! in R™) and takes 8™ to 0,
so that A(S) = 0 by (c) in the list of determinant properties. So again the
determinant is the product of the entries on the main diagonal of the semi-
reduced matrix, zero in this case.

We have also found that a matrix is nonsingular (invertible) if and only if its
determinant is nonzero.

EXERCISES

6.1 Compute the canonical basis of the row space of

1 2 1 2]
3 2 3 2|
—1 -3 4
0 4 —1 —3]
6.2 Do the same for
1 2 4
1 2 3
—1 —2 0 2

NN

6.3 Do the same for the above matrix but with a different first choice.
6.4 Calculate the inverse of

1 2 3
2 3 4
3 4 7

by row reduction. Check your answer by multiplication.
6.5 Row reduce

1 2 3
2 3 4
3 4 7

computed in the above exercise? Explain.

6.6 Check whether or not <1,1,1,1>, <1,23,4>, <0,1,0,1>, and
<4, 3,2, 1> are linearly independent by row reducing. Part of one of the row-reduc-
ing operations is unnecessary for this check. What is it?
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6.7 Let us call a k-tuple of vectors {a;}% in R” canonical if the k X n matrix a with
a; as its ith row for all 7 is in row-reduced echelon form. Supposing that an n-tuple &
is in the row space of a, we can read off what its coordinates are with respect to the
above canonical basis. What are they? How then can we check whether or not an
arbitrary n-tuple £ is in the row space?

6.8 Use the device of row reducing, as suggested in the above exercise, to determine
whether or not 6! = <1,0,0,0> is in the span of <1,1,1,1>, <1,2,3,4>, and
<2,0,1, —1>. Do the same for <1, 2,1, 2>, and also for <1, 1,0, 4>,

6.9 Supposing that a = 0, show that

o]

is invertible if and only if ad — be #£ 0 by reducing the matrix to echelon form.

6.10 Let a be an m X n matrix, and let u be the nonsingular matrix that row reduces
a, so that r = u - ais the row-reduced echelon matrix obtained from a. Suppose that r
has m — k > 0 zero rows at the bottom (the kth row being nonzero). Show that the
bottom m — k rows of u span the annihilator (range A)° of the range of A. That is,
y = ax for some x if and only if "
Z cyi =0
1

for each m-tuple ¢ in the bottom m — k rows of u. [Hint: The bottom row of r is
obtained by applying the bottom row of u to the columns of a.]

6.11 Remember that we find the row-reducing matrix u by applying to the m X m
identity matrix e the row operations that reduce a to r. That is, we row reduce the
m X (n -+ m) juxtaposition matrix a|e to r| u. Assuming the result stated in the
above exercise, find the range of A € Hom(R3) as the null space of a functional if the
matrix of A is

(1 2 3]
2 3 41.
[ 3 5 7]
6.12 Similarly, find the range of A if the matrix of A is
[1 1 1]
2 0 1
0 2 1|
| 4 2 3]

6.13 Let a be an m X n matrix, and let a be row reduced to r. Let A and R be the
corresponding operators in Hom(R", R™) [so that A(x) = a - x]. Show that 4 and R
have the same null space and that A* and R* have the same range space.
6.14 Show that solving a system of m linear equations in n unknowns is equivalent
to solving a matrix equation

k = tx
for the n-tuple x, given the m X n matrix t and the m-tuple k. Let T € Hom(R", R™)
be multiplication by t. Review the possibilities for a solution from our general linear
theory for T (range, null space, affine subspace).
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6.15 Let b = ¢|d be the m X (n+ p) matrix obtained by juxtaposing the m X n
matrix ¢ and the m X p matrix d. If a is an I X m matrix, show that

a-b = ac|ad

State the similar result concerning the expression of b as the juxtaposition of n column
m-tuples. State the corresponding theorem for the “distributivity” of right multipli-
cation over juxtaposition.

6.16 Let a be an m X n matrix and k a column m-tuple. Let b | 1be the m X (n+ 1)
matrix obtained from the m X (n- 1) juxtaposition matrix a | k by row reduction.
Show that a - x = k if and only if b- x = 1. Show that there is a solution x if and only
if every row that is zero in b is zero in 1. Restate this condition in terms of the notion
of row rank.

6.17 Let b be the row-reduced echelon matrix obtained from an m X n matrix a.
Thus b = u - a, where u is nonsingular, and B and A have the same null space (where
B € Hom(R", R™) is multiplication by b). We can read off from b a basis for a sub-
space W C R” such that B [ W is an isomorphism onto range B. What is this basis?
We then know that the null space N of B is a complement of W. One complement of W,
call it M, can be read off from W. What is M?

6.18 Continuing the above exercise, show that for each standard basis vector 8; in M
we can read off from the matrix b a vector ; in W such that é° — a; € N. Show that
these vectors {8* — a;} form a basis for N.

6.19 We still have to show that the modified elementary row operations leave the
determinant of a square matrix unchanged, assuming the properties (a) through (e)
from Section 5. First, show from (a), (c), (d), and (e) that if T in Hom R2 is defined
by T(8!) = 62 and T(8%) = —é!, then A(T) = 1. Do this by a very simple factor-
ization, T = R o 8, where (e) can be applied to S. Conclude that a type (1) elementary
matrix has determinant 1.

6.20 Show from the determinant property (b) that an elementary matrix of type (2)
has determinant 1. Show, therefore, that the modified elementary row operations on a
square matrix leave its determinant unchanged.

*7. THE DIAGONALIZATION OF A QUADRATIC FORM

As we mentioned earlier, one of the crucial problems of linear algebra is the
analysis of the “structure” of a linear transformation 7 in Hom V. From the
point of view of bases, every theorem in this area asserts that with the choice
of a special basis for V the matrix of T can be given the such-and-such simple
form. This is a very difficult part of the subject, and we are only making con-
tact with it in this book, although Theorem 5.5 of Chapter 1 and its corollary
form a cornerstone of the structural results.

In this section we are going to solve a simpler problem. In the above lan-
guage it is the problem of choosing a basis for V making simple the matrix of a
transformation T in Hom(V, V*). Such a transformation is equivalent to a
bilinear functional on V (by Theorem 6.1 of Chapter 1 and Theorem 3.2 of this
chapter); we shall tackle the problem in this setting.
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Let V be a finite-dimensional real vector space, and let w: VX V — R be
a bilinear functional. If {@;}7 is a basis for V, then w determines a matrix
tij = w(ai, ;). We know that if w,(£) = w(%, 1), then w, € V*and n — w,is a
linear mapping T from V to V*. We leave it as an exercise for the reader to
show that {t;;} is the matrix of T' with respect to the basis {a;} for V and its
dual basis for V* (Exercise 4.1).

If £ = 37 20 and 1 = 377 yje, then

w(g, m) = D zywla;, a) = 2 iz
) 7,7

In particular, if we set g(£) = w(§, £), then q(£) = X_; ; t;;x.x; is a homogeneous
quadratic polynomial in the coordinates ;.

For the rest of this section we assume that w is symmetric: w(f, 1) =
w(n, £). Then we can recover w from the quadratic form ¢ by

w(E, "7) — Q(E""ﬂ) Z Q(E— "l)’

as the reader can easily check. In particular, if the bilinear form w is not iden-
tically zero, then there are vectors £ such that q(£) = w(g, £) # 0.

What we want to do is to show that we can find a basis {a;}} for V such that
w(ag a;) = 0if ¢ % j and w(a;, ;) has one of the three values 0, &= 1. Borrow-
ing from the standard usage of scalar product theory (see Chapter 5), we say
that such a basis is orthonormal. Our proof that an orthonormal basis exists will
be an induction on n» = dim V. If n = 1, then any nonzero vector 8 is a basis,
and if w(8, B) # 0, then we can choose @ = z8 so that z%w(8, 8) = w(a, a) =
=1, the required value of z obviously being x = |w(8, 8)| "2 In the general
case, if w is the zero functional, then any basis will trivially be orthonormal, and
we can therefore suppose that w is not identically 0. Then there exists a 8 such
that w(B, 8) # 0, as we noted earlier. We set a, = 28, where z is chosen to
make ¢(a,) = w(ay, ay) = £1. The nonzero linear functional f(£) = w(¢, a,)
has an (n — 1)-dimensional null space N, and if we let w’ be the restriction of
wto N X N, then o’ has an orthonormal basis {a;}}~* by the inductive hypoth-
esis. Also w(ai, an) = w(an, &;) = 0if ¢ < n, because «; is in the null space of f.
Therefore, {a;}7 is an orthonormal basis for w, and we have reached our goal:

Theorem 7.1. If w is a symmetric bilinear functional on a finite-dimensional
real vector space V, then V has an w-orthonormal basis.

TFor an w-orthonormal basis the expansion w(£, 7) = X z,y;0(a;, ;) reduces to

n

w(t, 1) = D zyiglas),

1=1

where ¢(a;) = =41 or 0. If we let V; be the span of those basis vectors a; for
which ¢(e;) = 1, and similarly for V_; and V, then we see that ¢(¢) > 0 for
every nonzero £ in Vy, ¢(£§) < 0 for every nonzero vector £ in V_;, and ¢ = 0
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on V,. Turthermore, V=V; ® V_; & V,, and the three subspaces are
w-orthonormal to each other (which means that w(§ n) =0 if £V, and
n € V_q,ete.). Finally, ¢(¢§) < 0 forevery ¢in V_; & V,.

If we choose another orthonormal basis {8;} and let W, W_,, and W, be
its corresponding subspaces, then W; may be different from V', but their dimen-
sions must be the same. For Wi N (V_; & V) = {0}, since any nonzero ¢
in this intersection would yield the contradictory inequalities ¢(£) > 0 and
q(¢) £ 0. Thus W, can be extended to a complement of V_; @ V,, and since
V. is a complement, we have d(W;) < d(V,). Similarly, d(V,) < d(W,),
and the dimensions therefore are equal. Incidentally, this shows that W, is a
complement of V_; @ V. In exactly the same way, we find that d(W_,) =
d(V_y) and finally, by subtraction, that d(W,) = d(V,). It is conventional to
reorder an w-orthonormal basis {e;} 7 so that all the a;’s with ¢(e;) = 1 come first,
then those with gq(a;) = —1, and finally those with ¢(a;) = 0. Our results
above can then be stated as follows:

Theorem 7.2. If w is a symmetric bilinear functional on a finite-dimensional
space V, then there are integers n and p such that if {@;}7 is any w-ortho-
normal basis in conventional order, and if £ = > T x;a;, then

g(®) = i+ + 25 —apy1 — - — Tpyn
» 2 pin 2
=in— in.
1 p+1

The integer p — n is called the signature of the form ¢ (or its associated
symmetric bilinear functional w), and p + n is its rank. Note that p + n is the
dimension of the column space of the above matrix of ¢, and hence equals the
dimension of the range of the related linear map 7. Therefore, p + n is the
rank of every matrix of g.

An inductive proof that an orthonormal basis exists doesn’t show us how to
find one in practice. Let us suppose that we have the matrix {t;;} of w with
respect to some basis {a;}] before us, so that w(% n) = X x;ti;, where
£ = Y1z, 1 = 2.1 Yias, and t;; = w(ey, o)), and we want to know how to go
about actually finding an orthonormal basis {8;}7. The main problem is to find
an orthogonal basis; normalization is then trivial. The first objective is to find
a vector 8 such that w(8, 8) # 0. If some ¢;; = w(a;, a;) is not zero, we can take
B = a;. If all ¢;; = 0 and the form w is not the zero form, there must be some
ti; # 0,52y t12 #= 0. If weset ¥1 = a1 + a2 and ¥; = a; for ¢ > 1, then {7;}]
is a basis, and the matrix s = {s;;} of w with respect to the basis {7;} has

s11 = (¥, V1) = w(og + a2, a1 + ag) = t11 + 212 + t22 = 2t12 # 0.

Similarly, s;; = {;; if either ¢ or j is greater than 1.
For example, if w is the bilinear form on R? defined by w(x,y) = x1y2 +
x9Yy1, then its matrix ¢;; = w(&, &’) is
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and we must change the basis to get ¢;; # 0. According to the above scheme,
we set ¥; = &' + 6% and 7, = &% and get the new matrix s;; = w(7;, 7;),
which works out to
.
1 o)

The next step is to find a basis for the null space of the functional w(§, v{) =
> x:81:. We do this by modifying vs, ..., ¥,; we replace v; by v; + ¢¥; and
calculate ¢ so that this vector is in the null space. Therefore, we want 0 =
w(Yj+ €Y1, Y1) = $1; + ¢s11, and so ¢ = —sy;/s11. Note that we cannot take
this orthogonalizing step until we have made s;; # 0. The new set still spans
and thus is a basis, and the new matrix {r;;} has r1; # 0 and r;; = r;; = 0 for
j > 1. We now simply repeat the whole procedure for the restriction of w to this
(n — 1)-dimensional null space, with matrix {r;; :2 < 7,7 < n}, and so on.
This is a long process, but until we normalize, it consists only of rational oper-
ations on the original matrix. We add, subtract, multiply, and divide, but we
do not have to find roots of polynomial equations.

