IN UK ONLY

5
=
S
|
o

A TREATISE ON
ADVANCED GALCULUS —

486-61252-X






A TREATISE ON
ADVANCED CALCULUS

INCLUDING THOSE PARTS OF THE THEORY OF FUNCTIONS
OF REAL AND COMPLEX VARIABLES WHICH FORM
THE LOGICAL BASIS OF THE INFINITESIMAL
ANALYSIS AND ITS APPLICATIONS TO
GEOMETRY AND PHYSICS

BY
PHILIP FRANKLIN, Pa.D.
Prof of Mathematics, M husetts Institute of Technology

DOVER PUBLICATIONS, INC.
NEW YORK



Copyright © 1940 by Philip Franklin; Copyright
© renewed 1968 by Mrs. Franklin.

All rights reserved under Pan American and Inter-
national Copyright Conventions.

Published in Canada by General Publishing Com-
pany, Ltd., 30 Lesmill Road, Don Mills, Toronto,
Ontario.

Published in the United Kingdom by Constable
and Company, Ltd., 10 Orange Street, London WC 2.

This Dover edition, first published in 1964, is an
unabridged and corrected republication of the work
first published by John Wiley and Sons, Inc, in
1940.

Standard Book Number: 486-61252-X
Library of Gongress Catalog Card Number: 61-21659

Manufactured in the United States of America
Dover Publications, Inc.
180 Varick Street
New York, N.Y. 10014



PREFACE

This treatise is addressed to a reader who has already acquired some
proficiency in the technique of the calculus and who desires a more logi-
cal treatment of the subject than is féasible in a first course. It is
suitable as a text for upper classmen, particularly those in reading or
honors classes, and for graduate students. It may also prove a con-
venience to teachers in that it includes in a single volume proofs of a
number of theorems which are usually assumed without proof in ele-
mentary textbooks.

While the book deals primarily with infinitesimal caleulus, prerequisite
parts of algebra and analysis and concepts needed for applications to
geometry and physics have not been excluded. Thus the real number
system, complex numbers, limits, continuous functions and infinite
series, products and sequences are discussed asnecessary preliminaries.
Adequate definitions of the elementary functions are also given. For
the trigonometric functions, the arithmetic definition given here is
believed to be new in detail, although in principle it goes back to
Ptolemy. Unlike definitions based on integrals or series, it avoids giv-
ing the student the impression that trigonometry is dependent on inte-
gration or function theory. The treatment permits the introduction of
the trigonometric functions at an early stage. Similarly, the Gauss
proof of the fundamental theorem of algebra makes possible the pres-
entation of the decomposition of rational functions into partial fractions
before integration.

The presentation of differentiation is complete in itself, with the
elementary derivations briefly recapitulated. This frees the work
from dependence on any particular first course. Taylor’s developments
and indeterminate forms are studied at length. Several properties of
Taylor’s series are derived later by using analytic functions. An exist-
ence theorem for implicit functions is established in connection with
partial differentiation. The statements of the relations of Jacobians to
solvability and functional dependence avoid a common error resulting
from the confusion of the term * vanishing 7 with * identically vanish-
ing.” The existence theorems for ordinary and first-order partial
differential equations, generally omitted from the formal course in
differential equations, are demonstrated, The theory of envelopes is
introduced as an application of the condition for a differential equation
to have a unique solution. Analytic functions of several complex vari-
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ables are defined, and it is shown that the total differentiation rule
applies to them.

Integration is treated in several of its aspects. The subject begins
with the integration of continuous functions and deals with integration
in explicit terms. A rough classification of those integrals which are
reducible to elementary functions is given. As among the simplest non-
elementary integrals, elliptic integrals are defined and proved to be
reducible to a combination of elementary functions and Legendre’s
three normal forms. The discussion of the Riemann integration of
bounded functions includes Lebesgue’s condition, as well as those of
Darboux and Jordan. With a view to physical applications, a simple
type of Stieltjes integral is discussed. Multiple integrals and their
relation to repeated integrals are treated. Satisfactory definitions of
arc length, surface area, and such mechanical concepts as center of
gravity and moment of inertia of continuous distributions are formu-
lated.

The discussion of the theory of functions, Fourier series, and Fourier
and Laplace transforms is facilitated by a preliminary chapter on uni-
formity and other conditions for the inversion of limit processes. So
much of the theory of functions is given as is necessary for the computa-
tion of definite integrals by the method of residues. Several of the
better known definite integrals capable of evaluation by the use of
Fourier transforms, residues, or inversion of order in repeated integrals
are given in the exercises. Because of the large number of particular
definite integrals reducible to, or related to, the Gamma function, this
function forms the subject of a special chapter. Here many asymptotic
expansions are developed, including that of Stirling. This is established
for complex, as well as for real, values of the argument.

My primary object has been to provide a sound foundation for the
methods of the calculus. However, enough theory has been included
so that the student who has thoroughly mastered this book will be well
prepared to pursue graduate work in analysis. A selected list of refer-
ences for further study, topically arranged, is given in the bibliography.

The number of problems is large. Many of them concern fairly
general forms. It is assumed that numerical problems can easily be
constructed from these forms by any reader or teacher who feels the need’
of them. Hints for their solution, in many cases amounting to the
solution in outline, are appended whenever any real difficulty is involved
or when the method of proof, using only the material of preceding
chapters, is not easy to see. A few of the problems contain important
results, and the name of the discoverer is mentioned. For instance,
Peano’s example of a continuous function nowhere differentiable and
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Fejér's example of a continuous function whose Fourier series diverges
appear as exercises,

The principal works which I have consulted in preparing the text and
the problems are included in the bibliography. I have found Hardy’s
Pure Mathematics and de la Vallée Poussin's Cours d’ Analyse especially
helpful. I also owe much to discussions with colleagues and students.

PuiLip FRANKLIN
CAMBRIDGE, Mass.

January, 1940
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A TREATISE ON
ADVANCED CALCULUS

CHAPTER 1
REAL NUMBERS

We assume that the reader is already acquainted with the rules of
reckoning for positive and negative numbers, as well as the use of such
numbers as coordinates to determine points on a line or in a plane.
However, certain abstract properties of numbers or of points in one or
more dimensions may be unfamiliar to the reader. To lead up to these
properties, we shall sketch one method of starting with the positive
integers and logically developing the complete system of positive and
negative, rational and irrational numbers.

1. Mathematical Induction. The positive integers are the numbers
used in counting, 1,2, 3,- - -. We assume that their elementary proper-
ties are known. In particular, an integer n is less than ' if, and only if,
there is a positive integer & such that n’ = n + k. In this case n’ is
greater than n.

In any finite, non-empty collection of integers there is a greatest
integer and a least integer. By non-empty, we mean that the collec-
tion contains at least one integer. By greatest integer, we mean one
greater than, or equal fo, any other integer of the collection. The defini-
tion of least integer is similar.

If each of the members of I, an infinite collection of positive integers, is
less than, or equal to, N, every integer of the collection I is equal to some
member of the finite collection 1,2, --- N Thus there is a finite collec-
tion of distinct integers, F, such that each member of I is equal to a
member of F. The greatest integer of F is the greatest of I, so that the
first collection I has a greatest integer.

Again, if an infinite collection of positive integers contains the integer
N, the integers of the collection less than, or equal to, N determine a
finite collection of distinct integers. If M is the least of these, then M
is less than, or equal to, all the integers in the collection which do not
exceed N. But, since M is less than N + 1, it is less than all those
integers in the collection which do exceed N. Thus the original infinite
collection has a least number M.

1



2 REAL 'NUMBERS [CHap. I

It follows that any non-empty collection of positive integers contains
a least integer. This has as a consequence the principle of mathematical
induction, which is often useful. We may express it as a theorem:

If the statement of a theorem involves a positive integer n, and if the
theorem for any particular value of n implies the theorem for the value
n + 1, then the truth of the theorem for the value 1 implies its truth for all
positive integral values of n.

To prove this, let S(n) denote the statement of the theorem involving
the particular value n. Then consider the collection of positive integers
m, such that the statement S(m) is false. If there is at least one integer
m, there will be a least integer in this collection. Call this integer k.
Since the theorem S(1) is true, and the theorem S(k) is false, k cannot
bel. Therefore, there is a positive integer & — 1 which precedes k in the
natural order.

Since every value m equals or exceeds k, the integer £ — 1 is not a
valuem. Therefore the statement S(k — 1) is true, and by the assumed
nature of S(n), this implies that the theorem S(k) is true. Thus we
arrive at a contradiction, which shows that the assumption that there
was at least one integer m was false. Since the statement S(n) is false
for no positive integral values, it is true for all such values.

2. Rational Numbers. In discussing the rational numbers, we take
the positive integers and the rules for their addition and multiplication
as our starting point. Division is defined as the inverse of multiplica-
tion. That is:

2oz if bw=a (1)
b
When we restrict ourselves to the positive integers, division is not always
possible since there may not be any integer z which satisfies the second
equation for a given pair of integers a and b.

To overcome this difficulty, we introduce the positive rational num-
bers. These are defined in terms of pairs of positive integers. We
define equality of two rational numbers by the rule:

~

if abt’ = a’b. @)

I
CdE
~

[~ 2~

We identify certain rational numbers with integers by regarding

€))

a =

-1 Q



Arr, 2] RATIONAL NUMBERS 3

Addition and multiplication are defined by the rules

a o ab +ab

YT T ®
and
a d ad
VYW ®)
Subtraction is defined as the inverse of addition. That is,
a da . a a
p Ty = opte=y ©
If the integer ab’ exceeds a’b, there is a rational value of z,
ab’ — a'b
T A ™

which satisfies the second equation (6), but if ab’ does not exceed a’b,
there i8 no positive rational value of  which satisfies this equation (6).

To overcome this difficulty, we introduce zero and the negative rational
numbers. The rules for combining zero with an integer in the case of
addition and multiplication are:

a+0=a a-0=0. (8)

We indicate negative integers by positive integers with a minus sign
affixed and define addition for them by such rules as

a+(=b)=a—-b=—(b—a), ete. 9)

Multiplication of positive and negative integers is defined by such rules
as

a(=b) = —ab, (—a)(—b) = ab, ete. (10)
We indicate negative rational numbers in any one of three ways,
identifying
a -a a
-()-3-% )
We also agree to consider
a -—a
— = 12

Certain rational numbers are identified with negative integers by the
convention that

—a
~a==" (13)
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We then extend the application of equations (1) through (6) to the
case where a and a’ are positive or negative integers or zero and where
b and b’ are positive or negative integers, equations (8) through (12)
being used when necessary. We thus find that the relations (8) through
(10) hold when a and b are replaced by any positive or negative rational
numbers. They will also hold if a or b is replaced by zero and the other
is replaced by a rational number, provided we extend the application of
equations (8) through (10) to the case where a or b or both are zero.
We extend equations (11) and (12) to the case where a is zero and b is
not zero, but we do not define division by zero or admit rational frac-
tions with zero as denominator.

The positive and negative rational numbers together with zero consti-
tute the rational number system. The system includes the positive and
negative integers by the conventions made in equations (3) and (13).

Addition and multiplication when applied to positive integers satisfy
the commutative laws:

a+b=>b+a, ab= ba, (14)
the associative laws:
a+ (b+c)=(a+b)+c¢c, a(be) = (ab)e, (15)
and the distributive law:
a(b+ ¢) = ab + ac. (16)

We extend these by definition to the case in which a and b are positive
or negative integers or zero. These laws then necessarily hold for any
numbers of the rational number system in view of our earlier definitions.
We note that, in the rational number system, multiplication, addition,
and subtraction are always possible. Division is possible except when
the divisor is zero.
We indicate that a rational number is positive by writing

r> 0. Qa7
This enables us to introduce order into the rational number system. We
do this by writing
¥>r or r<e’ if ¥ —r>0. (18)
In particular, if r > 0, —r < 0. Also
# > r implies —7' < —r. (19)
For any two unequal rational numbers, equation (18) determines which

precedes and which follows. However, unlike the set of integers, there
is no next greater rational number to any given one, in the way that 3 is
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the next greater integer to 2. In fact, we may always insert one rational
number, and hence as many as we please, between any two unequal
rational numbers.

The positive integers, in their natural order, are enumerated, and
any collection of numbers or objects which can be arranged in a single
sequence with a first, second, - - - , nth object is said to be enumerable.
The collection of rational numbers is enumerable, since there are only a
finite number of rational fractions a/b with |a| + [b| = N. Here [q]
means the numerical value of a, that is, a if a'is positive and —a if a is
negative. Thus we may take a series of blocks of terms, for which
N =1,2,---insuccession. The first few terms are:

0; 1; -1; 2; 12‘: -2, _%; 3, %’ —3! —%;

47 %, %} %7 '_4; _%) '—%; —%;
The terms in each block are arranged according to decreasing numerator
for the positive term, followed by the corresponding negative terms.
Any number is omitted from the sequence if an equal number has been
already listed.

3. Irrational Numbers. Irrational numbers, and operations with
irrational numbers, may be defined in terms of classes of rational num-
bers in a way similar to the definition of rational numbers in terms of
pairs of integers. We begin by defining a cut in the system of rational
numbers as a separation of the rational number system into two classes,
A and B, with the following properties:

P1. Every number in A, the left-hand class, precedes every number in B,
the right-hand class.

P2. There are some numbers in each class.

P3. Each number of the rational number system is tn one of the two
classes.

Let us denote by a or a; typical rational numbers of class A, and simi-
larly by b or b; typical elements of class B. It follows from the properties
P1 and P3 that every number less than any one a is in A. Similarly,
every rational greater than any one b is in B. There may be a rational
number, ¢, such that for all the elements a and b,

asc=sh (20)

In this case, we say that the cut is rational, and identify the rational
number ¢ with it. By the property P3, ¢ is in one of the classes. But,
by equation (20), if it is in A, it is the last number in A and if it isin B,
it is the first number in B. There cannot be two distinct rational
numbers ¢ satisfying the relation (20) for all a and b, since if ¢’ were a
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second such number, numbers between ¢ and ¢’ would have to belong to
both classes. Hence as examples of rational cuts, for each of which
¢ = 3, we may have:

zinA,ifz <3; zinB,ifz = 3, (21)
or
zinA,ifx £3; zinB,ifz > 3. (22)

However, for a given cut, there may not be any rational number ¢
which satisfies the relation (20). In this case, we say that the cut is
irrational and regard the cut itself as the definition of an irrational
number y. We define y as following all the numbers in A, and preceding
all those in B, so that for all elements a and b,

a<y<hb (23)
As an example of an irrational cut, we have

z in A if either z < 0 or 2% < 3;
zin Bif z > 0 and also 22 > 3.

‘When multiplication is defined for irrational numbers, we shall see that
the y for this cut has y? = 3, so that this cut defines V/3.

Two irrational numbers y and 3’ are equal if the elements of A are all
elements of A’ and if the elements of B are all elements of B’. If the
irrational numbers y and y’ are not equal, there are two possibilities.
Either some element of A, a is an element of B’, b’, in which case

Y <b=a<y and ¢’ <y, (24)
or some element of B, b is an element of A’, , in which case
y<b=a' <y and y<y. (25)

Thus the natural order of precedence of two irrational numbers is
determined. For a pair of numbers, one of which is rational and one of
which is irrational, the order of precedence is determined by the cut
defining the irrational number in accordance with the relation (23).

The rational and irrational numbers together make up the real number
system.

4. Real Numbers. It follows from our definition that every cut in
the system of rational numbers with the properties P1, P2, P3 determines
s single real number. It is often desirable to replace P3 by an alterna-
tive property:

P3’. Given any positive real number ¢, it is possible to find a number a of
the class A and a number b of the class B such that b — a s at most e.
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The property P3’ is of such a nature that if it holds for a particular ¢,
it will necessarily hold for any larger value of e. Thus in most applica-
tions of P3’ we shall be concerned with small values of e. Again, for
any given irrational positive number, we may find a smaller rational
positive number. Consequently, to show that P3’ holds, it will only be
necessary to show that it holds for rational values of e.

We shall now show that any cut satisfying the properties P1, P2, P3
also has the alternative property P3’. Let a1 be any element belonging
to class A for the given cut, and consider any rational value of e for
which we desire to test P3’. Form the sequence

ay, al+€, a1+2e,--°,a1+Ne. (26)

If by is any element of class B, and we take N large enough, the last
number of the sequence, a; + Ne, will exceed by and hence will itself be
a member of class B. Thus the elements of the sequence (26) will be in,
A, up to a certain one, a; + ne, and from there on they will be in B.
Consequently, the property P3’ may be satisfied for the ¢ considered by
taking

a=a,+n, b=a+(n+1e b—a=c¢ 27)

We next show that any cut satisfying the properties P1, P2, P3’
determines a single real number. Let A’ and B’ denote the two classes
for the given cut. We replace class A’ by an enlarged class A, which
contains not only all the elements of A’ but all the rational numbers less
than any number in A’  Similarly we enlarge the class B’ to a class B
containing all the rational numbers greater than any element of B’ as
well as all the elements of B’.

If the enlarged classes A and B include all the rational numbers, P3
is satisfied and a real number is defined.

If the enlarged classes include all the rational numbers except one, 7,
this number must be greater than all the elements of A and less than all
the elements of B. Consequently, if we add 7 to the class A, we have a
cut defining the rational number r.

Finally, suppose that at least two distinct rational numbers r and '
are not included in the enlarged classes A and B. Then, for any ele-
ments a of A and b of B, we would have:

a<lr, b>7, (28)
where 7’ is taken as the greater of the two. Hence
b—a>r —r (29)

gince b —a — (' —7) = (b — ') 4+ (r — a) is positive. But, since
¥’ > r, ' — ris positive and we may take it as the ¢ of the property P3’
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We thus obtain a pair of elements a of A’ and hence of A, b of B/ and
hence of B, for which

b—a=<e¢ or b—a=7r —r. (30)

As this contradiets the relation (29), the possibility of there being more
than one rational number omitted from the classes A and B is excluded.

Since a cut which has the properties P1, P2, P3 also has the property
P3’, while a cut with the properties P1, P2 P3’ may be modified to give
a cut with the property P3, we usually consider a given cut which
determines a real number as having all four properties: P1, P2, P3, P3’.
However, in constructing a cut to determine a new real number, it is
only necessary to establish P1, P2, and either P3 or P3’. We shall fre-
quently find P3’ the more convenient.

6. Operations on Real Numbers. If two given real numbers y and
y’ are defined by cuts, and if we denote typical elements so that:

asysb d=sy 2V, (31)

the sum of the numbers y and y’ is defined by requiring that:
a+d Sy+y sb+b (32)

for all choices of a, b, a’, b’.

Since the property P1 holds for the two given cuts, the equality cannot
take place in both cases in either of the relations (31). Hence for all
choices, a + a’ < b + b/, and the cut with all sums a + o’ in class A
and with all sums b + b’ in class B will satisfy the property P1.

The property P2 will obviously hold for the new cut if it holds for the
original cuts.

Finally, from property P3’ applied to the two original cuts, we may
find pairs a, b and a’, b’ such that:

b—a=<i, VV—0d =i (33)

where ¢ is any positive quantity. It follows from this that
G+b)—(@@+ad)=0—a)+ W —d)=Ze (34)

Thus the new cut satisfies the property P3’, as well as the properties
P1 and P2, and so defines a single real number.

By extending the application of the second equation (8) and the
equation (10) to real numbers, we may reduce the multiplication of real
numbers to the multiplication of positive numbers. For two positive
real numbers, we put:

ad Syy SBY, if y>0,4 >0,a>0,a >0. (35)
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By an argument similar to that used in the case of addition, we may
show that this leads to a cut satisfying the properties P1, P2, and P3’
and hence defines a single real number.

In deducing the products of negative real numbers from the products
of the corresponding positive numbers, we need a method of finding the
cut for —y when that for y is given. If a and b are typical elements of
the cut for y, as in the relation (31), —b and —a are typical elements
of the cut for —y, since:

—b< -y £ —a (36)
This relation also enables us to define subtraction! by the relation:
vV —y=9+ (-p. (37)

To define division, we first define the reciprocal of a positive number y
by using only the elements @ which are positive. We use a subscript p
to indicate the restriction to positive elements. Then we put:

1 1 1
—<-<—, if y>0, where ap > 0. (38)
by ap
We then define the reciprocal of a negative number by
1 1
—=—Z (39)
-y Yy
and finally define division by
! 1
vy <_) (40)
() Y

We may show that the cut given by the relation (38) leads to a single
real number, by showing that the properties P1, P2, and P3’ hold.

The definitions of the four fundamental operations for real numbers
given in this section are in agreement with all our earlier rules. In
particular, we continue to have subtraction the inverse of addition and
division the inverse of multiplication.

6. Cuts in the Real Number System. It is a natural extension of our
previous definition to consider as a cut in the real number system any
separation of the real numbers into two classes A and B if it satisfies
the three properties:

R1. Every number in A, the left-hand class, precedes every number in B,
the right-hand class.

R2. There are some numbers in each class.

R3. Each number of the real number system is in one of the two classes.
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These statements differ from the corresponding ones of section 3 only
in having rational replaced by real in R3 and in having the word number
mean real number instead of rational number.

We shall show that for cuts in the real number system there is always
a real number which makes the separation. We first observe that the
separation of the real numbers which satisfies the properties R1, R2, R3
involves a separation of the rational numbers which satisfies the proper-
ties P1, P2, P3. This cut defines a single real number y. If a; is any
rational element of A, and b, is any rational element of B, we shall have:

a Sy = h. (41)

Again, if @ is any irrational number less than y, there are rational
numbers between a and y. Let a, be one of them. Then

a<a <y, (42)

and since a; is in A, ¢ is also in A. Similarly, any irrational number
greater than y isin B. Thus for all real numbers a in A and b in B, and
the y defined by the relation (41), we must have:

esy=bh (43)

with one of the equality signs holding for y itself, which must be in one
class or the other, in view of the property R3.

Thus cuts in the real number system bear the same relation to that
system that rational cuts bear to the system of rational numbers. In
particular, cuts in the real number system do not lead to any new
numbers. These results are expressed in the theorem of Dedekind:

Every cut in the real number system satisfying the properties R1, R2, R3
18 effected by a unique real number.

By using the results of section 4, we may show that all the conclusions
of this section continue to hold if we replace R3 by the alternative R3’:

R3’. Given any positive real number e, it is possible to find a number a
of class A, and a number b of class B such thatb — a 1s at most e.

This statement does not differ in wording from P3 but differs slightly
in intent, since the a and b of R3’ may be irrational. However, it is not
difficult to show that if irrational values can be found, rational ones can
also be found with b — a at most ¢, for any given positive e.

7. Geometric Representation. If we take a straight line, regarded
as indefinitely extended in both directions, we may match up its points
with real numbers, coérdinates of the points, in the following way. We
select one point as an origin, which we mark zero. We take one of the
directions on the line as positive and mark a point one unit away from
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the origin in this direction with one. By repeating this operation, we
obtain the points for two, three, and the other positive integers. Points
on the opposite side of the origin, found in a similar way, are marked
with the negative integers. We may view the line from such a position
that the positive is the right-hand direction and the negative is the
left-hand direction. To suggest this image, we shall sometimes use the
terms right and left in place of positive and negative direction. By a
familiar construction of elementary geometry, a point for any rational
number may be found. We take it as a geometric assumption that
there is a single point on the line for any irrational number which sepa-
rates the points with rational coordinates in the same way that the
irrational number separates the rational numbers. We also assume
that for each point on the line there is a single real coordinate.

I 1 /] Ll L 11 1

-3 -2 -1 o 1v2 2 3
Fia. 1.

The geometric picture is helpful in following analytic arguments.
To suggest this picture, we use an abbreviated form of language. Thus
we speak of rational points when we mean points with rational codrdi-
nates. Also we use the phrase * the point a ”’ in place of the expression
“ the point with a as its codrdinate.”

By numbers z, or points z, in the interval a,b where a < b, we mean
the coordinates of the points, or the points themselves inside the interval
with the points a and b as end points. Thus the numbers z satisfy the
relation:

a<z<b (44)

When we wish to emphasize that the end points a and b are not included,
we use the phrase * points of the open interval a,b”’ to mean “ those
points & which satisfy the relation (44).”

If we wish to include the end points a and b, we use the phrase “ points
of the closed interval a,b” to mean those points z which satisfy the
relation: : '

aZz =0 : (45)

8. Limit Points. A collection of real numbers or their correspond-
ing points on a line is called a point set. A point set may have only a
finite number of points, or it may have an infinite number of points.
It may include whole intervals or, as an extreme case, consist of all the
points of the codrdinate axis.

Consider a set of points, denoted by S, and a point z, corresponding
to a real number z, which may or may not belong to 8. If every open
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interval which includes z includes at least one point of S different from
z, then z is said to be a limit point of the set. It follows from this
definition that every open interval which includes x contains an infinite
number of points of 8. For suppose that z is a limit point of S and
that the open interval a,b includes z. If y; is one point of § in the
interval, since it is distinet from z, the point z will be included in one of
the open intervals a,y; or y1,b. Thus this interval will include a second
point of 8, ¥, distinet from . We may repeat this process to obtain a
sequence of points 1, ya, y3, - * -+, each of which is distinet from z and
from all those which precede it.

A limit point of a set may or may not belong to the set. Thus the set
consisting of the numbers

1, 0.9, 0.99, 0.999, - -. (46)

has 1 as a limit point and 1 as a member of the set. On the other hand,
the set consisting of the numbers

1: %} %) %7 e (47)

has zero as a limit point, and zero does not belong to the set.

Since every open interval includes rational points, if the set S consists
of all the rational points of any open interval a,b, then all the points of
the closed interval a,b will be limit points of S.

9. Bolzano-Weierstrass Theorem. Since every open interval includ-
ing a limit point of S includes an infinite number of distinct points of S,
it follows that a set containing only a finite number of points cannot
have any limit points. A set may have an infinite number of points
without having any limit points. An example is the set consisting of
all the positive integers. That this situation cannot arise when all the
points of the set can be included in some finite interval is the content of
the Bolzano-Weierstrass theorem, which asserts that:

For every set of points lying in a finite interval and having infinitely
many elements, at least one point of the interval is a limit point.

To prove this, consider a-set S containing an infinite number of points
all of which are included in some finite interval, say the closed interval
a,b. Define a cut in the real number system in the following manner.
To class A, we assign a and all other numbers x such that, at most, a
finite number of points of S have codrdinates less than z. To class B,
we assign b and all other numbers z’ such that there is an infinite num-
ber of points of S with codrdinates less than z’,

This cut satisfies the properties R1, R2, R3 of section 6, and there-
fore, by Dedekind’s theorem, is effected by a unique real number which
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we denote by y. If, now, z,z” is any open interval which includes y,
then z is a number of class A and z’ is a number of class B. Hence
there are an infinite number of points of S with codrdinates less than
z’, of which only a finite number can have cotrdinates less than z.
Thus there must be an infinite number of points of S in the open interval
z,2’ and therefore at least one point of S distinct from y in this interval,
as demanded by the definition of limit point. Hence y is a limit point
of S.

The method of proof shows that no limit point of the set S can precede
y. If we had begun by assigning to class A all numbers such that an
infinite number of points of § had larger coérdinates, and to class B all
numbers such that at most a finite number of points of S had larger
coérdinates, we should have found a point 3" (possibly identical with y)
such that no limit point of the set could follow y’. This proves that:

For every set of poinis lying in a finile interval and having infinitely
many elements, there 1s a first limit point and also a last limit point.

10. Bounds. If a point set on a finite interval has only a finite number
of elements but has at least one element, there will necessarily be a first
point and a last point. Since these are the points of the set with the
least and the greatest codrdinates, we also refer to them as the least and
greatest elements of the set.

If a point set S on a finite interval contains an infinite number of e]e-
ments, we must have a first limit point ¥ and a last limit point y’,
shown in the preceding section. The set of points S may, or may not,
include elements to the left of y. If it does, and z; is a point of S which
precedes y, there is at most a finite number of points of S less than, or
equal to, z;, and we denote the first of these by B,. If there are no
elements of S to the left of ¥, we put B; equal to y itself. In either case,
the point B, is called the greatest lower bound of the set S.

If there are elements of S which precede y, or if B, is itself a member
of S, then B; is the least element of S. When y is not a member of 8,
and there are no elements of S which precede y, the set has no least
element. The greatest lower bound, B,, always has the property that
there are no points of S to the left of By, but any closed interval By,e
with Bj; as its left-hand end point, contains at least one point of the set,
say z. For, when B; is the least element of the set, we may take B,
itself as the point z. If the set S has no least element, there are points
of the set in Bj,¢ since Bj is then a limit point of the set and there are no
points of the set to the left of Bj.

The point B; is thus the point with greatest codrdinate having no
points of S to its left. This explains the term greatest lower bound.
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It will help the student to keep its meaning clear if he notes that lower
is the important word in the phrase and that greatest is merely a modifier.

We say that a point set S is bounded from below if there is some point
on the line to the left of all points of the set. Any point not to the right
of any point of the set is called a lower bound for the set. If a is any
lower bound for the set S, and 7 is any element of S, we may form a new
set S’ by taking all those points 2’ which arein S and also havea £ z’
z1. As §’is on a finite interval, we may find a greatest lower bound B,
for it. 'This will be the greatest number not exceeding any number z’,
and hence the greatest number not exceeding any coérdinate of a point
of S. .

We may restate these results in terms of the codrdinates of the points.

A lower bound of a set of numbers is any number not exceeding any .
number of the set.

A set of numbers is said to be bounded from below if it has a lower bound.

A set of numbers which contains at least one number and is bounded from
below has a greatest lower bound.

We define upper bounds in a similar way and may obtain a similar
result for them. Thus:

An upper bound of a set of numbers is any number not exceeded by any
number of the set.

A set of numbers is said to be bounded from above if it has an upper
bound.

A set of numbers which contains at least one number and is bounded from
above has a least upper bound.

11. Heine-Borel Covering Theorem. We proceed to discuss a theo-
rem on sets of intervals. Let I denote a set of intervals on a line.
These intervals may be infinite in number and may overlap one another.
It is immaterial for our purposes whether these intervals include their
end points or not, but for definiteness we shall think of them as open
intervals. .

Let C denote a particular closed interval a,b related to a set of inter-
vals I in the following way: For each point z of C, that is, each z such
that

a<z=<bH (48)
we may find some interval of the set I containing z as an interior point,
say the interval '

y<z<y'. (49)
We may use any interval of I for several, or even for an infinite number,
of its interior points. Again, it may be possible to find several, or even



Arrt. 11] HEINE-BOREL COVERING THEOREM 18

an infinite number, of intervals of I which will serve for a particular
point xz. We describe the relation of C to I by saying that the set of
intervals I covers the fundamental interval C.

The Heine-Borel covering theorem states that:

If an infinite set of intervals I covers a fundamental closed interval C,

then a finite number of intervals may be selected from the set I, such that
this finite subset of intervals covers the fundamental closed interval C.

To prove this theorem, we first define an accessible point of the inter-
val C as 2 point of C, ¢, such that the closed interval a,c can be covered
by a finite number of intervals selected from the set I. There are some
accessible points, for a is in some interval of I so that any point of this
interval to the right of a is accessible. If ¢ is accessible, all points
between a and ¢ will also be accessible.

=171, ] Iy
1 1 1 1 1
« C o B o

Fia. 2.

The set of accessible points is on a finite interval and therefore has a
least upper bound, Bs. Since b is an upper bound for all the points of C,
it is an upper bound for the accessible points of C. Thus either By < b
or Bz =b.

Suppose we had the first case, B < b. Then By, as a point of C, is in
some interval of the set I, say I;:

n<z<y. (50)

From the properties of B; as a least upper bound of accessible points,
there is at least one accessible point in I3, say ¢;, such that:

y1 < ¢ = By, (51)

but any point ¢p such that
By < ey <y, (52)
is not accessible.

But this is an impossible situation. For the finite set of intervals
which cover the closed interval a,¢; together with I;, covers the closed
interval a,c; so that c; is accessible. This contradiction rules out the
po-sibility By < b.

Thus B; = b, and since the argument used for c; shows that B; is
itselr accessible, we can cover the whole interval a,b with a finite num-
ber of intervals of the set I, as stated in the theorem.

We may modify the meaning of the term cover by omitting all parts
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of intervals outside the fundamental interval and merely requiring @ to
be the left end and b to be the right end of some interval of I, in this
case allowing some of the intervals of I to be closed. The proof pro-
ceeds exactly as before.

12. Closed Sets. The limit points of a set of points may, or may not
be, points of the set. We define a closed set of points as a set of points
which does contain all its limit points. Thus a closed interval is a
simple example of a closed set.

Since the greatest lower bound of any set of points is either the first
point of the set or the first limit point of the set, the greatest lower
bound of a closed set necessarily belongs to the set and is the first point
of the set. Thus a closed set on a finite interval always has a first point and
a last poind.

The theorem of the last section remains true if we replace the closed
interval C by any closed set on a finite interval. If every point of a set S
is an interior point of some interval of a set I, we say that the set of
intervals I covers the set of points 8. The modified theorem reads:

If an infinile set of intervals I covers a fundamental closed sel of points S
lying in a finite interval, then a finite number of intervals may be sclected
from the set I, such that this finite subset of intervals covers the fundamental
closed set of points S. '

Let a and b be the first and last points of the finite interval. If ¢ is
the mid-point of a,b, we may form two new closed sets S’, the points of S
in the closed interval a,c, and S’/, the points of § in the closed interval
¢,b. 1If the conclusion of the theorem held for each of these sets, it
would hold for S, since the two finite subsets of intervals, taken together
with common intervals counted once, would form a new subset covering
8. Thus, if the theorem is false for S, it must be false for S’ or 8", or
both. If both, take 8’; otherwise, take the one for which it is false.
Revise the notation, calling this set for which the theorem is false Sj,
and relabel the end points of the interval of length (b — @)/2 on which
it lies a; and b;.

- L L1 L 1
a c s b
e 3 by
a; ¢ by
Fia. 3.

Now repeat the argument, using ¢;, the mid-point of a;, by, and so
obtain a set S, on an interval as,by of length (b — a)/4. Then con-
tinue in this way. We thus obtain a sequence of sets S, on an interval
@n,bp of length (b — a)/2", for each of which the theorem is false.
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Since any finite number of points of S can be covered by a finite
subset of intervals I, using a different interval for each point, each of the
sets S, must contain an infinite number of points. Thus we may select
a point sy in 8y, s, & different point in S5, and so on. The set of points
$1, 83, * * Sy * + +, being infinite in number and all on the finite interval
a,b, have at least one limit point. Since all the s, belong to S, and the
set S is closed, this limit point belongs to S. Call it s. Then s is an
interior point of some interval of the set I, say Io:

y<s<y' (53)

If the point s were outside of any of the intervals a,,b,, an interval
containing s and not containing the interval a,,b, would not contain
any of the s, with subscripts larger than m. Thus s could not be a limit
point of the s,. This proves that s is in every one of the intervals
an,b, so that

@y £ 5 2 ba (54)

From this and the relation (53) we may prove that

Yy <a,<b, <y (55)
if n is sufficiently large. For since
b—a
bn — Qp = '—2;—’ (56)

it may be made smaller than any fixed number by taking n large enough.
Thus, in particular, for some value of n we shall have

bn—an <y —s and b, —a, <s—y. (87)
But, for this n the relation (54) holds, and it may be written:
a, <s and —b, = —s. (58)
It follows from the last two relations, (57) and (58), that:
b <y and —a,< —y or y< a,. (59)

Since b > @, equation (56) shows that b, > a,, which may be com-
bined with the relations (59) to give the relation (55).

But the relation (55) shows that the interval aa,b, is covered by the
interval I. Thus the set S, on this interval is covered by the single
interval I, so that the assumed falsity of the theorem for S, which
implied its falsity for S,, leads to a contradiction.

Thus the theorem must be true for S, and we have proved the modified
theorem.
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13. Two Dimensions, Definitions. We associate points in a plane
with pairs of real numbers by the use of two rectangular axes, an z-axis
and a y-axis. We take the point of intersection of these axes as the
origin of a real number scale on each of the lines. Then any point in
the plane has a projection on each axis, determined by a line through
the point perpendicular to the axis considered or parallel to the other
axis. If these projected points have coérdinates = and y in their respec-
tive scales, we speak of the point as having the coordinates (z,y), or
briefly refer to it as the point (z,y). Each point determines such an
ordered pair of real numbers, and conversely each such ordered pair
determines a point in the plane, by our geometric assumption on the
correspondence of numbers to points on a line.

We refer to the points whose codrdinates satisfy the inequalities

a<z<b c<y<d (60)

as the points of the open two-dimensional interval a,b;c,d and frequently
omit the phrase two-dimensional if it is implied by the context.

If we wish to include the boundary points of such a rectangular
region, we use the phrase closed two-dimensional interval a,b;c,d. Thus
this means the points whose coérdinates satisfy the relations

asz=<b c=sysd (61)

Any collection of points in the plane is called a poini sef. A point
(z,y) is a limzt point of a set S if every open two-dimensional interval of
the plane which includes (z,y) includes at least one point of S different
from (z,y). As in the one-dimensional case, it follows that the open
interval must include an infinite number of points of S.

A set of points is said to be a closed set if its limit points all belong tc
the set.

14, Two Dimensions, Theorems. We may extend the Bolzano-
Weierstrass theorem to two dimensions. The new form of the theoremis: -

For every set of poinis lying in a finite two-dvmensional interval and
having infinitely many elements, at least one point of the interval is a limat
point.

To prove this, let the two-dimensional interval a,b;c,d be one which
contains the set S. Divide this into four two-dimensional intervals by
bisecting the two one-dimensional intervals a,b at ¢ and ¢,d at f. The
four new intervals are: a,e;f,d, e,b;f,d, a,eic.f, and ebic,f. At least one
of these must contain an infinite number of points of S. If more than
one contains an infinite number of points, we take that one which occurs
first in the order listed above. Revise the notation so that the selected
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infinite set of points is S; on R;, the interval a;,b; jc;,d; of dimensions
(b—a)/2, (d-c)/2

Now treat S; as we did the original set, thus obtaining a set S,.
Continuing in this way, we shall obtain an infinite succession of sets
S, on R,, the interval an,b,icn,dn of
dimensions (b — a)/2", (d — ¢)/2". d

Next consider the points with co-
ordinates a, on the z-axis. If there fd
is an infinite number of distinct points ,
in this set, the argument used in sec-
tion 12 shows that there is a limit
point s which is contained in all the 0 a e s b
intervals a,b,. If there is only a
finite number of distinct points in this Fe. 4.
set, it follows from the method by which they were obtained that all the
a, from a certain point on will have a common value. If we call this s,
all the intervals a,,b, will contain s.

Similarly we may find a point ¢ on the y-axis which is either a limit
point of the ¢, or equal to all of them from some point on. In either
case it will be in all the intervals ¢,,d,.

The point (s,) is in all of the two-dimensional intervals R.. But
the dimensions of R, are (b — a)/2" and (d — ¢)/2" and so may each be
made less than any fixed number by taking n large enough. Conse-
quently, any given open two-dimensional interval containing the point
(s,¢) will contain some one of the R, and thus the corresponding set of
points S,. As this includes an infinite number of points of S, at least
one will be distinct from (s,t) and the point (s,t) is a limit point of S.
This proves the theorem.

We may also extend the Heine-Borel covering theorem to two dimen-
gions. In two dimensions, the phrase ¢ the set of intervals I covers the
set of points § ”” means that every point of S is an interior point of some
two-dimensional interval of the set I.

We need only consider the extension of the modified covering theorem
" of section 12, since that theorem includes the theorem of section 11 as a
special case. . The two-dimensional extension is as follows:

If an infinite set of two-dimensional intervals I covers a fundamental
closed set of points S lying in a finite two-dimensional interval, then
a finite number of intervals may be selected from the set I, such that this
finite subset of intervals covers the fundamental closed set of poinis S.

To prove it, we select a two-dimensional interval a,b;c,d which con-
tains the set S and divide it into four two-dimensional intervals by
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bisecting the two one-dimensional intervals. Then, if the theorem
were false for the set S, we could select a set from among these four for
which it was false. With revised notation, this would be a set S; on
R;, the interval a;,b;;¢1,d; of dimensions (b — a)/2, (d — ¢)/2.

By repeated bisection we should obtain a sequence of sets S, on R,,
the interval a,,bs;cs,d, of dimensions (b — a)/2", (d — ¢)/2", for each
of which the theorem was false.

As each of these S, contains an infinite number of points, we could
select a sequence of points (z»,y») from S,, each point distinct from all
those which precede it, as for the earlier proof in this section. The set of
points (Z.,y,), as an infinite set of points on a finite interval, has a limit
point (z,y), and this limit point belongs to S, since the set S is closed.
Therefore it is an interior point of some interval I of I, since I covers S.

But since all except a finite number of points (z,,y,) are inside any
interval R,, the limit point (z,y) must be in all the RB,. Since the dimen-
sions of R,, (b — a)/2" and (d — ¢)/2" can be made less than any fixed
positive quantity by taking n large enough, for some value of n the
interval I, will contain R,. Thus it will contain the corresponding set
S.. Since the set S, is covered by this single interval, this contradicts
the assumption that the theorem was false for S, from which we deduced
that the theorem was false for S,. Thus the theorem must be true for
8, and we have proved the two-dimensional covering theorem.

16. Higher Dimensions. We may consider any number, k, of one-
dimensional scales as axes belonging to 3, «2, - - - , . We continue to
use geometric language, referring to X = (z3, o, - -+, Z) as a point in
k dimensions, although we make no attempt to interpret our state-
ments graphically when k is greater than 3. The definitions of section 13
are easily extended to k dimensions. Thus the inequalities

a; <z <b;, 1=12,---,k (62)
define an open k-dimensional interval, and
aiéxi§bi, 7:=1721"'1k (63)

define a closed k-dimensional interval.

The definition of point set remains unchanged, and the definition of
limit point and covering merely require us to read k-dimensional for
two-dimensional. There is no change in the definition of limit point.

The theorems of section 14 remain true when we replace two-dimen-
sional by k-dimensional, and the methods of proof given there require
only minor modifications.

Since the intervals we have used are bounded by (k — 1)~dimensional
planes parallel to certain axes, our results seem to depend on the direc-
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tion of the axes. However, we might use in place of a set of intervals I ,
a set of k-dimensional spheres K given by

k
'21 (@ —ec)? =12 (64)
in
That the covering theorem still holds follows from the fact that any
sphere K containing X as an interior point includes some interval I
containing X as an interior point. Similarly, any interval containing X
as an interior point includes some sphere containing X as an interior
point.

For any figure or point set in k-dimensional space, we define an interior
point P as one for which all the points of some k-dimensional sphere
with P as a center are points of the figure or set. An open k-dimensional
region is a figure for which every point is an interior point. The cover-
ing theorem remains true if we use k-dimensional open regions of arbi-
trary shape in place of the covering intervals.

EXERCISES 1
1. Using mathematical induction, prove the binomial theorem (a + b)* =
a® +na*h + -+ 4 *Coa™"b + - - - + b", for integral values of n, where
_n(n-—l)(n—~2)'--(n—r+l).

"C
r 1-2:3+ eovp

2. Prove that
=n(n+1)(n+2)---(n+m)_
m-41

3. From problem 2, and an induction on m, prove that if P(z) is a polynomial
of the mth degree, the sum

P(1) + P(2) + P(3) + -+ + P(n)

will be a polynomial in = of the (m + 1)st degree.
4. Prove the rule of cancellation for rational fractions

i1p<p+1>(p+2)---(p+m—1)
p1

ma a

mb b
6. Show that every positive rational fraction may be reduced to lowest terms
or expressed as the quotient of two integers relatively prime, that is, without
common factors other than unity.
6. If a, b, @', b’, m, and n are all positive integers, and ab’ < a'b, prove that
ma + m'an mab’ + na'b
mb + nb’ (m + n)bd’

betweeng and l% .

are each a rational number intermediate in value
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7. Prove that the adopted law of signs for negative quantities is the only one
oconsistent with the properties of zero and the distributive law for products.
Hint: Use the relations b — b = 0, a(b —b) =0, ab+a(—b) =0, a(—b) = —ab.

8. Prove that, if a # 0, no value of z is defined by %, interpreted to mean

20 = g; while if a = 0, any value of z satisfies the latter relation. This is
why we do not define division by zero.

7
9. Prove that, if b and b’ are both positive integers, % < %if, and only if,

ab’ < a'b.

10. Prove that,ifa < bande¢ < d,a + ¢ <b +danda —d<b —ec.

11. Prove that, for any two positive rational numbers a and b, an integer N
can be found such that Na > b.

12. If m and n take on all positive integral values, show that the set of values
Gmn is enumerable.

18. If a(ny, ng, * - - ;1) depends on & finite number of variables, each of which
takes on all positive integral values, show that the set of values assumed is
enumerable. Hint: Use mathematioal induction and the preceding problem.

14. Assuming that no rational number has its square equal to 2, show that a
cut with the properties P1, P2, and P3 of section 3 is defined by the following
oconditions: zisin class A if 2 < Oor2? < 2, and zisin class Bif > 0 and also
zr > 2.

16, Verify that 1, 1.4 are in class A and that 2, 1.5 are in class B for the cut
defined in problem 14.

16. If p and g are relatively prime, show that the fraction p* /¢? is in its lowest
terms as written. From this, show that no positive integer, not a perfect
square, has a rational square root. Assume the theorem that every positive
integer may be factored into prime factors in only one way.

17. State and prove a result similar to that of problem 16 for the nth root of a
positive integer.

18. If the rational number z equals p /g when reduced to lowest terms and
satisfies the equation

Gn2™ + Gp1Z™ + o+ Az a0 =0,

where the coefficients are all integers, and a, and ao are both different from zero,
prove that p is a divisor of ao and ¢ is a divisor of @.. (Gauss.)

19. Show that the equation 423 — 1222 — z + 3 = 0 has three rational
roots, then find the roots. Also show that the equation 23 + 4z 4 1 = O has no
rational roots. Hint: Use the result of problem 18.

20, If 0.9, 0.99, 0.999, - - - are all in class A, and 1.1, 1.01, 1.001, - - - are all in
olass B, show that the out must be that which is identified with the rational
number 1.

21, If 0.3, 0.33, 0.333, : - - are all in class A and 0.4, 0.34, 0.334, - - - are all in
class B, show that the cut must be that which is identified with the rational
number 1 /3.
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22. For the cut which defines \/5, find two rational numbers, a in class A and
b in class B, which differ by not more than .01.

23. For the cut which defines \/’g, find two rational numbers, a in class A and
b in class B, which differ by not more than 0.1.

24, Usmg the identity bb’ — = a(b’ — a’) + b'(b — a), show that, if we
take b; — a; < e/2a,, where ay is any element of class A, and b; — a; < 5/26,,
we shall have bb; — a;a; < e. This proves that the cut for yy’ defined in
section 5 satisfies the property P3’. Assume y and y’ positive, and take g, and
a; positive.

26. Show that, if y > 0, and we take b — a < ea?, where a is any positive
element in A, we shall have 1/a — 1/b < . This proves that the cut for 1/y
defined in section 5 satisfies the property P3’.

26. Prove from the definition that y - (1/y) = 1.

27. Prove from the definition that y + (—y) = 0.

28. If |y|, the numerical value of y, is defined as y if y = 0 and —y if y < 0,
prove that |z + y| < |z| + [y].

29. Let regular polygons of n sides be inscribed in and circumsecribed to a
circle of unit radius. Call I, the perimeter of an inscribed polygon and C,, that
of a circumscribed polygon. Prove that, if we let the numbers I, be in class A,
and the numbers C, be in class B, the properties P1, P2, and P3’ are satisfied.
The number defined by this cut is 27.

30. Show that 0 and 1 are the limit points of the set ; E 3 + 1

there are no others, where n takes on all positive integral values

31. Show that every number z such that 0 < z < 1 is a limit point of the set
b /2", where = is any positive integer and b is any odd positive integer less than 2».

32. For any irrational number y let the fractional parts of the numbers ny, for
all integral values of n, form a set. This set has every valueof 2, 0 S z < 1
a3 a limit point. Hint: After N 4 1 points have been plotted, some pair, say
the fractional parts of n’y and n"y, will be at distance from one another less than
1/N. Then the set of values k(n"’ — n")y, for integral values of k, yield a set of
fractional parts on the interval 0,1 some one of which is nearer than 1/N to any
point on this interval.

33. Show that 0 is the greatest lower bound and 1 is the least upper bound for
each of the three sets described in problems 30, 31, and 32.

34. Show that the Heine-Borel theorem does not apply to the interval 0,1 if
the intervals are 1/n < z < 2/n, where n is a positive integer, but that the
theorem becomes applicable if any one interval having zero as a left end point,
e.g.,0 = z < 1/N for any value of N, is added to the set of intervals.

» and that




CHAPTER II
LIMITS OF FUNCTIONS

We are now in a position to discuss the concept of functional depend-
ence of one real variable on another. We shall develop certain results
on the approach of a variable to a limit which are related to the notion
of continuous function. We then proceed to study certain conse-
quences of the property of continuity.

16. Function. We say that y is a function of z and write y = f(z) if,
for each of a certain set of values of z, there is determined one, or more
than one, value of y. We refer to the values of z considered as the range
of the variable z. If, for each z of the range, there is exactly one value
of y, the function is single-valued. We call = the independent variable
and y the dependent variable. In this chapter, the values of = and ¥
will always be real numbers.

17. Limits. We wish now to consider certain special ranges for the
independent variable, ¢, and several other variables a, b, etc., each of
which is functionally dependent on¢. The range of ¢ will always include
an infinite number of values, which we may consider successively.

These values, taken in order, may change abruptly. For example,
the values of fmay be: 1,2,3,---or 1,3, 1 ..., Insuch cases the
values form a discrete sequence. Or ¢t may take on in order all the
points of an open interval — for example, increasing from 0 to 1 through
all the intermediate values. Or ¢ may increase from 0 through all
positive real values, or decrease from 0 through all negative real values.
In these cases the values of ¢ form a continuous sequence.

We write a; in place of a(t) to indicate that we are considering the
gingle-valued variable a for a discrete or continuous sequence of values
of ¢t taken in order. We say that:

The variable a; approaches a finite limit A if beyond a certain point in its
succession of values the numerical value of the difference between a, and
A becomes and stays smaller than any fixed posttive quantity.

We write in this case
lim a; = A. 1)

If we denote the numerical value of any real number ¢ by |c|, so that
le] = ¢if ¢ 2 0and |¢| = —cif ¢ < 0, the numerical value of the differ-
24
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ence which occurs in the definition is [A — a,]. We often use ¢ to
indicate a positive quantity which may be taken arbitrarily small.
With this symbolism we may restate the definition: lim a; = 4 if for
any positive e,

|4 — a <e¢ fort beyond ¢.. 2)

Here {. means some ¢t in the succession of values, usually dependent on
the e selected in the sense that the smaller ¢ we select, the further out we
must go in the sequence of ¢ values.

It follows at once from the definition that:

iflima, = 4, lim (A4 — a;) = 0, 3)

and conversely.

Since the condition for approach to a limit only involves the values
beyond a certain point in the values of ¢, which may be taken arbi-
trarily far out, the values of ¢ which precede any fixed ¢ in the sequence,
or the corresponding values of a;, have no effect on the limit. They may
be arbitrarily changed, or even discarded, without affecting the limit.
As an example, consider the discrete sequence of values of ¢, 1,2, 3, - - -
and the corresponding sequence of values of a;:

1 11

which approach thelimit zero. We may derive from this suchsequences as

1 1
10, 20, 30, 3 3
obtained by adding terms at the beginning,
1 1 1

obtained by omitting terms at the beginning,

or 4, 8, 12, 1 512 612’”"
obtained by changing terms at the beginning.

Snmlarly in the continuous case, if ¢ varies from 0 to 1, the limit of
a; = t?is 1, and this limit is unchanged if we consider ¢ as varying from
—1to 1, 0.9 to 1, or if we use any of these ranges with a, = 2¢3 for ¢ less
than 0.99 and a, = ¢ for ¢ greater than, or equal to, 0.99.

If a, is a constant for all the values of ¢ under consideration, a, = k,
we may also write

lim a; = k&, 4
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gince all the conditions of the definition are satisfied. That is, a con-
stant is a special case of a variable approaching a limit. Variable here
means a quantity which may, but does not necessarily, change.

18. Infinity. We say that:

The variable a, becomes positively infinite if beyond a certain point in ils
succession of values the quantity a; becomes, and stays, greater than any
fized positive quantity.

We write in this case

lim a; = + . (5)

If we indicate by N a positive quantity which may be taken arbi-
trarily large, the definition in symbols is: lima, = + if for any
positive N,
a; > N, fortbeyond ty. (6)

Note that, whereas, for a finite limit, A — a; becomes small, the
corresponding expression for an infinite limit has no meaning. Even
if we regarded + = as a number subject to some of the arithmetic opera-
tions, the value assigned to +  — a; would be +« which does not
become small. Thus a; does not “ approach infinity as a limit,” but it
is often’ convenient to read the relation (5) “ limit a; equals plus infin-
ity,” instead of making the more precise statement “ a; becomes posi-
tively infinite.”

The definition of & variable becoming negatively infinite is similar to
the above. In this case we write:

lima¢=—°°. (7)

Or we may define this as being equivalent to lim (—a;) = + .

19. Operations and Limits. If we perform any of the four funda-
mental arithmetic operations on variables approaching finite limits, we
usually obtain new variables approaching finite limits, where the limits
are obtained by the same operations. More specifically, if

lima;=A and limb = B, (8)
then it follows that:
lim (a; + b)) = 4 + B, )
lim (a; — b)) = A — B, (10)
lim ab, = AB, (11)
and,
if B0, ﬁmg-:=%° (12)
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To prove these equations, we note first that:

If a; and B, are two variables approaching zero and if p and g are each
constants, or variables numerically less than some fized quantity M, then
pay + qB: approaches zero.

For, if we select any positive quantity ¢, ; and 8, will each differ from
2ero by less than ¢/(2M) beyond a certain stage, and thereafter we shall
have:

[pae + gBi| < Iped] + |gBe| < 2Me/(2M) = e (13)
To prove the four relations, we put:
A-a=a, B—b=8. (14)
Then, if p = 1, ¢ = 1, we have:
pay+gfi=A—a;+B—~b =4+ B — (a; + by). (15)

Since this approaches zero, the relation (9) follows.
If p=1,¢g= —1, we have:

par+gfy=A—a— (B—b)=A—B— (a—b). (16)

Since this approaches zero, the relation (10) follows.
To prove the relation (11), we note that

AB - aby = A(B = b,) + bi(4 — a;) = AB+ bras. (17)

But, for ¢ beyond ¢/, |B — by < € < 1, s0 that |b)] < |B| + 1. Thus,
if we start with ¢/, we may take M as the larger of |4| and [B| + 1 and
deduce the relation (11) from the fact that the right, and hence the left,
member of equation (17) approaches zero.

To prove the relation (12), we note that

E—E=T-—(A-at)‘“—‘(3—b¢)
1 A
_Eat—B?l;‘ﬂt (18)

But ultimately, say for ¢ beyond t, |B — b < e < |B|/2, and
|b;] > |B|/2. Consequently, if we start with ¢’, we may take M as the
greater of 2/|B] and 2{A|/|B|? and so show that the final member of
equation (18) approaches zero, which proves the relation (12).

Since, as remarked at the end of section 17, a constant is a special
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case of a variable approaching a limit, we have as a special case of the
relations just proved,

lim (a; + k) = A+ k, lim (ka,) = k4,

. . at_é
if k0, hmk—k;
) Lk ok
and if B 0, hmb‘—B- (19)

By repeated application of the fundamental operations of this section,
we may treat the case of a polynomial in any number of variables, each
of which approaches a limit. The polynomial will approach a limit
whose value may be obtained by replacing each variable in the poly-
nomial by its limit. A similar result holds for the quotient of two
polynomials unless the limit of the denominator is zero.

20. Determinate Operations on Variables Becoming Infinite. In
certain cases where one of our variables becomes infinite and the other
approaches a finite limit, the result of some of the operations on the vari-
ables leads to a new variable whose behavior may be predicted. Thus

if imp, = +», lima, =4, (20)

we have:
lim— = 0, (21)

Dt :
lim (p¢ + a;) = +, lm (p: — @) = +=, (22)
lim (a; — pt) = — . (23)
Also,

if 4 >0, lim ap; = +® and limZ—:=+oo. (24)

These results follow directly from the definitions.

The correct behavior of the variable is obtained if we use the follow-
ing operations with the symbols +© and —« in calculating the
“limits ”’:

—'(+°°) = —x, —(_°°) =+, (+ ) +4 =+,
1

—;;' = 0. (25)

And,
ifd >0, A (+») =+, (26)
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21. Indeterminate Operations. Such operations as

(+») = (+o)=7 or {%=? (27)

cannot be so simply treated, since, if lim p; = +« and lim g, = + =,
the variable p; — ¢; may not approach any limit, may become positively
infinite, negatively infinite, or may approach a finite limit. For example,
as n takes on the values 1, 2, 3, - - -, all the quantities in brackets become
positively infinite, but [n2 + (—1)"n] — [n?] takes on alternately increas-
ingly large positive and negative values, [nZ 4+ (—1)"] — [#?] is alter-
nately 1 and —1, while lim {[n?] — [n]} = + «, lim {[n] — [#?]} = — =,
and lim {[n + 3] — [n]} = 3. Thus each case must be examined sepa-
rately.

We note here that,
if lima;, =4 >0, limb =0, and b > 0,
then lim%t = 4w, (28)
t

If b; does not have a fixed sign, the result may not follow, but
fflima; =40, limb =0, and b; # 0,

lim lad = 4o, 29)
|be|
Some writers use lim a;/b; = « to indicate the last relation, and we
shall find this notation convenient when dealing with complex quantities.
When dealing with real numbers, we shall generally use « as an alterna-
tive to +. Whenever the context leaves the meaning in doubt, we
shall use the more explicit notation.
As additional indeterminate operations, we have:

%=? and 0-(4+x) =72 (30)

That is, the quotient of two variables each approaching zero, or the
product of two variables one of which approaches zero and the other of
which becomes infinite, cannot be predicted in advance for all cases.

In arithmetic, the only undefined operation is division by zero. If we
regarded + « and — = as numbers, this would enable us to define the
operations of the preceding section, but we should still have all the
operations mentioned in this section as indeterminate among the unde-
fined operations. Also, in many theorems we would have to except
infinity. Therefore it is more convenient not to regard infinity as a
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number and to regard it as being an exceptional situation when we can
perform any of the arithmetic operations and so predict the behavior of
combinations of variables becoming positively or negatively infinite.

22. Inequalities and Limits. If a, is positive or zero for all values of ¢
under consideration, its limit A cannot be negative. For, from

a; =0, A=_p<0) or _A=p>0; (31')
we deduce
a;—A=Zp>0, sothat |4 —a = p, (32)

and so cannot be made arbitrarily small.
Thus A must be positive or zero, and we have:

Ifa; 20andlima; = 4, 4z0. (33)

Even if a, is always positive, no stronger conclusion can be drawn, since
the limit may still be zero.
Next suppose that

a;=b, and lima; = A, limb, = B. (34)
Then we may deduce
from a; — b; = 0,
A—B=0, hence A=B. (35)

Here again, even if we have strict inequality for all values of ¢, we may
have equality in the limit. Thus

From inequalities in variables, we may deduce corresponding relations
of inequality or equality for the limits.

These remarks still apply if numerical values are involved, an
inequality in numerical values being completely equivalent to two
inequalities, i.e.,

|z] < bis equivalentto —b <z and z <b. (36)

23. Upper and Lower Limits. Although we frequently make use of
variables which approach limits, such variables are of a very special
nature. We shall now study certain other ways in which a variable can
act.

If there is no positive number M such that the values of a; will ulti-
mately be less than M, we say that a; has the upper limit plus infintty,
and write

lim a; = + . (37)

Suppose that there are numbers M, positive or negative, such that the
values of a; are ultimately all less than M. Suppose further that not
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every real number has this property of the numbers M. Then we may
form a cut in the real number system by putting all numbers M into
the class B and all other numbers into the class A. The number which
effects the separation, Ls, is called the upper limit of a;, and we write:

lim a; = L,. (38)

If every number has the property required of M, we say that a; has the
upper limit minus infinity, and we write:

li_m A = — O, (39)

Similarly to the above, by considering real numbers m such that the
values of a; are ultimately all greater than m, we define the concept of
lower limit, and the expressions:

lima; = — 0, lima, =L;, lima; = +=, (40)

Or, we may define
lim a; = — lim(—a). (41)
Any number M, which ultimately ex-
ceeds every a;, is greater than any num-

ber m, which ultimately is less than
every a;. Consequently, when the

upper and lower limits are finite, t increases to ¢, ty
L, £ L,. (42) Fie. 5.
If the equality holds,
andif Iy = L, = A, lim a; = A. (43)

To prove this, we note that for any positive ¢, a; is ultimately less
than Ly + ¢, and ultimately greater than L; — ¢, so that in the case
under consideration we have, ultimately,

A—e<a<A+e or [A—al<e (44)
If a, has the upper limit minus infinity, every number, and in particu-

lar every numerically large negative number, will ultimately exceed a,.
It follows that

if im @, = —

limag; = —» and lima = — (45)
Similarly,
if im a; = + o,

lima; =+ and lima, = 4+ (46)



32 LIMITS OF FUNCTIONS [Crar. II

By reversing these arguments, we may show that if a; approaches a
finite limit, the upper limit and the lower limit are each equal to this
limit. If a; becomes positively infinite, a; has the upper limit plus
infinity and the lower limit plus infinity. If a, becomes negatively
infinite, a, has the upper limit minus infinity, and the lower limit minus
infinity.

Whenever the upper limit is different from the lower limit, the variable
a; cannot approach a limit, and it is said to oscillate.

If a first result implies a second one, we say that the first result is a
sufficient condition for the second. Since it is also true that we cannot
have the first result without the second, the second result is a necessary
condition for the first. When one result not only implies but is itself
implied by a second, we say that the first implies the second, and con-
versely. This form of expression is familiar to the reader from ele-
mentary geometry, where the two results were usually of equal interest.
We might also say that the first result is a necessary and sufficient con-
dition for the second or that the second is a necessary and sufficient
condition for the first. In this form of statement, we generally take
the result less interesting in itself as the condition. In these terms, we
may restate the main result of this section as a theorem:

A necessary and sufficient condition for a variable to approach a finite
limit is that the upper and lower limit of the variable be finite and equal to
one another.

It follows from the definition of upper limit and lower limit that,
if by < ¢, lim b, < lime, and lim b < lim cs. (47)

This fact may be combined with the theorem just stated to prove that:

If a; < b £ ¢ and if a: and ¢, approach the same limit L, then b, also
approaches the limit L.

It follows from the assumed inequalities that

lim g; < lim ; < lim ¢, (48)
and
lim a; £ lim b; < lim ¢,. (49)
But,
since lim a, = L, lim g, = lim a, = L, (50)
and

since lim ¢, = L, lim ¢; = fim ¢; = L. (51)
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Thus we must have from the relations (48) and (49):
limb, =L and limb =L, sothat limb =L  (52)

This proves the result stated.

24. Greatest and Least Limits. The upper and lower limits of a
variable a; are sometimes called the greatest and least limits, for a reason
which we shall proceed to study. Suppose that, from the continuous or
discrete sequence of values of a;, we have picked out some infinite,
discrete set of values, a;, where ¢ = ¢, fp, - -+, 8, « * -, such that:

lim¢ = lim ¢, = lim ¢, (53)

a condition which will automatically be fulfilled if the values of ¢ form a
discrete sequence. Let us suppose further that the subsequence a; is

such that
lim a; = A. (54)

Then, since we can find values of ¢ arbitrarily far out in the sequence
t, and hence by the condition (53) we can also find values which are
arbitrarily far out in the sequence ¢, for which

a;> A —e (55)

where ¢ is any positive number, it follows that any number M which
ultimately exceeds the a, must satisfy

M>A—¢ or M= A, (56)

since e is arbitrary. Since this is true for all M, it will also be true for
the lower bound of the M, or L., and so:

Ly =z A. (57)

In a similar way we may show that
L, < A. (58)

Thus, when L; and L, are finite, for any limit A satisfying the rela-
tions (53) and (54), we must have:

LA =L, (59)

Moreover, we may obtain each of the numbers L; and L, as a limit
by using a suitable sequence. We illustrate for L. From the definition
of Ly, all the values of a; from a certain point in the sequence on are less
than Ly + 1/n, while some of them are in excess of Ly — 1/n beyond
any point. Hence, if we take a particular discrete sequence of values
of ¢, ¢!, such that

lim ¢} = lim ¢, (60)
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we may successively find values of a; such that the nth value lies beyond
the preceding value, beyond the value of ¢, for the particular sequence
satisfying the condition (60), and such that

1 1
Lz——<a{<L2+"‘ (61)
n n

We shall then have
lim¢ =1lim¢, and lim a; = Ls. (62)

Thus we have found a sequence approaching L;. In the same way
we could find a sequence approaching L.

This shows that, when L; and Ly are both finite, there are sequences
satisfying the relations (53) and (54) and that L, and L, are among the
values of A obtained. The inequality (59) shows that L; and Lg are
respectively the least and greatest of these limits,

A similar argument shows that, if Ly = + «, a sequence a; can be
found with lim a; = + «, and likewise for the other infinite cases.

When L, = — =, all sequences a; are such that lim a; = — «, while
if Ly = + o, the relation 4 < L, is satisfied in the sense that any
finite number is < 4+ .

In this discussion, the number L; was ordinarily found by a cut and
was replaced by + « when the right-hand class was empty. Some of
the operations with + «, such as the inequality just mentioned and
those defined in section 20 are consistent with the interpretation of + «
as corresponding to a cut with the right-hand class empty.

25. Sequence Definition of Limit. The fact that L, and Ls are the
greatest and least limits obtained from discrete sequences, combined
with the condition for approach to a limit which we obtained in section
23, leads to another interpretation of a variable approaching a finite
limit. For, if every discrete sequence a; such that lim{ = lim ¢ ap-
proaches the same limit L, the greatest and least such limits L; and Ly
must each equal L, and the variable approaches the limit L. Con-
versely, when a variable approaches a limit L, since the greatest and
least limits obtained from such a sequence a; each equal L, the same is
true of every discrete sequence obtained from it with lim 7 = lim ¢,
Hence every such sequence approaches the same limit L. This leads to
an alternative definition of approach to a limit, in terms of limit of a
discrete sequence:

The variable a;, approaches a finite imit A, if for every discrete set of
values of t, 1 = tn, such that lim ¢ = Lim ¢, we have lim a; = A.

A similar statement reduces the definitions of lim a; = + «, lim a; =
— o to the corresponding situations for discrete sequences.
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For a discrete sequence, we may define

The variable a, approaches a finite limit A, if there are al most a finite
number of values of n for which

4 — a,] > ¢ (63)
for any arbitrary positive number e.

A similar definition may be made of lim @, = 4 «, where the inequal-
ity satisfied by at most a finite number of values is a, < M, for any
positive number M. We may also frame a definition of this type for
lima, = — .

These definitions are taken as fundamental by some writers, who
dislike the reference to time in the other definitions. It is useful for the
student to appreciate both definitions of limit, as some arguments seem
clearer with one and some with the other point of view.

26. The Cauchy Convergence Criterion. By using the upper and
lower limits we may establish a second condition for a variable to
approach a finite limit, known as the Cauchy convergence criterion.
The theorem is:

A necessary and sufficient condition for a variable a; to approach a finile
limit 1s that for any positive quantity 1, there is some potnt in the sequence
of values of t, t,, such that the difference of any two values of a:, each with t
beyond t,, is numerically less than 1.

In symbols, the condition is that for any positive 7,
lay, — a,] <=, if up follow ¢, in the sequence. (64)

To show that the condition is necessary, we assume that a; approaches
a finite limit A. Then

4 — a < g: if ¢ follows £ in the sequence, (65)

from the definition of a limit, where ¢, is ¢, for ¢ = 7/2.
In consequence of this, if # and v are any two values which follow £,
we may write:

14 — a <g. and |4 — a,| <g- (66)

Hence
lay — a,| = [(ay — 4) — (a, — 4)| < n. (67)

Thus we may satisfy the condition of the theorem by taking ¢, = .
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To show that the condition is sufficient, we start by assuming that
the relation (64) holds. We keep # and u fixed and let v take on any
value beyond u. Then, for any such v,

e —ay <, or @, —n<a,<a,+n (68)

Thus, in the sense of section 23, a, — 7 is a possible value of m and
a, + 7 is a possible value of M. Consequently, the upper and lower
limits of a; are both finite, and

@, —nSLi =Ly Za,+1 (69)
From this it follows that
0<L;— L =2, (70)

and, since 7 is arbitrary, we must have L; = Ly, and a limit is therefore
approached.

27. Monotonic Variables. A variable a; is increasing if each value is
greater than any preceding value. If each value is merely greater than,
or equal to, any preceding value, the variable is said to be monotonically
increasing or never-decreasing. The behavior of a monotonically
increasing variable is of a simpler nature than that of the unrestricted
variable discussed in section 23. We shall show that:

A never-decreasing variable, and in particular an increasing variable,
either approaches a finite limit or becomes positively infinite, according as
1ts values have, or have not, a finite upper bound.

If the values of the variable a; have no finite upper bound, any fixed
positive number N will ultimately be exceeded by some a;. But, since
the a; never decrease, all the a; beyond this point will also exceed N.
Hence, in this case we have

lim a; = + . 71)

If the values of the variable a; admit a finite upper bound M, a; will
have a finite upper limit L,. Hence, for any positive number ¢, we have

as < Ly + ¢, for all t beyond a certain ¢/, (72)
and
a; > Ly — ¢, for somet’’ beyond this ¢/, (73)

since both of these relations are consequences of the definition of an
upper limit.
But, since the a; never decrease,

a;> Ly — ¢, for all t beyond ¢” (74)
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so that, in view of the relation (72),
|Ly — a:l <, forall ¢ beyond ¢, (75)

As ¢ was arbitrary, we may take ¢’ as the ¢, in the original definition
of a limit and conclude that a; approaches the limit Lo.

In a similar manner, or by considering —a;, we may define what is
meant by a monotonically decreasing, or never-increasing, variable,
and prove that:

A never-increasing variable, and in particular a decreasing variable,
either approaches a finite limit or becomes negatively infinite, according as
its values have, or have not, a fintte lower bound.

28. Nested Intervals. Frequently we locate a point with desired
properties by using a sequence of intervals, each of which is contained
in the preceding. We made use of this process in section 12. Condi-
tions under which this process leads to a unique point are given by the
following theorem:

If a discrete, infinite sequence of closed intervals an,b, ts such that each
includes the following, and the length of the nth interval approaches zero as
we go out in the sequence, there is one, and only one, point which is a point
of every one of the closed intervals.

Since the nth interval includes the (n + 1)st, we have
n £ Anyy < bppr S b, (76)

Thus the left-hand end points, a,, form a monotonically increasing
sequence, with an upper bound b;, and so approach a limit A. Simi-
larly the right-hand end points, b,, form a monotonically decreasing
sequence, with a lower bound a;, and so approach a limit B. Also,
from repeated application of the inequality (76), we find:

n S Gnym < bn-}-m = by W)
If we keep n fixed in this and let m increase, we may deduce from it that
a, S A=BZhb, (78)

and hence
0SB—A4 ZLb, — an (79)

But, since the limit of the right member is zero, this shows that
B~ A =0,0or B=A. This gives a point which is in all of the inter-
vals because of the inequality (78).

That this is the only point in all of the intervals may be shown by
assuming that C is in all the intervals. Then:

an = C = by, (80)
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and from this, on taking the limits,
A=<CZB, or C=A4, since B=A. (81)

If we take one point from each of the intervals, c,, these points will
approach the point A as a limit. For, since

ap S ¢ S by, and B = A4, (82)

it follows that lim ¢, = A, by the last theorem of section 23.

29. Functions on Closed Intervals. The definition of a function
already given — y is a function of = on a range if, for every value of
in the range, one or more values of y are determined — puts little
restriction on the values of z or y. Thus,if y =1 or —1 whenz =0
and if y equals any real number whatever when z = 1, we have a funec-
tion defined for the range consisting of the two values 0 and 1. It is
two-valued at 0 and infinitely many-valued at 1.

Let us restrict our attention to functions defined for all the values of =
in some closed interval, ¢ < z < b, and single-valued for these values
of z. The requirement that the function be single-valued is not al-
ways a natural one from the standpoint of geometric applications, but
may usually be met by suitable conventions. Thus, the equation
2% + y2 = 1 must be thought of as defining two single-valued functions
in the interval —1,1, namely,

y=+V1—2> and y=—-V1-2% (83)

As an additional example of a single-valued function on an interval,
we may put
y = 1for z rationaland 0 £ z £ 1,
y = 0 for z irrational and 0 < z < 1. (84)

A simpler example is given by
y=2, 05z=<% and y=1-2, 3251 (85)
Again, y = 2® defines y as a function of z. This last function —
like the two defined by equation (83) and the one defined by (85), and,
in fact, like most of the functions met in elementary mathematics —
have graphs which can be drawn without lifting our pencil from the
paper. We proceed to give a more precise definition of this property.
30. Continuity. If y = f(z) is a single-valued function of z defined
for all z in the closed interval a,b, i.e., ¢ = £ £ b, and z¢ is a value of
in this interval, by
lim f(z) = 4, (86)

T—>Zy
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we mean that, for any positive ¢, there exists a second positive quantity
3¢ such that

|4 — f(x)] < e forallz # xo, suchthat |z — 20| < 5.  (87)

We read  — 2o as ““ = tends to x,,”” or “z ap-
proaches zo,” and shall sometimes use the notation
x — 29 by itself. i

If we wish to consider only values of z greater
than zy, we write

lim f(z) = 4, (88)

z—>zo+

L~

. z50c o @y+0,
to mean that, for any positive ¢, there exists a Frc. 6
second positive quantity d., such that T

A — f(z)] < e forallz > zo, such that z — z < é.. (89)

This is a limit on the right.
Similarly we may denote a limit on the left by

lim f(z) = 4, (90)
Z—rzg—
meaning that, for any positive ¢, there exists a second positive quantity
8¢, such that

|4 — f(z)| <e forallz <z, suchthatz — 2 <d. (91)

If the function approaches a limit A at zo in the sense of equation (86),
both the right-hand limit given by equation (88) and the left-hand limit
given by equation (90) exist and equal A. Conversely, if both these
last limits exist and are equal, the limit exists in the first sense.

The limit on the right is analogous to our earlier definition for a
continuous sequence, = here decreasing from b to zo, the range being
open at the left as the number x itself is excluded. This suggests that

we define
lim f(x) =+ (92)
2>+

to mean that, for any positive N, there exists a second positive quantity
&x, such that
f(x) > N, forallz > z, suchthat z — xp < n. (93)

The definitions of
lim f(z) = +« and limf(z) =+ (94)
T—>zy

Ty —

are quite similar, and we do not bother to state them explicitly.
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The corresponding relations for — « are also defined in an entirely
similar manner.

The Cauchy convergence criterion for a function approaching a limit
may be formulated as follows:

A necessary and sufficient condition for the existence of a finite limit for
f(z) as x — x¢ 18 that, for any positive number ¢, there exists a correspond-
ing positive number 8, such that |f(z") — f(z'")| < ¢, for any two values of
z distinct from xo and such that |’ — xo| < 6. and |z — x| < e

The necessity of the condition, where 2’ and z’’ are on either the
same or opposite sides of g, is proved exactly as in section 26. For the
sufficiency, we note that, if the condition holds for 2’ and '/ when both
are to the right of zo, the limit on the right exists by the theorem of
section 26. Call this limit B. Similarly the limit on the left exists by
the same theorem. Call it A. Then, since [f(z') — f(z”')| <¢, for
all " and z”” such that

" — 20| <8 and |z'" — x| < 8 (95)

we may take z on the left and z” on the right and let them each approach
zo. We thus deduce that

|A — B| <¢ andhence B =A4, (96)

since e is arbitrary. Thus the limit exists, as the right- and left-hand
limits exist and are equal.

We may now define continuity in terms of the notion of limit of a
function. A function, defined as having a finite value, f(z,), for a value
g, is said to be continuous at the point g if

ﬁ,_’f,’ f@) = f(zo). (C1p)

A function, defined and finite at each point of the closed interval
a S z = b is continuous throughout the closed interval a,b if the relation
(97) holds at all interior points of the interval and at the end points:

xiim+f (z) = f(a), ,liff_f(x) = f(b). (98)

Using the convergence criterion just established, and the definition of
continuity just given, we may show that:

A necessary and sufficient condition for f(z) to be conlinuous at the
point Ty is that, for any posilive number e, there exists a corresponding
positive number 5, such that |f(z") — f(z'")| < ¢, for any two values of =
such that |z’ — o] < 8., and |z"’ — 20| < b
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In this condition we have not excluded x; itself as a possible value of
z’ and z’/. In this respect the situation differs from our previous
definitions and results concerning limits, which were all independent of
the value at the place approached.

31. Bounded Functions, Oscillations. Let the function y = f(z) be
defined on the interval a,b which may be open or closed. The function
is said to be bounded on this interval, if the corresponding values of
S(z) alllie on some finite interval ¢ < y < d. By the theorems of section
10, these values of y have a least upper bound M and a greatest lower
bound m. The difference M — m is called the oscillation of the func-
tion in the interval.

If, for any fixed number ¢, there are values of z in the interval a,b
for which f(z) < ¢, the function has no lower bound. We indicate this
by writing m = — . Similarly, if for any fixed number d, there are
values of z in the interval a,b for which f(z) > d, the function has no
upper bound. In this case we write M = 4+ . In either of these
cases the function is said to be unbounded, and we say that the oscilla-
tion of the function is infinite. This is natural since, for m = — =,
M finite; m finite, M = +o; orm = —o, M = + 0w, M —mis an
operation of the type described in section 20, and M — m = 4 .

Let 2’ and 2’ be any two points of the interval a,b. Then

m=f@)<M and m=fi=") =M. (99)
From this it follows that:
f&") = fa") = M — m. (100)

Again, suppose that for all pairs of points z” and z’’ in the interval
a,b we have

@) = f&") k. (101)

Then
J&") =k @) < &)+ k. (102)
Thus, if we keep z'’ fixed and vary z’, we see that f(z) is bounded on the

interval and so has both bounds, M and m, finite. But, as M is a least
upper bound, for any positive ¢, there is some 2’ in the interval for which

f&Y>M—e (103)
Similarly, since m is a greatest lower bound, for some z’/,
f@")y <m+e (104)

It follows that
M—m—-2<fix') - f&z") <k, (105)
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and, since ¢ is arbitrary,
M—-—m<=<k (106)

The inequalities (100) and (106) show that a restriction on the size of
Ifz’) — f(z’")] leads to a restriction on the oscillation and conversely.
Consequently, we may formulate as an alternative to the condition for
continuity given at the end of the last section:

A necessary and sufficient condition for f(x) to be continuous af xo i3 that,
Jor any posttive number e, there exists a corresponding postitive number &,
such that the oscillation of f(x) in the interval |x — zo] < 8,15 less than e.

32. Uniform Continuity. Let f(x) be continuous at all points of an
open interval. Then, for each point 2y of the interval and any positive
¢, we may find a & such that the oscillation of the function in the interval
|z — zo| < & is less than ¢, in accordance with the theorem just proved.
The possible values of § will usually depend on e and z,, We may indi-
cate this by writing §(e,zy). This is an infinitely many-valued function
of the two variables, since if we have any value, any smaller positive
number will also serve. It may not be possible to find any value of §
which will serve for a given e for all z, of the open interval. Thus, if
f(xz) = 1/z and the interval is 0 < z < 1, the function is continuous at
all points of the interval. However, the oscillation of f(z) for the
interval 0 < z < 2y is infinite. Hence for any ¢, the value of 8(e,2o)
cannot be as large as zo. Thus for a particular ¢, no one value of § will
serve for all z. For, no matter what 8, we attempt to use, there are
values of zy in the interval 0 < z < 1 with 2 < &;.

On the other hand, if f(z) = 2z, 0 < < 1, we may take any value
less than e/4 as a 6(e,z) for all zp in the interval 0,1. If, as in this case,
a value of § may be found for any ¢, which does not depend on p, the
continuity is said to be uniform with respect to x for the range under
consideration.

If f(x) is continuous at all points of the closed interval a,b the rela-
tions (98) hold at the end points. It is easy to deduce from these one-
sided relations results similar to those of sections 30 and 31. In particu-
lar, for any ¢ there exists a §. such that the oscillation of f(z) in the
interval ¢ £z S a + 8, is less than e Similarly, there exists a 8.
such that the oscillation of f(z) in the interval b — &, < 2 < b is less
than e.

‘We shall now prove that:

A function, y = f(z), continuous at all poinis of the closed interval
a £ z = b, 18 uniformly continuous in that interval.
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By the theorem of section 31, for any positive number », each interior
point of the interval @ < z < b1isin some closed interval 2y — 8§ < z <
xo + 8o, in which the oscillation is less than . And, as just pointed
out, the ends a and b are end points of intervals in which the oscillation
is less than 1. Hence, by the form of the Heine-Borel covering theorem
mentioned in the remark at the end of section 11, a finite number of
intervals can be selected from these which cover the closed interval a,b.
Let all the end points p; of these covering intervals be marked, and con-
sider all the distances between two distinct end points, corresponding to
the same or different intervals. As these distances are finite in number,
there is a least such distance, say 5,,., Now consider any interval I of
width less than &, consisting entirely of points of the closed interval
a,b. Such an interval can include at most one end point of the covering
intervals, say p;. Then, if ' and z'/ are any two points of I, since =’
and p; are in the same covering interval,

[fz") = f(p1)| < m, (107)
and similarly
lf(p1) = 7(&")] < n. (108)
Thus
/") = £ < 2n, (109)
and, by the inequality (106),
M—mZ 2. (110)

Thus for any given positive quantity ¢, we may take 7 < ¢/2, and
by the above process find a 8, and hence a &y, 0 < §y < 8, such that
the oscillation of f(z) in any interval of length at most &, is less than .
In particular, we may use this §; as a 8(e,x9) for all zy of the closed
interval a,b. This establishes the uniform continuity.

33. Maximum and Minimum of a Continuous Function. A function
continuous at all points of an open interval need not be bounded, as the
example y = 1/z,0 < z < 1, discussed in the preceding section, shows.
However,

A function, continuous at all points of a closed interval, is bounded on
that tnterval.