Continuing our above example, we set 8; = 71, but we have to replace v,
by Bz = Yo — (812/811)71 = Yo — %71. The final matrix Ty = (O(Bi, B])
has

711 = 811 = 2, riz = w(B1, B2) = w(Y1, Y2 — $7Y1) = $12 — 3811 = 0,

and rop = w(72 — %’YI, Yo — %71) = 899 — 812 + 811/4 = —%, so that

-l 3

The final basisis 8; = v; = 8' + 6%2and By = 7o — 37, = 82 — 1(8' + 6%) =
(82 — 8b)/2.

The steps we had to take above are reminiscent of row reduction, but since
we are changing bases simultaneously in the domain and range spaces of the
transformation T': V — V* associated with w, each step involves simultaneously
premultiplying and postmultiplying by an elementary matrix. That is, we are
simultaneously row and column reducing. It should be intuitively clear that this
has to be the case if we are to operate on a symmetric matrix in such a way as
to keep it symmetric. '

For additional information about quadratic forms, we go back to the change
of basis formula for the matrix of a transformation: t”” = b- t’- a—!. Here the
transformation T associated with the form w is from ¥ to V*, andso b = (a*)~},
according to our calculations in Section 4. Now one of the properties of the
determinant function is that A(T*) = A(T), and so A(a*) = A(a). Therefore,
if t and s are the matrices of a quadratic form with respect to a first and second
basis in V, and if a is the change of basis matrix, then s = (a*)™'-t-a~! and
A(s) = (A(a™1))2 A(f). Therefore, a quadratic form has parity. If it is non-
singular, then its determinant is either always positive or always negative, and
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we can call it even or odd. In our continuing example, the beginning and final

matrices
0 1 and 2 0
1 0 0 —3

both have determinant —1.

In the two-dimensional case, the determinant of a form with respect to an
orthonormalized basis is +1 if the diagonal elements are both +1 or both —1,
and —1 if they are of opposite sign. We can therefore read off the signature of a
nonsingular form over a two-dimensional space without orthonormalizing. If the
determinant ¢;1f00 — (f12)? is positive, the signature is +2, and we can deter-
mine which by looking at ¢;; (since ¢, is then unchanged by our orthogonalizing
procedure). Thus the signature is +2 or —2 depending on whether ¢;; > 0 or
ti11 < 0. If the determinant is negative, then the signature is 0. Thus the
signature of the form w(x, y) = x1y2 + 22y, with matrix

!

is known to be 0, without any calculation.

Theorems 7.1 and 7.2 are important for the classification of eritical points
of real-valued functions on vector spaces. We shall see in Section 3.16 that the
second differential of such a function F is a symmetric bilinear functional, and
that the signature of its form has the same significance in determining the be-
havior of F near a point at which its first differential is zero that the sign of
the second derivative has in the elementary calculus.

A quadratic form ¢ is said to be definite if q(£) is never zero except for £ = 0.
Then ¢(£) must always have the same sign, and ¢ is accordingly called positive
definite or negative definite. Looking back to Theorem 7.2, it should be obvious
that ¢ is positive definite only if p = d(V) and n = 0, and negative definite
only if n = d(V) and p = 0. A symmetric bilinear functional whose associated
quadratic form is positive definite is called a scalar product. This is a very
important notion on general vector spaces, and the whole of Chapter 5 is de-
voted to developing some of its implications.



CHAPTER 3

THE DIFFERENTIAL CALCULUS

Our algebraic background is now adequate for the differential calculus, but we
still need some multidimensional limit theory. Roughly speaking, the differ-
ential calculus is the theory of linear approximations to nonlinear mappings,
and we have to know what we mean by approximation in general vector settings.
We shall therefore start this chapter by studying the notion of a measure of
length, called a norm, for the vectors in a vector space V. We can then study
the phenomenon suggested by the way in which a tangent plane to a surface
approximates the surface near the point of tangency. This is the general theory
of unique local linear approximations of mappings, called differentials. The
collection of rules for computing differentials includes all the familiar laws of
the differential calculus, and achieves the same goal of allowing complicated
calculations to be performed in a routine way. However, the theory is richer
in the multidimensional setting, and one new aspect which we must master is
the interplay between the linear transformations which are differentials and their
evaluations at given vectors, which are directional derivatives in general and
partial derivatives when the vectors belong to a basis. In particular, when the
spaces in question are finite-dimensional and are replaced by Cartesian spaces
through a choice of bases, then the differential is entirely equivalent to its matrix,
which is a certain matrix of partial derivatives called the Jacobian matrix of the
mapping. Then the rules of the differential calculus are expressed in terms of
matrix operations.

Maximum and minimum points of real-valued functions are found exactly
as before, by computing the differential and setting it equal to zero. However,
we shall neglect this subject, except in starred sections. It also is much richer
than its one-variable counterpart, and in certain infinite-dimensional situations
it becomes the subject called the calculus of variations.

Finally, we shall begin our study of the inverse-mapping theorem and the
implicit-function theorem. The inverse-mapping theorem states that if a mapping
between vector spaces is continuously differentiable, and if its differential at a
point e is invertible (as a linear transformation), then the mapping itself is
invertible in the neighborhood of @. The implicit-function theorem states that if
a continuously differentiable vector-valued function G of two vector variables
is set equal to zero, and if the second partial differential of G is invertible (as a
linear mapping) at a point <a, 8> where G(a,8) = 0, then the equation
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(G(£n) = 0 can be solved for 5 in terms of £ near this point. That is, there is a
uniquely determined mapping 7 = F(£) defined near « such that 3 = F(a) and
such that G(& F(£)) = 0 in the neighborhood of a. These two theorems are
fundamental to the further development of analysis. They are deeper results
than our work up to this point in that they depend on a special property of
vector spaces called completeness; we shall have to put off part of their proofs to
the next chapter, where we shall study completeness in a fairly systematic way.

In a number of starred sections at the end of the chapter we present some
harder material that we do not expect the reader to master. However, he should
try to get a rough idea of what is going on.

1. REVIEW IN R

Lvery student of the calculus is presumed to be familiar with the properties of
the real number system and the theory of limits. But we shall need more than
familiarity at this point. It will be absolutely essential that the student under-
stand the e-definitions and be able to work with them.

To be on the safe side, we shall review some of this material in the setting of
limits of functions; the confident reader can skip it. We suppose that all the
functions we consider are defined at least on an open interval containing a,
cxeept possibly at a itself. The need for this exception is shown by the difference
quotients of the calculus, which are not defined at the point near which their
hehavior is crucial.

Definition. f(x) approaches [ as z approaches a (in symbols, f(z) — [ as
x — a) if for every positive € there exists a positive § such that

O0<|lzr—al <d=|flx) — I <e

We also say that ! is the limit of f(x) as x approaches a and write
lim,_,, f(x) = I. The displayed statement in the definition is understood to be
universally quantified in z, so that the definition really begins with the three
quantifiers (Ve~ %) (36> (Vz). These prefixing quantifiers make the definition
sound artificial and unidiomatic when read as
ordinary prose, but the reader will remember from
our introductory discussion of quantification that I T
this artificiality is absolutely necessary in order { l
for the meaning of the sentence to be clear and
unambiguous. Any change in the order of the {
quantifiers (Ve)(36)(Vx) changes the meaning of the
slatement.

The meaning of the inner universal quantifi-
cation

Vo) 0 < |x—a| < d = |flx) — I <e A
is intuitive and easily pictured (see Fig. 3.1). Fig. 3.1

€
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For all z closer to a than & the value of f at x is closer to [ than e. The
definition begins by stating that such a positive é§ can be found for each positive e.
Of course, § will vary with €; if € is made smaller, we will generally have to
go closer to a, that is, we will have to take § smaller, before all the values of f
on (@ — &, a+ 8) — {a} become e close to I.

The variables ‘¢’ and ‘6’ are almost always restricted to positive real num-
bers, and from now on we shall let this restriction be implicit unless there seems
to be some special call for explicitness. Thus we shall write simply (Ve)(39) . ..

The definition of convergence is used in various ways. In the simplest
situations we are given one or more functions having limits at a, say, f(x) — u
and g(z) — v, and we want to prove that some other function A has a limit w
at a. In such cases we always try to find an inequality expressing the quantity we
wish to make small, [h(z) — w], in terms of the quantities which we know can be
made small, |f(zx) — u| and [g(z) — v].

For example, suppose that h = f+ ¢g. Since f(x) is close to u and g(z) is
close to v, clearly h(x) is close to w = w + v. But how close? Since h(z) — w =
(f@@) — u) + (9(x) — v), we have

lh(z) — vl < |f(@) — ul + lg@) — o].

From this it is clear that in order to make [h(x) — 1| less than € it is sufficient
to make each of |f(zx) — u| and |g(x) — v| less than €¢/2. Therefore, given any e,
we can take §; so that 0 < |z — a| < 8; = |f(x) — u| < €/2, and &, so that
0<|z—al < d;=]|gx) —v| < ¢/2, and we can then take & as the smaller
of these two numbers, so that if 0 < |t — a| < §, then both inequalities hold.
Thus

0<|e—al <8 = [he) —w <|f@) —ul+lg@ — ol <s+5=¢

and we have found the desired 6 for the function h.
Suppose next that u # 0and that h = 1/f. Clearly, h(x) is close to w = 1/u
when f(x) is close to u, and so we try to express h(z) — w in terms of f(x) — w.

Thus
w1l 1_u—Jf@
N O R (T

and so |h(z) — w| < |f(x) — u|/|f(x)u|. The trouble here is that the denomi-
nator is variable, and if it should happen to be very small, it might cancel the
smallness of |f(x) — u| and not force a small quotient. But the answer to this
problem is easy. Since f(z) is close to u and « is not zero, f(x) cannot be close to
zero. Tor instance, if f(z) is closer to w than |u|/2, then f(x) must be farther
from O than |u|/2. We therefore choose &; so that 0 < |[x — a] < &; =
|[f(x) — u| < |u|/2, from which it follows that |f(xz)| > |u|/2. Then

h(@) — wl < 2[f(x) — ul/[ul?,
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and now, given any €, we take 8, so that
0<|z—al < by = |fx) — ul < elul?/2.

Again taking 6 as the smaller of §; and &3, so that both inequalities will hold
simultaneously when 0 < |z — a| < 8, we have

0<le—a <8 = |h@)—wl < 2@ — ul/lul® < 2eul®/2ul® = ¢,

and again we have found our & for the function h.
We have tried to show how one would think about these situations. The
actual proof that would be written down would only show the choice of 6. Thus,

Lemma 1.1. If f(z) — u and g(x) — v as z — @, then f(z) + g(x) > u +v
as r — a.

Proof. Given €, choose 8, so that 0 < [z —a| < 8, = |f(z) —a| < €/2
(by the assumed convergence of f to u at a), and, similarly, choose 83 so that
0< |z —al <é;=lg(x) —v| <e/2. Take & as the smaller of §; and 3.
Then

0<le—a <8=|{&+yg@)— (ut)
< |f@) —ul + lg) — ol < €/2+€/2=¢

Thus we have proved that for every € there is a & such that
0<lt—a <8=|@+9@)— @t <e
and we are done. [

In addition to understanding e-techniques in limit theory, it is necessary to
understand and to be able to use the fundamental property of the real number
system called the least upper bound property. In the following statement of the
property the semi-infinite interval (— oo, a] is of course the subset {xeR:x < a}.

If A is a nonempty subset of R such that A C (— o, a] for some a, then
there exists a uniquely determined smallest number b such that A C (—oo0, b].

A number a such that A C (— o, a] is called an upper bound of A; clearly, a
is an upper bound of A if and only if every z in A is less than or equal to a.
A set having an upper bound is said to be bounded above. The property says that
» nonempty set A which is bounded above has a least upper bound (lub). If
we reverse the order relation by multiplying everything by —1, then we have the
alternative formulation which asserts that a nonempty subset of R that is
bounded below has a greatest lower bound (glb). The least upper bound of the
interval (0, 1) is 1. The least upper bound of [0, 1] is also 1. The greatest lower
bound of {1/n : n a positive integer} is 0. Furthermore, lub {z : z is a positive
rational number and z2 < 2} = /2, glb {¢*:x € R} = 0, and lub {¢":x is
rational and z < v/2} = "
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EXERCISES

1.1 Prove that if f(z) — ! and f(z) — m as * — a, then I = m. We can therefore
talk about the limit of f as z — a.

1.2 Prove that if f(x) — [ and g(x) — m (as  — a), then f(z) g(x) — Im as z — a.

1.3 Prove that [t — a| < |a]/2= |z] > |a|/2.

1.4 Prove (in detail) the greatest lower bound property from the least upper bound
property.

1.5 Show that lub A = x if and only if z is an upper bound of .1 and, for every
positive ¢,  — e is not an upper bound of .1.

1.6 Let A and B be subsets of R that are nonempty and bounded above. Show that
A -+ B is nonempty and bounded above and that lub (A + B) = lub A -+ lub B.

1.7 Formulate and prove a correct theorem about the least upper bound of the
product of two sets.

1.8 Define the notion of a one-sided limit for a function whose domain is a subset of R.
For example, we want to be able to discuss the limit of f(z) as z approaches a from
below, which we might designate

I 1,

1.9 If the domain of a real-valued function f is an interval, say [a, b], we say that f is
an increasing function if
r <y = fx) < f(y).

Prove that an increasing function has one-sided limits everywhere.