We prove this by noting that, since the function is uniformly con-
tinuous we may find a 6 such that the oscillation of f(z) in any interval
of width less than & is less than e. We take ¢ = 1 and select N so large
that 1/N < 6. We then divide the interval a,b into N equal parts, by
points

a=p<p1<:-<py1<py=b (111)



44 LIMITS OF FUNCTIONS [Crar. II

Then, from the choice of § and N, we have

lf(Piya) — fpD)| < 1, (112)
and for any z and the greatest p; less than x, we have:
[f(z) — fpa)l < 1. (113)
It follows from the relations (112) and (113) that:
lf(@) — f(a)] <N, (114)
or
f(@) = N < f(z) <f(a) + N, (115)

for all z in the closed interval. Thus the function is bounded in that
interval. .

A bounded function on an interval always has a least upper bound M
and a greatest lower bound m, as shown in section 31. However, for a
discontinuous function, there may not be any values of z in a closed inter-
val where these bounds are taken on. Thus, if f(z) is 1 at O and 1,
and 2z for 0 < z < 1, the function is defined for the closed interval
0 <z = 1. For this interval M = 2 and m = 0, but these values do
not correspond to any values of z in the closed interval.

The same situation may arise for a function which is continuous in an
open interval, as the example f(z) = 2z for 0 < z < 1 shows, since the
values of M = 2 and m = 0 do not correspond to any values of z in the
open interval.

However, for a function which is continuous on a closed interval, the
case is different. In fact, since the least upper bound of a function on
an interval, M, is the least upper bound of the values of f(x), by section
10, it is either one of these values or a limit point of these values. In the
first case, there is a value x4 such that

fzo) = M, (116)

and the upper bound is taken on.
In the second case, we can find an infinite discrete sequence of points
z; such that

lim f(z;) = M. (117)

Since the points z; are infinite in number and on a finite interval, they
have at least one limit point z;. Let z; be any subset of the z; —
renumbered if necessary — approaching zo as a limit as j increases.
Then

limz; = zp and lim f(z;) = M. (118)



Agr. 34] INTERMEDIATE VALUES 45

So far, the argument has not made any reference either to the con-
tinuity of the function or to the fact that the interval was closed. In
fact, in both examples of bounded functions given above, we can find a
set of values approaching a limit value (any set of values approaching 1)
so that the limit of the values of f(z) on these values is M (here 2).

However, let us return to the case of a function continuous on a closed
interval. Since the interval is closed and all the z; belong to it, so
does the limiting value 5. Again, since the function is continuous at zo,

zlin:,,f (2) = f(=0), (119)

or the corresponding one-sided relation if zo is an end point.
From the relations (118) and (119), we have

fxo) = M, (120)

and the least upper bound is taken on.

When the least upper bound is taken on, it is a value of the function
greater than, or equal to, all other values, and is called a maximum.
Similarly, when the greatest lower bound is taken on, it is called a
minimum. By reasoning as above, or by considering the function
~f(z), we may deduce results for lower bounds similar to those just
proved for upper bounds. This leads to the theorem:

A function, continuous at all points of a closed interval, takes on its
mazimum value at least once at some point of the interval and also takes on
its mintmum value at least once at some point of the interval.

34. Intermediate Values. If a function is continuous throughout
the closed interval a,b and is positive at one end, say f(a) > 0, and nega-
tive at the other end of the interval, f(b) < 0, then we must have
f(z) = 0 at some point z of the open interval a,b. For, consider the
points z’ such that

f@) >0, asz =7, (121)
and denote their least upper bound by z,. Then every interval I

including z, as an interior point has a point z; to the left of zp, for which
f(z) > 0. Hence for a sequence of I; with lengths decreasing to zero,

J(@o) = lim f(z:) 2 0. (122)

But every interval I; also has a point z; such that z; = xo, for which
f(x) = 0. Hence

f(xo) = lim f(z;) = 0. (123)
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It follows from the relations (122) and (123) that
f(zo) =0, (124)

which proves our contention.
We may readily extend this to a general intermediate value property:

A function, continuous at all points of a closed interval, a < z < b,
takes on every value between f(a) and f(b) at some point of the interval
between a and b.

If, for example, h is an intermediate value and f(a) is less than f(b),
so that:
fla) < h <fb), (125)
the function
F(z) = h - J(z) (126)

is positive at a and negative at b, so that at some point x, between a and
b it is zero. Thus

0 =F(z) =k — f(z), and f(zo) = h, (127)

as we set out to prove.

The intermediate value may be taken on several times, or even an
infinite number of times. The method of preof shows that there is a
smallest value of z, on the interval. A similar argument would show
that there is a greatest value of zp on the interval.

36. Functions of Several Variables. Many of the definitions and
theorems of this chapter may be extended to functions of more than one
variable. If we have k variables and use the geometric language of
section 15, our set of k independent variables may be referred to as a
point in k dimensions, X = (21, &3, - * -, T#).

Thus, we say that y is a single-valued function of k variables and
write ¥ = f(xy, 23, -+ -, 2%) if there is one value of y associated with
each X, or set of values of the z; in the range under consideration. When
the number of variables is implied by the context, we write y = f(x;) or
y = f(X).

Let the function be defined in a k-dimensional interval including A =
(a1, ag, - - -, ax) as an interior point. Let X, = (Tn1, Tnz, * - -, Tak)
be a discrete sequence of points such that:

lim 2, = a;, limx, = as, -+, limay = a. (128)

We briefly describe this situation by saying that the points X, ap-
proach the point 4 as a limit, and we write

lim X, = 4, (129)
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as an abbreviation for the relations (128). Then, from some = on, all
the points X, will be in the interval in which the function is defined.

The function y = f(X) is continuous at A, if im f(X,) = f(4) for
every discrete sequence X, such that X, — A.

This definition is analogous to that given in section 25.

An equivalent definition is:

The function y = f(X) is continuous at A if for every positive number e
there is a corresponding positive number 8, such that

If(A) —fX) <e¢ o |zi—ai|<b,1=1,2 -,k (130)

To see the equivalence, we note that, if the second definition holds, for
any sequence X, such that X, — A, from some n on, we shall have
|a: — a;] < 8, for all the %, so that for this sequence |f(4) — f(X)| < e
from a certain point on. Hence lim f(X,) = f(4).

On the other hand, suppose the second definition failed to hold for a
limit A. Then for some ¢, we should have |f(4) — f(X)] 2 ¢, for some
X with |z; — a;] < 1/n, for all values of n. Let X; be one such point
for n = 1, and take ny such that 1/n; is less than the largest value of
|#1; — ai|. Let X5 be one point for ny for which [f(4) — f(X)]| Z ¢,
and repeat the process successively to form a sequence X;, X, « - -.

Then, we have

lim X, = 4, and [f(4) —f(Xa)| Z ¢ (131)

so that we cannot have lim f(X,) = f(4). Thus the first definition also
fails to hold for this 4.

Since the first definition cannot apply when the second one fails to
apply, if the first definition applies, the second does also. Thus each
definition implies the other, and the two are equivalent.

The two definitions apply as they stand to interior points A of any
open region of definition of the function. If the region of definition of
the function includes boundary points B, which are at the same time
limit points of sequences of points of the region, and also of some
sequences of points not belonging to the region, the definitions do not
directly apply to such points. In considering such boundary points,
we modify the definition by considering only points X, or X which
either belong to the interior of the region or are boundary points.

If we consider the 8, of the second definition for different points 4, it
will presumably be necessary to select different & for different points 4,
and, for some regions of definition, it may not be possible to find any §
which will serve for a given ¢ for all the points of the region.

Howevtr, for a closed region, that is, one which includes all its limit
points, and hence all the boundary points, we may prove that a § may be
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selected independent of A. The proof is similar to that for one dimen-
sion, where the k-dimensional Heine-Borel theorem is used in place of
that for one dimension. That is:

A function of k variables, continuous in a closed k-dimensional region,
18 uniformly continuous in that region.

From this we may deduce that such a function is bounded and takes on
its mazvmum and minimum values in the region.

There is no simple extension of the intermediate value property to
more than one dimension.

It follows from either definition of continuity that a function of
k = m + n variables, continuous in all the k variables as a set, becomes
a continuous function of the n remaining variables if m of the variables
are kept fixed. In particular, if all except one of the variables are kept
fixed, the function is a continuous function of the remaining variable.
Thus,

A continuous function of k variables is continuous in each of the vari-
ables, considered one at a time.

The converse of this is not true. Thus f(z,y) = 2zy/(x? + ¥?), for
(z,y) # (0,0) and f(0,0) = 0, is continuous in z for each value of ¥
and continuous in y for each value of z, but, since the function equals 1
for 2 = y, we may find points arbitrarily close to (0,0) for which f(z,y) —
7(0,0) = 1, and so the function is not continuous in the two variables
at (0,0).

A second interesting example is f(x,y) = 2zy?/(2® + y*), for (z,y) =
(0,0) and f(0,0) = 0, This function is zero on the z-axis and also on the
y-axis, and on any oblique straight line through the origin, y = mz,
flzy) = 2m%z/(1 + m*2%). Thus the function approaches zero as we
approach the origin on any straight line through it. However, the func-
tion is not continuous at (0,0), as we see by approaching the origin along
the parabola z = y2, for which f(x,y) = 1. This illustrates the diffi-
culty of using the definition of continuity in terms of sequences as a test,
since we must examine all possible sequences.

36. Composite Functions. Let y = f(z) be a single-valued function
of z, continuous at x = q, and let f(a) = b. Again, let u = g(y) be a
single-valued function of y, continuous at ¥ = b. Then we have:.

zli_l:y[f(x)] = ”li_lag(y) = g(d) = glf(a)]. (132)
Thus u(z) = glf(z)] (133)

is continuous at a. That is,
A continuous function of a continuous function is continuous.
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This remains true, regardless of the number of variables. That is, if
¥; = fi(z1, z2, -+ +, Tm) is continuous at z; = a;,j = 1,2, ---, m; for
t=1,2---,nandf;(a;) = b;; whilew = g(y1,¥2, * - -, ¥») is continu-
ous at y; = b;; then u is a continuous function of the m variables z;
at z; = aj;.

37. Inverse Functions. Consider the equation y = f(z), where f(z)
is a single-valued continuous function of x# and, for some interval
a < ¢ £ b, is increasing with z. That is, for any two values of z in the
interval, z; and z2,

fx2) > f(@) i 23> 21 (134)
Then, in the interval on the y-axis,
fl@) =y = f(b), (135)
the relation between x and y defines z as a function of y,
z=f"(y), (136)

which is also single-valued, continuous, and increasing.
We first note that if y; is any value satisfying the relation (135), by
the intermediate value property of section 34, there is some z; such that

1= (x) and a =z <6 137)
There cannot be two such values, since y increases with z. We put

21 =f1(y1), thus defining the function f™'(y). This function is
increasing, since by the relation (134),

if 21 = x, Y1 Z Yo (138)
Consequently,
if y1 < yo, <z or fl(y) <SM(ya). (139)

Since the values of z all lie between a and b, they are bounded, and,

by the theorem of section 27,
Em f'(y) and ILm f(y) (140)
y—n— y—ut

each exists as the limit of a bounded monotonic variable.

Let the first limit be ¢ and the second d. Then, since y = f(z) corre-
sponds to z = f~1(y), and since in the last relation z —c¢— asy -y, —,
we have in consequence of the continuity of the function f(z):

y1= lim y = lim f(z) = f(c). (141)
y—un— z—>c—
Similarly,
yi= lim y = lim f(z)=7s(d). (142)
v—ut z—>d+
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This shows that f(c) = f(d) = y1 = f(21), so that, from the relation
(134), we must have ¢ = d = z;. Thus
lim f'@y) = lim f@) =2 =), (143)
yrn— v—ut

which shows that the function f ! (y) is continuous at y;.

The function z = f~(y) is called the inverse of the function y = f(z),
and we have just proved that:

An equation y = f(x), in any interval in which the function f(z) is
continuous and increasing, defines a single-valued inverse function,
z = [~ (y) which is also continuous and increasing.

38. Implicit Functions. Let y and = be connected by an equation
f(zx,y) = 0. If this equation defines y as a function of £ which would be
written explicitly as y = F(z), then the function F(z) is said to be
defined implicitly by f(x,y) = 0. Thus, in the preceding section we
proved that for a certain type of function f(z), the equation y = f(z)
implicitly defines an inverse function, which we may write explicitly as
2 =/"1(y). A more general theorem on the existence of implicit
functions is the following:

Hypothesis: a) The function f(z,y) is a continuous function of the two
variables x and y in some two-dimensional region, R, including the point
(20,%0) as an interior point.

b) At a particular point (zo,yo), f(@oye) = 0.

¢) For each fired x = x; in the interval a < x, < b and for y a variable
in the interval ¢ < y < d, the function f(z1,y) s an increasing function of
y. Here a,b;c,d is some particular two-dimensional inerval I lying entirely
in the region R and including the point (2o,y0) as an interior point.

Conclusion: a) There is a function y = F(z), defined in some interval

2—hSz=S20+ b (144)

for which yo = F(xo), and flz,F ()] is identically zero.

b) The function y = F(x) is continuous at all points of the interval
(144).

¢) The function F(x) is uniquely defined in the sense that, for values of z
such that z,F; (z) and z,Fs(x) each lie in the interval I, any two functions
Fi(z) and Fy(x) satisfying the conditions in (a) of the conclusion must
be equal.

To prove this theorem, we begin by observing that f(zo,y) is an
increasing function of y, so that,

gince c<yo<d, and f(zo,y) =0, (145)
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we must have:
f(zo,e) = f1 <0 and f(zo,d) =f2> 0. (146)

We next consider f(z,c) as a function of z, continuous at zo. We may
find a §;, taking ¢ = —f1/2 such that,

e~z <h, o) — fod)] < (147)
which implies that
1a0) = ) — o)) +1oe) <D <0, (am)
Similarly, we may find a 95, such that,
if [z — 20| < 82, Sf(z,d) >‘[2-2- > 0.

We now take any positive number less than 8, and 63, o — a and
b — z as the h which defines the interval

Zo~h =252+ A (149)

Then, for any fixed z = z; in the interval (149), we have f(z;,y) a
continuous function of y which is negative at y = ¢, and positive for
y = d. Hence by the intermediate value P
property it is zero for some value of y, say d F()
11, between ¢ and d. Moreover, by part (c)
of the hypothesis, f(z;,y) cannot take the
same value for two distinct values of v, so ¢ ,/
that the value of y; is uniquely determined.

When applied to x, the process used to 0] & z-& z,zgth
obtain y leads to yo, by part (b) of the hy- Fia. 7
pothesis, o

Thus there is a function y; = F(z,), or y = F(z), defined in the
interval (149), for which yo = F(z) and f(z1,51) or flz,F(z)] = 0, so
that part (a) of the concluston is established.

To prove the continuity of ¥y = F(x) at any point 2’ of the interval
(149), suppose that

lim F(z) = L; and lim F(z) = Ly. (150)

>z z—>z
Since all the values of y or F(z) lie in the closed interval ¢,d, the limits

L, and L, also lie in this interval, and both are finite. ~Next select any
infinite discrete sequence of points z; distinet from z’, in the interval
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(149) such that
limz; = 2’ and lim F(z;) = Ly, (151)
by the method used in section 24.
Now consider f{z;,F (z;)]. From the way in which F(z) was obtained,
this is zero for all z;, But f(z,y) is continuous at the point (z’,L;)

which belongs to the two-dimensional interval I, or ab;c,d. Conse-
quently we have:

f@&',Ly) = lim f[z,,F ()] = 0. (152)
But flz' F(z")] =0, (153)

and since F(z') and L, each lie in the interval ¢,d in which f(z’,y) is
increasing, we must have

Ly = F(@@'). (154)
In the same way we may show that
Ly = F(@'), (155)
and it follows from the equality of Ly and L, that
zlirmn'F(:c) = F(2), (156)

so that we have proved part (b) of the conclusion.

Finally, part (c¢) follows from the fact that, if {z',Fi(z")] and
[«/,F5(z")] each lie in I, then F1(z’) and Fo(z") each lie in the interval
¢,d in which f(z’,y) is increasing, so that

fl&',F1(z")] = flz’,Fy(z')) implies Fy(z') = Fo(z').  (157)

This completes the proof of the theorem.

A similar theorem may be formulated for an implicit function of % vari-
ables, y = F(xy, 2o, - - -, 1) defined by a relation f(y, 21, 22, + - -, 2x) =
0 for values of X = (x, 22, - -+, 21) near Xo = (o1, oz, * * * » Tok)
where f(y,X) is continuous in the set of k -+ 1 variables in some
(k 4+ 1)-dimensional region including the point y,X as an interior point,
f(¥o,Xo) = 0 and in some (k + 1)-dimensional interval, for y,X the
function f(y,X) for fixed X is an increasing function of y. The conclu-
sion is that, in some k-dimensional interval including X, as an interior
point, an implicit function y = F(X) for which yo = F(Xj) is defined
in a unique way and that the implicit function is continuous in its set of
k variables.

The proof is similar to that just given for k = 1.

The theorems still apply if we replace increasing by decreasing through-
out.
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EXERCISES II

1. Prove that,as n — 4o, lim 1 /n = 0, and find a value of N such that for
n > N, the variable differs from its limit by less than 0.001.

2. Prove that,as n— 4+, lim (1 4 277) = 1, and find a value of N such
that for n > N, the variable differs from its limit by less than 0.01.

3. Prove that,asn — 4, lim 3* = + o, and find a value of N such that,
for n > N, the variable exceeds 1,000.

4. Prove directly from the definition that, if lim ¢; = 4+ and lim b, = +
and if s = a; + b, and p; = aby, lim s, = +, lim p, = 4+, and
lim s, /]h =0.

5. Find the limit, as » — + 0, of each of the following:

n?42n 44 3nd 4+ 2n 2n
® = ® 3 Omrmr

Hint: Factor out the highest power of n from each polynomial.
6. As a generalization of problem 5, show that, if b, # 0,
™ + amn™ 1 - dam+ a0 am

n—>+w0 bpn™ + bm—lnm_" +--+bn+bo B bm

7. If, in problem 6, am # 0, and b, = 0, so that the polynomial in the
numerator is of higher degree than that in the denominator, show that the limit
is 4o if the leading non-zero terms in the numerator and denominator have the
same sign, and — oo if they have opposite signs.

8. If R(n) is any rational function of n, that is the quotient of two polynomi-
als, prove that lim R(n + k) /R(n) = 1.

n—> 40

9. If, asn — 4, lima, = L, prove thatlim (a; + as +as + *++ + ax) /n
= L. Hint: Choose k so that |L — a.| < € for n > k, let s, be the sum of the
first p a., and put n = k + m. Then show that s; + mL — me < spym < Sk +
mL + me. Now divide by n = &k 4+ m, and let m — 40,

10. In each of the following cases, determine the upper limit and the lower
limit as n — 40 :

@mn, ® D @D, @14+ (=D, (e =1+ (=1)",

11. Prove that lim (a; — b;) < lim a; ~ lim ;.

12. Prove that lim @; -+ lim b, < lim (a; + b;) < lim a; + lim b,.

13. Prove thatif ay, as, - - - are any sequence of digits, each of whichis0, 1, 2, 3,
4,5,6,7,8, or 9, the decimal to » places 0.a1a2 - * * @, is an increasing bounded
function, and so approaches a limit. We indicate the limit by the infinite
decimal 0.a;a2a3- - - .

Conversely, show that any real number y, between 0 and 1 may be represented
by such a sequence. The sequence is uniquely determined unless 107y is an

integer for some integral value of n, in which case there are two sequences, one
ending in all zeros, and the other in all nines, after the nth place.
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14. Show that any integer greater than one may be used in place of 10 in the
discussion of problem 13. In particular, if the base is 2, b; is either 0 or 1, and
we have a binary representation

132!+%Z+;’_:+ = 0.gb1babs * * + ,
where the subscript after the point indicates the base.

15. Show that, if the nested intervals of section 28 which determine the
point A in all of them are obtained by repeated biseotion, as in section 12, and
the first interval is taken as unity for the cotrdinate scale, the first n steps of the
process, or the end points of the nth interval determine the first n digits b;
of the binary expansion of problem 14 for the codrdinate of the point 4. If the
codrdinate has two expansions, one ending in zeros and the other in ones, the
latter may have to be used.

16. Ify = 22, 0< z < 1, find a 8 such that [f(z”) — f(z")| < 0.1if 2" —&'| S 4.

17. Ify=1/s, 20 < z < 1, find a 5(zo) such that |[f(z”) — f(2')| = 0.1 if
|#" — 2| £ 6. Show that any &(z0) must approach zero as z, approaches
zero.

18, Prove that a polynomial in one variable is continuous for all values of z.

19. Prove that a rational funotion or quotient of two polynomials is con-
tinous for all values of z which do not make the denominator zero.

20. For any real number p, let, [p], read “ bracket p,” denote the algebraically
largest integer not exceeding p. In this problem integer means positive integer,
negative integer, or zero. Show that the function {z] and hence z — [z] is con-
tinuous for all non-integral values of z, but that each function has an oscillation
of unity at all the integral points.

21. Show that the function z — [#] defined in problem 20 has a minimum
value 0 but no maximum since its least upper bound, 1, is not taken on.

22. Let f(z) be defined on the closed interval 0,1 as zero at all irrational
points, 1 at the end points, and at any other rational value, p /g in its lowest
terms, let f(p/g) = 1/g. Show that this function has its oscillation at any
point equal to the value of the function, so that it is continuous at all the irra-
tional points. See section 150.

23. Prove that, if f() is any polynomial and has opposite signs at the ends of
an interval, the equation f(z) = 0 has at least one real root inside the interval.

24. If f(z) is any polynomial of odd degree, prove that the equation f(z) = 0
has at least one real root.

26, If f(z) is a polynomial of even degree, with leading term positive, show
that there is a value of &, Zo, for which f(zo) = m is a minimum value of the
polynomial, that is m < f(z) for all real values of z. Hence, show that the
equation f(z) = k will have a real root if, and only if, k = m.

26. A (real) number z, such that

2" + apz® o F ozt a6 =0, a0,

for some positive integral value of n and for some integral values of ax in the sense
of problem 20, is called a (real) algebraic number. Thus, at least for integral
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coefficients (but see problem 30), the numbers obtained as roots in problems 24

and 25 are algebraic numbers. The least value of n which can be used for a

given algebraic number is called its degree. Show that every algebraic number

has a degree, and that the degree is one if, and only if, the number is rational.
27. If x, the by and the ¢, are any real numbers, and

bax? + biz +bo =0 and c® 4 cix + ¢ = 0,
it follows that
box® + bz + bex =0 and cox® + 12 + ¢z = 0.

Since these are linear homogeneous equations in the four variables y, = 23,
Ys = 2% y2 = x, y1 = 1, of which the last is not zero, the coefficients must have
their determinant zero and

b2 b], bo 0
0 be b bo
(2] C1 Co 0
0 [/} [ Co

which is a polynomial in the coefficients. Discuss the generalization of this
process (Sylvester’s dialytic method) of elimination to two equations, one of the
mth and one of the nth degree.

28. Prove that, if y is a polynomial in z with rational coefficients, and « is an
algebraic number, then y is an algebraic number. Hint: Eliminate z by the
method of problem 27.

29. By the method of problem 28, or otherwise, find an algebraic equation with
integral coefficients satisfied by y = 1 4 213 4 41/3,

80. Prove that, if a real number x satisfies an equation

Y2+ Yn-r2" 1o by + 9o =0, y.7#0,

with algebraio numbers for coefficients, then z is an algebraic number. Hint:
Write the equation satisfied by yo with integral coefficients and eliminate y, as
in problem 27. Similarly, eliminate the other coefficients in turn.

31. If  and y are algebraic numbers, then z + y,  — y, z /y, and zy are all
algebraic numbers. Hint: Use problem 30 for the first three, and for the last
after proving that 1 /y is algebraic if y is an algebraic number.

32. Find equations with integral coefficients satisfied by

V2 - -
\/5—\/5,——’:1: where x’—\/3:c+\/2=0,
: V341

by the method of problems 30 and 31 or otherwise.

33. With each algebraic equation with integral coefficients we may associate
a number N, the height, where N = n + |a,| + |an_1] + -+ + |a1| + |aol,
the degree plus the sum of the numerical value of the coefficients. Show that
there is only a finite number of algebraic equations of the type considered with a
given height, and use this fact to show that the set of real algebraic numbers are
enumerable. Compare problem 13 of Exercises I.
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34. Suppose that the algebraic numbers between 0 and 1 are enumerated, and
the nth number has a decimal representation 0.@n10n2x3* + * a8 in problem 13.
Now form a number 0.cycec3* - + , where ¢o = 5if ann = 4 and ¢, = 4if an, # 4.
Since this number contains no zeros or nines, it is not a second representation of
any terminating decimal in the list. And, since it differs from the nth number
in the nth place, it is not a number in the list. Thus there are real numbers
which are not algebraic. Such numbers are called transcendental. Extend this
argument to show that no enumerated list can contain all the numbers between
0 and 1, so that this set of real numbers can not be enumerated. (Cantor.)

36. Peano’s Space-filling Arc. Let ¢ be a parameter and « and y the coordi-
nates of a point of the unit square. As in problem 14, with the base 3, let us find
infinite expressions for these numbers: ¢ = 0.30182a3* * +, * = 0.3bibzbs « « *,
and y = 0.5cice¢5 - - -, where, for example, the first expression means a;/3 +
a2/3® + a3/3® +--+. Thus all the az, bi, and c; are 0, 1, or 2. Let these
numbers be associated in the following manner. We put b1 = a1, bz = a3 or
2 — a3, according as ay is even or odd; bs = a5 or 2 — as, according as a2 + a4
is even or odd; and so on, b, = @241 OF 2 — d2n_1, according as as +as+ -
+ aon_2is even or odd. Similarly, let ¢; = ag or 2 — as, according as g, is even
or odd; ¢z = a4 or 2 — a4, according as a1 -+ a3 is even or odd; and so on, ¢, =
@2, OT 2 — ag, according as a; + as + -+ * =+ azq_1is even or odd.

Show that this defines  and y as continuous functions of ¢, for 0 S t = 1.
Also, show that, for any two values of = and y each between 0 and 1, their
expressions in the base three uniquely determine the digits ai, az, as - * * in succes-
sion and so a value of &. When the value of one or both codrdinates is a termi-
nating expression, the expression ending in twos and that ending in zeros, will
not lead to the same value of ¢.

The functions z(t) and y(¢) of this problem, being continuous functions, may
be thought of as the parametric equations of an arc, which passes through every
point of the unit square. (Peano.)



CHAPTER III

EXPONENTIAL, LOGARITHMIC, AND TRIGONOMETRIC
FUNCTIONS

The basic elementary functions are z*, p® and its inverse function
log, z, and the trigonometric functions and their inverse functions.
We give here a constructive arithmetic approach to these functions.

We show that the constants in certain fundamental relations involv-
ing limits are simplified if we take a special number e as our exponential
base and as the base to which we take logarithms. We give a simple
set of properties which characterize the exponential function ¢* and a
simple set of properties which characterize the logarithmic function
log z, when we take e as our base.

Similarly, we show that a fundamental hmltmg relation involving the
sine function is simplified by a system of units, radian measure, related
to the special number . We give a simple set of properties which
characterize the sine and cosine functions, sin z and cos z, when z is
measured in radians.

We then briefly discuss the other direct trigonometric functions and
the inverse trigonometric functions.

39. Integral Powers and Roots. For any integral value of n, the
function y = z” for any real value of z is obtained by starting with
unity, and then multiplying by z n times.

Let us restrict z to the range 0 < z < N. For any two distinct
values in this range, z; and 75, we have:

-l = (@ —2)@ F el i+ 4 Y. Q)

All the terms of the last parenthesis are positive or zero, and if zo > z;
the first term is greater than zero so that this last parenthesis is positive.
It follows that,

if 23 > 24, 3 > 2%, 2

and the function y = z" is increasing in the range considered.
Again, let z; be positive and fixed, and x, any value such that:

|rg — 1) <5, where 6 <z, and & < 1. 3)
Then,

ifK=ux+1, 0<z <K, 0<z<K. {4)
57
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From the increasing character of the integral power, each of the powers
in the last parenthesis of equation (1) will be increased if we replace z;
and 72 by K. This shows that:

|5 — 27| < |x2 — z1[nK" < énK". (5)
Thus if we take
€
6‘<ﬁ;’ de <1z, 6.<1, (6)
we shall have:
laf — 2 <€ if |ze — Ti] <3, )

so that the function y = 2" is continuous for all positive values of z in
accordance with the definition in section 30.
For z; = 0, and any z, such that:

0< 2, <8<1, ®)
we have
|of — i = 2§ < 22 (9)

Thus, when we consider values only to the right of zero, we may take
8, =c¢eforz; = 0.

Since the function 2" is continuous and increasing in the closed inter-
val O,N, by section 37 the equation y = 2™ defines a single-valued
inverse function z = £~ (y) which is also continuous and increasing, for
0=y =N~

Since N* > N, if N > 1, we may take the y interval arbitrarily
large by taking N sufficiently large.

We use y'/* to denote the function inverse to z". Thus if y = 2",
z = y/*. Wenote that y = 2" is zero forz = 0,and lim 2" = + o,

z—> 40
Alsoz = y/"iszerofory = 0and lim y'/* = 4.
Y=+

For any positive real number p, the function z = y/* defines a
number p'/* = g, the positive nth root of p. From the inverse relation
of z = ¥y and y = 2™, we have ¢* = p.

If we use the root function by itself, we write y = z'/*, equivalent to
x=y"

40. Rational Powers. As in elementary algebra, we may now define
rational powers of a positive real number p in terms of roots of p. We

write
m INm 1\"
p" = (p") , =1, p = (;) ) (10)
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where m and = are any positive integers and r is any rational number.
The relations

@) = p™, p'p'" = (pp’)", and PP’ =pH, (11)

where p and p’ are positive real numbers, may be proved for positive
integral values of  and s directly from the definition of an integral
power as repeated multiplication. They may then be proved for any
rational values of 7 and s by reducing this case to that for integers, by
means of the definitions (10).

Suppose that the rational number r has an odd denominator. Then
we may write r = N/D, where N is integral and D is an odd integer.
If N is even for one such representation of r, it will be even for all and
we write:

(-p)' =9, r= %' Dodd, N even (12)

and (=p)'=-p, r= %7, Dodd, N odd. (13)

Then with this extended definition the relations (11) continue to
hold when p and p’ are positive or negative, if all the exponents which
occur have odd denominators.

41. The Exponential Function for Rational Values. Let p be any
positive real number greater than unity. Then, for all rational values
of z, 2 = r, the function p® is defined by equation (10) of the preceding
section. We prove next that:

As 7 increases through rational values, the function p™(p > 1) increases,
and

lim p"=0, lim p’=1, and lim p"= 4=, (14)
Pt =00 r~>0 r—» 400

For any two rational numbers r and s, we have:

PP-p=p(p" - 1) (15)

But, since p > 1, any rational power of p is positive, and any positive
rational power of p is greater than unity. Consequently, if s > r, the
right member of equation (15) is positive. This proves that the func-
tion p" increases, since p* > p" if s > 7.

Let us write
p=1-+4+d, where d>0, since p> 1. (16)
Then, for any positive integer n, we have:

p"=(1+d)">1+ nd, (17)
from the binomial theorem, since the omitted terms are positive.
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Since the function p" increases,
ifr>n, p" > p". (18)
Consequently, if, for any positive number N, we select an integer n

such that
N-1

n > 7 or 1+ nd>N, (19)
we may deduce from the last three relations that:
if r>mn, p" > N. (20)
This proves that
lim p" = 4 . 1)
z—> 40

We easily deduce from this that:

1
lim p"= lim p" = lim — =0. (22)
r—>—0 7> 400 r—>+0 P
Let us next write, for any positive integer n,

1

where d, > 0, since p/* > 1 when p > 1. Then, as in equation (17),
we have:

1+d=p=(1+d)"> 14 nd,. (24)
It follows that
d>nd, sothat 0 <d, < g (25)
Thus
lim d,=0, and lim p'l" =1 (26)
n—> 400 n—> o0

And we may further conclude that:

lim p = hm %=1 @n

Now, if r — 0, we may find a sequence of positive integers n, such that

—l<r<l; n— 4+o as r—0. (28)
n n
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Since the function p” increases, this implies that
1 1

p "< p <pt (29)
and we conclude from the last four relations that:

lim p" = 1. (30)

r—>0

This completes the proof of our statement concerning the behavior
of the function p" for rational values of r.

42. The Exponential Function for Real Values. If a sequence of
rational values of z, # = r, approaches a limit ¢, then p® or p” approaches
a limit, as we shall now prove. The limit ¢ may be any real number, and
the limit of p® depends only on ¢, and not on the special rational sequence
used. Let d denote any rational number greater than c.

If r and s are any two numbers of the sequence, lim r = ¢, lims =g,

then m (s —7r) =0, (31)

so that from equation (30):

lim p*~" = 1. (32)
Also, beyond a certain point in the sequence, r < d + 1 so that
p" < pitl, (33)
But we have:
PP—p =p" (" - 1), (34)

and as the first factor on the right is bounded by equation (33), and the
second factor approaches zero by equation (32), we deduce that:

lim[p* —p =0 as r—¢ and s—r—0. (35)

If we interpret this relation in terms of the fundamental definition of a
limit, we see by the Cauchy convergence criterion of section 26 that vl
approaches a limit as  runs through the rational sequence. We also
see that the same limit is approached, regardless of the rational sequence
r used, so long as r — ¢.

If the limit ¢ is rational, we have:

lim p" = p°, (36)
r—>c

since we may then take r constantly equal to c as a sequence of rational
values approaching c.

If the limit ¢ is irrational, we define p° as the uniquely defined limit
given by equation (36). Thus this equation then holds for all real
values of c.



62 EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS - [Cuar. III

Now let ¢ and ¢’ > ¢ be any two real numbers. We may find two
rational numbers s and s’ such that ¢ < s <& <¢’. We may also
find two sequences of rational values, r and +/, such that:

r—c, ¢ and r<s 1'>5s @37
Then, since p" is an increasing function for rational values, we have:
p<p, p<p”, and p” <p". (38)

On letting r and r’ é,pproach their limits, we may deduce from this
that:
p° < p°, p” £p” sothat p°<p. (39)

Since this is true for any two real numbers ¢ < ¢/, it follows that p® is
an increasing function for all real values of z.

Next, let £ — ¢ through any sequence of real values. We may then
find two sequences of rational values, r and s, such that

r<z<s and r—¢, s—casr—c (40)

Then, from the increasing character of p for real values, we have
PP <p’<p. (41)
But, in view of equations (40) and (36),
lim p" = p° and lim p* = p°. (42)
Hence, by the last theorem of section 23,
lim p* = p°. (43)

T—>C

This proves that the function p® is continuous for all real values z.
We may now replace the rational value r by z in equations (18) through
(22), reasoning exactly as before, and so conclude that

im p*=0, lim p°= 4. (44)
Z=> =0 2>+

Finally, by using rational sequences approaching irrational limits,
we may extend the relations (11) so that they apply when r and s are
any two real numbers.

We may summarize the results of this section as follows:

If p is any positive real number greater than unity, the single-valued
Junction p* is positive and continuous for all real values of z. As z — — o,
p*—0; a8 z— +», p°— + o, The function is increasing for all
values of z.
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We may remove the restriction p > 1. We define 1 = 1, for all
values of 2. If ¢ < 1,1/¢ > 1, and we define:

¢ = G)_ it g<1. (45)

Thus the first statement in the theorem applies unchanged for all posi-

tive real values of p. For values ¢ < 1, the function ¢* decreases for all

real values of z, and as z — — », ¢* — + o, whileas 2 — + », ¢ — 0.
Finally, analogous to equation (11), we have:

@) = p™, p°p* = (pp’)* and pp* = p*tY, (46)

where p and p’ are any positive real numbers, and z and u are any real
numbers. .

43. The Logarithmic Function. If p is any positive real number
greater than unity, the function p° is continuous and increasing in the
closed interval —N,N. Hence, by the theorem of section 37, the
equation y = f(z) = p® defines a single-valued inverse function
z = f7'(y), which is continuous and increasing in the closed interval
PN <y < p". Inviewof equation (44) this interval will include any
given positive value if N is taken sufficiently large. We use log, v,
read “ logarithm of y to the base p,” to denote the function inverse to p=.
Thus

y=p" and z=log,y “7)
are equivalent equations.
We note that, in consequence of equation (44),

lim log,y = — and lim log,y = 4+, (p>1). (48)
y—0+ y—> 40

The relation (47) enables us to deduce the properties of logarithms
from those for exponential functions given by equation (46). Thus,
if z; = logy,y: and 2 = log, v, S (49)
we have:
Yz = pop™ = p™** and x4 2 = log, (y1yz).  (50)
That is:

logy (y1y2) = log, y1 + log, ye. (61)
Also
¥ = (p°)" = p** and uz = log, y*. (52)
That is:
log, (¥*) = ulog,y. (53)



64 EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS [Crar. III

In particular, from equation (53) with ¥ = —1 and from equation
(51):
1 1 Y
o8, = = log,y and log, " log, y1 — logp ¥2. (54)
Finally, if we take the logarithm of y to a new base P,
X =logrpy sothat y = P%, (55)
where
P =p° sothat v =log, P, (56)
we have:
y=PX= () =p% and vX =log,y. (57)
Thus:
log, ¥
log,y = log, Plogry or logey = ﬁ:—P- (58)
In particular, if ¥ = p,
1
logerp = oz, 7 (59)

The last two equations are easily remembered by their analogy w?th

=N e

(60)

-

= e

I
=N
Nl
e
Nl
= | -

We could take a base less than unity and carry through all our argu-
ments, merely replacing increasing by decreasing and suitably chang-
ing equation (48). All the other results still hold. Thus any positive
number except unity may be used as the base of a logarithmic function.

When considering a logarithmic function of the independent variablez,
we write

y = log, = equivalent to z = p¥ (61)

and interchange z and y in all the equations of this section.

44, The General Power Function. For any real value of u, a power
function z* may be defined for values of > 0 in terms of the exponen-
tial and logarithmic functions, since

= (plog,z)u - pu logp z. . (62)

Since the last expression increases with u log, , we see that z*
increases with z if u is positive and decreases for increasing z if w is
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negative. By using equations (48) and (44), we may deduce from
equation (62) that:

lm z* =0, if »>0 (63)
z—»0-+
and
lim z¥ = 4o, if u<O. (64)
z—r0+4

This makes it natural to define 0 = 0 if » > 0 and to regard this
expression as undefined when v < 0 or # = 0.

In certain limiting relations, when u is fixed and negative, the relation
(64) may enable us to evaluate the limit. Again, if » and z are related
in such a way that ¥ —0 when z — 0, the expression z* may not
approach a limit, finite or infinite. But, by placing suitable restric-
tions on u and z, we may make the expression z* approach a, any posi-
tive value whatever, asz — 0,4 — 0. For example,

if u = (logya)/logyz, u—0 when z—0 (65)
and
z¥ =a sothat lim z* = q. (66)
z-+0+

46. The Derivative. The derivative of a function of z, f(z), for a
particular value of z is the number given by the limit, as k — 0, of
[f(z + h) — f(z))/h, provided that this limit exists. We denote the
derivative of f(z) at = by f/(z), so that:

f'(z) = w . (67)

While we shall postpone a detailed study of the properties of the
derivative until the next chapter, we introduce the definition at this
point in order to explain why we are interested in certain limiting
relstions.

In the case of the function log, z, the derivative is given by

10gp (x + h) — log, () ,
h

f'@) =

if the limit exists.
For any 2 > 0, we may write:

h z
logp (x + k) — log, z = log, (1 + 2) - log, (1 + g)", (69)

(68)

in view of the properties expressed by equations (53) and (54).
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Thus we have
z

log, (x 4+ h) —logyz 1 R\
W = xlogp (1 + ;) . (7(?)

Since the logarithm is a continuous function, the calculation of the
limit is reduced to the calculation of the following:

N
lim (1 + —) , > 0. (71)
h—>0 z
This limit does not depend on z, since if we put h = ux, the
limit becomes:
1
lim (1 + )% (72)

u—0
46. The Number e. To study this limit (72) further, we put
u = 1/U, and consider ’
1
1i 14+=).
im + U) (73)

{Ul—>

For positive integral values of U, we may show that there is a limit
by means of the theorem of section 27. We first observe that, if » is a
positive integer, by the binomial theorem:

1\" _ 1 a(n —1) 1 nin—1)---11
(1+n) =1ttt t Ty e ™

1(1—%) 1(‘“%)”’(L'n;1>. (75)

=l+1+-—7‘—+---+

As 7 increases, the terms of this expression increase individually.
Also their number increases. Thus the function increases with n.
But the terms written in the expression (75) are less than

1,1 1 1
1+1+s+mt ot =3-5=<3 (0

so that
1 n
(1 + ;L) <3, ()

for all integral values of #, and 3 is an upper bound for the function.
Thus, by the theorem on increasing variables of section 27, the function
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approaches a limit. We denote this limit by e and write:
. 1\"
lim (1 + —) =e, (78)
n—>+o0 n

As the first two terms in the expression (75) add up to 2, and the rest
are positive, we have:

1 n
2<(1+;) <3 and 2=5e¢=<3. (79)
The expression (75) suggests the sum:
1 1 1
8n=1+1+’2_!+'3_!+'°'+1'ﬁ‘ (80)

This sum s,, increases with n and has an upper bound 3, since after the
first three each of its terms is less than the corresponding term of the sum
(76). Thus s, approaches a limit L, as n— 4 ». Since each term
of the sum (80) is greater than, or equal to, the corresponding term of the
sum (75), we have

1 n

8 > (1 + —) and lim s,=e or LZe. (81)
n N> 400

But, since s, approaches L, for any positive ¢ we may find an N such that

sn>L—e (82)

And, as each term of the sum (75) increases and approaches the corre-
sponding term of the sum (80), when n — + o, we may findan N’ > N
such that, for n greater than N’,

1(1_1)...(1_"_1)
n n /1.
rl! r! N

Then, for any n exceeding N’, as all the terms of the sum (75) are
positive, the sum will exceed the sum of the first N + 1 terms, so that
in view of equations (82) and (83) we shall have

(l-l-l) >3n—'N(i)>L—2e, if N>N. (84)
n, N,

This shows that

r=12.---,N. (83)

e>L—2, or e2L, (85)
since ¢ is arbitrary. Equations (81) and (85) combined show that
L=¢ and e= lim s, (86)

>+ 0
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To estimate how much we shall add to the sum s, by using n 4 k in
place of n, we note that for any positive integer n:

1 1 1
GrDl T @ T T mrR S
2 /1 1 1

waniGtEtotE) e

and
11 1 1

Thus

<ot —2 . 89

Stk < Sn (n+ 1)! (89)

Since this is true for all k, we may let k become infinite, keeping n fixed,
and so find:
2

= I < s+ —m—r -

e= lm snp=s + mr D! (90)
Since the sum s, increases to ¢, we deduce from this that
1
8n<e<sn+;_" n>1, (91)
where

1 1 1

s,.=1+1+—2—!+:—3—!+'-‘+;‘!' (92)

As the sum s, may be computed easily and as this sum approximates
to within 1/x !, which decreases rapidly with n, the last relation enables
us to find e numerically to any desired number of decimal places, Its
value is 2.71828 - - - .

47. Other Sequences. We have shown that for any sequence of
positive integral values of n, such that n — +, lim A+1/n)"=e

Let us consider next a sequence of numbers U, integral or not, such
that U — + «. For each number of the sequence, there is an integer n
such that

ns=U<n+1, (93)
and,
since U — + o, n— 4 ». (94)
We deduce from the relations (93) that:
1 1 1
—_— - =14 - 5
14— <il+gs +- (95)
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and since z* increases with z for fixed positive u and also increases with
for fixed z greater than one, we may further conclude from equations
(93) and (95) that:

(o) < ()"

But we have:

. 1n+1 . 1\" 1
Im{1+4+- =lim(14+~) (14+=-)=e-1=¢ (97)
n, n n

, L 1 \* 1\
hm(l—{-m) =hm<1+1—{-+—1> <1+n+1>

=e-1=ce, (98)

when n and hence n 4 1 become infinite through any sequence of
integers, and in particular through the sequence defined by the relation
(93). Hence, from the last three relations we have

1 U
lim (1 +—6) =e, (99)

U=+

and

in accordance with the theorem of section 23.
Finally, consider any sequence of real values U, such that U — —oo.
Weput U = —V, so that V — + =, and write:

e

But, from the relation (99), we have:

, 1\ _ . 1 \"! 1
llln(l-l-V—_-i) =11m(1+—1;—_—1) (1+'f/;_—1)
=¢-1=e, (101)

when V and hence V — 1 — + . Thus we may conclude from equa-
tion (100) that

1\Y
li 1+4=) =e 102
Jim (1+7) =¢ aoz)

Since every sequence of values of U for which |U} —« may be
regarded as a combination of sequences for which U — +» or U — —o,
it follows from equations (99) and (102) that:

1 U
lim <1 + (—]) =e. (103)

|Ul~>®
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On putting U = 1/u, we deduce that
1
lim (14 u)*=c (104)
u—0 N

48. The Derivative of the Logarithmic Function. Let us now return
to the calculation of the derivative f’(z), when f(z) = log, z, discussed
in section 45. We showed there that

logp (z + k) —logyz 1 ( h)7'
h =3 log, {1+ " (105)
As before, on putting 2 = uz, we have:
L i 1
lim (1 + —) =lm (14 u)* =, (106)
h—0 Z, u—»0

by equation (104). From this and the fact that the logarithm is con-
tinuous, we deduce from equation (105) that

log, (z+ 1) —logyz 1

hh—x-% 7 - log, e. (107)
This proves that,
if f(z) = log, z, ) = ilog,, e. (108)

49. Natural Logarithms. When we use logarithms to simplify
computation, we generally take 10 as the base. Logarithms to the
base 10, known as denary or common logarithms, have the useful
property that the logarithm is only changed by the addition of an
integer when the decimal point is shifted to the right. Thus we only
need tables for the range 1 < z < 10,

In mathematical work, where the limiting relation (107) occurs quite
often, it is advantageous to make this equation as simple as we can.
Consequently, we generally take e as the base, since this makes
logy e = log.¢ = 1, and we may omit the factor log,e. Logarithms
to the base ¢ are known as natural logarithms. In computations the
notation In x for log. z is sometimes used. Since in the sequel we shall
almost always be using natural logarithms, we write simply log z in place
of log, z. In this notation, the relations of the preceding section may
be written:

lim log (x + L) — logz _ l, (109)
h—0 h z
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and,
if f(z) = logx, (@) = i (110)

50. Characterization of the Logarithmic Function. Using the re-
sults of the preceding discussion, which, though lengthy, has included
a constructive approach to the logarithmic function, we may now formu-
late a brief characterization of the function log z.

The function log x is @ function having the property:

log z + log 2’ = log z2’, (111)
for all positive real values of x and z’, and also having the special property:
1
lim 28 A D _ (112)
20 z

These properties intrinsically define the logarithmic function, in the
sense that it is possible to define a function having these properties, and
this can only be done in one way.

We observe that the natural logarithm of z, log z as defined in the
preceding section, has the property (111). Also, if we replace z by 1
and h by z in equation (109), it reduces to equation (112), so that the
second property is also satisfied. This shows that the definition is

possible.
Suppose next that the function L(z) satisfies the equation
L(z) + L(z') = L(zz") (113)
analogous to equation (111) and
L1
fm 232 _ g (114)
=0 x

analogous to equation (112). Then on putting z’ =1 in equation
(113), we have:

L)+ L) =L(z) and L(1) =0. (115)

Again, -by putting 2’ = 1+ k/z, 22’ = 2+ h and we find from
equation (113) that

Lz+h) —L(x) =L (1 + 2) . (116)

But, from the equation (114), we see that
lim L(1l + z) = 0. 17
=0
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This shows that, when h — 0, the right member of equation (116)
approaches zero, and hence the function L(z) is continuous for all
positive values of z.

By putting 2’ = z and then z’ = 2" in equation (113), we may show
by mathematical induction that for any positive integer n:

L(z") = nL(z). (118)
It follows in particular that
1" 1 L(l + "1‘)
L(1+—) =nL(1+—> =T (119)
n, n, _1_
n

As n— + o the limit of the first term written may be found from
equation (78) and the fact that L(z) is continuous. The limit of the
last term in equation (119), as n— 4+« may be found by putting
z = 1/nin equation (114). We thus obtain the result:

L(e) = 1. (120)
From the equation (118), we deduce that

1 1 4 /)
L(z9) = EL(x), L(ae) = q-L(x), (121)

for p and g positive integers and hence, from equation (120),
L(e") = r = log (¢"), (122)

80 that L(x) has the same value as log r whenever z has a positive
rational logarithm. Since any number greater than 1 is the limit of a
sequence of such special values and since both functions are continuous,
it follows that

L(z) =logzx (123)

for all real values of z greater than unity. Finally, by putting z’ = 1/z
in equation (113), and recalling that L(1) = 0, we have

1
L (;) = —L(z). (124)
This shows that, for any positive number less than unity,
1 1
= —L{=)= — =)= 3 125
L(z) L (z) log (:v) log z (125)

Since L(1) = 0 = log 1, it follows that any function L(z) having the
properties (113) and (114) must agree with log z for all positive values.
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61. Characterization of the Exponential Function. We may formu-
late a similar brief characterization of the exponential function.

The function € is a funclion having the property:

e = 1%, (126)
for all real values of  and ', and also having the special property:
im & =2 -1, (127)
z—»0 x

These properties intrinsically define the exponential function.
We observe that the function p® defined in section 42, with p = e has
the property (126). If we write:

e“=14+u log(l4+u) =z and u—0 as z—0. (128)

Hence,
e —1 u
i =lim ——— =1
a0 T umo log (I+w

(129)

by equation (112). This shows that it is possible to define a function
having the two properties.
Suppose next that the function E(x) satisfies the equation

E(z)E(z') = E(z + '), (130)
analogous to equation (126) and
im 2@ =1y (131)
z—>0 T
analogous to equation (127).
The first relation, with =’ = & shows that:
E(z + h) — E(z) = E(x)[E(R) — 1}. (132)
But, from the second relation, we see that:
lim [E(z) — 1] =0, (133)
z->0

which shows that when h — 0, the right member of equation (132)
approaches zero, and hence the function E(z) is continuous for all real
values of z.
In particular, from equation (133) and the continuity for z = 0, we
see that
E(0) = 1. (134)



74 EXPONENTIAL AND TRIGONOMETRIC FUNCTIONS [Cuar. III

Using mathematical induction as in the preceding section, we may
deduce from equation (130) that for n a positive integer:
E(nz) = [E(x)]" (135)
From this we find:

E (?q—) — [E@J and E(E;) = [E@)s, (136)

for p and ¢ positive integers.
Again, by putting 2’ = —z in equation (130) and using equation
(134), we find that:
E(—z) = [E@)]™ (137)

The equations (136) and (137) show that for any rational number 7
we have:

E(rz) = [E(x)]". (138)
This shows that if we put
p=E(), then E(r) =7p". (139)

The number p must be greater than unity, since equation (131) shows
that E(r) = p" is greater than unity for sufficiently small positive
values of 7. Since the functions E (z) and p”® agree for all rational values
of z and are both continuous functions, it follows that
E(z) = p® (140)
for all real values of z.
Now put:

pP=14+u log(l1+u)==zlogp, and ©«u—0 as z—0. (141)

Then:
E@-1_p—1_ _ulgp
z Tz log (14w (142)

so that:

E(@x) —1
z

1 = lim = log p lim = log p. (143)

u

) w0 log (1 + u)

This shows that log p = 1 and p = e, so that the function E(z) = p*

is identified with the exponential function e*. This proves that any

function having the properties (130) and (131) must agree with €* for
all real values of z.

It is an interesting fact that the equations (113) and (114), and (130)
and (131) do not explicitly involve the number e. However, this
number is determined from the first pair by L(e) = 1, and from the
second pair by E(1) = e.
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62. Trigonometric Functions. The reader is familiar with definitions
of the six trigonometric functions and a derivation of their properties
based on geometrical considerations. Such a treatment is satisfactory
provided that it is permissible to base the definitions of functions used in
analysis on geometrical arguments, and that the geometrical results
used are themselves derived by sound reasoning about concepts which
have been precisely defined. The geometrical arguments in elementary
texts are often not of this character. In many cases the length of an
are of & circle not a rational part of a complete circumference or the
number of degrees in the corresponding central angle is not defined at all.

As it is aesthetically desirable to develop the foundations of analysis
arithmetically, we avoid the necessity of a precise geometrical definition
by giving a constructive arithmetic definition of the trigonometric
functions. :

The definitions:

tan:c=smx: =—) z = ’ cscx=—,—1— (144)
COS Z sin z

enable us to define these four functions in terms of the sine and cosine

and to reduce all theorems involving any of the six functions to theorems

involving the sine and cosine alone.

Accordingly, we first consider the sine and cosine, although even in
this discussion we sometimes find it convenient to use tanz as an
abbreviation for sin z/cos z.

53. Determination of Values for the First Quadrant. To prepare
for our final definition, we outline one method of assigning numbers to
the functions sin z and cos z, for values of z in the range 0 < z = 90.

The geometric development suggests that the numbers may be
assigned in such a way that, for any two values of a and b in the range,
for which a + b is also in the range:

gin (@ + b) = sin a cos b + cos a sin b, (145)
cos (a + b) = cos a cos b — sin a sin b, (146)
1 = cos? a + sin?a. (147)

We shall use these equations as our guide, but shall only consider
them proved for particular values if we can deduce this from our defini-
tions.

We begin by arbitrarily defining

sin 90 = 1, cos 90 = 0, (148)
and sin0 =0, cos0 = 1. (149)
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We then consider values of z of the special form 90/2", where n is a
positive integer. We indicate a particular value of this kind by writing:

90
Sp = 5; . (150)

We shall use s and speak of a value s to mean any one of these. We
determine the functions of the s, by repeated use of

. 8 1 —coss 8 \/1+coss
Sm2_+"T’ c052—+ — (151)

to obtain the values of the left members. Starting with so, or 90 in
place of s, we determine the functions of sy, s, - - - in succession in this
way.

The equations (148), (149), and (151) are all such that the relation
(147) is automatically satisfied for the values so far considered. For
the equations (145) and (146) we can only have a, b, and a + b all
among the values s by taking a and b equal or by taking one of them as
zero. If we take a = 0, the equations (145) and (146) reduce to
identities in view of equation (149). If we take a = b = 8/2, the
equation (146) is satisfied because of equation (151), while equation
(145) is satisfied because of equation (151) combined with the relation
(147) which we established for all values of s.

Let us next consider the function

tan s, sin s,
A% op —2%r

S Sn COS 8, (152)

To see how this function varies with n, we first deduce from the
relations (151) with s/2 = s,, s = 28, = Sp—1, that

cos? s, + sin? s, = 1, (153)
2sin s, cos 5, =V'1 — cos? s,_; = sin Sn_i, (154)
€OS 8,y = co0s® s, — sin? s, < cos® s,. (155)

It follows from these relations that:

tan s,_; sin 8,1 2sin s, cOS 8,
Sp—1 Sp—1 COS Sp—1 28, COS Sy,
tan s, cos? s, tan s,

156
Sn COS Sp—1 8n ( )
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This shows that the function (152) decreases as n increases. Since
it is positive, it has zero as a lower bound. Hence, by section 27, it
approaches a limit as n becomes infinite, and we have:

tan s, _ . (157)

lim
n—>+w0 Sp

Since, as n — + =, s, — 0, it follows that:

lim tan s, = 0, (158)
n—>+w
and hence that:
lim sin s, = lim (tan s, cos s,) = 0, (159)
n—r+w0 n—>+400

since the values of the cos s, are all at most one by equation (153).
Using equation (153) and the fact that the cos s,.is always positive,
we may deduce from the last equation that:
lim coss, =1, (160)

n—>+-0
which may be combined with equation (157) to show that:

. sin s,
lim
n—+o Sp

= L. (161)

From equation (154) we have:

sin 8,1 2 sin s, €OS S, < sin s,
= »
Sp—1 28, Sn

(162)

since the cos s, is less than unity. This shows that (sin s,)/s, increases
as n increases and therefore is always less than its limit, L. Since
(tan s,)/s, decreased to its limit, it is always greater than that limit.
That is:

sin sn<L<tans,., (163)
Sn Sn
or
sin 8, < Ls, < tan s,, n > 0. (164)

We next extend our determination to values of the special form
ms,, or 90m/2", where m is any positive integer less than 2. We shall
speak of any one of these as a value &. Thus, every value s is a value £.

Since any positive integer is a sum of powers of 2, we have

n
m=Y a; 2" a;=0o0r1, (165)

f=1
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and it follows from this that:

Om 2 a;90 2
t= o =& o —‘Z:Ia,s,. (166)

This decomposition enables us to determine the functions sine and cosine
for all the values ¢ by a repeated use of the formulas (145) and (146).
Each ¢ is the sum of a number of distinct s, as the a; are zero or one,
which may be arranged in a definite order, that of increasing subscript.
This enables us to prescribe a particular order of application for the
formulas (145) and (146), for example, first for the first two terms, then
these plus the third, and so on.

However, the result obtained does not depend on the order. For, if
the formulas (145) and (146) hold for

(@+d)=a+b and (@+b+c)=(a+b)+ec, (167)

we find:

sin (@4 b+ ¢) =sinacosbcosc+ sinbcosccosa
+sinccosacosb —sinasinbsine, (168)

and
cos (@+b-+c) =cosacosbcosc — cosasinbsinc
—cosbsincsinag — coscsinasinb. (169)

The symmetrical form of the results shows that the functions of
(@ + b+ ¢) as computed by two applications of the formulas (145)
and (146) will be the same regardless of the way in which we order or
group the three terms. It follows from this that the values as computed
for a sum of any finite number of terms will not depend on the way in
which we order or group them. If, now, we have three different values
of ¢, t; + &2 = t3 and we decompose t; and ¢, into sums of s,, the func-
tions of (f; + ¢3), as computed from formulas (145) and (146) with
a = #; and b = {; will be the same as that obtained from the combined
sum of the s, with any other grouping. By first combining any two
8, of the same order which occur in {; and ¢; and by repeating this until
all the s, left are of distinct order, we finally come to a grouping of the
sum which may be rearranged to give that used to determine the func-
tions of 3. This shows that the equations (145) and (146) are satisfied
if a, b, and a + b are all among the values ¢.

It is now possible to extend some of our properties to the functions
of ¢. Since the equations (145) and (146) imply that:

cos? (a + b) + sin? (a + b) = (cos? @ + sin?a)(cos® b + sin?b), (170)
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it follows from our method of determination that
1 = cos?t + sin?#, 171)

since this relation held for the s,.

We wish to show next that, in the range 0 < ¢ < 90, sin ¢ and cos ¢
are always positive,

The equations (145), (146) and (147) imply that

sin (a + b) cosa — cos (a + b) sin a = sin b, (172)

and
cos (@ + b) cosa + sin (a + b) sina = cos b, (173)

so that these equations are satisfied if @, b, and a + b are all among the

values &. ,
In particular, if we put @ = ¢, b = 90 — ¢ in equation (172), we find:
cost = sin (90 — ?). (174)

Let us next denote by a ¢ of order #, a value of ¢ which can be written
in the form 90m/2", with m an odd integer, 0 < m < 2". Then the ¢
of order n + 1 which are not of order n are values halfway between two
consecutive ¢ of order n, which differ by 90/2", or s,. The first such
value of ¢ is 8,41 Whose sine and cosine are known to be positive. The
rest can be obtained by adding s, to some ¢ of order n, that is, as the
sum of a ¢ of order » and 8,41. Thus, if the functions sine and cosine
are positive for all ¢ of order n, by equation (145) the sine will be posi-
tive for all ¢ of order » + 1. Hence, since 90 — tis a ¢ of order n + 1 if
t is of this order, it follows from equation (174) that the cosine will be
positive for all ¢ of order n» + 1. But the only ¢ of the first order is s,
whose sine and cosine are known to be positive. Thus, by mathemati-
cal induction, it follows that the sine and cosine are positive for ¢ of
any integral order, that is for all values of ¢ in the range 0 < ¢ < 90.

From this fact and equation (171) we have:

0<sint<1l and 0<cost<1l (0<?<90). (175)

We may now prove that sin ¢ increases with t. Let #; and ¢ be two
distinet values of ¢ so that:

0=t <t =90 (176),

Then (t3 + £,)/2 and ({z — £;)/2 are both values ¢ in the range

0<t<90.
If we use these as a and b, we find from equation (145) that

L, fleth e —t b\ . fla—t)
smtz—sm( 2 )cos( 2 )+cos(————2 )sm(——-—2 ) Q77)
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Again, if we put @ = (f; — %;)/2 and b = ¢;, we find from equation
(172) that:

. _ (et ta— 4\ _ 2+ 4\ . (tz—h)_
smt1-sm( 2 )cos( 2 ) cos( 2 )sm 2 (178)

It follows from the last two equations that:

t t to — ¢
sintz—sint1=2cos(2;- 1)sin(2 2 1)- (179)

The cosine and sine in the right member are both positive, since their
arguments are in the range 0 < ¢ < 90. This shows that, if the rela-
tions (176) hold, then sint; > sin#; and sin ¢ increases with ¢ in the
range 0 < ¢ < 90.

We next consider some limiting relations. Suppose that we have a
sequence of values ¢, whose limit is zero. We may associate with each ¢
of the sequence an s,, such that

t<s, and lim n= 4, (180)
t—0
It follows that:
0 <sint < sin s, (181)
and from this and equation (159) we conclude that
lim sin¢ = 0. (182)
=0+

Now let ¢’ and ¢’ be any two values, each in the range 0 < ¢ < 90.
Then we have:

sin ¢’ — sin ¢/| = 2 cos ! ') sin =t
B 2 2

) (183)

since both sides are zero if ¢ = ¢'/, and if ¢’ and ¢’/ are unequal, this
equation reduces to equation (179) with ¢; as the larger and ¢; as the
smaller of ¢’ and ¢"”. Since the cosine factor in this equation has a
lower bound zero and an upper bound one, it follows from the last two
equations that:

lim [sin ¢/ —sin¢/| =0, if [t —¢|—>0. (184)

The last equation enables us to determine values of sin x for any real
value of z, in the range 0 < z < 90. We note that, since we may
find a ¢ of order n which differs from any real number z by at most s,,
and s, ~ 0 for n — -, there are sequences of values ¢ for any real
number z such that z = lim ¢. If ¢’ and ¢”’ are any two terms of such a
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sequence, each beyond the variable term ¢, we have two new sequences
such that:
lim [t — | =0, if lim¢=az. (185)

It follows from the last two equations, and the Cauchy convergence
criterion, that sin ¢ approaches a limit, as ¢ — z. By taking the ¢’ and
¢’ in equation (184) from two different sequences, we see that the limit
is the same for all sequences approaching x. In particular, if z is itself
a value ¢, we may take t’/ = 7 in equation (184) and conclude that
lim sin ¢ = sin . (186)
t—>z
For values of  which are not values ¢, we consider the value of sin z
to be determined by equation (186).
From equation (174), we see that if we put

cos z = sin (90 — z), (187)
then we shall have
lim cost = cos z, (188)
t—z

for any sequence ¢ such that ¢t — z.

By using a sequence of values ¢; approaching a real value z;, and a
sequence of values ¢, approaching a real value z;, we may show by
means of equations (186) and (188) that all the equations previously
established for values ¢ continue to hold for all real values of z in the
range 0 = z < 90. In particular, we may establish equation (179)
and use it to show that sin x increases, and equation (184) and use it to
show that sin z is continuous. It then follows from equation (187)
that cos x is continuous and decreases as z increases in the range
0=z =90

The functions sin z and cos z, as determined by the method of this
section for values of x between 0 and 90, are both continuous in this
closed range. The sine increases from 0 to 1, and the cosine decreases
from 1 to 0, as z increases from 0 to 90.

4. The Number w. We may extend the limit relations (157) and
(161) to other values of z as follows. Let a,b and a + b be in the range
0 < z < 90, and suppose that:

sina < La < tana, (189)

and
sinb < Lb < tanb. (190)

Then, since
0<cosa<l and 0<cosb<l, (191)
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we may conclude from equation (145) that:
sin (@ + b) <sina 4+ sind < L(a + b). (192)

Again, since
0<cos(a+bd) <1, (193)

we may conclude from equation (146) that:
cosa cos b > sin a sin b. (194)
It follows from this and equation (191) that:

1> tana tanb. (195)

Also,
tan ¢ tan b > 0, (196)

since sin a, cos @, sin b, cos b are all positive. In consequence of the
last two relations, we have:

1>1—tanatand > 0. (197)
But, we may deduce from equations (145) and (146) that:
tana + tan b
tan (@ +b) = T tenatand’ (198)

We may conclude from this, and the relations (197), (189) and (190)
that:

tan (a + b) > tana + tanb > L(a + b). (199)
We may combine the result of relations (192) and (199) into:
sin (@ + b) < L(a + b) < tan (a 4+ b). (200)

Since the equation (164) shows that the inequality (190) holds
when b is an s, the argument just given shows that if it holds for all £ of
order 7, it holds for all ¢ of order n 4+ 1. Thus starting with s;, the only
t of the first order, we may apply mathematical induction to show that,

for all values of ¢,
sint < Lt < tant. (201)

By taking a sequence of values ¢ approaching any real value z, we
deduce from this that:
sinzg < Lz £ tanz. (0 <z < 90). (202)

If we take the relations (202) and (201) in place of the relations (189)
and (190), we find by the reasoning used to derive equation (200) that

sin (z+1) <L(z+1¢) < tan (z +1). (203)
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Since any real number in the range 0,90 may be written as the sum of
another real number and a value ¢ in this range, it follows from the last
relation that we may omit the equality signs in equation (202). Thus
we have, for any real z,

sinz < Lz < tanz, if 0<z <90 (204)

This relation implies that

sin z

Lcosz < < L. (205)

Since the cos z is continuous, when z — 0+, cos z — 1, and we may
deduce from this equation that:

sin z

lim = L, (206)
z—0+ T
and
. tanz . sinz 1
lim = lim — —— = L. (207)
-0+ T 204+ T COSZ

The numerical value of L could be computed to any desired accuracy
by using a sufficiently large value of 7 in the relation:

sin 8, tan 8, ,

(208)

<L<
San Sn )
and, in fact, was computed in practically this way by Archimedes.

The geometric interpretation of the limit L may be seen by noting
that, if z = 360/(2n), the perimeter of a regular polygon of n sides
inscribed in a unit circle is

. sin
pn=2nsma:=360——z—-: (209)

while that of a circumscribed regular polygon of n sides is:

tan 2 . (210)

P, = 2n tan z = 360

The limit of either of these expressions as n becomes infinite is 360L.
As the length of the unit circle, defined to be equal to this common
limit, is denoted by 2=, we have:
360L = 2r, or L= Tgﬁ’ where x = 3.14159 - -+ (211)
66. Values for Other Ranges. If we wish to have equations (145)
and (146) hold for the valuesa = z,b = 90 we must have:

sin (z + 90) = cos z, cos (z + 90) = —sin 2. (212)
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On the other hand, if these equations hold, we may deduce that the
relations (145), (146), and (147) hold for @ = z 4+ 90,b if they hold for
a,b. Thus we may use the equations (212) to extend the definition to
values of z in the range 90 < z = 180, and the relations (145), (146)
and (147) will continue to hold in the extended range 0 < z < 180.
We may repeat this any number of times, and so define the functions
sin z and cos z for all positive values of z.

The equations (172) and (173), which we deduced from the three
fundamental relations, will also hold for all positive values. If we wish
these to hold for the values a = z, b = —2x, we must have

sin (—z) = —sinz, and cos (—z) = cos z. (213)

Again, if these equations hold, equation (147) holds for a = —z, if it
holds for @ = z. Also, in view of the relations (213), equations (145)
and (146) for @ = y, b = —z reduce to equations (172) and (173) for
(@ +b) =y, a = z. Thus we may use the equations (213) to extend
the definition to negative values of z, and the three fundamental rela-
tions will continue to hold in this extended range.

Since (sin z)/z does not change when we change the sign of z, in view
of equation (213), we have for the extended functions:

=L=-—. (214)

56. Radian Measure. The functions sin z and cos z, which we deter-
mined in sections 53 and 55, depended on the initial choice of 90 as the
smallest positive value of z for which sin z = 1. This choice, based on
the measurement of angles in degrees, is convenient for practical trigo-
nometric computations, and is traditional in such work.

However, any other choice would have done as well. If we had used
the positive number ¢ in place of 90, we could have carried through the
entire discussion as before, and would have found the functions S,(z)
and C,(z) related to those in the preceding section by the equations:

S,(z) = sin (90 -"qf) and C,(z) = cos (90 g) i (215)
For these functions, the relation (214) would be replaced by:
tim 3e®) _ 0¥ _ T (216)
20 T —0 QY 2q

90

Since the limiting relation (214) occurs quite often in mathematical
analysis, it becomes worth while to simplify it by a suitable choice of g.
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We do this by taking ¢ = 7/2, which reduces the right member of
equation (216) to unity.

Since /2 is the length of a quadrant of a unit circle, this choice corre-
sponds to the geometrical measure of central angles by the arcs they
subtend on a unit circle, or by the ares they subtend on any circle
measured in terms of the radius. Hence this is called radian measure.
From now on we shall use radian measure exclusively, and use sin z to
mean S,(x), with ¢ = #/2. When we wish to use S,(z) with ¢ = 90,
the function determined in section 55, we shall write sin z°. Thus, we
have with this notation:

. [180x\°
sin z = sin (_x) ’ 217)
™
from which we can obtain the function of z for radian measure if we have
tables of these functions for z in degrees.
With the new notation, the limiting relation is:

im 222 _ g, (218)
=0 T

The inequality (204) may now be written:
sinz < z < tan z, if 0<x<g. (219)

67. Characterization of the Functions sin x and cos x. Using the
results of the preceding constructive discussion, we may now formulate
a brief arithmetic characterization of the functions sin z and cos z.

The functions sin z and cos z are two functions having the following
properties:

sin (z 4 2’) = sin z cos z’ + cos z sin z, (220)
cos (z + 2’) = cos z cos z’ — sin z sin 2/, (221)
cos?z + sin?z = 1, - (222)
Jor all real values of z and ', and the special property:
lim §i_n_x =1 (223)
=0 T

It is possible to define the functions for all values of x so that these proper-
ties are satisfied, and there is only one way of doing this.

The functions sin z and cos z of the preceding section have these four
properties. We shall now show that any other pair of functions having
the four properties must be identical with sin z and cos z. Accordingly
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we consider two functions S(z) and C(x) which are defined for all real
values of z, and which satisfy the relations:

8z + 2') = 8(z) C@&') + C(=z) 8(z"), (224)
C@x +2') = Cz) C@) — S(z) S@'), (225)
C%(z) + S*(z) = 1, (226)
and
lim é(}—)' =1. (227)
z—0 T

From the last relation, S(z) must be differerit from zero for some value
of z. Let z have such a value, and put 2’ = 0 in equations (224) and
(225). The result is:

S(z) = S(z) C(0) + C(z) 8(0), (228)
C(z) = C(z) C(0) — S(z) S(0). (229)
It follows from these equations that
8(z) {[C(0) — 1 + 8%(0)} =0, (230)
or, since S(x) is different from zero,
C(0)=1 and S8(0) =0. (231)

Again, from the relation (227), S(x) must be distinct from zero for
sufficiently small values of z, 0 < |z| < k;, so that

lim S(z) = lim L—g@x = Q. (232)
20 =0 Z

By reasoning from equations (224), (225) and (226) as we did in the
derivation of equation (179), we may prove that:

S(zs) — 8(z) = 2C ("2 *2' ”‘) S(”z > ”‘) . (233)

Since the values of C(z) never exceed 1 numerically, by equation
(226), the right member of equation (233) approaches zero if z — z;
approaches zero, in view of the relation (232). Thus, if z; is fixed, and
z3 — 21, S(zz) = S(z;) and the function S(z) is continuous for all
values of z.

We may also deduce from equations (224), (225) and (226) by a
similar argument that:

O - e = ~28 (25 ”‘) 8 (”‘2 - ”“), (234)

2 2
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from which we may infer that the function C(z) is continuous for all
values of z.

Since C(0) = 1, there is some interval 0 < z < hy throughout which
the functions S(z) and C(x) are both positive, in view of the continuity
at zero, and the relation (227). Put

180 90

T
Tp = 5;_'711 so that Tr,. = — = 8§, (235)

27!
and r, radians corresponds to s, degrees. Since r, is positive, and when
n becomes infinite r, — 0 and hence sin r, — 0, we may find a value of
n, say N, such that

0 <sinry < S(hy). (236)

Also, since the function S(z) is continuous in the closed interval 0,ky
and sin 7y is an intermediate value, it is taken on. Thus there is
some value, k, in the interval 0,h, for which

S(h) = sin ry. (237)
Since C (k) is positive, and satisfies equation (226), we must have:
C(h) = cosry. (238)

But it follows from equations (224) and (225), with = 2’, that
S(2r) = 28(z) C(z) and C(2z) = C3(z) — S%(z). (239)

Since the functions sin z and cos = satisfy similar equations, it follows
that

S@2Nh) = sin (2¥ry) = sing =1, (240)
and
C@2 k) = cos (2Vry) = cosf2 =0. (241)
Again, from the second equation (239) and equation (226) we may
deduce that:
1- 14+C
S? (g) = .._2@ , 02 (g) = _+—2ﬁ' (242)

Since these are similar in form to the equations (151), and the values
of S(z) and C(z) are positive for all z between 0 and 4, it follows that

_ h . T . ° h °
S (5’;) = gin (—2—12) = sin sy4x, and C (?) = COS Sy4k- (243)
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Hence

2Nhs . o (2th .
S(go>—sm:c and C 9())—cosac, (244)

whenever z is of the form s,. And, since the addition theorems (224)
and (225) hold, the equations continue to be valid whenever z is a
value t. Finally, since all the functions involved are continuous, the
equations must hold for all real values, at least in the range 0 < = < 90.
It follows from the addition theorems and equations (240) and (241)

that
S(z + 2Vk) = C(x) and C(z + 2Vh) = —S(z). (245)

By comparing these equations with equation (212), we see that equa-
tion (244) is valid for all positive values of .

From the equation (231) and the three fundamental relations we
may deduce that

S(—z) = —8(z) and C(—z) = C(z), (246)
by reasoning analogous to that used in connection with equation (213).
Since equation (246) has the same form as equation (213), it follows

that the equations (244) are valid for all values of =.
From the limiting relation (214), we have:

2¥hz
S( 90>

sin z° T

i = lim—— = —- 47
Jim— = 180 (247)
But, if we put v = 2¥hz/90 and use the relation (227), we find:
o)
90 2 S(u) 2%
im———t = lim— — = ——- 248
o Im-50 % ~ 9 (248)
A comparison of these last two relations gives:
N

Ny T L2k 249
2%h = 5! S0 that u % 150 (249)

and hence by equations (217) and (244):
\ ©
S(u) = sin (lsﬂ‘) =sinu, and C(u) = cosu. (250)
T
This proves our contention that any pair of functions satisfying the

four stated relation must be identical with sin z and cos z for all real
values of z.
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1t is an interesting fact that the original conditions made no explicit
reference to the number x, but that these conditions determine 7/2 as
the smallest positive number for which

S (—’25) =1 and C (’—2') =0. (251)

68. Properties of the Trigonometric Functions. From our present
point of view, all the formulas involving functions of the sum or differ-
ence of = and an integral multiple of x/2 follow from the addition and
subtraction theorems, and the fact that:

m T
in- = - =0 2
sin o 1, cos 0 (252)
In addition to the relations:
sin0 =0, cos0 =1, sin (—z) = —sinz, cos (—z) = cosz (253)
and
. T T .
sin (x + 5) = COS %, COS (x + 5) = —sin z, (254)

which are essentially those already used to extend the range of definition
beyond the first quadrant, we note that

cos z = sin (g - ) (255)

We easily find from equation (252) and the addition theorems that:
sinwt=0,cosr=—1; sin2r =0, cos 2r = 1. (256)

Since the functions of 2r are the same as those of 0, the addition
theorems show that z + 2r has the same functions as z + 0, or z.
Thus the sine and cosine each admit the period 2x. It is the smallest
period for the cosine, since no value between 0 and 27 has cos z = 1.
It is the smallest for the sine, since the only value between 0 and 2x
which makes sin z = 0is #, which is not a period since sin (z + =) =
~—sin z.

Similar reasoning shows that the tangent and cotangent each admit »
as their smallest period.

We have shown that many of the identities involving the sine and
cosine derived in elementary trigonometry hold for the functions as
defined in section 56. Since all the remaining identities involving the
sine and cosine can be derived from those here proved by algebraic
means, we shall feel free to use any of their elementary properties in the

sequel.
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Identities involving the other functions may be considered identities
in the sine and cosine, in view of equations (144).

69. The Derivative of the Sine and Cosine. The derivative of the
function sin z, in accordance with the definition (67) of section 45 is

. sin(x+h)—sinz

lim ) (257)
A0 h
if this limit exists.
But from equation (179) or (233),
sin (x+h)—-sinx=2cos(x+g> sing: (258)
80 that:
i
sin (z+h) —sinz ( ﬁ) 2
W =cos{z + 2 _ﬁ (259)
2

Since the cosine is continuous, the first factor approaches cosz
when 2 — 0. The second factor approaches unity, by equation (218).
Thus the limit is cos z, and we have:

If f(x) = sin z, then f'(z) = cos z. (260)

In & similar way, using the equation

cos (x + h) —cosz = —2sin (x+g) sing» (261)
we may show that
lim cos @+ h) — cosz = —gin z, (262)
h=0 h
so that:
If f(x) = cos z, then f'(x) = —sin z. (263)

60. Inverse Trigonometric Functions. Since the continuous funec-
tion y = sin z increases from —1 to 1 as z increases from —x/2 to »/2,
the inverse function z = sin"ly is continuous, and increases from
—x/2 to /2 a8 y increases from —1 to 1. This is the principal branch
of the function z = sin™ y. Other branches are obtained by taking
other intervals, (n — 1/2)x to (n + 1/2)x, where n is a positive or
negative integer, in which the sin z either increases from —1 to 1, or
decreases from 1 to —1. Collectively, the branches make up an infin-
itely many-valued function sin™? .
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In any application where y varies in one sense within the range —1,1
we may restrict ourselves to one branch, and usually find it convenient
to use the principal branch. Where y varies in some other way, for
example increasing to 1 and then decreasing, we may either use intervals
in which y varies in one sense, and treat these intervals separately; or
we may regard the relation = = sin™! y as equivalent to the relation
y = sin z, and use such branches for the different intervals that z varies
in one sense as y increases to 1 and then decreases.

Similar reasoning shows that the functions cos™ y, tan™ y, cot™ y,
sec ! y and csc! y are continuous and monotonic in certain restricted
ranges.

The values of the principal branch of the cs¢™? y are those in the range
—7/2 £z < /2. Infactcesc?y = sin™! (1/y).

For cos 'y and sec™!y = cos™ (1/y) the values of the principal
branch are those in the range 0 < z < =.

For the functions tan™ y and cot™ y = tan™ (1/y) the values of the
principal branch are those in the range — »/2 < = < #/2.

We note that for this branch, '

tan™! (—») = —1—2r and tan™! (4 ) = 1—2r, (264)
in the sense that if

rz =tany and y = tan!=r, and -—§<x<1—;: (265)

then
x-—»—ooasy——)—g+, and z— +w asy—»%— (266)
Since
lim tanz = 4+ and lim tanz = —«, (267)
:—»g— z—>5+

we can only write
lim [tan 2| = o, (268)

2

and the notation sometimes used, tan 7/2 = « or tan x/2 = L o,
must be interpreted as meaning no more than the last two equations.
Similar remarks apply to the notation csc 0 = « and sec /2 = =,
61. Polar Cobrdinates. Let z and y be the Cartesian codrdinates of
a point in a plane, as in section 13. The polar coérdinates of the point
may be defined as any pair of values 7,8 satisfying the relations:

r20 and z=rcosf, y=rsinb. (269)
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We proceed to discuss the solutions of this system of equations. The
equations imply that
2Z2+y? =12 and r=+VaZ+y2 (270)

Thus the value of r is uniquely determined. Geometrically it is the
distance from the point to the origin.

If x and y are both zero, r is zero and @

is unrestricted, since if = y = r = 0, any value

r of 6 will satisfy the equations (269).
For z and y not both zero, r is positive, and the
(] value of 6 must then satisfy
o| z )
x . Yy
Fia. 8. cos f = 0 sin 6= . 271)

fax=0,sincer=0,y=0 Ify>0 0=x/2wil be a solution,
while if y < 0, 8 = —=/2 will be a solution.
If z = 0, then 8 must satisfy the relation:

tan0=2 or 6=tant¥. (272)
T T

This relation determines a unique value of 6 in the interval
—x/2 < 6 < %/2, the value for the principal branch of the preceding
section. This value 8, will either satisfy the equations (271) and (269),
or will be such that 6, + = will satisfly them. Thus the equations
(269) have a unique solution in the interval ~x/2 £ 8 < 3x/2, when-
ever r = 0.
Since cos 6 and sin 6 each admit the period 2, there will be a unique
solution, if r £ 0, in every interval
a<8<a+2r or b<0=ZDb+ 2n, (273)

and if 6, is one solution, all the solutions will be given by 8§ = 6; + 2k,
where k is zero or a positive or negative integer.

Geometrically, r is the length of the radius vector, and 8 is the angle
measured from the positive z-axis to the radius vector. We shall refer
to (r,8) as the polar coordinates of the point with Cartesian codrdinates
(x,y). We have thus proved:

If a point has Cartesian codrdinates (z,y) distinct from (0,0), the relations

z=rcosf and y=rsind, r>0 (274)
determine uniquely a pair of polar codrdinates 7,0 in the range

a<0<a-+ 2 (275)
determined by a.
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EXERCISES III

1. For what real values of z does z* define a real number? For what values is
this function continuous? For what values of z and y is z¥ a continuous fune-
tion of the two variables? Similarly for (x2)v/2?

2. An explicit algebraic expression is one built up of one or more variables
and constants by the four fundamental operations, together with root extrac-
tions. Prove that such an expression is continuous for any set of values of the
variables which does not make a denominator zero, or an expression whose even
root is taken zero or negative.

3. Prove that lim (1 4 z/r)" = ¢*. Hint: Put n = z /h, when z % 0.

n—+

4. Show that if x > 0, the function
72
sa(z) = 1+:::+E-‘+...+_

for fixed = increases with n, and approaches a limit as n— + . Hint: To
obtain an upper bound, note that if m > 2z, the terms from the (m + 1)th to
the (m + k 4+ 1)th do not exceed

zm 1. 1 1 3z™
;n—!(1+§+2—2+"'+—><—-

2k m!

b. Prove that e*= lim (1 4z 4+ z*/2!14+---2"/n), if 2> 0. Hini:
o ]

Use problems 3, 4 and argue as in section 46.
6. Prove that,if lim [f(z + 1) — f(z)] = L, then lim f(z)/x = L, if f(z)
z—>—+00 D—>+-00
is bounded on every finite interval. Hint: If a < f(z 4+ 1) — f(z) < b, for
z> 7/, an < f(z + n) — f(z) < bn, and an + /(=) < fatn < bn + 1@ .
z+n T+n z+n
For vy < z< 2 +1, |[fx)] < M, and hence, for =n > =/,
a—e<flx+n)/(x+n)<b+e Nowfindz' fora=L—¢ b=L+e¢
sothat foranyy > 2’ +n'+ l,y=2+nwithn >n’andz’ <z =2’ + 1.
Hence lim f(y)/y = L.
7. Show that the boundedness condition of problem 6 is necessary by con-
sidering f(z) = cot wz, 7 n an integer, and f(z) = 0, z an integer or zero.
8. Prove that if lilil [fz + 1) — f(z)] = 4+, and f(z) is bounded from
Z=—p-1-00

below on every finite interval, lim f(z)/x = + .
z—>+o

9. If f(x) is bounded on every finite interval, and as £ — + o, the upper and
lower limits of f(zx + 1) — f(z) are B and A respectively, while those of f(z) /=
are B’ and A’, show that A < A’ < B’ < B. Consider sin 2rz as an example.

10. Show that problem 9, Exercises II is a special case of problem 6, and
formulate extensions of that problem analogous to problems 8 and 9.
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11. Prove that, if f(x) is positive and together with 1 /f(z) is bounded on every
finite interval, and lim f(z + 1) /f(z) = L> 0,then lim f(z)V* = L. Hint:
2—>+400 >+

Apply problem 6 to F(z) = log f(z).
12. Formulate extensions of problem 11, based on problems 8 and 9.
13. Prove that, if f(z) is positive and bounded on every finite interval, and
lim f(z + 1)/f(z) = 0, then lim f(z)¥= = 0. This is an extension of prob-
2>t Z—>--00

lem 11.
14. Prove that ¢ > z"/n |, for any > 0, and n a positive integer. Deduce
that lim ¢®2™™ = 4 o, asz— + . Hini: Use problem 5. Take n = m + k.

16. Prove that lim z* = = 0 for any real w. Hini: Use problem 14, or
T—>+00

problem 13 for the case u > 0.
16. Prove that if » is any real number, and p > 1, that lim z%p—= = 0.

Zpf-00

Also that lim (logy)*/y = 0. Hint: Puty = ¢* and use problem 15.
y—>to
17. Prove that for any real value of v and any positive value of m,

lim (logy)“/y™ = 0, and lim (log y)*y™ = 0. Hint: Use problem 16.
y—+o y—0+

18. Prove that lim % = 1, and hence that lim z% =1, Hint: Take
=0+

z—>+®
logarithms and use problem 16.
19. Prove that lim V/a!= +o. Hint: By problem 14, V1> geo/n
n—>+0
=nleifz=n.
20. Prove that lim n(zY/* — 1) = log =z, if z > 0. Hini: Put n =

n—>-+00
(log z) /h, and use equation (127).
91. Prove that lim 1€~ 10
n—>t-o0 et + 1

[f0) + g(0)1 2if z = 0.
22. The function sgn z, read ' signum z,” is defined to be 1 if z is positive, —1

is f(z) if >0, g(z) if <0 and

if z is negative, and sgn 0 = 0. Prove that lim -t = ggnz. Also prove

n—>-40 "% + 1
that lim 2 tan~! nx = sgn z, if the principal branch is used.
ne—=s+tw0 T
23. Prove that lim sin nrz = 1, and lim sin nrz = —1, if z is irrational and

n— 4+ through integral values. Hint: Use problem 32, Exercises I.
24. Show that if f(z) = lim  lim > tan~! [m sin? (n | 72)], then f(z) = 1
n—>+0 mes-two T
when z is irrational, and 0 when z is rational.
26. Show thatif f(z) = lim lim cos?™ (n ! xz), then f(z) = 0 when z is

n—>+0 mer+0
irrational, and 1 when z is rational.
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26. Show that the function sin (1/z) has its oscillation equal to 2 for
z = 0. See section 150.

27. Prove that for any real value of u and any positive value of m, the function
()™ sin (z%)* is continuous at z = 0 if, for » < 0, we define the value of the
function to be 0 when z = 0.

28. Suppose the function f(r) is defined for all rational values on a finite
interval, and is uniformly continuous in the sense that, for any two rational
values on the interval, [f(r"") — f(")] < ¢, any positive quantity, if [r”’ — | < &
depending on e. Prove that there is one and only one function f(x), continuous
for all values on the interval, and such that f(z) = f(r) when z is a rational
number 7.

29. Show that f(r) = 3r, 0 < r £ 2, is an example to which the preceding

problem applies to give f(z) = 3z, but that the function f(r) =

sin ——

r—V2

may not be extended to a function continuous for all real values between 0 and 2,

even though it is continuous at all the values r, in the sense that lim f(r) = f(r").
r—>r'

30. Prove that the result of problem 28 remains valid if the values r are
replaced by any set of points on the interval such that every point of the interval
is a limit point of the set. As examples of such sets we have that in problem 32,
Exercises I, and the set 90m /2" used in. section 53.

81. If f(z) is defined for all real values of z, is continuous at one point, and
satisfies f(z 4+ ) = f(z) + f(y), then f(z) = kz. Hint: Since f(z + h) —
f(x) = f(h), which does not depend on z, continuity at one point implies con-
tinuity at all points. But if p and g are positive integers, it follows by induction
from the original equation that f(p) = pf(1), and ¢f(p/q) = f(p). Hence, if
fQ) =k, f(r) = kr for r a positive rational. The equation also shows that
f(0) = 0 and f(—z) = —f(z), so that r may be zero or a negative rational
number. Finally, by problem 28, f(z) = kz.

82. If f(z) is defined for all positive values of z, is continuous at one point, and
f(zy) = f(z) + f(y), then f(z) = k logz. Hint: Apply problem 31 to F(u) =
f(e*). If uw = logz and v = log y then F(u + v) = f(zy).

83. If f(z) is defined for all values of z, is continuous at one point, and
f(x + y) = f(x)f(y), then f(z) = A*. Hint: If f(z) is zero for one value it is
always zero. If not, since f(z) = [f(z /2)]% all the values are positive, and we
may put F(x) = log f(z) and use problem 31.

84. Prove that none of the expressions:

sin 7z 1 1+ zsinwx
- ’ ; ’ ;
sin Tz 1+ zsinwz z + z sin rr

approach limits as z— -+, but that on any sequence including no integral
values of z, the limit of the first is 1.

in az tan az
35. Prove thatasz——)O,s

and each— a.

k]
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sin~! az tan™! az
36. Prove that as z— 0, . and - each—a. Hint: Put az =

siny; ax = tany.

1—
37. Prove that lim _czoﬂ
>0 z

sin? z ) - 2 gin? z
1———+cosx’ orl—cosz=2sn’{z)

38. Prove that lim
2 2 — 3

1
=3 Hint: Use either (1 — cosz) =

Cos T

=1



CHAPTER 1V
DIFFERENTIATION

In this chapter we shall study the special limit process, differentiation,
which plays a central role in the differential calculus. We outline the
fundamental theorems on differentiation, with particular emphasis on
those points which are apt to be inadequately treated in a first course.

We then proceed to the mean value theorem, and various theorems
about derivatives and applications of differentiation related to it.

62. Definitions. If y = f(x) is a function of z, the derivative of the
function for a particular value of z, is defined by

o) = il @R 1@, o
h=>0 h
as we stated in section 45.

As the denominator of the fraction, &, is an increment of z, it is fre-
quently denoted by Az, and the numerator, being an increment of y is
denoted by Ay. This leads to the more condensed form of the definition:

/(&) = lim 2. @

This does not indicate which value z is being considered, unless supple-
mented by

Ay = f(z + Az) — f(z). 3)
The alternative notation for a derivative,
dy d . v
t 4 ud 4
iz " o (y) in place of ' (z), 4)

is intended to suggest the defining relation (2).

We recall that the notation 2 — 0 or Az — 0 implies that k or Az
may approach zero through any sequence of values, each of which may
be positive or negative but may not be zero.

To say that the function f(z) has a derivative at z usually means that
for this z, the difference quotient which appears in equation (1)
approaches a finite limit. In this case the difference in the numerator
must approach zero with k, so that the function f(z) must be continuous
for the value of z considered.

97
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However, if the function f(z) is continuous at z, and for this value the
limit in equation (1) is plus infinity, we say that f(z) has the derivative
+ . Similarly, if the limit is — , we say that f’(z) = — ©. When-
ever we wish to include these cases, we shall use the phrase, f(z) has a
finite or infinite derivative. Note that, in all cases where f(z) has a
derivative, finite or infinite, f(x) is continuous by our definition.

The interpretation of derivative as a slope makes it desirable to include
infinite derivatives, as here defined, since the question of a function
having a derivative is then related to the question of its graph having a
tangent. Geometrically, an infinite derivative merely means a vertical
tangent, and so may be introduced by a mere rotation of axes.

If h is restricted to be positive and if the limit in equation (1) is
obtained, this limit is called a right-hand derivative. Similarly, if & is
restricted to be negative, the limit is a left-hand derivative. For
example, if y = |z|, for £ = 0, the function has a right-hand derivative
equal to +1, and a left-hand derivative equal to —1. In the original
sense, this function does not have a derivative at z = 0.

The process of finding the derivative of a function is called differentia-
tion. We say that a function may be differentiated in a closed interval
a S z < b, if the function has a derivative at all interior points, a right-
hand derivative at a, and a left-hand derivative at . The function
J'(z), obtained from a function by differentiation, is sometimes called
the derived function.

63. Combinations of Functions. In view of the results of section 19,
the definition of a derivative implies that the operation of differentiation
is linear. 'That is, if u and v have finite derivatives, and k is a constant,

then

d du
o (ku) = k T (5)
and
d du  dv
et =2+ (6)
It may be deduced directly from the definition that
d dy du
d—x(uv)—ud—-x+v‘—i;, @)
and
du dv

i(‘-‘)= LA SRS ®
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It also follows immediately from the definition of a derivative that

dx dk
—=1 —=0
-1 md =0 ®
where k is a constant.

The equations of this section enable us to derive the familiar formula
for differentiating any polynomial:

n n
If f=) = szlo ayz?, f'(z) = E’l payz? . (10)
By using equations (8) and (10) we may find the derivative of any
rational function for a value of  which makes the polynomial in the
denominator different from zero.
64. Inverse Functions. We proved in section 37 that, if y = f(z) is
a continuous increasing function in some open interval including z,
there is an inverse function z = f~!(y), which is continuous at yo,
where yo = f(zo). Let us assume in addition that f(z) has a derivative
at 2o, finite and distinct from zero. Then
dy .. Ay
f(@) =3 = lim =, an
where Az is the increment of = at xp, and Ay is the corresponding incre-
ment of y at yo.
Since the inverse function f~!(y) is continuous at yo, when Ay
approaches zero, Az also approaches zero. Also since the function is
increasing, Ay is distinct from zero if and only if Azis. Hence:

Az 1 1 1
lim 2% = lim o= = —— = —. 12
ay—+0 AY A&ﬂ/ lim 2¥ dy 42

Az az—0 AT dz
This shows that z = f~!(y) has a derivative, and

dz 1
-d—y- = :l_; . (13)
dz

If f(z) has the derivative equal to zero, then f~'(y) has the deriva-
tive + o, while if f(z) has the derivative + =, then f™(y) has its
derivative equal to zero. These facts follow from the relations (12)
and the remarks in section 20, since Az and Ay have the same sign.

A similar discussion applies to decreasing functions. Here the inverse
function has the derivative — =, if the original function has its deriva~
tive zero.
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65. Composite Functions. Suppose that u = f(z) has a finite
derivative at o, and that y = g(u) has a finite derivative at ug, where
up = f(xp). Then the function

y =glf(@)] = F(z) (14)
has a derivative at x,, given by
F'(20) = g’ (uo)f (xo) or ar = dudn (15)

To prove this, we first consider the case in which for all Az # 0 the
corresponding values of Au are never zero. In this case we have:

Ay Ay Au

el s Al 1

Az Au Az’ (16)
and the relation (15) follows by taking limits, after noting that when

Az — 0, then Au — 0, so that

lim Ay _ lim 4y _ -‘—iy
ar0 AU pu—oAu  du

a7

This proof also applies if there are not arbitrarily small values of
Ar, say Apz, distinet from zero, for which Au = 0, since in this case the
Au will be different from zero when Az is different from zero and
sufficiently small. _

Now consider the special case in which there are arbitrarily small
values of Az, A;z # 0, for which Au = 0. Then, on letting Az approach
zero through such values, we find

Au
1 — = (), 1
lim A 0 (18)

But, since u has a derivative, the limit must be the same for all
methods of approach of z to zero, and

— = lim — = 0. (19)

If we let Az approach zero through values Az, we have Au = 0, so

that Ay = 0, and hence:
A
lim =% = 0. (20)
Az
On the other hand, if we let Az approach zero through values of
Az not of the type Az, say Aoz, we have:
Sy _ bysu 1)
A Au Asx
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so0 that, in view of equation (19),

. Ay dy
lim—=—-0=0. 22
1 Agxz  du (22)
Thus, in the special case where there are sequences Az,
A
lim =2 = o, (23)
Az

whether Az approaches zero through sequences A;z or Agz, and hence
through sequences composed partly of one type and partly of the other.
That is, the limit is zero for all methods of approach.

Finally, since in the special case,

dy

U
E;l-I:O and "CE;—O, (24)
while dy/du is finite, we have
dy _ oy
dz 0= &’ (25)

so that the relation (15) also holds in the special case.

A trivial example of the special case, where all values of Ar are Az,
is the case where f(z) = k, a constant. A better example is given by
f(x) = z%sin (1/2)if x 5 0,and f(0) = 0; g(u) = 2uwithuy = 7o = 0.
Here the values Az are 1/(nr), where 7 is a positive or negative integer.
Compare equation (70) in section 69.

66. Logarithmic and Exponential Functions. We showed in section
49 that
1

. (26)
z

d
T (log ) =

Since the function ¥ = log z is increasing, we may find the derivative
of its inverse function z = ¢¥ by equation (13), and

i (&¥) = —_—1 =g = év. (27)
d — (log )
dr &
If we now interchange z and y, this becomes:
g (€®) = €. (28)
dz

We may write

172

o = %0 ifp > 0. (29)
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If u and v are functions of z with finite derivatives, we find from this and
equations (28), (16), (7), and (26) that:

a . du dv
— = p% ] P u—1 |
T W) = v*logv I + w o (30)
As particular cases of this, we have:
d
o @) =p"logp, p>0, @31
where p is any positive real number, and -
d o
T (@) = k2¥7Y, x>0, (32)

where k is any real number and z is any positive number. This formula
remains valid for negative values of z if k is a rational number with an
odd denominator, as we may show by using the equations (12) and (13)
of section 40. For any value of k£ > 1, the function z* has a right-hand
derivative 0 at £ = 0, as a direct application of equation (1) shows.
Thus whenever the right member of equation (32) is finite for = 0, it
equals the value of the right-hand derivative.

The special result

4 (@) = — 1 # 0 33

e~ L ! (33)
may be combined with equations (15) and (7) to give an alternative
derivation of equation (8), since u/v = wv™'. This point of view is
sometimes convenient in differentiating a fraction.

The method of logarithmic differentiation consists in taking the
logarithm of a function before differentiating. The derivation of equa-
tion (30) from the relation (29) was equivalent to this method. For
example consider the product:

Y = UgUgUz * * * Un. (34)
We find:
L 1dy * 1 du;
1 =31 y — o = —_— 35
8y El o8 Y ydz = u; dz’ (35)
so that:
dy _ 5 Y dui (36)

dx iZ1u; dx

Since the last expression, with the u; cancelled out, must agree with that
obtained by repeated use of equation (7), it must hold in this form even
when some of the u; are zero or negative.
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For the sake of completeness, we note that since

logz d 1 1
=—, —( = —

log p a0 ?) logp z @7
This is essentially equation (108) of section 48, which was our reason for
introducing natural logarithms.

67. Trigonometric and Inverse Trigonometric Functions. We showed
in section 59 that

log, z

d . d .
o (sin ) = cos z, e (cos ) = —sin z. (38)
It follows from their definitions in terms of the sine and cosine that:
d 2 d 2
o (tan z) = sec®z, Tn (cot ) = —esc® z, (39)
and
i (sec ) = tan x sec x i (csc ) = —cot z csc x (40)
75 (Bec ) = ' T = 3

For the principal branch of z = sin™y, as defined in section 6C,
—x/2 < z < x/2, cos z is positive. Hence we have from section 64:

d
d—y(sin’l Y) “wsr Vi (41)
Interchanging z and y, we find
d . 1 T . ]
;l-;;(sm x)=\/_l—=x“’, —--é<sm :c<§-

By similar reasoning, we find, for values of y in the first quadrant,
0<y<n/2

(42)

d (cos™! z) 1 d (sec™! x) L

- =Ty = —,

dz V1-g? dz Va2 -1
—~1 1

a4, 4y__ -1 a4 . __ &,  ay__1
dx(csc x)—szT:_l’dx(tan z)= dx(COt x)—1+x2 43)

These formulas may be modified to extend to all branches of the
functions, by the use of

-1 .
d—i. (sin'z) = \/—1—_——-—;; when cos y is negative, (44)

d " 1 . .
— (cos™! z) = ————= when sin y is negative 45
dz ( ) \/1—_—7 Yy ga s (45)
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d —1
— (sec12) = Y when tan y is negative, (46)

dz vV — 1
4 (esc™lz) = B S when cot y is negative 47
dz = - V-1 Y & .

In each case y is the value of the inverse function, and the earlier formulas

(42) and (43), which have the opposite sign, are to be used whenever the

functions of y explicitly mentioned in each case as negative are positive.
To illustrate the necessity for care, consider the differentiation:

u = cos ! <l> dw_ 1 -1 1
¢/’ dz V1- (/)¢ ¥ Va2 -1
The sign used in the differentiation must be changed if sin w is negative,
and the multiplying in of x, or use of z = \/;2, is correct if z is positive,
and requires an additional change of sign if  is negative. Asz = secy,
the result as given is correct if sin % and sec u have the same sign, that is
when tan u is positive. Otherwise the sign should be changed. Thisis
in accord with equation (46), since u = cos™ (1/z) = sec™’ z.
68. Hyperbolic Functions and their Inverse Functions. The hyper-
bolic sine and cosine are defined in terms of the exponential functions:

. & —e* e+ e*
sinhz = - and coshz = —g

(48)

(49)

The other four hyperbolic functions are defined by equations analogous
to those for the trigonometric functions:

inh /i
tanh z = ST, cothz = c.os -z, (50)
coshz sinh z
1
sechz = ———, cschz = — . (51)
cosh z sinh z

The properties of these functions may all be deduced from these equa-~
tions and from the properties of the exponential function.
In particular:
cosh? z — sinh?z = 1, (52)
and
coth?z — csch?z = 1, tanh®z + sech®z = 1, (53)

Recalling equation (28), we find:

d
4 (sinh ) = coshz, — (cosh z) = sinh z. (54)
dz dz



Agrr. 68] HYPERBOLIC FUNCTIONS 105
By using equation (8), and the equations of this section, we find:

-‘% (tanh z) = sech?z, Ed; (coth £) = —csch®x, (55)

4 (sech ) = —tanh z sech z, 4 (csch z) = —coth z esch z.  (56)
dz dz
It may be seen from equations (49) that cosh z is always positive,

while sinh z is positive for positive £ and negative for negative z.
Also that:

sinh (—z) = —sinh2 and cosh (—z) = cosh z. 67)

While a simple method of systematically obtaining identities in hyper-
bolic functions from the corresponding ones in trigonometric functions
will be given in section 106, we note here that the addition theorems are:

sinh (@ + b) = sinh a cosh b + cosh a sinh b, (58)
cosh (a + b) = cosh a cosh b + sinh a sinh b. (59)

They may be verified by using equation (49) to reduce each side to a
combination of exponentials. The subtraction theorems may be found
by replacing b by —b and using equations (57). We may then deduce
that:

sinh (z + h) — sinh = 2 cosh (:c + g) sinh g: (60)
and

cosh (£ + k) — cosh £ = 2 sinh (x + g) sinh g’ (61)

by a procedure analogous to that used for the corresponding trigono-
metric equations. It follows from equation (60) that sinh z increases
for all values of z, and from equation (61) that cosh z increases for all
positive values of x. Thus we may define the inverse functions
z =sinh gy, and x = cosh™' y. The latter is only defined for y = 1,
and has two branches, a positive and a negative branch. The increas-
ing or decreasing character of the remaining functions may then be
inferred from equations (51) and (53). Thus we may define tanh™ y,
coth™ y and csch™ y which have only one branch, and sech™ y which
has two branches, one positive and one negative. We may find the
derivatives of these functions as we did for the inverse trigonometric
functions. The results, with = and y interchanged, are:

d 1 d —1
S otsinh ) = —m—, 2 R IR 2
(sinh™" z) Tt (esch™ z) e xz’ (62)
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1
1—a?

d d 1
= (tanh™! z) = r - (coth™ z) = T (63)

and, for the positive branch:
d —1 1 d 1y =1
. (cosh™ z) = \/x2_:’ o (sech™ z) = . \/1—-_37"’ (64)

The signs must be reversed in these last two equations if we use the
negative branch, that is the branch for which y and hence sinh y are
negative.

We observe that the inverse hyperbolic functions may be expressed
in terms of logarithms by such formulas as

1 142
_l _
tanh™ z = 2log 1= (65)
and
sinh™!z = log (x +Vz? + 1). (66)

69. Elementary Functions. An elementary function is one which
can be explicitly represented in terms of constants and the independent
variable by means of the four fundamental operations and the basic
elementary functions discussed in Chapter III, using at most a finite
number of operations and a finite number of basic functions. For
example, the hyperbolic functions and their inverses are elementary
functions. While it is convenient to use fundamental formulas involv-
ing the power, z%, logarithms and exponential functions to any base, the
six trigonometric functions and their inverses, as well as the six hyper-
bolic functions and their inverses, we only need to take the functions
¢, log z, sin  and sin™? z as fundamental. For all the remaining func-
tions can be expressed in terms of these, at least in a limited range of the
variable. For example, we have:

o* = ¢“°8° » > 0, cos z = sin (g - x)s (67)

and, for suitable branches of the inverse functions:

T
tan! z = sin”! —V——=- (68)
V1 + z?

By using the principles of sections 63 and 65, in combination with the
special formulas of sections 66 and 67, we may determine the derivative
of any elementary function for all values of z in suitably restricted
ranges. Whenever the calculation of the expression which represents
the derivative for a particular value of « does not introduce the division
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by, or taking of the logarithm of, an expression which reduces to zero
for this value, or the even root, irrational power or logarithm of a nega-
tive quantity, the expression gives the derivative.

When the calculation does not lead to a definite result which is real
and finite, the principles involved are no longer applicable. Frequently,
the expressicn will fail to have a derivative for the excepted values of z.
For example y = Vzforz =0orz negative. In some cases the func-
tion will have a derivative, as we may show by a direct appeal to the
definition. For example, if y = 2% sin (1/x) and = # 0, the rules show
that

d; 1 1
i 2z sin — — cos —- (69)
dr z z

If z = 0, this expression contains a vanishing denominator. Moreover,

" as r — 0, the expressioa oscillates. The function itself, z% sin (1/z),
defines no value directly when z = 0, since it contains a vanishing
denominator. However, as £ — 0, it approaches 0, so that it is natural
to define y = 0 when z = 0, since this is the only value that will make
the function continuous at zero. If we do this, so that f(0) = 0,
f(z) = z%sin (1/x), x # 0, then

1
h?sin = — 0
70 + h;)z - f0) _ h" =h sin-l};: (70)

which approaches zero when h — 0, since the sine factor is never numeri-
callv greater than unity. Thus, the function f(z) has a derivative at
zero, and f/(0) = 0.

We note that, as defined in this section, the inverse of an elementary
function is not necessarily an elementary function. An example is
y = 2z + sin z.

70. Differentials. Let the function y = f(z) have a derivative
f'(x) at the point x. Then the differential of the independent variable,
dz, is any number, selected arbitrarily. It may be either fixed through-
out the discussion, or dz itself may be regarded as an independent vari-
able. The differential of the dependent variable, dy, is then defined by
the equation

dy = f'(z) de. (11)
In particular, if y = z, f'(z) = 1, so that
dy = da. (72)

Thus the differential of a dependent variable equal to z is equal to the
differential of the independent variable x.
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Again, if a third variable ¢ is taken as the independent variable, where
z = F(t) and y = G(t) have derivatives, we have in accordance with
the equation (71), with z replaced by ¢,

de = F/'(t)dt and dy = G'(t) dt. (73)
But, by equation (15),

dy dyde Y ’
il G'@t) = (@)F @). (74)
In view of this equation, the equations (73) together lead to
dy = f’(z) dz. Thus the relation (71) holds whether z, or some other
variable ¢ is the independent variable.
Having defined differentials satisfying the relation

dy + dz = f'(z) = g%, (75)

we may now think of this last notation as an actual fraction, and when
du # 0, regard equation (15) as equivalent to ordinary cancellation of
common factors from a fraction.

If we give z an increment, Az, equal to the number selected for dz,
we shall have:

dx = Az, dy = f'(z) Az. (76)
Again, if we put
Ay
T =r@+a "
then
, . Ay .
fi(z) = lim — implies lim «=0. (78)
Az—0 AZ Az—0
That is,
Ay = f'(x) Az + a Az, where «—0as Az — 0. (79)

This shows that dy and Ay differ by a term a Az, so that, if we take a
sequence of values Az approaching zero, the difference between dy and
Ay for these values will not only approach zero, but will approach zero
even when divided by Axz. Hence, when Az is sufficiently small, dy and
Ay will differ by a small fraction of Az. In precise form:

For any positive quantity ¢, there is a 6., such that if
dy — Ay
Az

|Az| < 8, then <e (80)
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If the increment Ay, corresponding to an increment Az, at the point z
for a functional relation y = f(z) is such that for some A independent
of Az,

Ay = A Az + a Az, where a—0 as Az —0, (81)

the function f(z) is said to be differentiable. From the relation (79) it
follows that, if f(z) has a derivative, the function is differentiable, with
A = f'(z).

Conversely, if a function is differentiable it has a derivative, since
from the condition (81) we have:

limA—y=lim (A+a) =4, (82)
az—0 AT Az—0
so that f(z) has a derivative, and /' (z) = A.

71. Higher Derivatives. If we start with a function f(z), we may
obtain from it by differentiation the derived function f'(z). We may
now take f’(z) and apply the process of differentiation toit. The result
is:

U@ =2 ty=m LEXNZLO g

if the fraction on the right approaches a limit. This derivative of the
derived function is called the second demvative, or derivative of the second
order, and is indicated by

2

7@ o 5, )

a contraction for the first two expressions in equation (83). The func-
tion f'/(x) is called the second derived function.

Similarly, we may repeat the process of differentiation n times, and so
obtain the nth derivative, or nth derived function:

(n) dﬂ/
™ (x) or el (85)

The derivative f'(z) is sometimes called the first derivative, when
derivatives of different orders are under consideration.

By restricting the increment & to be positive for each limiting process,
we obtain right-hand derivatives of the nth order. Similarly, by
restricting h to be negative, we obtain left-hand derivatives of the nth
order. One application of these is to the higher derivatives of a funetion

at the end points of a closed interval, outside of which the function is not
defined.
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If u = f(z) and y = g(u), as in section 65, we have

y = glf()] = F(x), (86)
and from equation (15)
dy dydu , , ,
T dnds F'(z) = g"(u)f (x). (87)

If we differentiate this by using equations (7) and (15), we find:

d¥y  d%y fdu\? dyd*u
F= A d7<d—) du iz’ (88)
or F'(z) = ¢" )lf' @) + ¢’ w)f’ (x). (89)

By using this result we may find out how second differentials depend
on our choice of independent variable. Let us indicate the independent
variable by a subscript and define second differentials by the equations:

d2
@, = (53) @)? = P @) @21, (50)
and similarly
d21/ 2 7]
@) = (G) @) = ¢ @@, o
and
2, d2u \ 2 17 2
@)e = (5 @a)” = 1" (@) @) (92)
Then, on multiplying equation (88) by (dz)? we find:
@), = @9+ @, 2. (93)
Since the last term in this equation is
g’ (w)f' (z) (dz)?, (94)

it will be zero only in exceptional cases. Thus the second differential of
y when z is the independent, variable given by equation (90) will usually
differ from the second differential of ¥ when u is the independent variable
given by equation (91).

While second, and higher, differentials may be introduced, since they
depend on the choice of independent variable, and are of little help in
making a change of independent variable, they have few of the advan-
tages of tue first differentials introduced in section 70. Consequently
it is usually preferable to avoid them, regarding d"y/dz" not as an
actual quotient of two differentials, but simply as a suggestive notation
for n repetitions of the operation of differentiation, (d/dz)™y.
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72. The Rule of Leibniz. The formula for the differentiation of a
product may be extended to higher derivatives, and is known as the
Letbniz rule. If we denote differentiation of the factors of a product
involving u by D,, and of those involving v by D,, then we may write:

d du dv
d—;(uv) = (D.,+D,,)uv=:i;v+ud—;: (95)

since this agrees with equation (7). Since the operators D, and D, com-
bine like algebraic quantities, with respect to addition, multiplication,
and multiplication by constants, it follows that:

d” ”,
px (w) = (Dy + D,)™uy

A o1 n(n — 1)
= (Du-i-nDu D,,+——1'2
d™u dudv nn—1)d* 2 d% d™
" Tt et 1 @it T e

(96)

DD+ ...+ D':) up

where the coefficients are the binomial coefficients.

In particular, when the factor v is z7, or a polynomial in z of the rth
degree, where r is an integer, the expansion will contain at most r 4 1
terms, since if » exceeds r, all the terms after the (r 4 1)st will contain
a derivative of v of at least the (r + 1)st order, and hence will vanish.

A similar rule could be developed for the nth derivative of a product
of any number of terms,

n

dz"

Here D; denotes the differentiation of those factors of a product which
involve u, and the product on the right may be expanded by the

multinomial theorem.

73. Rolle's Theorem. This theorem states that:

If f(x) has a derivative, finite or infinite, at all the poinis of an open inter-
val, e < z < b, and if

lim f(z) =0 and lim f(z) =0, (98)
r~>a+ Lmrh—

(watg - Un) = D1+ Dy + + -+ + Dp) uyus - - - Up. (97)

then at some point & of the open interval, a < § < b, the derivative is zero,
r'® =o.

To prove this theorem, we define a function in the closed interval
a < z £ b, by putting

Fz) = @), a <z <b; F(a)=0,F®)=0.  (99)
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This function is continuous, in view of the condition (98), throughout
the closed interval. Hence, by section 33, there is a point of the closed
interval a,b at which the function actually takes on its maximum value,
and a point at which the function takes on its minimum value. If both
these points were end points, the function F(z), having its maximum
and minimum values each equal to zero, would be zero throughout.

Hence f(x) would be zero in the open interval, and
e N f'(x) would be zero at all points of this interval,
so that we could take any point of the interval as
a ¢ b .
the point £ of the theorem.
Fia. 9. Suppose then that one of the two points men-
tioned, say the maximum, is an interior point. If this point is £, from
the nature of a maximum, we have:

F@) 2 F(z), or f) 2 f(x). (100)

Hence, for the derivative at £, we have:

S — i TETR =IO (101)
=0+ h
and also
7@ = tim LEER =IO, (102)
h—0— h

Thus we must have f'(§) = 0, and the theorem is proved.

If the minimum is taken on at an interior point, the maximum being
only reached at an end point, we may prove the theorem in a similar
manner. Or we may consider —f(z).

We call attention to the fact that the theorem does not require the
function f(z) to be differentiable, or even to be defined, at the end points
a and b. If it is differentiable at these points, it will be continuous at
aand b. In this case, or whenever the function is continuous at a and b,
we may replace the condition (98) by the requirement

f@@) =f@) =0. (103)

In any case, the theorem shows that we may always take the point ¢
as an interior point of the interval.

74. The Mean Value Theorem. This theorem is the analytic expres-
sion of the fact that on any smooth arc of a curve joining the points P
and @, there is at least one intermediate point T', such that the tangent
to the curve at 7 is parallel to the chord joining P and Q.

. If the curve is the graph of a single-valued function, y = f(z), it will
be smooth if the function is differentiable. If the end points of the are
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are P = [a,f(a)] and Q = [b,f(b)], the slope of the chord will be
10) = f(a)

b—a
will be /' (x), the analytic formulation of the theorem is:

If f(x) has a dertvative, finite or infinite, at all poinis of an open interval
a < z < b, and is continuous at the end points of (and hence throughout)
the closed interval a = xz < b, then at some point
& of the open interval, a < £ < b,

f®) — (a)
b—

We prove this theorem by applying Rolle’s
theorem to a function whose form is suggested
by geometric considerations. If an ordinate at 9| & & =& b
z meets the chord PQ in R and the curve in S, the Fre. 10.
part of the ordinate measured from R to S is:

Fz) = () [f<)+M< a)].

As the slope of the tangent to the curve at any point

T S
r_>Q

= 1. (104) ]

(105)

Since f(z) is continuous in the closed interval a,b and has a finite or
infinite derivative at all points of the open interval a,b, the function
F(z) also has these properties. Moreover, a direct calculation shows
that

F(a) = F(b) = 0. (106)

Hence F(x) satisfies all the conditions of Rolle’s theorem, and there is
a point £ in the open interval @ < z < b at which

P =ge -0

—— =0, (107)

which is equivalent to the equation (104).
Since twice the area of the triangle P@S equals (b — a) RS, we might
- have proved the theorem by applying Rolle’s theorem to this doubled
area, which in determinant form is:

z  f(z) 1
a fla) 1{=24() = (b — a) F(x). (108)
b F) 1

It follows from Rolle’s theorem that:
1 fe 0
a f(a) 1{=24"¢) =0, (109)
b J(b) 1
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which is equivalent to equation (104). The vanishing for z = a and
z = b is seen from the fact that for these values the determinant in
equation (108) has two rows identical. In differentiating the determi-
nant, we may either consider the expansion or use the result of problem 6
of Exercises 1V.

If we put b = a + h, we may write ¢ = a + 6h, where

0<6<L. (110)

We shall frequently use the symbol 8 for a suitably chosen number satis-
fying this restriction. With this notation, the conclusion of the mean
value theorem may be written

f(a_“‘_h)‘_f_(“_) = '(a + oh), (1)

or
f@@+ k) = f(a) + hf’(a + 6h). (112)

Since the left member of equation (104) is unchanged if we inter-
change a and b, the equation is equally true if @ > b, the condition here
holding in the interval b,a. Thus we may take h negative, as well as
positive, in the equations (111) and (112).

Either of the results (104) and (111) is sometimes called the Law of
the Mean for the differential calculus. The term Law of finite tncrements
is also used for equation (112), or its equivalents:

f) = f@) = (b — a) f'(¥) (113)
J®) = f(a) + (0 — a) 1 (®). (114)

As a particular result of equation (111), we note that for a finite A
the difference quotient, whose limit as & — 0 is the derivative at a, is
equal to the value of the derivative at a 4 6k, a suitably chosen point
between a and a + h.

75. Increasing Functions. In any interval throughout which
f'(x) > 0, the function f(z) is increasing. For, if z; and z are any two
points in such an interval, we see from the law of finite increments that

fx2) — f(x1) = (22 — z1) f (§). (115)

Thus, since f/(¢) > 0, the differences f(z;) — f(2;) and z; — z; neces-
sarily have the same algebraic sign, and

J(x2) > f(x) if 22> 7. (116)

As the statement that there is a derivative implies that the function is
continuous, if f(z) has a positive derivative throughout an interval,

and
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y = f(z) is a continuous increasing function in this interval, and there
is an inverse function z = f~1(y). Hence the discussion of section 64
is applicable, and in particular the equation (13) holds.

A similar argument may be used if f(z) has a negative derivative
throughout an interval.

Whenever f’(x) is continuous at xo, and not zero there, there is some
interval including 2o in which f' (x) preserves its sign, so that the equation
(13) may be used at any point where the derivative is continuous and
different from zero.

If f(z) is zero throughout an interval, the function f(x) must be constant
in that interval. For in this case, for a particular value @ in the interval,
and any z, we have:

@) - f@) = @—a) f'® = 0. a17)

This shows that for all points z in the interval the function f(z) = f(a),
and so has a constant value.

Let us next suppose that the function f(z) has a derivative f'(z) > 0
for all points of an interval a,b with the exception of a finite number of
points p;. Then these points p; will divide the interval a,b into a set
of subintervals. In the open interval corresponding to any one of these
subintervals, the function f(z) will be increasing. We may use the closed
intervals if the function f(z) is continuous at the points p;. Thus, if
the function is continuous at the points p;, and hence throughout the
interval a,b, it will be increasing in the interval a,b. The same argument
applies if f/(z) > 0 for all values of z, all greater than a, or all less than
b, except for a set of points p; at which f(z) is continuous. Here the p;
may be infinite in number so long as they are isolated, that is, have no
limit point.

If we merely know that f'(z) = 0 throughout an interval, we can
only conclude from the equation (115) that

F(ze) = flz) if x> 2, (118)

g0 that while the function is monotonic, it is not necessarily actually
increasing.

While we may draw conclusions as to the behavior of a function from
any restriction as to the sign of the derivative which holds throughout
an interval, similar conclusions can not be drawn from such information
at a single point. As an example, consider the function y = f(z),

where fx) = z 4 222 sinia z#0, and f(0) =0. (119)
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This has a derivative 41 at the origin, obtained by a direct application
of the definition or from equation (70). But, for values near zero
though different from it we have:

@) =144z sini -2 cosi, (120)

which is negative in some points of every interval which has point z = 0
as an interior or end point.

Thus, although the derivative is positive at x = 0, the function is not
monotonic in any interval including 0. This follows from the fact, a
direct consequence of the definition of a derivative, that if f(z) is mono-
tonically increasing throughout an interval, the derivative f/(z) cannot
be negative at any point of the interval.

76. Relative Maxima and Minima. The term maximum, as used in
section 33, referred to the absolute maximum (maximum maximorum)
for the interval considered. A point at which the value of a function is
greater than or equal to all values considered in the immediate neighbor-
hood of the point, that is, in a sufficiently small interval having the
point in its interior, is a relative maximum. Thus a relative maximum
for the original interval is an absolute maximum for some sufficiently
small subinterval. At the end points of a closed interval a,b we only
consider values on one side.

If f(z) is considered for the interval ¢ < z < b, and £ is an interior
point of this interval at which f(z) has a relative maximum, and at which
f(x) has a derivative, f' (£), then we may argue as in section 73 and deduce
from equations (101) and (102) that f'(¢) = 0. Similar reasoning
applies to the relative minima. This proves that:

The relative maxima and minima of a function f(x) for the closed
wnterval a £ z £ b can only occur at the end points a and b, at points
where f(z) fails to have a derivaiive, finite or infinite, or at points where
f@) =0

In the examples treated in elementary calculus, the functions usually
had derivatives at all the points considered. Either there were no end
points, as when we considered a polynomial for all values of z, or the
values taken on at the end points were not the maxima or minima
wanted. Thus the desired points corresponded to f’(z) = 0.

Even in simple algebraic cases we sometimes need to consider the
points where there is no derivative. Thus, if y = 2%3, -1 2 <1,
the minimum occurs at the point # = 0, and is zero. There is no deriva-
tive at this point, since the right-hand derivative is + «, while the left-
hand derivative is — .
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A sufficient condition for a relative maximum is given by:

A point c, at which f(z) is continuous, and such that f' (z) > 0 for some
tnterval ¢ — h < z < ¢ while f'(z) < 0 for some interval ¢ < x < ¢ + k,
18 a relative mazimum.

This statement follows from the preceding section, since as z increases
through ¢, f(x) increases to f(c) and then decreases.

Similarly:

A point c, at which f(x) is continuous, and such that f'(z) < 0 for some
interval ¢ — h < z < ¢ while f'(x) > 0 for some interval ¢ < z < ¢ + k,
18 a relative minimum.

For functions with continuous derivatives, in these cases, f/(¢) = 0.
A less general test, in terms of higher derivatives, is given in problem 42,
Exercises IV.

77. Intermediate Values of the Derivative. A function may be
continuous at a point without having a derivative at the point. An
example is ¥y = f(z), where

fz) = zsini, z#0, f(0)=0, (121)

which is continuous at z = 0, but has no derivative there, since the
difference quotient sin (1/h) oscillates between 1 and —1 as A — 0.
In problem 10, Exercises IV, a function is given with no derivative at
any point of an interval, throughout which it is continuous.

Even if a function has a derivative at all points of an interval, the
derivative need not be continuous at all points of the interval. Thus
the function defined by equation (119) has a derivative for all values
of z, but this derivative is not continuous at £ = 0. Nevertheless, the
derived function has in common with continuous functions the inter-
mediate value property we proved in section 34. Specifically:

If f(z) has a derivative f'(z), finite or infinite, at all points of a closed
tnterval a < x < b, then f'(z) takes on every value between f'(a) and
J’ (b) at some point of the interval between a and b.

Suppose, for definiteness, that /'(a) < f/(b), so that the intermediate
value in question, k, satisfies:
@) <k<f®). (122)

Then, from the definition of & derivative as a limit, we can find a posi-
tive number & such that:

fa4®) —1@ , o fO=B—f®)

2 = k. (123)
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Thus the function
[z + h})l J(z) (124)

is <katz = a,and >katz = b — h, so that k is an intermediate value
of this function for the interval a < x < b — h. But, as f(z) has a
derivative throughout this interval, it is continuous in the closed inter-
val, and the same is true of F(x). Hence, by the intermediate value
property of continuous functions, there is a point 2o such that

F(z) =

a<x9<b-—h, (125)
for which
Flzo) = J(xo + h)h— f(@o) _ . (126)
But, by the mean value theorem,
h) —
where 20 < E<xo+ A (128)
From the relations (125) and (128) we see that
a<t<hb, (129)
while from the equations (126) and (127) we have
7'® =k (130)

so that we have proved the theorem.

78. Limiting Values of the Derived Function. A function may have
a derivative at @ even though the derived function f'(z) approaches no
limit as  — a. The function defined by equation (119) is an example
of this, with @ = 0. However, we may show that:

If the derived function f' (z) approaches a limit as x — a+,

lim f'(z) = L, (131)
>—>a+

then, if f(x) is suitably defined at = = a, the function f(x) will have a right-
hand dertvative ot z = a.

‘We observe that the equation (131) implies that there is some open
interval, @ < £ < @ + h;, in which the function f(z) has a derivative.
Consequently, we may apply the law of finite increments to obtain:

f(x2) — f(@1) = (32 — 1) f'(§), (132)

where z; and z, are any two points of the open interval a,a + hy, and
£ is a suitably determined value between 2z, and z3.
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Again, the condition (131) implies that we may find a §; such that if
a<z<a-+d,

Iff(®) ~ Ll <e<1, sothat |f'(z)] <|L|+ 1 (133)

Thus, if z; and z, are each in the interval

a<z<a-+id, (134)
where
5. <& andalso 8. < ILIﬁ' (135)
we shall have
[f(z2) — )| < e (136)

Since this relation holds for arbitrarily small values of ¢, when z; and
z3 are each in the interval (134), the Cauchy convergence criterion is
satisfied, and f(z) approaches a limit when z — a+. Hence we may
define

fla) = lim+ f(). (137)

With this definition of f(e), and any positive & less than h;, the fune-
tion f(x) is continuous in the closed interval a,a + h and we may deduce
from the mean value theorem that:

fla+ 1) — fa)

» =f'a+6r), 0<B<1. (138)

It follows from this and equation (131) that

lim {@FR =@ _ (139)
h—>0+ h

which proves that the function has a right-hand derivative at a equal
to L.
If
f(@) = lim f(z), and lim+ fl@@) = 4+, (140)

z—a+

we may deduce from the second part of this argument that f(z) has a
right-hand derivative at @ equal to 4. An example is \/;c-, with
a=0.

However, we cannot conclude from the second part of equation (140)
that the first part defines f(a) as a finite limit. For example, if f(z) =
—1/z, as  — 0+, f'(z) — + =, but f(z) — — ©, so that we cannot
define f(0) by equation (137).
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In connection with this example, we prove that
If, for any finite value a, |f (x)] — © asz — a, then f’ (x) cannot approach
a finite limit as x — a.

In fact, if f'(x) approached a finite limit, it would be bounded in some
open interval a,a + h, and for any two values z and x, each in this open
interval we should have:

f@) = f(z) = (z — z1) S (). (141)
But, from this in combination with
If' ()] < M, and |z —zy| <h, (142)
we may deduce that
[f@) — f(=)] < Mh. (143)

This shows that, if z; is fixed and z — @, f(z) remains bounded, which
contradicts the hypothesis that [f(z)| — .

Note that this result need not hold if £ — + «, instead of a finite
value a. For example if f(z) =z, as £ — + =, f(z) = + =, but
f'(z) > 1. Also,iff(z) = V', 858 — + o, f(z) — + o, butf' () — 0.

79. A Generalized Mean Value Theorem. Let usrecall the geometric
situation described at the beginning of section 74. Let us express the
coodrdinates of any point S on the arc PQin

F(t) S terms of a parameter ¢, so that z = G(2),
\ - and y = F(t) where the points of the arc

F @) B~ correspond to the values of t, a £ ¢ £ b.
F)} Q@ With this notation, the slope of the chord
is [F(b) — F(a))/[G(b) — G(a)], while the

slope of the curve at the point T corre-

sponding to t = 7, is F'(r)/G’(r). This
suggests the equation (145) below, and
hence the theorem:

a) If F(t) and G(t) each has a finite derivative at all the points of an
open interval a < t < b, and are continuous at the end points (and hence
throughout) the closed interval a < t < b, then at some point T of the open
tnterval, a < 7 < b,

[F(®) — F(@)] & (r) = [GO) — G(a)] F'(r). (144)
b) If, in addition, G(a) # G(b), and F'(t) and G’ (t) are never both
zero for the same value of t in the open interval, then
F@) —F(@) _F'(r),
G(b) — G(a) T (r)

ECECN G ()
Fia. 11.

(145)
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We prove part (a) of the theorem by applying Rolle’s theorem to the
doubled area of the triangle PQS. With the present notation this is

G@) F@®) 1
G(a) F(a) 1| =2A4(%). (146)
Gb) F@O) 1

Thus there is a 7 for which:
G (1) F'(7) 0
G(a) F(a) 1|=24'(x) =0, (147)
G() F(b) 1

which is equivalent to equation (144).

Let us now assume that the additional hypotheses of part (b) hold.
Then, if F'(r) = 0, it follows that G’(r) % 0. On the other hand, if
F'(7) # 0, since G(b) — G(a) # O, the right member of equation (144)
isnot zero. Therefore the left member is not zero, and again G/ (r) = 0.
Thus we may divide by G’(r) and [G(b) — G(a)] and so deduce equation
(145).

We may replace the additional conditions (b) by:

¢) If G'(t) is never zero throughout the open interval a,b the additional
hypotheses (b) necessarily hold, so that equation (145) follows.

For, if @' (t) # 0, F’(t) and G’ (t) can never both vanish for the same .
And, from the law of finite increments,

G(d) —G@) = (b—a)G'(¢) =0. (148)

80. L'Hospital's Rule for the Indeterminate Form 0/0. If, when
z— a, f(z) — 0 and g(x) — 0, the quotient f(z)/g(z) may approach a
limit as x approaches a. As we remarked in section 21, whether this
limit exists, and its value if it exists, cannot be predicted without further
information about the functions. The situation is briefly described as
an indeterminate form 0/0.

For a continuous function f(x), when h — 0, f(z + k) — f(z) — 0,
so that [f(z + h) — f(2)]/h is an indeterminate form 0/0 for h = 0.
Thus every time we calculate a derivative we are evaluating a limit of the
type now under consideration.

In some cases, where the indeterminate form approaches a limit, the
value of the limit may be found by I'Hospital’s rule, which states that:

If f(z) - 0 and g(z) > 0 as z — a+,

and lim&—

=L (149)
et g () /
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then lim 1) = L.
s—at (Z)
In place of the finite limit L on the right of equations (149) and (150), we
may have + © or — «,
Also, instead of taking all four limits in the theorem as x — a+-, we may
take them all as x — a—, or simply as z — a.

(150)

This form of the rule is a consequence of the generalized mean value
theorem. We note first that, from the condition (149), there must be
some open interval a < £ < a + h throughout which the functions
f(z) and g(x) each have finite derivatives, and in which g’(x) = 0.
Let us define

F(x) =f(x) and G(z) =g(x) for a<z<a-+h (151)
and F(@) =0 and G(a) =0. (152)

Then the functions F(t) and G(t) will satisfy all the original conditions
of the generalized mean value theorem, as well as the additional hypothe-
sis (c), in any closed interval ¢ < ¢t £ =, where z is any value in the
open interval ¢ < z < a + k.

Thus, for some value, say xo, in the open interval

a <z <2z (153)
we shall have, by equation (145):

f@) _F@) —F@) _F'(m) _ (),
g@)  Ge) - G@ @) ¢ &)

It follows from the relation (153) that to any sequence of values of z
approaching a+-, there corresponds a sequence of values of z, approach-
ing a+. But, since the relation (149) holds, the limit of f’(zo)/g’ (zo)
will be L, and hence, from equation (154), the limit of f(x)/g(x) for the
first sequence will be L. Since this is true for any sequence, the con-
clusion of the theorem, equation (150), follows.

Since all sequences x may correspond to a special set of sequences o,
it is possible for f(z)/g(x) to approach a limit, while /' (x)/¢’ (x) does not.
The rule does not permit us to draw any conclusion from the failure of
¢’ (x)/f' (x) to approach a limit.

From lim+f' *)/g'(x) = + », we may deduce that hm f@)/g(x)

T—ra

= 4+, and similarly for — . Also, from hm lf'(a:)/g (@) = =,
we may deduce that lim |[f(z)/g(z)| = « smcemthls case
z—ra+

(154)

9@ _ . ¢'@
ot J(&) et f’(ﬂ:)

= 0. (155)
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The argument as given for £ — a+ requires only slight modification
toapplytozx —a—,ortoz—a.

81. Infinitesimals. We define the term mﬁ,mteszmal to mean any
variable whose limit is zero. Thus, if  is approachinga,h = r — aisan
infinitesimal. We may think of any function of z which is infinitesimal
as z approaches a as a function of this infinitesimal k. For example,

y =f(=@) — f(a) = fla+ k) — f(a). (156)

The particular infinitesimal in terms of which we express all the infinitesi-
mals in a given limiting process is called the principal infinitesimal.

The principal infinitesimal is said to be of the first order. If h is the
principal infinitesimal, and % is any other infinitesimal such that k/h
approaches a finite limit distinct from zero; then k is also said to be of
the first order. Similarly A*, where n is any positive integer, or any
infinitesimal &k such that the limit of k/h™ is finite and different from
gzero, is said to be of the nth order.

If k, is an infinitesimal of order m, and k; an infinitesimal of order n,
then the limit of k,/ks will be finite and different from zero if m = n,
and will be zero if m > n, since:

b _ kR,

Pl T K, (157)
By analogy, we say that any two infinitesimals k; and &, have the same
order if the limit of k;/ks is finite and different from zero, and that
k; is of higher order than ks, or k; is of lower order than k, if the limit of
kl / kz is zero.

We do not attempt to define non-integral orders. Thus we assign no
order to 1*%, although we can say that it is of higher order than & and of
lower order than h%. Again, the infinitesimal A% sin (1/A) is of higher
order than A, but not of lower order than A2 or than A" with n any greater
integer, since

B3 or h"
2. 1 2 . 1
h* sin h h* sin 5

(158)

each fails to approach the limit zero. In fact each is undefined when
1/k is an integral multiple of x; but for suitable sequences of values of A
which approach 0, the upper limit is 4 « and the lower limit is — o,
Again, the infinitesimals

\/
h sm’ll and 4 sin —Zg (159)
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-are not of the same order, and neither is of higher order than the other.
Our definitions thus serve to classify some but not all infinitesimals.

While the order assigned depends on the principal infinitesimal, it is

unchanged if we replace & by any infinitesimal of the first order with

respect to h. A relation of the form ‘ k, is of higher order than k, "’ is

independent of the choice of principal infinitesimal.

We write

ky = o(ks), (160)

read “ k; is small o of kg,”’ if the limit of k;/k; is zero. Thus, for any
infinitesimal, k, we have k = o(1), and, conversely, this implies that &
is an infinitesimal. If k; and k2 are both infinitesimal, then the equation
(160) indicates that the infinitesimal k; is of higher order than k;. For
example,

3 3
k¥ = o(h) and A? sm-II; = o(h?). (161)
For an infinitesimal k of the nth order,
k— An®
since _’ﬂ — 4, — 0, (162)
and we may write:
k= AR™ 4+ o(h™). (163)

Whenever k may be expressed in this form, with 4 = 0, the term AA™ is
called the principal part of the infinitesimal k.. The discussion of
section 70 shows that, if f'(a) 0 and Az is the principal infinitesimal,
then Ay is an infinitesimal of the first order, with f’'(a) Az, or the
differential dy, as its principal part.

It follows from the definition and section 19 that if

8; = o(ky) and s; = o(ks), (164)
then 8182 = o(k1k;). We abbreviate this result by writing
o(k1) o(kz) = o(kaks). (185)
We interpret and prove
o(k1) + o(ka) = o(k1 + k3) (166)
similarly. In particular,
Ao(h™) = o(h") and o(h™) o(A™) = o(A™™). (167)

Also,
ifmgn, o(h™) + o(A™) = o(h™). (168)
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We may use these relations to prove that, if m > n and k; has a princi-
pal part A;k™, and k; has a principal part 4,4, then kik; has a principal
part A1 A;h™" and ky + k; has a principal part A5k,

We shall occasionally use a notation somewhat similar to equation
(160), and write

ky = O(ky), (169)
read ‘‘ ky is large O of k3,” if there is some constant y such that
[ky| < ylksl, (170)

beyond some stage of the limit process. Thus the relation (160) implies
the relation (169), and in fact if k;/ks approaches a finite limit, or even
if k1/ko has a finite upper limit the relation (169) holds. However the
relation (170) also holds in other cases. For example,

h? sinz% =0 (h2 sin %) . (171)
Among the rules of operation for this symbol, we mention
O(k1) O(kz) = O(kikz), AO(k1) = O(ky), (172)
O(k1) + O(kz) = O(|ky| + |k2l),
and if k, = O(k2),  O(k1) + O(kz) = O(ky). (173)

82. Taylor's Theorem for Infinitesimal Increments. Let us con-
sider a function f(z), for values of x neara. Asr—a,h = — aisan
infinitesimal. If it is possible to find a polynomial of the nth degree in &,

P(h) = Ag + A1k + Ash? + - - - + A0", (174)
such that

J@@) =fla+ 1) = P(R) + o(h™), (175)

then P(h) is called a Taylor’s development of the function f(z) about the
point a, of the nth order. We say that P(k) approximates f(a + ) to
within terms of higher order than A".

We shall show that if the function f(z) has an (n 4 1)st derivative at
the point a, f®*V(q), then it has a unique development of this type.
As we need to know the values of the coefficients to carry out the proof,
we shall begin by assuming that the function has a development of the
form (175), and also that there is a derivative f®*1 (a), and try to
determine what the coefficients must be under these conditions.

Since f™*1) (a) exists, /™ (z) must exist throughout some closed inter-
val 2 — k < a £ 2+ k, and be continuous at a. Also, f*V (z) and
all the derivatives of lower order, as well as f(z) itself, must exist and
be continuous throughout this same closed interval.
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The relation (175) implies that

i J@th) - PR
im ————— =

h—0 "

0. (176)

Since the denominator approaches zero, the numerator must also, and
lim{f(a + k) — P(h)] = f(a) — Ao = 0. a77)
h—>0

Thus the left member of equation (176) satisfies the first condition of
I'Hospital’s rule, and if
lim f'(a+ 1) = P'(h)

* hes0 Y

(178)

exists, it must be 0. But the limit of the numerator is
(@) — A, (179)
which would make the limit (178) + « or — =, and hence contradict the

equation (176), unless
f'(@) — A4, =0. (180)

In this case, we may apply ’Hospital’s rule to the expression (178),
and by the same argument deduce that:

lim [f(a 4+ k) — P”(A)] = f(a) — 214, =0.  (181)
h—0

A repetition of this argument shows that

9 (a)

2!

fD ) =114, or A; = , for 1=1,2,---,n (182)

Let us now consider any function f(z), for which f*+? (a) exists and
is finite. We form the polynomial P(%), defined by the equations
(174) and (182). Now consider

fa+h) — P(h)

hn-H (183)

lim

h—>0

In view of the fact that P(0) = Ao = f(a), we may apply I'Hospital’s
rule if the limit of

f'(a4-h) — P'(R)

(n + DA
exists. Then, from the fact that P’(0) = 4, = f’(a), we may apply
the rule again, if the limit of

f’(a+h) = P'(h)
(n + Dnim1

(184)

(185)
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exists, and so on, until after n applications of the rule, we come to

S™(a+h) —P™@m) 1 f™@+h) -0
n+1)1h T+ 1)! h

But, from the definition of the (n + 1)st derivative, the limit of the
difference quotient just written as A — 0 is f™*(¢). Thus we may
justify each application of 'Hospital’s rule in turn by working back-
wards, and so find that

(186)

. fle+h)—-PHh) 1 (n+1)
’Elm L =T !f (a). (187)
This proves that

fl@a+ k) — P(h) = O(h**'), and hence = o(h™). (188)

‘We express our results in the following theorem:

If the function f(z) has a finite derivative {1V (a) for z = a, then the
polynomial in the infinitesimal h = z — a,

N .\ RE RN i
P() = J@) +£'@ 3 +1" @57+ + P @ (189)

differs from f(a + h) by an infinitesimal of higher order than h™, so that:
fla+ k) = P(h) + o(h"). (190)

There 1is no other polynomial of degree at most n which has this property.
The behavior of f(a + k) — P(h) is given more precisely by equation (187) ,

If the phrase f®"*V (g) = 4 means that f™ (z) has its first deriva-
tive +o for z = a, then the preceding argument proves that:

i f&t.’i____):m‘l -0, (191)
h—0 k

so that the relation (190) still holds, but equation (187) must be replaced
by
, fl@a+h) — P(k)
im —m—mM——— =

b0 hn+1

+oo. (192)

Similar conclusions can be drawn if f™ (g) = — .,
It is to be noted, however, that we may have lim f™tD(z) = 4+

T—>q
without having f™*V (a) = 4+, in the above sense. We illustrated
this for the first derivative in connection with equation (140).
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83. Taylor’s Developments. The rules for operating with the sym-
bols o(A™) and O(h™) given in section 81 show that Taylor’s develop-
ments may be combined like polynomials in many respects. For
example, let us start with

2
sinz =z — 31 + 0(«%), (193)
22 2t 6
cosa:=1--2——!+ﬂ+0(x ), (194)
2 B
ex=1+x+-2—!+§-!+0(x4), (195)

m(m27 1) 22+ m(m — ;)!(m - 2) 2
+ 0(=%), (196)

which may be derived from the equation (189) by direct differentiation.
Then, operating as we would for polynomials, we may deduce:

A+2)"=1+mz+

z* z®
sin? x = 2% — 3 + 0(=®), sin®z=2%— £y + 0(@="), (197)

1 2 Z4 x“ 8
&€ =14z +—2‘-!+3—!+0(x), (198)
. 22 5t 6
cos (sinz) = 1 — O] + o4 + 0(z?), (199)
2 —
cosmz=1—" 1 mBm=2) 0w, (200)

2 24

Here we obtain (197) by multiplying the expansion (193) by itself,
and then by itself again. Replacing z by z? in the expansion (195)
gives the expansion (198). Replacing z in the expansion (194) by the
terms of the expansion (193) gives the expansion (199). Replacing =
in the expansion (196) by the terms following the 1 in the expansion
(194) gives the expansion (200).

For quotients, the special case of (196) with m = —1,

1

1 2 _ 4
T2 1—z42% -2+ 0@, (201)

may often be used to advantage. Thus we find from it and (194)

oez=—— =14+ 4+ 200 4 0@ (202)
ez T2’ s
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This may also be found by long division, and checks with (200), if
m = —1 there. Multiplication of (193) and (202) gives

1 3
tan z = sin z- —z4+ T 0(z%). (203)
cos 3
Again, to find the development for sin™! z, we may put

3
y=sin"lz, sothat z=siny =y — 3£-' +0@®. (204)

We find from this, since x and y are of the same order,
3

y=z+3;+0G), ¥ =2 +06), (205)
133
and y=z+ 31 + 0(z%). (206)

This may also be obtained by noting that if f(z) = sin™? (z), then

F(z) = f'(z) = \%

1— 2%

x2
=1+;+OML (207)

by putting —1/2 for m and —22 for zin (196). But, if a,z? is a typical
term of the expansion of f(z), and A,z? a term of the expansion of
F(z), = f'(z), we have:

ap = f(0) andfor p> 0,
. =f(”) (0) _ F(p—l)(o) _ Ap—l.
Poopl  -Dlp

This relation enables us to derive (206) from (207).

In general, if we are expanding a function g(z) in powers of the
infinitesimal A = z — a, the expansion will start with g(a), so that the
infinitesimal k = g(z) — g(a) will have an expansion in h with no
constant term. Thus the expansions for the powers of k in terms of
may be obtained by the method used to deduce (197). If we then
wish to expand fg(x)] in powers of k, we first expand f(») in powers of
u — b, where b = g(a) so that when u = g(z), w — b = g(z) — g(a) =
k, whose powers we have just discussed. For example, if f(u) = 1/4,
we use:

1 ; 2 3
s e =it E_Tron, @

(208)

an expansion which has (201) as a special case.
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Since the combinations of elementary functions here under considera-
tion have derivatives of all orders, we know that the expansions exist,
so that we may use the method of undetermined coefficients. The
ordinary process of long division for quotients, and the methods of
finding an expansion from that of the inverse function, or from that of
the derivative we illustrated for sin™ z, are equivalent to this method.

Since the expansions are uniquely determined, no matter what method
we use, the development will be the same as that obtained by differentia-
tion. The methods of this section are often preferable to a direct
calculation of the higher derivatives which occur in equation (189).

84. Alternative Form of ’Hospital’s Rule. The discussion of sec-
tion 82 enables us to prove the following alternative form of ’Hospital’s
rule for the indeterminate form 0/0.

If the functions f () and g (x), as well as their derivatives of all orders from
one up to n are zero for x = a, so that:

f@)=f@) =f"(@a)="---=1"@)=0, (210)
ga) =¢’(@) =¢" (@) = -- =¢™() =0, (211)

and each function has a derivative of the (n 4 1)st order af a, with
g™t (a) # 0, (212)

then
. f@) ")
Hm = = Y
eva g(2) g (a)
If we apply equation (187) to each of our functions, noting that the
polynomial P (k) is zero in view of the conditions (210) and (211), we
have:

(213)

fa+nr _ @

T S ! (214)
and (n+1)
. gla+h) ")
R T D! (@15)
It follows from these by division that
n+1)
o @B _ S @ 216)

o gla+ k) g™ ()

which is equivalent to equation (213), the conclusion of the theorem.
In this theorem, when  — a-, we only need right-hand derivatives,

and when z — a—, we only need left-hand derivatives. If the deriva-

tives are not restricted in this way, the theorem applies when z — a.
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Also if one, but not both, of the derivatives f®*" (a) and g™V (a)
is +© or —», we may deduce the behavior of f (x)/g(x) from the
equation (213) by the principles of section 20.

Whenever the functions f(z) and g(x) possess derivatives of the
(n + 2)nd order at a, and hence Taylor’s developments of the (n + 1)st
order, we have:

fa+h) = Appih™ 4 O(R™2), (217)
and
gla + h) = Bpph™* + O(R™t2), By 0. (218)
It follows from these expansions that:
lm I = Anpr . (219)

z—>a g(x) Bn+1

This is in accordance with equation (213), since the right member of
equation (214) is A,4;, while that of equation (215) is B,y1. But, if
the Taylor’s developments for f(z) and g(z) are known, or can be easily
found by the methods of section 83, it is simpler to verify equations
- (217) and (218), and apply equation (219), than to verify equations
(210) and (211), and apply equation (213). For example, to evaluate

ta.n:c—smx

0 Sin 'z —z (220)
we deduce from equations (203) and (193) that
tanz — sinz = %3 + 0(@=%), (221)
and from equation (206) that
sin 'z -z = -%3-1- 0(z%), (222)

so0 that the value of the limit (220) is 3.

Again, whenever the (n + 1)st derivative is continuous at a, the
equation (213) may be deduced by (n -+ 1) successive applications of
the rule proved in section 80. In many cases such successive applica-
tions permit us to make simplifications at intermediate stages such as
cancellation of factors, or replacing factors whose limits are known
and different from zero by their limits. Thus, if we apply the earlier
rule to evaluate the limit, as x — 0, of f(x)/g(z) = sin® z/ sin 2%, we find
that:

’ . 2 . 2
f(z) 3sin®zcosz _ (sm x) cos (223)

= 2
¢ ) 322 cos ° z ] cosz®



132 DIFFERENTIATION [CraP. IV

80 that the limit of f(z)/g(z) is 1. This limit could also have been found
by writing
: 3 3 3 5

f(:v)=(sm:c> (x 3) or f@z) _= +O(zg). (224)
g(x) z sin z g(xz) 2+ 0%

The theorem of this section does not apply to such cases as lim %%3 ’

z—>0+

except to prove that its reciprocal approaches 0, so that its numerical
value becomes infinite. However, the rule of section 80 shows that the
expression — + o,

When the (n + 1)st derivative is not continuous at a, the equation
(213) may give a result, while the equation (149) does not hold. An
example, with n = 0, is

m — =0 (225)
=0 Sinz

86. L’'Hospital’s Rule for the Indeterminate Form o/, If
lim [f(z)] = =, and lim |g(z)] = «, the expression f(x)/g(z) may

approach a limit when £ — a.  As this limit can not be predicted without
further information about the functions, this situation is described as an
indeterminate form ©/®. We shall now show that the rule given in
section 80 for the indeterminate form 0/0 applies also to the form
w/w, Thatis:

If im f(z) = », lim g(z) = ,
z—>a+ z—rat

. @)

and hm+ 7@ L, (226)
€

then 1-1-1::14- v L. (227)

The theorem remains valid if we replace Lby + o, orby —«.  Also we
may replace x — a+ by £ — a—, or by x — a tn each of the places where it
oceurs.

To prove this, we select an open interval @ < z < @ + h, in which
f(z) and g(z) each has finite derivatives. Then, for any two points
z; and z in this interval, with z; > z, we have

LC
1@~ 7@ _ @ = i@ _ f@)
0@ | _9@) 9@ —9@m)  ¢'@)
9(z)

(228)
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where zg is a suitable point satisfying z < zo < z; by the generalized
mean value theorem of section 79.
We may rewrite this equation in the form:

_ 9=z
f@ T 9@ f(ze)

0@ " 1) I @29
f(=@)
Next select a §; such that
/(@) .
m—Ll(e, if 0{x—a<61, (230)

which we may do in view of the condition (226).
Then take a particular value of z;, such that a < 21 <a + 9y, and
& number & such that:

J(=1) g(z1)
f(x) g(z)

which we may do since the numerators of these fractions are fixed, while
the denominators become infinite as z — a.

<e and <eg if 0<z—a<y, (231)

‘We then have:
I(i)=1—a2(L+a1), if 0<z—a<i, (232)
gx) 1-—oa3
where ler] <€ Jao] <€ |as] <e (233)

Now take a sequence of values of e approaching zero and a corre-
sponding sequence of values of & approaching zero. Then, for any
sequence of values of z — a+, we may write a series of equations (232)
with ¢ and hence a;, as and o3 all approaching zero. It follows from
this that

. J(=@)
lim —= =1L
z—at g (%) ’
so0 that we have proved equation (227).
When L is replaced by + « in equation (226), we select 8; such that

/
T@ 1 i o<z—a<a, (235)
g e -
so that if we put f'(z)/g'(z) = 1/a1, 0 < &y < e. We then have in
place of equation (232), ’

Jl) l1—oap 1
gz) l-—az

(234)

y >0, (236)
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and we may deduce from this by the earlier argument that

TANPLCI (237)

ot §(%)
86. Indeterminate Forms for x — 4. If
lim f(z) =0, and lim g(z) = 0, (238)
T=>+4-0 T=>-4-00

we may reduce this to the case discussed in section 80 by making the
change of variables:

Y= i» so that y — 04, when z — 4w, (239)
If we define )
1 1
F) =1 —) =), snd G@) =g (;) — o), (240)

we have:

Fy) = - ;l-zf'e) = (@), sd @@) = 2@, (1)

8o that:
Fy) @

T 7@ (242)
This shows that, if
im 2@ _ (243)
2=+ 00 g,(x) ’
we have:
tim L8 oy FO oy FO o T@ oy

ot0 @) y0r GY) 0k G () e g’ (@)

This proves that 'Hospital’s rule as stated in the theorem of section 80
remains valid if we replace z — a+ by £ — + .

This is also true if we replace z — a+ by £ — — «, or |z| — .

The same argument reduces the case in which

lim |[f(z)] = «, lim [g(z)] = =, (245)
22—+ 2>+ )

to the case discussed in section 85, and shows that the rule of that section
may be similarly extended.
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87. Other Indeterminate Forms. If lim f(z) = 0 and if lim |g(z)|
=0, we speak of the limit of f(x)g(x) as the indeterminate form 0 - «.
We may sometimes evaluate this limit by the preceding rules, since

s = L2 = 19, (246)
g(x) f@

which are respectively indeterminate forms 0/0 and « /.

Again, we speak of f(x)*® as an indeterminate form, when the limits
of f(z) and g(x) are both 0, in which case we have the indeterminate
form 0°, or are those indicated by 1% and ©° These may be reduced
to the discussion of an indeterminate product 0 by taking logarithms,
since in each of these cases the product g(z) log f(z) has the limit of one
factor zero, while the other factor becomes infinite.

Similarly the form f(z) — g(z), where f(z) and g(z) each become
infinite, may be reduced by

1 b
x x
1@ - o) = L21E, (247)
f(@)g(z)
or some similar transformation to a case to which 1'Hospital’s rule

applies.

In all these cases, whenever the Taylor’s developments are at hand,
they may be used to shorten the calculation. As an example, consider
the limit when £ — 0 of f(x)*®, where

fi) =14azx+o(x) and zg(x) =b 4 o(l), (248)

so that this is an indeterminate form 1°. From the Taylor’s develop-
ment

log (1 + %) = u + O(u?), (249)
we deduce that
log f(z) = ax + o(z), g(z) log f(z) = ab + o(1), (250)

so that
lim f(z)!® = e, (251)
z—»0

88. Vanishing Factors. In the application of 'Hospital’s rule, it is
desirable to make algebraic simplifications of the fraction ' @) /¢ (=),
as we indicated in section 84.
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But one must not cancel out a factor from f’(z) and ¢'(z) which
vanishes in every neighborhood of @, the value at which the limit is
taken. The presence of such a factor makes f/(z)/g’(z) undefined for
one sequence of values approaching a, and so the limit does not exist in
the sense required to prove ’Hospital’s rule.

In fact, it is possible for f'(z)/g’(x) to approach a limit A for all
sequences of values not including this one sequence of values, while
J(z)/g(x) either fails to approach a limit, or approaches a limit distinct
from A. .

Similar remarks apply when we take the limits as # — + o, if there
is a factor vanishing for arbitrarily large values of z.

An example is

J(x) =z —sinzcosz, g(z) = (z — sin z cos )7 ez,  (252)

where p > 0, and we consider the limit of f(z)/g(z) as  — +». By
using the fact that

z — sin r cos z

lim 1, (253)
Z—>+® z
we see that
1(=) = Mz'"?, (254)
g(x)
where M has a finite upper limit ¢ and a lower limit greater than zero,
1/e.
The derivatives of the funetions are:
f'(x) = 2sin? z, (255)
and
g'(z) = (—z + sinz cos x + 2p sin z) sin z (z — sin z cos z)?~! ***
(256)
Thus we may write:
y ;2
e e (257)
g (z) sin =

where M has its upper and lower limits finite and positive. This shows
that f'(z)/g’(z) is undefined for the sequence z = nw, for which
sinz = 0. If we avoid these values, we may cancel out the factor sin z
and so have:

if 2/ > nr, im L&) _o, (258)
v—io g (z)
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But, if p = 1, f(z)/g(x) = M, oscillates between finite limits, and so
fails to approach any limit. If p < 1, e.g., 2/3, f(z)/g(x) becomes

positively infinite.
By considering
F(z) = Af(z) + Bg(x), G(z) = f(=) + g(2), (259)
derived from the functions of equation (252), we have:
. F ’(-'”) ’
z’l_l::_lm 7 B, z’ # nr, (260)
while
F(x) . 2
—_— = ) ]f = —2 261
ot G(2) P=3 (261)

and F (z)/G(z) oscillates, and so approaches no limit, if p = 1.

89. Taylor's Theorem for Finite Increments. The theorem of sec-
tion 82 suggests that, for certain values of k, the polynomial P (h) of
equation (189) has a simple relation to the function f(z), and we pro-
ceed to study this relation in more detail.

In section 82 we merely assumed the existence of the (n + 1)st
derivative at the point a itself. We shall now assume that the function
f(z) has a finite (n + 1)st derivative at all points of the closed interval
a<z<a+h In this case we may apply the generalized mean
value theorem to the functions

F(h) = f(a+ k) — P(h), G(h) =™, (262)
to obtain:
F(h) _F(h) — F©) _F'(h)
G(h)  G(R) — GO) G (M)
since F (0) and G(0) are each zero. But, since # (k) and G(h) each have

their derivatives of the first n orders zero for A = 0, we may repeat this
process n times more, and so find:

(263)

F'(h) _ F"(hy) FOD (hoys)
I e e (264)
G'(h) G (ha) G (hnya)
Since
0 <hppr <hg <:++ <hyg <k <h, (265)
we may write
hnyr = 6k, where 0<0<1, (266)
and conclude that:
fla+h) = P(h) _[™V(a+06h) (267)

prtt T (41!
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We have thus proved one form of Taylor’s theorem Jor finite increments,
which we formulate as follows:

If the function f(z) has a finite (n + 1)st derivative at all potnts of the
closed interval a < x < a -+ h, then there s a value of 8 between zero and
one, for which:

’ h 17 h?
J@+m =1@) +1'@ 7+ @ 55+
hn—l—l

hn
FIV@ Aot o) e (268)

Ifweputa+ h =z, h = x — a, the result may be written:

—_ — 2
1@ =@ +7'@ oD 4w E
” (z ~a)* n (& — ay™t!
HIO@ T O S (260)

where £ is a suitably chosen value between a and z. The equation just
written will hold for any value of z in the closed interval Sz <bif
the function f(z) has a finite (n + 1)st derivative throughout this
interval, and if £ is appropriate to this z.

The difference between the function f(a + %) and its Taylor’s develop-
ment P(h), the F (k) of equation (262), is referred to as the remainder
for the development. Thus the equation (267) determines one expres-
sion for the remainder. The theorem, as expressed in equations (268) or
(269), is often called Taylor’s theorem with the remainder. The special
case with a = 0is called Maclaurin’s theorem.

If, throughout the closed interval a,b the numerical value of FOY ()
admits the upper bound M, the numerical value of the remainder, or
error made by using the first n terms of the Taylor’s development,
P(h) or P(xz — a) in place of f(z) will not exceed M®—-a)"Y/(n+1)!
at any point of the interval. This enables us to use the developments for
computation, for which the first form, P(h), is usually preferable; the
error being numerically at most MA"™+1/(n + 1) !

90. The Limiting Value of 8. While we can usually say little about
the value of 6 beyond the fact that it is between 0 and 1, we can deter-
mine its limiting value as h approaches zero, if the function has a deriva-
tive of order one higher than that used in the term involving a + 6h,
and this derivative is continuous and not zero at a.

Let us assume that f™*V (z) is continuous at a, and therefore finite in
some closed interval ¢ < z < a + &, and apply equation (268), both as
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written, and with n replaced by n — 1, and 6 replaced by 8,. Then, by
equating the two expressions for f(a + k) so obtained, we find:

h" % n+1
n) — = f(n) _ (n4-1) _—
S (a+0nh)n! f (a)n!+f (a+9h)(n+1)! (270)
or
) h ,
F® (@ + 0ah) = f (a) + 1 (@ + 0h) = (271)
But, from the law of finite increments, applied to f™ (z), we have:
I (a 4+ 6:h) = ™ (a) + 0.1/ (a + 606nh), (272)
for a suitable choice of 8y between zero and one. '
From the last two equations, we deduce that:
(n+1)
6, 1 I (a+6h) 273)

T 0+ 1 [ (g 4 ,0,R)
Finally, by taking the limit of this expression as h approaches zero, and
recalling that f®+ (z) is continuous at a, while f** (a) > 0, we deduce

lim 6, = .
ot n+1

(274)

The same argument applies for negative values of h.

This proves the theorem, formulated with the n of the proof replaced
byn +1:

If the function f(z) has an (n + 2)nd derivative, continuous and not zero
at a, the 0 in the remainder term of equation (268),

hn+1 . . 1
wtD P such that ,!_1-13 6= P (275)

91. Other Expressions for the Remainder. We may obtain the
expression for the remainder term in Taylor’s theorem given in equation
(268), as well as some other expressions which are sometimes useful, by
a shorter but less natural approach than that of section 89. As in that
section, we assume that the function f(z) has a finite (n + 1)st deriva-
tive throughout the closed interval a < z < b. ‘

We next select some particular function g(z), having a finite derivative
¢’ (z) # 0 at all points of the open interval 0 < z < b — a. The func-
tion g(z) is to be continuous at the end points of the interval, 0 and
b — a, and must have g(0) = 0.

The function g(z) is otherwise arbitrary, and each choice of this func-
tion will lead to a special form for the remainder.

f(n+1) (a + 6n)



140 DIFFERENTIATION [Crar. IV

We note that we may apply the law of finite increments to g(z) and
80 obtain:

gb—a)=gb—a)—g(0) = (b—a)g'x) =0. (276)

Since g(b — a) = 0, we may solve the equation:

2
10) =@ + 7@ L= @ O

( )

+ /™ (@) ——+ Gg(b — a), (277)

for the value of G. Let G then be a constant, defined by this equation.
Next define a function F(z) by the equation:

( ) - x)2

F@) = —f(0) + /(@) +f (@) ———+ /") +ee

f(n)()( )

+ Gg(b — 2). (278)

While these definitions require no logical justification, the reader
may find some motivation for them if he observes that, if the remainder
term is expressed as a constant times g(k), or g(b — a), then the equa-
tion (277) follows, while the right member of equation (278) may be
obtained from equation (277) by transposing the term f(b) and then
replacing a by z.

We now apply Rolle’s theorem, section 73, to the function F(z). The
function F (z) has a derivative for a < z < b, since f(z) hasan (n + 1)st
derivative throughout this interval, while g(b — ) has a first derivative
in this interval. Also, our conditions on f(x) and g(x) make F(z) con-
tinuous at the end points of this interval. Finally, F(a) = 0, by equa-
tion (277), while F(b) = 0, as we see from equation (278), if we recall
that g(0) = 0. Thus, since all the conditions of Rolle’s theorem are
met, for some point between a and b,

F'(§) = 0. (279)
When we differentiate the right member of equation (278) most of the
_terms cancel in pairs, and we find:

( )

F'(z) = f** (2) —— — G¢'(b — 2). (280)

But, since F/(¢) = 0, we may deduce from this that:

® -9 [
nl g®-9

G = (281)
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so that the remainder, Gg(b — a), is given by

®-8"

Gg(b - a) = T f("'H)(E) g(b )

76— 8 (282)

If weputb = a+ h, £ = a + 6h, and write
fa+h) = P(R) + E(h), (283)
we may express the remainder in terms of h:

=2 (1 — g)r fintD) __ g
R(h) = Gg(h) (1 )" [ (a + 6h) Y (284)
Since the equations (279) and (282) held for a suitable value of £,
a < § < b, it follows that equation (284) will hold for a suitable value
of fwith0 <6 < 1.
If we now specialize the function g(z) by putting g(z) = z?, where
p is any positive number, we find the expression:

n+1

R =T (- oyt @t on,  (285)

a form due to Schloemilch.
If we further specialize this by putting p = 1, we obtain:

hn+l .
== )™ £ (a + 6h), (286)

R(h)

or Cauchy’s form of the remainder.
If we put p = n + 1 in equation (285), we find:

hn+
(n+1)!

or Lagrange’s form of the remainder, which we have already derived in
section 89. This is generally the most useful form. However, in a few
applications the Cauchy form is preferable.

92. Orders of Infinity. In section 81 we defined a series of infinitesi-
mals of integral order with respect to a fundamental infinitesimal, A.
In a similar way, we may select a particular quantity H which is becom-
ing positively infinite, and refer other quantities becoming infinite to it.
Thus H™ would be of the nth order, with respect to H.

As for infinitesimals, we say that K; and K, are of the same order of
infinity if K,/K, approaches a finite limit greater than zero. When
K,/K3 — + =, so that the limit of K»/K is zero, we say that K; isof a
higher order of infinity than Kj, or that K is a lower order of infinity

R(h) = F™+0 (a + oh), (287)
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than K;. We may write in this case Ks = o(K,), in accordance with the
definition of equation (160). In this way we may indicate that a posi-
tive variable is becoming infinite by 1 = o(K).

We also use the notation of equation (169), defined by equation (170),
for variables with any behavior. Thus K, = O(K;) if the order of
infinity of K is the same or higher than that of K.

The theory of quantities becoming positively infinite may be reduced
to the theory of positive infinitesimals by putting H = 1/, analogous
to the use of equation (239) in section 86. This would lead us to think
of positive orders of infinity being negative orders of infinitesimals, and
conversely. However, it is better to have both points of view at our
disposal. ’

The simplest quantities becoming infinite which are not comparable
to powers of H, are exponentials. In fact, if we apply equation (268)
witha = 0 and 2 = z to f(z) = ¢*, we find:

& =1 +f_+ ..+£+£i_h (288)
sltet ottt ernit

If z is positive, all the terms of this expression are positive. Hence, for
any integer n,

n

e’>:—‘, z>0. (289)
It follows that
1 n! z? n!
7 < pry and = < ey (290)

If we take z = H, a quantity becoming positively infinite, for any fixed
number p we may take n > p and deduce from this that:

g—p-a(l) or H? = o(e¥), (291)

which shows that ¥ is a higher order of infinity than any (large) positive
power of H.