1.10 Let [a, b] be a closed interval in R, and let f: [a, ] — R be increasing. Show that
lim,_,, f(x) = f(y) for all y in [a, b] (f is continuous on [a, b]) if and only if the range
of f does not omit any subinterval (c, d) C [f(a), f(b)]. [Hint: Suppose the range omits
(c,d), and set y = lub {x:f(z) < ¢}. Then f(z) b f(y) as xz — y.]

1.11 A set that intersects every open subinterval of an interval [s, t] is said to be
dense in [s, t]. Show that if f: [a, b] — R is increasing and range f is dense in [f(a), f(b)],
then range f = [f(a), f(b)]. (For any z between f(a) and f(b) set y = lub {z:f(z) < 2},
ete.)

1.12 Assuming the results of the above two exercises, show that if f is a continuous
strictly increasing function from [a, b] to R, and if r = f(a) and s = f(b), then f~lisa
continuous strictly increasing function from [r, s] to R. [A function f is continuous if
f(x) — f(y) as * — y for every y in its domain; it is strictly increasing if z < y =
f@) < fy).]

1.13 Argue somewhat as in Exercise 1.11 above to prove that if f: [a, b)] — R is con-
tinuous on [a, b], then the range of f includes [f(a), f(b)]. This is the intermediate-
value theorem.

1.14 Suppose the function ¢:R — R satisfies ¢(zy) = q(z) ¢(y) for all z,y € R.
Note that q(x) = z" (n a positive integer) and ¢(z) = |z|" (r any real number) satisfy
this “functional equation”. So does ¢(z) = 0 (r = — ?). Show that if ¢ satisfies the
functional equation and g(x) > 1 for £ > 1, then there is a real number r > 1 such
that ¢(z) = 27 for all positive z.
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1.15 Show that if ¢ is continuous and satisfies the functional equation ¢(zy) =
q(x) q(y) for all z, y € R, and if there is at least one point a where ¢(a) = 0, 1, then
q(x) = z" for all positive z. Conclude that if also ¢ is nonnegative, then ¢(z) = |z|” on R.
1.16 Show that if ¢(z) = |z|", and if ¢(z + y) < q(x) + q(y), thenr < 1. (Tryy = 1
and z large; what is ¢’(z) like if r > 1?)

2. NORMS

In the limit theory of R, as reviewed briefly above, the absolute-value function
is used prominently in expressions like ‘|z — y|” to designate the distance
hetween two numbers, here between x and y. The definition of the convergence
of f(z) tou is simply a careful statement of what it means to say that the distance
|/(x) — u| tends to zero as the distance [x — a| tends to zero. The properties of
|x| which we have used in our proofs are

1) |z| > 0if z # 0, and |0] = 0;

2) |yl = |l lyl;

3) |z +yl < = + [yl

The limit theory of vector spaces is studied in terms of functions called
norms, which serve as multidimensional analogues of the absolute-value function
on R. Thus, if p: V — R is a norm, then we want to interpret p(a) as the “size”
of @ and p(a — B) as the “distance” between a and 8. However, if V is not
one-dimensional, there is no one notion of size that is most natural. For example,
if f is a positive continuous function on [a, b], and if we ask the reader for a
number which could be used as a measure of how “large” f is, there are two
possibilities that will probably occur to him: the maximum value of f and the area
under the graph of f. Certainly, f must be considered small if max f is small.
But also, we would have to agree that f is small in a different sense if its area is
small. These are two examples of norms on the vector space V = €([a, b]) of all
continuous functions on [a, b]:

p() = max (Ot la b} and g0 = [ 150 de

Note that f can be small in the second sense and not in the first.
In order to be useful, a notion of size for a vector must have properties
unalogous to those of the absolute-value function on R.
Definition. A norm is a real-valued function p on a vector space V such that
nl. p(a) > 0if & # 0 (positivity);
n2. p(re) = |z|p(a) forall @« € V, z € R (homogeneity);
n3. pla+ B) < pla) + p(B) for all a, B € V (triangle inequality).

A normed linear space (nls), or normed vector space, is a vector space V
together with a norm p on V. A normed linear space is thus really a pair
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<V, p>, but generally we speak simply of the normed linear space V, a definite
norm on V then being understood.

It has been customary to designate the norm of a by |||, presumably to
suggest the analogy with absolute value. The triangle inequality n3 then
becomes |la + 8]| < |le|l + [|8]l, which is almost identical in form with the basic
absolute-value inequality |z + y| < |z] + |y|. Similarly, n2 becomes |za| =
|z| |||, analogous to |xy| = |z| [y| in R. Furthermore, ||« — 8| is similarly
interpreted as the distance between « and 8. This is reasonable since if we set
a= ¢t —nand B = 5 — {, then n3 becomes the usual triangle inequality of
geometry:

g — ¢l < Nl —al+lln— ¢l

We shall use both the double bar notation and the “p”-notation for norms; each
is on occasion superior to the other.

The most commonly used norms on R” are |x||; = X} |z,], the Euclidean
norm |x|l; = (T3 23)"% and |)x[|» = max {|z/};. Similar norms on the
infinite-dimensional vector space €([a, b]) of all continuous real-valued functions
on [a, b] are

I = [ 15l as

1/2
WM=(fvwW@ ,
/]l = max {{f0)] : @ < ¢ < b}

It should be easy for the reader to check that || ||; is a norm in both cases
above, and we shall take up the so-called uniform norms | [l in the next
paragraph. The Euclidean norms || ||, are trickier; their properties depend on
scalar product considerations. These will be discussed in Chapter 5. Meanwhile,
so that the reader can use the Euclidean norm || |2 on R", we shall ask him to
prove the triangle inequality for it (the other axioms being obvious) by brute
force in an exercise. On R itself the absolute value is a norm, and it is the only
norm to within a constant multiple.

We can transfer the above norms on R"™ to arbitrary finite-dimensional
spaces by the following general remark.

Lemma 2.1. If p is a norm on a vector space W and T is an injective linear
map from a vector space V to W, then p o T is a norm on V.

Proof. The proof is left to the reader.

Uniform norms. The two norms || ||, considered above are special cases of a
very general situation. Let 4 be an arbitrary nonempty set, and let ®(4, R)
be the set of all bounded functions f: A — R. Thatis, f € ®(4, R) if and only if
f € R4 and range f C [—b, b] for some b € R. This is the same as saying that
range |f| C [0, b], and we call any such b a bound of |f|. The set ®(4, R) is a
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vector space V, since if [f| and |g| are bounded by b and ¢, respectively, then
|#f + yg| is bounded by |z|b + |y|c. The uniform norm ||f|« is defined as the
smallest bound of |f|. That is,

[fle = lub {|f(p)] : p € A}.

Of course, it has to be checked that || ||, is @ norm. For any p in 4,

1f®) + 9@)| < 1f®)] + l9@)| < [Iflle + (9]l

Thus ||f]lo + |lg]l~ is a bound of |f + g| and is therefore greater than or equal to
the smallest such bound, which is ||f -+ ¢||«. This gives the triangle inequality.
Next we note that if z > 0, then b bounds |f| if and only if |z|b bounds |zf], and
it follows that ||zf|le = |z| ||f]le. Finally, [|fl]le = 0, and ||f||« = O only if f is
the zero function.

We can replace R by any normed linear space W in the above discussion.
A function f: A — W is bounded by b if and only if || f(p)|| < b for all p in 4,
and we define the corresponding uniform norm on ®&(4, W) by

[flle = Tub {[|f(P)I| : p € 4}.

If f € €([0, 1]), then we know that the continuous function f assumes the
least upper bound of its range as a value (that is, f “assumes its maximum value”),
so that then || f]|. is the maximum value of |f|. In general, however, the definition
must be given in terms of lub.

Balls. Remembering that ||a — £|| is interpreted as the distance from « to §, it is
natural to define the open ball of radius r about the center « as {£¢ : |la — £|| < r}.
We designate this ball B,(a). Translation through g8 preserves distance,

1Ts(8) — Te(m)| = 1(§+8) — (n+B)|| = [|£— |,

and therefore ¢ € B,(a) if and only if £ + 8 € B,(a + 8). That is, translation
through B carries B,(a) into B.(a + B8): Tg[B-(a)] = B.(a + ). Also, scalar
multiplication by ¢ multiplies all distances by ¢, and it follows in a similar way
that ¢B,(a) = B.r(ca).

Although B,(a) behaves like a ball, the actual set being defined is different
for different norms, and some of them “look unspherelike”. The unit balls about
the origin in R? for the three norms || ||;, || ||2, and || ||l are shown in Fig. 3.2.

A subset 4 of a nls V is bounded if it lies in some ball, say B,(«). Then it
also lies in a ball about the origin, namely B |41(0). This is simply the fact that
if |§ — af| < r, then ||£]| < r 4 [|a||, which we get from the triangle inequality
upon rewriting [|£]| as ||(¢ — ) + af

The radius of the largest ball about a vector 8 which does not touch a set A
is naturally called the distance from 8 to A. It is clearly glb {||t — 8|/ : £ € A}
(see Fig. 3.3).
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p(B, A)=r
Fig. 3.2 Fig. 3.3 Fig. 3.4

A point « is an inferior point of a set A if some ball about « is included in 4.
This is equivalent to saying that the distance from « to the complement of 4 is
positive (supposing that A is not the whole of V), and should coincide with
the reader’s intuitive notion of what an “inside” point should be. A subset A
of a normed linear space is said to be open if every point of A is an interior
point.

If our language is to be consistent, an open ball should be an open set. It is:
if @ € B.(8), then ||a — B]] < 7, and then Bs(a) C B,(B), provided that 6 < r —
lle — B]|, by virtue of the triangle inequality (see Fig. 3.4). The reader should
write down the detailed proof. He has to show that if £ € B;(«), then £ € B,(B).
Our intuitions about distances are quite trustworthy, but they should always be
checked by a computation. The reader probably can see by a mental argument
that the union of any collection of open sets is open. In particular, the union of
any collection of open balls is open (Fig. 3.5), and this is probably the most
intuitive way of visualizing an open set. (See Exercise 2.9.)

Fig. 3.5 Fig. 3.6

A subset C is said to be closed if its complement C’ is open.

Our discussion above shows that a nonempty set C is closed if and only if
every point not in it is at a positive distance from it: « & C = p(a, C) > 0.
The so-called closed ball of radius r about 8, B = {&:]|¢ — B|| < r}, is a closed
set. As Fig. 3.6 suggests, the proof is another application of the triangle in-
equality.
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EXERCISES

2.1 Show that if |§ — af < [l«]l/2, then [[£]| > [lel|/2.
2.2 Prove in detail that

x|l = i ||
1

is a norm on R™ Also prove that

b
Ifl: = / 70| dt

is a norm on €([a, b]).
2.3 TFor x in R" let |z] be the Euclidean length

kd 1/2
2
x| = [Z xa] ,
1

and let (x, y) be the scalar product
xy) = 2z
1
The Schwarz inequality says that
[, ¥ < [x] |yl

and that the inequality is strict if x and y are independent.
a) Prove the Schwarz inequality for the case n = 2 by squaring and canceling.
b) Now prove it for the general n in the same way.

2.4 Continuing the above exercise, prove that the Euclidean length |x| is a norm.
The crucial step is the triangle inequality, |x + y| < |x| + |y|. Reduce it to the
Schwarz inequality by squaring and canceling. This is of course our two-norm ||x||2.

2.5 Prove that the unit balls for the norms || ||; and || |l» on R? are as shown in
Fig. 3.2.

2.6 Prove that an open ball is an open set.
2.7 Prove that a closed ball is a closed set.
2.8 Give an example of a subset of R2 that is neither open nor closed.

2.9 Show from the definition of an open set that any open set is the union of a
family (perhaps very large!) of open balls. Show that any union of open sets is open.
Conclude, therefore, that a set is open if and only if it is a union of open balls.

2.10 A subset A of a normed linear space V is said to be convez if A includes the line
segment joining any two of its points. We know that the line segment from « to g is
the image of [0, 1] under the mapping ¢t — {8+ (1 — ). Thus A is convex if and
onlyif a,€ A and t€[0,1]= {8+ (1 — t)a € A. Prove that every ball B.(Y) in
a normed linear space V is convex.

2.11 A seminorm is the same as a norm except that the positivity condition nl is
relaxed to nonnegativity:

nl’. p(a) > 0 for all a.
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Thus p(e) may be 0 for some nonzero a. Every norm is in particular a seminorm.
Prove:
a) If p is a seminorm on a vector space 1" and T is a linear mapping from V to W,
then p o T is a seminorm on V.
b) po T is a norm if and only if T is injective and p is a norm on range T.
2.12 Show that the sum of two seminorms is a seminorm.

2.13 Prove from the above two exercises (and not by a direct calculation) that

2(f) = lIf'lle + |£to)]

is a seminorm on the space €!([a, b]) of all continuously differentiable real-valued
functions on [a, b], where {¢ is a fixed point in [a, b]. Prove that ¢ is a norm.

2.14 Show that the sum of two bounded sets is bounded.
2.15 Prove that the sum B,(a) + B:(B) is exactly the ball B, (o + B).