‘If H is becoming positively infinite, K = log H also becomes positively
infinite, as we showed in section 43, equation (48). However, log H is a
lower order of infinity than H, or any (small) positive power of H. To
see this, let ¢ be any positive number and a,pply equation (291) with
p = 1/q to the variable K. Then:

1

K
§ = o(1), and X = o(1), (292)
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since any positive power of an infinitesimal is an infinitesimal. Finally,
put K = log H in the last relation, and so obtain:

log H
Hq

= o(1), or logH = o(HY). (293)

By putting H = 1/h in the equations (291) and (293) we find the
corresponding relations for positive infinitesimals,

1\? -1 -1
(i) e "=10(), or e *=00R?), if A>0, (294)

and

1 1
- q - q — 3
log (h) h*=0(1), or ht=o0 <|10 hl): if A>0. (295)

These relations may all be kept in mind by referring them to the
following basic facts. If H — 4 «, the exponential ¢ is a higher order
of infinity than the variable H, and the logarithm log H is a lower order
of infinity than the variable H. Moreover, these relations are not
disturbed by raising any of these quantities to positive powers, so that
if p, g, and 7 are all positive, e®¥ is of higher order than HY and H?is of
higher order than (log H)”. These principles often enable us to detect at
once when certain combinations of simple functions become infinite or
approach zero.

For example, ¢**2® (log z)¢, for & — + =, becomes positively infinite
if @ > 0, and approaches 0 if a < 0, regardless of the values of b and e.
If ¢ = 0, the behavior depends on the sign of b, and if ¢ = b = 0, on the
sign of ¢. Similar remarks apply to ez [log zl°, for z — 04-.

We may now appreciate to some extent the incompleteness of a scale
of positive infinitesimals consisting only of positive powers of h, AP.
For an infinitesimal such as |log h|?h? is of higher order than any A?
with p < 2, and is of lower order than any h? with p =2 2. If we
admitted powers of [log k| such expressions as log |log k| h? would remain
unclassified. This is why we defined only integral orders.

If P, Q, and R are any three polynomials, or other functions of = hav-
ing the same order of infinity as some positive power of z, the behavior
of e Q® (log R)® as £ — +  may be deduced from our basic principles.

The property of the exponential function expressed in equation (291)
is not possessed by any function ¥ = f(z) which satisfies a polynomial
relation P(z,y) = 0, that is by any algebraic function. For,let 2P = o(y)
as ¢ — -+ « for all p and hence in particular for all the powers of x in the
polynomial P(z,y). Take Az™y" as the term in the polynomial such
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that A # 0: no higher power of y than y™ occurs, and no term in y*
with a higher power of = than 2™ occurs. Then we may write:

P(zy) = Az™y" + o(@™y"). (296)

This contradicts our assumption that when y = f(z), P(z,y) = 0,
since it makes |P(z,y)| — « as z, and hence y — + .

The considerations just mentioned prove that the exponential and
logarithmic functions are not algebraic functions.

93. Finite Differences. If a function is tabulated for a series of
values differing by the same positive quantity a, we may, by subtraction,
form the first difference for any value of z used as an entry in the table;
namely,

Af(z) = fx + a) — f(z). (297)
The second difference is the first difference of the first difference; namely,
A%f(z) =Af(z + a) — Af(z) = f(z + 2a) — 2f(z + a) + f(z). (298)

The higher differences are defined by induection, the nth difference
being the first difference of the (n — 1)st difference. The nth difference
may be expressed directly in terms of the values of the function by a
formula similar to equation (298) involving binomial coefficients. In
fact, if A is a symbol of operation meaning that the argument is to be
increased by a, then

Af=(4-1), and A% = (4 —1)7, (299)

and the formula in question may be obtained by expanding this by the
binomial theorem and noting that A™ is the operator which means that
the argument is to be increased by ma.

We shall prove that if the function f(x) has an nth derivative through-
out the open interval z,z + na, and the (n — 1)st derivative is con-
tinuous at the end points of this interval, then

A™f(z) = a"f™ (z + 6na), (300)

where 6 is a suitably chosen number between 0 and 1.

For n equal to 1, this is the law of finite increments. Thus we need
merely prove that its truth for n follows from that for 1,2,---,n — 1
to establish the result by mathematical induction.

But, if the nth and (n — 1)st derivatives of f(x) satisfy the required
conditions, the function:

Af(z) = f(z + a) — f(z) (301)

also does, so that, as a consequence, its (n — 1)st derivative exists in
the open interval, and its (n — 2)nd derivative is continuous at the
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end points. Hence, by the hypothesis of the induction, we may apply

the equation (300) to the function A f(z), with n replaced by (n — 1).

This gives

A" (z) = @ H{f" Pz + a+ 6'(n — Da] — f" [z + 6'(n — 1]},
(302)

for a suitable value of 8’ between 0 and 1.

The conditions on the derivatives of f(x) show that the right member
of equation (302) has a first derivative in the open interval, and that the
function itself is continuous in the closed interval. Thus we may apply
the law of the mean to the difference in brackets to obtain the result:

af™[z +6"’a + 6'(n — 1)al. (303)

Here 6"/, like ¢’ is a suitably chosen number between 0 and 1. Conse-
quently

0’a 4+ 6'(n — 1)a = 6na, (304)

where 6 is a suitably chosen number between 0 and 1.
By combining this equation with the expression (303), which was
obtained from A™f(z), we find:

A"f(z) = af™ (z + bna), (305)

which is the result for n, and completes the proof by induction.

We note in particular that if the function f(z) has an nth derivative
continuous in the closed interval, the conditions are satisfied, and equa-
tion (300) holds.

Next suppose that the function f(x) has a finite nth derivative for a
particular value. Then, in some neighborhood of this value it has an
(n — 1)st derivative, and hence a continuous (n — 2)nd derivative,
Thus, for a sufficiently small value of a, we may deduce the equation
(302).

But, since the function f(z) has an nth derivative at z, it follows that
F™ D (z) is differentiable at z, and we have:

f* P+ a+0(n—1)a] - V() =

14+06@ - D]alf? () + o], (306)
and
S* Vi +6'(n — 1)a] — f* V(@) =6 — Dalf™ () + ], (307)

in which « and o’ are infinitesimals, approaching zero with a.
It follows from these two equations, and equation (302), that

Af(z) = a*[f™ (z) + 6], (308)
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where B is an infinitesimal. If we put @ = Az, we may write

A f
i — 4 = fn) .
im ™ () (309)
EXERCISES IV

1. Prove that the function defined by f(z) = (%)™ sin (z72)" if z # 0 and
f(0) = 0 has a derivative for z = 0 if m exceeds 1/2 and if » is positive.

2. Show that the derivative in problem 1 is continuous at 0 if 2m exceeds
2n 4+ 1.

3. If f(x) = z cot™ 1z when z £ 0, and f(0) = 0, find the right-hand deriva-

tive and the left-hand derivative forz = 0. Ans. /2, —7 /2.
4. Find the right-hand and left-hand derivative at zero of the function
z/(1 + €/#) with £(0) = 0. Ans. 0,1.

8. Prove that, if ¥ = f(x) and u =-g(z) have derivatives for values of x
near, but not equal to z,, and values of u near, but not equal to g(x,), and
F'lg(@))g' (z) — L as x—> xo, then dy/de = L. An example is y = v™, u = 2"
with m and n both positive and mn = 1, but one of them greater than 1,z, = 0.

6. Prove that if all the elements of a determinant are differentiable functions
of z, the derivative of the determinant is the sum of the n determinants obtained
by replacing in succession each row (or each column) by the corresponding
derivatives.

7. If y1, ¥a, * + *, Yn are n functions of z, the determinant

y}’ y%s ) yf:
Yy, Yo, ttty Un
W= . . .
En—l .n—l) ‘(n—l)
Y1 )’ yé "y Un

is called the Wronskian of the n functions. Show that dW /dz may be obtained
by replacing the elements of the last row, y* > by yi®. Hint: Use problem 6.

8. If the functions of problem 7 are each solutions of the linear differential
equation

Y = aay™P + - + 0 + o,

where the coefficients may be functions of z, prove that their Wronskian satisfies
the differential equation dW /dz = an1W.

9. If the Wronskian of two functions y; and y2, W = y1y2 — yey: never
vanishes, show that the zeros of y, separate those of ys, in the sense that if
vi(a) = y1(b) = 0, 2 is not zero at a and b, and is zero at least once in the
interval a,b. Hint: Assume y, # 0 in the interval, and apply Rolle’s theorem
t0 91 /y2 to obtain a contradiction to the hypothesis y, % 0 fora <z < b.

10. Let z(t) be the function defined in Exercises II, example 35. Show that,
for any &, if agn-1is replaced by a new digit differing from it by unity, to change
to to & + At, with At = =£1/33"1, then |Az/At| = 3*~L. If, for to, aza—z is 0
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or 2, and we replace it by 2 or 0, Az /At = 0. If asn—z is 1, and azs = 1, and
they are replaced by 0,0 or 2,2, Az /At will be zero if as,—1 = 1, and otherwise
will be 3" /5. Combine these facts to show that for every ¢, of the interval 0,1
there are sequences of values of At approaching zero for which two of the
three conditions Az /At — 4+, Az /A — —oo, or Az /At — 0 can arise.
This proves that the function has no finite or infinite derivative at any point of
the interval, although it was proved continuous on this interval in the earlier prob-
lem. This example of a possibility first noted by Weierstrass is due to Peano.

11. If (xo,y0) is a point on the graph of y = f(x), so that yo = f(zo), show that
¥ = yo + f'(z0) (z — 2o) passes through the point zo,50 and has the same deriva-
tive as f(z) at that point, and that no other first degree expression in z has this
property. It is the familiar tangent line.

12. Prove that, if dy is the differential, and Ay the increment corresponding to
dz = Az, then lim dy/Ay as Ar—> 0is 1 if dy/dz = f'(z) # 0, butis0iff'(x) =

13. Show that if z and y are the codrdinates of a point on any second degree

3
curve, or conic section, that % (y""~¥% = 0. (Halphen) Hint: Find y’'~%/3

fromy=az+bﬂ:\/cxz+dx+e.
14, If z and y are the codrdinates of a point on any parabola, show that

2‘% ("% = 0. (Halphen) Hint: Find y" /3 fromy = az + b +Vide +e

16. If the function y satisfies a differential equation (az?® 4 bz + ¢)y”’ +
(dz + €}y’ + fy = 0, prove that each of the higher derivatives of y satisfies an
equation of similar form. Hini: Use the rule of Leibniz to differentiate each
part of the equation n times.

16. Prove that the higher derivatives of the function z = f~!(y) inverse to
y = f(z) may be found from

Pz_ =y o P 30—

w-wr W W)

17. If f(z) and g(z) are differentiable in the closed interval a,b prove that, for
a suitable intermediate value of z,

'@ _ f@) - fla)
7@ g0 — 9@
Hint: Consider f(z)g(z) — f(a)g(x) — g(®)f(z).

18. Use the derivatives to determine the increasing or decreasing character
of the six hyperbolic functions, and in particular show that cosh 0 = 1is the only
minimum, and sech 0 = 1 the only maximum.

19. Show that the existence of a Taylor’s development of higher order does
not imply that any derivatives except the first exist, by considering f(z) = 4 +
z? + z% sin (z72%) near 0.

20. If, a8 £ — 4, f’(z) — L, then f(z) /x — L. This also holds if L is
replaced by 4o, or —. Hint: Use 'Hospital’s rule.

21, If f'(z) = L, +® or —», and f(z) —> M, a8 £ — 4, then f'(z) —0.
Hint: Use problem 20.
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22. If f(x) + f'(x) = L as ¢ — + o, then f(z) —» L. Hint: If f'(z) ulti-
mately preserves its sign, f(z) ultimately is monotonic, and either becomes
infinite or approaches a finite limit. In the first case f'(z) becomes infinite with
opposite sign, contrary to problem 20, and in the second f/(z) approaches a
limit, and we may apply problem 21. Otherwise there are maximum and
minimum values, M; and m;, of f(z) for arbitrarily large values of z; with
J'(®:) = 0. Hence M;— L, and m;— L, so that, since the other values of f(z)
are between the maximum and minimum, f(z) — L.

23. If r1 is an approximate value of one root of the equation f(z) = 0, where
f(z) has a continuous first derivative not zero in some interval including the
root and ri, a second approximation to the root may be obtained by Newton’s
method. If r; + h is the root sought, then from

. , —f(r1)
= = r =,
0 =fy+h) =flr)) + 4f'(rs +6R), & Pt o)
and if we take f'(r1) as an approximation to f'(r, + 6k), the second approxima-
tion is given by 7y — f(r1) /f'(r1) = r2. The process may be repeated.

By applying the method to f(x) = 2% — a, deduce the rule for improving the
approximation to V/a, by starting with ; and taking the average of r; and
a/r1 as the second approximation.

24. If the function f(z) of problem 23 has higher derivatives, deduce from the
Taylor’s expansion of f(r1+ k) that r1 —f(r1) [f'(r1) — 1/2 [fr)]2f" (m1) [[f' ()13
differs from the root by a term o(k®). This may also. be shown by writing
y = f(z) to define z in terms of y and expanding in a Taylor’s series in powers of
y —h, where h = f(r)). The derivatives are found from problem 16, and
y = 0 gives the root sought. .

26. If a is less than 0.1, the equation sin z = az has a root near . Show that
(1 — @), and (1 — a + a*)7 are improved approximations to this root.

26. Show that e* =142+ 2221+ -+ 2*/n!+ R, where |R, <
l#]**/(n + 1) 1if £ < 0, and |R,| < e=z"*/(n 4 1) 1 if > 0. Hence show
that R, — 0, if n — 4. :

27. Show that sinz = & — 233 | 4 - -« 4 (=1)"Hg2%1/(2n — 1) | + Ry,
and cosz =1-—22/214 -+ + (—1)"2?*/(2n) ! + Ryny1, where for each
|Rm| = |z]™tY/(m + 1) |, so that Rn— 0, as m— + .

28. Use the expansions of problem 27 to deduce that:

1
tanz = 2 +§-’c8+ %xs'l' 0",

1 1
= —_—p2 . — 6

1, 7
= L ST 6
and zcsczx 1+6:c +360x + O(z%).

29. Prove the binomial theorem for all real m and all values of z with |z] < 1,
namely,

(l+x)"‘=1+mx+°-~+m(m_l)'“(m—n+l)

nl!

Z" + Ra,
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with R,— 0 as n— 4. Hint: Use the Cauchy form of the remainder to find
—_— ase _— . nypn+1l

R, = m(m1 : 21) . .(7ftn n) (§1+ 02));9_".“ , which may be written as the
product of a number of factors of the form x(m — k)/k, times a term inde-
pendent of n, times (1 — 8)*/(1 + 6z)". The last does not exceed unity, and
the factors in numerical value approach [z| < 1, and so are ultimately less than
1 —8,8> 0. Thus ultimately R, is dominated by K(1 — 8)*™™, which— 0,

80. If we use equation (208) to deduoce f(z) = Sa(x) + Ra(z) from f'(z) =
Sa(z) + Ra(x), show that if as n — +o, B,— 0, for |z| < a, then B,— 0.
Hint: Since R.(0) = 0, R.(z) = Rau(x) — R,(0) = zRq(62).

81, Showthattan 'z =2 —23/3 + z°/5 — « - - 4 (—=1)"*z¥1/(2n — 1) +
1:3: - -@n=1) ,

w12+ 1) x + Ran4s, where
in each case, R, = O(z™*"), and, if |2| < 1, Rn— 0 a8 m— +w. Hint: Use
problems 30 and 29.

82. Prove that 7 /4 = tan™!11 = 4 tan™! (1/5) — tan—1(1/239). This may
be combined with the first expansion of problem 31 to compute  conveniently.

88. Provelog (1 4+ 2z) =z — 22/2 4+ -« + (=1)"*z" /n 4+ R,, where R, =
O(z"*), and if |z| < 1, R, — 0 as n—> 4o,

34. Show that, if 0 < z < 1,

3 2n—1
T I S

3
R!n, andsin"‘:c=x+§%+...+

1—=z 2n — 1
2I2"+"

@n+ D(1 — )=t

36. If in the preceding problem we put z = 1/31, 1/49 and 1/161, we may
compute the values of P = log 16/15, Q = log 25/24 and R = log 81/80. Show
that log 10 = (23P + 17Q + 10R). Such combinations are desirable to get
the logarithms of small integers. After several of these are known, the differ-
ence between the logarithm of any integer sought, and of one known from its
factors may be found directly from problem 34 with a small value of z.

86. Verify each of the following limits as z— 0:

z __ }hz _ 1
(8) lim2 b =log(g); (b) lim 2 =202 _ .

|R2n| <

z b sin"lz — 2
© limtanx'—:c= 2
r— sinz

87. Show that, as z— 0:
z sin (sin 2) — sin?z 1
- —
E 18

1—cos(l—cosz 1
(© = )1

388. Prove that when z— 0, 1

3 N
@) lgj*—1, (b) (cos2z)**¥=—¢ °, () %) —e

(a) :%5 ~ cot? x—eg» (b)

-1
[
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39, Verify that, as |z} — =,

i

1 z
(@) A+2F—>1, (b (; tan—! :c) —e ¥

(c) zlog (z ; z

x

1
z — 1.

)—> —4, (d) ’1—; — tan"lz

40. Prove that, if f(z) — 1 and g(z)[f(z) — 1]— L, then f(z)? — eE.

41, If f(z) = e~V#, £ 5% 0, and f(0) = 0, show that f(z) is continuous for
z = 0, and has derivatives of all orders at z = 0, with f®(0) = 0. Thus the
Taylor's development to any order is zero, and f(x) = o(z*), for all n. Also,
f(x) = Ra(z), so that, in spite of its possessing continuous derivatives of all
orders, we cannot compute the function from its Taylor’s expansion.

42, Prove that f(z) bas a relative maximum at z = a if f'(a) = 0 and
f"(a) < 0. More generally, if f'(a) =f"(a)="+++=f"a) =0, and
f™(a) # 0, f(a) has a relative maximum if m is even and f™(a) < 0, a relative
minimum if m is even and f™(a) > 0. If m is odd, there is neither a maximum
nor & minimum. Hiné: Use equation (187), noting that the conditions make
P(h) = f(a),ifn =m — 1.

43. Assuming that the (m + 1)st derivative exists, deduce the rule of problem
42 from Taylor’s development, If A,.A™ is the first term with non-zero coeffi-
cient in any development of f(a + k), we may infer the behavior at a from the
parity of m and the sign of A,.. For example, from problem 37(b) we may
deduce that z sin (sin z) — sin? z has a minimum at z = 0.

44. Use the test of section 76 to prove that the function of problem 41 has a
minimum at 0. Note that the tests of problems 42 and 43 do not apply to this
function.

48. Obtain the development:

1
(1+x)’=e[l—g+%x2—j—;z*+0(x‘)].

Hint: Use o8 1+2V/z an4 first develop the exponent. See problem 33 and
section 83.
46. Prove that for 0 < z < 7 /2,
2T
T z
Hint: The derivative of (sinz)/z is (z — tanz)(cosz) /z®. Since tanz > =z,
this is negative and the function decreases for all z between 0 and = /2. Hence
the values of the function lie between the limits approached as z approaches 0
and as z approaches = /2.
47. Prove that a*> z° if > a = e. Hint: The result follows from
zloga> alogz, or f(z) > 0 if f(z) = zloga — alogz. But f(a) = 0, and
f'(x) =loga —afz > 0, since loga = 1 > a/z.



CHAPTER V
COMPLEX NUMBERS

The discussion of the elementary functions may be simplified by the
introduction of complex numbers, even if the chief interest is in methods
which lead to final results expressible in terms of real numbers. There-
fore this chapter is devoted to the study of complex numbers.

We define such numbers and the four fundamental operations for
them. We next enlarge the concepts of function, limit, and continuity
so that they apply when the variables are complex, and we then define
the basic elementary functions for complex values of the independent
variable.

We prove the fundamental theorem of algebra and apply this to the
decomposition of polynomials and rational functions.

94. Complex Numbers. A complex number is an expression of the
form

a + b, (1)

where a and b are two real numbers, and ¢ is the imaginary unit. Each
distinct ordered pair of real numbers defines a different complex number.
That is:

a+b=a +b'%i implies a=a and b="0". 2)

We include the real numbers by the convention that
a= a4 0. 3)

We also include ¢ itself and its real multiples by putting:
t=1=0+1 and b = 04 bi. 4)

96. Operations on Complex Numbers. We define addition for com-
plex numbers by the law:

(@a+ )+ (@ + %) = (a+a’) + b+ '), (5)
and multiplication by the law:
(a+ &) (a" + b)) = (aa’ — bb') + (ab’ + ab)s. 6)
The inverse operations of subtraction and division are defined by
(a + bi) — (a' +b%) = (@ — o) + (b - V'), ™

151
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and
a +b%  ad 4+ b ab'—a'bi
a+b @+ @+

®

These laws are easily remembered and practically applied by using
the ordinary rules for real quantities, together with the special relation

2= —1, )

which follows from equations (4) and (6). The definitions given are
consistent with the other laws of algebra, such as the commutative,
associative, and distributive laws for multiplication and addition stated
in section 2. In practice, we obtain the result of equation (8) by multi-
plying numerator and denominator by a — bi. Since the commutative
law holds, it is immaterial whether we write @ + b7 or a + b.

96. Geometric Representation. We may match up the points in a
plane with complex numbers by associating the point with Cartesian
coordinates (z,y) with the complex number z 4 7y. It follows from
equation (2) and the discussion of section 13 that there is one point for
each complex number, and one complex number for each point. It is
convenient to use a single letter 2z to denote the complex number = + 1y,

and to speak of the point z when referring to

z (z,y). .

I# Each point (z,y) determines a vector drawn
I(z) from the origin to the point, whose components
arg z are z and y. We may regard this vector, or any
0 R(z) other vector with the same components, as a geo-
metric representation of the complex number z.
Thus, if (p,q) is any point, the vector from it to
(p + =z, + y) represents z. We refer to any such
vector as a vectorz. This leads us to denote the
relation of x and y to z by calling « the real com-
ponent of 2, and y the imaginary component of z. We write:

z=R(2) and y =1(2) when z=2z+4+ iy = R(z) + I (2). (10)

Fig. 12.

The vector representing the sum of two complex numbers 2, + z; may
be obtained by adding the vectors z; and 2; in accordance with the
parallelogram law.

The geometric interpretation of the product of two complex numbers
2122 is simplified if we introduce the polar coérdinates of the points
2y = (z1,51) and 2, = (Z,y2) as defined in section 61. We have:

Z1="N (COS 01 4+ % 8in 01) and 29 = Tg (OOS 83 + 1 8in 02). (11)
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The product of the factors involving 8; and 8, is:

(cos 6, cos 8 — sin 6; sin 85) + 7 (sin 8; cos 2 + cos 6; sin 65)
= cos (1 + 02) + 2sin (6; + 62), (12)

in view of the addition theorems for the sine and cosine. Thus

2325 = 1172 [cos (81 + 62) + < sin (8, + 62)], (13)

so that
r = Tire and 0= 6, + 0y (14)

give a possible choice of polar coérdinates for z = 2,25, If we plot the
origin 0 = (0,0) and the unit point 1 = (1,0), and construct the tri-
angle with vertices 0, 1, z; and that with vertices 0, z;, z, we may show
from equation (14) that these triangles are similar since they have two
sides proportional and the included angles equal. A geometric con-
struction for the point or vector representing the product z = 2,2, may
be deduced from this fact.
Whenever

z = r (cos 6 + ¢ sin 6), (15)

80 that r and 6 are polar coérdinates of the point 2z, we call » the absolute
value or modulus of z, and 8 the argument or amplitude. We write:

r=]|z/ and 6 = argz. (16)

The notation |z| is consistent with |z| to denote the numerical value of a
real number z, since

2] = Va2 + 42 (17)

reduces to V' a?, or the numerical value of z, when y = 0 and z is the real
number z.

We recall from section 61 that |2| is uniquely determined by equation
(17), and that if z # 0, arg z is determined to within an integral multiple
of 2r. If z = 0, arg z may have any value.

It follows from equation (13) that

l2122] = |21] [23]. (18)

This shows that a product can not be zero unless one of the factors is
zero.
97. Conjugate Complex Numbers. If z = z 4 iy, the complex
number
Z=z -1y, (19)
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is called the conjugate complex number to 2. We note that z is the con-
jugate of Z, so that the relationship of a number to its conjugate is
reciprocal. We note that

R() = R(z) and I(z) = —I(2). (20)
Also lel = [2l, and o] =V, (21)

while —arg 2 is a possible value of arg 2. Geometrically the point Z is
the reflection of the point z in the z, or real axis. That is, the point Z is
so situated that the axis is the perpendicular bisector of the line joining
the two points z and 2.

Suppose we start with two complex numbers z and 2/, and combine
them by any one of the four fundamental operations to obtain a new
complex number w. If we now start with the conjugates of these
numbers, Z and z’, and use the same operation, we shall obtain as a result
the number %, conjugate to w. This follows from the rules given in
section 95, and may be checked by the geometric interpretation.

We note that the sum and product of two conjugate complex numbers
are both real numbers.

98. Inequalities for Absolute Values. We shall prove that:

The absolute value of the sum of two complex numbers is less than or equal
to the sum of their absolute values.

If 2; = z; + 1y, and 23 = 22 + 1ys, we have:

o] = Va2 + 42, |zl = Vak + 4 (22)

and 2y + 22/ = (21 + 22)2 + (1 + y2)2. (23)
Consequently,

ll2a] + [22]]? = |&1 + 2 =
2'\/!0% + y% \/x§ + :‘é - 2&'11?2 - 2y1y2. (24)

This will be greater than or equal to zero if
Vi + i Vol + 4 2 2w + vy, (25)
or since the left member is positive or zero, if
2175 + 233 + vied + vind 2 oixd + 2mmayiye + v,

which may be written

(z1y2 — y122)* 2 0. (26)

Since the left member is the square of a real number, this last
inequality always holds, and this proves that

llaa] + |2o1? = |21 + 2af%, @7
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or
[21] + lz2| 2 [21 + 2], (28)

since both members of this inequality are non-negative. This proves
the theorem.

From the form of relation (26), we see that the equality can only
occur if
Ty T2

= 0. 29
i Y2 (29)

Z1Y2 — Yi%2 =

This is the condition that the numbers z;,y, are proportional to the
numbers z3,y, since it implies either

21=0,y1=0; 2%=0,9=0; y1=0,92=0 or - = 2. (30)
Y1 Y2
In the geometric representation, the sides of the triangle with vertices
at 0, z; and z; + 2z, may be considered as
vectors representing z1, z, and z, + z,. Il
The corresponding absolute values are
the lengths of the sides of the triangle,
and the relation (28) states that two sides
have a sum greater than the third side.
The equality may occur if the triangle
degenerates to one with all three vertices
in the same line, or with zero area, in which case equation (29) holds.
The relation

z1 45y

F1c. 13.

2y — 25 2 “211 — Izzll (31)
follows from
21 — 22| + |22] 2 [2], (32)

if |21] Z |22, and from this by interchanging z; and z, if || < |zo|.
Here, again, we can only have the equality if the points representing 0,
21, and z; are collinear.

By mathematical induction based on the relation (28), we may prove
that for any integer n,

n n
Tlal 2| Xz, (33)
F=1 k=1

with strict inequality unless the points representing z; and the origin
are collinear, The relation (33) corresponds to the geometric fact that
a straight line segment joining two points is shorter than a broken line
joining the same two points.
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99. Limits. If 2, and y. are real variables approaching limits in the
sense of section 17, we say that the complex variable z, = z, + iy,
approaches (lim ;) + ¢ (lim y;) as a limit. That is:

For a complex variable, z; = x; + ty; whose values are determined by a
continuous or discrete sequence of real numbers t, we define:

limz, =Z =X + Y, (34)
if, and only if,
limz; =X and lmy, =Y. (35)
These relations imply that:
lim (X ~2;)=0 and lim (Y —y,) =0. (36)
But,
Z-z=X-z)+ (Y —y) (37)
and
2~ 2 = VX —2)®+ (Y — w)?, (38)
so that:
lim (Z — 2,) = 0, (39)
and
lim |Z — 2] = 0. (40)

From equation (38) we deduce that:
0S| X~z =S|Z—2] and 0L |Y -y S|Z—2| (41)

From these relations we see that the equation (40) implies equation (36)
and hence equation (35) and (34). That is:

A necessary and sufficient condition for the complex variable z, to approach
Z as a limit is that lim [Z — z,| = 0.

This reduces the problem of determining whether a complex variable
depending on a real variable approaches a limit to that of determining
whether a real variable approaches zero. Since |Z — 2| is the distance
between the fixed point Z and the variable point z,, the condition has a
simple geometric meaning.

" The Cauchy convergence criterion of section 26 applies to complex
variables. We shall prove that:

A necessary and sufficient condition for 2, to approach a limit is that for
any positive quantity e, there is some point in the sequence of values of i1,
such that the absolute value of the dz_ﬂ"ereme of any two values of z;, each
with ¢ beyond {,, is less than .

We first note that if 2, = z; + 7y; and 2z, = z, + iy, are any two
complex numbers, we have:

0S|z —m|S|ea—2]| and 0= ys — 4| S |22 — 2], (42)
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analogous to the relation (41). Consequently,
if lZz - 21’ < €,
g2 — 7| <e and |y —yi] <e 43)

Thus, if the condition of the theorem is satisfied, for z; = z; + 1y, by
the Cauchy convergence criterion for the real sequences z; and y., we
see that they each approach limits. Thus, by our first definition, 2
approaches a limit, and the sufficiency of the condition is proved.

Conversely, if z; approaches a limit Z, equation (40) holds, so that for
any arbitrary positive quantity,

|Z -~ 2z < 56’ for ¢beyond ¢.. (44)
Thus, if 2’ and 2’/ are any two values of 2, with ¢ beyond t,,

1z - 2| < -25 and |Z — 2| < g (45)
so that
[~ 2" = |( = 2)+ (2 — ") <e. (46)

This proves that the condition is also necessary, and proves the theorem.
With only slight modifications the reasoning of section 19 applies to
complex limits. Hence we may use the results of that section to deter-
mine the behavior of the sum, difference, product, and quotient of two
complex variables.
100. Infinity. For a complex variable z,, we write

lim 2, = oo, (47)
to mean
lim |z;| = 0. (48)
It follows that:
lim z;, = » if, and only if, hm;l- = 0. (49)
t

When dealing with a variable a; restricted to real values, we shall
generally continue to use the more explicit notation lim |a;] = =, since
for real variables the distinction between lim a; = + and lima; = —
is important.

For complex variables, we generally reduce the study of a variable
becoming infinite to the study of a variable approaching zero, by using
equation (49).

101. Functions. If z =z + iy and w = u + 4v are two variable
complex numbers, there may be a relation between them. As for real
numbers, we say that w is a function of z for a set of values if for each
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value of z in a certain range one or more values of w are determined.
We write
w = f(z) (50)
to indicate this.
Since z and y determine z, which in turn determines w, and hence u
and v, we see that u and v are each functions of z and y, so that:

w = u(xyy) + iv(z:y): (51)

and a single function of a complex variable determines two real functions
of two real variables. Conversely, any two functions of z and y may be
used in place of u and v to determine w as a function of z.

For the present we shall be interested in a very restricted class of
functions of a complex variable, those which correspond to the elemen-
tary functions defined in section 69.

The range of z will usually be some two-dimensional open region as
defined in section 15, or the corresponding closed region obtained from
it by adding the boundary points as in section 35. If the functions
u(z,y) and v(z,y) are each single-valued in the range, there will be just
one value of w for each value of 2z, and we say that w is a single-valued
function of z.

102, Continuity. Let w = f(z) be a single-valued function of the
complex variable z = z + 4y for values of (z,y) in some two-dimensional
region. If z’ is any interior point of this region, we say that:

The function f(z2) is continuous at 2’ if
lim f(z,) = f(z') (52)
Jor every sequence z; such that 2z, — 2.

This is analogous to the first definition of section 35 if we restrict
ourselves to discrete sequences. By reasoning as in that section, we
may show that if the property holds for discrete sequences, it holds for
all sequences, and that the definition is equivalent to:

The function f(z) is continuous at 2’ if, for every positive number e there
18 a corresponding postiive number 8, such that

If2) —fe) <e f |z—72| <é. (53)

If we write 2’ = 2’ + 4y, and 2z, = z; + 4y, it follows from the
definition of section 99 that lim z, = 2’ if, and only if, lim z; = z’ and
limy; = y’. Also limf(z) = f(z') if, and only if, limu(zy,y,)=
u(z’,y’) and lim v(z,,y:) = v(z’,y"), where f(2) = u(z,y) + iv(zy). In
view of these facts, a comparison of the first definition of this section
with the first definition of section 35 shows that:
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The function f(z) of the complex variable z = x + 1y s conlinuous at
2 = 1’ + 1y’ if, and only if, the two real functions u(z,y) and v(z,y) such
that w(z + 1y) = u(z,y) + w(z,y) are each continuous at (z',y").

103. The Exponential Function. Since the properties

EQREE) = E(z +72), (54)
and
lim & =1 _ 1, (55)
2—>0 z

completely characterize the function E(z) as the exponential function
when z is restricted to real values, as we saw in section 51, it is natural
to extend the definition to complex values by attempting to satisfy
these relations for complex values of z.  We shall see that this is possible
and may be done in only one way.

Let us first suppose that there is a function satisfying these relations,
and let us determine its properties on this assumption.

If z = z + 1y, where z and y are real, we have from equation (54),

E@z + iy) = E@)E(y). (56)

But, if we put z = z in equations (54) and (55) they reduce to the
equations (130) and (131) of section 51. This shows that we must have

E(x) = ¢~ 567
The equations (54) and (55) are then satisfied, since
€e® = 1%, (58)
and
* — 1
lim === = 1. (59)
z—»0 z

For any particular value of y, E(iy) is a complex number which may
be expressed in terms of two real numbers:

E(y) = C(y) + +8(y), (60)

so that the real and imaginary components of E(%y) are each real func-
tions of the real variable y.
If we put z = iy, 2/ = 7y’ in equation (54), we have:
E@y)E@y') = Eliy + v"), (61)
or,

[Cy) +i8WIICE) +iSGN = Cly +¥) +iSw +y). (62)
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This is equivalent to
Clw+y) =CwCE) - SEuSE), (63)
S@+y) =8wCE) + CwSE), (64)

in view of equations (6) and (2).
For z = 14y, the condition (55) becomes:
Yim E (iy? -1 _
w0 Y
or, if we use equation (60),
Cly) +48@y -1 _
m : =

1, (65)

Ii 1. 66
Jim e (66)
But, by equation (35), this is equivalent to:
lim 5@) =1, (67)
y—>0 Y
and im W =1, (68)
y—0 Y
From equation (63) we may deduce that
Cly+hr) -C Cch)y—1 S(h
WAR = CW) _ ) CBW =1 gy S (g
h h h
Again, from equation (64) we may deduce that
Sy+hr) -8 Ck)—1 N
e U == L R

Since & only appears in these two equations in expressions similar to
those in equations (67) and (68), the right members of these two equa-
tions will approach limits as #— 0. Hence the left members will
approach limits, and the functions C(y) and S(y) have derivatives for
all values of y, given by:

d d
d—yC(y) = ~S8(y) and @S(y) = C(y). (71)

Now consider the function
F(y) = C*(y) + S*(y). (72)
By using equation (71), we find that

%F‘ (y) =20[-8W)] +28w)C(w) =0, (73)
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so that by a theorem proved in section 75, the function F(y) is a con-
stant. But equations (67) and (68) show that S(y) »0and C(y) — 1
as y = 0. Thus the right member of equation (72) approaches 1, and
the value of the constant is 1. Hence:

C*(y) + S*(y) = 1. (74)

Since the equations (64), (63), (74) and (67) only differ from equations
(224), (225), (226) and (227) of section 57 in having z replaced by y,
it follows from the theorem of that section that

C(y) =cosy and S(y) =siny. (75)

These functions satisfy equations (63) and (64), which are equivalent
to equation (61) if equation (60) holds. Hence if we define

eV = cosy -+ 4 sin y, (76)
we have:
et'yeiy’ - ei(v*Hl’) . (77)
We note that for any function f(y) having a derivative fory = 0,
. —f(©
y—0 Y

In particular, for the sine and cosine this becomes:
im =¥ =1 and lim
=0 Y y—>0 Yy

It follows that the functions as defined by equation (75) satisfy the

equations (67) and (68), which together are equivalent to equation (65)

if equation (60) holds. Thus we have for the function defined by

equation (76):

cosy—1 _ 0. (79)

. W1 . eV —
lim £ - =1, or lim
>0 Y =0 Y

=1, (80)

In accordance with equation (56) we now define
e = &t = ¢%eW = ¢ (cos y + % sin y). (81)

Its continuity for all values of z follows from the continuity of its real
and imaginary components by section 102.

The preceding argument has shown that no other function of z can
satisfy the two conditions (54) and (55). We must next investigate
whether the function given by equation (81) itself satisfies these con-
ditions. We have:

€% = ¢Feet eV = ¢t W) = gt (82)
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as 8 consequence of equations (58) and (77). Thus the first condition
is satisfied. :

The second condition is satisfied when z is restricted to real values, in
view of equation (59). In consequence of this and the fundamental
definition of a limit, we may write

¢ =1+ x + hz, where |h| < if |z| <& (83)

Similarly, the condition is satisfied when z is restricted to real mul-
tiples of 7, in view of equation (80). From this and the property of
a complex limit expressed in equation (40), we may write

€¥ =144y + ky, where k| <e if |yl < é. (84)
We may deduce from the last two equations that:
e —1=¢%"—1=zx+1dy+hs+ky+ @+ hi +k+ hk)zy. (85)
Let us now take 0 < e < 1, determine 4, and 8;, and then take
0 < |z] <3, where & < minf(e, 8y, 83), (86)
the minimum of the three numbers. Then, since
|z} < le| and [y] = |2, (87
for any complex number z = z 4 iy, we have:
h| <e |kl <e and |t 4+ hi +k + hk| < 4, (88)
80 that
|hz + ky + (@ 4 hi 4+ & + hk)xy| < 2| + €]2| + 4¢lz] < 6¢f2|. (89)
It follows from this relation and equation (85) that
ef — 1
z

— 1l <6 if 0<|z <. (90)

Since € is an arbitrary positive number less than unity, 6¢ may be
made arbitrarily small, and this equation is the condition that
e —1

=0, or lim =1 (91)
=0 z

-1

lim

z=p0

4

Thus the second condition is satisfied, and we have proved that:
The function of the complex number z = z + 1y,

e = ¢t = ¢* (cos y + 1 s8iny), ©2)

has the property:
e'e” = et (93)
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Jor all complex values of z and 2/, and the special property
. e —1
lim
20 z

-1 (94)

These two properties uniquely characterize the function.
104. The Trigonometric Functions, sin z and cos 2. The properties

S+ 2) = 8@)CE)+ CkSE), (95)

Ciz+7)=CRCE) - 8@)SE), (96)

C?(2) + §%(2) = 1, (97)

and im 5@ _ ¢ (98)
z—0 2

completely characterize the functions S(z) and C(x) when z is restricted
to real values, z. In fact, we showed in section 57 that these properties
hold if and only if

S(z) =sinz and C(z) = cosz. (99)

We shall accordingly use these properties to extend the definition of
the trigonometric functions to complex values.

If the four fundamental equations hold for all complex values of z,
they hold, in particular, for all real values. For these values equation
(99) bolds, and hence

S8(0) =0 and C(0) = 1. (100)
It follows from equation (98) that
lim S(z) = 0. (101)
z—0

Thus the function S(z) is a continuous function of the complex variable 2,
atz =0,
Since the equations (96) and (97) imply that
C(2) = 1 — 28%(2), (102)
it follows that the function C'(2) is a continuous function of the complex
variable z, at z = 0, Hence,

lim [C(z) +1] = C(0) +1 =2,
=0

and from equations (97) and (98) we may conclude that:

CC@ -1 . 86 8@ _
b= =Imeo+1 : % (103)
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The similarity in form of our equations with those used in the last
section to determine E (iy) suggests that we introduce a function E (iz),
defined by the equation:

E@iz) = C(z) + t8(z). (104)
Then, since
[C() +i8@1[CE) + i8N = Clz+2') +i8(z + 2') (105)
is a consequence of equations (95) and (96), we have
E@i2)E(i7') = E[i(z + 2')). (106)
We also note from equation (104) that:
E(iz) - 1 =lC(z) - 1+S(z).

(107)
1z 1 z P
It follows from this, equation (98) and equation (103) that:
m 26 =1 _ (108)
2—»0 2
If we write
2= —iw, =iz (109)

the function E(w) is defined for all complex values of w by equations
(109) and (104). In terms of w, equation (106) is

Ew)E@w') = E(w + w'). (110)
Also, since z — 0 when w — 0, equation (108) may be written:
lim Ew) —1 =1. (111)
w—>0 w

As these equations are identical in form with equations (54) and (55)
of the last section, it follows that they will be satisfied if, and only if:

E(w) = &%, (112)
and
C(2) + i8(z) = E(iz) = €™ (113)

This equation does not immediately determine C(z) and S(z), since
they are not necessarily the real and imaginary components of the
complex number on the right when z is not a real number.

However, we have:

1 1 _C() — iS(z).
e C(2) +18() C2(2) + S%(2)

e—t's

(114)
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It follows from this and equation (97) that:

C(z) —i8(z) = ¢ ™. (115)
We may now conclude from equations (113) and (115) that:
Ce) =27 nd S = et (116)

It is a direct algebraic consequence of the fundamental property of the
exponential function expressed in equation (93) that the functions
defined by equation (116) satisfy the relations (95), (96), and (97), if,
for the last, we recall that ¢® = 1. That these functions satisfy the
fourth condition, equation (98), is a consequence of the second property
of the exponential function given in equation (94).

We use the equations (116) as the definition of cos z and sin 2 for
complex values of the variable. If we put:

z=z 41y, iz= —y-tiz, —iz=1y—1iz 117)
we have from equation (92):
6% =¢V(cosx+isinz), €% =e (cosz — isinz). (118)

These equations enable us to define sin z and cos z directly in terms of
trigonometric functions of z and hyperbolic functions of y, as defined in
section 68. We hkave:

ei; — e—iz

sinz = o = sin z cosh y + 7 cos z sinh y. (119)
iz —iz

cos z = f%’-— = ¢os  cosh y — 7 sin # sinh y. (120)

The discussion of this section has proved that:
The functions of the complex number z = x -+ vy defined by equations
(119) and (120) have the properties:

gin (z + 2’) = sin zcos 2 + cos z sin 2/, (121)
cos (z + 2’) = cos z cos 2’ — sin zsin 2/, (122)
cos?z +sin’z =1, (123)

Jor all complez values of z, and also have the special property:
lim 222~ 1. (124)
=0 2

These four properties uniquely characterize the functions.
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105. Properties of the Trigonometric Functions. All the identities
involving the functions sin z and cos z derivable as consequences of the
equations (121), (122), and (123), mentioned in section 58 for real
values of the variable, hold when 2 is complex, since the algebraic proces-
ses by which they were proved for real values are still valid.

However, a direct proof of any such identity for complex values of z
is always possible by using the formulas

. _ eiz — e—iz d _ eiz + e—iz ¢
sin z = — and cosz = 3
to reduce the trigonometric identity to an identity involving exponentials
which is an algebraic consequence of equation (93). Such a proof is
often simpler than a proof involving real quantities only.
It is often convenient to use also the formulas

6% =cosz+isinz and €% = cosz — ¢ sin . (126)

(125)

For example, from

é™ — ¢ (cos z 4 4 sin 2)" — (cos z — i sin 2)"
2% 2

we easily derive a formula expressing sin nz as a polynomial in sin 2

and cos 2, with real coefficients. Similarly, any polyromial involving

sines and cosines of multiples of z may be expressed as a polynomial in

sin z and cos 2.
Conversely, from

sin® 2 cos™ 2 eiz - e—iz n (eiz + e—iz)m
2 "2

m+tn m+n
= ¥ A = X (a; cos kz + by sin kz), (128)
=0

k=—m-n

(127)

sin nz =

We may express any polynomial in sin z and cos z as a linear combina~
tion of sines and cosines of multiples of z. The final coefficients a; and
b will be real. For the values of the expressions in parentheses are
unchanged if we replace ¢ by. —1, which shows that A_; must be the
complex number conjugate to A;. Thus, if the original polynomial has
real coefficients, the coefficients in the linear combination will also be real.

As in the case of real quantities, the remaining four trigonometric

functions are defined by the equations:
cos 2

sin 2z
tanz = —» cot 2 = ——, (129)
cos 2z sin 2

1
sec z =.._1_, c8C 2 = —— (130)
S sin z
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Thus their properties may be deduced from those of the sine and cosine.
It follows from the preceding discussion that all the algebraic identities
involving any of the six trigonometric functions which hold for real
values of the variable are valid when the variable is complex.

We note that inequalities derived for real values do not in general
continue to be true. For example, when sin z and cos z are real, it
follows from cos®z 4 sin?z = 1, that |sin z] < 1, but we cannot draw
this conclusion, and the inequality does not necessarily hold, when the
values are complex.

106. Hyperbolic Functions. The definitions of the hyperbolic fune-
tions given in section 68 may be used for complex values of the variable,
and give:

z __ 2z z —z
sinh z = 2 ‘., coshz=e _;e . (131)
It follows from this and equation (92) that if z = = 4 1y,
sinh z = sinh z cos ¥ + 7 cosh z sin y, (132)
cosh z = cosh x cos ¥ + 7 sinh z sin y. (133)
The four other functions are defined as before by:
inh
tanh z = Smu e, coth z = c,OSh Z, (134)
cosh 2 sinh z
sech z = —L—, cschz = — 1 (135)
cosh 2z sinh 2
A comparison of equations (131) and (125) shows that:
sinh 4z = ¢sin z and cosh iz = cos 2, (136)
and also that
sin iz = 1sinh z and cos ¢z = cosh z. 137)

These and the relations of similar character derived from them combined
with equations (134) and (135) are often convenient in deriving for-
mulas for hyperbolic functions from the more familiar formulas for the
trigonometric functions. For example:

cosh (z 4 2’) = cos (iz + i2’) = cos 1z cos 72’ — sin iz sin iz
= cosh 2 cosh 2’ + sinh z sinh 2/, (138)

Identities in the hyperbolic functions may also be derived directly
from equations (131) combined with

¢ =coshz+sinhz and €2 = coshz — sinh ez, (139)

in a manner analogous to that illustrated for the trigonometric functions.
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107. The Logarithmic Function. For real values of the variables, the
relations

w=1logz and z=¢¥ (140)

are equivalent. If z = 2 4 4y is a given complex number, and the
complex number w = u -+ v satisfies this last equation, then

z + 1y = €* (cos v + ¢ sin v). (141)
This implies that

z=c¢e%cosv, y=ce“sinvy (142)
so that

22+ y?=¢* and ¢ = [, (143)

since e* is positive for all real values of .
If we assume that z = 0, this determines u as

u = log |2| (144)
and when combined with equation (142) leads to
z . Y
cosy=—, siny=-— 145)
B e ‘

which determine v to within an integral multiple of 27 as we showed in
section 61. In fact,

v = arg z, (146)

as we might have noted directly by comparing equation (141) with
equation (15), and identifying ¢* and » with the polar codrdinates
r = |z| and § = arg z.

Since equation (141) follows from equations (144) and (146), we are
led to define the logarithm of a complex number z by

log z = log |2| + ¢ arg z = log r 4 6. (147)
This function is many valued, since arg z is not uniquely determined.
For any real constant a, there is just one possible value of argz or § in
the range
a=60<a-+2r (148)
These values constitute a single-valued branch of the function argz
corresponding to a. The values of the logarithm satisfying the restric-
tion (148) constitute a single-valued branch of the logarithmic function
corresponding to . Thus:
The branch of the logarithmic function corresponding to a 18 defined by

logz=1log |z| +targz, where a S argz<a+2r. (149)
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The function ts uniquely defined for any value of z # 0,
and if w = log z, z=¢" (150)

If 0 is the value of arg z for any one branch and if 6’ is the value for the
same z for any other branch, then § — 6’ = 2kw, where k is zero or a
posttive or negative integer.

While log z is not defined for z = 0, we may write
lim log z = o, (151)
z—0

in accordance with the convention of section 100, since

llog 2| = log |z], and lim log|z] = —co. (152)
z—»0

We note that for any one branch, if z > 0 and 6 = a, the function 6,
and hence the function log 2, is continuous. If we start with a value of
z # 0, and then select a value of @ not a possible value of arg z for this
value, we shall obtain a branch of logz continuous for the value in
question.

Thus, if z varies continuously, without passing through zero we may
change the branch in such a way that log z varies continuously. How-
ever, if z traverses a circle with center at the origin, the final value of
log z will differ from the initial value. For any range of z which excludes
some radius drawn out from the origin, i.e., such that for some value of a
none of the values

z=rcosa+irsing, 0=r (153)

belong to the region, we may find a branch of the function w = log 2
which is single-valued and continuous. We shall usually consider
z restricted to such a range.

The properties used to characterize the logarithmic function for real
values in section 50 apply with certain reservations to the function
defined by equation (149). If w = log z and w’ = log 2/, we have

’
z=c¢" 2 = ¢, 22’ = "V, (154)

Thus, if z and 2’ are both distinct from zero, log z + log 2’ or w + w’is,
for some branch, log (z2). Thus we may write either

log z + log 2’ = log (22’) for suitable branches, (155)
or
log z + log 2’ = log 22’ + 2k, (156)

where we may take all three logarithms for the same branch, or for any
branches, provided we use a suitable value of the integral multiple k.
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That k is not necessarily zero when we use the same branch in all
cases may be seen by taking 0 < 6 < 2= for all the logarithms, and

= 3x/2 for log z and log 2’.

The special relation (112) of section 50 can only hold for complex
values if log (1 + 2) =0 asz— 0. Accordingly, we consider a branch
with —27 < a < 0. We put:

w=1log (1+2), z=¢—1. (157)

For the branch considered log 1 = 0 and the logarithm is continuous
in a region including 1, so that w — 0 when z— 0. Consequently we
have:

lim B AHD) ¥y (158)
2—»0 F4 w0 €71

by equation (94). Thus the special relation holds for any branch with

—2x < a < 0, that is any branch which makes log 2z continuous for all

real and positive values of 2, and is such that for these values log z is

identical with the function log z of section 50.

108. Power Functions. For any complex value of A = 0, and any
complex value of B, we write:

AP = Pled, (159)

which determines a value of the power for each choice of a particular
branch of the function log 2.

If a is the value of the argument of A for any one branch, for any
other branch the value may be written a 4 2kr, where & is zero or a
positive or negative integer. Thus, if a is the absolute value of 4, we
shall have for any branch:

log A = log a + (e + 2kx). (160)

Consequently,
AB = eB[]ogtl +i(a +2kn)] _ eE(loga +€a)e2Bkn'. (161)

The value of the power for a branch with k < 0 will only agree with
that for k = 0 if

P = 1 and 2Bkxi =log 1, (162)

for some branch of the logarithm. But, since log 1 is 0 for one branch,
for any other branch it will be an integral multiple of 2%, say 2Ka¢,
and we must have:

K
2Bkwt = 2Kxi and Bk =K or B = 7 (163)

This shows that B is real and rational if equation (162) holds.
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When B is not real and rational, each different value of k in equations
(160) and (161) will give a different value to A%, and this expression is
infinitely many-valued. By restricting z to a region in which some
branch of the logarithmic function is single-valued and continuous, we
may obtain a single-valued and continuous branch of the function z®
for all values of B.

_For the function A?, since
Af = ealogA = ez(loga + ia +2kr0, (164)

each choice of & determines a separate function, single-valued and con-
tinuous for all complex values of z. For real and positive values of
A, A = p, one choice makes

p* = ¢8?, (165)

When p is real and positive, unless the context indicates otherwise, we
take this last equation as the definition of p®. This convention justifies
our use of e* for the function defined in section 103, instead of for the
infinitely many-valued function found by putting A = ¢ in equation
(164).

The possibility of the second interpretation is occasionally convenient,
for example in using a particular branch of 2®, and evaluating this
function for z = p, orz = e.

Let us return to the consideration of A% when B is real and rational.
If B = 0, we have for all 4 = 0, A® = 1, regardless of the value of % in
equation (161). For an integral value of B, Bk is an integer for all
values of k, and the last exponential written in equation (161) is unity.

In fact, the value uniquely determined by putting B = n, a positive
integer in equation (159) or (161), is the same as that obtained by
repeated multiplication by 4, as we see from equation (93). We also
see from this equation that the value obtained by putting B = —n is
the reciprocal of that for B = n.

For p, a positive or negative integer, and a particular determination
of log A,

ABp — eB’plo¢.4. — (eBlozA)p — (AB)p’ (166)

so that a rational power, p/g is uniquely determined from the value of
the power 1/¢g, and we may take ¢ positive.

For B = 1/q, with ¢ a positive integer, the equation (163) will be
satisfied if ¥ = ¢K, in which case k is an integral multiple of g. Thus,
any two values of the logarithm which differ by 2k#i will give the same
value of A% if k is an integral multiple of q. If we takek = 0, 1,2, - - -,
g — 1, in equation (161) we obtain ¢ distinct values. Since any other
integer differs from one of these by a multiple of ¢, the equation (159)
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gives g possible values to A%, Each of these has its qth power equal to
A, and these are the g roots of the equation2? — 4 = 0. We sometimes

write V4 in place of A% or VA for AY2. For A real and positive,
one of these roots is real and positive. When ¢ is even, there is a second
real root which is negative. Also, when A is real and negative, and ¢
is odd, there is a negative real root. For ¢ = 2, and any complex value
of A, the two square roots differ by a factor of —1.

109. Inverse Functions. By solving quadratic equations, and tak-
ing logarithms, we may express all the inverse trigonometric functions
in terms of square roots and logarithms, so that these functions are single
valued in suitably restricted regions. We have:

sin‘lz=cs“;=—zlog(zz+\/1—z) (167)
1
cos! z = sec -’; = —ilog (z + V22 —-1) (168)
1 1 -1z *
—1, _ 12 .
tan™ z = cot™ o 2log T+ (169)
Similarly we find for the inverse hyperbolic functions:
sinh™ z = esch™ 1; log (z + V1 + 22) (170)
1 —
cosh™ z = sech™ 1; log (z 4+ V22 < 1) @17)
1 1 1+ z
-1, _ 1 _ 2
tanh™ 2z = coth - 2lo 11— (172)

110. Derivatives. If w = f(z) and Aw and Az denote correspond-
ing complex increments of w and z, we define the derivative
o _ L fE+R) = 16)

f(Z)———lim—

dz  ms0 A2 pso h (173)

in case the last limit exists and has the same value for all sequences of
complex values of & or Az distinct from zero, and approaching zero as a
limit.
As in the case of real variables, it follows from the definition that:
dU
=k — 1
(kU) k 2 (174)

_(U+V)_d_U+d_V_' (175)
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d
;—z ) =v + v, (176)
yiu_
d dz dz
z\v)-— am)

Also, the reasoning used in section 65 shows that, if w = f(U) and
U = g(2), and for Uy = g(2o), the function f(U) has a finite derivative
at Uy, while g(z) has a finite derivative at 2o, then the function

w = flg(z)] = F(2), (178)
has a derivative, at zy given by
do_dwdl L o
T=SE T o Fleo) = £ (Uo) ). (179)
It also follows directly from the definition of a derivative that
dk dz
o =0, and % 1, (180)

so that polynomials and rational functions of a complex variable may be
differentiated by the rules derived in section 63.

111. Special Functions. For the function ¢*, we have:
s+h z h

. e — . et —
lim ————— = lim¢*

0 R h—>0

= ¢f, (181)
in view of equations (93) and (94). This proves that:

d 2 2
o= (182)

Consider next the function w = log 2, at a point z interior to a region
in which the branch used is continuous and single-valued. Then

log (z + Az) — log 2 Aw
Az T gtaw _ gu’

z=¢¥ and (183)
As ¢” is single-valued, Aw # 0 if Az > 0, and since w = log z is con-
tinuous at 2; Aw — 0 when Az — 0. But

ew+Aw — ¥

lim —————-—ie =¥ =2 (184)

Aw—0 Aw dw
It follows from the last two equations that:
log (z+h)—logz 1 ox

— (log z) = -»o W = (185)

n
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Again, from equations (125), (182) and the preceding section we find
for the functions sin z and cos z that: '

d . d .
7 (sin z) = cosz and o (cos z) = —sin 2. (186)

Thus all the formulas for differentiating trigonometric and inverse

trigonometric functions for real values apply to complex values, with

suitable restrictions on the regions and branches for the inverse functions.
Similarly, in consequence of equation (131) we find:

g (sinh z) = cosh z and 4 (cosh z) = sinh 2, (187)
dz dz

and the formulas for differentiating hyperbolic functions and their
inverse functions for real values may be extended to the case where the
variable is complex.

112. Elementary Functions. The function sinz is expressed in
terms of the exponential function by equation (125). The power func-
tion A% is expressed in terms of the exponential and logarithmic function
by equation (159). The function sin™! z may be written

sin! z = —1 log [1z + ¢t 181~ (188)

in view of equations (167) and (159). Consequently, when consider-
ing complex values of the variable, we need to consider only the func-
tions e* and log z as basic elementary functions. Thus we may define:

An elementary function of the complex variable 2 is a function which
can be explicitly represented in terms of constants and the independent
variable 2, by means of the four fundamental operations and the exponen-
tial and logarithmic functions, using, at most, a finite number of cpera-
tions and, at most, a finite number of basic functions. For any choice
of branches of the logarithmic functions involved, if the explicit repre-
sentation of an elementary function leads to a finite and determinate
value for values of z in some two-dimensional region, we may find two-
dimensional regions in which the representation leads to a single-valued
and continuous function. We shall speak of such a function with its
associated region as the single-valued branch of an elementary function,
or simply as a single-valued elementary function.

A comparison of this definition with that given in section 69 shows
that, at least in a limited range of the variable, every elementary func-
tion as there defined may be obtained from a single-valued elementary
function by further restricting z to real values. The principles of the
last two sections enable us to find the derivative of a single-valued
elementary function for any value z interior to the region associated with
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the single-valued branch considered. For any region composed entirely
of such interior points, the derivative is again a single-valued elementary
function. The rules for differentiation are formally identical with the
familiar rules for real functions.

113. The Fundamental Theorem of Algebra. The fundamental
theorem of algebra asserts that if P(2) is a polynomial in z which is not
wdentically a constant, then the equation

P(z) =0 (189)

18 satisfied by some complex number. Since |P(z)| is always positive or
zero, any root of P(z) = 0 makes this a minimum, and our proof will be
based on this minimum property.

We shall first prove that, if |P(z)| takes on its minimum value m for a
region R af 2y, an interior point of R, thenm = 0.

Let us assume that the minimum m, taken on at 2 is not zero. If

P@)=ay+az+ -+ a2, a, #0, (190)

n, the highest power of z present with non-zero coefficient is called the
degree of the polynomial. Since P(2) is not a constant, n is at least
unity. If we write z = 29 + k, we have

P(z) = P(z0 + k) = Q(h). (191)

Here Q(%) is a polynomial of the nth degree in k, as we see on multiply-
ing out the powers and combining the terms. The degree is n since the
only term in A" i8 @,A™ and since no higher power occurs. Put

Qh) =co+cah+--- + ek ¢ #0. (192)

Let ¢, = ¢1 if ¢; # 0, and otherwise, the first coefficient following ¢o
which is not zero. It follows from our assumption that

co # 0, since |[co] = [Q(0)] = |P(20)| = m. (193)

Thus there is a complex number —c,/co which is not zero, and, if one
value of its logarithm is b + ¢B, we may write:

- Z~; =e%® and ¢, = —coele’®. (194)
Let p be a positive real number, and take

_iB )
hy = pe T sothat h] = pe B, (195)
Then the first two non-zero terms of Q(h;) may be written:
co + ¢hi = co — P, (196)
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and the absolute value of these terms will be
leol |1 — €971, (197)

which will be less than |co| if p¢® < 1,
b
or if p < e " (198)

Let C be an upper bound for [cx|. Then the terms of @(k;) following
¢, are less than 7 in number and each term contains a power of h; greater
than r. Hence if we take

[h] <1, thatis, p <1, (199)

we shall have for each of these terms:

lexhl] < Cp* = Cp™*Y, k>, (200)
and the absolute value of the sum of these terms will not exceed:
Cnp™** or l_c.ilée_bﬁ if p< Lc—gz—b . (201)
Under these conditions, we shall have
Q0] S lof(t — ebg7) + B
< lal1 - ‘%’”’) < leol (202)

Let us now take p so as to satisfy the relations (198), (199), (201), and
also so small that z; = 29 + Ay is in R, which we may do since z; is an
interior point of the region . Then

P(z1) = Q(hy) and [P(z1)] < |co] or m, (203)

by equations (202) and (193). Since m is the minimum value of
|P(z)| for the region R, this relation cannot hold, so that the assumption
that m # 0 leads to a contradiction. This proves that m must equal 0,
as stated.

We shall now show that [P (z)| must take on its minimum value at an
inderior point of a circle with center at the origin and radius ¢, if q is
sufficiently large. On such a circle, |z| = ¢, and the numerical value of
the term of highest degree in P (2), equation (190), is:

[aa2"| = |anlg"™. (204)
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Let A be an upper bound for all the |az|. Then the remaining terms
of P(z) are n in number, and each term contains at most the (n — 1)st
power of z. Hence if we take

g>1, (205)
we shall have for each of these terms
lax?®] < Ag* < A¢™Y, k<, (206)
and the absolute value of the sum of these terms will not exceed:
w1 laalg™ . 24n
Ang or 5 if ¢ ——I o (207)
With these conditions, we shall have on the circle,
n n
IP@) 2 ladg — 1L 122", (208)

2 - 2
This will exceed the value of |P(z)] at the center of the circle,
[P(0)] = [aol, )

. lanlg"™ (2lao|>;
if 2 > lag] or ¢> ™ (209)

Let us now take a value of ¢ so large that the relations (205), (207)
and (209) are all satisfied. Then

[P@)| > PO, if [ =g (210)

This shows that |P(z)| cannot take on a minimum value for the region
R, consisting of the interior and boundary points of the circle [z] = ¢
at any point of the boundary.

Let us now introduce the real codrdinates (z,y) of the point z. Then
z=2z+ 1y, and P(z) = u(z,y) + w(x,y), where v and v are each
polynomials in z and y with real coefficients. Hence

w?+ 9220, and |P(z)] = VuZ+ 12 (211)
is a continuous function of the two real variables z,y by section 35 and
section 39, for all values.

In particular, the function |P(2)| is continuous in the closed region
R, consisting of the points for which

2| £ ¢ or 22+y* < (212)

Thus, by a theorem of section 35, there is some point z, of this closed
region for which [P(2)| takes on its minimum value.
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As we have already deduced from equation (210) that 2z, is not a point
of the bounding circle || = g, it must be an interior point. This proves
our second contention.

Let us now apply the first result to the region R, and the minimum
value of [P(z)|, m = |P(2)|. This shows that

|P(z0)] = m =0, and P(z) = 0. (213)

Thus we have shown the existence of a root of the equation (189) and
proved the fundamental theorem of algebra.

114. Polynomials. If A(2) is any polynomial of degree m, and B(z)
is any polynomial of degree n, where m = n > 0, the algebraic process
of long division enables us to find a quotient polynomial @(z), of degree
m — n, and a remainder polynomial R(z) whose degree is lower than
that of B(z), such that:

A(z) = B@QE) + RG), (214)
or

AG) _ oy 4 B@.

5o =@ 55 (215)

These are identities, in the sense that the right side may be simplified
to an expression of the same form, with the same coefficients, as the left
side. Thus, in the first equation we may put z equal to any value, and
in the second we may put z equal to any value for which B(z) # 0.

Now let us apply the identity (214) to the division of a polynomial
P(z) by z — b, where b is any complex number. Then the remainder
will be a constant, and we shall have:

P(z) = Q@)(z—b) +c (216)
If we put z = b in this identity, we find:
P@®) =¢, and hence P(z) = Q(z)(z —b) + P(b). (217)

Thus the remainder is P(b) and will be zero if, and only if, P(b) = 0,
that is, if b is a root of the polynomial.

We proved in the last section that every polynomial of positive degree
has a root. Let us start with P(z), any polynomial of degree n,n = 1,
and let b; be a root. Then we may write

P(z) = Q(2) (s — b1), (218)
where Q(z) is of the (n — 1)st degree. If we treat Q(2) in the same way

we treated P(z) and continue with the new quotient, we shall find after
n steps a quotient which is a constant, and thus have:

P(z) =k(z—by)(z—bg)(z —bg) - -+ (2 — ba), k0. (219)
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Several of the b; may be equal. If there are r and no more roots equal
to by, by is said to be of multiplicity r, or a multiple root of order ». In
this case we see from equation (219) that

P(z) = (z — b1)"Q(z), where Q(by) = 0. (220)

These facts may be summarized in the statement:

If we count a multiple root of order r, r times, every polynomial of the
nth degree, n 2 1, has n roots b;. The polynomial may be written as the
product of a constant and n first degree factors of the form z — b;.

The b; are uniquely determined by the polynomial, since no value of 2
distinct from the n b; can make the product (219) vanish. The multi-
plicities are also determined. For, from equation (220):

. P P(z)
,l.linb, Gt Q) #0, and }_1{1;1 @ = b =0, (221)
and these properties define the multiplicity of b;.

115. Rational Functions. A rational function is one obtained from 2z
and a finite set of constants by a finite number of additions, multiplica-
tions, and divisions. Such a function may always be written as the
quotient of two polynomials, by operations which are reversible except
for those values of z for which certain polynomials are zero. If the two
polynomials in the final simplified form have any common roots, these
will lead to common factors, which may be cancelled out, except when
z equals such a common root. When the rational function has been
reduced to the quotient of two polynomials, without common roots, it
is said to be reduced to lowest terms. The reduced form is defined for
all values of z except those which make the reduced denominator zero.
There may be other values of z for which the original form of the fune-
tion is undefined. If these are finite in number, we generally find it
convenient to define arbitrarily the value of the original function for
these values as the value of the reduced form. With this convention,
the original function equals the reduced function for all values for which
the latter is defined.

If a rational function, reduced to lowest terms, is the quotient of two
polynomials 4 (z)/B(z), it is said to be a proper fraction if the degree of
the denominator exceeds that of the numerator, and an improper frac-
tion if the degree of the numerator is at least as high as that of the
denominator.

By the division process used to obtain equation (215), we may replace
any improper fraction by the sum of a polynomial and a proper fraction:

A@z) D)
B =@t 5 (222)
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This corresponds to the identity

A(z) = C(2)B(z) + D(2), (223)
which shows that for any value of z, b, which is a root of B(z),
B(b) =0, A®) = D(). (224)

If A (2)/B(2) was reduced to its lowest terms, no root b is a root of 4 (z).
Hence if B(b) = 0, A(b) 5 0, and D(b) 5 0, so that the proper fraction
D(z)/B(z) is in its lowest terms.

Now let b be a root of B(z) of multiplicity r, so that

B(z) = (z— b)"E(2), E®) = 0. (225)
Let us try to find a constant 4, such that

D@ A, F(z)

Bo) " G- T G- brEG (226)

where s < r, and the last fraction written is a proper fraction. Such a
constant will make equation (226) an identity for all values of z for which
both sides are defined and will imply that

D(z) Fiz)(z—b)
Fe) A, + EG) (227)
holds for all such values. If we let z — b, we find:
_b®),
=0 (228)

To show that a relation of the form (226) may be found with this
value of 4,, consider the identity:

DE) A, D() — AE()
Bz) (z—1b)" (2—b)E()

Since the numerator of this fraction is a polynomial which is zero for
z = b, by equation (228), it is divisible by (2 — b). Thus, when the
fraction is reduced to its lowest terms, the denominator will contain
(z — b)® where s is less than ». This exponent will be » — 1, if bis a
simple zero of the numerator. But it may be any lower value, includ-
ing 0, if the numerator happens to be divisible by a higher power of
(z — b) than the first. On the other hand, if b’ is any root of E(z), the
numerator reduces to D(b’) for z = b’, which is not zero since B(}") = 0
implies D(b") ¢ 0. Thus no factors of E(z) are canceled out in reduc-
ing the fraction to its lowest terms, and the reduced form is that given
in equation (226). Unless E(z) is a constant, there is a root b’, and the

(229)
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function F(2) is not identically zero. If E(z) is a constant, and D(z) is
also a constant, then the right member of equation (229) is identically
zero, and we may put F(z) = 0 in equation (226) or omit the last term.

Since the right member of equation (229) is a proper fraction, the
last fraction in equation (226) is a proper fraction if E(z) is not a con-
stant. Thus it may be treated in the same way we treated D(z)/B(z).
If s is positive, we may again use the root b, if s = 0, we use another
root of B(z), that is, a root of E(z). Since the process used yields a new
fraction whose denominator is of lower degree than the one with which
we started, after at most n steps we shall come to a fraction for which
the equation (226) applies with F(z) = 0, or without the last term.
This proves the possibility of decomposing any rational function into
partial fractions of a kind described in the following theorem:

Any rational function may be decomposed into the sum of a polynomial,
and terms of the form

A
e ]
(Z —_— bj)k
where by, by, - - -, by, are the distinct roots of the denominator of the function

after it has been reduced to its lowest terms, and r; ts the multiplicity of the
root b;.

j=1:2»"'rm; k=1’2)"',7'j (230)

We may prove in the following way that the decomposition is unique.
If R(z) is the rational function and b is a particular root of multiplicity r,
from any decomposition we may obtain:

A, F(z)
R(z) =
O=—wte-nEe’
by adding the polynomial and all the fractions except that with denomi-
nator (z — b)" to obtain the second fraction. If we multiply by (z — b)"
and let z — b, we find:

s<r, E®) #0, (231)

, = lin;R(z) (z—0b). (232)

Thus the coefficient A, is determined by the function. If we now sub-
tract the fraction with numerator A, and apply the same argument to
R(z) — A,/(z — b)", we find that A,_; is determined. Continuing in
this way, we see that the coefficients for any root b; are all determined
by the function R(z). The polynomial part is determined, since it
must equal the remainder when all the fractions are subtracted. Thus
the decomposition is independent of the order in which the roots are
taken.

Since the sum of the fractions and polynomial of a decomposition
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gives A (z)/B(z), the rational function R (z) reduced to its lowest terms,
this fraction is independent of the manner of reduction.

116. Taylor’s Expansions of Rational Fractions. If P(z) is any
polynomial, and b is any complex number, we may divide the polynomial
by z — b and deduce the equation:

P(2) = (2 — b)P1(2) + co, (233)

analogous to equation (216). If P;(z) is not a constant, we may repeat
the process to obtain

P1(z) = (2 = b)P3(2) + ¢y, (234)
and so on until we come to
Pp1(z) = (z — b)Pn(2) + cn1. (235)

Since each polynomial P;(z) is of degree one lower than the preceding,
if P(z) is of the nth degree, P,(z) will be a constant, ¢,. By eliminat-
ing the polynomials P;(z) from the series of equations, we deduce
P() =co+ci(z—d) +ea(z — )’ + -+ + calz — b)". (236)

The coefficients could be found by the process just indicated with less
labor than the method used to obtain equation (192), equivalent to this
withb = 2pandz — b = h.

However, we may express the coefficients directly in terms of deriva-
tives. Infact, by putting z = b in equation (236), and in the equations
derived from it by differentiation, we find:

PY )
Y )

¢ =P),c;= J=12--n (237)
Equations (236) and (237) are analogous to those of section 82, but
here the expansion is in closed form, and is valid for complex values of the
variables.
Let us consider next the decomposition of a rational fraction,

A where B(z) = (z — b)"E(z), E(b) #0. (238)
B(z)
By combining the polynomial and the partial fractions whose denomina-
tors are not powers of (¢ — b), we find:
AR & A HE)
—_ 239
Be) " A G- E@ (29)

=A,+A4(z—b) + A,__z(z - b)z —+

—, -0 HE)
+ A z-b)1 4+ TE@ (240)

Az)

Thus: 1)
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Since E(b) # 0, the fraction H (2)/E (2) will have its derivatives of all
orders finite for z = b. Hence, if we apply the rule of Leibniz for differ-
entiating a product of section 72 to the product of this fraction by
(z — b)", the terms in the derivatives of the first » — 1 orders will all
contain a factor (z — b) and so will vanish for z = b. Consequently,
we may put z = b in equation (240) and the equations found from it by
differentiating 1, 2, - - -, r — 1 times, and so obtain:

_4A0) __ 1 a* [A(z)]
"TE®) T -k \d*LEGR) ],

These formulas may be applied with A(z)/E(z) = R(z)(z — b)"
replaced by R;(z)(z — b)", where R, (z) is the function with the poly-
nomial removed, or with any fractions removed whose denominators
are not divisible by (z — b).

If we differentiate the right member of

B(z) = (2 — b)"E(2), (242)

(241)

successively by the rule of Leibniz, we note that the first » — 1 deriva-
tives will contain a factor (z — b) and so vanish for z = b, while the rth
derivative will contain only one term, r ! E(z) which does not vanish for
z=>. Thus:

B®) =B'(b) =---= B V®) =0, BP®) = E®}) =0. (243)

These conditions are in accord with the fact that the Taylor’s expansion
of B(2) in ascending powers of (z — b) starts with (z ~ b)". They may
sometimes be used practically to detect multiple roots of a polynomial
B(2) or the order of multiplicity of a given root.

In particular, if b is a root of B(z), and B’ (b) # 0, then b is a simple
root, and from equations (241) and (243) we find as the term for this
root:

A®)
B'®)’
a formula of practical use in finding the coefficients for simple roots,
particularly when they are real.

If A(2)/E(z) is any rational fraction, b any complex number such that
E(b) = 0, and r any positive integer, we may form the fraction which
satisfies equation (238), and deduce equations (240) and (241). Thus,
with changed notation:

R@) =co+ci(z—b) +calz — )2+ ---
+ ca(z — B)" + Ry (2)(z — b)*TL,  (245)

4,
z—b

where A; = (244)
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O]
where co = R(®b), ¢; = Rj '(b), (246)
and Ri(z)(z — b)**! = Ol(z — b)**!], as z—b. (247)

This is a Taylor’s development for any rational fraction for values
near b, for which it has a finite value. The last result follows from the
fact that Ry (b) is finite, since R;(z) is a rational function with the same
denominator as R(z).

117. Real Polynomials. By a real polynomial P(z) we mean one
which has all its coefficients real. Let us replace z by a + b, and so
obtain the complex number:

P(a+bt) = A 4 Bi. (248)

If we now replace z by the conjugate value a — b, we shall find
P(a — bi) = A — By, ' (249)

since the coefficients, being real, are their own conjugates, and addition
and multiplication when applied to conjugate complex numbers yield
conjugate results, as remarked in section 97.

In particular, this shows that, if a 4+ b is a complex root of the real
polynomial, so that A + Bi, and hence A and B, are zero, then a — bt
is also a root. That is, for a real polynomial, non-real roots occur in
conjugate pairs. A pair of conjugate complex roots in the factorization
(219) corresponds to two linear factors whose product

(z—a—bi)(z— a+b) =22 — 20z + a® + b2 (250)

is a real quadratic factor. As division by such a factor yields a new real
polynomial of lower degree, a real polynomial may always be factored
into a number of real factors of the first or second degree, and two
conjugate roots of a real polynomial will have the same multiplicity.

118. Real Rational Functions. A real rational function is one
which, when reduced to its lowest terms, is the quotient of two real
polynomials. If we start with such a function whose reduced form
A(z)/B(z) is an improper fraction, division will yield a real polynomial
C(2) and a real proper fraction D(z)/B(z). If the polynomial B(z)
has the quadratic factor

24+ prtqg=(z—a—b)z—a+ bi) (251)

corresponding to a pair of conjugate complex roots, and each root is of
multiplicity r, we may write

B(z) = (2* + pz + 9)'G(2), (252)
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with G(z) a real polynomial. Thus for the first root, a + b, the
coefficient A, of equation (228) will have the value
A= D(a + b)
"7 (@) G(a + b))

while the corresponding coefficient for the conjugate root, a — bi will
have the value

(253)

D(a — )
(—263)"G(a — bi)
which is the conjugate of 4,. Thus the fraction may be decomposed as
follows:

D(z) _ A, n a4, n F(z)
Biz) (—a—-b) @E—a+b)  (@+pz+9°Ge)

where 8 < r. Since the left member is a real function, and the two
conjugate fractions add up to a real function, the third member is also
real. This shows that the next two coefficients, A,_, and A4,_;, will be
conjugate, and continuing in this way we see that all the coefficients in
the expansion of section 115, for conjugate complex factors will be
conjugate complex numbers.

If we wish to keep the decomposition real, we may add up the two
conjugate fractions in equation (255), and so obtain a fraction

H()

4, =

(254)

(255)

————— . 256
@+ pz+9) (256)
By division, we may obtain
H@EZ) =J@E +pz+q) + P+ Qe (257)
the remainder being of the first degree.
This enables us to write
4 & P+ ORI
(—a—b)  (E—-at+b) (@E@+p+q @+pztg™
(258)

If we substitute this expression in equation (255), and combine the last
fraction in equation (258) with the last fraction in equation (255), we
shall be led to the decomposition

D  P+@e K(2)
B(z) E+pz+q (E+p+9iGe)

(259)

witht <r.
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Equation (228) shows that 4, in equation (226) is real if b is real, and
D(z) and B(z) are real polynomials.

We may use these facts to prove a unique decomposition in which all
the coefficients are real:

Any real rational function may be decomposed into the sum of a poly-
nomzal, terms of the form:

Aj .
m’ J=12,.--4,r, (260)
one series for each real root b of mulleplicity r, and terms of the form
P+ Qz
— =12 .-, 261
@ +pzt+q) (261)

one series for each real quadratic factor z°> + pz + gq, corresponding to
a pair of conjugate complex roots of multiplicity r of the denominator after
the function has been reduced to its lowest terms.

In this decomposition the coefficients are uniquely determined and will
all be real.

119. The Derivative of a Complex Function of a Real Variable. If
s(z) and () are two real functions of the real variable z, defined for a
certain range, the function

w(z) = s(z) + it(z) (262)

is called a complex function of the real variable z. Any association of
complex numbers with the real values of = in the range determines a
complex function of x, with

s(z) = Rlw(z)] and t(z) = Iw(x)], (263)

the real and imaginary components of w(zx).
We say that the function w(z) has a derivative for real increments if

. w4+ h) —w(x)
lim ———————
h—0 h

(264)

exists for all real sequences of values of h, h — 0. We use dw/dx or
w’ () to denote this derivative.

If t(z) is zero, this definition agrees with that of section 62. Suppose
next that w(x) is obtained by putting z = zin a function w(z) defined for
complex values, which has a derivative for complex increments, F’(z) in
the sense of section 110. Then, for z = z, the expression (264) will
spproach w’ (z) for all complex sequences h approaching zero, and hence
i particalar for 2]l sequences of real values approaching zero. Thus
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whenever our previous definitions assign a meaning to w’(z), the defini-
tion just given is consistent with it.

Of course w’'(z) may exist without w’(z) existing for z = z, and Az
complex. This will cause no confusion, since we shall for the most part
be concerned with elementary functions whose derivatives may be found
by the methods of section 112.

Since

w(z 4+ h) —w(@) sz + h) — s(z) " it(x +h) — t(x)’
h B 3 3

(265)

it follows from equation (35) that w(z) will have a derivative for real
increments if, and only if, s(z) and ¢(z) have derivatives. Also, in this
case,

Riw'(z)] = §'(z) and Ifw'(2)] = ' (@). (266)
Thus, if a complex function w(x) has a derivative for real increments,
d dw d dw
- R{w(z)] =R [E;?:l and 7 Hw(z)] =1 [Ea_:] - (267)

120. Higher Derivatives. We may now express the higher deriva-
tives of certain real elementary functions in a simple form.

Consider first a rational function with real coefficients. By the theo-
rem of section 115, and the discussion of section 118, such a function may
be represented as a sum of terms of the form

cx” and (268)

_4
@—b)’

where r is integral, ¢ is real, and either b and A are real, or b is complex
and the sum includes the corresponding conjugate fraction obtained by
replacing b and A by their conjugates b and A.

For the first form, we have for the nth derivative:

% (cx)=rr—1DNEr—-2)---(r—n+ L)z ", (269)

80 that the derivative is zero for n > r.
For the second term, the nth derivative is
4
(x — b)H-u
(270)

T4 .
d?[(_x—-—b)']= -1+ 1)E+2)---+n-1)

This is real as it stands, when b is real, and hence 4 real.
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When b is not real, the sum of the fraction and its conjugate will give
twice the real component of the fraction,

A A A
S =e-wt (x—b)'=2n[<x—b>']’ @
and by equation (267)
a8 T A
& =lEle ] o

which may be found from equation (270).
Again, consider

€PNz = 7% 005 g1 + i6P? sin gx. (273)

From equation (267), we find:

dr ‘
oo (67 cos gz) = Rl(p + gi)e("+e%7), (274)
L i 1\n,(ptei)z
and o (€7 sin @) = Il(p + qi)e(P+e?), 275)
EXERCISES V

1. Let P be the point on the line through P, and P; for which P,P /PP; =
8y /8, any real ratio. Show that if P, and P, represent z; and 23, then P repre-
sents (8221 + 8122) /(82 + s1). We say P divides the segment in the ratio s; /ss,
and include sy = 0, 8; 7 0 to mean PPy = 0.

2. Let us associate real numbers m; with points P; or 2z;. By problem 1, the
point dividing PiPs; in a ratio inverse to that of their numbers is P’ or
(mi21 + mez) [(my + ms). We may associate the number m; + m, with this
point, and treat P’ and P; as we did P; and P;. Show that, if we continue until

n n
n points are used, we shall obtain a point G or Y m;z.-/ Y. m;, the weighted
E=1 k=1

average or center of mass of the weighted points. The result shows that @ is
independent of the order in which the points are taken or grouped, and the
construction shows it to be independent of the choice of axes or scale.

3. Prove that if 2y2; is real, and z, + 2, is real, then either z; and 2, are both
real, or they are conjugate and z, = ;.

4. Prove that if 2 = z + 2y, (Jz] + ly])/ V2 =< |2|, and that the equality
only holds if [z| = |y|.

6. Let 0, Py, P be three given points in a plane. We may fix a codrdinate
system by putting 0 = (0,0) and any point U distinct from 0 as the unit point
U = (1,0). In this system let z; and 2, be the complex numbers for P; and Ps.
Show that the point for the quotient z; /22 does not depend on the choice of U,
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but that any point P distinet from 0 may be made to represent z,2. by an appro-
priate choice of U.

6. Prove the following geometric construction for the roots of the quadratic
equation az? +bz+ ¢ =0, with a, b, ¢ real. If the circle with ¢ and
—b/a + ic/a as diametral points cuts the real axis, these points give the real
roots. If the circle with 0 and —2¢/b as diametral points cuts the line
z = —b/2a, these points give the conjugate complex roots. Equal roots are
given by the point of tangency in either case.

7. Prove thatif z = z + iy, |¢*| = &2, |e%| = ¢=.

8. If p is any real number, |e’?] = 1.

9. De Moivre’s theorem states that for real 8,

(cos @ + 1 sin §)* = cos nf + i sin nf,

where 7 is a positive or negative integer. Prove this.

10. Show that the identity of problem 9 holds if 6 is complex, and for one value
of the left side if n is any complex number.

11. Prove that the roots of az2 + bz + ¢ = 0 are

—ft&né and —\/—fcoti{— if tanA=g\/-:a;;
a 2 a 2 b

\/E’cané and \/rfcoté if ssinA=—g \/a-;,
a 2 a 2 b

and\/—g(cosA:l:isinA)ifcosA=— b « If a, b and c are real, a real
a 2;ac

value of 4 can be found from one of the conditions.

12. If P(z) = a#® + bz + ¢ with a, b, ¢ real, and z = z + iy, express R(P),
I(P) and |P(2)|? as polynomials in z and y.

13. A pair of relations u = u(z,y) and v = v(z,y) may be geometrically
interpreted as a transformation of points in the plane, which takes (z,y) into
(u,v). Show that if w = z + z,, the transformation is a translation, and that if
w = €'z, the transformation is a rotation about 0. Also that w = &% + 2,
may be made to represent any rigid displacement of the plane on itself.

14. If A # 0, interpret w = Az as a similarity transformation, and hence
interpret w = Az + B.

16. A geometrical inversion of the plane in the unit circle replaces the point P
by P’, where P’ is on OP or OP produced beyond P and OP - OP’ = 1. Thus,
in polar coordinates @’ = 6 and r' = 1/r. Hence w = 1/z, a continuous func-
tion of z except when z = 0. Show that u = z/(x? + ¢?) and v = y/(2® + 3?)
and that the inverse of the curve a(x? 4+ y?) + bz + ¢y + d = 0 is the curve
du*+v*) +bu+cv+a=0. If we complete the inversion plane by a
“ point at infinity ”” I, the inverse of 0, the transformation is single-valued for all
points. It takes 0 into I and, since it is its own inverse, I into 0. An inversion
takes  circles,” including straight lines as a special case, into “ circles.” Show
that the straight lines, or the only ¢ circles” through I, go into * circles”
through 0, and conversely.
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18. Show that the equation of a straight line may be written Sz + Sz +it=
with ¢ real, while that of a circle may be written |z — S|2 = (z — 8)(Z — 8) = t’
Hence, when the locus of s22 + Sz + Sz +¢ = 0, s, ¢ real is more than one
point, it is a “circle,” with tw® + Sw + Sw + s = 0 as its inverse under
w=1/z

17. Interpret w = 1/z as a combination of an inversion and a reflection, and
show that it transforms the ¢ cirele ”’ of the preceding problem into the “ circle ”’
with equation tw% + S% + Sw+ s = 0.

18. The relation w = gzi g’ where AD — BC # 0 defines a bilinear trans-
2

formation. If C = 0 it reduces to that of problem 14. If C 5% 0it may be
represented as a combination of such transformations with one of the type
ey . o , _C(Cz+ D)
1/7,eg., withw=w + A/C and 2 = BC_ 4D
19. If we introduce the point I of problem 15, the bilinear transformation of
problem 18 is single-valued. It takes I into I if C = 0 and if C 7 0, it takes
—D/C into I, and I into A /C. Show that it takes “ circles ” into * circles,”
and state which ones go into straight lines or are the images of straight lines.
20. Find the equation of the image of the “ circle "’ of problem 16, when
= AZ+B- Hint: Use W = == E-’-B
Cz+ D C:+ D

21. Show that the locus of arg

~ % _ 4 is an arc of a “circle ” through
z2— 22

the points 2; and z;. The other arc of the same “ circle ” is given by replacing

abya — . The locus of [—2

2 — 22

| = p is a circle intersecting all the arcs for

varying « at right angles.
22. Show that a necessary and sufficient condition for four points to be con-
cyclic, i.e., lie on a “ circle,” is that the cross-ratio of their complex values taken

in any order, e.g, 2" 22 "%, o real. Hint: Use the first result of

23 — 29 24— 21

problem 21.

23. If the transformation of problem 18 takes z; into w; and z; into w,, show
that 2 — 21 = Ca+ D .27 %, Hence show that the crossratio of four

w—w Cu+tD z-2

points equals the corresponding cross-ratio of their images. This, with problem
22, proves that “ circles ” go into “ circles.” By using problem 21 directly,
show that each of the families there mentioned for z; and 2z, go into correspond-
ing families for w; and ws:

24. If 2 = z 4+ 4y, prove that |sin 2| = Vsin? z + sinh? y, |cos 2| =
V cos? & + sinh? y, |sinh 2| = V/sin?y + sinh? z, and |cosh 2] = V/cos? y + sinh?z.

26. Using problem 24, or otherwise, show that
|sinh y| < |sin 2| < coshy, |[sinh y| =< |cos 2| < cosh y,
|sinh z| < |sinh 2| < coshz and |sinh 2} < |cosh 2| £ cosh z.
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26. Prove that the roots of the special cubic equation 42% 4 32+ p =0
aresinh A, — T sinh A == } V3icosh Aifp = —sinh 34; while for4z® — 32 +
p = 0, the roots are cosh 4,—% cosh A =+ 14/3 sinh A if p = —cosh 34; and
sin A, sin (A = 27 /3) if p = sin 34. If p is real, one value of 34 is real.

27. Letz® + a2+ bz + ¢ = 0. Showthatifz =2 —a/3,22+ 02 +¢' =

0, and if 2’ = 2\"%—! 2", then 42”3 & 32" 4+ p = 0. Combine this with the

preceding problem to develop a method of solving any cubic with real coefficients.
28. If z is any complex number, and w = 2 tan™ e* — = /2, then w is
called the Gudermannian of 2z, and we write w = gd 2. Prove that z =

log tan (—13 + Z;-) and that:

ginh z = tan w, coshz = secw, tanhz = sinw, cothz = escw,
csch z = cot w, sechz = cos w.

29. Prove that the points representing the gth roots of any complex number
are the vertices of a regular polygon with center of symmetry at the origin.
Hence show that the vectorial sum of the lines drawn from the center to the
vertices of any regular polygon is zero.

80. Let ax be any complex constants, a, 3 0, and b; be the roots of the

n

polynomial X arZ* = P(Z). Show that if L(w) denotes the corresponding

2,

d d d
L(w)=an(£—b,.)---(a—z—bg)(d—z-—bl)w,

where the operators on the right may be taken with any order of the b;.
31. From problem 30 and ((—;1 - b) b2 = k12, deduce that Ceb? is a
2

solution of L(w) = 0 if b is a simple root of P(Z), and (Cy + Coz + - - -
+ Crz"~Y)é** is a solution if b is a multiple root of order r, where C and the C;
are any complex constants.

32. In the preceding problem, the sum of two solutions is a solution. Hence
show that if p &= ¢¢ is a pair of conjugate complex roots, C'e®* cos gz and
C"'e?? sin gz are solutions, with C’ and C”’ replaced by (r — 1)st degree polynomi-
als if the roots are each of multiplicity ». If all the ay are real, and z is real these
solutions involve real functions only.

33. If we write for the L(w) of problem 30, L(w) = P(D)w, and interpret

n n 0
differential operator X a 4 w, where (i) = 1,then
=0 dz d

}T(ID—) f(2) as any solution of L(w) = f, then in particular 1 /(D — b) fis any solu-

tion of (D — b)w = f, or dw/dz — bw = f, and 1/(D — b)" fis any solution of
D —bmw=4Ff AlsoA1/(D —b)fand 1/(D — b) Af have the same meaning
for A a constant. Show that if F(Z) denotes the partial fraction decomposition
of 1/P(Z), any of the interpretations of F(D) f is an interpretation of 1 /P(D) f.
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This enables us to obtain solutions of L(w) = f from those of equations of
simpler type.

n k
34. Deduce a rule for finding solutions of X a;z* (di) w=0 of the
¥=0 2

n
form C (log 2)*2> in terms of the roots b; of the equation X Z(Z — 1) - - -
k=1

(Z = &k + 1)ax + a0 = 0, with s = 0 for simple roots, and s = 0,1, 2, - - -, or
r — 1for roots of order r. Hint: Putz = log 2/, and use problem 31.

36. Verify that forf(z) = €%, 2, = Oand 2z = ni/2, 'f (@) — f(zl)l = 2v2 <1,
l

22— 21 ™
while if z; is any point of the line segment joining 2, and 25, |f’(25)} = 1. This
proves that the law of the mean does not hold for complex variables in the form
valid for real quantities.

into simple partial fractions, and also into the simplest

fractions of real form. Ans. X —b"—s where b; = e?**i/» The real
k=1 n(z — by)

36. Deco e
mpos pra—

in all cases, and if n is even,

1
n(z — 1) n(z + 1)

2 2k -1 —
together with [z cos (2km/m) — 1] fork=1,2 - n—1],
n[z2 — 2z cos (2kw /n) + 1] 2

1 into simple partial fractions. Ans.

form includes a simple fraction

n b'l’:+l

37. Decompose —_—
2" —~ k=1 n(z — bx)

where by = €*"%/" if m < n; and if m = n the polynomial 2" 4 zm~2n 4 . ..
+ 2 Pr p = n , must be added.
n

38. Let A(2) be a polynomial of degree at most ¢ — I and B(2) a polynomial
of the gth degree with B(0) 5 0, so that there is a Taylor’s expansion of 4(z) /B(z)
about z = 0,

A(@)

= up + w1z + u2® + - - - + upe™ + O(z™H). (¢))]
B(2)

g
Show that if B(2) = X ax?*, a; # 0 and ao 7 0, then
k=0

0=aots+ a1tn1+ aUna+ -+ Glng nZgq (2

Conversely, show that if a sequence of numbers u, 1y, us, - - -, satisfy (2), the
first ¢ values determine a polynomial A(z) of degree less than g for which (1)
is satisfied for any m.

39. Prove that the Taylor's development of R'(z) the derivative of any
rational function R(z) may be obtained from that of R(z) by termwise differentia-
tion. Hence prove by induction the binomial expansion for integral r and
b= 0:

1 (_1)'(1_*_’;_}_____{_ (m+1)---(m+r—1) Zm)+0(zm+1).

(z — by b r—1)1 bm
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40. Tdentify the Taylor’s expansion of A(z) /B(2) of equation (1) problem 38
with that of its partial fraction expansion obtained from problem 39. Hence
show that u., is a sum of terms of the form Cb™™, for each simple root of B(z),
and (Cy 4+ Com + - - - + Com™ )b, for each multiple root of order r, where
the C’s are independent of m.

41, A relation similar to equation (2) of problem 38 is called a linear difference
equation of the qth order with constant coefficients. From the preceding prob-
lems deduce a rule for expressing any sequence which solves such a relation in
terms of ¢ constants. Show that the constants can always be determined to
make the first ¢ us, 4o to u,_; take any given values. The solution for u, will
be a sum of terms of the form (Cy + Com + - - - + Com"~1)8™, if the 8 are the

q
roots of Y, a,-xZ*, whose relation to (2) is easily recalled by replacing u, in
E=0

(2) by CZ».

42. Show that if f(z + na) = u,, any linear relation with constant coefficients
between the differences of section 93 of the first ¢ orders and the function itself
leads to a difference equation of the gth order, as defined in problem 41. In
particular, show that if the gth difference is constant, u, is a gth degree
polynomial in n.

43. If u, — 2 08 AUp_1 + Un-2 = 0, show that u. = ¢; cos nA + cq sin nd
ifsinAd s 0,¢;+cmifcos A =1, and ¢; + c2(—1D)™n if cos A = —1. Hint:
Use problem 41.

44. If the roots B of problem 41 all have |8] < 1, then lir_n; u, = 0. If one

n—»-400

root equals 1 and the remaining ¢ — 1 roots have |8| < 1, then any particular
sequence approaches a limit. Show that this argument applies to any equation

q [']
with 3 |ax] 2 |ao, and in particular to qu, — 3 ta_z = 0. Solve explicitly
k=1 E=1

forg=1,2, 3.

46. If z = z(t) + y(?) is a function of the real variable ¢, the time, the velocity
vector is 2'(t) + i'(f) = 2/(f), and the acceleration vector is z''(t) + " (t) =
2"(). Write z = re®, where r and 6 are functions of ¢, and hence verify that the
velocity has a component ’ along the radius vector and ré’ perpendicular to it,
while the corresponding components for the acceleration are ('’ — r8’%) and

! (r20)".
r

46. By writing 2/ = ve® in problem 45, show that the acceleration has a com-
ponent v’ parallel to the velocity vector, and »¢’ perpendicular to it.



CHAPTER VI
INTEGRATION

We devote this chapter to the special limit process, integration, which
plays a central rdle in the integral calculus. We define this limit process,
and prove its applicability to continuous functions. We investigate
some of the properties of integrals and, in particular, show that under
certain conditions integration and differentiation are inverse operations.

We show that for each continuous function, the process of integration
defines to within an additive constant an indefinite integral function
which has the first function as its derivative. In fact, the definition of
integration leads to a method by which the integral function could be
computed.

We then discuss the problem of representing the integral of certain
types of explicit expressions in terms of a small class of known functions.
We show that the integral of any rational funetion can be expressed in
terms of rational functions, logarithms, and inverse trigonometric func-
tions, and we describe a number of other classes of expressions whose
integrals can be found in terms of elementary functions.

We mention a few integrals not of this character, including the three
standard forms of elliptic integrals, and prove that the integral of any
rational function of x and the square root of a polynomial in z of at most
the fourth degree can be expressed in terms of elementary functions and
the three standard forms of elliptic integrals.

121. The Definite Integral. Let y = f(z) be a single-valued func-
tion on the closed interval a £ x < b, and bounded on this interval in
the sense of section 31. In order to define the integral of the function
J(), we divide the interval a,b into n subintervals by the points:

=20 <2 <2<+ <&y =", 1)

which satisfy this relation but are otherwise arbitrary.

C=T) %) Zyeeos Ty £ T ees  4,,z=b

Fia. 14.

Let £; be any point in, and §; the length of, the 7th subinterval so that:

i1 S &Sz and 8 =z — g, 2)
194



Arr. 122] INTEGRALS OF CONTINUOUS FUNCTIONS 195

Now form the sum:
8 = f(&)01 + f(£2)85 + + - - + f(n)8n
- I £ ®)

The sum S depends on the number n, the choice of the z;, and the

choice of the &;.
Let us denote the maximum of the n positive quantities §; by 8,

8M = max (5,‘), (4)
and consider an infinite discrete sequence of sums S, for which
lim &y = 0. (8)
1>+

If, for any sequence of this type, the values of S; approach a finite
limit, and if this limit has the same value, I, for all such sequences, then
I is called the definite integral of f(z) for the interval a,b. We then say
that the function f(x) is integrable over this interval a,b, and we write:

')
f f() dz = I = lim S.. ©)

The process by which I was derived from f(z) is called Riemann
inlegration, or simply integration. In the expression for I just written,
we call f(z) the integrand, x the variable of integration, and a and b the
limits of the integral.

122. Integrals of Continuous Functions. In order to show that there
are some functions to which the process of integration as defined in the
preceding section is applicable, we prove next that:

A function f(z) is integrable over any closed interval throughout which it
18 conlinuous.

Let f(z) be continuous over the closed interval a,b. Then, by section
32, it is uniformly continuous in the closed interval. Thus we may
select a &y such that, for any positive quantity 7,

[f(e) — @) <¢ if [z — 21| < b0, M
where

€= . ®)

Now consider two sums:

s =‘_§1 f@&)s: and S =5}§1 1&)3, ©)
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such that:
o = max (5;) and & = max (5}) (10)

8
are each less than 50,

b} ]
5M<§°, a{.,<§°- (11)
Next mark all the points of subdivision of each set, z; and 27, to form
anew subdivision, Let these points, taken in order with a point in both
sets counted only once, be called x;’, so that

a=z) <z’ <z <--- <z} =0, (12)
and let
& =z’ — 2l (13)

denote the length of the kth interval. Then

P
' =b—a. (14)

k=1

The difference of the two sums S and 8’ may be written:

b4
P HORS (LE (15)
where £; is in that interval of the first subdivision which includes the
points 2’ 1 and z;’, and £ is in that interval of the second subdivision
which includes these points z{’; and z;’. Thus £ and £ lie in two
intervals which overlap, since they each contain the kth interval of the
third subdivision «;”,, zz’. Hence we have:

& =&l <6+ 8, (16)
or, in view of the relations (10) and (11),
& — &1 < d. an
This, combined with the relation (7) shows that:
lf&) ~ 1@ <e (18)

and since this is true for each term of the sum in equation (15), we deduce
that

IS — 8| = lé &) — FEN < ,,2 o', (19)

Hence it follows from equations (14) and (8) that:
S — 8| <ed—a)=sn (20)
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Let us now apply this to a sequence S;. Since, for such a sequence,
we have the relation (5), there will be a certain point in the sequence,
to, beyond which 83 < 8o/2. Hence, the difference of any two values
of S,, with ¢ beyond f,, will be numerically less than 5, since we may take
these two sums S; as the S and 8’ of the relation (20).

Thus the sequence S; approaches a finite limit I; by the Cauchy con-
vergence criterion of section 26.

Next, consider any second sequence S/. This approaches a finite
limit I by the argument just given. Thus

lim (8¢ — 8;) = I — I». (21)

But, if for the second sequence 83y < 8,/2 for ¢ beyond 13, for all values
of ¢ beyond # and ¢ we may take S; and S/ as the S and S’ of the rela-
tion (20), so that:

lSz - Sg’l <n, for tbeyond {, t(,). (22)
The relations (21) and (22) show that
[y = Io| <, (23)
and hence
Ii~1, =0, (24)

since 7 is arbitrary.

Thus the limit I is the same as I;, and there is & common limit I for
all sequences, as we set out to prove.

Let us return to the relation (20), with S any sum for which 63 < 8o/2
and with 8 replaced by any value of .S, with ¢ beyond f5. Then we have:

[S — 8¢ <m, for tbeyond t. (25)

¥f we let ¢ become infinite in this relation, and recall that the limit of
S; is I, or I, we have:
IS —1I| <. (26)

Thus any sum with 8y < /2 approximates the value of the integral
to within 1.
123. Linear Properties of the Integral. The definition of f (z) dz

was made on the assumption that b, the upper limit of the integral, was
greater than a, the lower limit of the integral.

The use of the word limit as applied to ¢ and b, the end points of the
interval over which the integral is taken, is well established but has little
connection with the various technical meanings of limit defined in
Chapter II.
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We extend the meaning of the expression for an integral by defining:

b a
f @) dz = — f f@)de, i a>b, @7)
a b

and

f f@)dz =0, (28)

Thus the equality in the relation (27) holds when a = b, and hence

for all values of a and b.
If the values a, b, ¢ are such that a < b < ¢, it follows from the

original definition of the integral in section 121 that:

S ey dx + j: s de = [ ax, (29)

since we may evaluate the integral on the right by using a sequence of

sums, for each of which the point b is one of the z;.
If a = b or b = ¢, equation (29) is an identity in view of equation
(28). And, by equation (27), equation (29) may be written:

b c
d dz =0,
[ 16 a5+ [ 1ada + f f@)dz =0 30)

This is symmetrical in a, b, and ¢ and so holds without any restriction
on the order of the three quantities.
The definitions (27) and (28) are motivated by the desire to have

equation (29) hold for all values.

By a repeated application of equation (29) we may show that the
integral of a function depends linearly on the interval of integration, in
the sense that if a finite number of intervals are added or subtracted to
form a new set of intervals, the integrals combine in the same way.

For a fixed interval of integration, the integral depends linearly on
the function, in the sense that, if » and v are two functions of z, each

integrable for the interval,

fkud:c = kfudz, 31)

fb(u+v)dx=£buh+£bvdx. (32)

These relations follow from the linear character of the sum (3) from
which the integral was obtained by a limiting process.

and
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124. Inequalities. If two functions, f(x) and g(x), are eact integrable
over the interval a,b, and throughout this interval
f(z) < g(z), (33)
then it follows that:

jf f)de = jj g(x) dz. (34)

For, if we use the same n, z; and §; to form a sum S for each function,
it follows from the relation (33) that

}:1 (&% < ?;g@*)*" (35)

Thus, if we form two sequences of sums related in this way, and take the

limit, we may deduce the relation (34).
We note next that, if f(z) is a constant, k, each f(¢;) = k, and we have

in place of equation (3):
S= Xki;=kXs=kb-a), (36)

i=1 i=1

go that the limit of any sequence S;is k(b — a) = I. Thus the integral
of a constant is the product of the constant times the interval of inte-
gration when a < b. By equations (27) and (28), we have in all cases:

fbk dz = k(b — a). @7)

If m is any lower bound and M any upper bound for the function f(z)
on the closed interval a,b, we have:

m < f(z) = M. (38)
This implies that:

fabmdx gfabf(x) dz §ij dz, (39)

or, in view of formula (37):

b
m(b — a) gf @) dz < M( — a). (40)
The number K defined by
1
K= Pa— jjf(-’v) dr, (41)

is called the average value of the function f(z) for the interval a,b. It
follows from the relation (40) that:
msKzsM. (42)
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Since m and M are any bounds for the function f(z), we may in
particular take m as the greatest lower bound, and M as the least upper
bound, and express our result in the theorem:

The average value of a function integrable between a and b,
1 b
K=" f S@)dz, (43)
lies in the closed interval whose end points are the greatest lower bound and

least upper bound of the values of f(x) between a and b.

In this form the result holds if @ > b, in view of equation (27).

Again, if g(z) = 0 throughout the closed interval a,b, and f(x)g(z)
as well as g(z) is integrable for this interval, we may deduce from the
relation (38) that:

mg(z) < f@)g(z) < Mg(x). (a4)
This implies that:

b b b
Jm@as [1o@as [(M@a @)
or, in view of equation (31):

b b b
mfs@ds [jen@ sy [g@a @8

b
It follows from the condition g(z) = 0 that f g(z) dz = 0. If this
a
integral is positive, there is a constant k uniquely defined by

b b
J 1@u@ do =k [ g(0) da. (@)

From this and the relation (46) we may deduce that
m<ksM. (48)

If the integral of g(z) equals zero, the relation (46) shows that the
integral of f(x)g(x) is also zero, and then the equation (47) holds for all
values of k. '

If a > b, orif g(z) < O throughout the interval, some of our inequali-
ties are reversed, but a similar conclusion may be drawn. Thus we may
formulate the theorem:
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If g(x) is never negative (or never positive) throughout the closed interval
ab, and g(x) as well as f(x)g(x) is integrable over this interval, we may
write

b b
[ @@=k [ 9@ s #9)

where k is a suitably chosen value between the greatest lower bound and the
least upper bound of f(x) for the closed interval.

126. Mean Value Theorems. If the function f(z) is continuous
throughout the closed interval a,b there will be two points in this inter-
val, x; and x,, such that

f@) =m and f(z;) = M, (50)

where m is the minimum and M the maximum value of the function for
the interval, as we proved in section 33. Hence we may take these as
the m and M of equation (38).

But, any number K such that m < K £ M is either m, taken on at
z;; or M, taken on at zp; or an intermediate value in the sense of
section 34, and therefore taken on at some point between z; and z,.
Thus, there is a point £ between a and b such that K = f(£), and the first
theorem of the preceding section becomes, for continuous integrands:

If the function f (z) is continuous on the closed interval a,b there is a poind
£ of this interval such that:

b
J 1@ dz = 1® @~ a. (51)

This is known as the first mean value theorem for integrals.

Similarly, there is a point ¢’, of the closed interval such that k = f(¢),
and we may restate the second theorem of the preceding section:

If the function f(x) is continuous on the closed interval a,b; if g(x) is
never negative (or never positive) throughout this interval; and if g(z), as
well as f(z)g(x), is integrable over this interval: then there is a point §’
of this tnterval such that

b b
[ 1@0@ dz = 1) [ ota) d (52)

126. Evaluation of the Integral. Suppose that f(z) is a function
integrable over the interval a,b and throughout this interval is known to
be the derivative of a second function F(z), so that

f(@) = F'(2). (83)
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Then we may apply the law of finite increments of section 74 to the
function F(z) for each of the subintervals used in section 121, and so
find points £; such that

F(z,) — F(xi) = F'(&) (z; — 2,_4). (54)

Now use these values as the £; in the sum for S in equation (3). We
shall then have:
FED8: = F'(8) (x: — 2i1) = F(z;) — F(ziy), (55)
80 that:

8 = j(&1)61 + f(£)82 + « - - + f(£n)n

=F(z1) — F(zmo) + F(z2) — F(z1) + -+ + F(2s) — F(z,_y)

= F(za) — F(z0) = F(b) — F(a). (56)

Thus we may form a particular sequence S, for which the £; are always
chosen so that equation (54) is satisfied, and for this sequence the values
of S, are all equal, so that the limit is F(b) — F(a).

Since f(z) is integrable, the limit will be the same for all other se-
quences, and hence we shall have:

b
f 1@) dz = F(b) — F(a). (57)

We write F(z) ‘b in place of F(b) — F(a).

If G(z) is any second function such that f(z) = ¢ (z) throughout the
interval a,b and we write H(z) = G(z) — F (x), we shall have:

H'(z) =G () —F'(z) =0, a<z<b. (58)

Hence, by the theorem deduced from equation (117) of section 75,
H(z) = ¢, a constant, and G(z) = F(z) + c.

Any function having f(z) as its derivative is called an indefinite inte-
gral of f(z). It is clear that if F(z) is an indefinite integral of f(z),
then F(z) + ¢ is also an indefinite integral of f(z), and we have just
proved that all indefinite integrals are of this form. The symbol

z
f Sf(z) dz or f f(z) dz is used to mean any indefinite integral.

We restate the main result of this section:

If f(z) is an integrable function over the interval c,d and F (x) is any
indefinite integral of f(x), so that f(z) = F'(z) throughout the closed
interval c,d, then

b
f (@) dz = F(z)
Jor a and b, any two points of the closed interval c,d.

b
= F(b) — F(a) (59)
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That equation (59) holds when a = b follows from equation (28),
and that it holds for b < a follows from equation (27).

127. Dummy Indices and Variables. In a finite summation, abbrevi-
ated by the symbol ¥ with an index of summation 4, the precise letter
used for the index of summation is of no importance, since it does not
appear in the sum when written out in full. Thus:

3 3 3
To=Xo= L (60)
i=1 i=1 k=1
gince each is an abbreviation for 8, + 83 + 83. We call such an index a
dummy index. We may always replace a dummy index by some other
letter, and to do so sometimes clarifies an argument and avoids confusion.
This was the case in section 122, where we replaced i by j in the summa-
tion S,
In the sum for S in equation (3), we may in particular take & = z;, in
which case the sum is
S = _Zlf (2:)8s, (61)
=
or, if we write Az; in place of §; = z; — x;1, a difference of two values
o z,
n
S = X f(x:) Az (62)
i=1
’{‘his is the form which gave rise to the notation for an integral,
f f(z) dz, the sign of integration being a modified S, and the replace-
G

ment of the Greek letters 2 and A by the Latin letters S and d indicating
that we have performed a limiting process. This is analogous to replac-
ing A by d to indicate that dy/dz is obtained from Ay/Az by a limiting
process.

The limits a and b are analogous to the initial and final values of the
index of summation. As we have replaced z; by z, the index of summa-
tion ¢ no longer appears, but the variable z itself plays an analogous réle.
In fact, if we considered the function f(u) for values of u such that
a < u £ b, we could carry out the entire process of section 121, regarding
the z; as intermediate values of u. Thus we should find the same values
for the sums S and S; and the same limiting value I.

This shows that the variable of integration is a dummy variable and
may be replaced by any other letter. That is:

1= ‘f (@) do = ‘I.,‘ ") du = f ') d. (63)
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The value of the integral depends on the choice of the interval of inte-
gration, that is on the values of @ and b. Hence for a fixed function
Jf(x), the integral is a function of the limits.

In particular, we may keep the limit a fixed and replace b by a variable
quantity z. The integral then becomes a function of z:

A(x) =ff(x) dr =ff(u) du. (64)

In the first integral written, = is used in two senses, both as a variable
limit, and as the dummy variable of integration. When we replace the
dummy variable z by u, we do not affect the z used as a variable limit.

We note that, since f(z) is bounded, the function A4 (z) is a continu-
ous function of z. We have, in fact:

Az +h)— Ax) = -Htf(u) du = Kh, (65)

z

where K lies between the upper and lower bounds of f(z). Thus, if
f@)| =M, ~-M < K<M, and |[Kh| < M|} (66)

It follows that when & — 0, Kk — 0, and A (z + h) — A (z), so that the
function A (z) is continuous at z.

128. Equal Subintervals. The expression (62) may be further
specialized by taking all the Az; equal, so that Az; = (b — a)/n. This
gives a particular sequence of sums S,,:

S = T f@) Az, (67)

=1

where

(68)
For integrable functions, we have:

f @) dz = lim S.. (69)

This last equation, restricted in its application to continuous functions,
and interpreted as expressing a property of the area under a curve, is
sometimes used as a definition in elementary calculus. This approach
enables one to confine his attention to a single specific sequence S,,.

The values of S, are sometimes calculated in a specific case for a few
values of n, to suggest that a limit is approached. We may form a



Axr. 128} EQUAL SUBINTERVALS 205

precise estimate of the behavior of S,, from the remark at the end of
section 122, which shows that,

if b ; ¢ < 15, then |S, —1I| <n. (70)

In simple cases, we may determine §, numerically. Thus, suppose
that f(z) has a derivative throughout the closed interval a,b and that M
is any upper bound for f’(z) in this interval. Then from the law of
finite increments of section 74, we have

f@s) — flz1) = (22 — z)f (&), (71)
so that,
if T2 — 2 <8 and [f'(x)| S M, (72)
we shall have:
|f(z2) — f(21)] = Mbo. (73)
Thus, we can satisfy the relations (7) and (8) by taking:
7
< .
M80<€_b_a (74)

If we take & to satisfy this inequality, and then take n to satisfy the
inequality (70), we shall have:

— 2
n>2M(b a) )
7

(75)

This proves that:

If, throughout the closed interval a,b, the function f(x) has a derivative
f'(z) and M 1is any upper bound for |f’ ()] on the interval, then, for any n
such that n > 2M (b — a)%/n, the sum:

Sn = X f(z:) Azs; Axi=b—a, xi=a+Mr (76)
o1 n n

approximates the integral I = f f(z) dz to within », so that |S, — I| < .

The conclusion still holds, whether f(z) has a derivative or not, pro-
vided M is such that

lf(@2) — f(z1)] < Mlzz — @], 77

for all values of z; and z, in the closed interval a,b.
The condition (77) is called a Lipschitz condition, and implies that
the function is continuous and hence integrable.
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129. Derivatives of Integrals. Let the function f(z) be integrable
on the closed interval a,b and continuous at z,, a point of this interval.
Then the integral of f(x) over the interval a,z is a function of z, and we
may write as in equation (64):

4@) = [1@ e = [T a, )

where we have replaced the dummy variable of integration z by u so as
to avoid confusion between the variable of integration and the variable
upper limit.

Let us now calculate the derivative of 4 (z) at zy, using the fundamen-
tal definition. We have for any value of z and = + % in the closed
interval a,b:

+h z +h
A+h) — AR = [ fw)du - f fwydu= [ f(u) du, (79)

by equation (29). We next deduce from the first mean value theorem
for integrals that for a suitable intermediate value ¢,

tbetweenzandz + h, or £ =2+ 6k, 0<0<1, (80)

z-+h
J(w) du = K@) = W@ + oh). Q)
This shows that
A6+ D =28 - o+ om), (52)
so that
tim A8 FD = 20 _ i, (#3)
h—>0

since f(z) is continuous at x.
Thus the function A (x) has a derivative at x,

and A’ (zo) = f(=0). (84)

We may formulate the result as a theorem:

If f(z) 1s integrable in some closed interval a,b and if f(z) is continuous
at some point xo in the open inlerval ab, then the function A(z) =

f 7(z) dz or f £(u) du has a derivative for = = wo, and this derivative
A’ (20) = f(=0)-
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130. Existence of Indefinite Integrals. If the function f(z) is con-
tinuous throughout the closed interval g,b, then the argument of the
preceding section shows that the function

4@ = [ 1) du (85)

is an indefinite integral of f(z) as defined in section 126,
since A'(z) = f(z) (86)

throughout the closed interval.

The function A (x) is the particular indefinite integral which is zero
when 2 = a. The indefinite integral similarly obtained by using any
other value a’ in place of a is A (z) — A (a’), by the reasoning of section
126.

Thus every continuous function has associated with it another func-
tion, its indefinite integral for a particular value of a. For a particular
function f(z) and a particular value of a, the function 4 (z) could be
computed and tabulated. We shall develop practical methods of doing
this in section 145. Theoretically the values could be found to any
desired degree of approximation by the method given in section 128.

131. Inverse Operations. The theorems of sections 126 and 129 show
that differentiation and integration are to some extent inverse operations.

For, if we start with an integrable function f(z), integrate it with
lower limit fixed and upper limit the variable z, and then differentiate,
we shall come back to the original function for any value at which the
function f(x) is continuous, by section 129.

Again, if we start with a function F (z) having an integrable derivative,
differentiate it, and then integrate it with lower limit fixed and upper
limit the variable z, we shall come back to a function only differing by a
constant from the original function, by section 126.

In particular, when we are dealing with simple explicit functions on
restricted intervals, all of the functions which come into consideration
have continuous derivatives. For such functions, integration followed
by differentiation with respect to the upper limit leaves a function
unchanged, while differentiation followed by integration with variable
upper limit changes a function at most by an additive constant. This
principle, or the more precise result expressed by the theorems of
sections 129 and 126 paraphrased above, is sometimes referred to as the
“ fundamental theorem of the integral calculus.”

In elementary work, where we are interested in explicit expressions,
we think of differentiation as leading to a simpler result than integration,
since the derivatives of the functions with which we deal can always
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be found explicitly with comparative ease, whereas the indefinite inte-
grals of many of the functions we meet can not be found in terms of
functions already known to us. “

However, from another point of view, integration leads to a simpler
result than differentiation. For, in all the theorems of Chapter IV, we
had to assume that the functions could be differentiated to yield the
derivatives involved. On the contrary, if we start with any continuous
function and integrate it, we obtain a second function as shown in
section 122, and this function has a derivative.

Or, if we start with an integrable function, not necessarily continuous,
and integrate it, the result will be a continuous function, by section 127,
In fact, equations (65) and (66) show that A(zx) satisfies a Lipschitz
condition, as defined in equation (77).

Thus integration is a smoothing process, always leading to a function
having at least as much in the way of continuity or differentiability
properties as the original function.

132. Tables of Integrals. In some cases the indefinite integral of a
simple explicit expression can be found as an algebraic expression, or
can be expressed in terms of functions which are already tabulated.
Every specific formula of differentiation leads to the determination of
some indefinite integral. Thus, we obtain such results as

z xn+l
fx do = n -, @7
f 271 dz = log z, etc. (88)

Results of this kind are arranged in convenient form as tables of inte-
grals and may always be checked by differentiation. The scope of such
a table is greatly increased by certain general methods of reduction, to
which we proceed.

133. General Reductions. The general rules for differentiation
given in section 63 lead to corresponding rules for integrals. Throughout
this section, we shall assume that all the derivatives used exist, and that
any function used as an integrand, as u or u dv/dz, is continuous. With
this assumption, we have:

f kudx = kf u dz, (89)

and f z(u + v)dz = f zu dr + f zv dz, (90)

since both sides have the same derivatives with respect to x.
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The rule of *“ integration by parts,”

z x
fugd—zdx=uv—fvg—:dx, (91)

is proved similarly. This is useful when the integral on the right is
simpler than that on the left.
Finally we have the rule of substitution,

4@ = [1@ = [ owwo (52)

where
xo = g(to), = =g(t), (93)
and the function ¢(t) is a single-valued function for the closed interval
to,t.
We prove this rule by differentiating both sides with respect to t.

For the left side, A = f 7(u) du, we find:
zp

dA  dA d
i R (OTAOY (%)

¢
and for the right side, B = f flgw)lg’ (u) du, we find:
b

dB ,
7 lg@®lg' @), (95)

by section 129. But the expressions (94) and (95) are equal, in view of
the equation (93).

That the integrals 4 and B do not differ by a constant follows from the
circumstance that £ = zo when ¢ = {,, so that both integrals in equa-

tion (92) are zero when z = z;.
The rule of substitution for indefinite integrals may be written in the

form:
Si@ae= [owwoa, (98)

where the limit z = g(¢) and this function is single-valued for the range
of t to which the equation is to be applied. This is a consequence of
equation (92). Itis easily remembered, since if z = g(t), the differential

f(x) dz = f(g) dg = f(g) % dt, and the value of ¢ corresponding to z is

such that z = g(1).
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134. Separable Differential Equations. A relation of the form

&y _

= Fy) o)

is called a differential equation of the first order, and any function
y = f(z) is a solution of this equation

if f'(@) = Flz.f(@)). (98)

The differential equation is said to be separable if the function F(z,y)
may be written as the quotient of a function of z alone by a function of
y alone, so that

ay _ p@)
dz  q(y)

an equation involving differentials in which the variables are separated. -
We assume that ¢(y) and p(z) are continuous.

Let us next assume that the equation (99) has a solution y = f(), for
z in a certain range z9 < z < 1, and that for z in this range ¢[f(z)] is
never zero. Then, if yo = f(2o), and y = f(z), the rule of substitution
in the form of equation (92) shows that

and ¢(y) dy = p(z) dr, (99)

’ dy = ) d: 100
J;oq(y) Y Lp(x) (100)

But, if we define
a0 = [Caway (101)

Yo

in the range considered this function has a derivative ¢(y) which is
never zero. Hence, by section 75, it has a uniquely determined inverse
function, and the equation

fw = 47| S 7@ ds | (102)

defines a function f; (z).

If, then, we start with the equation (99) with p(z) and ¢(y) continu-
ous functions, restrict y so that in the range yo,y the function g(y) is never
zero, and form the equation (100), this equation will determine y as a
function of z, y = fi(z).

Since this function is given by equation (102), by sections 75 and 129
we have:

z
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Moreover, we see from equation (102) that when z = zo, y = ¥y, 80
that f1(zo) = yo. This shows that y = f;(z) is a solution of the differ-
ential equation (99), which is yo when = = z,. Since this function
was uniquely determined by equation (100), and any solution of this
kind necessarily satisfied equation (100), it is the only solution. Thatis:

If the functions p(z) and q(y) are continuous, the solution of the separable
differential equation

&y _p@)
dr  q(y)

which equals yo when x = x4, s uniquely delermined by:

Lawa- [re (105)

Yo
provided that q(y) ts never zero in the closed interval yo,y.
This justifies the solution of separable differential equations by sepa-
rating the variables and integrating between corresponding limits.
136. Complex Notation. If W(z) is a complex function of a real

variable, as defined in section 119, whose derivative for real increments
is w(xz), we call W (z) an indefinite integral of w(z) and write:

f “o(@) dz = W(z). (106)

By section 119, dW (z)/dz = w(x) if, and only if,

(104)

%RW(::) = Rw(z) and ;;IW(:::) = Iw(z). (107)

Thus the equation (106) is completely equivalent to the two real
equations:

f Ru(z) dz = RW(z) and f Tw() dz = IW(z). (108)
The integration of certain functions is simplified by regarding them as

the real or imaginary part of a complex function of a real variable. For
example, from

VT — 9% 0oc by & 6% sin bz, (109)
z e(a+bﬂz
and f e(a+bt')z dz = s bi’ (110)
we may deduce:
z az i
f €% cos bz dz = - L cosaf:t‘::;f = b.'t)’ (111)
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e**(a sin bx — b cos br)
a? + b?

and f €** gin bx dx = (112)

136. Known Integrals. We may use the rule of substitution of
section 133 to show how the ease or difficulty of evaluating an integral
depends on our previous knowledge. Thus, suppose that for any func-
tion f(z), continuous and positive on the closed interval a,b, we have
already calculated and tabulated the function

Alz) = f 1) da (113)

of section 129 for a large number of values of z on this interval. Then
this function, A (z), will be a known function in the sense that the func-
tion logo « is known for values of x on the interval 1,10.

As we have assumed that f(z) is positive, by section 129, A (x) = f(x)
is positive. Hence, by section 75 the function y = A (x) has an inverse
function z = A™!(y) whose derivative is

4y 1
dyA (y) = @ i@ (114)
so that
P
A~ W] = Aol (115)

The inverse function z = A~ (y) may be read from our table for A (x)
if y is in the interval A (a),A (b), just as we read the values of 10¥, the
number whose logarithm is y, from a table of logarithms for values of y
in the interval 0,1.

Now suppose that we have either forgotten the origin of the function
A(z) which appears in equation (114), or that we have derived this
property of the function from some other definition. In any case we
recall the function and the equation (115), and try to use it to evaluate

the indefinite integral f zf (z) dz. Let us transform this by the rule of
substitution, equation (96), with

z=g@) = A7*({#), sothat ¢=g1(z) = A(z). (116)
Then, from this and equation (115),

7@ = A = !

AT Sl
flg®lg’ @) = 1. (118)

(117)
so that
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As this is the second integrand in equation (96), we have:
z t
f (@) dz = f dt =t = ¢ (z) = Al2). (119)

We have thus reduced the indefinite integral f f(z) dz to a known

function, A (z).
‘While this process seems unnecessarily roundabout and highly artificial
when stated in general terms, it is essentially the process used to reduce

*dx * dz 1
f z —-log:c and f’i—;‘:—ci = tan" 2z (120)

to known functions in elementary calculus. In fact, the best methods of
computing tables of these functions are based on expansions directly
derived from the properties:

d 1 a4 _, 1
dxlogx—x, dxtan x—1+x2, (121)

analogous to the property A’(z) = f(z). Compare problems 31 to 35
of Exercises IV.

137. Rational Functions. To integrate a rational function with real
coefficients, we use the decomposition of section 115. We showed there
that any rational function of z could be reduced to the quotient of two
polynomials in z, A (z)/B(z), where A (z) and B(z) have no common
factors. Furthermore, the function could be expressed as the sum of a
polynomial and terms of the form A,(z — b)™, there being a series of
such terms with n = 1, 2, - - +, r for each real or complex root b of the
denominator B(z), where r is the multiplicity of the root. A rational
function with real coefficients may be reduced to the quotient of two real
polynomials. Since any common complex roots will occur in conjugate
pairs, they may be removed by dividing by real factors, and we may
assume that A (z) and B(z) have real coefficients. Thus the function is
a real rational function as defined in section 118, and in the decomposi-
tion the coefficients of the polynomial, as well as the A, for any real
root b, will be real. Conjugate complex roots will have the same
multiplicity, and will give rise to terms with conjugate coefficients.

The integration of the rational function is deduced from the integrals
of the separate terms of the decomposition by equation (90). For the
terms of the polynomial we use:

z z ~ kxm-i—l
fkd:v=kx and ka dr="h m=1,2,3,--. (122)
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The equations:

*Ado
J FS =4tz —bl and

* A dz _ —A
—=b" (n—1)@&—0b" "

n=238--+ (123)

give the integrals for the terms for real roots.
For the terms arising from complex roots, we note that:

A+Bi A-Bi A+ Bi

= 124
@—a—bi)"  (@—atbi) @G—a—ty UM
if a, b, A, and B are all real numbers. By equation (108) we have:
* A+ Bi -2 A + B:
2R - ) = 92 oo
f et " mo DN ea iy "2

(125)

f 2R A5 gy R[4+ Bi)log @ —a— B0 (126)

where the relations of the derivatives to the integrands follow from
section 112,
We may obtain other expressions for the integral (126), since
2R[(A + B7) log (x — a — bi)}
=2Aloglz —a—bi| —2Barg (x — a — br)

=log|z—a—bi|** —arg (zx —a— b))% . (127)

= Alog [(z — a)% + %] + 2B tan™ . b (128)
The form (127) enables us to write the sum of a number of such terms

with a single use of the symbols log and arg, thus theoretically enabling

us to find the value of any rational integral with only one use of the

logarithmic tables and one use of the trigonometric tables, since the

terms involving logarithms from real roots may be written log |z — b|4.
Since

1

tan™! u = cot™! — tan™! ~ (129)

:n—.
wla

we have

2B tan™ [—b—] = —2B tan™! [z ; a] + Br. (130)
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If we make this substitution and absorb the constant Br in the constant
of integration, we may deduce from the form (128) that

f RATE 4 dlogl@—a)? 457 2Btant 220 (131)
z—a—W b

This last form is the most familiar, and usually the one best adapted
to computation.
If we expressed the integral as a real function, we should write:

fz_P+—Qx_d”= 108 (2 + pz + q)

22+ pr+gq 2
2P — Qp tan—! 2t+p
Vi4q — p? Vg — p?

Thus even the real form of the integrated expression has constants
more closely related to the form of the integrand (131) than to the form
of the integrand (132). )

The advantage of using the decomposition of section 115 over using
that of section 118 is slight for simple conjugate complex roots, but is
much greater when there are multiple complex roots. In that case, for
multiple quadratic factors we must develop reduction formulas, which
essentially take us back from the real coefficients P; and Q;, appearing
in numerators P; + Q;z, to the original conjugate complex numerators,
Aj £ Bji. That the reduction formulas must do this may be seen from
equation (125), which shows that, in complex form, each pair of terms of
a given degree taken by itself has a simple integral.

Since the coefficients in the decomposition are determined, they may be
found either by the method of undetermined coefficients, the method of
section 116, or by using the fact that an identity must be true for any
values of z, conveniently chosen. The work may sometimes be short-
ened by subtracting the development up to a certain stage.

For example, if a third degree denominator has one real root and one
pair of conjugate complex roots, we may determine the term for the real
root by equation (244) of section 116, and subtract the polynomial and
the fraction for this root to obtain a term like that in equation (132).

Again, if a denominator has one multiple real root and a number of
simple real roots, we may subtract the terms for the simple roots, as
well as the terms of the polynomial, and then determine the terms for the
multiple root by expanding the resulting numerator in the appropriate
Taylor’s development.

Another method of determining the integral is to use the reasoning of
this section to predict the form of the integral, except for the coefficients,

+ (132)
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and then directly determine the coefficients of the integral by the method
of undetermined coefficients.

138. Rationalizable Integrands. Several other classes of integrals
may be reduced to integrals of rational functions. To describe some of
these classes, we shall denote a rational function of one variable, u, by
R (u), and a rational function of two variables, u and », by R(u,v), so
that this last is the quotient of two functions, each a polynomial in the
two variables u and v.

. ar +b

Then the integrand R (x, [c:c T4
integer. For, if ad — bc = 0, the second variable is a constant, and the
integrand is already a rational function of z. When ad — bc 5= 0, the

Iati [ax + b]Ye
relation p— d]
g’ (t) is rational, and the new integrand obtained from equation (96),
Rlg(t),t)¢’ (t) is a rational function of .

An important special case is R(x, Vaz +b).

Again, the integrand R (e®*) is reducible by the substitution ax = log {,
to the integral of R(t)/at, which is a rational function of ¢.

Any rational function of trigonometric functions of # may be
written in the form R (sinz, cosz). An integrand of this type

1/q
] ) is rationalizable when ¢ is an

= ¢ makes z a rational function of ¢, ¢(¢). Thus

may be reduced by the substitution ¢ = tanéto the integral of

R ( D) ’ 2 2 ’ i i i 1 f 1 f .
W hl( 7h 1S a Ial}lOIla. unc (}1011 [0 t

We may always rationalize an integrand of the form
Rz, Vaz? + bz + ¢).

We assume a 5 0, since the integrand with a = 0 is of a type already
discussed.

If the roots of ax? 4+ bz + ¢ = 0 are p and g, real and unequal, we
may write az®? + bz + ¢ = a(x — p)(x — ¢). If we put a(z — p) =
?(z — q), z = g(t) is a rational function of ¢, so that g’ (£) is also rational.
The transformed integrand is R{g(t),tlg(t) — ¢]}¢’(t), which is rational
in .

When the roots are equal, ¢ = p, Vaz® + bz + ¢ = \/;(x — p), so
that the integrand is rational in z. In this case a must be positive,
since the integrand is assumed to be real.

When the roots are conjugate complex numbers, r + s,

e +bz+c=alx—r—is)(@—r+is) =a[(x —r)?+s%, (133)
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and again a must be positive in order to make the radical real. In this
case we put (x — r)? + s? = [(x — r) + ¢]?, which makes z = g(t) a
rational function of ¢, so that g'(t) is also rational. The transformed
integrand is R[g(¢),g(t) — r + tlg’ (¢), which is rational in ¢,

139. Other Elementary Integrals. Let I(u) be an inverse trigono-
metric function, an inverse hyperbolic function, or the logarithm (inverse
exponential function). Let B’(z) be the derivative of an explicit alge-
braic function, B(z), and let A (z) also be an explicit algebraic function.
Then the integrand I{4 (z)]B’(z) may be simplified by an integration
by parts:

f 1A @)IB' @) dz = T[4 (2)]B(z) — f T4 @)A’ (@)B(z) dz. (134)

The new integrand, I’[4 (z)]4’ (x) B (x), is an explicit algebraic expression
and may be rationalizable if the functions 4 (z) and B(z) are sufficiently
simple.

In- particular, if A(z) =2 and B(z) is a rational function,
the new integrand I’(x)B(z) will either be rational, or of the form
R(z,Vaz® + bz + ¢), which is rationalizable. Thus an inverse func-
tion of x times a polynomial may be integrated by this process.

The problem of integrating a real polynomial in any number of vari-
ables, each of which is either z, an exponential ¢*?, or a sine or cosine
function sin bz, cos cz, is immediately reducible to the problem of inte-
grating terms of the form z"¢**, where  is a positive integer, and A is a
real or complex number. When A is complex, the indefinite integral is
‘to be understood in the sense of section 135. An integration by parts
" may be used to reduce the exponent of n by unity,

f " dy = 2" — — — f n—1gdz dz, (135)
8o that » such integrations will reduce the problem to

f At dp = S (136)

Our purpose in the last three sections is to give the student some
general idea of the classes of integrals which either will be found in inte-
gral tables or may readily be reduced to integrals given in the tables.
The general methods here given are often much longer than special
devices adapted to particular cases or to the construction of a table of
integrals. Also there are a number of alternative procedures which are
sometimes preferable. For example, if the form of the integral is pre-
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dictable to within a number of constants, these may be found by the
method of undetermined coefficients.

Any indefinite integral taken from an integral table may be verified
by differentiation, which always provides the simplest proof of such a
formula if the answer is known.

140. Non-elementary Integrals. Most integrals not of the types
discussed in the last three sections nor immediately transformable into
one of these types cannot be evaluated in terms of a finite combination
of elementary functions. In a few special cases, the non-elementary
character of an integral has been proved, by showing that the function
defined by the integral with variable upper limit has some property
not enjoyed by any elementary function. The character of the argu-
ment is somewhat similar to that given in section 92 to prove that the
logarithmic function is not an algebraic function.

A few of the simpler non-elementary integrals are those with inte-
grands, €%/z, sin z/z, cos z/x, which lead to new functions known as the
exponential integral, the sine integral, and the cosine integral. The

integrals
f e dz, f sin 22 dz, and f cos 22 dx (137)
0 0 0

are known as the probability integral, the Fresnel sine integral, and the
Fresnel cosine integral. 'We shall discuss practical methods of construct-
ing tables of these functions in section 331. Such tables are available
and enable us to evaluate these integrals and any others easily reducible
to them.

The simplest algebraic integrands which in general lead to non-elemen-
tary integrals are those given by Rfz, VP (x)] where P(z)is apolynomial
of the third or higher degree, and R is a rational function of the two
variables as in section 138, where we showed that this integral was
elementary if P(x) was of the first or second degree.

Since the square root of a polynomial with multiple roots may be
written as a polynomial times the square root of & new polynomial with
all its roots simple, we may, and shall, assume that all the roots of P(x)
are simple. When the polynomial with simple roots is of degree three
or four, the integral of R[z, VP (2)] is called an elliptic integral.

141. Elliptic Integrals. The special elliptic integrals

o ¢____di_— _ 8in ¢ dz
Fik) = J; V1 - k®sin% ¢ */(; V(1 - 22 (1 — k%?)

0<k<1, (138)
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the elliptic integrals of the first kind, and

6 o siw\/l_kzxz
E, =f\/1—k2'2 d=f AL il X 25W
() 0 s 6o 0 V1 —a?

0<k<1, (139)

the elliptic integral of the second kind, have been tabulated by Legendre
for real values of k between 0 and 1.
The elliptic integral of the third kind,

(k) f‘* v dé
Q) = TN
o (sin®¢ —a) V1 — K2sin? ¢

_ fuin ¢ dx (140)
0o @ —a)V{Q -1 — ki?)

where k is real, 0 < k < 1, and « may be complex, has been only par-
tially tabulated. For a = 0, see problem 47 of Exercises VI, p. 238.
We shall now prove that:

If P(x) is a polynomial of at most the fourth degree with real coefficients
and if R is a rational function of two variables with real coefficients, while z
1s restricted to a range in which P(z) is positive, the indefinite integral

f R[x,\/ P(z)] dz can be expressed as a linear combination of terms,

each of which is either an elementary function, or an elliptic integral of the
first, second, or third kind.

As was indicated in the preceding section, the integral is rationalizable
if P(z) is of the first or second degree, or has multiple roots.

When P(z) is of the third degree it has at least one real root, r, and
we may write:

P(x) = (x—1r)(ax® +bx +¢), a=0. (141)

Thus, for a range of z such that z > r, we may make the change of vari-
able z = r + 2%, dx = 2z2dz. 'The radical becomes:

VP@) =2Vaf + Qar+b)2 +ar? +br +c=2VQ(). (142)

Hence the new integrand is of the same type as the old, but the new
radicand involves no odd powers. For a range of = such that z < r, we

put z = r — 22, We note that in either case,

dz 2dz

VP@ V@)

(143)

N
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Finally, let us assume that P(z) is a fourth degree polynomial without
multiple roots. It may be factored into two real quadratic factors:

Piz)=a(@®+pz+q)@®+p'z+¢'), a=0. (144)

We wish to reduce this to a form where p and p’ are zero, and attempt
to do this with a linear fractional transformation:

This will make
a(@+pr+qU+2)2= Az + B,
" @ +p'z4+¢)1+2)? =47+ B, (146)

29 +p(f+9)+2¢=0 and 2fg+p'(f+9) +2¢ =0. (147)

When p # p’, these relations are equivalent to

“© —_

which may be solved with real values of f and g if
0<i(f—9°® - )

or (@—¢P - @ —p)od - gp') >0. (149)
Let us now put
P?+pr+g=(—r1)z—F
and 224+pz2+¢ =(@—1)x-F). (150)

Then the expression just written becomes:
(F =P = (r+7F— 1 — FWrC' +F) — 'F(r + 7). (151)
But this may be written
(r—=1Yr—-#)F —rF - 7), (152)

since it vanishes when r = 7/, and so admits the factor r — 7/, and the
other three factors by symmetry, and finally is a fourth degree poly-
nomial with the term 7?72, so that the multiplicative constant is unity.
If both quadratic factors have complex roots, r and 7 are conjugate
complex quantities and so are ' and #'. 'Thus the first and fourth, and
the second and third factors, are conjugate and so have a positive prod-
uct. Again, if r and F are conjugate, and the other two roots are real,
then the first and third factors are conjugate, and so are the second and
fourth. Finally, if all four roots are real, we may take the two algebrai-
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cally greatest roots as r and 7, and all four factors will be positive. No
factor can be zero, since our fourth degree polynomial has distinct roots.

Thus, if p # p’ we may find real values of f and g such that the
rational transformation (145) makes

VPG - VUd2Z+BAZ+B)  VQ@)

(1+2)? T (42 (133)
From the relation (149), g # f, and we note that
dz dz
——— —_— —— 154
P T Vew e
When p = p/, weput x = z — g, dx = dz, which makes
P(z) = a(2® + pz + 9)(@® + pz + ¢')
2
=a (22 +q- _1;_2> (22 +4¢ - %‘) = Q(2), (155)
dx dz
d - ——. 156
. VP@ Ve 4s0)

Our discussion shows that the integral of R[x,P(z)] is either ration-
alizable or reducible by real substitutions to the integral of a similar
expression with

P(z) = (A=* + B)(4'z* + B'), (157)

where 4, B, A’, and B’ are all real.

We observe thet, if the radicand of equation (142) does not have real
factors of this form, it may be factored and transformed by the process
used for the P(z) of equation (144).

142. General Reductions. We assume the radicand has the form
given in equation (157), and proceed to certain methods of simplifying
our problem. While it is logically simpler to use this order to avoid
unnecessary repetition, practically it is preferable to apply these general
reductions before transforming the radicand. This may greatly simplify
the formal work, even if the reductions have to be applied again to some
of the terms after the radicand is transformed.

Let us denote P (x) by v, so that the integrand is R(z,»). By using the
identities

= )" = [P@)]", o =P@E)], (158)
we may express the integrand in the form
K+ Lo, (159)

M + Ny
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where K, L, M, N are polynomials in z. Now rationalize the denomina-
tor,
(K + Lv)(M — Nv) KM — LNv’> 4+ (LM — KN)»
(M + No)(M — Nov) M? — N%? ’

and replace v by P(z). This reduces the integrand to the form U + Vo,
where U and V are rational functions of z.

Since U is a rational function, we need only consider integrands of the
form:

(160)

2
ve=YC_ ¥ (161)
v v
where W is a new rational function of z.
The rational function W can be decomposed into a polynomial and a
number of partial fractions, which reduces the integral to a sum of terms
of the two forms:

(@) a f %”dx, and (b bs f v—(x—i—r-);dx. (162)

There will be terms of the second form, (b), for each real or complex
root, 7, of the denominator of W.
In order to reduce these integrals (b), we observe that:

d [ v :I _ w'(@—r)—m?® 3P () —r) — mP(z)

dz| (z — r)” (x — )™ty (& — r)™*tly
@ —rtea—rlPtea@@—r?2+tealz—1r +c
= (x _ r)m+lv H (163)

since the numerator, a fourth degree polynomial, may be expanded in
powers of (z — r). By integration, we find from this that

- f"__dw___J,cf__d_x_
= W V@ =12 2 o(z — )2

£

dz dz * dx
+ czf:v(x — )™t te j:v(a: —-r)m + coL o(z — ry™ 1 (164)

If ¢ # 0, this relation may be solved for the last integral to give a
reduction formula by which an integral of type (b) with n = m + 1
may be expressed in terms of an algebraic function and four integrals of
type (b) withn =m — 3, m — 2, m — 1 and m.

If ¢o = 0, and m = 0, it follows from equation (163) that P(r) = 0.
Hence P'(r) = 0, and ¢; £ 0. In this case the relation (164) may be
solved for the integral of type (b) withn = m to give a reduction formula

v
@ —n"
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by which such an integral may be expressed in terms of an algebraic
function and three integrals of type (b) with n = m — 3, m — 2 and
m — 1.

In any case, by starting with the integral of type (b) for a given root
for which n is largest and, at each stage, combining together all the
integrals with the same power of (z — r), we may reduce all the inte-
grals of type (b) for a given root r to the integrals:

z z T . z — 2
f LI f L, f LT f @ =0 0 (165)
(x —r)v v v v

The last three integrals may be combined with the integrals of type (a)
of (162). The first integral may be written:

f(x——r)v —f(xx+r
f (xx—dxr f (2 @ — ) (166)

If we make the substitution z? = z, we find:
*  xdx f‘ dz

Jrer 167

(x® — %) 2(z — )V (4z + B)(A'z + B’)’ (167)

which is a rationalizable integral. This shows that we need only con-
sider, in addition to integrals of type (a) of (162), integrals of the form:

o dx
f '(-;2—_'72)'—0 . (168)

We next consider the reductions of integrals of type (a). If we put
r =0, m = —M, equation (163) may be written:
d4xM+3 + dzxM-H + doxM—l

d M _
e (%) = " ) (169)

since P(x) and hence P’(z)z contain no odd powers of z. For M > 0,
dy # 0, since dg = (2 + M)AA’. This equation leads to a reduction
formula by which an integral of type (a) involving z™*? can be reduced
to two other integrals of the same type involving the exponents M + 1
and M — 1.

We only apply this for odd values of M, when all the exponents in the
integrals are even, since for odd exponents the integrals of type (a) are
rationalizable. In fact, if 2% = 2,

2:2n+1 2z 2" dz
—dz = . 170
f v f 2V/(4z + B)(4’z + B') (170)
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By repeated reduction of the integrals with even exponents, starting
with the term with highest exponent, we may reduce the integrals of

type (2) to the two:
Zz 2 zd‘
f—z—dz and f—‘”- 171)
v v

Thus our problem is now reduced to integrals of three types, the two just
written and those of the form (168).

143. Transformations of the Radical. We must now develop real
substitutions which will transform the radicand

v’ = P(x) = (A2®* + B)(4’2% + B) 172)
into that of the standard forms,
(1 -2 — k%?) with k< 1. (173)

Since P (z) is positive, we may so select the signs of the constants that
both factors Az + B and A’z? 4+ B’ are positive. Since all the roots
of P(z) are distinct, a real range for which P(x) is positive can not
include a root of P(z). Hence neither of the factors can change sign in
the range.

We next consider two special substitutions. The first is:

2=A2*+B, z>0, (174)
which makes:
dz dz

= »  (175)
V(Az? + B)(A's* + B') V(22 — B)(4's® + AB' — A’B)
the factors on the right being positive if 4 > 0.
The second substitution is:
Z = — }-) (176)
z
which makes
dz dz ar)

V(4% + B)(4'2% + B’) - v/ (Bz2? + A)(B'22+ 47)

If B and B’ are both negative, A and A’ must both be positive, and
the second transformation just made leads to a form in which the new
values of B and B’ are both positive.

If one, say B, is negative and the other, B’, is positive, the first
transformation (174) leads to a form in which the new values of B and
B’ are positive if (AB’ — A’B) > 0. But, since the factors are posi-
tive, for some values of z we have:

Az?> —B and B’ > —A's? (178)
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and hence, since —B and B’ are positive,
AB'z? > —BB’ > A'Bx?, sothat AB’ > A'B,  (179)

and the condition is satisfied.

Thus we obtain a form in which B and B’ are both positive, and we
may factor them out without changing the signs and so write the radical
in the form:

V(1 + 422 (1 + A'z?). (180)

If A is negative, and A’ positive, the first transformation (174) reduces
the radical to

V(1 —-22)(4 - 4) - A'?), (181)

where the signs of the factors are the reverse of those in equation (175)
since A is now negative. In the new form A and A’ are both negative.

If A and A’ are both positive, the first transformation (174) reduces
the radical to:

V(2 - 1)(A’2 +[4 - 4')), (182)

and we may choose the notation so that A’ > A. If we then apply the
second transformation, (177), we shall reduce the radical to:

Vi -2 — A~ AR?). (183)

Thus, in the reduced form for the radical given by the expression
(180), either A and A’ are both negative, or we may make them both
negative by an appropriate combination of the two transformations.
We need therefore only consider radicals of the form:

V(1 = a%?) (1 — b%?), a® > b2 (184)

and if we make the transformation

ax =2 a>0, (185)
we shall have:

dz dz
V(1 —~ a?z?) (1 — b*x?) , am (1 _ z_:zz)

(186)

The discussion shows that by combinations of transformations of the
three types (174), (176), and (185) we may take integrals of the type

f Tz into others of the same type, in which »% has the standard form

(173) times a constant factor.
For a range, or portion of a range, including no positive values, we
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may put z = —z, which leads to a new range including no negativ:
values. Thus we may assume both limits positive or zero, and, since
the integral over 2,2, is that over 0,2, minus that over 0,z;, we may
assume the lower limit 0. The positive upper limit is less than 1, since
the factor (1 — 2?) is positive. Hence if we put = = sin ¢, we may take
¢ in the first quadrant and write:

dx _r do
f\/(l—xz)u-k?ﬁ) _j; \/1-k2sin2¢’ (187)

the standard form for the elliptic integral of the first kind.

The transformations (174) and (185) do not essentially change inte-
grals of the form (168), merely replacing the radicand by one of the
standard form (173), and introducing a constant factor and a new con-
stant in place of 2. However, the transformation (176) makes:

f’ dz 1 j“ 2% dz
2 _ 3, - 2 VAT
(2* — r¥w T <z2 1) ”

2
1 *dz 1 [* dz
= — — —_—— _— 188
r2fvl r4f(2 1) (188)
g —T_z vy

This is a combination of the first form, already disposed of, and an inte-
gral essentially of the form (168). Thus we need only consider integrals
of the form (168) with radicands in the standard form (173). As before,
we may assume the lower limit O and the upper limit positive and less
than 1. Putting z = sin ¢ we find

z dx ¢ do
= ——, 189
f (x% — 2w f (sin? ¢ — 72) V1 — k2 sin? ¢ (189)

which is the standard form of the elliptic integral of the third kind.
2% dr
v

are replaced by a constant times an integral of the same type, by the
transformation (185), and by a combination of one of the same type and
one of the first form by the transformation (174). The transformation
(176) leads to an integral of the third kind, (189), withr = 0. When we
do not use the transformation (176), or use it twice, we obtain a new
integral of the form we started with, with the radicand in the standard
form (173). We then write:

T .2 z1 _ 2,2
f%dx=—~1—f1—~vl°idx+l . (190

These

Finally we must consider integrals of the form f

k2 2] v
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The last integral written is of the first form. For the other integral, we
assume the lower limit O and the upper limit positive, put 2 = sin ¢,
and write:

2.2 = 12,2 ¢
[ike, [ VB2 e [ViTEasas o
o " o 1—2 0

This is the standard form for the elliptic integral of the second kind.

This completes the proof of the theorem stated in section 141.

144. Elliptic Integrals of the First Kind. We note that the trans-
formations used may change an integrand of the form z?/v, where
v?2 = P(z) is any polynomial of the fourth degree, into a combination of
standard elliptic integrals involving all three kinds. In particular, this
will generally be the case when the linear fractional transformation (145)
is used. .

However, as we noted, each transformation takes the differential
expression dz/v into another expression of this same form. This proves:

An integral of the form f dz/V P(z), where P(z) is a real polynomial

of the third or fourth degree, with no multtple roots, can always be reduced
to an elliptic integral of the first kind.

In particular, the integral

f’ dz _ f’ dz
e V433 — goz — gg o Va(z —e))(z — e)(x — e3)
€y + €9 + ez = 0 (192)

is of thisform. We shall show in section 170 that this integral approaches
a limit as £ — + «. Thus we may write the integral as u(z) — u(a),
with the constant so determined that u(z) —0 as x— + ». The
inverse of this function u(x), the Weierstrass § function, plays an
important réle in the theory of elliptic functions. These are functions
related to the functions inverse to those defined by certain elliptic
integrals.

In many problems of mechanics, the solution is given in the form

¢
s = f dz/V P(x), where P(z) is a cubic. In this case, if the three

roots of P(z) are a;, ag, and a3, and
a1+ as + a3 = 3b, s = sy whent = ¢, (193)
we may write the relation as

t=b+ @ (s—o), (194)



228 INTEGRATION [CrAP. VI

where ¢ is defined by @ (so — ¢) = t, — b, and § is formed with roots
61=al—-b, 62=(12—b, e3=a3—b. (195)

While this does not lead to a numerical evaluation, it does express the
solution in terms of a function whose properties have been extensively
studied.

146. Numerical Integration. We shall develop two formulas for
obtaining an approximate value of an integral when the integrand is a
specific function whose values can be calculated. These formulas are
practically useful when the integral either can not be easily expressed in
terms of functions already tabulated, when the procedure for doing this
is long, or when it leads to a complicated final expression.

We obtain these approximations by replacing the integrand in the
whole or a part of the interval of integration by a simpler expression,
and by integrating this latter expression. For example, if we replace
any integrand f(z) by a first degree function taking the same values at
a and b, or

0(e) = f(@) + T 1) — (@) (196)

we find:

b b—a
J o@ s = 22 15@) + 501 (197)

as an approximation to

f ' 12 d. (198)

If the function f(z) is continuous, it has an indefinite integral F(r),

for which
J@@) = F'(z), (199)

and

f ' @) dz = P(b) — F(a). (200)

Thus the error E, or correction term to be added to the approximate
value (197) to give the correct result, is:

b—
2

If the function f(z) has a second derivative throughout the open
interval a,b we may obtain another expression for . To do this, put

b—a=2u,a+b=2,s0that a=¢c—u and b =c+ u. (202)

1@ + 1O (201)

E=F@®}) - F(a) —
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From this and equation (199) we have:
E=F(Cc+u) —Fc—u)—uF'(c+w + F'(c—w) (203)
We then proceed as we did in section 91. We define the constant
- fs’ (204)
and then consider the function:
G(x) = F(c+z)—F(c—z) — z[F'(c + z) + F'(c — z)] — Kz°.
(205)

This function is zero for £ = u, by the two preceding equations. It
evidently is zero for £ = 0. Hence by Rolle’s theorem its derivative

Q' (x) = —2[F"(c + z) — F'(c — z)] — 3Ka?, (206)
is zero for some value 4’ between 0 and u. From
0= —u[F'(c+u)— F"(— v)] — 3Ku'? (207)

we find:
_ g Fll(c+ul) — F’I(c —- ul).

K= 3 2u’

(208)

The 2 is inserted to make the fraction with denominator 2u’ have the
form of a difference quotient. By the law of the mean, this equals the
derivative of F’/(z) at some point 2o between ¢ — %’ and ¢ + «/, and
therefore between a and b. Thus
2 2

= —SF"@) = = 31" o), (209)

and
2 .
E=FEKu = — gf"(xo)u“. (210)

If we divide the interval of integration into n equal parts, each of
width

h= , (211)

by points z, and denote the value of the integrand at zx by yx,

vi = f(zx) = f(a + kh), (212)
we may apply the preceding approximation to each part, with
)

w=g (213)
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The sum of the approximations is:
T=h(%+yl+y2+---+yn_l+%). (214)

This is known as the frapezoidal rule, since the graph of the function of

equation (196) is a straight line, and the integral (197) corresponds to

the area under this straight line, or that of a trapezoid. If the exact

value of the integral is

(®—a)®
12n2

3
T+ E, then E = — %nfz = — fo. (215)
Here, if the second derivative f’/(z) is continuous in a,b, then f; is the
value at some point of the interval, since it is an average and therefore
an intermediate value. Also, if f”/(x) preserves its sign, the error has
the sign opposite to this. In all cases, if M is the
0 /] least upper bound of |f”/(z)| in the interval, f, is
/@ & numerically at most M. Thus the error may be
made small by taking » sufficiently large.
A better approximate formula is obtained by
using a second degree curve, whose graph is a
ol a [E1) b parabola,

Fia. 15, g(z) = A + Bz + C2?, (216)

which has the same values as f(z) at a,b and the point halfway between,

a+b
7

we write in place of equation (216),

gx) = A’ + B'(z —¢) + C'(z — ¢)?, (217)

define u as in equation (202), and find that this makes g(¢ — u), g(c),
and g(c + w) agree with f(a), f(c), and f(b) if:

¢ = These determine the coefficients uniquely. For simplicity,

)2

x

C L 1@ +10) — N &

— —¢
2u 2u?

g(z) = f(c) + f(®) — f(a)]
(218)
For the approximation to the integral (200) we have:

b ct+u u
[o@is= [ o@ds = 5@ + 1) + 476)]

b —

U@+ 4O +IOL (@19)
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In this case the error E to be added is:

Pl + 0 B, (220

E=F@®)— F(a) —

or, in view of equation (202):

E=Fl+u) —Flc—u) — g[lf"(c 4 u) + 4F'(6) + F'(c — w)).
(221)

We now assume that f(z) has a fourth derivative, so that F(z) has a
fifth derivative throughout the interval. Define the constant K by

E
K== (222)
u

and consider the function:
G(z) =F(c+z) — F(c— z)
- g (F'(c + z) + 4F'(c) + F'(c — 2)] — K25, (223)
We find, successively:

¢ (z) = g[F’(c ¥ 1)+ Fc — 2) — 2F(0)]

- g[F"(c +3) — F'(c — 2)] — 5Kz, (224)

') = %[F"(c 4+ z) — F'(c — )]
- §[F"'(c 4 z) 4+ F"(c — z)] ~ 20K, (225)

") = — glF“' ( + z) — F'V(c — )] — 60K2?. (226)

Each of these functions reduces to zero when z = 0. But, from equa-
tions (221) and (222), G(u) = 0. Hence, by Rolle’s theorem G'(z) is
zero for some value between 0 and u, say u’. It follows that G’/ (z) is
zero for some value between 0 and v/, say »’/. Similarly G'"/(z) is zero
for some value u’’/, and

1244

- “—3— (FYV(c + w’"’) — FIV(c — w/”')] — 60K’ = 0. (227)

We deduce from this that:
1 FV(+u") — Fw(c —u""
5‘0 2" *

K=- (228)
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By the law of the mean, the fraction in the form of a difference quotient
equals the derivative of F'¥(z) at some point zg between ¢ — u’’’ and
¢+ u'”, and therefore between a and . Thus

\ |
K= = oo F@) = — o™ o, (220)

If we divide the interval of integration into an even number of equal
parts, say 2m, each of width
b—a

b= (230)

by points i, and define the yx by equation (212), we may apply the
approximation to each consecutive pair of parts zg,zs; Z2,24; ---;
Zom-2,%2m- The sum of the approximations is:

h
S = 3 o+ 4 +2ys + 4ys + 2ys + « - - + 4yam—1 + Yam).  (231)

This is known as Simpson’s rule. If the exact value of the integral is

B b—a)8
S+ E, then E = —§6mf4= - 1%-&(2—%]‘4
Here, if the fourth derivative 7™V (z) is continuous in a,b, then f is the
value at some point of the interval. Also, if f*V(z) preserves its sign,
the error has the sign opposite to this. In all cases, if M is the least
upper bound of | ¥ (z)] in the interval, f; is numerically at most M.

A comparison of equations (215) and (232) shows that, if the bounds
for the second and fourth derivative are of the same order of magnitude,
the error in using Simpson’s rule will be roughly 42/15 times the error in
using the trapezoidal rule with n = 2m, and hence much less when % is
smaller than umty

Practxcally, it is not always easy to determine bounds for the deriva-
tives. ' However, we may use the corresponding finite differences to
estimate their size. This results from the discussion in section 93. If
the nth difference changes slowly in the intervals under consideration,
equation (300) of that section suggests that we may take

A" (zx)
o

(232)

as an approximation to f™ (z), (233)

at least as to its order of magnitude. The estimated error when using

b —
Simpson’s rule will then be — —iﬁ A4, where A4 is an average value
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of the fourth difference computed for the increment h. The correspond-

b—a .
12 Ay, with

ing estimated error when using the trapezoidal rule is ~

A; an average value of the second difference.

EXERCISES VI
1. If f(x) = f(—=2), f(z) is called an even function. If f(z) is even and
0 a
integrable, show that f flz) dz = f flx)de =3 f(z) dz, by using the
—a 0 —a .

fundamental definition of an integral.
2. If f(z) = —f(—=z), f(z) is called an odd function. If f(z) is odd and

0 a a
integrable, show that f f@) do = — f #() dz, and that [ f(z)dz = 0.
—-a 0o -a

3. Prove that any single-valued function of an even function is even, and
hence that for any continuous funetion F(u), the result of problem 1 applies to
F(2?) and F(cos z).

4. Prove that the product of any number of even functions and an odd
number of odd functions is odd, and hence that the result of problem 2 applies to
zF(z?) and zF(sin? z), where F(u) is any continuous function,

6. For the integrals over the intervals ¢ — a,c; ¢,¢ 4+ a; and ¢ — a,c + a of
- a function such that f(c + z) = f(c — z): state and prove a result analogous to
that of problem 1. Similarly, for a function such that f(c — z) = —f(c + 2)
deduce a result analogous to that of problem 2.

6. A function is said to be periodic of period p if f(x + p) = f(z). Ifsucha
function is integrable, show that for n any positive integer,

[ +pf(x) dz = ‘/: f(x) d«_’l:, and j; +ﬂﬂj(:::) dx = j; 'mf(z) dz=n L pf(x) dz.

7. Prove that any single-valued function of a periodic function is periodiec.
In particular show that if (u) is any continuous function, F(cos z) and F(sin z)
may be used in the result of problem 6 with p = 2 in all cases, and withp = =
if F(u) is an even function.

b
8. If f(z) is a continuous monotonic function, prove that | f(z)dz is between
[
o - a)f(;i) and (b — @)f(b). In particular, show that for positive values of p
dz —
and g, ‘/(: m lies between 277 and 1.
94..GIf f(z) is a continuous monotonic function, prove that the integral
f@?® — 2px + q) dz is between 2af(g — p?) and 2af(a® + q — p?). In

p—a
3 dz
particular, show that j: @@t lies between 2 - 4 and 2.5,
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a
10. For f z dr, verify that the sum S, of equation (76), section 128, is
0

n(n -+ 1 2
—(%)a’, and hence —)% whenn— +w,

ae aln
1, i i n 1 —-1)—
11, For J: €® dz, verify that the sum S, is (¢ — 1) w@ = 1) » and hence

approaches e* — 1 when n— +,

12. Calculate the sums S, for the integrals f sin z dr and f cos x dz.
0 0

Hint: If the sums are S, and C,, C, + 1S, is the sum for f €% dz, which equals
0
aeteln

n(e@/» — 1)
a

13. Using examples 2 and 3 of Exercises I, verify that for f z™ dz,
0

am+1 nm+!. am+1
Sy = e (m 1 +am™+ .-+ ao) and hence— ——
14. Calculate the sum § of equation (62), section 127, for points of sub-

r(a® — 1) . a2 —1
’7:1—- , which — 2

(e — 1)

when n— 4,

when

division z, = #*, for f zdz. Answer:
1
n— + o, where r" = g, so that r— 1.

156. As in problem 14, calculate S for zx = r* for f ™ dz. Answer:
1

™™t — 1)(r — 1) hich amtt — 1
L -
e —q) e m+1
il - 1 'z
16. Prove that lim ————— = logz. This proves that lim zhdr =
n—>—1 N4+ 1 n——1d1

1
S e
1 X
17. Let a,b be divided into n equal parts by n — 1 intermediate points 25, =

k(b —
a+ (—n—a) . Prove that for any integrable function f(z), the limit of the

average of the n values f(x;), as n— 4o, 1s f f(z) dz. Illustrate for
— 2
7@ = (b — z)(z — a), for which the limit is Q’T‘i.

1 T
18. P I = — .
8. Prove that . _1’12” n kg hegrapT 2

% oximatin f Y
I .
PP ing 1 } 22

Hint: Identify with a sum
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1 2
19. Prove that lim — 3 Vn?—k? =

m
n—rtoo N k=1 4

1
approximating ‘]; V1 — ztds.

20. Prove that the limits in problems 18 and 19 are the same if the sums be
taken from k = p to k = n + ¢, instead of from k¥ = 1 to &k = n, where p and ¢
are any fixed integral values.

z A
21. If A(z) and B(z) are polynomials, show that f % dz contains a term

b
_Bé'%b% log |z — b) for each simple root b of B(z). These terms give the complete
evaluation if B(z) is of higher degree than A(z) and has all its roots real and

simple. Hint: Use section 116.
Tz
22. Using problem 36, Exercises V, evaluate f

Hint: Identify with a sum

. Answer: A term
xﬂ — 1 A

1 1 -1
;log |z — 1], for n even a term — ;log |z 4 1], and-in all cases [n 2 ] other

by . . 2k
terms of the form 2R;z—log (z — bx), with by = €%, ay = —,  OF more

oS Ok
1
n

23. A curve whose equation is f(z,y) = 0 is said to be unicursal if the equation
can be identically satisfied by putting x and y each equal to a rational function of
o parameter ¢, and these functions give all points (z,y) of the curve. If, for the
range considered, f(z,y) = 0 defines y in terms of z, and R(z,y) is a rational

function of z and y, show that the integral f R(z,y) dz is rationalizable,

24, If f(z,y) is a polynomial of the nth degree, and z,y, is & multiple point of
the (n — 1)st order, then f(z,y) = 0 is the equation of a unicursal curve as
defined in problem 23. Hint: Any liney — yo = {(z — xo) will cut the curve in
at most one point distinct from zo,yo, so that if we eliminate y between the two
equations, we shall have a first degree equationinz. Thus z and hence y may be
expressed rationally in terms of 2.

26. If P,(z,y) is a homogeneous polynomial of the nth degree, and P,_y(z,y) is
a homogeneous polynomial of the (n— 1)st degree, then Pa(z,y) + Pa-1(z,y) =0
is the equation of a unicursal curve. The cubic z® + y* = zy is an example.

x ——
explicitly, T = c0s “k} .

2
og |1 — 2z cos ax + 27| —;sinaktan—l{ o

Hint: Use problem 24, with (zo,50) = (0,0). For the cubic, y = iz, z = ol
t2
V=iTE

26. The curve f(z,y) = Ois unicursal if the equation obtained by eliminating y
from f(z,y) = 0 and y = ma + #is of the first degree in . This is analogous to
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the situation of problem 24 with the multiple point * at infinity in the direction

. . 1
of y = mz.” Infact, the projective transformation X = gt Y= takes

J@y) =0 into F(X,Y) =0 of the form described in problem 25, since
y = mz + ¢ becomes Y = tX.
27, Use the procedure of problem 26, with y =z 4+ ¢ to rationalize

X
y(x — y)* = x, and hence show that when this relation holds, f 4z =
}log |z — ) — 1], v
28. For a conic, n = 2, and in place of the multiple point of order n — 1 of
problem 24, we only need a simple point, so that any point will do. If y? =
az® + bz + ¢, and y2 = az? + bxy + ¢, show that y — y, = £z — ) leads to

a substitution that will rationalize f R(z,Vaz? + bz + ¢) dz. In particular,

when ¢ > 0, one possibility is 2z = 0, y, = \/Zand Y= \/;—i- iz,

29. Inproblem 28, if a > 0, show that we may apply the method of problem 26
with m = \/a, and use y = Vaz+1{ to rationalize the integral of
R(z, Vaz? + bz + ¢).