3. CONTINUITY

Let V and W be any two normed linear spaces. We shall designate both norms
by || ||. This ambiguous usage does not cause confusion. It is like the ambiguous
use of “0” for the zero elements of all the vector spaces under consideration. If we
replace the absolute value sign | | by the general norm symbol | || in the
definition we gave earlier for the limit of a real-valued function of a real variable,
it becomes verbatim the corresponding definition of convergence in the general
setting. However, we shall repeat the definition and take the occasion to relax
the hypothesis on the domain of f. Accordingly, let A by any subset of V, and let
f be any mapping from A to W.

Definition. We say that f(£) approaches 8 as ¢ approaches «, and write
f(§) = B as £ — a, if for every e there is a 6 such that

fecdand0 < [t —of <5 = [f(5) — 8] <e

If « € A and f(£) — f(@) as £ — «, then we say that f is continuous at a.
We can then drop the requirement that ¢ = o and have the direct e,s-
characterization of continuity: f is continuous at « if for every € there exists a 3
such that [[¢ — af| < 8 = ||f(§) — f(a)|| < e. It is understood here that £ is
universally quantified over the domain A of f. We say that f is continuous if f is
continuous at every point e in its domain. If the absolute value of a number is
replaced by the norm of a vector, the limit theorems that we sampled in Section 1
hold verbatim for normed linear spaces. We shall ask the reader to write out a
few of these transcriptions in the exercises.

There is a property stronger than continuity at & which is much simpler to
use when it is available. We say that f is Lipschitz continuous at « if there is a
constant ¢ such that [|f(£) — f(a)|| < ¢||& — «f| for all ¢ sufficiently close to .
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That is, there are constants ¢ and r such that

1§ —all <r = [f(&) —f@I < cllt — el

The point is that now we can take & simply as €/c (provided € is small enough so
that this makes § < r; otherwise we have to set § = min {e/c,r}). We say
that f is a Lipschitz function (on its domain A) if there is a constant ¢ such that
78 — fm| < cll&¢ — =]l for all £ nin A. For a linear map T:V — W the
Lipschitz inequality is more simply written as

1T < eligll

for all ¢ € V; we just use the fact that now T(§) — T(n) = T(¢ — n) and set
¢ = £ — 5. In this context it is conventional to call T a bounded linear mapping
rather than a Lipschitz linear mapping, and any such c is called a bound of T.

We know from the beginning calculus that if f is a continuous real-valued
function on [a, b] (that is, if f € €([a, b])), then [[2 f(z) dz| < m(b — a), where
m is the maximum value of |f(z)|. But this is just the uniform norm of f, so that
the inequality can be rewritten as |[2 f| < (0 — a)||fll.. This shows that if the
uniform norm is used on €([a, b]), then f+— ff f is a bounded linear functional,
with bound b — a.

It should immediately be pointed out that this is not the same notion of
boundedness we discussed earlier. There we called a real-valued function
bounded if its range was a bounded subset of R. The analogue here would be to
call a vector-valued function bounded if its range is norm bounded. But a
nonzero linear transformation cannot be bounded in this sense, because

IT@)|| = |z| IT(@)].

The present definition amounts to the boundedness in the earlier sense of the
quotient T(«)/||a|| (on V — {0}). It turns out that for a linear map T, being
continuous and being Lipschitz are the same thing.

Theorem 3.1. Let T be a linear mapping from a normed linear space V to a
normed linear space W. Then the following conditions are equivalent:

1) T is continuous at one point;
2) T is continuous;
3) T is bounded.

Proof. (1) = (3). Suppose T is continuous at ag. Then, taking € = 1, there

exists & such that [la — ag|| < § = ||T(a) — T(ao)|| < 1. Setting { = a —

and using the additivity of T, we have || £]| < 8 = ||T(¢)|| < 1. Now for any

nonzero n, &= &n/2|n| has norm &/2. Therefore, |T(¢)|| < 1. But

I(LT(E)H/= 3|T(ml/2]|all, giving |T(n)|l < 2l[nll/6. Thus T is bounded by
=2/é.
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(3) = (2). Suppose |[|[T(¢)|| < C||&| for all £ Then for any ag and any e
we can take 6 = €/C and have
la — aoll < 8 = [[T(e) — T(@o)|| = [ T(a — ag)l| < Clla — &gl < C5=e.

(2) = (1). Trivial. O

In the lemma below we prove that the norm function is a Lipschitz function
from V to R.

Lemma 3.1. Foralla,Be€ V, l lleell — 18Il l < le — 8]l

Proof. Wehave [lal| = [[(« — 8) + 8] < [la — Bl + [B]], so that [laf — [I8] <
la — B]|. Similarly, [I8]] — [la]] < [I8 — a| = ||l@ — B||. This pair of inequal-
ities is equivalent to the lemma. [

Other Lipschitz mappings will appear when we study mappings with con-
tinuous differentials. Roughly speaking, the Lipschitz property lies between
continuity and continuous differentiability, and it is frequently the condition
that we actually apply under the hypothesis of continuous differentiability.

The smallest bound of a bounded linear transformation 7' is called its norm.

That is,
7]l = Tub {[|T()||/ ||l : & = O}
For example, let T': €([a, b]) — R be the Riemann integral, T'(f) = [¢ f(z) dz.
We saw earlier that if we use the uniform norm |f]l. on €([a, b]), then T is
bounded by b — a : |T(f)] < (b — a)|/f|l«. On the other hand, there is no smaller
bound, because [/1=b—a= (b — a)||1]l.. Thus ||T|| =b — a. Other
formulations of the above definition are useful. Since
[T @/ llall = 1T/l

by homogeneity, and since 8 = a/||e|| has norm 1, we have

[Tl = lub {|T@] : 18] = 1}
Finally, if ||7]| < 1, then ¥ = 2B, where ||8]] = 1 and |z| < 1, and

[FOI = |zl IF@®I < [F@)I-
We therefore have an inefficient but still useful characterization:

IT|| = lub {ITM)] : 7] < 1}.

These last two formulations are uniform norms. Thus, if B; is the closed unit
ball {£:|[¢]| < 1}, we see that a linear T is bounded if and only if T [ B; is
bounded in the old sense, and then

T = IT T Bil..

Alinear map T': V — W is bounded below by b if || T(£)|| > b| || forall £in V.
If T has a bounded inverse and m = [|7~!||, then T is bounded below by 1/m,
for |7~ (n)|| < mlln]| for all n € W if and only if ||£] < m||T(#)] forall £ € V.
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If V is finite-dimensional, then it is true, conversely, that if 7' is bounded below,
then it is invertible (why?), but in general this does not follow.

If V and W are normed linear spaces, then Hom(V, W) is defined to be the
set of all bounded linear maps T: V — W. The results of Section 2.3 all remain
true, but require some additional arguments.

Theorem 3.2. Hom(V, W) is itself a normed linear space if ||T|| is defined
as above, as the smallest bound for 7.

Proof. This follows from the uniform norm discussion of Section 2 by virtue
of the identity | T|| = |T | Bille. O

Theorem 3.3. If U, V, and W are normed linear spaces, and if
T € Hom(U, V) and S € Hom(V, W), then SoT e Hom(U, W) and
ISo T| < |IS|| IT)]. It follows that composition on the right by a fixed T
is a bounded linear transformation from Hom(V, W) to Hom(U, W), and
similarly for composition on the left by a fixed S.

Proof
S oY@ = ST < ST < ISIATH Nell) = CASI- NTIDlexl])
Thus S o T is bounded by ||S]|- |T]| and everything else follows at once. [

Asbefore, the conjugate space V*is Hom(V, R), now the space of all bounded
linear functionals.

EXERCISES

3.1 Write out the ¢,6-proofs of the following limit theorems.

1) Let V and W be normed linear spaces, and let ' and G be mappings from V to W.
If lim;, F(§) = p and limg,q G(§) = », then limg,o (F+ ) (§) = p+ v

2) Given F:V > W and ¢: V> R, if F(§) > p and g(§) —» b as £ — «, then
(gF) (&) — b

3.2 Prove thatif F(f) > uas § > aand G(g) > Nasn — pu, then Go F(§) — \as
£ — a. Give a careful, complete statement of the theorem you have proved.

3.3 Suppose that A4 is an open subset of a nls V and that g € A. Suppose that
F: A — Ris such that lim,_,qy F(@) = b # 0. Prove that 1/F(a) — 1/b asa — ao
(e,8-proof).

3.4 The function f(x) = |x|"is continuous at z = 0 for any positive r. Prove that fis
not Lipschitz continuous at z = 0 if r < 1. Prove, however, that f 45 Lipschitz con-
tinuous at x = a if @ > 0. (Use the mean-value theorem.)

3.5 Use the mean-value theorem of the calculus and the definition of the derivative
to show that if f is a real-valued function on an interval I, and if f’ exists everywhere,
then f is a Lipschitz mapping if and only if f* is a bounded function. Show also that
then ||f'|| is the smallest Lipschitz constant C.
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3.6 The “working rules” for ||T|| are
D 7EN < TN 1€l for all £;
2) IT®I L bl allE = |IT] < b.
Prove these rules.

3.7 Prove that if we use the one-norm ||x[|1 = > 7 |z;| on R™, then the norm of the
linear functional

n
La:x — Z ax;
1

is ||al|.
3.8 Prove similarly that if ||x|| = ||x|lw, then ||L,|] = |lal|1.
3.9 TUse the above exercises to show that if ||x|| on R" is the one-norm, then

x|l = lub {{f(x)[:f € (R™)* and ||f]| < 1}.

3.10 Show that if 7 in Hom(R", R™) has matrix t = {t;;}, and if we use the one-
norm ||x||1 on R™ and the uniform norm ||y|l. on R™, then ||T|| = ||t||x.

3.11 Show that the meaning of ‘Hom(V, W)’ has changed by giving an example of a
linear mapping that fails to be bounded. There is one in the text.

3.12 Fora fixed £ in V define the mapping eve: Hom(V, W) — W by evg(T) = T(§).
Prove that ev; is a bounded linear mapping.

3.13 1In the above exercise it is in fact true that |jevg]] = ||£||, but to prove this we
need a new theorem.

Theorem. Given £ in the normed linear space V, there exists a functional fin V*
such that [|f|| = 1 and [f(§)] = [|£]|.

Assuming this theorem, prove that |leve]] = ||£]|. [Hint: Presumably you have already
shown that |leve]| < ||£]l. You now need a T in Hom(V, W) such that ||T|| = 1 and
IT(®] = ||£]|. Consider a suitable dyad.]

3.14 Let t = {t;;] be a square matrix, and define |[t[| as max; ;i lts)). Prove that
this is a norm on the space R*X7 of all n X n matrices. Prove that ||st|| < ||s| - [[t]].
Compute the norm of the identity matrix.

3.15 Let V be the normed linear space R™ under the uniform norm ||x[|., = max {|z;[}.
If T € Hom V, prove that ||T| is the norm of its matrix ||t as defined in the above
exercise. That is, show that

171 = ma| 3 ]
i i=1

(Show first that ||t|| is an upper bound of T, and then show that || T(x)|| = ||t|| ||x]| for
a specially chosen x.) Does part of the previous exercise now become superfluous?

3.16 Assume the following fact: If f € ([0, 1]) and ||f||1 = a, then given ¢, there is a
function g € ([0, 1]) such that

1
llglle = 1 and / fg>a—e
0
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Let K(s, t) be continuous on [0, 1] X [0, 1] and bounded by b. Define T': €([0, 1]) —
®([0, 1]) by Th = k, where

k(s) = /0 Y Ks ) () dt,

If V and TV are the normal linear spaces € and B under the uniform norms, prove that

1T = lub [ K (s, )] dt.

[[Iint: Proceed as in the above exercise.]

3.17 Let V and W be normed linear spaces, and let A be any subset of V containing
more than one point. Let £(.1, 1) be the set of all Lipschitz mappings from .1 to 11"
I'or f in £(.1, ), let p(f) be the smallest Lipschitz constant for f. That is,

ol — sl
i) = Wb =

Prove that £(.1, 11") is a vector space V and that p is a seminorm on V.

3.18 Continuing the above exercise, show that if « is any fixed point of .1, then
p(f) + ||f(@)] is a norm on V.

3.19 Let K be a mapping from a subset .1 of a normed linear space V to V which
differs from the identity by a Lipschitz mapping with constant ¢ less than 1. We may
as well take ¢ = %, and then our hypothesis is that

K& — Km — (& —nl < 3ll&—nl.

Prove that K is injective and that its inverse is a Lipschitz mapping with constant 2.

3.20 Continuing the above exercise, suppose in addition that the domain 4 of K is
an open subset of ¥ and that K[C] is a closed set whenever C is a closed ball lying in A.
Prove that if C = C.(«), the closed ball of radius r about «, is a subset of A, then
K[C] includes the ball B = B,/7(Y), where ¥ = K(a). This proof is elementary but
tricky. If there is a point v of B not in K[C], then since K[C]is closed, there is a largest
hall B’ about v disjoint from K[C] and a point n = K (&) in K[C] as close to B’ as we
wish. Now if we change £ by adding v — 7, the change in the value of K will approxi-
mate v — 7 closely enough to force the new value of K to be in B’. If we can also show
that the new value £+ (v — ) is in C, then this new value of K is in K[C], and we
have our contradiction.