30. Show that if a curve is unicursal, its inverse curve under the transforma-
tion of problem 15, Exercises V, is also unicursal. In particular, for the lemnis-
cate (z? 4 y%)* = (2% — y?), express z and y rationally in terms of ¢ by applying
w4+ 1)

41

« Hence show that when z and y are related by the equation

problem 29 to the inverse curve Y2 = X2 — 1, obtaining =z = —

it —1)
41

of the lemniscate,

andy =

f’ @ _ g ,L‘l
y@+y*+ %) 2? + y*

31, Prove that, if g(z) can be integrated m + 1 times in explicit terms, the
integral of 2™g(z) can be found by m + 1 integrations by parts. Hint: Write
g(z) = f ™*(z), and use induction.

32, If g(z) can be integrated m + 1 times in explicit terms, the integral of
g(z) times any polynomial in z of degree at most m can be found by integrating
by parts. Hint: Use problem 31.

X
33. Assuming that f g(zx) dx = f(z), a known function, show that the
integral of the inverse function g~l(z) ocan be found explicitly. Hint:
Y
If y = '), fz g x) dz = f yg'(y) dy = f uf"(y) dy. Now use prob-

lem 31.
34, Let y = f~'(z) be the inverse of a function f(y) which is a polynomial in

any number of variables, each of which is y, €*¥, sin by, or cos by. Show that if

P(z,y) is any polynomial, then f P(z,y) dz can be evaluated in terms of ele-
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mentary functions. As particular cases we have y = log, y = sin™'z, y =
T
cos~!z, y = sinh 'z, and y = cosh™'z. Hint: If z = f(y), f PlzfYz)] dzx =

f Plf(y),y1f'(¥) dy, an integral discussed in section 139.

86. If R (cosz, sinz,y) is a rational function of the three variables, and
y? = a + b cos z + c sin z, show that the integral of R is in general an elliptic

integral. Hint:; Putt = tan g as in section 138.

86. Show that if c = 0and b = = a, orif b = 0 and ¢ = = q, the integral
of problem 35 is rationalizable.

37. Using an argument similar to that of section 142, show that the integral
of R(z,y), any rational function, with % = a:c:2 + bz + ¢ may be reduced to the

calculation of integrals of the form f ‘/“ d—z: and f
@—ny

procedure is often preferable to a direct ratlona,hzatlon of the original function,
since these three forms may be treated as in the next four problems.
38. If a £ 0 in problem 37, verify the reduction formula

39.Wheny’=m2+bx+0,showthatjvd—x=5\/b:v+c if a=0,
Y

d(c -—1 o 20z 4 b
b#=0; fl n! if a < 0; and that
Vb — dac ’

f%=Vl.alog[ax+§+\/a(ax’+bx+c)]ifa>0.

40. If y* = az® + bz + ¢, and r is real, show that the substitutionz = r — 1
z

'z
will reduce the integral f » to an integral in 2 of the type evaluated in

x—r
problem 39.
41, If y* = ax® + br + ¢, a ¥ 0, and 7 is not real, the sum of the conjugate

terms
f (= - f)y @ -y r)y

(sz +t) dr
@+ 9z + ¢)WVala+ pz + ¢

real. Prove that the transformations used in section 141 to reduce the expression
in equation (144) will reduce this integral to

may be written as f with all the constants

c f‘ zdz +D J" dz
(A'2+ BY»WA2+ B (A'22 4+ BYWA2 + B
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If A2 + B = £® in the first integral, and A +£; = ¢ in the second, the new
F4 L

¢
form is f —E_tiﬂ-{-_i » which may be evaluated as in section 137.

42. Show that the integrand R(z, Vax + b, Vez + d) may be rationalized.
2 2
Hint: Putax + b = aA(t+-:-) andcz+ d = cA (t - %) if a and ¢ have the

same sign and if this makes 4 = i <9 - il) have the same sign as a and c.
a c

Otherwise reverse the sign of A by interchanging a, b and ¢, d. If a and ¢
2 — £\2
¢ )andcx+d=—cA(1 t)p

have opposite signs, put az + b = a4 (1 -2|- £

142
choosing the notation so that 4 = — — d has the same sign as a and —c.
a ¢
43. Show that the integrand R (:c, Vaz + b: \/ il +‘d) may be rationalized.
pr+q Ypr+g
1

Hint: Puty = and then use problem 42.
pz+gq

44. Show that f (ax + b)?z? dz, where p and g are rational, can be ration-

alized if p, g or p + ¢ is an integer. Hinf: The first two cases reduce to one
treated in section 138. When p + ¢ is an integer, the integral is reduced to this

case by putting { = a+k-
z
4b. If n is a positive integer, show that f z~"¢® dz may be reduced by

successive partial integration to the exponential integral f —Zj dz.
46. If a,—; = a(z) 3 0in problem 8 of Exercises IV, show that W = W@,
'z
when A(z) = f a(z) dz and W, is the value of the Wronskian W at z,. This

Zo
proves that if W £ 0 at one point z,, it is always distinct from zero.

47. Show that an elliptic integral of the third kind with @ = 0 in (140), or
r = 0 in (189) may be expressed in terms of elliptic integrals of the first and
second kinds. Hint: Use (169) with M = —1.



CHAPTER VII
INTEGRABLE FUNCTIONS

In the last chapter it was proved that a sufficient condition for a
function to be integrable is that it be continuous. We here derive
several necessary and sufficient conditions for the integrability of a
bounded function.

These conditions enable us to show in particular that a bounded
function continuous at all points of an interval with the exception of a
finite, or enumerably infinite, number of points is integrable. We also
show that monotonic functions are integrable and that a class of func-
tions related to them, the functions of bounded variation, are integrable.

146. Integrable Functions. In section 121 we defined a bounded
function f(z) as integrable on the closed interval a,b, if

8 = gf(zoa; 0

approached a finite limit for any sequence of subdivisions of the interval
a,b such that 6r — 0, and if this limit was the same for all sequences.
We recall that the subdivisions were determined by points:

a=2 <% <z <+ <Tp=b, )
that
6; = z; — 2,y and that &y = max (5;), 3)

while the £; were any values such that
F FER RS- T 2% 4

147. Upper and Lower Integrals. Let the function f(z) be bounded
on the closed interval a,b. Then, by section 31, it has a greatest lower
bound m and a least upper bound M for this interval. Similarly, in
each closed subinterval z;_;,z;, f(x) has a greatest lower bound m; and a
least upper bound M, with

mEmSM; M. (5)

For any subdivision (2), we define the upper sum by
S=3 Ma. ()

i=1

239
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Since all the §; are positive,
S=X Ms; 2 X ms; = m( — a). (7)
3 i=1

Thus all the possible values of S are bounded from below, and so by
section 10 these values have a greatest lower bound I. We call I the

- upper inlegral of the function f(x) for the interval a,b. We shall prove
that for any sequence of subdivisions for which

—
6y —0, wehave S—I or f f(z) dz, 8)

the last expression being an alternative notation for I in which the
function and interval are indicated.
We first consider a function for which m > 0, and hence M > 0.
From the definition of I as a greatest lower bound, there is some sub-
division whose upper sum §’ is such that

I8 =<I+, 9)

for any positive e. Suppose that the subdivision which has §’ as its
upper sum has N subintervals, and designate the points of subdivision
by z} and the length of the jth subinterval by 4.

Now consider any subdivision with 6 = #, and let its upper sum be
§=XMs. We separate this sum into two parts, S;, the sum over
those intervals which do not include any point z} as an interior point,
and 3,, the sum over those intervals which do include one or more points
x; as interior points. Since there are only N — 1 interior points z/, the
sum S, contains less than N terms. For each of these terms M. ;is at
most M, and §; is at most . Hence we have:

S; = NMny. (10)

Each term of S, corresponds to an interval consisting entirely of
points of some one closed subinterval z;_;,z;. Let the term of 8 for
this subinterval be M5;. Now consider all those terms of S;,M;;8;
where 7] is a notation for those values of 7 such that

/ 7
L ST <L =T, (11)

for any one j. Since the intervals x;;_,x;; for a particular j are sub-
intervals of the jth interval, and have no common interior points, we
have:

X o;<8; and M;; < M} (12)
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But 8; >0, and M; =2 m> 0, and hence:
; M8 < M z i S Mjs;. (13)
By summing this for all values of j, we find:
8§ =8 (14)
From the relations (10) and (14) we may deduce that:
8=58+8 =<8 +NM. (15)
Again, from the definition of I as a greatest lower bound,
I<8 (16)
From the relations (16), (15), and (9) we have:
I<8=I+e+NMy (17)

For any positive ¢, the subdivision with upper sum S’ determines the
number N. If we then take any subdivision with

€

oy =1 < NM’ (18)
we shall have: _ .
I1<8=<1+2 or |[§—1I <2 (19)
The last two equations show that:
lim§ =1, (20)

for any sequence of subdivisions for which ) — 0, as we set out to prove:
Ifm=0, we replace _f(:c) by f(z) + k, where m + &k > 0. Then
S and I are replaced by S + k(b — a) and I 4+ %(® — a). The result,
lim S = I for f(x), then follows from the corresponding result for
fz) + k. .
We define the lower sum by:
S = 2 md;. (21)
i=1
By reasoning as before, it may be proved that all the possible values of
S have a least upper bound, I, and that, for any sequence of subdivisions
for which
b
6y — 0, wehave S— I or | f(z)dz. (22)
We call the last expression, or I, the lower integral of the function f(z)
for the interval a,b. It follows from the relations (5), (6), and (21) that:

8z 8. ()
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From this and the relations (20) and (22) we have:
Il (24)

This explains why we designated I, a lower bound, as an upper integral.
It also follows from the definitions (1), (6), and (21) that

Sz2z8=z8 (25)

If I = ], we may apply the last theorem of section 23 to this relation,
in view of equations (20) and (22), and so conclude that, when 83 — 0,
lim 8 = I = ]. Thus the function is integrable, and the integral I is
the common value of I and [.

‘We may also prove a converse result. We first note that, for any sub-
division determined by points (2), we may find points ¢; such that

M;— 9 <f(&:) = M, (26)

by the definition of M; as a least upper bound, where 7 is any positive
number. For such a choice of the points £;, we have

S—m< 88 @27

Next consider any sequence of subdivisions for which 83 — 0. Let e
be any positive number, and take n = ¢/n in the relation (27) for each
subdivision. We thus determine a sequence of sums S which satisfy

S—-e<8=8. (28)

Now suppose that the function f(z) is integrable on the interval a,b.
Then when 6y — 0, S = I. But § — I, so that it follows from the last
relation that

I—e<I<I, or I=1, (29)

since e is arbitrary. Similarly we may show that [ = I. Hence, when
f(z) is integrable, I = I. ‘

We have thus proved the theorem of Darboux that:

A necessary and sufficient condition that a bounded function be integrable
on an inderval s that, for this interval, iis upper integral has the same value
as its lower integral.

In this case, the integral of the function equals the common value of
the upper and lower integral.

148. Outer Content. Let P be a set of points on the interval a,b.
The function ¢(z), which is equal to 1 if zisin P, and equal to 0 if z is not
in P, is called the characteristic function of the set P. The upper integral
of ¢(z) for the interval a,b is called the outer content of the set P. We
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denote it by §, or C(P) when more than one point set is to be considered.
Thus C is the greatest lower bound of all sums

8 =X M3, (30)

formed for the function ¢(x), using some subdivision determined by
points (2). But, for any closed subinterval z; ;,z; the M; for the
function ¢ (z) is 1 if this interval contains any points of P, and the M;is 0
if the subinterval does not contain any point of P. This shows that S is
the sum of the lengths of those subintervals which include points of P
as interior or end points.

We shall now show that the outer content is determined by sums of
lengths of intervals of a less restricted character. Consider any finite
number of intervals, F. These intervals may contain points not on the
closed interval a,b, may be open or closed, and may or may not overlap.
By the length of the set of intervals F, we mean the sum of the lengths
of the separate intervals belonging to F. We denote it by L. We shall
say that any set of intervals F includes the point set P, if each point of
P is an interior or end point of at least one interval of F.

For any set of intervals F, which includes the point set P, we may form
a subdivision of the closed interval a,b by the following process. Let
a; be the end points of intervals of F. There is a finite number, N, of
such points. Select any positive number ¢ less than the minimum dis-
tance between any two distinct a;, and put 4 = ¢/2N. Now use a, b and
all the points ¢; — 7 and a; 4+ n which belong to the open interval a,b
as points z; of a subdivision.

For this subdivision, and the function ¢(z) for the set P, we may form
the upper sum, S of equation (30). We separate this sum into two
parts. Let S; denote the part of the sum for those intervals which do
not include any point a;, and S; denote the part of the sum for those
intervals which do include at least one of the points a;. Since there are
at most N intervals containing points a;, it follows from the choice of
and e that: ‘

S;2Nn=e (31)

Since every point of P is in some interval of F, and the intervals giving
terms in S; include no end points of the original intervals of F, or points
a;, every interval of the subdivision whose length appears in the sum
S; multiplied by 1 is entirely contained in some interval F. Moreover,
if several such intervals are contained in the same interval F, since they
do not overlap or abut, the sum of their lengths is less than the sum of
this interval F. This shows that:

8, =L (32)
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Consequently, we have:
S=Sl+1§2§L+e, and L;S-—e. (33)

The length L of any set of intervals F including the point set P is posi-
tive. Hence the values of L admit zero as a lower bound and hence
have a greatest lower bound L’. Since any sum S is the length of a set
of subintervals which may be regarded as a set of intervals F including
the point set P, and C is the greatest lower bound of the values of §, it
follows that:

L'szC. (34)

But if we take a set of intervals F for which L < L’ + ¢, and form the
sum § which satisfies the relation (33), we shall have:

L'>L-ez28-22C - 2 (35)
Since eis arbitrary, it follows from this relation that
L'2C. (36)
The relations (34) and (36) can only hold together if
L'=C. (37)

This leads to an alternative definition of the outer content of the point
set P, as the greatest lower bound of the lengths of all finite sets of intervals
including the point set P.

149. Zero Content. We have used the term outer content because,
in treatments of integration more complete than that given here, an
inner content is defined. The inner content is shown to be less than, or
equal to, the outer content for all sets. The term content is reserved for
those sets with the same outer and inner content. When the outer
content is zero, the inner content is necessarily zero, and the set has con-
tent zero. Thus we shall use the term zero content in place of outer
content zero.

Let f(x) and g(z) be two functions defined on the interval a,b. Let
them both be bounded, so that for some M,

i@ <M and |g(=)| < M. (38)
Suppose further that f(z) = g(z) for all values of z on the interval a,b
which do not correspond to a point of a certain point set P. Then if

¢(z) is the characteristic function of the set P, and we denote the func-
tion for which a sum is formed by a subseript, we shall have:

I8r — ol = 2MS¢ and [S;— Sl = 2MS¢' (39)
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If both functions are integrable, we have from either equation
lI; — I,| < 2MC(P), (40)

by considering a sequence of subdivisions for which 5, — 0.
If the set P is of zero content, we may conclude from the equation (39)
that
If=jg and _If=lg. (41)

This shows that, if one function is integrable, the other is also, and the
integrals are the same.

This leads us to extend the definition of integration to functions
defined at all points of an interval a,b except a set of zero content. If
such a function has an integral when we use zero as the value of the
function at the points where it is not defined, we say that the function is
integrable over the interval a,b. By the result just proved, the function
will have the same integral if we use any set of values having an upper
bound in place of zero for the set of zero content.

160. Oscillation of a Function at a Point. The oscillation of a
bounded function in an interval was defined in section 31 as M — m,
the excess of the least upper bound over the greatest lower bound for the
interval.

Consider now a bounded function f(z) for values near ;. Let

fm f@) =} and lim f(@) = f. (42)
>y T=>Zy

Then, for any positive ¢, in any interval including the point z as an
interior point and of sufficiently small length, & < &, for all values of
z # o we shall have:

J@ <f+e¢ f@)>f—e (43)
Also, for any positive #, for some value z’ in the interval of length ,
@) >F—mn f&)<f+n (44)

Now let M be the larger of f(xo) and f, and mg the smaller of f(zo) and

f. Then the oscillation for the small interval including z, cannot
exceed

My — mo + 2¢, (45)

and is at least as great as
Mo —mog—2n or Mo — mq, (46)

since 7 is still arbitrary after e has been fixed. Thus, for any sequence of
intervals, including x, as an interior point, whose lengths approach zero,
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the oscillation approaches Moy — mo. This is called the oscillation of
the function at the point x,.

Since any interval including the point z, as an interior point includes a
point 2’ for which the relation (44) holds, for this interval we have:

M>My,—n m<m+m, (47)
and
M—-m>Mg—mpg—29 or M—m=My—mo, (48)

since 7 is arbitrary. This leads to an alternative definition of the oscilla-
tion of a function at a point, as the greatest lower bound of the values of
the oscillation of the function for all intervals including the point as an
interior point.

If the function is continuous, f = f = f(xo), so that M = my, and the
oscillation is zero at the point. Conversely, if Mo = my, it follows from
My = f(xo) = mo that f(ze) = My = mg = f = f, and the function is
continuous. Thus:

A necessary and suffictent condition that a function be continuous at a
potini is that the oscillation at the point be zero.

In applying the definition of oscillation to the left end point a of a
closed interval, we use right-hand upper and lower limits, or intervals
having a as a left-hand end point. Similarly for the right end point b.
The theorem then applies to such points, in view of our conventions as to
continuity at the end points of a closed interval.

161. A Condition in Terms of Content. We shall now prove the
theorem of Jordan:

For a bounded function to be integrable on an interval, it 18 necessary
and sufficient that the outer content of every point set P, be zero, where P
15 the set of points on the interval at which the oscillation of the function is
greater than or equal to ¢, any positive number.

We first prove the condition sufficient. We select a positive e. Since
the outer content of the point set P, is zero, the point set P, may be
included in a finite set of intervals F, such that the length of the set F,
or sum of the lengths of the separate intervals L, is less than e. If the
set F contains N closed intervals a;,b;, we replace each such interval by
the open interval a; — ¢/2N, b; + ¢/2N. In this way we obtain a set of
open intervals F/, such that the length of the intervals F’ or L’ is less
than 2, and the set of intervals F’ covers the set P, in the sense of
section 11.

We next consider the set of points @, those points of the closed inter-
val a,b which do not belong to P.. Since the oscillation of the function
at any point 2o of the set Q is less than ¢, we may include zp in an open
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interval Gy such that the oscillation of the function in this interval is less
than 2e. Let G be the infinite set of all such intervals Go. Then, since
@G covers Q, and F’ covers P, the set of intervals G' together with the
intervals of F’ cover all the points of the closed interval a,b in the sense
of section 11. Therefore, by the Heine-Borel theorem, we may select
from these a finite number of intervals G’ which cover all points of the
closed interval a,b. Let the end points of the intervals G’ be ai. There
is a finite number N’ of such points. Let » be a positive number such
that 2N'n is less than e. We now take a,b and the points a/ — 7 and
a; + n which belong to the open interval a,b as the points z; of (2) used
to form a subdivision. We distinguish three types of subintervals. Let
Hy be those subintervals which include at least one point a] as an
interior or end point. ¥or any one a; the single interval including it,
or the two abutting intervals having it as an end point, must form all or
part of the interval a,'- - n,a,’- + n, whose length is 29. Hence the total
length of subintervals H; is at most 2Ny, which is less than e.

Any subinterval not H; may be included in a single interval @’, since
it contains no end points of intervals ¢’, or points a;. We denote by H,
those subintervals not H; which may be included in intervals of G’
which are also intervals of F’. Since the subintervals do not overlap,
the total length of the subintervals H can not exceed the total length of
intervals F’, or L’ which is less than 2¢. Finally we denote by H those
subintervals not H; which are not H,. These may be included in inter-
vals of G’ which are not intervals of F/, and hence must be intervals Go,
in which the oscillation of the function does not exceed 2e.

Let us now form upper and lower sums for our subdivision,

S = ZM,'&;, ;_S = Zmisi. (49)
We have, accordingly,
S’ - I_S = Z(M, - m,-)&,-. (50)

For the intervals Hj, the oscillation M; — m; < 2¢, and as the total
length of these intervals is less than b — @, we have

2%(b — a) (51)

as an upper bound for the contribution to the sum (50) from the intervals
Hj. For the intervals Hy and H,, the oscillation is at most M — m,
and as already observed, the total length of the intervals H; and H,
together is at most ¢ + 2¢ or 3e. Thus we have:

3e(M — m) (62)
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as an upper bound for the contribution to the sum (50) from the intervals
H, and H,. This shows that:

S~ 8 < 2(b — a) + 3¢(M — m). (53)

This inequality will still hold if, instead of the subdivision just used,
we use any subdivision obtained from it by introducing new points
z; and retaining all the old ones. We may do this in such a way that
oy — 0, and so deduce that:

I — 1220 —a)+ 3¢(M — m). (54)

Since ¢ is arbitrary, it follows from this relation that I — I = 0, and the
function is integrable by the theorem of Darboux in section 147. This
proves the condition sufficient.

To prove the condition necessary, let C. denote the outer content of
the point set P,. Now consider the sums S and § for any subdivision.
From the definition of oscillation at a point as a lower bound, for any
subinterval @ including a point of P, as an interior point the oscillation
for the interval is at least ¢, and M; — m; = e. But, the only points P,
not included as such interior points are those which are end points of
subintervals. As there are only a finite number of subintervals, say N,
we may include them all in a finite set of intervals G’ of total length 7,
by taking each end point of a subinterval in an interval Gg of length
7/2N. If the total length of the intervals G is L, the intervals G together
with G’ have a total length L + n at most. But they include all the
points P,. Hence, from the definition of C. as a lower bound, we have:

L+32C, or L=C, (55)
since 7 is arbitrary for any particular subdivision and fixed e. The con-
tribution from any interval to the sum:

S— 8= XM; - m)s;, (56)
is positive or zero. But the contribution of the intervals G, which
have a total length L = C, and for which M; — m,; > ¢, is at least

., 57)

8o that: S—8=z . (58)
Since this is true for all subdivisions, it follows that:

-1z, (59)

for every positive number e. Since C, is necessarily positive or zero,
if it were not zero for all values of ¢, we should have I — I > 0, and the
function would not be integrable. This proves the condition necessary,
and completes the proof of the theorem.



Arr. 152] EXTERIOR MEASURE 249

152. Exterior Measure. The condition of integrability is simpler
when stated in terms of exterior measure, which we shall now define. In
the definition of outer content as a lower bound, finite sums of intervals
were used, and the sum of their lengths was called the length of the set.
For exterior measure, use is made of infinite sequences of sets of intervals,
each set of which includes all the intervals in the preceding set and some
additional intervals. Each set H, contains a finite number, N, of inter-
vals. However, the number N will increase indefinitely as » increases.
If Ly is the length of H,, then Ly increases with n, so that either

lim Ly =L, or lim Ly = + «, (60)

We may form an enumerably infinite set of intervals I, by starting
with the intervals in H, arranged in some order, then using the intervals
in Hy, but not in Hy, in some order, and so on. If we denote the length
of the first k intervals by Ly, this will be consistent with the definition of
Ly, since the first N intervals make up Hy. Since, for any k, we may find
two numbers N and N’ such that N < k < N’, it follows that:

Ly £ Ly £ Ly, and lim Ly = lim Ly, (61)

Thus the sequence of sets of intervals with H,, made up of the first
intervals I, is made up of the same intervals as the original sequence of
sets H,, and has the same length. It has the further property that each
set includes just one more interval than the preceding set. We refer to
the sequence of sets of intervals H, as the set of intervals Iy, and call L
the length of the set of intervals.

For any set of points P on a finite interval a,b there are finite or
enumerably infinite sets of intervals I, which include the points of P in
the sense that every point of the set P is a point of at least one of the
intervals I;. Some of these sets of intervals have finite length L, since
the single interval of length b — a is one such set. Since these finite
lengths L are all positive or zero, they have a greatest lower bound, which
we call the exterior measure of the set of points P. That is:

The exterior measure of a set of points P on a finite interval is the
greatest lower bound of the lengths of all possible finite or enumerably infinite
sets of intervals which include all the points of P.

This only differs from our second definition of outer content in includ-
ing the possibility of an enumerably infinite set of intervals. Sinee we
are retaining the possibility of using the finite sets considered in deter-
mining outer content, it follows that the greatest lower bound from the
new definition will be less than or equal to that found before. Thus, if
we use M or M (P) to denote the exterior measure, we have

M=C. 62)
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163. Zero Measure. For reasons similar to those mentioned in
section 149, we refer to a set of exterior measure zero as a set of measure
zero. As a preparation for the proof that certain combinations of sets
of measure zero are again sets of measure zero, we discuss a property of
enumerable sets.

In section 2 we defined a class of objects as enumerable if it could be
arranged in a single discrete sequence. Thus a finite set of intervals, or
an enumerably infinite set of intervals Iy, is an enumerable set of inter-
vals. Now consider an enumerable number of enumerable sets of
intervals, I;;, For each j, ¢ = 1, 2, 3, - - - gives an enumerable set of
intervals. The enumerable set of sets is obtained by takingj = 1, 2, 3,

For each positive integer k, the intervals I;;, with ¢ + j = k, form
a finite set of intervals Fy. If we arrange these in order of increasing k,
and then arrange the intervals of each set ¥} in order of increasing 7, all
the intervals I,; will be enumerated:
Iy Iig, Ioy; Ins, Iog, Ina; Ing, Ins, Iag, Iaxs - - - (63)
This shows that an enumerable number of enumerable sets of intervals
may be enumerated. Compare Exercises I, problems 12 and 13. If for a
particular j, the set of intervals I;; is finite and has N; intervals, we omit
from the sequence (63) all I;; for this j with ¢ greater than N;. Again,
if the number of sets is finite, say N/, we omit all intervals I,; with j
greater than N’. The sequence of intervals (63) will be enumerably
infinite unless we have a finite number of finite sets.

Next consider an enumerable number of sets of points, P;. Let each
set P; be of measure zero. We may form a composite set P, consisting
of all points which are in at least one of the sets P;. We shall now prove
that the set P is also of measure zero.

Since the set of points P; is of measure zero, it may be included in an
enumerable set of intervals whose total length L; is less than ¢/2’, where
eis any fixed positive number. Call the intervals of this enumerable set
I;. Then the totality of intervals I;; may be enumerated as in (63).
We may use this sequence of intervals to form a sequence of sets of inter-
vals H,, by taking I1; as Hy, I;; together with the parts of I15 not in I3
as Hs, and so on. Then for any n, H, consists of parts of a finite num-
ber of intervals I;;. If N is the largest value of j for any of these, the
sum of the lengths of all these intervals I;; used in forming H, will not
exceed:

1
L1+L2+--~+LN=—25+§%+---+2%=e(l—Z—N)<e. (64)

Thus the length of any set H, will not exceed ¢, and hence the length of
the enumersble sequence of sets H, will not exceed e. But there is an
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enumerable sequence of intervals with the same length as the sequence
of sets H,, and which includes each point in any of the H,. Thus it
includes each point in any of the intervals I;;, and hence each point in
any of the sets P;. This shows that the composite set P may be included
in an enumerable set of intervals of total length at most e. But € is
arbitrary, so that the measure of the set P is zero.

We have thus proved that:

The set consisting of all points in at least one of an enumerable number of
sets of points, each of which is of measure zero, is again of measure zero.

Since a single point may be included in an interval of arbitrarily small
length, it is of measure zero. Hence a set consisting of an enumerable
number of distinct points is of measure zero. In particular, any set
containing only a finite number of points is of measure zero.

Again, consider a set made up of those points of the closed interval 0,1
whose coordinates z are rational numbers. These form a set of measure
zero, since they may be enumerated by the method used in section 2.
This set illustrates the possibility of inequality in the relation (62). For,
if we divide the unit interval into subintervals in any way, every sub-
interval will contain rational points, so that the outer content of this set
is unity. Thus for thisset M = 0, but ¢ = 1.

164. Closed Sets. A closed set of points was defined in section 12
as one which contained all its limit points. We shall now prove that,
whenever the set of points P is closed, the exterior measure of the set P
is the same as the outer content, so that we have, in place of the relation
(62), _

M = C for closed sets. (65)

We first observe that, from the definition of M as a greatest lower
bound, there is some enumerable set of intervals including all the points
of P whose total length L satisfies:

M<L<M+e (66)

for any positive e. Let us fix ¢, and determine an enumerated, non-
overlapping set of intervals @ of this character. Some of the points of P
may be end points of intervals G. If we replace the nth interval of G,
with end points a;,b;, by the open interval af — ¢/2%b + /2", we
obtain a new set of intervals G’ such that every point of P is an interior
point of an interval @/, and the intervals G’ cover the set P in the sense
of section 11. It follows, from the modified Heine-Borel theorem of
section 12, that we may find a finite subset F/ of intervals G’ which
covers the set P. Thus the points of P are included in the finite set of
intervals F’,
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Let us denote by F the finite set of intervals G associated with those
intervals of G’ which are in F’, and let E denote the finite set of intervals
added to the ends of the intervals F to form the intervals F/. Each
interval of F, as an interval G, may be associated with a positive integer
which gives its place in the enumerated sequence. As there are only a
finite number of such integers, there is a largest one, say N. If L, is the
total length of the first n intervals G, we have

L,=Ly and lmZL, =1L, 67)
8o that:
Ly £ L. (68)

Also, if L} is the total length of the intervals added to the first » intervals
@ to form the corresponding intervals G', we have by reasoning, as in
equation (64):
L, < 2¢ for all n, (69)
Since the intervals of the set F” are all among the first N intervals G”,
we have for the total length of the intervals F/, or L(F’):

L(F')<Ly+ Ly <L+ 2. (70)

But, from the definition of C as a lower bound of finite sets of intervals
which include all the points of P, we have:

C < L(F'), (71)
and hence from the relations (70) and (66),
C<L+2=<M+3, or C=HM, (72)

since e is arbitrary. This, combined with the relation (62) shows that
C = M for any closed set P, the relation (65) which we set out to prove.

166. Closure. If we take any point set P, and designate by P’ the
set consisting of all the limit points of P, then the set consisting of all the
points which are in either P or P’, or in both, is called the closure of the
set P. We denote it by P + P’, and shall prove that it is always closed.
For, if Q is any limit point of this set, any open interval which has Q
as an interior point will either contain points of P, or points of P’. But
any open interval which contains a point of P’ contains a limit point
of the set P and hence points of P. Thus any point @ is necessarily
a limit point of the set P, and therefore a point of the set P’. Hence the
set P + P’ contains all its limit points, Q, and is a closed set.

Consider next any finite set of closed intervals F which includes all the
points of P. We shall show that F must include all the points of P’.
For, if 2’ is any point of P/, we may select a sequence of distinct points
of the set P, z,, such that lim z. = 2’,as n — + ». Since there are
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only a finite number of intervals in the set F, some one must contain an
infinite number of points x,, and hence the point z’, since the interval is
closed. This proves that F includes all the points of P’. Since F
includes all the points of P, it includes all the points of P 4 P’.

Let us now consider C(P), the outer content of P, and also
C(P + P’), the outer content of the closure of P. Since the set P + P’
includes all the points of P, any finite set of intervals which includes
P + P’ includes P. Therefore:

) = C(P+P). (73)

But, for any positive ¢, we may find a finite set of intervals, F/ which
includes P and with total length L, such that:

CP)SL=C(P) +e (74)

By adding the end points of these intervals to them, we obtain a finite
set of closed intervals F with the same total length L. Since the set of
closed intervals F includes the set P, it includes the set P + P’, and:

C(P+P)=L. (75)
Hence, from the relation (74),
CP+P)=C(P)+e¢ or C(P+P)=T(P), (76)

since e is arbitrary. A comparison of the relations (76) and (73) shows
that:
CP+P)=Cp), (1)

and the outer content of any set is the same as the outer content of its closure.

The set of rational points on the interval 0,1 provides an illustration
of this theorem. Since every point of the closed interval 0,1 is a limit
point of rational points, for this set P the set P’ contains all the points
of the unit interval. Thus the closure of this set, P 4+ P’, consists of
the points of the unit interval, and C(P + P’) = 1, in agreement with
equation (77) and the fact that C(P) = 1, which we proved at the end
of section 153.

166. A Condition in Terms of Measure. Given any function f(z),
bounded on the closed interval a,b, and any positive ¢, let 'as consider
P, defined in section 151 as the set of those points on the interval a,b
at which the oscillation of the function f(z) is greater than or equal to e.
We recall that the oscillation at a point 2 is the greatest lower bound of
the oscillations for all intervals which include the point zo as an interior
point. If z; is a limit point of points belonging to P., every interval
including 7, as an interior point will include a point of P., and therefore
the oscillation of f(z) for this interval will be at least e. It follows that
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the oscillation of f(x) at the point x, will be at least ¢, and x is a point
belonging to P.. This proves that the set of points P is closed.

Now let D denote the set of points of the closed interval a,b at which
f(z) is not continuous. We shall prove that if the exterior measure of
the set D is zero, the function f(z) is integrable on a,b. We showed in
section 150 that if the oscillation of f(z) at a point is zero, f(z) is con-
tinuous at the point, and conversely. Thus at any point D, the oscilla-
tion of f(x) is positive. Conversely, any point at which the oscillation is
positive is a point of discontinuity, and all the points of any set P, are
included in the set D. Thus any enumerable set of intervals which
includes the set D, also includes the set P and:

M. < M(D). (78)
But, since the set P is closed, by equation (65), we have:
C(Pe) = M(Pe)- (79)

If now the exterior measure of D is zero, it follows from the last two
relations that the outer content of P, is zero. As this is true for all ¢,
the function f(z) is integrable on the interval a,b by the theorem of sec-
tion 151.

We may show conversely that if the function f(z) is integrable, the
set D has its exterior measure zero. To do this, we take e = 1/n, where
n is any positive integer, and consider the set P.. Since f(z) is inte-
grable, the set P, has its outer content zero. Hence by equation (79),
its exterior measure is zero.

Forn=1,23,---, the sets P with e = 1/n form an enumerable
number of sets of measure zero, to which we may apply the theorem of
section 153 to deduce that the set consisting of all pointsin at least one of
these sets is of measure zero. But this set is the set D. For we have
already seen that every point in any P, is a point of D, and at any point
of D the oscillation of f(z),p, is positive. Since any positive number p
exceeds 1/n when n exceeds 1/p, it follows that every point of D is in all
the sets P, with sufficiently small ¢, or sufficiently large n.

Thus D is of measure zero when f(x) is integrable, as we set out to
prove. This completes the proof of the theorem of Lebesgue:

For a bounded function to be integrable on an interval, it is necessary and
sufficient that the function be continuous at all points of the interval, with the
exception of a set of points whose exterior measure is zero.

Let g(z) be a function of x determined by an enumerable number of
functions f;(z), 1 =1, 2, - - -, in such a way that g(z) is continuous
whenever all of the f;(z) are continuous. Then if g(z) is bounded, and
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all the f:(z) are bounded and integrable on the interval a,b, the function
g(z) is integrable on that interval.

For the points where any one of the functions f;(x) is discontinuous
constitute a set D; of measure zero. By section 153, the set consisting
of all points in at least one of these sets is again of measure zero. But
g(z) must be continuous except at points belonging to one of the sets D,
and hence to this set. Thus, since it is bounded and continuous with
the exception of a set of points of measure zero, it is integrable.

In particular, the result applies to a finite number of functions f;(x),
and shows that a continuous function of a finite number of integrable
Sunctions is integrable if it is bounded.

167. A Special Class of Integrable Functions. A set containing no
points is considered to be contained in any interval, and hence to be of
exterior measure zero. Thus the theorem of section 122 on the integra-
bility of continuous functions is included in the result just proved.

Again, it was shown in section 153 that a set consisting of an enumerable
number of distinet points is of measure zero. Hence we have as an
important special case of the theorem of the last section:

A bounded function, continuous on an interval, or continuous at all
points except a finite number, or an enumerably infinite number of points,
18 tntegrable on the interval.

168. Monotonic Functions. Suppose the function f(z) is defined and
monotonically increasing throughout the closed interval a,b in the sense
of section 27. Then,
ifa<z <z, =B, f(@1) = f(=z2). (80)

In particular we have:

fl@) = f(z) = 7, (81)

for all points z of the closed interval, so that the function is bounded.
From this, and the theorem of section 27, it follows that as we approach
Zo, any point of the interval, from the left, a limit is approached, which
we denote by f(zo—):

f@o—) = lim f(z). (82)

T=>To—

- Similarly, we use f(zo+) to mean the limit from the right:

flxo+) = lim+ f(x). (83)
For the oscillation of f(x) in any closed interval zo — h,zo + &, we
have

J@o + k) — f(zo — h), (84)
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as a consequence of equation (80). Hence, for the oscillation of f(z)
at o, as defined in section 150, we have:

f(@o+) — f(zo—). (85)

Now suppose that there are N interior points z; of the interval a,b at
which the oscillation of f(z) is at least e. From the relations

fla) £ fx1=); flxit) £ f@ig1i—); fley +) S fB), (86)

it follows that:

- 1) — f(a).

f(b) —f(a) =2 N, and N = 87)

€

This shows that for any given e, there are at most a finite number of
points in the sets P,. By starting with the points at which the oscilla-
tion is =1, followed by those at which the oscillation is <1 and =1/2,
and so on, we may enumerate all the points at which the oscillation is
not zero. The points added at the nth stage are finite in number, since
they are included in P, with e = 1/n. Since the function is continuous
at all points at which the oscillation is zero, this proves that:

A function, monotonic on a closed interval, is either continuous on the
wnterval or continuous at all points except a fintte or an enumerably infinite
number of points.

While we have stated the argument for monotonically increasing func-
tions, we may either use a similar argument for monotonically decreasing
functions, or replace f(z) by —f(z).

This result, combined with that of section 157, proves that:

A bounded function is integrable on any interval on which it vs monotonic.

Or, since a monotonic function on a closed interval is necessarily
bounded:
A function monotonic on a closed interval ts tntegrable on that interval.

169. Functions of Bounded Variation. The sum of a monotonically
increasing function and a monotonically decreasing function will be
continuous unless one of the monotonic functions is discontinuous.
Thus any such sum will have at most an enumerable number of dis-
continuities, and so be integrable on any closed interval.

We may characterize such functions in terms of the notion of variation
of a function, which we proceed to define. For a function f(z) defined
on a closed interval a,b we may form the sum

v = ):1 (@) = f(zi)| (88)
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for any points (2) of a subdivision of the interval a,b. If the values of v
for all possible subdivisions are bounded, the function f(z) is said to be of
bounded variation on the interval. In this case, v has a least upper
bound, ¥, which we call the total variation of the function on the interval.
Let p denote the sum of those differences f(z;) — f(x;—;) which are posi-
tive, and let — ¢ denote the sum of those which are negative. Then:

v=p+gq, (89)
and

p—q= ZUE) ~ f@] = fen) = J(a0) = 16) = f(a).  (90)

It follows that:
2p=v+ () —f(e) and 2¢ = v+ f(a) — f(b). (91)

Thus, if the sums v have an upper bound, the sums p and ¢ also have an
upper bound. We denote their least upper bounds by P and Q. From
the equations (91) we see that a subdivision which makes any one of
these numbers approximate its least upper bound does the same for the
other two, and
2P =V + f(b) — f(a), 2Q = V + f(a) — f(b). (92)
Now let v(z) be a number corresponding to » when we take the interval
a,z in place of a,b. We may use the value z as one of the points of the
subdivision used to calculate a value of v. Also all the terms in the sum
for v in equation (88) are positive. Thus any subdivision of the interval
a,z giving a value v(z) may be used with any subdivision of the interval
z,b to give a value of v which is equal to, or greater than, v(z). 'This
shows that if v is bounded, all the sums »(z) are bounded, and the func-
tion is of bounded variation on any interval a,z. If V(z) is the least
upper bound for the values of v(z), for a given z, we have:

V)= V. (93)
Also, by using the reasoning with any z’ > z in place of b, we see that
V)= VE') if z<a’. (94)

Thus the function V (z) is a monotonically increasing function of z.
Now denote the numbers corresponding to P and Q for the interval
a,z by P(z) and Q(z). Then, as in equation (92), we have:
2P(z) = V(z) + f(z) — f(a) and 2Q(z) = V(z) + f(a) — f(=).
(95)
The argument used to establish the relation (94) may be applied to the
positive sums for p(z) and ¢(z), the analogues of p and ¢ for a,z, to show
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that P(x) and Q(z) are each monotonically increasing functions of z.
Finally, from equation (95) we have

f@) = [f(a) + P(x)] - Q(), (96)

which shows that every function of bounded vartation may be regarded as
the sum of a monotonically increasing function and a monotonically de-
creasing function.

From this and the remark made at the beginning of this section, it
follows that:

Every function of bounded variation on a closed interval is integrable on
this interval.

Let us next show that on a closed interval every sum of two mono-
tonic functions is of bounded variation. We first note that if f(z) is
monotonically increasing, all the differences f(x;) — f(x:—1) are positive
or zero, so that ¢ = 0. Hence by equation (90), p = f(b) — f(a) and:

Q=¢=0, V=v=P=p=f0) —fa). 97)

Thus on a closed interval a monotonically increasing function is of
bounded variation. Similarly, on a closed interval a monotonically
decreasing function is of bounded variation.

But if we write
OF; = F(z;) — F(zs—y), (98)
and interpret 6G; and 8H,; similarly, where
H(z) = F(z) + G(2), (99)
we have the relations:
SH; = 6F; + 6G; and |8H,| £ |8F,| + [6G:|. (100)

By considering these last relations for ¢ = 1 to » and summing, we find
that for any subdivision the sum v for H (x) cannot exceed that for F(z)
plus that for G(z). This shows that the sum of two functions of bounded
vartation is again of bounded variation.

In particular, on a closed interval any sum of a monotonically in-
creasing function and a monotonically decreasing function is of bounded
variation, and the class of such functions is identical with the class
of functions of bounded variation, in view of the result deduced from
equation (96).

We may replace the monotonic functions of the decomposition by
increasing and decreasing functions. For example, we may write

f@) =[f@) + P(x) + =+ k] - [Q@) + 2+ ] (101)
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in place of equation (96). We may thus consider a function of bounded
variation as equivalent to the difference of two increasing functions, each
positive if k > —f(a) — aand k > —a, since P(a) = Q(a) = 0. The
functions of bounded variation are the most restricted class of functions
on a closed interval including all positive increasing functions, and funec-
tions which are linear combinations of a finite number of such functions.

160. Operations on Functions of Bounded Variation. We have
already remarked that the sum of two functions of bounded variation is
of bounded variation. This result persists if we replace the funda-
mental operation of addition by subtraction or multiplication. For, if
y and y’ are two functions of bounded variation, we may write:

y=s—t and y' =s — ¥, (102)

where s, ¢, s/, and t’ are all monotonically increasing functions. Conse-
quently we have

y—=y' =@+t - @¢+s), (103)

which shows that the difference of the two functions is the difference
between two monotonically increasing functions, and hence is of bounded
variation. Similarly we may deduce from

yy' = (s8’ +tt') — (st’' +ts') (104)

that the product of the two functions is of bounded variation.

Since y'/y = (1/y)y’, the quotient of y” by y will be of bounded varia-
tion if " and the reciprocal of y is of bounded variation. We shall show
that 1/y is of bounded variation on any interval on which y is of bounded
variation and uniformly bounded away from zero. That is, if y = f(z),
there is some fixed positive number m such that

I/ ()| 2 m, (105)
for all z on the interval considered.
If we put
f(z;)=A and f(zia) = B, (106)
we have:
1 1 B — A 1
— — | = |[———| < —j4 — Bl
4 B’ 4B | S4Bl (107)

Hence, with the notation of equation (98),

zb(3) |= Sz (108)
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and the variation of the reciprocal of f(x) admits 1/m? times the variation
of f(x) as an upper bound. This proves that with the restrictions stated,
1/y is of bounded variation.

We have thus proved that the quotient of two functions of bounded
variation is of bounded variation, provided that the function in the
denominator is uniformly bounded away from zero.

161. Continuous Functions of Bounded Variation. We may show
that the variation function V(z), as well as the functions P(z) and
Q(x), are continuous functions of & at any value zy where f(z) is con-
tinuous. In view of the relations between the three functions given in
equation (95), it is sufficient to prove the property for V(x).

Let f(x) be continuous at 2. Then, for any positive ¢,

If@&') — flzo)l < if |&" — zo| < b (109)

From the definition of ¥ as an upper bound, there is a subdivision of a,b
which makes
v>V —e (110)

Since the sum v may increase but cannot d=crease, if we use additional
points of subdivision and retain all those already present, we may
assume that z, is a point of the subdivision, and that if z’ is the next
following point of subdivision, |z’ — 2o} < 8. We shall then have for
this subdivision:

o) = v(@) + /() = f@o)] < v(zo) + ¢ (111)
We must also have:
V') so@) +e (112)

For, if V (z') exceeded v (') -+ ¢, there would be some subdivision of
a,x’ with a sum exceeding this. But v(z’) is that part of the sum used
to form v coming from the interval a,z’. By using the new points for
a,2’ and the old points for z’,b, we should have a sum for a,b exceeding
v + ¢, and hence V, which contradicts the property of V as an upper
bound.

By the property of V (2o) as an upper bound,

v(zo) = V(zo). (113)
We may deduce from the last three relations that
Viz') < V(z) + 2e (114)
But V() increases monotonically with z, so that
0= V(@) ~ Viz) = 2 (115)

and this relation holds if z’ is replaced by any point between zo and z’.
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Similarly, we may assume that the subdivision for » contains a point
z’’, the next point preceding xo, with [z”/ — zo| < 8., and deduce the
relations:

v(zo) = v(@"") + f(®@) — F(&")] S v(") + ¢ (116)

V(o) £ v(xo) +¢ and v(z’) < V() 117)

so that: V(zo) £ V(") + 2 (118)
Hence, since V (z) is monotonically increasing,

0= Vixg) — V(') < 2, (119)

and 2’/ may be replaced by any point between z’’ and z,.
The relations (115) and (119) show that

[V(z) — V(xo)| < 2¢, (120)
for any point # in the interval 2’/ < z < z’, and hence for all z, such that
|z — Zo| < min (z — 2”2’ — z). (121)

Since e and hence 2e is arbitrary, this shows that the function V(x) is
continuous at z. ;

Since the functions P(x) and Q(z) are continuous when f(z) is con-
tinuous, we see from equation (101) that:

Any continuous function of bounded variation may be written as the
difference of two continuous increasing functions.

EXERCISES VII

1. Let P, denote the point set consisting of all points with rational coordi-
nates on the closed interval 0,1. If ¢(z) is the characteristic function of this set,
as in section 148, show that for the interval 0,1 the upper integral of ¢(r) is 1
and the lower integral of ¢(z) is zero.

2. Let F(z) and G(z) be each integrable functions on the integral 0,1, with
F(z) £ G(z) on this interval. If the funetion f(x) equals G(z) when z is a point
of P, of problem 1, and f(x) equals F(z) when z is not a point of P,, show that:

1 1 1 1
= dz =1 F .
I fx) dz ‘/; G(x) and L f(z) dz j; (z) dz

3. Let P, be any set of points on the interval 0,1 and P, be the set of points
on the interval not in P;. If every point of the interval is a limit point of points
of P; and also a limit point of points of Ps, show that the results of problems 1
and 2 are unchanged if we replace P, by P1.

4, Let the function f(xr) be defined on the interval 0,1 by the following
conditions: If z is irrational, f(z) = 0. At the end points, f(0) = f(1) = 1.
For a rational value of z, p /q in its lowest terms, f(p /g) = 1/q. Prove that the
oscillation of f(z) is zero for irrational z, and is f(x) for rational x.
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5. Prove that the function f(z) of problem 4 is integrable on the interval, 0,1.

6. Let g(g) be any function of ¢ for whichlim g(¢) = 0 as ¢ — 4. Define
f(z) as in problem 4, except at the points p /g, and put f(p/g) = g(g). Prove
that the results of problems 4 and 5 still hold.

7. Cantor’s ternary set is obtained by removing an enumerable sequence of
open intervals from the closed interval 0,1 as follows: First remove the open
interval 1/3, 2/3, or middle-third open interval. Then remove the middle-third
open interval from each interval that remains, and repeat the process indefinitely.
Thus at the second stage two open intervals are removed, 1/9,2 /9 and 7 /9,8/9.
At the nth stage 2" intervals each of length 1/3" are removed. Prove that
this set is of content zero. Hint: After each step the intervals left have a total
length 2/3 that of the preceding stage. Hence after n steps the intervals left
have a total length (2/3)". But these contain all points of the set, and as
n— +o, (2/3)*— 0.

8. Let ¢ be any number such that 0 < ¢ < 1. Remove an open interval of
length ¢ from the interval 0,1, and then from each interval that remains remove
an open interval contained in it ¢ times its length. Repeat the process indefi-
nitely, and let P, denote the set that is left. The special case where the intervals
are centered, and ¢ = 1/3, is described in problem 7. Prove that the set P, is of
oontent zero. Hint: By reasoning as in problem 7, show that the intervals left
after n stepsis (1 — ¢)", which— 0.

9. We may form a set by the process of problem 8 using a sequence of num-
bers q1, g2, gs, - - between 0 and 1 instead of a fixed number, using ¢, for all
intervals at the nth stage. Show that the magnitude of the outer content of the
setislim (1 — ¢;)(1 — @) - - - (1 — @») as n becomes infinite. The limit always
exists, since the product is positive and decreasing with n.

10. If a sequence of positive numbers decreases with #, it approaches a limit,
an—a. If a; < 1, we may define a sequence of numbers ¢, successively, by
setting ¢1 = 1 — a1, and for n > 1, ¢n = 1 — a@n/an—1. Show that by using
these in place of the ¢, of problem 9, we obtain a set with outer content a.

11. Prove that the set obtained by removing an enumerable number of non-
overlapping open intervals from a closed interval is a closed set. The sets of
problems 7, 8, 9, 10 are examples. Hint: Since any point not in the set is in an
open interval composed of similar points, it is not a limit point of the set. Hence
all limit points of the set are in the set, and it is closed.

12. Prove, conversely to problem 11, that any closed set on a finite interval
may be obtained by removing a suitable sequence of open intervals from a
certain closed interval. Hint: the greatest lower bound of the set, q, is in the
set. Similarly, for the least upper bound, . The set is on a,b. If z is any
point of a,b not in the set it is in some open interval z’,2" composed of similar
points where z’ and z’/ are in the set, so that the same interval is obtained if we
start with any point of it distinet from z. Since such intervals do not overlap
and are all on a,b, there are only & finite number whose length exéeeds 1 /n, and
they may be enumerated.

13. If a function f(z) is continuous on each of the open intervals removed to
form the set P, of problem 8, it is integrable on the interval 0,1.
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14. Let P, denote the point set consisting of all points on the closed interval
0,1 whose codrdinates are algebraic numbers, as in Exercises 11, problems 26, 30,
and 33. Prove that the set P, is of measure zero, but of outer content 1.

15. By interpreting the meaning of the result of problem 14 that P, is of
measure zero, deduce that there are points on the interval 0,1 not in P,. This
proves again that there are transcendental numbers, a resuit of problem 34 of
Exercises II.

16. Prove that if a set consists of a finite number of points, it is of content
zero. Use this and the theorem of section 151 to deduce an alternative proof of
the fact that a bounded function is integrable if it is monotonic.

17. If f(x) is monotonic on the open interval a,b and as z — a+, f(z) — — =,
as £ — b—, f(z) — 4+, f(z) is continuous except on an enumerable set of
points. Hint: Put F(z) = tan™! f(z), and show that f(z) is continuous wherever
F(z) is. But the argument of section 158 applies to F(z).

18. If f(z) is monotonic on any interval, it is continuous except on an enumer-
able set of points. The interval may be open or closed, and may be replaced
by the ranges —w, 4, or —, b, or a,+. Hint: Reduce to a bounded
function as in problem 17.

19. Prove that, if f(z) is bounded and integrable, then [f(z)| is integrable.

20. Prove that if f(x) satisfies a Lipschitz condition, equation (77) of section
128, then f(z) is of bounded variation.

z
21. Prove that if g(z) is bounded and integrable, and f(z) = f g(z) dz,
[
x
then f(z) is of bounded variation. Also that for f(z), V(z) = f lg(@)| de,
a

P(z) = f zgl(x) dzx and Q(z) = f ==gz(:n:) dx, where gi(z) = 0 when g(z) < 0,

and g;(z) = g(z) when g(z) > 0; while go(x) = 0 when g(z) = 0, and go(z)=
—g(x) when g(z) < 0. Compare problems 19 and 20.



CHAPTER VIII
EXTENSIONS AND APPLICATIONS OF INTEGRATION

The process of integration defined in section 121 in certain cases
determined the Riemann integral of a bounded function over an interval
as the limit of a special type of sum. Here we consider some modifica-
tions of this fundamental definition of integration.

We first discuss the Stieltjes integral, which is derived from two func-
tions. We next consider a type of sum involving a function of several
variables, each of which is in turn a function of a single variable. We
show that, under certain conditions, the limits of sequences of such sums
are Riemann integrals. Then we consider the improper integrals of the
first kind, which are applicable to certain functions over an infinite
range, and the improper integrals of the second kind, which are appli-
cable to certain unbounded functions.

Finally, we consider some geometric and physical interpretations of
the various types of integrals.

162. The Stieltjes Integral. Let the two functions f(z) and g¢(z)
be each single-valued in the closed interval a,b. Consider an arbitrary
division of the interval a,b into subintervals determined by the points

e=1<z <2< <2y =D, (1)
and choose any points §; such that
Ti1 =& ST 2)

Then we may form the sum
§ = ZIENoe) — oG, 3)

analogous to that used in section 121, This sum depends on the number
n, the choice of the z;, and the choice of the &;.

Now consider any infinite discrete sequence of sums 8, of this type for
which

lim 83 = 0, 4)
t—+wo
and where, as before,
oy =maxéd; and §; = z; — 2,4 (5)

264
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If, for any such sequence, the values of S; approach a finite limit, and
if this limit has the same value I for all such sequences, then I is called
the Stieltjes integral of the function f(z) with respect to the function
g(z), over the interval ab.

We speak of the sum S of equation (3) as a Stieltjes sum. If we define:

o9 = g(z:) — g(@im1), (6)
the Stieltjes sum (3) may be written:
8= _Zlf(zf) 89;. )

For reasons similar to those stated in section 127, this suggests the
notation for the Stieltjes integral:

b b
lim 8, = Iy = f f(z)dg or f f(z) dg(=). ®

We say that f(z) dg(x) has a Stieltjes integral if there is a unique limit Is.

When we wish to refer to the sums and integrals of section 121, in con-
tradistinction to those of this section, we shall call them Riemann sums
and Riemann integrals. The Stieltjes integral, as defined in this section,
includes the Riemann integral as the special case for which g(z) = .

163. A Sufficient Condition. We shall now show that, if f(x) is
continuous on the closed interval a,b and g(z) is monotonically increas-
ing throughout the same closed interval, then f(z) dg(z) has a Stieltjes
integral.

Since the function g(z) is monotonically increasing, all the differences:

8g; = g(x:) — g(xin1) ()]

will be positive or zero.
Now select any positive 7 and determine a 8 such that, for any two
points z; and 2, in the closed interval,

n

If(xa) — f(z1)] < ¢ if [w2 — 21| < 8, where €= ms (10)
We consider two sums:
S = LS b and 8" = _):lﬂs,f) &'gi, (13)
i= j=
such that
& 8
ou éEO and &) = -29, 12)

where 87 is defined for the first sum by equation (5) and 8 is similarly
defined for the second sum. These sums are analogous to the Riemann
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sums in equation (9) of section 122. By reasoning similar to that used
to derive equation (19) in section 122, we may show that, for the
Stieltjes sums of equation (11),

¥4
S— 8 < X ed’gu (13)
k=1

where p and z;” are defined by equation (12) of section 122 and
89k = g(xi’) — g(zily). (14)

Since all the 6’’g;, are positive or zero, and:
P
Z "9 = 9(&") — g(w) = 9(0) ~ g(a), (15)

it follows from the relation (13) and the last equation of (10) that:
IS — §'| £ dg(d) — g(a)] £ n. (16)

We may now apply to this equation the argument based on equation
(20) in section 122 and draw the following conclusions: Any sequence
of Stieltjes sums (11) for which 65r — 0, approaches a limit. This limit,
Is, is the same for all such sequences. Any Stieltjes sum with 5, < 50/2
approximates the value of the integral to within .

By similar reasoning, or by noting that if h(z) is monotonically
decreasing, g(z) = —h(z) is monotonically increasing, we may prove
that the same results hold for monotonically decreasing functions.
Accordingly, we formulate the theorem:

The Stieltjes integral of f(x) dg(z) exists in any closed interval in which
f(x) ¥s continuous and g(x) is monotonic.

164. Duhamel Sums. Let
yj=fj(x))j= 1; 27""k (17)

be k continuous functions of the variable z in the closed interval a,b.
If 4; is the minimum and B; the maximum of the function f;(z), the
values of y; will all lie in the k-dimensional interval:

K : A; £ y; £ B; (18)
Next let
F(y;) = F(y1, y2, - -+, Ux) (19)

be a continuous function of the k variables y; throughout the closed
interval K. Then, by section 35, F(y;) is uniformly continuous in this
closed interval, is bounded, and takes on its maximum and minimum
values.
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If we consider the equations (19) and (17) as defining F as a function
of z,

G(z) = FIf;(=)], (20)

this will be a continuous function of z throughout the closed interval
a,b by section 36.

For any arbitrary subdivision of the interval a,b by points (1) we select
k sets of points satisfying the relation (2). We denote the points of
the jth set by &; so that, for j =1,2,3,---,k,

Tig S & S . (21)
We now form the sum: ’
Sp = EF[fj(&j)]&; where j=1,2,-:,Fk, (22)

and §; is defined by equation (5). We shall refer to a sum of this type
as a Duhamel sum.
‘We shall show that any sequence of Duhamel sums for which

oy — 0, where &y = maxé;, (23)

approaches as a limit the Riemann integral:

b
- [ewa= [ Ap@ie (24)
To prove this, first select any positive 5, define:
.
€= b— a; (25)

and determine a &’ of uniform continuity such that
F@i) —F@l <e if Wi —yjl<d; j=1,2,---,k (26)
and 3}’ and y} are in the closed interval K.
Next select a 8’/ such that:
If;&") — fi@@)] <& for j=1,2,---,kif [z — 2’| <&’ (27)
Now consider any Dubamel sum (22) with 5 < &’’. For any &
satisfying equation (2) we have from equation (21):
lt; — & S 8, for j=1,2,3,- -,k (28)
It follows from this that:
[Ff;(&:5)] — Flf;(E)]l < e (29)
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This enables us to compare the Duhamel sum Sp, with the Riemann
sum for the same subdivision:

S=§G@m=§mmwm (30)
We find:
15— 51 S T IFLF(60)] — FUs &b

Seldis(b-ae=sy, @31

.
iMe

by equation (25).
Since § is a Riemann sum for the integral (24), it follows from section
122 that there is a &, for the 5 here used such that
8
I -8 <n, if aM<§°- (32)
Consequently,

I — 8p| <2, if &y < min (‘129 6”)- (33)

This proves the theorem:

Any sequence of Duhamel sums (22) involving one continuous SJunction
of k variables and k continuous functions of a single variable, formed for a
sequence of subdivisions for which 8y — 0, approaches as a limit the
Riemann integral (24).

If h(z) is any bounded function having a Riemann integral on the
closed interval a,b, and if G(z) is a continuous function on this interval,
the product k(z)G(x) will be bounded on this closed interval and con-
tinuous at all points where k() is continuous. Thus, by the remarks
at the end of section 156, the.product will be integrable. Now consider
any Riemann sum:

S = T hE0Es, (34)

and the Duhamel sum formed for the same subdivision, with the function
G(z) defined by equation (20):

Sp = EM&)F [£5(&:5)18:. (35)
If H is an upper bound for k(z) on the interval, we have
|8 — Syl < Hy when 63 < 8/, (36)

by reasoning similar to that used for equation (31).
Now consider any sequence of values of Sp, formed for subdivisions
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with 8 — 0. 'The sequence of values of S, formed for the same values
of §; and the same subdivisions, approach a limit:

b
I= f h(z)G(z) da. (37)

Since, for values sufficiently far out in the sequence, we shall have
oy < 8" and |I — 8| < 7, for such values:

I-H+ 1)< 8 <I+ (H+ 1)y, (38)

which shows that the values of Sp approach the limit I, since 7 is arbi-
trary.

165. Properties of Stieltjés Integrals. If the function g(z) has a
derivative throughout the open interval a,> it follows from the law ‘of
the mean that, for a suitable value of £ in the interval z;_;,z;:

(@) = (1) = ¢’ (&) (@i — z21) = ' (8)ds. (39)
Consequently the Stieltjes sum (7) may be written:
8 =X J&) 80: = I f&)9 €5 (40)

This is a Duhamel sum similar to that of equation (35), with & = 1.
We may take either f(x) or ¢’(x) as the function h(z), and the other
factor as the function G(z). Thus, if either of these functions is integra-
ble, and the other continuous, any sequence of values for subdivisions
with 8 — 0 will approach a limit, and that limit will be the Riemann
integral

b
J @@ s (41)

for all such sequences. In particular, this proves that:

If f(x) is an integrable function on the closed interval a,b and g(z) has a
derivative g’ (z), continuous on this closed interval, then f(z) dg(z) has a
Stieltjes integral, which may be expressed as a Riemann inlegral of

1@ @): b b
[ 1@ @@ = [ 1@ @ da. 2)

Now suppose that g (z) is monotonic on the closed interval a,b and that
f(z) has a continuous derivative on this interval. Then, by section 163,

b
the Stieltjes integral f f(z) dg(z) exists. And, by the theorem just

b
proved, the Stieltjes integral f g(z) df (z) exists.
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Now let us consider the identity:

1@lg") — 9@ + g@Nf ") — f&)] =
f=")g@E") — f@)g@). (43)
We may deduce from this that:

?1 f () o9 + 21 9(xi1) 8 = f(@a)g(2a) — f(20)g (o)

b
= fl2)g(z)| . (44)

Since the last expression is independent of the subdivision, and the
terms in the left member are particular Stieltjes sums for functions
whose Stieltjes integrals exist, we find by taking a sequence of subdivi-
sions with 5 — 0 that:

b
[ 1@ 0@ + [ 0@ @) = 1@ o)
This is equivalent to

b
[ 1@ doe) = 1@ @)

b
. (45)

b b
- [o@r@da @)

The last two equations have a formal similarity to the rule of integra-
tion by parts, and we have proved that:

If f(z) has a derivative f’(x) which is continuous on the closed interval
a,b, and if g(z) is a monotonic function on this interval, the evaluation of
the Stieltjes integral of f(z) dg(z) may be reduced to the evaluation of a
Riemann integral by an integration by parts, according to equation (46).

We note that the Stieltjes integral is linear in f(z) and also linear in
g(z). That is, multiplying either f(z) or g(z) by a constant k multiplies
the integral by k. Also

[budg+£bvdg=£b(u+v)dg, “47)

fbfdu+fbfdv=fbfd(u+v), 48)

if each of these integrals exists. If f is continuous, and u and v are both
monotonically increasing, this will necessarily be the case. If one is
increasing and the other decreasing, each of the integrals will stilt
. exist in the sense of section 162. In this case the expression on the right
of equation (48) is sometimes defined as the value of the left member,

and
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which is the same for any decomposition of the function of bounded
variation (u + ») into the sum of two monotonic functions.

The Stieltjes integral of f(z) dg(z) is unchanged by the addition of a
constant to the function g(x).

When g(x) is a monotonically increasing function, the 8g; are all
positive or zero. Hence most of the discussion of section 124 may be
applied to the Stieltjes integral of f(z) dg(z). In particular, if m and M
are bounds for f(z) in the closed interval e,b and g(z) is monotonically
increasing in this interval:

b
mlg(®) — g(a)] = f f(@) dg = Mg(®) — g(a)]. (49)

166. Improper Integrals of the First Kind. So far we have only
considered finite intervals, determined by finite limits of the integrals.
Let us now consider a function f(x), integrable over the interval a,x for
all values of z = a. If, as z — + », the integral approaches a finite
limit, we write:

00 T
f f@de= lim [ feu)du=L. (50)
a z—>+0 Vg
We say that the integral on the left converges when there is a finite limit,
or converges to L to indicate the limit approached. When no finite
limit is approached as £ — + «, we say that the integral diverges, or fails

to converge.
By the Cauchy convergence criterion, the limit will exist if and only if,
for each positive ¢, there is a value X, such that:

j: " ) du — f " ) du

Now suppose that p(z) is a function whose values are all greater than
or equal to zero forallz = 4 = q, and that

f@) =p@), if z24. (52)

[ " fw dl L " 1) du

<[ Cpwdu.  (53)

<e¢ foranyz’ >z’ > X. (51)

Then

l " o du - [ o

But, since p(z) = 0,

f:np(u) du = j:,p(u) du,

= [ w0
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The last two relations show that any X, for the function p(z) will
serve as an X for f(z). This enables us to deduce the convergence of
the integral

f " f)dz from that of f " o) da. (55)
a A

The integral of p(z) from A to z increases monotonically with z.

00
Hence f p(z) dz must converge if there is an upper bound to the values
4

of fp(x) dzforallz > A.
A

With the same conventions made for the relation (50), we write:

f " i) de = im [ s du. (56)
We also define:
[ twa= [ i@a+ [ 1@, 67)
and extend the definition:
a b
dx = — dz, 8
f,, f(@) dz f f(@) dz (58)

so that it applies when the limits a,b are replaced by a,; by — «,a;
or by — o,

All of the integrals of this section, defined in terms of a bounded func-
tion on an infinite interval by a process derived from, but not identical
with, that of section 121, are known as improper Riemann integrals, or
simply improper integrals of the first kind.

Improper Stieltjes integrals with infinite limits are defined in a similar
manner. We may show that if f(x) and p(z) are two functions for which
the relation (52) holds, and g(z) is monotonically increasing, the con-
vergence of

f " o) dg(z) implies that of f " @) do(a). (59)
A a

167. Improper Integrals of the Second Kind. If the function f(z)
is not bounded in the closed interval a,c the process of integration
defined in section 121 is not applicable for this interval. But, if the
function is bounded and integrable over the interval a,x for every value
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of z in the open interval a,c¢, and if the integral approaches a finite limit
as T — ¢—, we write

f f@ ds=tim [ f(u)dy, (60)
a z—rc— a
and say that the integral on the left converges. We say it diverges if it
does not converge.

As in the last section, we may conclude that if

p(x) 20 and |f(z)| S p(x) for a2 A=Z2z<g (61)

the convergence of
C c
f p(z) dz implies that of f 1(z) dz. 62)
A a

Moreover, the integral of p(z) over A ,c must converge if there is an upper
bound to the values of f p(x)dzforall A <z <ec.
A

Similarly, we use
b b
f f@) dz = Lim f f(u) du, (63)
¢ z—rct Vg

as the definition of the left member, if f(z) is unbounded in the closed
interval ¢,b but is such that the limit on the right exists.
We extend the relation

i) " fe) da = f f@d+ [ ' f(e) s, (64)

which holds when all the integrals are proper Riemann integrals, to
define the integral on the left when one or both of the integrals on the
right are defined by equations (60) or (63).

All of the integrals of this section, defined in terms of a function not
bounded on a finite interval, but bounded and integrable if we omit all
points belonging to any open interval including a point ¢, are known as
improper integrals of the second kind.

168. Bounded Functions. We have only used equations (60) and
(63) as definitions of the left member when the function f(z) was
unbounded in every open interval including the point ¢. Suppose, now,
that f(z) is bounded on the closed interval a,c and integrable over the
interval a,x for every value of z in the open interval a,c. Then if we
take any finite value as the value of f(z) at ¢, the resulting function
will be integrable on the closed interval a,c¢ as we proceed to show.

This will follow from the theorem of section 156 if we show that the
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points of discontinuity of f(z) on a,c form a set of measure zero. Select
any positive 7. Then, since f(x) is integrable on a,c — », the points of
discontinuity of f(z) on the closed interval a,c — 5 form a set of measure
zero and hence may be included in an enumerable set of intervals @ of
total length < n. But these intervals, together with the closed interval
¢ — 1,¢ include all the points D, and have a total length < 2y. Since
7 is arbitrary, this proves our contention that D is of measure zero.

By the convention made in section 149, we may leave f(x) undefined
at ¢, and still consider f(z) integrable on the closed interval a,c. Thus
the integral in the left member of equation (60) is already defined.

However, in this case f f(u) du is a continuous function of z in the

closed interval, by section 127, so that equation (60) holds.

This proves that we may use equation (60) whenever the limit on the
right exists, without verifying that the function is unbounded. Similar
remarks apply to equation (63).

169. Improper Integrals. Let the interval a,b be composed of n
intervals ¢;_;,c; where

a=¢<c<c< - <c,=b (65)

Then, if the integral of f(z) is defined for each of the intervals ¢;_;,c;
either as a proper integral, or as an improper integral of the second kind
by equations similar to (60) or (63), we define:

b n Ci
f f@da= % [ 1) da. (66)

We use a similar equation if a,b is replaced by — «,b; by a, or by
— @, 0, provided the improper integrals of the first kind so introduced
converge and are defined by equations similar to equations (50) or (56).

The equation (66) enables us to reduce the evaluation of any improper
integral of the kind here considered to that of a finite number of integrals
of elementary type.

Such integrals may sometimes be computed by the methods of section
126. We proved there that if f(x) = F’(z) was an integrable function
over the interval a,b then

f @) ds = F) — F(a), 67)

Now consider equation (50). Suppose that F’(z) = f(z) for all
z = a, where f(z) is integrable over every interval a,z. If we write

F@)| = lim F2) ~'F (o), (68)
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when the limit on the right exists, we have:
[ 1@ = F)

We may also conclude that if the limit on the right in the equation (68)
does not exist as a finite limit, the integral on the left in equation (69)
does not converge.

Consider next equation (60). Suppose that F/(z) = f(z) for all z
in the open interval a,c where f(z) is integrable in every interval a,z.
If we write

(69)

-]
.
a

F(c—) = lim F(z) (70)
z—rc—
when the limit on the right exists, we have:

[ @ = r@

T ) - Fla). (71)

We may also conclude that if the limit on the right in equation (70) does
not exist as a finite limit, the integral on the left in equation (71) does not
converge.

If F(z) is related to f(z) by F’(z) = f(z) for all z in each of the n
open intervals c;_i,c; and the integrals of elementary type in equation
(66) all exist, we have:

b n
[ 1@ s = ZIFem) = Pl (72)
where F(c+) is defined by an equation similar to (70).

Whenever F(c;—) = F(c;+), the terms involving ¢; on the right in
equation (72) will cancel. In particular, if F(x) is continuous
throughout the closed interval a,b the equation (72) may be replaced by:

f f(z) dz = F(b) — F(a). (73)

The equation (72) may also be used for proper integrals, provided the
interval may be decomposed into a finite number of intervals ¢;__j,¢; for
each of which an indefinite integral F (z) may be found.

When we change the variable in an integral by a substitution, either
to simplify its evaluation or for some other purpose, we may convert a
proper integral into an improper integral, or vice versa. For example,

if z=1/u,
o dae 1
fl ?-='/;du-l, (74)



276 EXTENSIONS OF INTEGRATION [Cuar. VIII

1 - 4 3
dz -5
and — = f u Pdu =2 75

0 \/ xr 1 ()
In this case an improper integral of the second kind is converted into one

of the first kind.
As examples of equations (69) and (71) we have:

®  dzx . ®
fo = tats| =7 (76)
and
1 dz . - r
Az, -E ™

The introduction of improper integrals enables us to consider certain
special values of the limits in the integrals of sections 137 through 144,
For example, in section 141, we may take the upper limit for z as 1.
This corresponds to ¢ = /2, since £ = sin ¢. The resulting elliptic
integrals are known as the complete elliptic integrals. They are con-
vergent improper integrals of the second kind when z is the variable,
but become proper integrals in the variable ¢.

170. Particular Convergent and Divergent Integrals. Since:

T x—a—i—l
fx"’dz:=1 y a1 and fx_ldx=logz, (78)

it follows that
f 2% dzx converges if and only if a > 1, (79)
1 .
and

1
f 2% dz converges if and only if a < 1. (80)
0
Similarly, for any b > ¢,
b
f (x — ¢)™ dx converges if and only if a < 1. (81)
[

We may conclude from this and equations (61) and (62) that, if F(z)
is bounded and integrable in the closed interval ¢,b, the integral

b
f (x — ¢)™°F () dx converges if a < 1. (82)

In particular, this will be true if F(z) is continuous throughout the
closed interval ¢,b, or continuous except at ¢, with lim F(z) finite.

z—>ct+
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The same discussion applies if b < ¢, either to the integral as written or
from b to ¢, if F(z) is continuous throughout the closed interval b,c or

continuous except at ¢ with lim F(z) finite. Equation (77) and the

T—rc—
complete elliptic integrals are examples with ¢ = 1 as the upper limit,
a = 1/2 and F(x) continuous. An example with imF(x) = 1is

b __g_ 1
S @—eFsin—a (83)

Again, assuming that lim F (z) is finite,
z—>ct

b
f (& — )" log (z — ¢)F () dz converges if a < 1. (84)

For we may write
a=da —p, with p>0 and o’ <1, (85)
and then put
(x—c)log (x — c)F(z) = (x — ¢)™[(x — ¢)? log (z — OIF (z).
(86)
By section 92, lim (z — ¢)? log (z — ¢) = hl—l?i) h? log h = 0, so that

when z — ¢, the factor in the brackets approaches zero. Hence the
integral in equation (84) converges by equation (82).

Similarly, any factor which as z — ¢ is an infinity of lower order than
any arbitrary positive power of (z — ¢) will not affect the convergence.
Note that a may be zero in equation (84).

Again, if P(z) is positive, has a positive lower bound, and is integrable
in the closed interval c,b, the integral

b
f (& — ¢)P(x) dz diverges if a = 1. 87)

In fact, if this integral converged, it would imply that the integral of
equation (81) converged for a value of @ = 1.
In particular, if P(z) is continuous except at ¢, and lim P(z) > 0,
—>c4
or lim P(z) = + =, the conclusion follows. When b < ¢, we consider

z=>ct
thelimas ¢ — ¢—.
An argument similar to that used to prove equation (84) shows that

b
f geel™? P(x) dx diverges, if p > 0. (88)



278 EXTENSIONS OF INTEGRATION [Crar. VIII

Also the product of P(z) by any positive factor which, as  — ¢+, is an
infinity of higher order than (z — ¢)™ used as an integrand leads to a
divergent integral.

From equation (79) we may conclude that, if F(z) is integrable over all

the finite intervals 4,z and lim F(z) is finite, then

z—>+40

00
f 2 °F{(z) dz converges if a > 1, (89)
4

and any factor which, as £ — + , is an infinity of lower order than any
arbitrary positive power of z will not affect the convergence.

Also, if P(x) is positive and integrable over all the finite intervals 4,z
and lim P(z) > 0, then

z—>+o

f 2 %P (z) dx diverges if a = 1. (90)
4

This integral will diverge if the integrand is the product of P(x) by any
positive function which, as z — + «, is an infinity of higher order than
~1
z L

In section 144 we defined u(z), the inverse of the Weierstrass § func-
tion by conditions equivalent to the definition

+o V4z® — gz — g3 .

That this integral converges follows from equation (89) with a = 3/2.
171. ArcLength. A continuoussensed arc is any ordered set of points
(z,y) in the plane which can be represented by two equations,

z=f(t) and y=g(), (92)

for values of ¢ in some closed interval a,b where these functions are each
continuous throughout the closed interval. When the functions are
such that if ¢’ and t’’ are any two values each in the closed interval

astsbh (93)

(91)

the relations
f@&) = f’) and g(t') = g(t"’) imply that ¢’ = ¢/, (94)

the correspondence between the points of the arc and the ¢ interval
(93) is one to one. An arc is said to be simple, if the parameter ¢ can be
so chosen that this is the case.

The order relations of points on the arc is determined by the order of
the corresponding values of £. This is the only geometrical significance
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of the parameter. Two arcs consisting of the same points, in the same
order, are considered identical. Thus

r=ty=0 —-15st=<1 (95)
and
x=1—cost,y=0,—£§iéz (96)
2 2
represent the same arc, but this arc is not simple. The arc
=t y=0,0st=1 97)

is a simple arc, identical with a portion of the arc given by equations (95)
or (96).

A polygonal line is an arc consisting of a finite number of straight line
segments. We may obtain a polygonal line
inscribed in an arc by selecting n — 1 inter-
mediate values of ¢,

a=th <t <tz <---<t,=b, (98)

which determine » — 1 intermediate points of
the are, P;, and by joining each pair of con-
secutive points P;_;,P; by a straight line seg-
ment or chord. Any choice of n — 1 inter- Fia. 16.
mediate points P; will determine a subdivision

of the ¢ interval similar to (98) for any choice of the parameter. Let
Ly denote the total length of the inscribed polygonal line. Let us put

Oy = by — by, Oz = f(t;) — f(tizr), Oys = g(&) — g(tiz1). (99)
Then

Ly, = 2 P; 1P; and P, P; =Vl + 8. (100)

t=1
But, by reasoning as in section 98 we may show that
6zs| = PiaPy, |yl < PiyP; and P, P; < |8z + |6y (101)
It follows that

n n n n
21 |6z;] or 21 [6y:| < L, = 21 |8z;| + Zl |6yl (102)
i= i= i= i=

If t’ and ¢"” are any two values each in the closed interval (93), corre-
sponding to the points P’ and P’’, the length of P’P’’ is a continuous
function of ¢’ and t”/, and so takes on its maximum. This maximum
chord is called the diameter of the are.
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If we consider any polygonal line such that das, the maximum diame-
ter of any of the arcs P;_;P;, is at most ¢, then any polygonal line
obtained by inserting additional points of subdivision will have all its
chords at most e. If every sequence of inscribed polygonal lines for
which dar — 0 leads to a sequence of values of L, approaching a limit L,
the same for all such sequences, we say that the are has alength L. We
must use djz, instead of maximum chord, since our arcs are not necessar-
ily simple. If, for example, our arc was like a figure 8, a subdivision of
one of the loops might be considered to be a subdivision of the entire
figure with all the chords small, but would have a polygonal length ap-
proximating only one half of the total arc.

The first sum of the relation (102) is similar to the sum v, for the
function f(¢), used to obtain its variation as in section 159. Suppose the
value of the sum is vy for any particular subdivision by intermediate
values (98). Since » increases or remains unchanged when additional
points of subdivision are added, there will be subdivisions with max &t;
arbitrarily small and with v = »y. And, since the functions f(¢) and g(t)
are uniformly continuous, there will be such subdivisions with thke
maximum oscillation of f(t) and g({) in any subarc arbitrarily small.
Thus these subdivisions will have djs arbitrarily small. Since for such
sums L, = v = v, if the limit L exists it will be at least v and vy = L.
Thus L is an upper bound for » for all subdivisions, and the function f(t)
is of bounded variation.

Similar reasoning may be used for ¢g(¢), and hence:

If a continuous sensed arc has a finite arc length, the functions expressing
the codrdinates in terms of any parameter are each of bounded variation.

To prove a converse result, suppose next that f(t) and g(t) are each
of bounded variation. Then by equations (100) and (102):

Ln = 21 Pi—lpi é 21 |5$¢l + 21 l&yil. (103)

This shows that all the values of L, are less than the sum of the total

variation of f(f) plus that of g(¢) for the interval. Hence the values Ly

are bounded, and so have a least upper bound which we denote by L.
The distances between any three points satisfy the relation:

P, \P; £ PiP; + P;P;, (104)

as we proved analytically in section 98. This shows that if we insert
one additional point of subdivision P; between P;_; and P;, the new
value which replaces L, will be equal to or greater than L,. Moreover,
since each of the new chords will be at most equal to the diameter of the
arc, the increase in value can not exceed twice this diameter, or twice d.
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Since L is a least upper bound, there is a subdivision with a polygonal
line of length exceeding L — e. Let the points of this subdivision be
P}, corresponding to . Suppose there are N — 1 interior points, and
denote the polygonal length by L} so that:

Lyz2L-—e (105)

€
Now consider any subdivision with dzs < N

division be P;, corresponding to ¢; of (98), and let its polygonal length
be L,. Then

Let its points of sub-

L. <L (106)

Form a new subdivision by using the points P; together with the points
P] distinct from all the P;. If this has m points, m < n + N. Denote
the polygonal length by L!/. Since we have added to the P; less than N
new points, which form at most 2N new chords, each at most ¢/2N, we
have:

"< o< ) 1
Lm_Ln+2N 2]\,=Ln'|"e (07)

But the subdivision which gave L. could be obtained from that which
gave Ly by adding points of subdivision, so that:

L) = L. (108)
We may deduce from the last four numbered inequalities that:
L—-2=L, <L (109)

This shows that, for any sequence of subdivisions for which dy — 0,
the numbers L, will differ from L by at most 2¢, beyond a certain point
in the sequence. Since ¢ is arbitrary, we may conclude that lim L, = L,
and the arc has a length, Thus:

A continuous sensed arc has a finite arc length if the functions expressing
the coordinates in terms of any parameter are each of bounded variation.

In this case the arc length will be the least upper bound of the lengths of all
inscribed polygonal lines.

As we have defined it, arc length is independent of the choice of
parameter, except as this determines order on the sensed arc. Thus are
length is a geometric quantity related to the sensed arc.

172. Simple Arcs. For a simple arc, any sequence of subdivisions
such that max P; ;P; — 0 is also a sequence for which dy — 0, as we
shall now prove. To do this, suppose that there is a sequence of sub-
divisions with max P;_; P; —0, but such that das does not approach zero.
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Then for some positive ¢, for each integer n there would be a subdivision
with dy > ¢, and with max P;_,P; < 1/n, since for some ¢ there would
be subdivisions with das > e arbitrarily far out in the sequence. This
would enable us to find a pair of points on the curve for which

chord PP} < %

and diameter P P} > e. (110)

But f(t) and g(¢) are continuous functions, so that the chord P’P’’
corresponding to any two values of ¢, ¢ and ¢/, is a continuous function
of these two variables on a closed two-dimensional interval, Thus it is
uniformly continuous, and there is a & such that

P'P" < ¢ when |t —1t| <. (111)

Since the arc P,P,’ contains some chord of length >e¢, it must include a
pair of points whose values of ¢ differ by more than 5. Hence the values
of ¢ corresponding to P, and P,’, say ¢, and #,’, must differ by more than
d, so that:

[t — t] = 8. (112)

Now keep e fixed, and let n take in succession the values 1,2, 3, - - - .
Either all of the points £, coincide for sufficiently large values of n, or
else the infinite set has at least one limit point, by section 9. In either
case a subset of values of n can be selected such that the corresponding
values of ¢, approach a limit, say #. Similarly, from these values of n
a second subset of values of n can be selected, say m, such that the values
of ¢t,.” approach a limit, say #’. Then we have:

lim¢, =t; and limt, = # (113)
It follows from the relatiohs (110), (112), and (113) that
chord PPy = 0, |t} — #| = ». (114)

This contradicts the condition that the arc be simple, and hence proves
the assumption that dar does not approach zero was false.