Draw a picture. Obviously, the radius p of B’ is at most r/7. Show that if
n = K(&) is chosen so that ||[uv — 5|| < 8/2p, then the above assertions follow from the
triangle inequality, and the Lipschitz inequality displayed in Exercise 3.19. You have
to prove that

IK(E+ @ —m) —vl <o»

and

[+ @ —m) —a| <

3.21 Assume the result of the above exercise and show that

B,8(7) C K[B(a)].
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Show, therefore, that K[.1]is an open subset of V. State a theorem about the Lipschitz
invertibility of K, including all the hypotheses on K that were used in the above
exercises.

3.22 We shall see in the next chapter that if V and II" are finite-dimensional spaces,
then any continuous map from V to I takes bounded closed sets into bounded closed
sets. Assuming this and the results of the above exercises, prove the following theorem.

Theorem. Let F' be a mapping from an open subset - of a finite-dimensional
normed linear space V to a finite-dimensional normed linear space W. Suppose
that there is a T in Hom(V, 1) such that 71! exists and such that ¥ — T is
Lipschitz on /A, with constant 1/2m, where m = ||T~1||. Then F is injective, its
range B = F[.1] is an open subset of W', and its inverse /"~! is Lipschitz contin-
uous, with constant 2m.

4. EQUIVALENT NORMS

Two normed linear spaces V and W are norm isomorphic if there is a bijection T’
from V to W such that T € Hom(V, W) and T~! € Hom(W, V). That is, an
isomorphism is a linear isomorphism 7 such that both 7"and 7! are continuous
(bounded). As usual, we regard isomorphic spaces as being essentially the same.
For two different norms on the same space we are led to the following definition.

Definition. Two norms p and ¢ on the same vector space V are equivalent
if there exist constants a and b such that p < aq and ¢ < bp.

Then (1/b)g < p < ag and (1/a)p < ¢ < bp, so that two norms are
cquivalent if and only if either can be bracketed by two multiples of the other.
The above definition simply says that the identity map ¢ — ¢ from V to V,
considered as a map from the normed linear space <V, p> to the normed
linear space <V, ¢>, is bounded in both directions, and hence that these two
normed linear spaces are isomorphic.

If V is infinite-dimensional, two norms will in general not be equivalent.
TFor example, if V = e([0,1]) and f,(t) = t*, then ||f.]|; = 1/(n+ 1) and
lfnlle = 1. Therefore, there is no constant a such that ||f]l. < al/f]|; for all
fe€e0,1], and the norms || ||, and || ||; are not equivalent on V = €[a, b).
This is why the very notion of a normed linear space depends on the assumption
of a given norm.

However, we have the following theorem, which we shall prove in the next
chapter by more sophisticated methods than we are using at present.

Theorem 4.1. On a finite-dimensional vector space V all norms are equiva-
lent.

We shall need this theorem and also the following consequence of it occasion-
ally in the present chapter.

Theorem 4.2. If V and W are finite-dimensional normed linear spaces, then
every linear mapping 7" from V to W is necessarily bounded.
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Proof. Because of the above theorem, it is sufficient to prove T' bounded with

respect to some pair of norms. Let 6: R® — V and ¢: R™ — W be any basis
isomorphisms, and let {¢;;} be the matrix of T = ¢~ ' o T o § in Hom(R", R™).

Then n
2 tijzs| < (max]g) (Z} lle) = blx|s,
J 2

ITx[l = max

where b = max |t;;]. Now ¢(n) = [l¢™(n)]|. and p(£) = [|67'(£)|; are norms
on W and V respectively, by Lemma 2.1, and since

o(T(9) = [T Dl < b6~ ¢ll = bp(®),
we see that T is bounded by b with respect to the norms p and ¢ on Vand W. 0

If we change to an equivalent norm, we are merely passing through an
isomorphism, and all continuous linear properties remain unchanged. For
cxample:

Theorem 4.3. The vector space Hom(V, W) remains the same if either the
domain norm or the range norm is replaced by an equivalent norm, and the
two induced norms on Hom(V, W) are equivalent.

Proof. The proof is left to the reader.

We now ask what kind of a norm we might want on the Cartesian product
V X W of two normed linear spaces. It is natural to try to choose the product
norm so that the fundamental mappings relating the product space to the two
factor spaces, the two projections 7; and the two injections 6;, should be con-
tinuous. It turns out that these requirements determine the product norm
uniquely to within equivalence. For if || <, £> ] has these properties, then

[<e, &> = [[<e, 0> + <0, &> < [[<a, 0> 4[| <0, £> ]
< kallell + kol &l < k(lled] +- [1£]]),

where k; is a bound of the injection 6; and k is the larger of k; and k,. Also,
lell < c1]|<a, £>| and ||£]| < cof|<e, £>||, by the boundedness of the projec-
tions 7y, and so [afl + ||£]| < ¢ <a, £> ]|, where ¢ = ¢; + c2. Now |[af| +
ll£]| is clearly a norm || |l; on V X W, and our argument above shows that
Il <a, £> ] will satisfy our requirements if and only if it is equivalent to || [|;.
Any such norm will be called a product norm for VX W. The product norms
most frequently used are the uniform (product) norm

<, £l = max {[la]], [[ ]},

the Euclidean (product) norm || <a, £> |2 = ([|la]|® + [[£]]?)'/?, and the above
sum (product) norm || <e, £>/;. We shall leave the verification that the uni-
form and Euclidean norms actually are norms as exercises.

Each of these three product norms can be defined as well for n factor spaces
as for two, and we gather the facts for this general case into a theorem.
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Theorem 4.4. If {<V; p;>}7] is a finite set of normed linear spaces, then
I, Il fl2, and || [lo, defined on V = IIi=, Vi by el = X% pi(ad),
lells = (7 pi(e)®)"'?, and  [efo = max {pi(a) :¢=1,...,n}, are
equivalent norms on V, and each is a product norm in the sense that the
projections 7; and the injections 6; are all continuous.

*1t looks above as though all we are doing is taking any norm || || on R™ and
then defining a norm ||| || on the product space V by

lledl = | <p1(ar), - - -, palan) > .

This is almost correet. The interested reader will discover, however, that
|| ]| on R™ must have the property that if |x;| < |y for ¢ = 1,...,n, then
lx|| < |ly]| for the triangle inequality to follow for || || in V. If we call such a
norm on R™ an increasing norm, then the following is true.

If || || is any increasing norm on R”, then ||| = [|<pi(a1), ..., palen) >
is a product norm on V = [} V..

However, we shall use only the 1-, 2-; «wo-product norms in this book. x

The triangle inequality, the continuity of addition, and our requirements on
a product norm form a set of nearly equivalent conditions. In particular, we
make the following observation.

Lemma 4.1. If V is a normed linear space, then the operation of addition
is a bounded linear map from V X V to V.

Proof. The triangle inequality for the norm on V says exactly that addition is
bounded by 1 when the sum norm is used on V X V. 0

A normed linear space V is a (norm) direct sum @7 V; if the mapping
LTy, ..., Xy > — 2.7 x;1s a norm isomorphism from ]} V; to V. That is, the
given norm on ¥ must be equivalent to the product norm it acquires when it is
viewed as []} V,. If V is algebraically the direct sum @7} V;, we always have

e = Hi | < illxill

by the triangle inequality for the norm on V, and the sum on the right is the one-
norm for [} V;. Therefore, V will be the norm direct sum @} V; if, conversely,
there is an n-tuple of constants {k;} such that ||z;|| < ki|z|| for all z. This is
the same as saying that the projections P;: x — z; are all bounded. Thus,

Theorem 4.5. If V is a normed linear space and V is algebraically the direct
sum V = @} V,, then V = @} V; as normed linear spaces if and only if
the associated projections {P;} are all bounded.
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EXERCISES

4.1 The fact that Hom(V, W) is unchanged when norms are replaced by equivalent
norms can be viewed as a corollary of Theorem 3.3. Show that this is so.

4.2 Write down a string of quite obvious inequalities showing that the norms
l1, || ll2, and || |lo on R™ are equivalent. Discuss what happens as n — .

4.3 Let V be an n-dimensional vector space, and consider the collection of all norms
on V of the form p o 6, where 8: V — R” is a coordinate isomorphism and p is one of
the norms || ||1, || ll2, || ll« on R™. Show that all of these norms are equivalent. (Use
the above exercise and the reasoning in Theorem 4.2.)

4.4 Prove that ||<a, £>| = max {||a|, ||£||} is a norm on V X V.
4.5 Prove that ||<a, £>]| = |la| + ||£]| isa norm on V X W.
4.6 Prove that ||<e, £>]| = (|24 [£[2)12is anorm on V X V.

4.7 Assuming Exercises 4.4 through 4.6, prove by induction the corresponding part
of Theorem 4.4.

4.8 Prove that if 4 is an open subset of ¥V X TV, then m1[A4] is an open subset of V.
4.9 Prove (¢, 8) that <T,S> — So T is a continuous map from

Hom(V1, V2) X Hom(Ve, V3) to Hom(Vy, V3),

where the V; are all normed linear spaces.
4.10 Let || || be any increasing norm on R™; that is, ||x|| < |ly|| if z; < y for all <.
let p; be a norm on the vector space V;fors = 1,...,n. Show that

Mell = I<pi@), ..., patas) >

isanorm on V = []f V..

1.11 Suppose that p: V — R is a nonnegative function such that p(za) = |z|p(e)
for all , @. This is surely a minimum requirement for any function purporting to be a
measure of length of a vector.

a) Define continuity with respect to p and show that Theorem 3.1 is valid.
b) Our next requirement is that addition be continuous as a map from V' X Vto V,
and we decide that continuity at 0 means that for every e there is a & such that

pla) < dand p(B) < 6 = pla+pP) < e
Argue again as in Theorem 3.1 to show that there is a constant ¢ such that
pla+B) < c(pl@) +p@) foral o, BeV.

.12 Let V and W be normed linear spaces, and let f: VX W — R be bounded and
hilinear. Let T be the corresponding linear map from V to 1W*. Prove that T is bounded
und that |T]| is the smallest bound to f, that is, the smallest b such that

|fle, B)] < blleell 18]l for all o, .

.13 Let the normed linear space V be a norm direct sum M @ N. Prove that the
subspaces M and N are closed sets in V. (The converse theorem is false.)
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4.14 Let N be a closed subspace of the normed linear space V. If A is a coset N + «,
define ||.1]] as glb {||&]|: £ € A}. Prove that ||| 4]]| is a norm on the quotient space V/N.
Prove also that if £ is the coset containing £, then the mapping &+ £ (the natural
projection w of V onto V/N) is bounded by 1.

4.15 Let V and 1" be normed linear spaces, and let 7 in Hom(V, ") have a null space
which includes the closed subspace N. Prove that the unique linear S from V/N to TV
defined by T = S o7 (Theorem 4.3 of Chapter 1) is bounded and that ||S|| = || 7.
4.16 Let N be a closed subspace of a normed linear space, and suppose that N has a
finite-dimensional complement in the purely algebraic sense. Prove that then V is the
norm direct sum M @ N. (Use the above exercise and Theorem 4.2 to prove that if P
is the projection of V onto N along M, then P is bounded.)

4.17 Let Ny and N2 be closed subspaces of the normed linear space V, and suppose
that they have the same finite codimension. Prove that N; and N2 are norm isomor-
phic. (Assume the results of the above exercise and Exercise 2.11 of Chapter 2.)

4.18 Prove that if p is a seminorm on a vector space V, then its null set is a subspace
N, p is constant on the cosets of N, and p factors: p = ¢q o m, where ¢ is a norm on V/N
and 7 is the natural projection £ £ of V onto V/N. Note that £+— £ is thus an
isometric surjection from the seminormed space V to the normed space V/N. An
isometry is a distance-preserving map.

5. INFINITESIMALS

The notion of an infinitesimal was abused in the early literature of the calculus,
its treatment generally amounting to logical nonsense, and the term fell into
such disrepute that many modern books avoid it completely. Nevertheless, it
is a very useful idea, and we shall base our development of the differential upon
the properties of two special classes of infinitesimals which we shall call “big oh”
and “little oh” (and designate ‘©’ and ‘¢’, respectively).

Originally an infinitesimal was considered to be a number that “is infinitely
small but not zero”. Of course, there is no such number. Later, an infinitesimal
was considered to be a variable that approaches zero as its limit. However, we
know that it is functions that have limits, and a variable can be considered to
have a limit only if it is somehow considered to be a function. We end up looking
at functions ¢ such that ¢(f) — 0as ¢ — 0. The definition of derivative involves
several such infinitesimals. If f’(x) exists and has the value a, then the funda-
mental difference quotient (f(z + ) — f(z))/t is the quotient of two infinites-
imals, and, furthermore, ((f(x + t) — f(x))/t) — a also approaches 0 as t — 0.
This last function is not defined at 0, but we can get around this if we wish by
multiplying through by ¢, obtaining

(f@+ 0 — f(x) — at = ¢(t),

where f(x + t) — f(z) is the “change in f” infinitesimal, at is a linear infinitesimal,
and ¢(¢) is an infinitesimal that approaches 0 faster than ¢ (i.e., ¢(t)/t — 0ast — 0).
If we divide the last equation by ¢ again, we see that this property of the infin-
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itesimal ¢, that it converges to 0 faster than ¢ as ¢t — 0, is exactly equivalent to
the fact that the difference quotient of f converges to a. This makes it clear that
the study of derivatives is included in the study of the rate at which infinites-
imals get small, and the usefulness of this paraphrase will shortly become clear.