Thus for simple arcs, when max chord P;_1P; — 0,dyr — 0. But from
the definition of diameter, when dy — 0, max chord P, ;P;— 0.
Hence, in defining the length of a simple continuous sensed arc, we may
consider sequences for which max chord P;_1P; — 0, instead of those for
which dyr — 0.

173. Variation. If f(¢) is a continuous function of bounded variation
on the closed interval a,b the equations

z=f(t) and y=20 (115)
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determine a continuous sensed arc, whose length is the total variation of
J(¢) for the interval a,b. Since f(¢) is uniformly continuous, any sequence
of subdivisions for which max ¢; — 0 will be such that dyy — 0. This
proves:

For a continuous function of bounded variation, the total variation
V = lim X |8f;| for any sequence of subdivisions for which max 5t; — 0.

174. Properties of Arc Length. From the corresponding properties
of polygons, it follows that the arc length of a curve, or continuous sensed
arc, as defined in section 171 is such that:

If an arc is divided by a point into two arcs, the total length is the sum
of the lengths of the two parts. That is,

L =L+ L, (116)

where we use sub- and superscripts to denote the end points, as we do for
integrals. As for the integrals, we may define

L= -1, (117)
and write the preceding relation more symmetrically as
LR+ L{+ L2 =0. (118)

From the symmetry of this relation it will hold for any three values of
a, b, ¢ regardless of their order.

If we denote the variation of f() from a to ¢ by V%, and similarly that
of g(t) by Vgt, we may deduce from equation (102) and the preceding
section that:

VR or V@<L VE+ Vg (119)

As this holds for any interval whose end points are in a,b, we may apply
it to the interval £, + h where ¢ is in the open interval and # is sufficiently
small. We may then deduce from the last part of the relation and the
continuity of the variations which was proved in section 161 that the arc
length is a continuous function of the values of £ at the end points. Also,
from the first part of the relation and the increasing character of the
variations, we may deduce that L in¢reases monotonically with ¢, It
will actually increase with ¢ as ¢ increases from ¢’ to ¢/, unless f(¢) and
g(t) each have zero variation for this interval ¢/,t. In this case, the
functions are constant, and, for any ¢ such that

<t f¢) =f¢) and g(t) = g(t'). (120)

Thus this can not happen in the case of a simple arc. In fact, since
broken lines are at least as great as their chords, the same is true of arc



284 EXTENSIONS OF INTEGRATION [Crar. VIII

lengths, and if P’ and P’/ are distinct points, and ¢’ and ¢’ corresponding
values of the parameter we shall have:

=Ly if ¢ =¢. (121)
The only function of the parameter was to order the points. The last

relation shows that the points will be correctly ordered if we take the arc
length itself,

s= L, (122)
as the parameter. In this way we obtain a representation of the arc:
z=F(s), y=G(s), (123)

with geometric significance. These functions will each be continuous,
since we may conclude from equation (101) that:

6x;] or [oyi| < PiaP; < bs. (124)

176. Integral for Arc Length. Now suppose that for some choice of
the parameter ¢, the functions f(t) and g(¢) each have derivatives con-
tinuous over the closed interval a,b. In this case the functions f(f) and
g () will necessarily be of bounded variation, as we proceed to show. By
the law of the mean,

ofs = f(t:) — ftm) = 1'() ot (125)
for a suitable choice of ¢/ in the interval ti1,t;. Hence
E lofil = lf ()| 8t;. (126)

‘When we let max §¢; — 0, the nght member approaches a limit by section
122. Hence the sum on the left is bounded, and the funection is of
bounded variation. In fact, by section 173 we find from the limiting
relation:

b
vit= [1rola (127)

A similar argument applies to g (¢).

It follows from the last theorem of section 171 that the curve has an
arc length. To express this as an integral, we first deduce from equa-
tion (125) and the similar equation for g(¢) that:

\/ 2+ 602 = ):\/7@ B+ (o ()P ot (128)

As this is a Duhamel sum, and the functions are continuous, by the
theorem of section 164, for any sequence of subdivisions for which
max 8¢; or ép — 0, this approaches a Riemann integral. Since any
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such sequence corresponds to a sequence of subdivisions with dy — 0,
the polygonal lengths will approach L. It follows that:

b
b= [ V7O + W OP a (129)

If we denote the integral from a to ¢ by s, we have, since the integrand
is continuous:

(Z—i = VI/'OF + ' OF. (130)

As a consequence of this:
ds? = dx? + dy?. (131)

176. Ratio of Arc to Chord. Let us consider the ratio of an are join-
ing two points corresponding to ¢; and {3, to the corresponding chord.
For the chord we have as in equation (126)

PPy = VI[P + g’ ¢4, (132)

where ¢’ and ¢’” are two suitable values between ¢, and ¢;. But, since
the integrand of equation (129) is continuous, we have by the mean value
theorem for integrals

173 _—
arc P,P; = f VIFOF ¥ g OF dt
= VIR + g ¢t (133)

This shows that

chord P\Py _ VISP +1g'¢")F |
arc Py P, \/[f/(t//')lz ¥ [gl(tlll)]z

(134)

Next suppose Py is & point corresponding to ¢, and that f'(¢,) and
g’ (to) are not both zero. Then if P; approaches Py, t; approaches .
For, suppose that f'(f;) # 0. Then if ' ({,) = M, for a suitable A,

M M
If'(8) — ()] < - and FHOIS Py if [t—t] <h (135)
Hence, if [t; — to] < A,
M
PPy = ) [tr — o, (136)
since we may replace Py by P, in equation (132). This proves that

|t — %] must approach zero with P1Py. Similarly if P, approaches
Py, t; approaches £.
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Now let P, and P; each approach Py. Then ¢; and #; each approach
to. Hencet, ¢’ and t'"’ in equation (134) each approach t,. Since the
numerator and denominator each approach the same non-zero limit, it
follows that the right member of equation (134) approaches unity.

If we use the procedure of section 61, and recall equation (131), we
may determine an angle ¢ such that:

dz = ds cos ¢, dy = ds sin ¢. (137)

Since these equations make

Y
e tan ¢, (138)
¢ is the slope angle of the curve.

We may take s as the parameter, as in equation (123). If, when we
do this, ¢ is a continuous function of s, we say that the curve has a con-
tinuously turning tangent, or is smooth. In this case we have from
equations (137):

d
F'(s) = ((ii—: =cos¢p, and G'(s) = dis/ = sin ¢. (139)

Thus the derivatives are continuous functions of the parameter s, and
are never both zero since cos® ¢ + sin®¢ = 1. Hence for a smooth
curve, we may take any point as the point Py of the above discussion.

We note conversely that if, for some choice of the parameter, f(f) and
g(t) have continuous derivatives, never both zero, the curve is smooth.
For in this case, by equation (130), ds/dt > 0, so that the function s(t)
determines a continuous inverse function, f(s), and since tan ¢ =
g’ ®)/f' (), ¢ is a continuous fupction of ¢ and hence of s.

We may summarize the principal result of this section in the follow-
ing statement:

If the two end points which determine an arc and a chord of a smooth
curve each approach the same point of the curve, the ratio of the arc to the
chord approaches unity.

177. Material Curves. One of the fundamental concepts of theoreti-
cal mechanics is the material particle, or mass point. The mass point
is a point associated with a positive number. If the point is in a plane,
and the mass is m, each triplet m, z, y determines a mass point.

Let us next consider a particular arc of a smooth curve. If we
associate with each subarc of this curve a mass proportional to its length,

m = DL, (140)
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we determine a material curve which is homogeneous, or of constant
density D. Let s denote the length of arc between one end and a vari-
able point of our fundamental arc, and m(s) the corresponding mass.
Then

m(s) = Ds and m% = D(s"”" — &). (141)

If we associate a positive continuous function D(s) with a smooth
arc, we determine a material curve of variable density. For subares the
mass is given by:

M®=£b®®aMnﬁifD®w (142)

The laws of mechanics for continuous systems are obtained by extend-
ing those for a finite number of particles by the following process. We
divide the continuous system into n parts, and replace each part by a
single particle whose coérdinates are those of some point of the part,
and whose mass or force component is the total mass or force component
of the part. Let @, denote any expression with physical significance for
the finite system of n particles. If, for any sequence of subdivisions
such that the maximum diameter of the parts, dyr — 0, the expression
Q.. approaches one and the same limit §, we assign to @ the same physical
significance for the continuous system that @, has for the n particles.
We also extend any law involving one or more quantities @, to the
quantities Q.

That the laws obtained in this way will not depend on the choice of
codrdinates, or of parameters follows from their significance for the
finite systems.

Our method of extending the geometric concept of length from polygo-
nal lines to curved arc, while not identical with this process, was in
principle similar to it.

It is not always emphasized that the process merely suggests the new
laws and definitions. It does not prove them, since a continuous system
is not a large number of particles and additional assumptions are needed
to derive laws for such systems.

For systems of particles, the moment about the y-axis is given by:

Mz = X zm, (143)

i=1

For any subdivision of a material curve, this leads to

ﬁu&nmsm, (144)
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where s/ is the arc length to an arbitrary point of the sth part, and s/’ is
the value obtained by applying the law of the mean for integrals to

f D(s) ds = D(s]’) és;, (145)
which represents the mass of the nth part by equation (142). Since
the functions in the Duhamel sum (144) are continuous, it follows that
a limit is approached when dyr — 0, and hence max 8s; — 0. We define
this limit as the moment of the material arc about the y-axis, and write

m(s)Z(s) = ‘/:x(s)D(s) ds. (146)

Since the left member of equation (143) is the product of the x codrdi-
nate of the center of gravity by the total mass for the system of n parti-
cles, we give a similar significance to the left member of equation (146).
The factor m(s) is defined by equation (142), and equation (146) then
defines Z(s), the z codrdinate of the center of gravity for the material
curve.

The moment about the z-axis, and %(s), are similarly defined. Thus
we have

m©)36) = [ "y(6)Ds) ds, (147)

and the moment about any line in the plane may be found from these as
for particles. Similarly, from the products of inertia for the system
of particles in a plane we are led to define:

8 8 8
I, = f z’D ds, I, = f zyDds, I, = f y?*Dds. (148)
0 0 0

The moment of inertia about any line is obtained from .the integrals in
the same way it is found from the corresponding sums for particles.
178. Specific Force. We may associate a continuous function P,(s)
with a material curve, the applied specific force in the x direction. The
total force in the z direction for any part of the curve is then determined
by

Fx(s)=fP,(s)ds or F, =f P,(s) ds. (149)
0 s I

The second expression is the force on a subarc with end points s’ and s”’.
Similar definitions apply for the component in the y direction, and for
that perpendicular to the plane, or in the z direction.

- If all the applied forces are in the same direction, say parallel to the
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y-axis, we may define the z cobrdinate of their resultant by an equation
similar to equation (146) for Z(s). The process of the preceding section
also leads us to define the total moment about any line for the forces
applied to the system in terms of such integrals as

[ " y(5)Ps(s) ds, (150)

by equations similar to those which hold for sums.
The laws of motion for rigid systems of particles may now be extended
to such equations as:

f D(s) ds f P.(s)ds, or m(s) dz—F(s), (151)

for the motion of translation of the center of gravity, and

f (X2 + Y?)D(s) ds o dt2 f (XP, — YP,)ds,  (152)

for the rotation about the center of gravity, where
X=z—Z% and Y=y—7 (153)

are the cotérdinates referred to the center of gravity.
For the attraction of a particle on a unit mass located at the qrigin,
we have for the specific force in the z direction:

ym x
b
x2 + y2 /xz + yz
and the process of extension leads us to define the attraction of a material
curve on a unit particle at the origin as a force whose z component is

"
o= [ —2 s (155)
Y@+ )

We note that in the theory of electricity the charge density is analo-
gous to D, except that it may be negative as well as positive.

179. Stieltjes Integrals. In our discussion of the last three sections,
we assumed the density continuous and the curve smooth. Under these
conditions, we may convert the integrals from integrals with respect to s
to integrals with respect to other parameters, as z or y for restricted
parts of the curve by using the results of section 175.

However, as given our argument applies to any continuous curve
which has an arc length, since for such a curve z and y are continuous
functions of s. '

(154)
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Again, the function m(s) as defined by equation (142) has a deriva-
tive, dm/ds = D(s). We may relax this restriction, by merely requiring
m(s) to be any monotonically increasing function of s. In this case,
we define the density as m/(s) for those values of s at which the funetion
has a derivative. At other values the density is not defined. We
replace D(s) ds by dm in equations (146), (147), and (148): these
become Stieltjes integrals, which exist since  and y are continuous fune-
tions of s and since 7 is monotonically increasing.

Similar remarks apply to the integrals of section 178, with P,(s) ds
replaced by dF,, where F, is auy function of s of bounded variation.

These extensions enable us to treat the case of a material curve with
continuous density, with a certain number of material particles attached
to it, by one expression. Also the forces may either result from continu-
ous specific forces or be applied at one point, like the continuous and
point loads in the theory of beams. In such equations as (151) and
(152) we frequently have a continuous density, but a simple sum on the
right. The use of the Stieltjes integral is of more theoretical than practi-
cal value here, since in any case where its value can be easily computed,
this is done by reducing it to sums and Riemann integrals.

180. Line Integrals. Let P(x,y) be any continuous function of z
and y in some two-dimensional region including all the points on an are
of a curve having an arc length. Along the arc, s’ < s < s/, the
codrdinates z(s) and y(s) will each be a continuous function of bounded
variation.

Let us form any subdivision of the are by points (z;,y;) corresponding
to values s;, and form the sum

8 =X P(ziyi’) oz, (156)
i=1

where z; corresponds to s/, and y/” corresponds to s{’, and s/ and s!’ are
any two values of s of the closed interval s,_;,s;.
Since z(s) is continuous and of bounded variation, by section 161 we
may write
z(s) = f(s) — g(s), (157)

where f(s) and g(s) are each continuous, increasing functions of s

throughout the closed interval s’,s”’. By section 37, if

p =1, p" =f(") and ¢ =g(), ¢' = g("), (158)

the equation p = f(s) defines an inverse function s = f~(p), continu-
ous and increasing throughout the closed interval p’,p’’. Similarly the
equation g = g(s) defines an inverse function, s = g~!(gq), continuous
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and increasing throughout the closed interval ¢’,¢’’. And, by section 36,
we may consider z = z(s) and y = y(s) as continuous functions either
of p or of g¢. Now write

n n
8 =X P@iyl) opi — X Paiyi) dqu. (159)
i=1 i=1

From the increasing relation of s to p, and p to s, if s; corresponds to
pi, the p; will determine a subdivision of p’,p"’, and s/ and s{’ will corre-
spond to values p; and p;’ in the closed interval p;—;,p;. Thus the first
sum is a Duhamel sum when p is the independent variable, and the
second sum is a Duhamel sum when ¢ is the independent variable.
Moreover, from the fact that p is a uniformly continuous function of s,
any sequence of subdivisions for which das — 0.and hence 8s; — 0,will be
such that max ép; — 0. Similarly it will make max é¢; — 0. Thus, for
any such sequence of subdivisions, by section 164, each of the sums will
approach a Riemann integral, and the limit of S will be:

"’ Q" ’
[ Pana- [ Py (160)
?' q
It is natural to abbreviate this expression as
[Pay a, (161)

with the supplementary conditions:
s 2s=s, x=1x(s), y=y(). (162)

The expression (161) is called a line integral.

We may use any other parameter in place of s, provided that we use
only sequences of subdivisions such that dyy — 0. In some cases, analo-
gous to the situation in section 165, some sequences with max dz; — 0
or max 8t; — 0, where {; is the parameter, may not give the correct limit.

When the arc is smooth,

[Pay = [Peeyo S, (163)

since we may replace 8p; — ég; by dz; or z’(s!"’) 8s; in equation (159),
and regard this as a Duhamel sum for the integral in equation (163).
In this case, for any parameter ¢ such that s(f) has a continuous deriva-
tive,

Pey)dz = [Py Za. (164)
dt
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The entire discussion applies with = and y interchanged to the line
integral

Jewway (165)

We usually consider the typical line integral in two variables to be of
the form:

[Py ds+ Q) ay (166)

with supplementary conditions similar to those in equation (162). This
is defined to mean the sum of the two line integrals (161) and (165).
181. Work. If a particle is under the influence of a force with com-
ponents F, and.F,, each being constant, the total work done by the force
during any displacement from the point (z;,y1) to (z2,y2) is by definition

Fo(ma — m1) + Fy(y2 — v1). (167)

Suppose a particle moves along any curve having an are length, under
the influence of a force with components F;(z,y) and F,(z,y). Such a
variable force is called a force field. We shall assume that the particle
remains inside some region in which each of the functions F,(z,y) and
F,(z,y) is continuous. If we make a subdivision of the arc, s’ < s < s’/
determined by points of subdivision s;, and replace the variable force
components in the subdivision s;_;,s; by the values for z/,y{’, we are led
to associate the sum

Z Fa(aigi’) oo + X Fy(wiyi’) oy (168)

with the work done for successive displacements along the subarcs. In
accordance with our general procedure, we take

ol = z(s) and ¥ = y(s"), (169)
where s/ and s/’ each lie in the closed interval s;_;,s;, The discussion of
the preceding section shows that, for any sequence of subdivisions for

which dy — 0, the sum (168) approaches one and the same limit,
namely, the line integral

Sy dz+ Fyn) ay, (170)

where
s <s2s"” and z=2z(s), y = y(s). 171)

We accordingly define the work done by the variable force or force
field, for the displacement over the arc, as this line integral.
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182. Impulse. For the motion of a particle of constant or variable
mass m along the z-axis, we have:

d dz

% (mv) = F, where v = h (172)
If we define the momentum by
¢
M=m,mmﬂﬁdh=fFa (173)
t

If we assume that F is a continuous function of the time, it follows
that the momentum M has a continuous time derivative:

aM
= _F. 174
dt F (178)
Instead of requiring F to be continuous, we may start with M as a
function of ¢ and define the force as dM/dt at points where M has a
derivative. At other points F is undefined. We then have:

my — (mv)g = fdM, (175)
to

where the integral on the right is a Stieltjes integral. On any closed
interval where F is continuous, in the integral dM may be replaced by
Fdt. And, if an impulse I acts at time ¢ we have:

+ t+h

dM = lim M = 1. (176)
t— h—0+
k—0+

183. Improper Integrals. Since the arc length is a continuous func-
tion of the parameter, in any case where the discussion of section 175
applies to every arc with end points in the open interval a,b, the arc
length will be given by the integral from a to b if this exists as'a proper or
improper integral. These considerations also apply to the other inte-
grals with physical meaning. For the arc length, an example is the

quadrant of a circle defined by

z=V1—0 y=10st=1, 177)
for which
(178)

184. Higher Dimensions. With only minor modifications, most of
the results on curves in two dimensions obtainzd in the last few sections
apply to curves in three or more dimensions. In particular, such a curve



204 EXTENSIONS OF INTEGRATION [Caar. VIII

has an arc length when all the coérdinates are expressed in terms of a
parameter by continuous functions of bounded variation.
When all these functions have continuous derivatives, we have:

b n
- [ NEuora 179)

Likewise the discussion of material curves and the integrals and laws
involving them applies in all essentials to material curves in three-

dimensional space.
The concept of line integral is also readily extended to three or more

dimensions.
EXERCISES VIO

1. Let p; be n + 1 points on the closed interval a,b such that a = py < p; <
P2 < -+ < ps=>b Suppose that the function g(x) is monotonic in the closed
interval a,b and constant in each open interval p;_1,px. If F(z) is continuous
on a,b, show that i

z k
f F@) dg@) = Folo(nt) = o00] + T, F@lo(oet) = o)

(a) if pr < 2 < piy1; and (b) if z = pi, with g(ps) in place of g(pr+).
2. If G(z) = h(z) + g(z), where h(z) has a continuous positive derivative
and g(z) is the function of problem 1, show that

f,, “F @) d6() = f " P () do + f “F@) i),

the sum of a Riemann integral and the integral found in problem 1.
3. If for each value of n, the numbers p; and ¢; satxsfy the relations ¢ — 1 £
ps Sitand i — 1 £ ¢; £ 1, prove that:
n
1

lim 30 =
no =120 — p; V20 + ¢
1

<R}

as a limit.

Hint: Identify with a Duhamel sum having f &
V1= g2

4. If F(g) is a continuous function of g, and g(z) has a derivative which is
continuous and positive for the values considered, show that the value of the
Riemann integral of F(g) dg from g(z;) to g(z2) is equal to the value of the

Stieltjes integral of F(g) dg from z, to z,.
b. Ifg(z) =1, for 0 £ xr <1, and ¢g(z) = 4, for1 < z £ 2, evaluate the

integral f z dg(z). Hint: Use equation (46), or problem 1. The result is 3.
6. If P(x) is a polynomial of the nth degree with no real root > a, and
0 -
P> %; prove that f [P@)] " dz converges.
a
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7. If P(z) is a polynomial with no roots in the closed interval a,b except e,

and this is a multiple root of the mth order, prove that f [P(2)] dx converges
a

if mp <1
00 00
8. If p > 0, prove that f ¢*? dr converges. Also that f P(z)e*? dzx
a

]
converges, where P(z) is any polynomial.

9. Show that jm log |P(z)| dz diverges if P(z) is any polynomial, not
a

identically equal to 1.

10. If r = r(0), z = r cos §, and y = r sin 6, determine z and y in terms of the
parameter 0, express the differential of arc in terms of 8, and hence show that in
polar codrdinates

ds? = dr* + 12 df2

11. If ¢ is the value of the slope angle for a curve at zo,yo, the equations of a
circle tangent to the curve at z,,50 may be written: z = zo — Rsin ¢ + Rsiny,
Yy = Yo+ R cos ¢9 — R cos u, where u is a parameter. For the circle, when
U= o, £ = 2o, Y = Yo, dy /dx = tan ¢ and d% [dz? = sec® ¢y /R. Verify that,
for the curve d% [dx? = sec® ¢ d¢ /ds at any point. Hence, if R = ds/d¢ at
¢, the circle will have the same first and second derivative as the curve at
Zo,Yo- It is the circle of curvature of the curve at zo,y,. The radius of cur-
vature is p = ds/d$, and the center of curvature is X =z — psin ¢ and
Y=y+pcos¢.

12. The locus of the center of curvature is the evolute of the curve. By
problem 11, if z,y, ¢ and p = ds/d¢ are expressed in terms of any parameter,
the equations of the evolute are: X =z — psinpand Y =y + pcos¢. Use
these to show that the tangent to the evolute is normal to the original curve, and
that for any two values of the parameter between which p preserves its sign the
difference of the values of p for the two points equals the arc of the evolute between
the corresponding points. Hint: dx = ds cos ¢ = p cos ¢ do and dy =
dssin ¢ = psin ¢ dp. It follows that dX = —dp sin ¢ and dY = dp cos ¢, so0
that dY /dX = —cot ¢ = (¥ — y) /(X — z) and dS = |dp|.

13. Using primes to denote differentiation with respect to the parameter, show

2 12]3/2 12]3/2

that p = :[;u—”-hy—x’]'—' + This takes the familiar form [1__+_in]_

-y

the parameter. Hiné: Differentiate tan ¢ = y /2’ and use p = s’ /¢’ to elimi-
nate ¢’.

14. If the parameter is the time, show that the acceleration has a tangential

component dv/dt and a normal component 2 /p, where v = ds/dt. Hint: Use

» when z is

problem 46 of Exercises V.
16. If z and y are each elementary functions of a parameter, the equations
! ’2 2 I 2 2
X=z—y—(x——j-—-y—) and Y=y+£ﬁ—+if—,—),; determine X and Y as

yllzl —-— z"yl yllxl -z y
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elementary functions of the parameter. From problems 12 and 13 deduce that
the arc length of this curve is expressible as an elementary function of the
parameter. Illustrate for z = acost and y = bsint.

16. If p is a given function of ¢, the eoérdinates are determined in terms of ¢
to within additive constants, corresponding to the location of the origin. Prove
that the coordinates and the arc length will all be elementary functions of ¢ if

f pdo, f psin ¢ do, and f p cos ¢ do are elementary functions.

17. By problem 16, if p is a rational function of sin ¢ and cos ¢ the coor-
dinates and arc length will be elementary functions. Illustrate in the fol-
lowing special cases: (a) p = sec? ¢, the catenary y = cosh z; (b) p =
sec? ¢ cscp, y = €%; (c) p = tan® ¢ sec® ¢ csc @, [(n + 1)y]* = (nz)*tL

18. Show that the functions of problem 16 will be elementary if p is a rational
function of sin (¢ /n) and cos (¢ /n), where n is an integer. An example is
p = sin""2 (¢ /n), where in polar codrdinates (n — 1)r = n sin® 1[0 /(n — 1)]
and n8 = (n — 1)¢.

19, Verify that the following simple algebraic curves have arc lengths expressi-
ble in terms of elementary functions. (a)y* = z?/3 + ba?; (b)y? = 2% /8 + bx¥;
(c) y = kx™*1, where n is a positive or negative integer. Part (c) is essentially
the same as the curve in problem 17(c).

20. If p is a polynomial in ¢ and terms of the type cos a¢, sin bg, and €*;
z, ¥, and s will be elementary functions of ¢ as in problem 16. Here, however,
they will be polynomials in ¢ and the sines, cosines, and exponentials. Hence

any integral of the form f x™y™ ds, where m and n are positive integers or zero,

will be a function of ¢ of the same type. Thus for such a curve, regarded as a
homogeneous material curve, its center of gravity and moment of inertia about
a codrdinate axis will be elementary. Simple examples are: (a) p = 1, the
circle; (b) p = ¢, the involute of the circle; (c) p = ¢*%, the equiangular spiral;
(d) p = sin ¢, the cycloid; (e) p = sin k¢ the epi- and hypo-cyeloids.

21, Suppose that for one curve z = z1(¢), ¥ = y1(¢), and s = s1(¢), while for
a second curve z = z2(¢), ¥ = y2(¢), and s = so(¢). Show that the curve
with 2 = 21(¢) + 22(¢), ¥ = y1(d) + y2(¢) has ¢ as its slope angle, and
8 = 81(¢) + s2(¢). This enables us to combine curves with simple expressions
for their arcs to obtain new ones.

22. If, for an arc of a curve for which p preserves its sign, we have

p= d—dg = f(¢), prove that for the corresponding arc of the evolute we have
@ = f'(¢), if S is measured in the direction in which p increases_. Show also
that, if the evolute is referred to axes obtained from the original axes by a rota-
tion in the proper direction through /2, ¢ is the slope angle for the evolute.

238. Deduce from problem 22 that for the curves in problem 20, (a) is
the evolute of (b); (c) and (d) have evolutes of the same size and shape as the
original curve; and (e) has an evolute of the same shape as the original curve.
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24. For a space curve with z as the parameter, y = y(z), and z = z(z), let
primes denote differentiation with respect to z. Prove that, if 22’ = y,
8 = & + z + constant. Illustrate for y = a2, 2z = 223 3.

26. As a generalization of problem 24, prove that, if

oo Lty =@+ )
2a + 2by’
then s = ax + by + z + constant. If y is any function of x for which the

expression has an elementary integral, this leads to a space curve with elementary
arc length.

7
26. Let c(z) be continuous, p(z) = 0, and P(z) = f p(z) dz, a proper or
a

improper integral fora < « < b. Then, for any z on the closed interval a,b the

Stieltjes integral f ¢(z) dP(z) equals the proper or improper Riemann integral
a
T
f c(z)p(x) dv. Hint: If S is a Stieltjes sum with 8, such that the oscillation
a

of ¢(z) in any interval < ¢, then

f ” o)p(@) dz — c(z.-)aP‘[ < €3P;, 5o that
.

-1

b
j c(z)p(z) dz — Sl < eP(b). For improper integrals, as in section 169, we
a

need only treat the case where p(z) is unbounded near . By the result for
proper integrals, the two are equal on a,b — k. Let A— 0. The limit of the
Riemann integral exists, since p(z) is integrable. Hence the improper Stieltjes
integral exists and equals the other.

T £
27. Letu = f Udzandv = f V' dz, where, if the integrals are improper,
a a
b
f |U| dz and f |V| dz exist. Then the rule of integration by parts applies

in the formqudz=uv—vadz. Hint: Write v = u; — us, where

uy; = U or 0 according as U > 0 or not, us = — U or 0 according as U < 0 or
not, and similarly » = v; — v. This reduces the problem to the case where
U and V are each 2 0. By problem 26, the integrals may then be replaced by

Stieltjes integrals, and the relation is f udy=u — f vdu. This holds for

proper Stieltjes integrals by section 165, and for improper ones we may take
limits, since % and v are continuous.



CHAPTER IX
INFINITE SERIES AND INFINITE PRODUCTS

The question of whether an infinite series converges or not, from one
point of view, is a special case of the problem of determining whether a
variable, defined for a discrete infinite sequence of values, approaches a
limit. Thus many of the theorems concerning infinite series are immedi-
ate corollaries of the results for limits proved in Chapter II.  Our reason
for not explicitly introducing infinite series earlier is that the discussion
of certain tests for convergence is simplified by the use of integrals.

After deducing a number of tests for the convergence of infinite series
of real or complex terms, we define infinite products, and prove several
theorems concerning such products and their convergence.

185. Infinite Series, Convergence. Let wui, us, us...be any
enumerated discrete sequence of real or complex numbers. Then the
expression

0
ur +ug+uz+--- or n}:lun, (1)
sometimes abbreviated to Yus,, is called an infinite series. The general
term is u,,, and is a function of n defined for positive integral values. The
sum to n terms, or the nth partial sum, is

sn=I‘Z§lﬁk=u1+u2+u3+---+un. 2

We note that in this finite sum k is a dummy index, as defined in section
127,

A convergent series is one for which, as n becomes infinite, s, approaches
a finite limit s. That is,

s = lim s,. 3)
n~—»00

We call s the sum or value of the series, say that this series converges

to s, and write

s= I un 4)

By a real series we mean one for which the values of all the u, are real
numbers. A series of complex terms, with

Up = Gp + tba, (5)
298
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has as its partial sum
sn=2 ar+ 1 X b (6)
k=1 k=1
Consequently, by section 99, the series will converge if and only if the

two real series with terms a, and b, converge. Moreover, when the
series is convergent,

s=zan+izbn' (7)
n=1 n=1

Thus the question of convergence of any series of complex terms is
equivalent to a similar question for two real series, the real and imaginary
component series. Also the sum of the series of complex terms is a simple
combination of the sums of the two real series.

186. Divergence. A divergent series is one which does not converge.
For such a series, s, does not approach a finite limit. For a real series,
if lim s, = 4 ®, we say that the series diverges to infinity, and if
lim s, = — o, that it diverges to minus infinity. In all other cases
where s, is real and the series diverges, the upper and lower limits of s,
as defined in section 23 will be different. If these limits are both infinite,
lim s, = + and lim s, = — o, we say that the series oscillates
infinitely. If the upper and lower limits are one infinite and one finite,
we say that the series oscillates semi-infinitely. If the upper and lower
limits are both finite and distinct we say that the series oscillates
finitely.

The behavior of a divergent series of complex terms is best described
by applying the expressions just defined to its real and imaginary com-
ponent series, which are both real series. We note that if the series of
complex terms is divergent, one but not both of the component series
may converge.

187. Elementary Transformations. 1. If a finite number of terms
of a series are changed, the new series You, will converge or diverge with the
old sertes, 2un.

To prove this, let K be the largest subscript of a term changed. Then,
for all n > K, we have:

8n — 8g = 8. — sf. (8)

This shows that s, approaches a limit if and only if s, does. Also when
sither and hence both series converge, we have:

s = s+ sg — 3. )
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II. The omission of a finite number of terms from. the enumerated
sequence of terms or the insertion of a finite number of terms in any positions
does not affect the convergence or divergence of a series.

To establish this, let the largest subscript of any of the p terms omitted
be K, and let the sum of the terms omitted be T. Then, if we denote the
nth partial sum of the new series by s,, forallz > K, we have:

&n = Snyp — T. (10)

Since n + p — © when n — «, s, approaches a limit if and only if s,
does. And, when both series converge,

s =s—T. (11)

This proves the statement on omission of terms. The insertion of
terms is merely the inverse operation.

II1. If C is a constant, distinct from zero, and u, = Cu,, the series Xul
converges or diverges with 2 uy.

For, in this case
53 = Csy, (12)

so that s, approaches a limit if and only if s, does. And, when both

approach limits,
s’ = Cs. (13)

We note that inserting parentheses in the expression for an infinite
series as an unending sum has the effect of omitting certain values of s,.
For example,

(uy + ug) + (us + ug) +--- (14)

may be regarded as an infinite series with u, = ugn_; + ug,. Thus
8y = Sgn, and the odd partial sums are omitted from consideration.
Hence the insertion of parentheses will always change a convergent series
into a convergent series with the same sum. The operation will also
change a real series diverging to plus infinity, or to minus infinity, into
a second real series with similar behavior. However, it may make an
oscillating series converge. For example:

1—-14+1—1+41— 1+ ---oscillates finitely, (15)
1-1)4+@@—-1)+ 1 —1)+ - converges to 0, (16)
14+ (=141)+ (=14 1)+ --- converges to 1. an

The example shows that the omission of parentheses may change a
convergent series to a divergent series.
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188. The General Condition. Let us apply the Cauchy convergence
criterion of section 99 to the variable s,. We note that

Sktp — Sk = Ukq1 + U2 + - ¢+ Uiyp (18)

If p is an arbitrary positive integer, and k any integer exceeding N, then
k and % + p will be any two distinct integers exceeding N. Conse-
quently, from the condition that s, approaches a finite limit, it follows
that:

A necessary and suffictent condition for the convergence of the infinite
series 1un s that, for any positive quaniity e, there is some positive integer
N ¢ such that for any integer k > N ., and all posttive integers p,

[wetr + Urys + -+ -+ U] < e (19)

Although this condition is too general to be of much practical use as
it stands, the necessary condition may be restricted to give a simple
sufficient condition for divergence. To derive this, suppose that X ua,
converges. Then the relation (19) holds for all positive p, and hence
in particular for p = 1. Thus

|ukp1] < e if k>N (20)

That is, as k — o, lim u; = 0, and the tndividual terms of a convergent
series must approach zero as we go out in the enumerated sequence. This
condition is not enough to insure convergence, as we see from the series:

I+3+5+i+i+i+i+d+, (21)
formed of successive blocks of 2" terms, each equal to 1/2". The series
diverges, since the sum to 2¥ — 1 terms is k.

However, it follows from the condition that if, as n — «, u, does not
approach zero, then > u, diverges.

189. Series and Limits. Every convergent series leads to a variable
8 approaching a finite limit s. Conversely, every variable a, assuming
a discrete set of values which approaches a finite limit 4 as n — «, may
be related to a convergent series. For, if we put

Uy =Gy, Up = G — O, k>1, (22)
we find

sSn=a1+ (@2—@a1) + -+ (@ — A1) = Gy (23)

This shows that the series 2 u, has its partial sums s, = a,, and so con-
verges to the sum A.
Similar relations hold between divergent series and variables a,

assuming a discrete set of values which do not approach a finite limit as
n— oo,
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Thus from one point of view the terminology of infinite series merely
furnishes a second notation for the behavior of discrete sequences, and
results for series are theorems on enumerated sequences expressed in
terms of the differences of consecutive elements.

190. Positive Series. We call 2 u, a positive series if .each of the
terms u, is real and positive or zero. We shall indicate this by writing
Pn in place of u,. We treat such series separately because of their
simplicity. Furthermore, we often deduce the convergence of other
series from that of one or more positive series related to them.

The positive series: X p, has

Sng41 — Sn = Pny1 = 0, sothat s,44 = s5. (24)
Thus s, is a monotonically increasing variable, and it follows from the

theorem of section 27 that:
A necessary and sufficient condition for the convergence of a positive series
18 that for all n there is some number M independent of n, such that:
sn S M. (25)

191. Comparison Tests. Let 3p. and Xp, be two positive series.
We may deduce the convergence of the primed series from that of the
unprimed series in the following cases:

L If p < puy
1I. If p = anp. and a, < A,
' ’
1L If im 22 = L, a finite limit.
n—»0 Pn
’
IV. i Dot < Poin,
Pn Pn

These may be proved as follows. Incasel, s, <  Sny sothats) < M

if s, < M. Similarly, in case II, p, < Aps, and s, < AM if s, < M.

In case III, we note thatif n = N,, p./pn < L +¢. Thus,if L+ ¢ =
- ]

A, p, < Ap, and by the condition II, X p; converges with X p,.
a=N n=N

0
But the addition of terms to the first series to obtain E ps, and the omis-
@«

sion of terms from Z Pn to obtain the second series, has no effect on con-

vergence, by the second result of section 187. Thus Zp,. converges
with Z-p, in case IIL.
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To prove case IV, we use the identity:

Po_ Pn P P2 (26)

b

” Pn—1 Pn—2 D1

and the corresponding one for the p;. It follows from these and the
condition IV that

’

Pn o Pn, (@7

7 =

P N

14
so that we may use condition II, with A = %

1

Since the convergence of p, implies that of p,, the divergence of p;,

implies that of p,, under any of the above conditions. Since we are here
starting with p,, it is more natural to state that we may deduce the
divergence of the primed series from that of the unprimed series in the
following cases:

I’. If py,‘ g pm
Ir'. If pr: = bypn and b, = B >0,
4
Ir’. Fim22=2>0 or 4.
N=~=>00 pn
v, [ Bett 5 P,
Dn Dn

From the discussion of section 187 it follows that in cases I, II, and IV
or I, II’, and IV’ the conclusion will follow if the conditions hold for all
terms after some particular value N of n.

192. The Integral Test. If f(z) is a positive, monotonically decreasing
Junction of x, for all x greater than or equal to K, a fixed positive integer,

00 .
and if the improper integral f Sf(x) dx converges, then the series with
b

Pn = f(n) converges, and conversely the integral will converge if the series
does.
To prove this, we first observe that
JEYy=fx)=fk—1) for KSsk~1=5z2z=k, (28)
in consequence of the monotonic character of f(z). As a monotonic

function, f(z) is integrable over any of the finite intervals defined in
equation (28), and we have:

k
105 [ 1) de < 5= 1). (29)
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Puttingk = K+ 1, K 4+ 2, - - -, n and summing, we find:

I s [i0wsEw. (30)

As the function f(z) is positive, the integral in this equation is monoton-
ically increasing with n. Thus, if the integral converges as n — =, it is
bounded. Hence, by the first inequality the sum is bounded and the
series converges. Again, if the series converges, the finite sum on the
right is bounded, and by the second inequality, the integral is bounded
and so converges, since it monotonically increases with the upper limit.

Since the series and the integral converge together, they must diverge
together.

When both are convergent, we have:

L i0s [ iwas ¥ 0. Q)
k=K+1 K k=K

This test enables us to treat a number of series whose general terms
are obtained from the integrals of section 170. In particular, we note
that in consequence of equation (79) of that section,

1
> -G converges if, and only if, a > 1. (32)
193. Geometric Series. Since
1— ,,.n+l
1+7‘+7‘2+"'+7‘n=—i'—:: (33)
and
im ™1 =0, if 0=7r<1, (34)

n—rR
the positive geometric series with p, = r™ converges. This fact leads to
the following results for positive series:

L If%’i1 =r<1,foralln,oralln = N,then X p, converges. This test

is a consequence of section 191, IV, with p, = ", so that pjy1/ps = 7.
II. If—= p""'l = 1for all n, or all m = N, then X p,, diverges. Thisisa
consequence of section 191, IV’, with p, = 1, so that Drs1/p = 1.
III. If lim Patt _ L, the series converges if L is less than 1, and

n—0 Pn

diverges if L is grealer than 1.
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In the first case L < 1. Hence, if

e=1—;£: e>0 and L+e=#<l. (35)

Let us use this as the e in the definition of a limit, and determine N so
that

Prtl _Il<e if n>N. (36)
Dn
This implies that
Potl oL 4e<1, if n>N. @7

n

Hence we may use L + e as r and apply test I of this section to establish
the convergence of X pn.
In the second case L-> 1. Hence if

e=L—1,¢>0 and L—e=1. (38)

Let us use this as the e in the definition of a limit, and determine N so
that

L—?;—“ <e if n>N. (39)
This implies that
1’;}‘>L—e;1, if n>N. (40)

The divergence of X.p, follows from this and test II of this section.

The results I, II, and III which depend on the ratio p,i1/p. are
separately or collectively known as the test-ratio test.

A test which depends on the general term of the series is:

and diverges if Y pa = 1 for an infinite number of values of n.
In the first case,

IV. The series p, converges z:f\/" PnSr<1foralln,oralln= N,

if n=N,Vp,<r and p, £ with r < 1. (41)

Thus the convergence of Xp, follows from test I of section 191, with
’ n
P ="
In the second case, since p, = 1 for an infinite number of values, we
cannot have lim p, = 0, and the series is divergent by the condition
proved at the end of section 188,
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From the meaning of upper limit, and IV, we may deduce:
V. If lim v Dn < 1, the series converges, while if lim Y Dn > 1, the
series diverges.

194. Harmonic Series. In equation (82) we proved that the har-
monic series

1 . . .
> ~a converges if @ >1 anddivergesif a < 1. (42)

For this series we have:

Prat1 n? 1\ a (1
Pn n+ 1)° ( +n> n+0 - (43)
by equation (196) of section 83.
Now consider any positive series with

4
b 1
1’—"—’,’—‘=1——+o(—>- (44)
Pn n n
This series converges if b > 1. To show this, we first select a value of a
such that b > a > 1. This determines a convergent series with test-
ratio given by equation (43). But we have:
’
n n- b - ].
-”—“—3#=——“+o(—)~ (45)

Dn Pn n n )
Since b > a, (b — a)/n is positive. The additional terms are of higher
order than this in 1/7 so that for all sufficiently large values of n, say

’ ’
n>N, Pnt1 Pn-|,-1 >0, or Pm;1 < Prt, (46)
n pn n pn

We now deduce the convergence of p,, from test IV of section 191.

If the relation (44) holds with b < 1, the series X.p, diverges, as we
could deduce from a similar argument based on test IV’ of section 191,
with 32.1/n as the comparison series, and ¢ = 1 in equation (45).

For positive series with

4
7"“5‘=1—1’+o( ! ) (47)

1 n nlog n

we may obtain a theorem which includes the case b = 1. To do this we

. 1
proceed as follows. . For the positive, decreasing functxon,my

we have:

* dx
= 1 - .
‘l; 210z 7 log (log ) — log (log 2) 48)



Arr. 194] HARMONIC SERIES 307

When z — 4 o, log x and log (log ) — + «, so that the integral does
not converge as z — -+ . Hence, by section 192, the series with

Pn = » n = 2, diverges. For this series we have:
nlogn
Pn =(n+l)log(n+1). (49)
D1 n log n
By the method of section 83, or problem 33 of Exercises IV,
1 1 1
1+-)== -
log ( + n) - + o0 (n)’ (50)
so that
1
1 log{1+ =~ :
il e SO o(eam):
logn log n " nlogn nlog n
(51)
Hence,
n 1\1 1 1 1 1
p_=(1+_>ﬂim_)=1+—+ +0( ) (52)
Dnyt n log n . m nlogn nlogn

By the procedure of section 83, we may deduce from this for the
reciprocal function:

Pt _y 11 +°< 1 ) (53)

Pa n nlogn n log n

Now consider a series whose test-ratio is given by equation (47) with
b = 1. From equations (47) and (53) we have:

. 1-5, 1 1
Pn-;-l _ Pni1 _ 0( ) (54)
Pn Pn n n log n n log n

Since the first term is positive or zero, the second positive, and the last
of higher order than the first or second, it follows that the difference is
positive for all sufficiently large values of n. Thus, by test IV’ of sec-
tion 191, the series Xp, diverges.

Since terms o ( ) are also o (l) , by the result for series with
n log n n
ratio in the form (44), the series with ratio in the form (47) converges if
b > 1. Thus we may state as the complete result:

If the test-ratio of a series is expressible in the form (47), the series con-
verges if b > 1, and diverges if b < 1.
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1 1
We note that if ¢ > 0, terms o ( n +q) or even 0 (m) are also

1
o( >, by equation (293) of section 92. Thus, in particular, the
n log n

series with

’
=1 —+0(l+q)» ¢>0, (55)

converges if b > 1 and diverges if b <

196. Practical Procedure. If p, is given explicitly as a function of
n, we may express the test-ratio as a function of n. Suppose that there
is a function f(x), continuous at z = 0, such that for some fixed value ¢
and all sufficiently large n,

Put1 _ 1.
= 1) &

It is possible so to select the function that ¢ = 0, but another choice
may make f(x) take a simpler form. Then, if f(0) < 1, the series is con-
vergent, and if f(0) > 1, the series is divergent by test III of section 193.

If f/(0) = 1, and the function f(z) has a finite second derivative at
z = 0, by equations (188) and (189) of section 82 there is a development :

J(R) = 1+ f'(0) + O(h?). (57)
If we replace k by 1/(n + ¢) and observe that

1 1 1
. —-I-O( )sandterms 0(m>are0<77): (58)

we may deduce that

%’f +1@ +0( ) (59)

As this has the form of equation (55) with ¢ = 1, and b = —f/(0), we
conclude that the series under discussion is convergent if —f’(0) > 1,
and dlvergent if —f/(0) £ 1. Otherwise expressed, the series is con-
vergent if f/(0) is negative and numerlca.lly greater than unity,
f/(0) < —1. The series is dlvergent if £/(0) is positive, or numerically
less than or equal to unity, f/(0) = —1.

We illustrate this procedure for the binomial series, with

=m(m—1)(m—2) (m—n+1)
Un 1-2-3- -n £

(60)
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when z = —1 and m is not zero or a positive integer. For these values,
the terms all have the same sign for n > m. Hence, if we neglect the
terms with n < m, if there are any such, we obtain either a positive series,
or one obtained from a positive series by multiplying each term by —1,
which does not affect either the convergence or the test-ratio. The test-
ratio is

Ungy R —m . m +1 ,

Un  nA1 n+1 (61)
so that
ife=1f@=)=1-(m+ 1z f0)=1f0)=—(m+1). (62
Thus, when z = —1, the binomial series with general term given by

equation (60) converges if m is positive, and diverges if m is negative,
Although we excepted the cases of m zero or a positive integer from the
discussion, we need not except them from the conclusion, since in the
excepted cases the terms are all zero from a certain point on, and we have
convergence. Thus the series converges for all values of m = 0, and
diverges for all values of m < 0, when z = —1.

The procedure of this section applies to most of the useful positive
series. It is generally the simplest in practice, particularly when
Pny1 and p, have common factors. Occasionally, when p, is an nth
power of a simple expression, the tests of section 193, IV and V, are
practically the simplest.

196. Absolute Convergence. For any infinite series of real or com-
plex terms, X un, the series whose general term is |u,| is a positive series.
If this positive series converges, the original series necessarily converges.
For, we have:

[urgr + gz + -0 Upgp| S Juppr] + Jurge] + - Flurgs], (63)

80 that the sum on the left will be numerically less than e if that on the
right is. But, by the condition of section 188, if the positive series
2 |un| converges, the sum on the right will be less than any fixed positive
quantity e, for all positive p, and all £ > N,, a suitably chosen number.
Thus the sum on the left is numerically less than ¢, for all such choices of
p and %, and by the sufficiency of the condition of section 188, the series
2 u, converges. This proves:
If Xlun| converges, then Jou, converges.

When X |u.| converges, the series Xu, is said to converge absolutely.
Thus absolute convergence implies convergence.

Any sufficient condition for the convergence of a positive series, when
applied to X |u.|, may be used to prove the absolute convergence of
Tuy.
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In particular, we note that if

1i"ifl=1~*( : ), (64)

Un n-+c

for all sufficiently large integral values of n, where f(z) = |[F(z)| is con-
tinuous at z = 0, we have absolute convergence if f(0) < 1. Also if
f(x) has a finite second derivative at z = 0, and f(0) = 1, f’(0) < —1,
we have absolute convergence by section 195.

Note that the tests for divergence of positive series, for example those
of section 195, when applied to X_|u,| may show that 3 u, does not con-
verge absolutely, but do not necessarily prove that the series itself
diverges.

If Zu, converges, but X |u,| diverges, we say that Xu, converges
conditionally.

197. The Abel Identity. The principal method of proving the con-
vergence of series not absolutely convergent rests on an identity which
we proceed to discuss.

Let a finite sequence of positive decreasing quantities be given:

PP paZ--2pa 20, ' (65)
and n real or complex quantities:
Uty Ug, Ugy * * * , Un. : (66)
Form the partial sums:
S1=up, Sg=U+ Uy -, Sp=UF U F Uy (67)

and let M be an upper bound for their numerical values,

s S M, k=1,2,---,n. (68)
We shall prove that
képkuk = piM. (69)
We have:
I?i‘-l Prug = P181 + Pa(sz — 81) + - - + Palsn — Sn1) (70)

= 81(p1 — P2) + s2(p2 — p3) + *  + + 8p1(Pn—1 = Pn) + 8aPn.  (71)
This is the Abel identity.
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The differences in the parentheses of the expression (71) are all posi-
tive or zero, so that

n n—1

Elpkuk = El [skl (P& — Pr41) F [8nlDn (72)
= M[(py — p2) + (02 — p3) + -+ (Pre1 — Pn) + pa] (73)
< Mp;. (74)

This is the inequality we were seeking to prove.
Suppose next that the u; and hence the s are real. Let M’ and M"’
be bounds for all the s, so that:

M 2= M. (75)

In this case we may obtain an upper bound for the right member of
equation (71) by replacing each s, by M’’, and reducing the expression
to M''py, analogous to the deduction of equation (74). Similarly we
obtain the lower bound M’p,, so that

M'p, = El prux < M''p,. (76)

198. The Bonnet Mean Value Theorem. As an application of the
relation (76), we shall prove Bonnet’s form of the second mean value
theorem for integrals. The theorem is:

If f(x) is bounded and integrable for ¢ £ x £ b, and p(x) is positive
and monotonically decreasing for a < x < b, then

b
[ 1@t = 2@ [ 1), @)

Sor a suitably chosen value of & in the closed interval a,b.

On the interval a,b the function p(z) is integrable by section 158.
Hence f(z)p(z) is integrable by the final result of section 156 so that
the integral in the left hand side of equation (77) exists. Also [f(z)] is
integrable.

We shall construct a sum which approximates the integral of f(z)p(z).
We first select any positive number ¢, and determine a positive number »
such that

b
2 @)z < e (78)
We then divide the interval from p(b) to p(a) into n equal parts, taking
n so large that each part is lessthan . That s,

n>P@ =20 o ple) - pb) n

" " (79)
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We denote the points of subdivision by py, so that:
P1 = p(a), Pny1 = P(®), Pr = p1 — (k — 1)s. (80)

We shall associate with these n 4 1 values z;. We take z; = q,
Zn41 = b. For each intermediate p;, we define z; as the least upper
bound of points w; such that

p(z) = p, for a £z = u. (81)
It follows that for the right and left hand limits,
p(zr—) 2 P& = p(Tpt). (82)

Since p(z) is monotonically decreasing, and pj = ppy1, it follows that
Zy < Zx41. We may have equality for some values of k. If the in-
equality holds, and
Tr < T < Ti41, Dk 2 P(2) 2 Prgr. (83)
Let us define
P@)=px if 2x <2< Zpgr. (84)

The function P(z) will be defined on a,b except at the points zy, finite in
number. For all other values of z,

0ZP@)—p@) Spr—Dr1 S8 <. (85)

Consequently, we have:

b b
[ sen@ s~ [ r@pe dx|= [ @@ - e i

b
s [ 1@ p(e) - P(o)] o

sv [ li@ldss e (36)

But we may write:
k

b n +1 n
[1@P@a=Zn [ 1@d=Lom @)
a k=1 zk k=1

w= [ @), (58)

so that ux = 0if 2, = 2x4;. From the relations (86) and (87):

o5 [ S0t S E gty 69
k=1 e k=1
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so that we have approximated the integral by a sum of the type to which
the Abel identity applies.

Next let M’ and M’ be the minimum and maximum values of the
integral of () from a to z, considered as a function of z. Then:

ws [ jwasu, aszss (%)

Also, since the integral is a continuous function of its upper limit z, the
values M’ and M/ are actually taken on for certain values of the upper
limit, 2’ and z'’.

If we form the sums s;, of equation (67), using the uy, of equation (88),

o= f ™ tw) do = f' ") a. 1)

Consequently, from the relation (90),
M s, =M. (92)

As this has the same form as the relation (75), we may apply equation
(76) and

M'p, < ZrusM "pr. (93)
=]
It follows from this and the relation (89) that:
M'p, — €= ff(x)p(a:) dz < M''p; + e (94)

But e is arbitrary, so that this relation remains true if we omit the terms
—cande. Recalling the definition of M’ and M/, we may write:

, » "
mf 10is [ fep@asnf r0da 05
This shows that
b
f J(z)p(z) dz is an intermediate value of p, f F(@)dt, (96)

considered as a function of z. Since it is a continuous function of z, the
intermediate value must be taken on at some point £, and

b
[ row@ = [ s0a o 2@ [ @i @

This is equation (77), the conclusion of the theorem.
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199. The Abel Tests. Let T u, be an infinite series, and

PLIZPZPaZ - Zpp=---20 (98)

be a monotonically decreasing infinite sequence of positive numbers.
Consider the series 2 p,u,. By the general condition of convergence of
section 188, the convergence of this series depends on the magnitude of
the sums:

k-]

) Pr+mUk+m. 99)

m

If, for all positive p, we have

P
Z Uk4+m

m=1

then by the relation (74), with slightly different notation,

= Pr+18k. (101)

P
2 Prk4mUktm
m=1

If the series 2 u, converges, the relation (100) may be satisfied by values
of Sy such that S; — Oask — «. Then, since the p, are monotonically
decreasing, the right, and hence the left, member of equation (101)
approaches zero as ¥ — «. Thus, by the condition of section 188, the
series 2 pau, will converge. That is:

If the series Xu,, converges, and the p, form a monotonically decreasing
sequence of positive numbers, then the series 3. pnU, converges.

A related result is:
If the series 2u, is such that for some fized S and all values of k,
k

2 U

n=1
positive numbers approaching zero as a limit, then the series ¥.p,u, con-
verges.

< S, and if the p, form a monotonically decreasing sequence of

For, in this case we have:

? k+m k
2 Ukpm| = | 2 Un — X Un| < 28, (102)
m=1 n=1 n=1
and hence
Y4
;1 PitmUictm| = 2P, (103)

which approaches zero as k — «.
In cach of these two cases, if S is a bound for all the partial sums s,,
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the sum of the series X_p,u, is numerically at most p,S, since it follows
from the inequality (74) that

D
2 Dittx
n=1

We may establish the additional result:

If the series Xu, converges and the p, form a bounded monotonically
increasing sequence of positive numbers, then the series X pu, converges.

= mS. (104)

For, if P is any upper bound for the pa,, it follows from the inequality
(74), applied to this sum taken in reverse order, that:

P

21 PrtmUkim| < PrimSe < P8y, (105)
e
which approaches 0 when k — «, since T u, converges.

200. Alternating Series. The series 1 — 1+ 1 — 1 + ... has sums
alternately 1 and 0. Accordingly all the partial sums are bounded.
Hence, if we multiply in any monotonically decreasing positive sequence,
P», approaching zero as a limit, we obtain a convergent series:

Pr— P2t DP3—Ppst - (106)

Also, since the partial sums of the original series admit unity as an upper
bound,

D
22 (1% prim| < Pite S Pepr. (107)
It follows that the remainder of the series after k terms,

- 0
mz_l (" 1)k+m Prym = (_ 1)k+1pk+l + '3:2 (" 1)k+m Prtm, (108)
is either zero or has the same sign as its first term, and does not exceed
this first term in numerical value.

When the p, decrease, so that pii2 < Pr41, the remainder of the
series has the same sign as its first term, and is numerically less than this
first term.

As an example of an alternating series, the series

1-3+3-1+-- (109)
converges. Here the p, decrease.
The series
1-1+3—-3+3-%+-- (110)

converges to 0. Here the remainders are alternately equal to their first
_term, and to zero.
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201. Conditionally Convergent Series. It is shown in problems 10
and 11 of Exercises IX that the sum of the series (109) is log 2, but that
if we rearrange the terms, taking p positive to each g negative terms, then
the sum is log (2p*/%/¢'/?).

This illustrates that the sum of a conditionally convergent series
may change when we rearrange the terms. Consider any real condi-
tionally convergent series. Let P, denote the sum of those terms among
the first » which are positive, and —@Q, the sum of those terms among
the first n which are negative. Since the series converges, we have

lim (P, — @.) = s, the sum of the series. But, as the series does not

n—>n
converge absolutely, we have

lim (P, + Q) = + =, so that lim P, = 4+

Nn—>0 N~»00

and lim @, = + «.

n—-a0

Hence, after any finite number of terms are removed, we may still obtain
from either P or @ a number of terms with an arbitrarily large sum, where
P denotes the positive terms of the series taken in order, and @ the nega-
tive terms with signs reversed, taken in order. This fact suggests a
method of rearrangement of the series which will have any given number
L,asasum. We begin with the smallest number of positive terms from
P, taken in order, which have a sum greater than L. Then we add the
smallest number of terms from —@ to give a sum less than L. We then
take additional terms, in order, from P to make the sum greater than L,
additional terms from —(@) to make the sum less than L, and continue in
this way. The resulting series will have a sum L, since the difference
between a partial sum and L will be less than the last term of P or @
used, and the individual terms approach zero since the series con-
verges.

Similarly, by using an increasing set of numbers in place of L at each
stage, say n, we may make the new series diverge to plus infinity. Or,
using —n, we could make the new series diverge to minus infinity.

For series of complex terms, the real or imaginary component series
may converge absolutely, but at least one of these series will converge
conditionally, if the original series does. Hence there are rearrange-
ments of the terms of the original complex series which will alter the
sum,

202. Rearrangement of Absolutely Convergent Series. If a series
converges absolutely, its sum is independent of the order in which the
terms are summed. For, let 3 u, be an absolutely convergent series, and
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X u, the same terms taken in a different order. Select an N such that for
every positive integer p,
P

2 |Ungml < if n>N. (111)

m=1

Then, for any n; > N and ny > n; + p; such that all the terms of

ny Ny
Y u,areincludedin ¥ w., we have:

n=1 n=1
Na ’ n 1 P1
2 Uy — 2 U S X uppl S X Jugl, (112)
n=1 n=1 k=1 k=1

where u;;, denotes a term with subscript exceeding n;. If the largest of
these subscripts is n; + ps, we have:

P Pe
z lujel = z [n, 4l < e (113)
Since ny becomes infinite when 7, does, this proves that
Lty =X tUn (114)
n=1 n=1

The result may be applied to X |u,| and X|u.|, so that the latter series
converges, and the rearranged series Y u, converges absolutely.

In rearranging an absolutely convergent series, we may separate its
terms into a finite number, g, of infinite sets, and use each set to form a
new infinite series. We may then sum each of these ¢ series and add the

gsums. Let the separate series be X uf,, Xuin, * * * , 3stlyn.
If 2 ua| = 8, (115)
n=1
14 n
we have: Y ul £ X |ua S8, (116)
n=1 n=1

so that each of the separate series converges absolutely. Now select an
N such that the relation (111) holds, and take any n; > N, and n; so
large that all the first n; terms of the original series are included in the
sums to ng terms of the ¢ series. Then we have:

g Na 7y
2 Z ur'n - 2 Un é 2 !ujkl! (117)

r=1 n=1 n=1 k

where uj; denotes a term with subscript greater than n;. If the largest
of these subscripts is n; + ps, we have:

Zfuil S E incsnl (118)
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Since n3 becomes infinite when nl does, this proves that:

o0

> 2 Upn = T Un. (119)

r=1 n=1 n=1
In place of a finite number of sets, we may use an enumerably infinite
number of sets. Each set may be arranged in an infinite series, and the
sums of these series taken as the terms of a new series. As-before, we
may show that each separate series converges absolutely. We select N
and n; > N as before, and then take ng sufficiently large and a suffi-
ciently large number of the sets, ¢, so that all the first n; terms of the
original series are included in the first ny terms of the first ¢ series. We
again have the relations (117) and (118). Thus the left member of the
relation (117) is at most e for all sufficiently large n;, and we must have:

2 ):um—Zu,. <e (120)

r=1 n=1

for sufficiently large g.

This proves that the infinite series whose terms are the sums of the
separate series converges to the same sum as the original series.

Conversely, a multiple series, or series of series, may be rearranged as
a single series which has the same sum, if the single series is absolutely
convergent.

203. Operations on Series. Two convergent series may be added
termwise, since if w, = %, -+ v,, then

D 14 ¥4
2wy = 2 Us + Z Vny (121)
n=1

so that i w, = E Uy, + 2 V. (122)
n=1 n=1

The same is true of any finite number of series.
For the product of two convergent series, we have

[Ew][En]-pm[Ew][En] o

o n-1 n—1
~E[ZwEm-EuwmEm|  a
For n = 1, the sums from 1 to 0 are to be replaced by 0.

Suppose that both series are absolutely convergent. Then if

S jual =8 and X |va| = T, (125)
n=1 n=1 .

? g )
Z [un| I [0a] = ST. (126)
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Thus any arrangement of the double series with general term |un,v,| as a

single series will have a bounded sum and hence converge. Hence the

corresponding series with absolute value signs omitted will converge

absolutely, and all rearrangements of 2. 2 umv, will converge to the

same sum. Since one arrangement has a sequence of partial sums equal
n n

to [ X u,,,] [ Y v,,,:' , it follows from the relation (123) that:

m=1 m=1

] 0 €N 0
[Zw][Z0]- E Z 120)
n=1 n=1 m=1 n=1

when the two original series converge absolutely. The double series on
the right may be rearranged in any way without altering the sum. The
most useful arrangement generally is:

wvy + (wave + ugwy) + (wyvz 4 ugve + usvy) + - -+,  (128)

where the sum of the subscripts in the nth parenthesisis n + 1.

204. Practical Tests. The tests for divergence of positive series
which show that u, cannot approach the limit zero may be applied to
Un. Thus,
if lim

Un41

>1, or limV]u> 1, (129)

Un

the series u, diverges.

Absolute convergence is usually proved either by applying the pro-
cedure of section 195 to the series X [un|, or by a comparison with a posi-
tive series known to be convergent. In this case we deduce the absolute
convergence of Y u, from the convergence of X.p, and the relation
Iunl =< Dn.

206. Infinite Products. An infinite product is an expression of the
form:

A4+u)A+u)- - Q4+ up) - (130)

By a real infinite product we mean one for which all the u, arereal. We
shall consider only products with no zero factors, so that

up % —1. (131)

Analogous to the partial sums of a series, we may form partial
products

Pom ML (L4 w) = L+ u) (@ w) (1 w) - (L ). (132)
If
lim P, = P, (133)

n—>0
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where P is finite and different from zero, we say that the infinite product
is convergent, and converges to the value P. We write in this case

IajI1 (1 +u,) =P orsimply II(1 + u,) = P. (134)

We sometimes use II(1 + u,) as an abbreviation for the expression
(130) when the initial value is clear from the context. When P, either
does not approach a limit or approaches a limit zero, we say that the
infinite product diverges. A real divergent infinite product may either
diverge to zero, diverge to infinity, or oscillate. Compare the remarks
on the behavior of real series in section 186.

If a finite number of wy, all preceding the Nth factor, are allowed to be
—1, the terms convergent and divergent may be applied to the original

0
product to mean that I';v {1 4+ u,) converges or diverges in the sense
n=

just defined. This extension enables us to multiply in or divide out, or
change a finite number of factors, zero or not, at the beginning of a
product, without affecting its convergence or divergence.

206. The General Condition. A necessary and sufficient condition

for the convergence of the infinite product II1 (1 + un), un # —1, 1s that,

Jor any positive number ¢, there is a number N,, such that, for any n > N,
and all positive integers p,

hd
kIII A+ tngx) — 1| < e (135)

To prove the necessity of the condition, let us suppose that the infinite
product converges. Since P, the limit of P,, is not zero, we may select a
positive number 7, with

0<n<l§,- (136)

We next select a number N such that, for n > N,
P, — Pl <%, or P,=P+6y with [0 <1 (137)

We will then have:

Ta+ u,.)l =Pz Pl - P~ P22l )

Also,if n > N;n+ p > N, and
Poyp—P =20y, |0/|<1. (139)
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Then
n+p
II (1 + um) P
121(1+u,;+,,)~1—"“==l —1=zE_y
H (1 + um) "
P+ 6"y © —6)n
= —1= . 140
P 4 oy P+ 6y (140)
Consequently, we have for the absolute value:
21} 4y
ﬁ 1+ un < 141)
( &) — l EZh B (
2

Since the only condition imposed on n was the relation (136), we may
80 choose 7 that the last expression is less than any given e. In fact,

4n . |Ple
—. 142
Pl <e if 7< n (142)

This proves that the condition is necessary.

We will next prove the sufficiency of the condition. Accordingly, we
assume that the condition is satisfied. Then, for any given positive e,
we shall have:

l I+ une) — 1 <, (143)
or

kﬁl (L4 tnps) =146 J6] <1, for n=N. (144)

We let N denote N for ¢ = 1/2, and only consider values of ¢ < 1/2.
We also take N, > N.
Again, we have:

0 ) = 1) = ) | L0 1) = 1] 189

But, from equation (144) with e = 1/2,

P
Pree - M1 (1 uwyp) = 141 (146)
Py k=1 2
Consequently,
1 P
- < [FX+2 < 2 and P 1Pl < |PNya| < 2{Px|. (147)
2 Py 2
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Let us put
M = |Pyl. (148)

Then any n > N may be used as N + p, so that:
M
5 < |P.| < 2M, if n>N. (149)

For any n > N, n > N, > N, so that the relations (143) and (149)
both hold. From these and the identity (145) we may deduce:

[Paip — Pul <2Me, if n> N. (150)

Since M is fixed, and e arbitrary, it follows from this last relation that
for n —» «, P, approaches a limit by the Cauchy convergence criterion.

Also, since no single factor is zero, M is not zero, and from the relation
(149), the limit has a numerical value at least M /2, and so is different
from zero.

Thus, if the condition is satisfied, the infinite product converges.

As a consequence of the necessity of the condition, we note that, for
p=1

[+ ung1) — 1] < ¢ or |unpi| <e for n>N. (151)

This proves that a necessary condition for the convergence of an infinite

product is that lim u, = 0. This condition is the reason for writing the
n—>0

factors as 1 + u,.
207. Absolute Convergence. The expression

I+ un -1, (152)

which occurs in the condition for convergence, when multiplied out and
the —1 cancelled becomes a polynomial in the u,; with positive coeffi-
cients. Consequently,

,,I:Il A+ un) — 1) = kliil(l + [unysl) — 1. (153)

It follows from this, and the condition of the preceding section, that if
II(1 + |ua|) converges, then II(1 + u,) converges. Under these
conditions, the latter product is said to converge absolutely. The abso-
lute convergence of any infinite product depends on the convergence of a
positive product, that is one all of whose factors may be written 1 + p,,
where the p, are positive or zero. Accordingly, we consider such posi-
tive products.
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We begin by applying the law of the mean to ¢, £ = 0, and so obtain:

ex__eo
- 0=e’*g1, or =14z z=0. (154)

It follows from this that:

1T +p) s % (155)
k=1

The product of the first n factors of a positive product is a monotoni-

cally increasing function of n, and accordingly approaches a limit if it is
Ld

bounded. If X p; = s, then e® is an upper bound for all the partial

n=1
products, and these products approach a limit as n — . Since the
products are all at least unity, the limit is at least unity, and hence
distinct from zero. Thus the infinite product converges.
Conversely, if the infinite product converges, so does the series J_py.
For we have:

fome B

(1 + i), (156)

1+ ;e =
E=1 1

k

since the right member, when multiplied out, includes the terms on the
left, as well as other additional terms which are positive or zero. This
shows that if the product converges, its limit less unity is greater than or
equal to any partial sum of the series Y p;. Thus these partial sums
are bounded, and, since the series is a positive series, it converges.

We have thus proved:

A necessary and sufficient condition for the convergence of a positive infinite -
product IX(1 + p,), is that the positive infinite series J.p, comverges.

If we consider the p, as u,, we may conclude from this that:

A necessary and sufficient condition for the absolute convergence of the
infinite product IL(1 + w,) is the absolute convergence of the infinite series

3 Un.

208. Rearrangement of the Factors. If an infinite product converges
absolutely, and we rearrange the factors in any way that neither omits
any, nor adds any factors, the new product will converge absolutely, by
the properties of series and the theorem just proved. Let P, be the
partial product to n factors of the original product, with factors (1 + u,),
approaching a limit P. Denote by P, the partial product to m factors
of the rearranged product, with factors (1 + w,), approaching a limit
P’. By the general condition of section 206, applied to the positive
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product with factors (1 4+ |u,|), there is an N such that

LI:II (1 + lunye]) — 1| <¢ for n>N. (157)

Now take n > N, form P,, and then take m so large that all the factors

of P, are included in P,. Then we have:

Pl

E -1

where all the u;; have subscripts exceeding n.
From the relation (153) it follows that:

= II;.I(I + uj) — 1’, (158)

Ikl(l +oup) — 1 = 1;1(1 + |ul) — L. (159)
Since each factor (1 + |u;x|) is at least unity, if we add additional factors
to the product in the right member, this member will be increased, or at
least not diminished. Thus, for a suitable positive integer p,

I+ ) — 1 < 0L+ funial) - 1, (160)
4
and ;—: —1]<e (161)

Since m — © when n— «, and P # 0, we may conclude from this
that
P’ P’ .
7,——1'<e, or Z—1=0, (162)

since e is arbitrary. Thus P’ = P, and we have proved that:

If the factors of an absolutely convergent infinite product are rearranged
to give a new product, the new product is also absolutely convergent, and
has the same value as the original product.

209. Products of Fixed Sign. If the u, are all real and negative, we
may write the typical factor as (1 — p,). If the p, are all less than
unity, we have:

A=p)Q+pa) =1~ pﬁ <1, (163)

1
and 1 =-ps) < mn—) (164)
Thus Ba-p<—?—. (165)

,‘I_‘Il 1+ px)
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If the series X px diverges, it follows from the relation (156) that the
product II(1 4 p;) diverges to 4, and from the relation (165) that
the product II(1 — pi) diverges to zero. On the other hand, if the
series 2.p; converges, then the product II(1 — pi) converges abso-
lutely. Since the infinite product II(1 + u,) as well as the series 2ua
can only converge if lim u, = 0, the condition that p, is less than

n—>0
unity will always hold from a certain factor on, if we have convergence.
Thus we may combine the result just found with that for positive prod-
ucts in the theorem:

If, for all sufficiently large n, the u, are real and of fixed sign, the infinite
product TL(1 + u,) will converge if and only if the infinile series puTR
converges.

That the condition of fixed sign is essential may be seen from the
example:

1 1 1 1 1 1
Uy = — — = — — U = — — U = — — 166
1 2%’"2 2%+2' 2n—3 3 vt n%+n (166)
The infinite product II(1 + u,) converges. For the individual factors
approach unity, and when grouped in pairs we have:

1
(1 + ugn—-s) (1 + ugn3) =1 — 3’ (167)
n
which is the factor of an absolutely convergent infinite product. How-
n+1
ever, the series 2u,, diverges, since its 2nth partial sum is 3 1/k.

k=2

EXERCISES IX

1. If X p. is any convergent positive series, a second such series Y.p) can
be found with Lim p}/p. = ©. Hint: We may put 7o = ,7, = 8 — s, and
Ph=Vra1— V/ra. Then sp = V-V T, S0 that the primed series con-

Pn Tal1 — Ta
vergesto\/;. Andp,'. = \/:_1 —\/r: = Vr,._;+\/r—,. —0.
2. If p, is any divergent positive series, a second such series can be found
with lim p,/p. = 0. Hint: We may put Do = \/Z. - Vi, p1 = \/;1
',\/;; -V S$a-1 1 —0

§n = Sn-1 Vsn+ Vs

8. If the terms of a positive convergent series monotonically decrease as n
increases, then p, = o(1/n). Hint: The sum of the terms from that with index
[n/2] to n exceeds (n/2)pa, so that if |s — s.] < ¢, when n > N, np. < 2
when n > 2N.

?
Then s, = Vs, — +o, and 2 =
Pn
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4. The condition of problem 3 cannot be improved, since if f(m) is any
positive function such that f(m) — 0 as m— o, we may find a positive con-
vergent series whose terms monotonically decrease, with Pm = f(m) /m for an
infinite number of values of m. Hint: Select a series of values of m, mg, for
which f(mz) < 1/2% take f(my) /mx as the (my)th term, and all terms after the
(mi — 1)st which precede this. Then the series converges, since the sum to

k
mi terms is less than Y f(my) < 1.
: =

* B. Kummer's Criterion. Let a, be any sequence of positive numbers, and
Pn
DPny1
The series pn converges if lim K, > 0, so that for sufficiently large n the K,
exceed some fixed positive number. Hint: With a change in the notation, if
necessary, we may assume K, > A, for all n.  Then a,pn ~ any1pass > Apn,

and summing a;p; — Gay1Pasr > A 2Py, S0 that 3p, is bounded.

6. If the positive numbers a, of problem 5 are such that 31 /ay, diverges,
and lim K, < 0, or even K, < 0 for sufficiently large n, the series 3_p, diverges.
Hint: Use the test IV’ of section 191, with 3.1 /a, as the comparison series.

7. Prove that the positiveseries 2.p, convergesif logn [n( Pa _ 1) - 1:,
pn+1
has lim > 1, and the series diverges if the expression haslim < 1.  Hint: Put

a, = n log n, and use problems 5, 6 and equation (52) of the text.
8. Deduce the rule of section 194, equation (55) from the preceding problem.

9. Prove that the expression F(n) = 1 4 % + él- 4+ 4 1 — log n is
n

P» the terms of a positive series. Form the expressions a, — Qny1 = K,

always positive, and decreases with n, so that it approaches a limit as n—> o,
The limit is known as Euler’s constant, and is denoted by v, so that
Lim F(n) = . In section 323 we shall show how to compute its value,

Ner-00
0.5772157 - - - . "Hint: With f(z) = 1/r, we have from equation (30)
logn=s1+ % + 4 ! 7’ so that F(n) is positive. And from equation

(29), 1/n < logn — log (n — 1), so that F(n) — F(n — 1) £ 0, so that F(n)
decreases with z. ‘

10. Prove that 1 — % + —;; — .-+ =1log 2. Hini: If s, is the sum to n terms

of X1/n, sa = v + log n + o(1), by problem 9. For the series of this problem,
the sum of 2n terms is s, — 2 (—s21') =y + log (2n) — (y + log n) + o(1) =
log 2+ o(1). The odd sums also approach log 2, since the separate terms
approach zero.

11. Prove that if we rearrange the terms of the series in problem 10, taking
alternately blocks of p positive terms and g negative terms in order, the sum of
the series is log (2p1/2 /g*/?), H int: As in the preceding problem, the sum of the
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8 Sm.
first m(p + ¢) terms may be written as Somp — —"'2‘? - ?q = v + log 2mp —
1/2(y + log mp) — 1/2(y + log mg) + o(1) = log 2 + 1/2 log (p/g) + o(1).
The other sums approach the same limit, since the sum of any group of 2(p + ¢
2

or fewer terms from Y1 /n, all beyond the Nth is at most _gp_N-l-_q) which — 0
when N — .

12. Prove that the positive series X.r" converges if and only if r < 1 by using
the integral test of section 192.

1
13. If we start with n = 2, the series with u, = ———— has all its terms
n (log n)*

positive. It converges if o > 1, and divergesif a £ 1. Provea similar result
when the denominator is n (log n)(log? n) - - - (log" n)?, where log® n means log
log n, and similarly for log" n. We must start with a large enough value to
make all the numbers whose logarithms are taken greater than unity, and the
condition for divergence is always a < 1. Hint: Use the integral test, and
observe that

1
z (log z)(logZ ) - - - (log' ')

*

d
P (log" 2) =

14. The series X, diverges by problem 13, or section 194. Show that
nlogn

for this series p, = o(1/n). This proves that the condition of problem 3 is only
necessary and not sufficient for convergence.

16. Show that the series 3z /n™ is absolutely convergent for all values of z,
and that the same result holds for _R(n)z"/n", where R(n) is any rational
function of n.

16. Show that JR(n)z"™ /n | is absolutely convergent for all values of z, where

2
R(n) is any rational function. An example is the series 1+ z + g—l + -

xﬂ
+ T + - - -, which equals ” for real values of z, by problem 26 of Exercises.IV.

17. Show that I n"z™ diverges for all values of x except 2= 0, and extend the
result to I.R(n)n"z, where R(n) is any rational function not identically zero.

18. Show that . R(n)n ! z* diverges for all values of x except = = 0, where
R(n) is any rational function not identically zero. Hint: Use problem 19 of
Exercises III.

19. If R(n) is any rational function, show that 2. R(n)z" converges absolutely
if Jz] < 1. Also that it converges for |z| = 1 if the degree of the denominator
exceeds that of the numerator by at least two. It diverges for [z| > 1, if B(n)
is not identically zero. B

20. The series with u,, = 1/n diverges, while that with up = (—1)"(1 /\/ n) con-
verges. But |us| < |ug). This illustrates that no comparison test holds for
non-positive series.
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ab
21. The series with u; = 1, up = a® and

_8@+DE@+2) - @+n— 1O+ DG+ (b+n—1)
e+ Dec+2) - +n—Ddd+1)d+2) - @+n-1"

n

is known as the hyper-geometric series. If no factor (a + n), (b + n), (¢ + n) or
(d + n) is zero, prove that it converges absolutely if |z| < 1, and diverges if
|z| > 1.

22. If the test-ratio of a series of complex terms has the form u:“ =14+ %
n
1 )
+ O(ﬁ)' prove that the series is absolutely convergent if R(4) < — 1. Apply

this to show that the hyper-geometric series of problem 21 is absolutely con-
vergent forz = 1,if R@+b—-c—d+ 1) <0.

23. If the p, are a sequence of positive quantities which monotonically
decrease to zero, X_p, sinn@ converges, and if § # 0, J.Dpa cos nf converges.
Hint: They are the real and imaginary component series of Y.p¢™, and the
sums of the geometric series X(¢¥) have |s,| = |1 — ™00 /1 — M <
2/(1 — cos 8), and so are bounded.

b 1
24. The infinite product II [1 - +0 (ﬁ)] diverges to 0 if b > 0, and
diverges to 40 if b < 0. Also, for sufficiently large n, the product of n factors
b 1 )
is a monotonic function of n. Deduce that if w1 /un = [ 1- - +0 (n—z)]e",

2u, diverges if b < 0, and converges if > 0 and 8 £ 0. Hint: Use section
209, and the preceding problem. :
26. The binomial series is

1+m+ﬁuxz+---+m(m 1)(m — 2) (m n+1)x”+”.-
21 n!
It follows from problem 29 of Exercises IV that it represents (1 + z)™ for m real
and z real and —1 < z < 1. Prove that for m real but z complex, the series
converges absolutely if |z| < 1, and diverges if || > 1. Also, that for x| = 1,
it diverges if m < —1 and converges if m = 0. For —1 < m < 0, it converges
for |z| = 1,if z % —1, and divergesif z = —1. Hint: Use the preceding prob-
Jem and section 195.
26. If m(z) is a monotonic function of z, and f(z) is bounded and integrable
for a < z < b, prove that there is a value £ such that

b & b
= b .
S, 1) m@) & = meo i@ e+ mey fe 1) da

Hint: If m(z) is increasing, interchange a and b. If m(z) is decreasing, put
p(z) = m(z) — m(b) and apply the Bonnet mean value theorem.
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27. If we pub go =0, gr = Sk, fo = 0, fx = px and 8¢k = sk — Sk—1 = U
8fk = Pk — Pr-1, the Abel identity (71) may be written:

3 f 0k = fagn — fogo — 2 Gi—1 &,
E=1 k=1

which is similar to equation (44) of section 165 and shows the relation of the Abel
identity to the formula for integration by parts.

28. Complete the details of the following proof of the Bonnet mean value
theorem for the restricted case of f(z) continuous, and p(z) having a continuous
derivative p'(z). Here we may assume p(b) 2 0 and p'(z) £ 0, instead of p(z)

'z

positive and monotonically decreasing. IfF(z) = | f(u) du,
a

b b b
S e az = f F@)p(@) dv = FO)p(®) — f F@p'() dz

= F®)p®) — FE)p®) — pla)},

by equation (52) section 125. If this equals Fp(a), by problem 1 of Exercises V,
F d1v1des F(b) and F(¢') in the ratio of p(a) — p(d) to p(b), which is positive.
Hence F lies between F(b) and F(¢'), and so is assumed at some point £&. Thus

b - &
j‘: f@)p(x) dz = Fp(a) = p(a)F(§) = pla) ‘[: f(z) de.

29. Prove that if p(x) is positive and monotonically decreasing for z 2 a,
and p(z) — 0 as z— +oo, while for some fixed number M and all values of

@
x> a, , f Ju) dul M, then f p@)f(x) dz converges An example is

S 1o INCE - e

f,,. p@)f(&) d Ip(m) f f(&) dz| £ 2Mp(m).

Then use the Cauchy convergence criterion.

30. If o is any complex number # 0, show that the infinite product
TI(1 + z*/a™) converges if |z| < |al, and diverges if |z} > lal.

31. Show that, for any real z, each of the infinite products:

a-nea(1-5)(1+5) (-5
-t +oea[( - (45p ] B(-5)

converges to the same function of z, the first conditionally and the other two
absolutely, if we regard [(1 F z /n)e=*/"] as a single factor of the second. In

sin
section 285 we shall show that the common limit is L Hunt: For the

second, from ¢* = 1 + u + O(u?), deduce that for any fixed real z the typical
factor is 1 + 0(1/n?).