Definition. A subset 4 of a normed linear space V is a neighborhood of a
point « if 4 includes some open ball about a. A deleted neighborhood of a is a
neighborhood of a minus the point « itself.

We define special sets of functions g, 9, and o as follows. It will be assumed
in these definitions that each function is from a neighborhood of 0 in a normed
linear space V to a normed linear space W.

fegif f(0) = 0 and f is continuous at 0. These functions are the infi-
nitesimals.

feoif f(0) = 0 and f is Lipschitz continuous at 0. That is, there exist
positive constants r and ¢ such that [[f(£)|| < ¢|/£]| on B,(0).

feoif f(0) = 0and [[f(&l/|[&] — 0as £ — 0.

When the spaces V' and W are not understood, we specify them by writing
oV, W), ete.

A simple set of functions from R to R makes the qualitative difference
between these classes apparent. The function f(z) = |z|/2is in (R, R) but not
in 0, g(r) = z is in O and therefore in g but not in o, and k(z) = z2 is in all
three classes (Fig. 3.7).

Fig. 3.7

It is clear that 4, ©, and e are unchanged when the norms on V and W are
replaced by equivalent norms.

Our previous notion of the sum of two functions does not apply to a pair
of functions f, g € 9(V, W) because their domains may be different. However,
I |- g is defined on the intersection dom f N dom g, which is still a neighborhood
of 0. Moreover, addition remains commutative and associative when extended
m this way. It is clear that then §(V, W) is almost a vector space. The only
trouble occurs in connection with the equation f+ (—f) = 0; the domain of
the function on the left is dom f, whereas we naturally take 0 to be the zero
function on the whole of V.
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*The way out of this difficulty is to identify two functions f and ¢ in g if
they are the same on some ball about 0. We define f and g to be equivalent
(f ~ ¢) if and only if there exists a neighborhood of 0 on which f = g. We then
check (in our minds) that this ¢s an equivalence relation and that we now do
have a vector space. Its elements are called germs of functions at 0. Strictly
speaking, a germ is thus an equivalence class of functions, but in practice one
tends to think of germs in terms of their representing functions, only keeping in
mind that two functions are the same as germs when they agree on a neighbor-
hood of 0.x

As one might guess from our introductory discussion, the algebraic prop-
erties of the three classes 9, 9, and o are crucial for the differential calculus.
We gather them together in the following theorem.

Theorem 5.1

1) oV, W) Co(V,W)Cd(V, W), and each of the three classes is closed
under addition and multiplication by scalars.

2) If feo(V,W), and if g€ o(W,X), then gofeo(V,X), where
dom ¢ o f = f~![dom g].

3) If either f or g above is in o, then so is ¢ © f.

4) If feo(V,W) and g € 9(V, R), then fg € o(V, W), and similarly if
f€dand g e o.

5) In (4) if either f or ¢ is in o and the other is merely bounded on a neigh-
borhood of 0, then fg € o(V, W).

6) Hom(V, W) Cc o(V, W).
7) Hom(V, W) ne(V, W) = {0}.
Proof. Let £.V, W) be the set of infinitesimals f such that || f(£)| < €[ on

some ball about 0. Then f € 0 if and only if f is in some £, and f € o if and only
if fis in every £,. Obviously, e CO C 9.

1) IF[f(®)] < af &l on B.(0) and [lg(£)l] < bl £]l on By (0), then

178 + 9(Bll < (a+b)[£]

on B,(0), where » = min {{, u}. Thus 0 is closed under addition. The
closure of o under addition follows similarly, or simply from the limit of a
sum being the sum of the limits.

2) If /(&I < all&] when [[&] < ¢ and [lg(n)] < blln]| when [[n]] < u, then

lg(FNI < Bl < abl £l

when ||¢]| < ¢t and ||f(£)] < u, and so when |£]| < 7 = min {t, u/a}.
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3) Now suppose that f €oin (2). Then, given €, we can take a = €/b and have

(AN < el

when [|£] < r. Thus gof€o. The argument when g €0 and f€ 0 is
essentially the same.
4) Given ||f(&)| < c|l£|| on B,(0) and given €, we choose & such that |g(&)] <
€/c on B;(0) and have
17(®g(O < el ¢l

when || £|| < min (3, 7). The other result follows similarly, as also does (5).
6) A bounded linear transformation is in © by definition.
7) Suppose that f& Hom(V, W) neo(V, W). Take any a = 0. Given ¢,

choose r so that ||f(£)]| < €||£]] on B,(0). Then write a as « = x£, where
l¢]l < r. (Find £ and z.) Then

7@ = [lf@Ol = |zl - 1A < lal - e [[£] = €lle].

Thus ||f(a)|| < €|le| for every positive €, and so f(a) = 0. Thus f = 0,
proving (7). O

Remark. The additivity of f was not used in this argument, only its homogeneity.
It follows therefore that there is no homogeneous function (of degree 1) in o
except 0.

Sometimes when more than one variable is present it is necessary to indicate
with respect to which variable a function isin © or o. We then write “f(£) = 0(&)”
for “f € ©”, where “0(%)” is used to designate an arbitrary element of 0.

The following rather curious lemma will be useful later in our proof of the
differentiability of an implicitly defined function. Itis understood that n = f(§),
where f is the function we are studying.

Lemma 5.1. If 7 = 0(%) + o(< £ 7>) and also n = 9(£), then n = 0(§).

Proof. The hypotheses imply that there are numbers b, r; and p such that
Inll < bll&ll + 3(I[£]l + llall) if [[&] < 71 and [[&]] + [ll] < p, and then that
[l < p/2if ||£]| is smaller than some ry. If [[£]| < r = min {ry, ro, p/2}, then
ull the conditions are met and |[n|| < b|/¢|| + 2(||£]| + ||#]]). But this is the
inequality [|n|| < (2b + 1)]|£]|, and so 7 = o(¢). O

We shall also need the following straightforward result.

Lemma 5.2. If f € 0(V, X) and g € 0(V, Y), then <f, g> €0(V, X X Y).
That is, <0(£), 0(§€) > = 0(¥).

Proof. The proof is left to the reader.
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EXERCISES

5.1 Prove in detail that the class 9(V, W) is unchanged if the norms on V and W
are replaced by equivalent norms.

5.2 Do the same for O and o.

5.3 Prove (5) of the Oo-theorem (Theorem 5.1).

5.4 Prove also that if in (4) either f or g is in O and the other is merely bounded on a
neighborhood of 0, then fg € O(V, W).

5.5 Prove Lemma 5.2. (Remember that F = <Fi, Fo> is loose language for
F = @10 F1+ 650 FF2.) State the generalization to n functions. State the o-form of
the theorem.

5.6 Given F1€ 0V, W) and Fa € 0(Va, W), define F from (a subset of) V =
ViX Vo to W by Fa1, a2) = Fi(a1) + Fa(az). Prove that I' € 0(V, W). (First
state the defining equation as an identity involving the projections 71 and 2 and not
involving explicit mention of the domain vectors a1 and a2.)

5.7 Given F; € O(Vy, W) and Fz € 0(V3, R), define precisely what you mean by
F1F5 and show that it is in o(V1 X Vg, W).

5.8 Define the class O™ as follows: f € 07 if f € 9 and || f(&)||/[/£||™ is bounded in some
deleted ball about 0. (A deleted neighborhood of « is a neighborhood minus «.) State
and prove a theorem about f -+ g when f € 0™ and g € O™

5.9 State and prove a theorem about f e g when f € 0 and g € O™,
5.10 State and prove a theorem about fg when f € 0™ and g € O™

5.11 Define a similar class o». State and prove a theorem about fo g when f € 0"
and g € o™

6. THE DIFFERENTIAL

Before considering the notion of the differential, we shall review some geometric
material from the elementary calculus. We do this for motivation only; our sub-
sequent theory is independent of the preliminary discussion.

In the elementary one-variable calculus the derivative f’(a) of a function f
at the point a has geometric meaning as the slope of the tangent line to the graph
of f at the point a. (Of course, according to our notion of a function, the graph
of fis f.) The tangent line thus has the (point-slope) equation y — fla) =
f'(a)(x — a), and is the graph of the affine map z — f’(a)(x — a) + f(a).

We ordinarily examine the nature of the curve f near the point <a, f(a) >
by using new variables which are zero at this point. That is, we express every-
thing in terms of s = y — f(a) and ¢ = x — a. This change of variables is
simply the translation <z,y> +— <t,s> = <z —a,y — fla) > in the
Cartesian plane R? which brings the point of interest <a, f(a) > to the origin.
If we picture the situation in a Euclidean plane, of which the next page is a satis-
factory local model, then this translation in R? is represented by a choice of new
axes, the {- and s-axes, with origin at the point of tangency. Since y = flx)
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if and only if s = f(a -+ t) — f(a), we see that the image of f under this trans-
lation is the function Af, defined by Af,(t) = f(a +t) — f(a). (See Fig. 3.8.)
Of course, Af, is simply our old friend the change in f brought about by changing
z from a to a -+ ¢.

dfa(t) —Afalt) =6(t)
fla+t) |

Afa(t){ T tf’(a) =dfa(t)

Fig. 3.8

Q
+

Similarly, the equation y — f(a) = f’(a)(x — a) becomes s = f’(a)t, and
the tangent line accordingly translates to the line that is (the graph of) the
linear functional I: ¢ — f’(a)t having the number f’(a) as its skeleton (matrix).
Remember that from the point of view of the geometric configuration (curve and
tangent line) in the Euclidean plane, all that we are doing is choosing the natural
axis system, with origin at the point of tangency. Then the curve is (the graph
of) the function Af,, and the tangent line is (the graph of) the linear map I

Now it follows from the definition of f’(a) that ! can also be characterized as
the linear function that approximates Af, most closely. For, by definition,

A——f‘;(t) — f'(a) as t— 0,

and this is exactly the same as saying that

B — U0

; or Afe — L€ 0.

But we know from the Oo-theorem that the expression of the function Af, as the
sum [ + o is unique. This unique linear approximation [ is called the differential
of fat a and is designated df,. Again, the differential of fat a is the linear function
l: R +— R that approximates the actual change in f, Af,, in the sense that
Af, — 1 € o; wesaw above that if the derivative f'(a) exists, then the differential
of f at a exists and has f’(a) as its skeleton (1 X 1 matrix).

Similarly, if f is a function of two variables, then (the graph of) fis a surface
in Cartesian 3-space R?® = R? X R, and the tangent plane to this surface at
<a, b, f(a, b) > has the equation z — f(a, b) = f1(a, b)(x — a) + f2(a, b)(x — b),
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where f; = 9f/dx and f, = 9f/dy. If, as above, we set
Af(a,b)(s: t) = f(a + 8, b + t) - f(ay b)

and I(s, t) = sfi(a, b) + #f2(a, b), then Af<, s> is the change in f around a, b
and [ is the linear functional on R2 with matrix (skeleton) <fi(a, b), f2(a, b) >.
Moreover, it is a theorem of the standard calculus that if the partial derivatives
of f are continuous, then again ! approximates Af<,>, With error in o. Here
also ! is called the differential of f at <a, b> and is designated df <, »> (Fig. 3.9).
The notation in the figure has been changed to show the value at t = <{;, to>
of the differential df, of fat a = <ay, as>.

ﬂa(t) —Afa(t)=0(t)

Fig. 3.9

The following definition should now be clear. As above, the local function
AF, is defined by AF,(§) = F(a+ §) — F(a).

Definition. Let V and W be normed linear spaces, and let A be a neighbor-
hood of @ in V. A mapping F: A — W is differentiable at o if there isa T
in Hom(V, W) such that AF,(§) = T(§) + o(%).

The 0o-theorem implies then that T is uniquely determined, for if also AF, =
S+ o,then T — S eco,andso T — S = 0 by (7) of the theorem. This uniquely
determined T is called the differential of F at o and is designated dF,. Thus

AF, = dF, + o,

where dF, is the unique (bounded) linear approximation to AF,.
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* Qur preliminary discussion should make it clear that this definition of the
differential agrees with standard usage when the domain space is R". However,
in certain cases when the domain space is an infinite-dimensional function space,
dF , is called the first variation of F at o. This is due to the fact that although the
early writers on the calculus of variations saw its analogy with the differential
calculus, they did not realize that it was the same subject.x

We gather together in the next two theorems the familiar rules for differ-
entiation. They follow immediately from the definition and the ©o-theorem.

It will be convenient to use the notation D,(V, W) for the set of all mappings
from neighborhoods of @ in V to W that are differentiable at «.

Theorem 6.1
1) If F € D4(V, W), then AF, € 0(V, W).

2) IfF, G € Do(V, W), then F 4 G € D,(V,W) and dF + (o =
dF, + dG,.

3) If F € D (V, R)and G € D,(V, W), then FG € Do(V, W) and d(F @) o =
F(a) dG, + dF,G(c), the second term being a dyad.

4) If F is a constant function on V, then F is differentiable and dF, = 0.
5) If F € Hom(V, W), then F is differentiable at every « € V and dF, = F.

Proof

1) AF,=dF,+ o= 0+ o= 0by (1) and (6) of the Oo-theorem.

2) It is clear that A(F + @)y = AF, + AG,. Therefore, A(F + (o =
(dFy + ©) + (dGy + 0) = (dF 4 + dG,) + o by (1) of the Go-theorem. Since
dFy + dG, € Hom(V, W), we have (2).

8) A(FQ)a(§) = F(a+ §)G(a+ §) — F(a)G(a)

= AF,(£)G(a) + F(a) AG,(£) + AF4(£) AGa(8),
as the reader will see upon expanding and canceling. This is just the usual

device of adding and subtracting middle terms in order to arrive at the form
involving the A’s. Thus

AF@)a = (dFa+ 0)G(a) + F(a)(dGa +0) + 00 = dFG(a) + F(a) dGa + 0

by the Go-theorem.
4) If AF, = 0, then dF, = 0 by (7) of the ©o-theorem.
5) AF,(§) = F(a+ §) — F(a) = F(¢). Thus AF, = F € Hom(V, W). O

The composite-function rule is somewhat more complicated.

Theorem 6.2. If F € D,(V, W) and G € Dr (W, X), then Go F € D (V, X)
and
d(G ° F)a = dGﬁ'(a) o dFa.
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Proof. We have

A(G o F)o(§) = G(F(a+ §) — G(F(a))
= G(F(a) + AF4(¥)) — G(F(a))
= AGF @ (AF(£))
= dGre (AF(8)) + o(AF4(8))
= dGr)(dFa(£)) + dGra(e(§) + 000
= (dGpuy o dF)(£) + 000+ 00 0.

Thus A(G ° F)y = dGQFy © dFy + o, and since dGpyy © dF, € Hom(V, W),
this proves the theorem. The reader should be able to justify each step taken in
this chain of equalities. [

EXERCISES

6.1 The coordinate mapping <z, y> — z from R? to R is differentiable. Why?
What is its differential?

6.2 Prove that differentiation commutes with the application of bounded linear
maps. That is, show that if #: V — W is differentiable at @ and if T € Hom(W, X),
then T o F is differentiable at « and d(T o F), = T o dF,.

6.3 Prove that F € D(V,R) and F(a) # 0= G = 1/F € D,(V, R) and

—dF

Gy = 2.
(F(@)?

6.4 Let F:V — R be differentiable at «, and let f: R — R be a function whose
derivative exists at @ = F(a). Prove that fo F is differentiable at « and that

d(fo F)a = f'(a) dF.

[Remember that the differential of f at a is simply multiplication by its derivative:
df.(h) = hf’(a).] Show that the preceding problem is a special case.

6.5 Let V and W be normed linear spaces, and let #: V — W and G: W — V be
continuous maps such that Geo F = Iy and F o G = Iwy. Suppose that F is differ-
entiable at o and that G is differentiable at 8 = F(a). Prove that

dGs = (dF,)~1.

6.6 Letf: V — R be differentiable at a. Show that g = f* is differentiable at « and
that
dge = nfr (@) dfe.

(Prove this both by an induction on the product rule and by the composite-function
rule, assuming in the second case that D,z* = nz"~L)
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6.7 Prove from the product rule by induction that if the n functions f;: V — R,

1=1,...,n,areall differentiable at «, then so is f =11t f:, and that
dfo = Zl [I}fj(a)] d(f)a
1= jFi

6.8 A monomial of degree n on the normed linear space V is a product [T I of
linear functionals (I; € V*). A homogeneous polynomial of degree n is a finite sum of
monomials of degree n. A polynomial of degree n is a sum of homogeneous polynomials
P;;i =0,...,n, where Pg is a constant. Show from the above exercise and other
known facts that a polynomial is differentiable everywhere.

6.9 Show that if F1: V — W; and F2: V — Wy are both differentiable at o, then
sois F = <Fi1,F2> from V to W = 1"y X W2 (use the injections 8; and 62).

6.10 Show without using explicit computations, but using the results of earlier
exercises instead, that the mapping F = R2 — R2 defined by

<z, y> > <(z — )2 @+ y)3>

is everywhere differentiable. Now compute its differential at <a, b>.
6.11 Let F: V — X and G: W — X be differentiable at a and B respectively, and
define K: VX W — X by

K(&n) = F(&) + G).

Show that K is differentiable at <a, 8>

a) by a direct A-calculation;
b) by using the projections 71 and 72 to express K in terms of F and G without
explicit reference to the variable, and then applying the differentiation rules.

6.12 Now suppose given F: V — R and G: W — X, and define K by
K¢ ) = F(GM).
Show that if F and @ are differentiable at @ and 3 respectively, then K is differentiable

at <a, 8> in the manner of (b) in the above exercise.

6.13 Let V and W be normed linear spaces. Prove that the map <a, 3> +— |laf ||8]|
from VX W to Risin o(V X W, R). Use the maximum norm on the product space.

Let f: VX W — R be bounded and bilinear. Here boundedness means that there
is some b such that |f(a, 8)| < blla| ||8]| for all @, 8. Prove that f is differentiable
everywhere and find its differential.

6.14 Let f and g be differentiable functions from R to R. We know from the composite-
function rule of the ordinary calculus that

(fe9'@ = f'(9(0)g (@.
Our composite-function rule says that
d(f° 9)a = dfy(@ © dga,

where df, is the linear mapping ¢ — f'(z)t. Show that these two statements are equiv-
alent.
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6.15 Prove that f(z,y) = [[<z,y>|1 = |z|+ |y| is differentiable except on the
coordinate axes (that is, df<ae,s> exists if @ and b are both nonzero).

6.16 Comparing the shapes of the unit balls for || ||; and || |, on R2, guess from the
above the theorem about the differentiability of || ||,. Prove it.

6.17 Let V and W be fixed normed linear spaces, let X be the set of all maps from
V to W that are differentiable at 0, let Xo be the set of all maps from V to W that
belong to o(V, W), and let X; be Hom(V, W). Prove that X; and Xg are vector spaces
and that Xg = Xo @ X,.

6.18 Let ' be a Lipschitz function with constant C which is differentiable at a point a.
Prove that ||dF,| < C.

7. DIRECTIONAL DERIVATIVES; THE MEAN-VALUE THEOREM

Directional derivatives form the connecting link between differentials and the
derivatives of the elementary calculus, and, although they add one more concept
that has to be fitted into the scheme of things, the reader should find them
intuitively satisfying and technically useful.

A continuous function f from an interval I C R to a normed linear space W
can have a derivative f’(z) at a point x € I in exactly the sense of the elementary
calculus:

t—0 t

The range of such a function f is a curve or arc in W, and it is conventional to
call f itself a parametrized arc when we want to keep this geometric notion in
mind. We shall also call f’(z), if it exists, the tangent vector to the arc fatx
This terminology fits our geometric intuition, as Fig. 3.10 suggests. For sim-
plicity we have set z = 0 and f(z) = 0. If f'(z) exists, we say that the param-
etrized arc f is smooth at z. We also say that f is smooth at @ = f(z), but this
terminology is ambiguous if f is not injective (i.e., if the arc crosses itself). An
arc is smooth if it is smooth at every value of the parameter.

We naturally wonder about the relationship between the existence of the
tangent vector f'(z) and the differentiability of f at z. If df, exists, then, being a
linear map on R, it is simply multiplication “by” the fixed vector « that is its
skeleton, df;(h) = hdf;(1) = ha, and we expect a to be the tangent vector,

\
\f ()

ft) _ f(0+1) —£(0)
oy t

Fig. 3.10
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f'(x). We showed this and also the converse result for the ordinary calculus in
our preliminary discussion in Section 6. Actually, our argument was valid for
vector-valued functions, but we shall repeat it anyway.

When we think of a vector-valued function of a real variable as being an
arc, we often use Greek letters like ‘N’ and ‘7’ for the function, as we do below.
This of course does not in any way change what is being proved, but is slightly
suggestive of a geometric interpretation.

Theorem 7.1. A parametrized arc 7: [a, b] — V is differentiable at x € (a, b)
if and only if the tangent vector (derivative) a = 7'() exists, in which case
the tangent vector is the skeleton of the differential, dv.(h) = hY'(z) = he.

Proof. If the parametrized arc 7: [a, b] — V is differentiable at = € (a, ), then
dv,(h) = hd¥,(1) = ha, where a = dv,(1). Since AY, — dv; € o, this gives
A7.(h) — hall/|k] — 0, and so AY,(h)/h — a as h — 0. Thus a is the derivative
7'(z) in the ordinary sense. By reversing the above steps we see that the exis-
tence of ¥'(x) implies the differentiability of v at x. U

Now let F be a function from an open set A in a normed linear space V to a
normed linear space W. One way to study the behavior of F in the neighborhood
of a point « in A is to consider how it behaves on each straight line through a.
That is, we study F by temporarily restricting it to a one-dimensional domain.
The advantage gained in doing this is that the restricted F is then simply a
parametrized arc, and its differential is simply multiplication by its ordinary
derivative.

For any nonzero ¢ € V the straight line through « in the direction £ has the
parametric representation ¢ — o« + t£. The restriction of F to this line is the
parametrized arc v:Y(f) = F(a - t£). Its tangent vector (derivative) at the
origin ¢ = 0, if it exists, is called the derivative of F in the direction & at a, or the
derivative of F with respect to £ at o, and is designated DF(a). Clearly,

Fla+ t8) — F(a)
t

DiF(e) = lim
t—0

Comparing this with our original definition of f’, we see that the tangent vector
¥'(z) to a parametrized arc Y is the directional derivative DY (z) with respect
to the standard basis vector 1 in R.

Strictly speaking, we are misusing the word “direction”, because different
vectors can have the same direction. Thus, if n = c£ with ¢ > 0, then n and £
point in the same direction, but, because D¢F () is linear in £ (as we shall see in a
moment), their associated derivatives are different: D,F(a) = cDF(a).

We now want to establish the relationship between directional derivatives,
which are vectors, and differentials, which are linear maps. We saw above that
for an are 7 differentiability is equivalent to the existence of ¥'(x) = D,Y(z).
In the general case the relationship is not as simple as it is for arcs, but in one
direction everything goes smoothly.
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Theorem 7.2. If F is differentiable at «, and if A is any smooth arc through «,
with @ = A(z), then ¥ = F o \ is smooth at x, and 7v'(z) = dF,(N(x)).
In particular, if F is differentiable at «, then every directional derivative
DF(a) exists, and DiF(a) = dF.(£).

Proof. The smoothness of 7 is equivalent to its differentiability at  and there-
fore follows from the composite-function theorem. Moreover, ¥'(z) = dv,(1) =
d(F o \);(1) = dF,(d\,(1)) = dF,(\'(x)). If X is the parametrized line
Mt) = a + t&, then it has the constant derivative £, and since o = N(0) here,
the above formula becomes 7' (0) = dF,(£). That is, D (a) = v'(0) =
dF,(¢). U

It is not true, conversely, that the existence of all the directional derivatives
DF (a) of a function F at a point « implies the differentiability of F at «. The
easiest counterexample involves the notion of a homogenous function. We say
that a function F:V — W is homogeneous if F(xt) = zF(§) for all x and &.
For such a function the directional derivative D F(0) exists because the arc
Y(t) = F(0 + t&) = tF (&) islinear, and v (0) = F(¢). Thus, all of the directional
derivatives of a homogeneous function F exist at 0 and DF(0) = F(¢). If F is
also differentiable at 0, then dFo(¢) = DF(0) = F(¢) and F = dF,. Thus a
differentiable homogeneous funciion must be linear. Therefore, any nonlinear
homogeneous function F will be a function such that D F(0) exists for all £ but
dF ; does not exist. Taking the simplest possible situation, define F: R? — R by
F(z,y) = 23/@% + y?) if <z,y> # <0,0> and F(0,0) = 0. Then

F(tz, ty) = tF(z, ),

so that F is homogeneous, but F is not linear.

However, if V is finite-dimensional, and if for each ¢ in a spanning set of
vectors the directional derivative DF (a) exists and is a continuous function of «
on an open set A, then F is continuously differentiable on A. The proof of this
fact depends on the mean-value theorem, which we take up next, but we shall
not complete it until Section 9 (Theorem 9.3).

The reader will remember the mean-value theorem as a cornerstone of the
calculus, and this is just as true in our general theory. We shall apply it in the
next section to give the proof of the general form of the above-mentioned
theorem, and practically all of our more advanced work will depend on it. The
ordinary mean-value theorem does not have an exact analogue here. Instead we
shall prove a theorem that in the one-variable calculus is an easy consequence of
the mean-value theorem.

Theorem 7.3. Let f be a continuous function (parametrized arc) from a
closed interval [a, b] to a normed linear space, and suppose that f'(¢) exists
and that [[f’(¢)|| < m for all ¢t € (a,b). Then ||f(b) — f(a)|| < m(b — a).

Proof. Fix € > 0, and let A be the set of points z € [a, b] such that
[f(z) — f@)]| £ (m+ &)@ —a)+ e
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A includes at least a small interval [a, ¢], because f is continuous at a. Set
1 =1lub A. Then ||f(}) — f(a)|| < (m + €)(I — a) + €by the continuity of fat L.
Thus l€ A4, and a < I <b. We claim that ! = b. For if I < b, then f'(])
exists and ||f'(})|| < m. Therefore, there is a & such that

Ilf@) — fD)/(x — Dl <m+e
when [r — | < &. It follows that

1fC+ 8) — f@)|l < [IfC+ &) — FOI + [IFD — f@)]
< (m+es+ m-+e(l—a)te
=m+e(l+8§—a)Fte

so that I + & € 4, a contradiction. Therefore, I = b. We thus have

1f(®) — f@)] < (m+ € —a) +¢
and, since € is arbitrary, ||f(®) — f(a)|] < m(® — a). U

The following more general version of the mean-value theorem is the form in
which it is ordinarily applied. As usual, F and G are from a subset of V to W.

Theorem 7.4. If F is differentiable in the ball B,(«), and if [|dFg| < € for
every @ in this ball, then [|[AFs(£)|| < €| £|| whenever 8 and 8 + £ are in the
ball. More generally, the same result holds if the ball B,(a) is replaced by
any convex set C.

Proof. The segment from 8 to B+ £ is the range of the parametrized arc
At) = B + t£ from [0, 1] to V. If B and B + £ are in the ball B,(e), then this
segment is a subset of the ball. Setting ¥(t) = F(8 + t£), we then have ¥'(z) =
AFgz¢(N'(z)) = dFpgiz4(£), from Theorem 7.2. Therefore, [|Y'(z)| < €[|£] on
[0, 1], and the mean-value theorem then implies that

aFs(e)] = IF@+ & — F@®)| = [Iv@) — 7(O)] < €l £ll(1 — 0) = €ll]],

which is the desired inequality. The only property of B,(«) that we have used is
that it includes the line segment joining any two of its points. This is the
definition of convexity, and the theorem is therefore true for any convex set. [I

Corollary. If @ is differentiable on the convex set C, if T € Hom(V, W),
and if ||dGs — T|| < € for all B in C, then [|[AGg(£) — T(§)|| < €//£]| when-
ever B and 8 + £ arein C.

Proof. SetF = G — T,and note that dFg = dGs — Tand AFg = AGg — T. U

We end this section with a few words about notation. Notice the reversal
of the positions of the variables in the identity (D¢F)(a) = dFq(£). This differ-
ence has practical importance. We have a function of the two variables ‘o’
und ¢ £ which we can convert to a function of one variable by holding the other
variable fixed; it is convenient technically to put the fixed variable in subscript
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position. Thus we think of dF,(£) with « held fixed and have the function dF,
in Hom(V, W), whereas in (D F)(«) we hold £ fixed and have the directional
derivative D F: A — W in the fixed direction £ as a function of «, generalizing
the notation for any ordinary partial derivative dF/dx;(a) as a function of a.
We can also express this implication of the subscript position of a variable in the
dot notation (Section 0.10): when we write D F(a), we are thinking of the value
at a of the function D F(-).

Still a third notation that we shall use in later chapters puts the function
symbol in subseript position. We write

Jr(a) = dF,.

This notation implies that the mapping F is going to be fixed through a discussion
and gets it “out of the way” by putting it in subscript position.

If F is differentiable at each point of the open set 4, then we naturally con-
sider dF to be the map a +— dF, from A to Hom(V, W). In the “J”-notation,
dF = Jp. Later in this chapter we are going to consider the differentiability
of this map at a. This notion of the second differential d®F, = d(dF), is probably
confusing at first sight, and a preliminary look at it now may ease the later
discussion. We simply have a new map G = dF from an open set A in a normed
linear space V to a normed linear space X = Hom(V, W), and we consider its
differentiability at «. If dG, = d(dF), exists, it is a linear map from V to
Hom(V, W), and there 7s something special now. Referring back to Theorem 6.1
of Chapter 1, we know that dG, = d?F, is equivalent by duality to a bilinear
mapping w from ¥V X V to W:since dGy(§) is itself a transformation in
Hom(V, W), we can evaluate it at 5, and we define w by

w(g n) = (dGa(8)) ().

The dot notation may be helpful here. The mapping « — dF, is simply
dF.,, and we have defined G by G(-) = dF.,. Later, the fact that dG,(¢) is a
mapping can be emphasized by writing it as dG,(£)(:). In each case here we
have a function of one variable, and the dot only reminds us of that fact and
shows us where we shall put the variable when indicating an evaluation. In the
case of w we have the original use of the dot, as in w(¢, -) = dG,(§).

EXERCISES

7.1 Given f: R — R such that f’(a) exists, show that the “directional derivative”
Dy f(a) has the value bf’ (a), by a direct evaluation of the limit of the difference quotient.

7.2 Let f be a real-valued function on an n-dimensional space V, and suppose that f is
differentiable at « € V. Show that the directions £ in which the derivative D¢F(e) is
zero make up an (n — 1)-dimensional subspace of V (or the whole of V). What similar
conclusions can be drawn if f maps V to a two-dimensional space W?
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7.3 a) Show by a direct argument on limits that if f and g are two functions from an
interval I C R to a normed linear space V, and if f’(z) and ¢’(z) both exist, then
(f+ 9)'(z) exists and (f + 9)'(z) = f'(x) + ¢'(2).

b) Prove the same result as a corollary of Theorems 7.1 and 7.2 and the differen-
tiation rules of Section 6.

7.4 a) Given f: I - V and g: I — W, show by a direct limit argument that if
f'(r) and ¢’(x) both exist, and if F = <f,g>:I1 — VX W, then F'(z) exists and
(@) = <f'(x), ¢'(x) >.

b) Prove the same result from Theorems 7.1 and 7.2 and the differentiation rules of
Section 6, using the exact relation FF = 610 f 4 020 g.

7.5 In the spirit of the above two exercises, state a product law for derivatives of
ares and prove it as in the (b) proofs above.

7.6 Find the tangent vector to the arc <ef,sint> at ¢t = 0; at ¢ = w/2. [Apply
lixercise 7.4(a).] What is the differential of the above parametrized arc at these two
points? That is, if f(t) = <e, sin {>, what are dfo and dfy/2?

7.7 Let F:R2 — R2 be the mapping <z,y> — <3z2y,2z2y3>. Compute the
directional derivative D«1,2%F (3, —1)

a) as the tangent vector at <3, —1> to the arc f o A, where X is the straight line
through <3, —1> in the direction <1, 2>;
b) by first computing dF <3,—1> and then evaluating at <1, 2>.

7.8 Let A and u be any two linear functionals on a vector space V. Evaluate the
product f(£) = N&)u(§) along the line £ = to, and hence compute D,f(a). Now
vvaluate f along the general line £ = ta + B, and from it compute D,f(83).

7.9 Work the above exercise by computing differentials.

7.10 If f:R™ — R is differentiable at a, we know that its differential df,, being a
lincar functional on R”, is given by its skeleton n-tuple L according to the formula

dfa(x) = (L,x) = zn: l,:l:,
1

In this context we call the n-tuple L the gradient of f at a. Show from the Schwarz
mequality (Exercise 2.3) that if we use vectors y of Euclidean length 1, then the
lirectional derivative Dyf(a) is maximum when y points in the direction of the gradient
of f.

7.11 Let W be a normed linear space, and let V be the set of parametrized arcs
A:{—1, 1] = W such that A(0) = 0 and N\’ (0) exists. Show that V is a vector space and
that A — A’(0) is a surjective linear mapping from V to W. Describe in words the
vlements of the quotient space V/N, where N is the null space of the above map.

7.12 Find another homogeneous nonlinear function. Evaluate its directional deriva-
tives DeF(0), and show again that they do not make up a linear map.

.13 Prove that if F is a differentiable mapping from an open ball B of a normed
linear space V to a normed linear space W such that dF, = 0 for every « in B, then F
in n constant function.

7.14 Generalize the above exercise to the case where the domain of F is an open set 4
with the property that any two points of 4 can be joined by a smooth arc lying in 4.
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Show by a counterexample that the result does not generalize to arbitrary open sets A
as the domain of F.

7.15 Prove the following generalization of the mean-value theorem. Let f be a con-
tinuous mapping from the closed interval [a, b] to a normed linear space V, and let g
be a continuous real-valued function on [a, b]. Suppose that f'(¢) and ¢’(t) both exist
at all points of the open interval (a, b) and that ||f' ()| < ¢’(t) on (a,b). Then

170) — f@| < g(®) — g(a).
[Consider the points z such that ||f(z) — f(a)|| £ g(z) — g(a) + e(x — a) + €]

8. THE DIFFERENTIAL AND PRODUCT SPACES

In this section we shall relate the differentiation rules to the special configurations
resulting from the expression of a vector space as a finite Cartesian product.
When dealing with the range, this is a trivial consideration, but when the domain
is a product space, we become involved with a deeper theorem. These general
product considerations will be specialized to the R™-spaces in the next section,
but they also have a more general usefulness, as we shall see in the later sections
of this chapter and in later chapters.

We know that an m-tuple of functions on a common domain, F*: A — W,
t=1,...,m, is equivalent to a single m-tuple-valued function

F:A—-Ww=]]w,
i

F () being the m-tuple {Fi(a)}T for each « € A. We now check the obviously
necessary fact that F is differentiable at « if and only if each F*is differentiable
at a.

Theorem 8.1. Given Fi: A —» W, i=1,...,mandF = <F',...,F">,
then F is differentiable at « if and only if all the functions F* are, in which
case dF, = <dFL,...,dFu>.

Proof. Strictly speaking, F = .7 8; o F*, where 6; is the injection of W; into
the product space W = JIT W, (see Section 1.3). Since each 6, is linear and
hence differentiable, with d(6;)o = 6;, we see that if each F* is differentiable at «,
then so is F, and dF, = Y™ 6; 0 dF’. Less exactly, this is the statement
dF, = <dF}, ...,dF2>. The converse follows similarly from F’= ;o F,
where 7; is the projection of [T W; onto W;. 0

Theorems 7.1 and 8.1 have the following obvious corollary (which can also
be proved as easily by a direct inspection of the limits involved). -

Lemma 8.1. If f; is an arc from [a, b] to W, for 7 = 1,...,n, and if fis
the n-tuple-valued arc f = <fi,...,f,>, then f'(z) exists if and only if
fi(x) exists for each 7, in which case f'(z) = <fi(z), ..., fi(x)>.

When the domain space V is a product space J]7 V; the situation is more
complicated. A function F(£y, ..., £,) of n vector variables does not decompose
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into an equivalent n-tuple of functions. Moreover, although its differential
dFa does decompose into an equivalent n-tuple of partial differentials {dF3},
we do not have the simple theorem that dFa exists if and only if the partial
differentials dF% all exist.

Of course, we regard a function F(&y, . . ., £,) of n vector variables as being
a function of the single n-tuple variable £ = < £y, ..., £ >, so that in principle
there is nothing new when we consider the differentiability of F. However, when
we consider a composition F o G, the inner function G' must now be an n-tuple-
valued function G = <g¢', ..., ¢">, where ¢’ is from an open subset 4 of some
normed linear space X to V;, and we naturally try to express the differential
of F o G in terms of the differentials dg®. To accomplish this we need the partial
differentials dF of F. For the moment we shall define the jth partial differential
of Fat @ = <ay,...,a,> as the restriction of the differential dFa to V;,
considered as a subspace of V = J]} V;. As usual, this really involves the
injection 6, of V; into I} V5, and our formal (temporary) definition, accordingly,
I8

dFi = dFq o 6;.
Then, since £ = <£&1,..., &,> = 2.1 6,(%;), we have

dFa(f) = 21: dFa(Es).

Similarly, since G = <g!,...,g"> = X1 6; o g°, we have

d(F o G)y = 3 dFée o dg5,
1
which we shall call the general chain rule. There is ambiguity in the “”-super-
seripts in this formula: to be more proper we should write (dF)a and d(g")y.
We shall now work around to the real definition of a partial differential.
Since
AFg o 0; = (dFa+0) 0 §; = dFa o 6; + 0 = dFi + o,

we see that dF?, can be directly characterized, independently of dFa, as follows:
dF% is the unique element T; of Hom(V;, W) such that AFa o 8; = T; + e.

That is, dF% is the differential at a; of the function of the one variable &;
ubtained by holding the other variables in F(%y, ..., £,) fixed at the values
t, = a;. This is important because in practice it is often such partial differen-
tinbility that we come upon as the primary phenomenon. We shall therefore
take this direct characterization as our definition of dF&, after which our moti-
vating calculation above is the proof of the following lemma.

Lemma 8.2. If A is an open subset of a product space V = II1 V,, and if
F: A — W is differentiable at e, then all the partial differentials dF exist
and dF:‘, = dFa o 0,‘.
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The question then occurs as to whether the existence of all the partial
differentials dFy implies the existence of dFa. The answer in general is negative,
as we shall see in the next section, but if all the partial differentials dF? exist for
each « in an open set A and are continuous functions of e, then F is continuously
differentiable on A. Note that Lemma 8.2 and the projection-injection identities
show us what dFa must be if it exists: dFi, = dFa o 6; and 2 6; 0 m; = I together
imply that dFa = 3 dFi o ;.

Theorem 8.2. Let A be an open subset of the normed linear space
V = V1 X Vg, and suppose that F: A — W has continuous partial differ-
entials dF%, g» and dF%, s> on A. Then dF <, g> exists and is continuous
on A, and dF <a,8>(§ 1) = dF ka5 () + dF%a 8> (n).

Proof. We shall use the sum norm on ¥V = V; X V,. Given €, we choose & so
that ||dF'<,,s> — dF'<a,p>|| < € for every <u,»> in the é-ball about <a, 8>
and for 7 = 1, 2. Setting
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