< 2M,

f sin 2 dz. Hint: Deduce
a

if mym’ > a, so that
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32. Show that if the factors of the first product of problem 31 are rearranged,
x

in the following manner: (1 4 x)(l +§> (1—x) (1 +§)(1 +§) (1 —§> sy
the new product will converge, and its limit will be 2 times that of the original
product. Hint: Let L(x) be the limit of the first product in problem 31, and
hence of the second product of that problem, with the factors taken in any
order. Then for the product of this problem to 3n factors we may write:

O e )

where Lu(z) = [(1 + 2)e7] [(1 + -g)c "i-f:] (1 — x)e] -+

[ 23] [(-2)4]

With the notation of problem 10, the sum multiplying = in the exponent
i8 820 — 85, and so has log 2 as its limit by problem 10. Hence, when the factors
are taken by threes, the limit is ¢ °¢ 2L(z) = 2°L(z). The product always con-
verges to this limit, since the product of three or fewer consecutive factors

approaches 1 as we go out in the product.

1

qn?
33. Prove that the infinite product H[l - (1 - 1;) x"], g > 0 con-

verges absolutely if |z| < e¢, and diverges if |z > eq.



CHAPTER X
PARTIAL DIFFERENTIATION

The application of the process of differentiation to functions of a single
variable obtained from functions of several variables by keeping all
"except one of these fixed, leads to the notion of a partial derivative.
After defining partial derivatives and studying their fundamental
properties, we discuss certain results on implicit functions and functional
dependence related to the expressions known as Jacobians.
210. Partial Derivative. If f(z,y) is a function of the two real
variables z and y, for each particular value of y it defines a function of =
to which we may apply the process of differentiation:

i f(x + h’y) - f(x)y)
m .

h—0 h

)

If this limit exists for a particular value of z, it defines the derivative of
f(z,y) with respect to z, for the particular values of z and y considered.
To emphasize that z is not the only variable, we call the limit the partial
derivative of f(z,y) with respect to z, and denote it by

9, .

T o . @

211. Total Differential. When y is kept constant, and z is subjected

to an increment Az, we have a partial differential,

of :
d.f = S Az. : 3)
Similarly, if y is subjected to an increment Ay,
af ,
= — Ay. 4
dyf 3y Ay 4)
The sum of these two partial differentials,
_ LV
df - dzf+ dyf - dz Az + ay Ay, (5)
is the fotal differential of f.
We may write
Af = df + of|Az| + |ayll, (6)

331
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where @ is determined by this equation. If, when Az and Ay both
approach zero, a approaches zero, the function f(z,y) is said to be
differentiable in z and y.

We shall now prove that:

If both partial derivatives of f(z,y), df/dx and df/dy, are continuous
in the two variables = and y at (zo,y0), then the function Sxy) s
differentiable for these values.

We have, for h and k sufficiently small,
Af = fz+ h,y + k) — f(z,y)
=fE+hy+k)—fly+k)+f@y+k)—fzy) @)
= hfz(z + 01k, y + k) + Ky (2, y + 02k), )

by the law of finite increments for functions of one variable, since the
assumption that the partial derivatives are continuous at a point implies
that these derivatives exist in some two-dimensional region including the
point in its interior.
Moreover, if we write:

fo(@+ 01k, y + k) = fo(zy) + @, 9)

and
fy(xy Yy + 02k) = fv(xry) + €2, (10)

it follows from the assumed continuity that ¢; — 0 and e2 — 0, when
h—0and k— 0. But, from equation (5) and the last three equations,
if h = Az and k = Ay we have:

Af = Az[fa(zy) + el + AYlfy(2y) + ] 1)
=df + ¢ Az + ¢ Ay. (12)

A comparison of this with equation (6) shows that
_ lqh + Ezkl < ,51' lh, + !52’ lkl < lfll + I52l- (13)

el = AR S T T R+

This shows that « — 0 when h and k, or Az and Ay — 0, which proves

the theorem.
We might have deduced that

f(x: y+ k) - f(x;y) = kfl/(x:y) + e, (14)

where ¢, — 0 when k& — 0, from the mere existence of the partial deriva-
tive af/dy, or f,(z,y) at the point. Since this could have been used to
transform the last two terms of equation (7) into the terms of equation
(11) involving Ay, it was unnecessary to assume the continuity of
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fu(z,y). It follows that it is sufficient for the differentiability of f(z,y)
to have both partial derivatives exist at a point, and one of them be
continuous there.

We also note that, if the function f(z,y) is differentiable, so that the
relation (6) holds with « — 0, the relation (12) may be written with
ler] = le2] = |a|. Since these values of ¢; and e; approach zero with «,
they each approach zero with Az and Ay. Thus relation (12), with ¢
and e; each approaching zero when Az and Ay both approach zero, is a
consequence of the condition that f(z,y) be differentiable. Such a
relation is an alternative condition for differentiability, since by the
relation (13) differentiability may be deduced from it.

212. Composite Functions. If z and y are each functions of a third
real variable ¢, we have:

Af  df Az Ay

Xt_’A—t+el_Xt+€2—A_t’ (15)
as a consequence of equation (12). If the functions z(t) and y(t) each
have finite derivatives with respect to ¢:

dz . Az dy . Ay
d a0 dl At aao AL (16)

and when Af — 0, Az and Ay will also approach zero. Thus, in equation
(12), or (15) € and e; will approach zero. It follows that:

Gy Hdo Ay

dt At dz dt | oy di (17
Also, for the differential as defined in section 70,
d of (dx of (dy
= — = —-— — — — d
i (djt—) dt or <dt dt) ¥ dy \dt t)

of af

= — — dy. 1
™ dz + 3 dy (18)

This shows that, if = and y are each differentiable functions of ¢, and
f(z,y) is a differentiable function of = and y, the differential of f, when £ is
the independent variable, has the same form as the total differential
when z and y are the independent variables.

If z and y are each functions of two real variables, s and ¢, and we keep
s constant, the same reasoning shows that

of ooz Ao

ot ox ot  dy ot (19)



334 PARTIAL DIFFERENTIATION [Crar. X

In this equation, for the ¢ derivatives, sis constant; for the z derivative,
y; and for the y derivative, z is constant. When this may lead to con-
fusion, we indicate the variable held fast by a subscript, and write the
last equation as:

@ -GGG, @

213. Higher Derivatives. We may form partial derivatives of par-
tial derivatives, as

7 a/9
Jza(zy) = Py i 5(8—9’ (21)
or .
_ 9 _ 8 (o
fey(2y) = oz 3y («n)’ : (22)

We shall now prove that, if the first partial derivatives exist in some two
dimensional region including (zo,yo) and the derivative fo,(z,y) is con-
tinuous at (xo,yo), then the derivative fy.(2o,y0) exists, and fy.(xo,y0) =
Jau(Zo,90).

We use A as an abbreviation for the mixed second difference, so that:

A=flz+hy+k)—fz+hy —flzy+k) +fy). (23)
Then, if we write -
F(z) = f(z,y + k) — f(z,y), (24)
A=F(+h)—F(z). (25)
From the law of finite increments, we have:
A = F(z + h) — F(z) = hF'(x + 6h)
= hlfs(x + 6k, y + k) — fz(x + 6k, y)]
= hkfzy(z + 6k, y + 6'F). (26)
" Hence we have:
A _fzt+hyt+k)—flet+hy [f@yt+k —i@y

I’ o k
= hfsy(x + 6k, y + 0'K). (27)
Let z and y be the g,y of the theorem, and take the limit ask — 0.
Then for a sufficiently small & the first partial derivatives exist and we

have:

1@ +hy) — fy@y) = hlim foyz + 0h, y + 0k).  (28)
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Next divide by &, and take the limit as h — 0. Recalling that fz,(z,y)
is continuous at the point considered, we have

lim lim f(z + 6k, y + 0'k) = f2, (zy). (29)

h=»0 k—0
This shows that the limit of the left member of equation (28) divided
by h, exists, and

fay) = tim BETRD ZLED _ g0 a0
_>o

which is the conclusion of the theorem.

It follows from the theorem that, in any higher derivative, say of the
nth order, we need not distinguish between the orders in which the vari-
ables are taken, provided that all the derivatives of order equal to or less
than n exist and are continuous. Thus, with this continuity assumption,

3% ¥ ¥

az 9y> - dyordy oy’or 31)
. o2 (a 82 (a
siee oz 3y aD =y oz aé) (32)
% ( %
and Yy (ax ay) dy \9y ax) (33)
214. Functions of n Variables. If f(z;, 22, -+, x,) is a function of

n variables, the partial derivative df/dz; is defined as the derivative
taken with respect to z; when the remaining variables are held fast. The
total differential is

$=F L pr= 3 L, (34)
i=10%; i=10%;
and as for two variables, we find that
Af = df + .Zle,- Az;, (35)
=
or Af = df + aF Az, (36)
i=1

where the ¢; and « approach zero with all the Azx;, if all the partial deriva-
tives are continuous at the point considered.
From the relation (385) we may deduce that, if the z; are each differen-
tiable functions of m variables y;, then
o _ g o o

37
dy;  i=10%; dY; @7)
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Also, the relation

n
d d:c 38
f tz 102; : ( )
holds whether the z; are regarded as independent variables, or dependent
on the new set of variables y;. For, if the z; are functions of y;, we have
for the total differential expression :

roof ™ ox;
d x; dy;, 39
f = ‘=213 .Eaxulay, Y; (39)

since
m axi
de; = 3 — dy;. 40
]E ay; Yi (40)
A comparison of equation (39) with equation (37) shows that
i = =L ay, (41)
;=18 Y

which has the same form as equation (38), and so is valid when the y;
are the independent variables.
216. The Mean Value Theorem. If we abbreviate the function of

m variables f(z1, 22, - - -, 2,,) by f(x;), and write
T = Qy + thi, (42)
we have:
@) = f(a; + th)) = F (), (43)
a function of the single variable ¢.
Also
fla;) = F(0) and f(a; + ki) = F(1). (44)
By the law of finite increments for functions of one variable,
F(1) — FO)=F'(8), 0<06<1. (45)
And, from equation (37), we have:
F_ 2 of
— hj. 46
a - e (46)
Hence we may conclude that:
LA}
St h) — 1) = ELin, )
j=10%;

where the partial derivatives with strokes are to be evaluated at the
point:
T; = Qg + Oh,'. (48)
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If we put
z! =a; and 2!’ = a; + ks, (49)

we may write the relation in the form:

160 — ) = E ol - a, (50)

where the derivatives are to be evaluated at:
z; =z + 0!’ — i), (51)

that is, a suitable point on the straight line segment joining z/ and z/’.
The equation holds if all the partial derivatives exist and are continuous
for all values on this line segment.

We may deduce from the mean value theorem that:

A function of several variables, f(x;), is constant in a connected region if
all the partial derivatives f/9z; = O throughout the region.

For, if the points can be joined by a straight line segment lying wholly
in the region, the condition on the partial derivatives, combined with
equation (50), shows that:

f@") — () =0, and (') = f(a]). (52)

But, by the definition of a connected region, any two points of it can be
joined by a broken line lying wholly inside the region. It follows from
this that the function has the same value at any two points of the region
and is therefore a constant.

216. Taylor’s Theorem. With the notation of the last section, we
may deduce Taylor’s theorem for the function of m variables f(z;) from
that for the function of one variable, F(t). We have for F(¢):

2
FO = FO) + PO+ F'O &+ +F20 5 1 re,  69)

where R(¢) has any of the forms given for R(h) in section 91.
We find from equation (37) as in equation (46):

dF m of
Py h]' ’ (54)
and by repeated application of equation (37):

dtF = 3\F
& (Bha) 55
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where the power is to be expanded by the multinomial theorem, and the
terms finally reduced by such relations as:

(h h q(h LAY 1PRe ortatry
— — 38 .
l a’“) < * ax2> ’ 3903) /= hikd % 927 824 91} (56)

We may combine the equations (43), (563), and (55) to give Taylor’s
theorem for n variables. The result is:

o+ b = 1@y + (£ b )1+ 1 (B hi s ) 1+

(}: hy ) F+RQ). (1)

If we use Lagrange’s form of the remainder, we have:

1 oo 3\t
R(1) = m(El hjE) f (58)
where the derivatives are to be evaluated at the point
z,=a;+6h, 0<06<], (59)

where 6 is a suitably chosen number between zero and one.
217. Implicit Functions. In section 38 we formulated a theorem on
the implicit function defined by the equation

f(y; Ty, Ty **°y ) = f(yxxi) = 0. (60)

The theorem stated that, if f(y,z;) is continuous in the k + 1 variables
in some k 4 1 dimensional region including yo,%zo; in its interior,
J(Wo,0:) = 0, and the function f(y,z;) is an increasing (or decreasing)
function of y, for z; fixed and y,z; in the region, then the equation (60)
uniquely defines a continuous function:

y = F(xy, 23, -+ - 1) = F(x3). (61)

We may replace the condition that f(y,z;) is an increasing (or decreas-
ing) function of y by the condition that the partial derivative af/dy
exists and is continuous and different from zero at the point y,20:;. For,
if the derivative is positive at the point, from the continuity it will be
positive in some k + 1 dimensional region including the point, and in
this region f(y,z;) will be an increasing function of y, for z; fixed. Simi-
larly, if the derivative is negative at the point, there is some k + 1
dimensional region in which f(y,r;) is a decreasing function of y, for z;
fixed.

If all the partial derivatives of f(y,z;) exist and are continuous at the
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point (Yo,%o:), we may apply the mean value theorem, equation (47),
to f(y,x;) and obtain:
of

fly + Ay, z: + Az) — f(y,2:) = J’Ay + }:

i=1 a Azj’ (62)

where the derivatives with strokes are to be evaluated at the point
y+ 648y, z+0Az, (63)

for a suitably chosen value of 6 between 0 and 1.

If y is related to the z; by the functional relation (61), the function
f(y,x;) is identically zero, so that the right member of equation (62) is
zero. If we put all of the Az; = 0, when ¢ # 1, and divide by Az,

we find:

KA

ofl &y |, of | by om

P rvensgiron Rl B v o (64)
dy

Since the function F(z;) is continuous, and we have put all the Az;
except Az; equal to zero, when Azx; — 0, Ay — 0. Also the point at
which the derivatives are to be evaluated, (63), approaches y,2;. Hence,
if 8f/dy is not zero at this point, and the partial derivatives df/dy and
df/dz, are both continuous at this point, we may deduce from equation
(64) that:

A

i . Ay 9z

—= lim —= = = .

‘azl Azy—»0 AZI if_ (65)
d

That is, if f(y,z;) has continuous first partial derivatives at a point,
and 0f/dy = 0 at the point, the equation

f(y,%:) = 0 defines an implicit function y = F(z;), (66)

and this implicit function also has continuous first partial derivatives at '
the point, given by:

LA

% _ _ 9%

T 67)
%

For we may take any value of 7 in place of 1 in the discussion.
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If the function f(y,x;) has all its partial derivatives of the first n orders
continuous, the same is true of the function F(z;), and the higher
derivatives of this function may be calculated by repeated partial
differentiation from the equation (67).

It may be practically simpler to apply repeated differentiation to the
relation f(y,z;) = O on the assumption that y is a function of x;, possess-
ing continuous partial derivatives, and performing certain eliminations.

218. Sets of Implicit Functions. Consider a set of n functions, each
of n + k variables,

fo(ix;) where p,i=1,2,---,nand j=1,2,--- k. (68)

Under certain conditions, the system of 7 equations

Fo(izi) = 0, (69)
implicitly determines a set of n functions,
Y: = F,-(x,-). (70)

To help us guess the form of one set of sufficient conditions, let us
assume that each of the functions f,(y;,z;) possesses first partial deriva-
tives with respect to any of the n + k variables, and that each first
derivative is continuous in the set of n + k variables at a particular
point (y:,2;) = (Yoi,%o;). This implies that the functions themselves
are continuous, and in fact differentiable at this point. We also assume
that

Jo@oi,%05) = 0. (71)

Further, let us temporarily assume that the system of equations (69)
may be solved by a set of n functions F;(x;) such that yo; = F;(2o;),
and that these functions have first partial derivatives, with respect to
each of the k variables z;, which are continuous in the set of k variables
at the point (zo;).

Then, at the point considered, by equation (37), we have:

by _ ¥p | 5 Uz W, 72)
dz; 0x; g=10Y, dz;

where
fp (z;) = fp[Fi(zj)’xj]- (78)

Since the implicit functions F;(x;) are solutions of the equations (69),
the functions f,(z;) are identically zero, so that the left member of
equation (72) is zero, and hence the right member is also zero. Conse-
quently we have:

- p 3y »

= — . 74
¢=10Y, 0%; ox; (74)
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For any fixed j,and p = 1,2, - - -, n, this system of » linear equations
in the n partial derivatives dy,/dz; may be solved for these quantities
provided that the determinant of the system,

R S

ETE Yn
oy dyg Y

M ) Yn

is not zero.

The determinant (75) is called the Jacobian of the n functions f,
with respect to the n variables y,. We abbreviate it by
a(fl;er st ’fn) ,

'9(?/1, Yo, -, yn)
when we wish to indicate the functions and variables.

When the Jacobian is not zero, the solution of the system of equation
(74) for & particular derivative dy,/dxz; may be written:

a(fl>f2; tte )fq; ot ,fn)

J or (76)

ayq a(ylsyZ: tet gy Tgy :y‘n)
e : 77
axi a(fl:fm t ot :fn) ( )

8(y1’ Y2, * yn)

This calculation suggests the theorem:

Let the n functions f,(y:,x;) each possess first partial derivatives with
respect to the n variables y; and the k variables z;, each derivative being con-
tinuous in all n + k variables for a particular value yoi,xo; such that

F2WoirTo;) = 0. (78)
Then, if the Jacobian is not zero,
a(fl’f2y ct :fn)
a(ylr Yo, -, yn)
o) = 0, (80)

may be simultaneously satisfied by n functions,
ys = Fi(z;), (81)

7 0, at Yos, %05, (79)
the n eguations,
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such that
Yoi = Fi(wo5). (82)

These functions are uniquely defined and continuous in some k-dimen-
stonal region including xo; as an inferior point, and in this region possess
first partial derivatives with respect to the x;, continuous in these k variables,
determined by equations (74) or (77).

We proceed to prove this theorem, using mathematical induction.
We have already proved that the theorem is true for » = 1, and all
values of k, in section 217. Thus we need merely show that the theorem
is true for n and all values of k if it is true for all smaller values, namely
1,2,---,n — 1 and all values of k.

Let us use Cp, to denote the co-factor of the element of the determi-
nant (75) in the pth row and gth column, or 8f,/dy,. Then, by expand-
ing the determinant in terms of the elements of the last column, we have:

n 9
J = ,El g—*i‘: Con. (83)

Since J is not zero at the point considered, not all of the Cp, can be
zero. By a change of notation, if necessary, we may arrange that
C.. #~ 0. We assume this done, and note that

a(fl)f2; e yfn—l)
Cnn = ) 84
(Y1, Y2, * * * 5 Yn—1) ®4)

the Jacobian of the first n — 1 functions with respect to the first n — 1

variables.
We also recall the theorem that a determinant with two columns

identical is zero, from which it follows that:

= fp
Y ECpm=0 r=12-,n—-1 (85)
p=10Y,

By the hypothesis of the induction, the theorem holds for n — 1
dependent variables and k + 1 independent variables. Hence, if we
consider only the first n — 1 equations

fs(yt';zj) =0, §=1, 2,-,m—-1, (86)
and consider y,, r = 1, 2, - -+, n — 1 as the dependent variables and
Yn,T; 88 the k + 1 dependent variables, we may deduce the existence of
n — 1 functions F, (z;,y») such that

Yor = F r(xﬂj:yon)7 (87)

and furthermore if
Yr = E r(xj,yn)s (88)
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then feyiz;) or fa[F (ZiYn)s Yny %3] = 0. (89)
It follows from the last equation that:
o, vstar, oF,

0 =
O0Yn r=1 0Yr OYn

(90)
Let us next use the equations (88) to eliminate the y, from the last
function f,(y;,%;), and denote the resulting function by:

FnWnsi) = falFr (@59n)s Yny 23] (91)
Then we have:
n  OYn  r=10Yr OYn

Let us now multiply each of the n — 1 equations (90) by C,,, with
s corresponding to the equation used. Let us also multiply the equation
(92) by Crn and add the corresponding members of the n equations just
constructed. In view of equations (83) and (85) the result may be
written:

(92)

o7
. (93)
Yn
Since J 5 0, this shows that df,/dy, # 0. Consequently, either by
the hypothesis of the induction for one dependent variable, or the theo-
rem of section 217, the equation

jn(ymxi) =0 (94)
uniquely determines a function
Yn = Fu(z;) (95)
such that
Yon = Fa(zo;) and JulFa(z;), z;] = 0. (96)

Furthermore, the function F, (z;) has continuous first partial derivatives.
Finally we consider the n equations:

Ur = Fy(z;) = Flz;, Fa(z)], and ya = Fa(z)). @7
From equations (87) and (96), we have:
Yoo = Fo(®o;), ¢=1,2,--+,n (98)
And, from equations (89) and (96), we have:
Jolha)) = 0, if yg = Fo(z;), p=1,2, -+, n. (99)

Again, the functions F,(z;y.) and Fa(z;) all possessed continuous
first partial derivatives, so that the functions F,(z;) also possess con-
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tinuous first partial derivatives. And, since F,(z;,y,) and F,(x;) were
uniquely determined, the functions F,(x;) are uniquely determined.
Finally, the conditions assumed to derive equations (72) and (77) are
satisfied, so that these equations follow. This completes the proof of
the theorem.

As in the case of one independent variable, if the functions f,(z;y;)
possess continuous partial derivatives of the first n orders, the same is
true of the F,(x;), since in this case the equation (77) may be differen-
tiated m times, m < n, with respect to any combination of m of the z;.
The higher derivatives may also be obtained by differentiating the
equations (99) suitably to obtain a series of equations, of which equa-
tion (74) is the first, and by performing certain eliminations. In each
case, the determinant of the system of equations in the derivatives of
highest order reduces to the Jacobian which is distinet from zero by

hypothesis.
For example, if
fi(y1, Y2, Ya, T1, 22, 73) = 0, and i =1,23, (100)
then, for s fixed as any one of 1, 2, or 3 and ¢ = 1, 2, 3, the system of
equations of; 3 af; Ay,

=0 101
0z,  p=1 0Yp 0%, (101)
determines the first derivatives dy,/dz,. Again, for ¢ fixed as any one
of 1, 2, or 3, the system of equations
a2f’, 3 3 a2fi ?—1-12 .alq— 3 _2-&. a2yp
0T, 0T;  ¢=1p=10Yp 0Yq 0%s 0Ty  p=1 OYp 0T, O;
3 27, 3 92 ;)
v _f % O % _ o (102)
p=10Yp 0T, 0Z;  p=10Yp 0T: 0Ts

determines the second derivatives 8%y,/9z, dz; in terms of those already
determined.

219. Jacobians and Functional Dependence. In the last section we
defined the Jacobian determinant of n functions f, with respect to n
variables y, as the expression (75). This definition and the abbrevia-
tion (76) apply whether the functions f, are functions of the y, only, or
of these together with other variables, like the f,(yq,2;) which occurred
in the theorem on implicit functions. That theorem involved as one
condition the non-vanishing of the Jacobian for a particular value. We
shall now discuss certain theorems involving the vanishing of the
Jacobian identically for all values of the variables.

We first observe that if one of the functions, say fy, is a constant,
each derivative df;/dy, = 0. Hence each element of the first row of the
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Jacobian is zero, and the Jacobian itself is zero. If the value of the
constant is k, the equation

fi—-k=0 (103)

holds, so that the f; satisfy a functional relation. This is a trivial case
of the more general result:
If the n functions of n variables, f,(y;) satisfy a functional relation

¢(fl)f2’ <o, fn) =0, (104)

and the f,(y;) as well as ¢(f,) have continuous first partial derivatives,
then the Jacobian of the functions fp, with respect to the y; vanishes
identically.

It is understood that the functional relation (104) holds identically
in the y;, and that the function ¢(f,) is not identically zero in the f,, so
that it actually involves at least one of the f,, for all the values considered.

The equation (104) together with the conditions of differentiability
have as a consequence the equations:

n
Py 3¢ %» = 0. (105)
2=10fp 0Yq
If the Jacobian were different from zero for any one set of values of the
variables under consideration, this system of linear equations in d¢/dfp
would have a determinant distinct from zero, and therefore would admit
only one solution for these quantities, namely d¢/3f, = 0.

Since the Jacobian is a continuous function, if it were different from
zero at any one point, it would be different from zero in some k dimen-
sional region including this point in its interior. Hence in this region
we would have d¢/3f, = 0, so that by the result at the end of section 215,
the function ¢ would be constant in this region. This contradicts the
hypothesis that the funetion ¢(f,) actually involves at least one of the
functions f, for all the values considered.

Since the Jacobian can never differ from zero, it must vanish identi-
cally for all values of the y; considered. This proves the theorem.

As a partial converse theorem, we have:

If the n functions of n variables f,(y;) each have continuous partial
derivatives, and the Jacobian of these functions with respect to y; is identically
zero, then in any region throughout which some minor of the (n — 1)st
order 18 distinct from zero, the functions satisfy some relation of functional
dependence of the type of (104).

To prove this, we use the notation of the last section given in connec-
tion with equation (83). If necessary, we so change the notation that
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Cpn is the minor of the (n — 1)st order distinet from zero. Then, by
the theorem of section 218, since the Jacobian of the n — 1 functions f,,
where 8 =1, 2, - -, n — 1, with respect to the » — 1 variables y,,
wherer = 1,2,--.,n — 1is Cy, and hence 5= 0, the equations

Jsr¥Yn) — 2, =0 (106)
may be solved for the y, in terms of y, and the z, to give:
Yr = Fr(z4)yn)- (107)

Also, we may use these equations to eliminate the y, from f,(y;) and

80 obtain: )
TnYnsy) = falFr(Xa)Yn), Yn), (108)

analogous to equation (91). We also have, analogous to the relation
(93):
g
e _ ;. (109)

" Oy

Since J = 0, while C,,, ¢ 0, it follows from this that

U _ 0. (110)

Let us now take any particular set of values of y;,4;, and compute a
particular set of 2,20, from the equations:

fp(y(!l') —Zp =0, p= 1,200 ,m (111)
It follows from this and equations (107) and (108) that:
Ton = fn (Yon,Zor)- (112)

This relation does not explicitly involve the yo,, and the right member
does not change when we vary y,, by equation (110). Hence the zo,,
or values of the f, (y;) satisfy the relation:

Jn— fﬂ Womyf+) = 0, (113)

which is the relation of functional dependence whose existence is asserted
by the theorem. The left member can not be identically zero in the fp,
since its derivative with respect to f, is unity.

A similar result holds if there are more variables than functions.
Thus, let there be » functions f, (y.) of the n + p variables y,. Suppose
that in some region each of the Jacobians of the n functions with respect
to a set of n variables consisting of y1, ¥s, - -+, ¥n—1 and one other yz,
selected from yn, Yni1, * * * 5 Yntp, is identically zero. Suppose also that
Chnn, the Jacobian of the first » — 1 functions f, with respect to y,, the
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first n — 1 variables is distinct from zero. Then we may proceed as
before to obtain the equation: “

fn (Yrse) = falFr(Ts,Yk), Yil, (114)
analogous to equation (108) and the equations:
3n =0, k=n+1n+2---,n+p (115)
)

analogous to equation (110).
We may then take a particular set of values yo; and deduce that if

Zop = fp(Yoe), (116)
then Zon = Jn(Yors®r)- (117)

It then follows from the fact that only the yox occur explicitly, and the
partial derivatives of the right member with respect to all the y; are
zero, by equation (115), that the right member does not change when we
vary the y, in consequence of the result of section 215. Hence the
Zo,, OF values of the f, satisfy the relation:

- fn(yok;fr) = 0. (118)

The statement of the result for n 4 p variables, as well as the original
theorem for n variables, is incomplete without some condition that
insures C,, 0. However, in any case where the Jacobian vanishes
identically, we may find restricted regions in which » functions of n
variables are functionally dependent. For, if the Jacobian vanishes
identically, and the functions are not all constants, some minor is not
identically zero. If N — 1 is the order of some minor of highest order
not identically zero, we may find some region in which this minot is never
zero. We may then take the N — 1 functions which appear in this
minor, and any other function of the set as a set to which the second
theorem may be applied. However, the functional relation need not
be the same in two different regions, and some points may not be mcluded
in any region in which there is a functional relationship.

220. Integrals Containing a Parameter. If the function f(z,u) is a
continuous function of z and u for v = g and a < = < b, then

b
F) = [ 1w de (119)
is a continuous function of u, for the value up. In fact, for any value of
Zo in the interval, there is a 5.9 such that
,j(xyu) —f(xOIuO)I <e if lu - uO' < 6607 Ix - xOl < 860‘ (120)
We make the usual modifications for the end points.
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Thus each point considered is the center of a square of side 28., which
determines an interval of length 28, on the z-axis, in the zu plane. By
the Heine-Borel theorem, there is & finite subset of such intervals which
cover the closed interval a,b. If & is the least of the finite set of numbers
8¢9, then

[flxm) — fu) <e if jJu—ul <8 and a=z<b (121)
It follows from this that

b b
J 1w iz~ [ s dx] <o —a), (122)
and hence

[Fu) — F(up)| < e(b —a) if |u— up <8. (123)

This proves that the function F(u) is continuous at u,.
Suppose next that the function f(z,u) admits a partial derivative with
respect to u,

of
fulmu) = 350 (124)
which is a continuous function of z and u for u = up, and ¢ S =z < b.

Then, reasoning for this function as we did for f(z,u) before, we find,
analogous to equation (121), with u 4 k, u in place of u, uq:

Ifu(@, v + k) — fu(zu)] <e¢ if || <8 and o =2z =b (125)
Next form the difference:
b
Fa+h) —F@ = [ U@ u+h) —jeuld.  126)
By the law of the mean,
flx,uw+ k) — f(xu) = hf (z,u+6h), 0<6<1  (127)
Consequently, for 0, the appropriate function of x, u, and h:

F(u+ h) — F(u)
h

b
- f fu(z, u + OB) dz. (128)
This leads us to suspect that the limit, when & approaches zero, might be

S ) de. (129)
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To verify this conjecture, we subtract (129) from the integral on the
right in equation (128), and find:

b
f fultyu+ o0y dz — [ 1) de
a a 5
S Ut u+ 0h) — fut) da

a

b
< [ 1w+ o) - fu(@w)ds. (130)

Although, for the value of u considered, @ is a function of x and &,
0 < 6 < 1,s0 that |6h] < §, if [h] < 8. Consequently we may apply the
relation (125) and so deduce that the expression (130) < e(b — a), if
[h| < 8. Hence, from equation (128),

b
F(u+ h) — F(u) —ffu(x,u)dx

A <ebb—a), if B <5 (131)

This proves that the difference on the left approaches zero when
h — 0, so that F(u) has a derivative, and

daF b
== [ e (132)
This is known as Leibniz’s rule.

Finally, if a and b are differentiable functions of u, we have from sec-
tion 214, with n = 3, that

dF 9F OF da OF db
du " oupy T oadut M (133)
From section 129, 9F/0b = f(b,u). And, since
oF
Fo =~ [ feuds 5= ~feu. 03
b a
For the first term, we may use equation (132). Hence:
dF db da
o= f fulew) dz + fO0) 32 — faw) - (135)

This rule for differentiating the function F(u) defined by equation
(119), when the limits @ and b are functions of the parameter u, is a
generalization of Leibniz’s rule.



350 PARTIAL DIFFERENTIATION [Crar. X

EXERCISES X

1. If wis a function of z, ¥, 2, and ¢, while z,h ¥, and z are each functions of ¢,
show that:
dw Oow 6w£i_x+6wdy ow dz

dt ot Oz di 3y ot | 0z dt
2. If w = f(z,y) and y = g(x,2), show that

G- G G)R):

3. Let F(z,y) = 0 be the equation of a plane curve, equivalent to y = f(z)
for values of x near zo. Prove that

Fo(z0,90) (& — x0) + Fy(zo,40)(y — o) = 0

is the equation of the tangent line at o,y as defined in problem 11 of Exer-
cises IV.

4. In n-space, z; = fi(t), t = 1, 2, - - -, n are the parametric equations of a
curve. Suppose that z: = fi(to), and that the f;(t) are not all zero. Show that
if the tangent line is defined to be the limiting position of a secant line, the
equations of the tangent line may be written z; = 24 =+ uf;(to), where  is the
parameter.

6. The equation of a hyper-surface of n — 1 dimensions in n-space is
F(zy, 25, + -+ ,2,) = 0,0r F(z;) = 0. This will contain the curve of problem 4 if
F[fi(t)] = 0 identically in ¢£. In particular, F(zw) = 0, and  is a point of the
hyper-surface. The tangent line of problem 4 is called a tangent line to the
hyper-surface at 2:. Show that all such tangent lines lie in a hyper-plane whose

equation is
i F
)3 (?_) @ — zw) = 0.
i=1\9z;/0

This is called the tangent hyper-plane to the hyper-surface at the point z.

6. In 3-space F(z,y,2) = 0 is the equation of a surface, and it follows as in
problem 5 that the tangent plane to the surface at xo,y0,20 or plane containing
all the tangent lines at the point is:

(& — 2)Fo(z0,50,20) + (¥ — yo)Fy(%0,Y0,20) + (2 — 20)F, (xo,Y0,20) = O.
Show that if z = f(z,y), the equation of the tangent plane may be written:

z2— 2z = <§—£)o (x — zo) + (g—;)o W — yo).

7. Inn-space, the numbers a; determine a direction, that of the segment from
the origin O to the point A with cobrdinates a;. The directions a; and b;, or the

n
segments OA and OB, are defined as perpendicular if and only if ¥° ab; = 0.
=l

n
If the lengths of the segments are defined by the equations |04 = X a3,
i=1
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n
|OB|% = 2 b2, |AB|2 = X (b — a:)? show that the definition just given is
=1 =1

consistent with the Pythagorean relation, AB* = 0A? + OB*
oF
8. Using the definitions of problems 5 and 7 show that the direction (5
/0
is perpendicular to the direction z; — i or ufy(to), that is to any tangent line to
the hyper-surface at the point z;. Since it is perpendicular to any segment in
the tangent hyper-plane, it is considered perpendicular to the hyper-plane, or

.. oF\ .
to the hyper-surface at the point z;. Hence the direction 5;—) is called the
/o
normal direction to the surface F(z;) = 0 at zs.
9. If a; and b; are any two directions in n-space, as in problem 7, the only

definition of the angle between them consistent with the law of cosines,

Zad); .
2 = |0A|? + |OBJ? — 2|0A||OB| cos 8, makes cos § = —=—=——-—"> with
|AB|* = |0A|* + |0B|* — 2/04]||0B]| ) VravVen
i from 1 to 7 in all sums. When |OA| # 0 and |OB| # 0, this will determine a
real angle § with 0 < § < =, if |cos 6] < 1. Prove that this last relation must
hold when a; and b; are real. Hint: Since X_(a; — zb;)? as a function of z,
cannot change sign, the quadratic equation (2_b9)2? — 2(Labi)z + Xa} =
can not have distinct real roots. Hence (2X.a:b:)? — 4(2bH)(Zoad) < 0.

10. Let w = f(z,y) be a function of z and y to be considered for values near
Zo,Y0. Let z = g(t), y = h(f) define a smooth curve through zoy0 so that
Zo = g(to),y0 = h(to). Then, if s denotes the arc length of the curve, measured
from some fixed point in the direction of increasing ¢, along the curve w is a
function of s. The derivative of w at xo,yo in the direction of the curve is defined
as dw /ds at {,. Prove that this directional derivative is the same for all curves
having the same tangent line. Also show that it is a maximum when the
direction has components dz /ds and dy /ds which are proportional to (9f/dz)e
and (8f /@y)o with a positive factor of proportionality, a minimum for the oppo-
site direction, and zero for the perpendicular direction. Hint: If constants B
and a are determined from the equations R cos a = (9f/dz)p and B sina =
(0f /8y)e, and

E;=cos¢, %Z=sind>, then %—;—Rcos(q&—a)

11. Let w = f(z;) be a function of n variables to be considered for values near
Zi. If a; defines a direction and a length |O4| as in problem 7, the directional

dw & a; [0f
derivative of w in the direction of a; is defined as —— = :
erivative of w in the direction of a; is defined as ds EJ |0A4] a”‘)o

problem 9 to define the angle C between the directions (—:—f) and a;, and
i/ o

Using

putting B2 = 2 —;—) » show that dw/ds = R cos C. Hence show that it
=1 i/0

is 2 maximum R and a minimum —R in opposite directions along the normal
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to the hyper-surface f(z;) = f(z«0) at 2w, and is zero for any direction in the
tangent hyper-plane to this hyper-surface at z.

12. A function of n variables z;, f(z:), is said to be homogeneous in the z; of
the kth degree if f(tz;) = t*f(z;). Prove the theorem of Euler that for such a
function

n

3 a:. = kf(z:).

i=1 :c,
Hint: Differentiate the fundamental relation with respect to ¢, and then put
t=1.

13. With the assumptions of problem 12, prove further that

(2 Yi ) f(x)

Hint: Differentiate the fundamental relation with respect to ¢ m times, and then
put ¢ = 1. Note that we must not put y; = z; until after the differentiations
are completed, and it is incorrect to write the left member with the operator

n
(Z Ti— 3 ) as is done in many texts. In fact,
4 ze

(Z 2 ——) f@) = kf(zy),

by repeated use of problem 12.

14. By section 78, if a partial derivative exists in an open interval, and
approaches a limit as we approach one end point, the one-sided partial deriva-
tive exists at this point and equals the limiting value. Use this to prove that

fz(x:y) = lim fx(x + h’; ?/)
h—~>0

=k(k—1) - (k —m+ Df(x).

II‘ =:t'-

and
fvz(wzy) = }}lmo Sualz + h,y) = ’}!H}) fzv(z + h, ),

in case the limits on the right all exist, and for the last term, if the mixed deriva-
tive is continuous in the open interval. Similar results hold for more variables

and other partial derivatives.
2 _

2
16. If fz,y) = (2* + ¢?) tan~\(y [z), then fuy = fyo = ’;—Jr%; when z and y

are not both zero. From this and problem 14, show that £,.(0,0) =1,
J=(0,0) = —1.

2
16. I fz,y) = oy 55 Tty Y then, when & and y are not both zero, fay = fyz =

2 _ .2
27?33 + A(z,y), where A— 0 when z— 0 and y— O successively in either
order. Use this and problem 14 to show that f,2(0,0) = 1, f,,(0,0) = —1.

17. If z = r cos @ and y = r sin 8, find the partial derivatives dr /dz, dr/dy,
90 [0z and 80 /oy by considering these equations as implicitly defining r and 8 as

functions of z and y. Check by solving the equations, and then differentiating.
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18, Let f(z,y,2) = 0 and ¢(z,y) = 0, with both the functions f and ¢ differen-
tiable. If 8¢ /0y 7~ 0, the second equation defines y as a function of x, and the
first will then define 2 as a function of z if 8f /dz % 0. Under these conditions,
find dz/dx. Hint: Use the relations f.dx + fy, dy 4 f: dz = 0, and ¢.dx +
¢y dy = 0, and eliminate dy. The result is dz /dz = (¢=fy — Oufz) [(Dy ).

. I(upw) o(rst)  A(uvw)

18. Prove that 3050 3w,2) - 9awe)
plying determinants, |a||bi;] = ‘Za;,,b,,f. A similar result holds for n vari-

P

Hint: Use the rule for multi-

ables.

dz oz dy
20. If f(z,y,z2) = 0, prove that < ax),, ( ay), (82), = -

21. Similar to problem 20, show that if f(z;) = 0, where there are n variables,
. . .. 0x,0%;0%s 0%q-1 .
the product of the n partial derivatives 32, 922 925 e T (—1)*, where
each derivative is computed with the n — 2 variables not involved kept fixed.
22. If F(z,yu,v) = 0 and G(z,y;u,v) = 0, define » and v as functions of z
du IF,G) /oF,G)
and y, then (61’), YD)
23. If F(z,y,2) = 0, G(z,y,2) = O, prove that

dz _ dy _ dz
IFG)  oFG IFG’
A2  d(ez)  A=y)

82\ _9y) /3Gy
%, If z = f(up), y = g(uw), z = h(u,p), then (O_z),, = m 3up)

26. Prove that a necessary condition for a differentiable function of n vari-
ables to have a maximum (or a minimum) at ;o is that each partial derivative
(8f /0z:)o = 0. Hint: It must be a maximum when each variable x; varies, the
rest being fixed. Sufficient conditions may be obtained in terms of the higher
degree terms in the Taylor’s expansion. Such conditions are practically useless,
and it is generally simpler to investigate the sign of f(z«) — f(z:) directly.

26. Show that z = (y — 2?)(y — 2% does not have a maximum or minimum
for x = y = 0, although it has a minimum for ¢ = 0 along every straight line
z=af, y=>b. Hin{: z is negative for (small) values of z,y for which
2?2 < y < 222 (Peano).

27. Lagrange's Multipliers. Let z; be n = p 4 g variables subject to the
g relations Fy(z;) =0, k=1, 2, ---, q. For the values considered, let the
Jacobian of the functions Fi(z;) with respect to some set of ¢ ;, which we take
as the first ¢, be different from zero. Then a necessary condition for the func-
tion of the restricted variables f(x;) to have a maximum (or a minimum) at 2 is

. . of 2 oF;
that for some set of constants \x, the relations { — ) + X Ml 7—)} =0
0zi/o k=1 oz;

are satisfied fori = 1,2, - - -, n. Hint: For any differentials dx; which satisfy
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. » OF n of
the ¢ equations -21 o dz; = 0, we must have 21 EZdz‘ = 0, where all the
= + 1= 1
partial derivatives are evaluated at z;. For an arbitrary choice of the last
P dz;, the first set of equations may be solved for the first ¢ dz;. By section 218,
the dz; so found correspond to possible sets of z; satisfying Fi(z;) = 0. Next
we may find constants N\, for k=1, 2, ---, ¢ such that the equations

g
Of 0z + 2 NeOF:/dz; =0 hold for i =1, 2, ---, q. For the dz; and A\
k=1

n q
determined, we have X [af [0z + 2 N OF; /6:0;] dz; = 0. But, from the choice
i=1 k=1

of the A, the coefficients of the dz;fori = 1,2, -, gare zero. And, as the last
p dz; are arbitrary, we may take all but one zero and that one distinet from zero.
Hence the last p coefficients must also be zero. This gives the necessary con-
ditions, which in general have only a finite number of solutions, since there are
¢ given equations Fi(z;) = 0, and n conditions, to determine the n z; and the
q M.

28. Inverse Transformations. If ui(x1,%2,23), 1 = 1, 2, 3 are three functions
of z;,7 = 1, 2, 3, with the Jacobian M or I%l # 0 for some range of

£} J it B ] a(xl’zz,x3) axi

the z;, then for some range of the u;, the z; are determined as functions of the u;,

is the

Zj(u1,us,u3). Show that the Jacobian of the inverse transformation, Ia—

reciprocal of that for the direct transformation. Hint: Use problem 19.
29. Curvilinear Codrdinates. If in problem 28 the z; are Cartesian cosrdinates,
3

the element of arc length is ds? = 2 dzj. Show that in the curvilinear

3 3 3 9 a
codrdinates u;, ds? = 3} ¥ X — x, R

j=1p=1 g=1 Oup Iy

80. Orthogonal Coordinates. In the notatxon of problem 29, the equations

u;(2;) = Ui represent three surfaces through a point uy, or z;o. Show that the

normals to the surfaces for i =1lands = 2are perpendicular according to the
definition of problem 8, if a“‘)(%)—o When ¥ 222 e _ o

efinition of problem 8, i ,;1 92;)\3z1/)0 en 21 32; 0% or

all choices of p and ¢ # p, and all points considered, the coérdinates are said to

be orthogonal.

a 2
31. For the orthogonal codrdinates of problem 30, let us put 3 ( 92 ) =
=1 i

— dup du,.

1 up 0z
—_— 2 D o e
TR Deduce the relations k2 97 94,
0z 0uq 9z
& Sug 3z; =32 o or0ifjs= kand 1ifj = k. Multiply by 6 £ and sum for j 7
1 B:Ck au,,
using the relations of problem 30, to get —, " au = %2, since the terms on the

left vanish unless ¢ = p, and those on the rlght vanish unless j = k. From this

and ds? = Z B2 dul. Hint:
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3 gridey _ 3, up Oug
—_— = 2 32 P - R _
1 0u,p Oug El ks b az; 9z, = 0if ¢+ p and if ¢ = p. Now use
problem 29.
82. The Laplacian. The expressmnz ¥ 1s called the Laplacian of the
T

function f(z;). It occurs frequently in geometry and mathematical physics.
3
Prove that in the orthogonal cobrdinates with ds?,= 3 hZ dul, discussed in
p=1
problems 30 and 31, the Laplacian is:

1 [ (hshs &f +2 (hshl AN, 2 (b Of
hlhzhs 8u1 h1 6u1 hz a’uz ﬂua ha 8u3
2.
Hint: By direct differentiation, Y _ > 9 Sup and ¥ _ 5 o T

"0z; ‘p Oup Ox; 3zt 7 du, Or}

2.
O w3 Ty Wy +21 afz. To

pa Oup Oug 0z; dz; =1012 5 0u,T oz} ul

%u,

9
transform the coefficient ofgf- » rewrite' the relation of problem 31, 3
»

1 3161; % du
A) in the form A2 ——2 = —! and deduce A2 —2 p—-— =
%2 u P Yo~ u,’ 20 deduce byt S 3 )

9 [ dz;\ _ %z; du, : .
o, ( au,,) = g au, 30, 9, By the relation (A), the second term on the left is

i)
1 gfi — (h2), or — — (h3) when we sum for j. The right member is, by

h% du, 9z; au,,

the relation (A): X Fz; 1 3y 1 9 (th,) «  When summed

au,, dug hE Oug & 212 Bu, \Ou,
%u dlogh, Jdlogh?
h2 Th . 2 7P _ eI it - b
o 6 — (k). us we have ;h,, Y - au. B,
4 hthﬁs
=—1Ilo
dup TS hZ
33. For cylindrical polar coodrdinates, 2 = r cos 8, y = r sinf, z = 2.
2 2 2 2 2f a?f 82f
Show that ds? = dr? + r2 d§® + dz?, and the Laplaclan pyol dew Py

2 2
transformed to - a—( -(?I) + % gg—{ + a—f + Hint: Use problem 32.

34. For spherical polar codrdinates, £ = r sin¢ cosf, y = r sin¢siné, z =
r cos ¢. Show that the arc length is ds? = dr? 4 7? sin? ¢ d6? + 72 d¢?, and the

1 2 9f 1 9%f 1 6 of .
1 - < hatth . .
Laplacian is o ( ar) + et ¢ o6t + en é 6¢ (sm ¢ — 3 Hind:

for j, thisis Z

Use problem 32.



CHAPTER XI
MULTIPLE INTEGRATION

The notion of multiple integration arises when we extend the opera-
tion of integration so as to apply to functions of several real variables
taken over regions of more than one dimension. We shall give a detailed
discussion for functions of two variables, and two-dimensional regions.
The modifications necessary to extend the argument to functions of
more variables in regions of higher dimensionality will then be briefly
indicated. We then consider certain geometric quantities, such as sur-
face area and volume which are expressible as multiple integrals. We
also give a few theorems on the transformation of multiple integrals of a
type much used in physical applications.

221. Definition of a Double Integral. Let f(x,y) be a function of the
two real variables x and y, continuous throughout the closed rectangle R:

a<z=sbh csy=sd ¢))

To define the double integral of f(x,y) with respect to z and y over R,
we first divide the closed interval a,b into n subintervals by a system of
intermediate points:

=2 ST S22S - 22,=0 @

Similarly we divide the closed interval c,d into m subintervals by a
system of intermediate points:

C=YSN=SYPSSYn=4d 3)
We then divide the rectangle into N = mn smaller rectangles, by lines

parallel to the axes, z = z; and y = y;. Let 8z; and §y; be the dimen-
sions of the 7j rectangle, so that

0%; = x; —z;, and &y = Y; — Yj1. 4)
Let 64 , denote the area of the pth, or 75 rectangle, so that
04, = bz dy;. (5)

Next select a point £p,m, in each closed pth rectangle, and form the
sum

N
S = glf (Epﬂ‘lp) 5Ap- (6)
? 356
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We shall prove that, for any sequence of sums for which
lim 63 = 0, where &y = max dz;, 8y;, )

the sum S approaches a limit, and that this limit is the same for all such
sequences.

Since f(z,y) is continuous in the closed rectangle R, it is uniformly
continuous so that, for any positive quantity e, there is a 8 such that

If (z2,y2) — flxn,y1)| < & @®)

Ym 8
if " b
y
[z = 21| < 3¢ ly2 — 1] < 3 ! 1
. K il
Now consider the two sums S, given by Y

equation (6) and S’ given by

N Yo ®
8 = Elf(&;m;) 6Aa” ® 0 : Zey &p 4 b

0
where Fia. 17.

o < dyp and 8y < 8oz, With 8y = max ozi, 8y;.  (10)

If we draw all of the parallels to the axes for the first sum, and all those
for the second sum not already drawn, we will form a new subdivision of
R into small rectangles. If we denote the area of a typical small rec-
tangle of this set by 6A, we shall have:

T84 =(b—a)d—c). (11)
The difference of the two sums S and S’ may be expressed in the form:
8 — 8" = Tlftrym) — F &) 844, (12)

where &,m: is & point of one of the rectangles used in forming S, and
&t is a point of one of the rectangles used in forming S’. Moreover
these rectangles have points in common, Thus we have:

ln — &l < 20 <8 and |m — m| < 20m < 3. (13)

Consequently, from the relation (8), the terms in brackets in equation
(12) cannot exceed ¢ in numerical value, so that, from equations (11)
and (12) we find:

S — 8| S eX b4r < (b — a)(d — ¢). (14)
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As this relation holds for any two sums satisfying the conditions (10),
by the Cauchy convergence criterion it follows that any sequence of sums
satisflying the condition (7) approaches a limit. That the limit is the
same for all sequences follows directly from the relation (14), since we
may take S as a sum from one sequence with limit I, and 8’ from another
sequence with limit I’, and deduce that:

- I'| Sed—a)(d — o). (15)
Hence, since ¢ is arbitrary, it follows that
I-I'=0, or I'=1. (16)

We call I the double integral of f(x,y) taken over the rectangle R and
write:

I-= fR f(zy) dA. a7

222. Discontinuities. Most of the discussion of Chapter VII could
be extended to double integrals. We shall not do this in detail, but
instead shall indicate certain types of discontinuities which do not vitiate
the results of the last section. ,

By the area of a rectangle, we mean the product of the length times
the breadth. By the total area of a finite set of rectangles, we mean the
sum of the areas of the separate rectangles. We may now define the
outer content of P, a set of points in two dimensions, as the greatest
lower bound of the areas of all finite sets of rectangles including the point
set P.

We assume that the function f(z,y) is bounded, and define its oscilla~
tion in any rectangle, or two-dimensional region, as the excess of the least
upper bound over its greatest lower bound for the region. The oscilla-
tion at a point is the greatest lower bound of the value of the oscillation
for all two-dimensional regions including the point as an interior point.
Since we may also define the oscillation at a point in terms of

f@oyo), lim f(z;y) and lim f(zy) (18)
TY—>Tole ZY—rTaYo
analogous to the definition for functions of one variable given in section
150, the oscillation at a point may be obtained by using rectangles, or
even rectangles with sides in given directions, say parallel to the z and y
axes. The oscillation of a function is zero at points of continuity.

Now consider a function f(z,y) which may be undefined at certain
points U of the rectangle R, but such that the values for all points at
which it is defined admit an upper and a lower bound, [f(z,y)] < K. We
may form a sum S by arbitrarily assigning any values not exceeding K
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in numerical value to the points U. If P, is the set of points of the
rectangle B at which the function is either undefined or has an oscillation
greater than or equal to ¢, any positive number, and the outer content of
every set P, is zero, then any sequence of sums S, given by equation (6),
which satisfies the condition (7), approaches a limit, and this limit is the
same for all sequences.

To prove this, select any positive e < 1. Since the outer content of
the set P, is zero, it may be included in a finite set of rectangles F of
total area less than e. Let the sum of the perimeters of the rectangles
of F, increased by 4N¢, where N is the number of the rectangles F, be L.
Then, for any subdivision of the rectangle R with s < min (¢,e/L) the
total area of all the small rectangles which include points of P, will not
exceed the total area of all the small rectangles which include points of F,
and therefore will be at most

e+ L (i) - 2 (19)

Now consider any two subdivisions for which the sums are S and §’,
with

du, 8z each < max (6,, ., %) . (20)

Then, for the subdivision obtained by combining the two original sub-
divisions, we shall have a sum which we may consider as made up of two
parts, one over rectangles R, including points of P., and the other over
the remaining rectangles R,.

For the rectangles R;, we shall have:

If (Besme) — f(Eimi)| S 2K, (21)

while the total sum of the rectangles R; is at most 2e.

Over the remaining rectangles R, the sum may be treated in a manner
similar to that used for the right member of the relation (12). Thus, in
the present case, we shall have:

IS — 8| < e(b — a)(d — ¢) + 4eK. (22)

We may apply to this the same argument we previously used in connec-
tion with the relation (14). This establishes our contention.

223. Repeated Integrals. Let the function f(z,y) be bounded in the
rectangle B, and such that the set of points of R, P,, where either f(z,y)
is undefined, or the oscillation is greater than or equal to ¢, any positive
quantity, is of outer content zero. As in the one-dimensional case, we
may use the phrase content zero in place of outer content zero for the
reasons given in section 149. We avoid the necessity of considering the
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points at which the function is not defined by arbitrarily defining the
function on these points in any way that does not disturb the bounded
character of f(z,y). Thus we might take the function equal to its
upper bound on these points, or equal to zero. However it is convenient
to be able to vary the choice in different applications.

In particular, the conditions imposed on f(z,y) will be met if the func-
tion is continuous in the closed rectangle R.

For each value of y in the closed interval ¢,d the function f(z,y) is a
bounded function of z, and so has an upper integral with respect to z, by
section 147, '

—p
F@) = [ 1@y) dz. 23)
Since the function f(z,y) is bounded,

if@wl = K, (24)

it follows that for each, and hence for all values of ¥ considered:
[F(y)] £ K(b — a). (25)

Thus the function F (y) is bounded, and so has an upper integral,

—_—d —d b

Ly=J Fwyay= [ [ 1) e (26)

Now consider any subdivision of the rectangle K into N = mn smaller
rectangles, as in section 221, defined by the points of subdivision (2) and
(3). We may define an integral similar to that given by equation (26)
for each pth or ¢j rectangle, namely,

Vi T
Li=["ay [ sy ds. (21)
YVia Zia
From the additive property of single upper integrals, we may conclude
that:
I,= XL (28)

i

Again, if m;; and M;; are respectively the greatest lower bound and
least upper bound of f(z,y) in the ij rectangle, we have for each y in this

rectangle:
mi; = f(xry) s Mt'jr (29)

—

and mg; 0x; = f f(xy) dx = M;j oz, (30)
z,

-1

so that: m;j 0%, 0Y; < j;,’ = M;; éx; 6y;. (31)
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Next form a sum S, given by equation (6) and satisfying the condition
(20). Separate this sum into two parts as we did at the end of the last
section. For those rectangles E; containing points of the set P,, the
difference between any term in S and the corresponding term I;; will be
numerically at most 2K 8z; dy;. Since the sum of all the rectangles R,
is less than 2¢, the total difference for this part of the sum will not
exceed 4Ke in numerical value.

For the terms corresponding to rectangles Rs, since the oscillation of
f(z,y) is less than ¢, we shall have:

Mi;—m;; <e and my; = fEn) s M, (32)

Thus the difference for any rectangle 4j of Sz between the term of S and
the corresponding term I;; will be numerically at most e 8z; §y;. For all
these terms, the total difference will not exceed e¢(b — a)(d — ¢) in
numerical value.

Thus we have finally:

IS — I,,) < e(d —a)(d — ¢) + 4Ke (33)

Since the limit of 8 for any sequence for which 6y — 0is I, the double
integral, we may deduce from the inequality just written that:

I — I, < e —a)(d — c) + 4Ke. (34)
Since e is arbitrary, this has as a consequence the equation:
I,=1 (35)

The argument which rested on the inequality (29) would have been
equally valid if in equations (26) and (27) we had replaced either or both
of the upper integrals by lower integrals. This proves that the function
F(y) is integrable. It also shows that the repeated integral is the same
as I, the double integral, if we replace the upper integral in equation (23)
by the lower integral, or any value intermediate between these two.

‘We may use the same reasoning with the order of x and y interchanged,
and thus find that:

l.=1 (36)

We may summarize our results as follows:

If the function f(x,y) is bounded throughout the closed rectangle R, and is
such that the set of points of R, P., where f(x,y) is either undefined, or the
oscillation is greater than or equal to ¢ is of outer content zero, then, if we
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arbitrarily assign values, bounded as a set, to the points where f(z,y) was
originally undefined, we shall have:

LMMM=fafmmwanTMMM<m

In this equation, the upper integrals may be replaced by lower integrals, or
any value between the upper and lower integrals.

In particular, if f(z,y) is continuous throughout the closed rectangle R,
we shall have:

LMMM=fmfmw@5fwfmmM(w

If the function f(z,y) is integrable in z for all values of y, we have:

meM=fommw (39)

We may also use this equation if f(z,y) is integrable in y for all values of z
except a set of one-dimensional content zero, regarding the function to be
integrated a second time as undefined on this set. However, our con-
ditions on f(z,y) do not necessarily imply that f(z,y) is integrable in y
for all except a set of values of z of content zero. Thus, let f(z,y) =0
for all irrational values of z, as wellasz = Oor z = 1. For any rational
value of z, 0 < z < 1, p/q in its lowest terms, let f(p/q,y) be zero for y
irrational, or 1/¢® < y < 1, but let its value be 1/q¢ for y rational and
0<y=1/g.

Consider this function on the rectangle B, 0 <z <1,0=<y =< 1.
The only points of R where f(z,y) is at least 1/n are on the lines z = p/q,
g £ n. For a particular ¢, since 0 < p < ¢, there are ¢ — 1 lines, and
the points on each lie upon a segment of length 1/¢®. Thus, for a given
n, the total length of the segments is:

n 1 ® :
q=2 93
since the series is convergent by section 192. Thus the segments may be
enclosed in a finite number of rectangles of arbitrarily small total area
by including each segment in a rectangle of width ¢/ (L + 1), and length
50 near that of the segment that the sum of the lengths of the rectangles
does not exceed L + 1.

Since the function f(x,y) is between 0 and 1/n on R except for a set of
content zero, it follows that each set P, has a content zero. Thus the
function does have a double integral and equation (37) holds. However,
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f(z,y) is not integrable for any rational value of z, a set of one-dimensional
outer content unity.

9224, Other Domains. Let D be any two-dimensional region of the
plane, all of whose points are points of some finite rectangle R, and such
that each straight line through any interior point of the region cuts the
boundary in exactly two points. Let the boundary have two-dimen-
sional content zero. Consider a function f(z,y) defined at all points of D
and its boundary, continuous at all interior points of D, and bounded on
the closed region D.

We note that if the boundary consists of a continuous curve with an
arc length it will necessarily be a set of two-dimensional content zero.
For, since the boundary has an arc length, we may write z = f(f) and
y = g(t), where f(f) and ¢(t) are each continuous functions of bounded
variation. Let us make a subdivision of the ¢ interval by points ¢;, into
intervalst; ; <t < t;. If ¢;and ¢ denote the oscillation of the functions
f(®) and g(t) in the 7th interval, all the points of the sth arc may be
included in a rectangle with sides parallel to the axes, and less than
4¢;c, in area. Thus the sum of the areas of all such rectangles will be at
most

Tdee < denrXe, (41)

where €3 is the maximum of the ¢;. Since f(t) is continuous, for any
positive quantity ¢, ey < ¢, when the maximum ¢ subdivision is less
than a suitably chosen .. Again, since g(¢) is continuous and of bounded
variation, by section 173, the sum X ¢; approaches Vg, the variation of
g(t). Thus the two-dimensional content of the boundary is less than
4¢Vg, and thus must be zero since e is arbitrary.

If f(z,y) is any function, continuous at all interior points of D, and
bounded on the closed region D, we may define:

g(z,y) = f(z,y) for a:,y an interior point of D (42)
and

g(z,y) = 0, for z,y a point of R not interior to D. (43)

The double integral of g(z,y) over R exists by section 222. We define
the double integral of f(z,y) over D as equal to that of g(x,y) over R:

[@w aa = [ @y aa. (84)
D R

Suppose that, for values of y between y; and y2, a parallel to the z-axis
cuts the boundary in z;(y) and x2(y). Then, since g(z,y) is equal to
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f(z,y) in the interval z; (y), #3(y), and is zero outside this interval, we

have:
1¢)]

b

S oends= [ iy d. (45)
a z1(y)

Let us further suppose that all interior points of D have a y for which

Y1 £ ¥ < y2. Then from this and equation (38) we may conclude that:

vz z2(y)

Siapaa= [Tay [ sy d 6)
D ¥ z(v)

Similarly, if for values between z, and z, a parallel to the z-axis cuts the

boundary in y; (z) and y2 (), while all interior points of D have an z for

which z; £ z < 25, then:

Srenaa= [Ca [ e a n

n(x)

As in the last section, we may allow f(z,y) to be discontinuous at certain
points of D, provided that the set of points P, at which its oscillation is
greater than or equal to ¢, any positive number, forms a set of zero con-
tent. In this case, when making the reduction to a repeated integral,
we may have to replace the first integral by an upper or lower integral,
or some value between these, as in equation (38).

We may also extend the definition to any domain D’ which may be
decomposed into a set of points of two-dimensional content zero,
together with a finite number of domains D; of the type previously used,
putting:

[ Jaw it = [ s@paa (48)
D’ Dg

In certain cases, if the integrals over the D, are written as repeated inte-
grals, some of them may be combined.

Finally we may consider domains D'/, generated by removing from
a domain of type D’ those points which make up some sub-region of
type D’. The integral over a region D’ is defined by an expression
similar to that in equation (48) with minus signs before the integrals
corresponding to domains D; made up of removed points.

Certain domains D’/ may be generated from domains D; without any
additional sets of two-dimensional content zero. We designate by D*
these domains, generated by addition and subtraction from a finite
number of regions each of type D.

226. Area. If the domain D is a rectangle R with sides parallel to
the axes, the integral of f(z,y) = 1 over D or R reduces to the area.
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Any domain G whose boundary consists of a finite number of segments
parallel to the axes may be decomposed into a finite number of rectangles
R, and so for it |

Area G = f d4. 49)

@
For any domain D of the type described at the beginning of the last
section, we may find two domains of type G, G’ and G’/, such that all

points of G’ are interior points of D, and all points of D are interior points
of G/, and furthermore:

f A — [ d4 < ¢ (50)
, .

where ¢ is any given positive number.

Since we have:
fdAéfdA§f dA, 1)
' D ¢

Area D = f dA. (52)
D

we are lead to define:

That area, as here defined, is independent of axes follows from the fact

that the definition gives the correct value for a triangle or rectangle with
sides not parallel to the axes. Or we may note that the area is the
outer content of the set of points of D, which was defined in section 222
in a manner independent of axes.
- 226. The Mean Value Theorem. Suppose that the function f(z,y)
is continuous in a closed domain D. Let D be connected, that is, have
the property that any two points of D can be joined by a curve consist-
ing entirely of points of D.

Then, since f(z,y) is continuous in a closed region, its values are
bounded, and the greatest and least values are taken on, say

f(a:',y') =m, f(x"’y”) = M: (53)
where
m =< f(zy) < M. (54)

Since the double integral is the limit of a sum of products of values of a
function by positive multipliers, if the integrand is increased, the sums
and the integral will either remain unchanged or increase. Thus, it
follows from the relation (54) that:

f mdd < f fay) dA < f M dA. (55)
D D D
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If we write A for the area of D,
A= f da, (56)
D

we have:
mA < f fay) dA < MA. 7)
D

This shows that the average of the function f(x,y) over D, or

3 [ @ a4, 58)
D

lies between m and M, the values at P’ = (2’,y') and P” = (2’ y"").
Since the domain is connected, we may join these points by an arc, with
parameter ¢ varying from ¢’ to t’. Since f(z,y), regarded as a function
of ¢ along this arc, is continuous, it takes on every value between m and
M. In particular, there is a point of the closed region D, (¢,3), such that
J(£m) is equal to the expression (58). Thus:

fD f(y) dA = Af(en). (59)

This is the mean value theorem for double integrals which holds for
integrands continuous on closed, connected domains.

Whenever the integrand f(z,y) admits lower and upper bounds m and
M, the inequality (54) holds, and we may deduce from it the relations
(55) and (57). Thus, for any bounded function admitting a double
integral over D, of area A, we have:

mA = f f@y) dA < MA, (60)
D

where m and M are bounds for the function in D.

227. Other Subdivisions. Instead of using a subdivision of R into
rectangles with sides parallel to the axes, we may use any subdivision of R
into small domains of type D* of section 224 to form a sum S. For any
function satisfying the condition of section 222, the limit of any sequence
of sums of this type for which dy — 0, where dy is the largest diameter
of any subdivision will be the integral, as we shall now show.

We note first, that our condition that the boundary of a domain D be
met by any line containing an interior point of D in exactly two points
has, as a consequence, that if we superimpose the subdivision into
regions of type D* on any subdivision into rectangles of type R, the two
subdivisions will divide the fundamental rectangle R into only a finite
number of domains of type D*.
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As in section 222 these may be divided into two groups, in one of which
the oscillation of f(z,y) is less than e at each point, and such that the
other group has a total area at most 2¢, provided that the rectangular
subdivision is sufficiently fine. If, now, we take dy sufficiently small,
so that none of the regions of type D* includes more than four contiguous
rectangles, we may deduce a relation for the difference of the two sums
similar in character to the relation (22). It then follows that any
sequence of sums with dj — 0 will have the integral as its limit.

228. n-tuple Integrals. The discussion of the integral of a fune-
tion f(zx), where k = 1, 2, - - - , n may now be carried out in a similar
manner to that used for n = 2.

We define the volume of an n-dimensional rectangle as the product of
its n dimensions, and hence define the outer content of a set of points in
the space of the zy.

For any n-dimensional rectangular interval, we may form a subdivi-
sion on each axis, and a sum:

N
S = Z1f (¢p) 8V p, (61)
=
where
5V, = kI_II 521 (62)

the n-dimensional volume of the figure with edges dzz,. That is 0xkp 18
the subdivision of the interval on the kth axis, used in forming the pth
n~dimensional rectangle.

If any sequence of values of S, corresponding to subdivisions for
which the maximum 8z, or dy — 0, approaches a limit, the same for all
such sequences, we define this as the n-tuple integral of flxzx). We
denote it by

fR f(zx) AV, 63)

where the subscript 7 on R and V which denotes dimensionality may be
omitted if it is clear from the context that these refer to n-dimensional
figures.

Whenever the function f(x;) is such that, for every positive quantity
¢, the set of points P, where the oscillation of the function is greater than
or equal 10 ¢, or the function is undefined, has an n-dimensional outer
content zero, the n-tuple integral exists.

Moreover, in this case it may be calculated as a repeated integral,
where if any of the intermediate integrals fail to exist, we use the greatest
limits of sums, or upper integrals, instead of integrals.
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We may replace the rectangular region of integration by other
domains, provided these can be decomposed into a finite number
of domains of type D. A domain, in n dimensions, is of type D if it is
such that each straight line through an interior point cuts the boundary
in exactly two points, and if this boundary is a set of n-dimensional outer

content zero. The volume of a domain of type D is f dV,, or the
D

outer content of the set of points of D.
If f(z) is continuous in a closed connected domain, we have a mean
value theorem similar to equation (59), namely:

j; F(ow) dVa = Vol (ee), (64)

for some choice of & as a point of the domain D,
Whenever the integral exists, if m and M are bounds for the integrand,
we have:

mVn < f @) AV £ MV (65)
D,

Finally, we may use subdivisions into domains of type D¥, instead of
n-dimensional rectangles with sides parallel to the axes, in forming the
sums. An n-dimensional domain is of type D} if it may be generated
by addition and subtraction from a finite number of regions, each of
type D,.

229. Change of Variable. Consider a set of n equations:

Tp = fk(yi)) k,i=12---,n, (66)
for values of ¥ in some n-dimensional rectangle R,. Suppose that, in
R., the functions f;(y;) have first partial derivatives, continuous with
respect to all » variables, and that the Jacobian:

0y, for ~ 2y fn) _
a(yl: Y2, yﬂ)

Then, since the equations may be written:
Sel) — 2 =0, (68)

and the terms z; have no effect on the derivatives of the left members
with respect to the y;, the Jacobian of this system referred to in section
218 is the same as that written in the relation (67), and by the theorem
of section 218, the equations may be solved in the form:

v = dilma), O (69)

0% p

> 0. 67
5% (67)
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at least in some region including each point zy, obtained by equations
(66) from a point y; of R,.. However, if our conditions hold in the
closed region R,, by the Heine-Borel theorem we may select a finite set
of regions surrounding points y;, corresponding to the regions surround-
ing points zz, which cover R,. These separate functions may be pieced
together to give solutions of the type (69), defined for a certain range of
the x, which lead to values of y; in R,. While the resulting relation
may be selected so as to be continuous for all values considered, and one
to one in a suitably chosen region including any point, it is not neces-
sarily one to one for all values considered, since the original equations
(66) may give the same value of the set x;, for two distinct sets of
Yr in Rn.

We shall consider only values of y; in D,, a region of type D in R,,
which may of course be R, itself. We make the further assumption
that under the equations (66), the region D, is carried into Dy, a region
of type D in the zj space, and also that the region D) is transformed into
regions of type D in certain other spaces to be introduced presently.

If g(xx) is any function of the zz, continuous in D,, it will determine a
function G (y;), continuous in D, in view of equations (66). Under the
assumptions made, we may show that:

fD”g(xk) av, =j;;

where dV, is the element of integration as in equation (63), which recalls
that the sums involved the elements of volume given by equation (62)
for the zi-space, and dV, has a similar meaning for the y,-space.

We first note that if this rule is valid for a transformation from a set
of variables z; to a set ¥;, and also from the set y; to a new set z;, the rule
will hold for the transformation from the zi to the z;, provided that:

0z p ’
— G(y;) dV,, 70
5| 09 (70)

@y, @3,y Za) O ¥y * vy Yn) _ry 2py w0y Zn) g
3y, y2, - yn) d(z1, 29, * Zn) a(zl: 22y, * 0, zﬂ)

But it follows from section 214 that:

a:ck hid a:ck ayi
— = —_—

9z;  i=1 9Yy; 9z; (72)

and this may be combined with the rule for multiplying determinants to
prove the equation (71), as in problem 19 of Exercises X.

Consequently it will be sufficient to prove the equation (70) when we
change the variables one at a time, since we may proceed from:

xy, X2, T3, * * +, tO Y1, T3, X3, * to Y1, Y2, 23y - -+, ete. (73)
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The Jacobian for each of these intermediate transformations must differ
from zero, since their product is that of the original transformation.
And, by changing the order of the variables in the intermediate trans-
formations, if necessary, we may make all these Jacobians positive.

We note that, for n = 1, the equation (70) holds since it reduces to
equation (92) of section 133.

For the first transformation (73) we have:

a:1=F(y1,x2,x3,---,x,.), Tg = Xg, "+, Tp = &n, (74)
so that the Jacobian is:
a(F; T2, xS,""xn)=iE' (75)
(Y1, 2, T3, * * +, Tn) Yy

‘We now write the n-tuple integral as a repeated integral, using D,_; to
denote a domain in the z;-space with the first axis suppressed. We have:

b
Sowyave= [ vy [ o) da, (76)
Dn -1 a

where a and b are functions of 2, x3, * - * , Zn-
By equation (92) of section 133 we may write in place of the inner
integral:

aF

B
f g(Fs T2, X3y * xﬂ) a_ dyl, (77)
a’ Y1

where a’ and b’ are functions of s, 23, - + - , Z, such that:
a=F(@, 22 -,z,) and b=FQ®, 23 -, Tn). (78)

These equations show that the n~dimensional domain D, determined
by @,b on the z;-axis and D,_; in the space of the z; is that which corre-
sponds to the domain D’ determined by a’, b’ on the y;-axis and D,y in
the space of yi1, 3, - -+, Tn. Thus the integral of the expression (77)
over the domain D, is equivalent to:

oF
S o a0z o av. (79)
by

Since this is equivalent to the first integral of equation (76), and the
factor in equation (79), 9F/dy, is the Jacobian of the transformation by
equation (75), we have proved that the equation (70) holds when the
first variable only is changed.

In a similar way the equation (70) holds for the other transformations
(73), and so is valid in general.

The above discussion only applied to domains in which the trans-
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formation was one to one, and the Jacobian preserved its sign. How-
ever, the formula of transformation may be applied to any domain which
is the sum of a finite number of parts, in each of which the transformation
is one to one and the Jacobian preserves its sign, together with certain
boundary points, provided that the boundary points form a set of zero
content in all the spaces considered. This follows by applying the
formula of transformation to each part separately, and summing the
results.

If we regard the original transformation as a change of codrdinates, the
volume of the domain D, is:

)

7
n n

oz,

avy. 80
Y, (60)

If the z; are Cartesian codrdinates, dV, is the element of volume as well
as the element of integration. For the curvilinear coordinates y;,
dV! is the element of integration, but |9z,/dy,| dV, is the element of
volume. ’
230. Surface Area. Consider a portion of a surface having as its
equation
z = f(z)y), (81)

where the function f(z,y) is single-valued and has continuous partial
derivatives throughout some domain D in the z,y plane.

We subdivide the domain D into small areas, and denote by §4
either a typical such small area, or its area. Let 68 be the part of the
surface which projects on the z,y plane into 4. For any point of 85,
Py = (z0,Y0,%0), the tangent plane to the surface will have as its equation:

2z — 29 = fz0(& — Zo) + fro(¥ — Yo), (82)

where fzo = (gf_c)o -and fyo = (gz)o, (83)

by problem 6 of Exercises X. Let us recall the definitions of problems 8
and 9 of Exercises X, and denote by v the angle between the z-axis and the
normal direction. Here we take this direction normal to the surface,
or to the tangent plane, in the direction of increasing z. Then we have:

1
COSY = — V/—m—————"
fz20 +fu20 + 1

secy = Vi3 +fh+1, (85)

and sec v is a continuous function of z and y in the domain D.

(84)

Consequently
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If 8T denotes the portion of the tangent plane at P, which projects
into 84, we shall have

0A = cos v 6T, and &T = sec v dA. (86)
The sum of all the 37 is:
Y 6T = X sec v 8A. 87

When the maximum dimension of the 84, dy approaches zero, for any
sequence of subdivisions, the corresponding sums will approach a limit,
the double integral:

§=[wcvad = [ViTH 7+ 144, (8)

We define this to be the area of the surface. From its form, it is
independent of the choice of coordi~
¢ nates in the zy plane. To show that
it is independent of the direction of

the z-axis, we consider a new set of

_Z:( axes 7', y/, 2’ with the same origin.
The z’- and z-axes may have arbitrary

0 z' directions. We use such coérdinates
/ \ that the y- and y'-axes coincide with
[ the line where the planes perpendie-
ular to the z’- and z-axes intersect.

Then, if the angle in the 2z’z’ plane
from the z’-axis to the z-axis is 6, we

D have:

A 2/ = 2 cos6 + zsin 6, (89)
Fia. 18. v =y,
'y 0s 6 + f, sin 6 sin 0
8o that: dzy) _ |oost+] » Iy
a(z,y) 0 y 1
= cos 0 + f, sin 6. (90)

By the definitions of problems 7 and 9 of Exercises X, the direction ratios
for the normal at Py are

—'f:n _fm 1 (91)
and those for 2z’ with respect to the first axes are
—sin 8, 0, cos 6. (92)
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Hence, if v’ is the angle between the z’-axis and the normal, we have:

s _fzsinf+cosf 'y o (©3)

Vitsiy1l @y "

by equations (84) and (90). From this and the rule for transforming a
multiple integral established in the last section:

7

sec v’ dA’ =fsec v 2EY) g4 =fsec7dA. (94)
D D a(z,y) D

This proves that, as defined, surface area is not dependent on the

codrdinates used.

231, Intrinsic Definition of Surface Area. An alternative definition
of surface area, which from its nature is independent of codrdinates, is
the following. We first define the approximate area of a surface element
as the area of its projection on the tangent plane at any one of its points.
We then consider any subdivision of a surface into elements, and define
the approximate area for this subdivision as the sum of any approximate
areas of each of its elements. Finally we consider a sequence of sub-
divisions of the surface into elements, such that dj; — 0, where dy
denotes the maximum dimension of all the elements for a particular
subdivision. We shall show that for any such sequence, the approxi-
mate areas approach a limit, the same for all such sequences. This limit
is defined as the surface area.

To prove that the limit exists, and that the present definition is equiv-
alent to that of the last section, let us consider a particular subdivision
of the surface into elements. For any one element, let S be the area
as calculated by equation (88), and T'; be the tangent plane used for the
approximate area. Denote the projection of 68 on the plane Ty by 6T
and use the plane T; as the zy plane in applying equation (88). Then

58 = f sec v dA = sec 7 8T, (95)
8T,

by the mean value theorem, where sec ¥ is the value of the integrand at
P, a suitably chosen point of 38, and so is the value corresponding to the
angle ¥ between the z-axis and the normal at P.

Since f; and f, are continuous throughout the closed domain D, they
are uniformly continuous throughout this region. If we divide the
direction ratios for the normal given by equation (91) by the square
root of the sum of their squares, we obtain the direction cosines

_fz "fv 1
l = ————, = yn o= - (96
VEtr+l VRl VRt (%9)
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These will also be uniformly continuous in D. Hence, when the maxi-
mum diameter dyr of the elements 4 is less than a suitably chosen §,,
the oscillation of these direction cosines will not exceed ¢, an arbitrarily
chosen number which we take less than unity. Let [, m, n be the direc-
tion cosines of the normal to the plane Ty, and [, , 7 those at P. Then
if we write

l=l4+am=m+ba=n+c, 97)

we shall have q, b, ¢ all numerically at most e. Since
P4+ m?2+n2=1 implies |, |m|, [n|] £1, (98)

it follows that: :
cosy =1l(l+a) +mim-+0b) +nn+ec)
= 1+ 36, where [§ < 1. 99)
But, from equation (95), 8T; = cos ¥ 88, so that

8T, — 88 = (cos ¥ — 1) &S = 30 88. (100)

Thus, for the sums approximating the areas under the two definitions,

we have
Y 6T, — X 68 = 3¢’<X 6S, where [¢'| < 1. (101)

But, for a sufficiently fine subdivision, dar < &', if S is the integral
defined by equation (88), the approximating sum X 88 satisfies:

IS — X 88| <e¢ (102)

so that: ’

X 6T — S| <e+3e(S+1) =e(BS+4). (103)

Since this holds for arbitrarily small ¢, when dy is sufficiently small, it
follows that when dp — 0, the sum 7T'; approaches S as a limit. Thus
the definition of this section leads to a unique result, and is equivalent to
the definition of the preceding section.
232. Intrinsic Cobrdinates. Suppose that, in a certain u, v domain,
the equations:
= F(“;”)» y= G(u,v), = H(u:v) (104)
are such that each of the three functions has first partial derivatives,
continuous in u and », and that
3(zy)
) 0. | (105)

Then, by the theorem of section 218, the first two equations may be
solved for u and v in terms of z and y, at least in a restricted range. On
substituting these values in the third equation, we obtain an equation
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of the form (81). Thus, in a suitably restricted %,» domain, the equa-
tions (104) represent a portion of a surface. The area of this surface is
given by equation (88). But, as in section 218, we find:

9z Iy dz Jox
— = - = —_= = == 106
or J ,,,’ Y J,,,, (106)
where
4 (y,2) 9(2,x) d(z,y)
= 22 = = 20, 10
VT a(u) T 3 (u,) and Iz I (u,) (107)

Thus, by equation (85),
VIR +IL+JE
I 2y

Here J, is positive by the relation (105).
By applying the rule of transformation (70) to the expression for area
of a surface given by equation (88), we find:

S = fsec vydA,, = fsec ¥ J oy A uo, (109)

secy = (108)

where the subscripts indicate the space in which the elements of integra-
tion are to be formed. We may deduce from equations (108) and (109)
that:

S = f\/Jf, + J2 + J%, dA.,. (110)

This is the expression for surface area in terms of the parameters » and v.
We shall next consider a curve in the surface. Since the equations

u=u(t), v=ouv) (111)

may be combined with equations (104) to give z, y, and z as functions of
t; if suitable restrictions as to differentiability are imposed on the func-
tions u(¢) and »(t) they will determine a smooth curve in space, which
also lies in the surface. By section 184, for the arc length of such a

curve, we have:
_.f \/(dt) +(dt) + dt) d. (112)

To express this in terms of  and v, we use subscripts to denote partial
derivatives, and use the equations:
dz
dt

du dv
xu"a—t‘ + z.,a or dz = z,du + z,d, (113)
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together with
dy = y,du + y,dv and dz = z,du + z,dv. (114)
We find from these that
dz?® + dy? 4 de® = E du® + 2F du dv + G dv?, (115)
where, with sums ranging over z, y and z,
E=YXz: F=YXz,2, and G =Xzl (116)

This enables us to replace equation (112) by:

du\2 du\ [dv dv\?
s = f \/E’ (&?) +oF (d—t) (E) Iy (E) & 1)
We abbreviate this by writing

ds = VE du?® + 2F dudv + G dv?. (118)

By expanding the determinants, and making use of equation (116),
we find that:

JL+JL+ J5 =EG—F2 (119)

Thus, we may write in place of the equation (110),
§ = [VEG = F A, (120)

We abbreviate this by writing
dS = VEG — F? du dv. (121)

A comparison of this with equation (118) shows that the element of area
on a surface is completely determined by the expression for the element
of arc in terms of the parameters » and v.

This fact could be used in place of the direct argument of section 230
to show that the definition of surface area there given did not depend on
the choice of axes.

233. Signed Elements. So far we have taken the elements of arc or
volume in two or more dimensions as positive. This necessitated certain
restrictions. For example, in section 229 we took the Jacobian of trans-
formation as positive. This ruled out such a transformation as

=y y ==z (122)

For this transformation, which interchanges the réles of z and y,

a'y)
ey = " (123)

We seek now to broaden our point of view.
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For the integral on an interval, we took the elements as positive at
first, and then, if a < b, considered the integral from b to a as the nega-
tive of that from a tob. We may proceed similarly for the line integrals
of section 180. Thus for ordinary or line integrals the sign depends on
the limits, or boundary points.

Now consider a two-dimensional domain, bounded by a smooth closed
curve. At each point of the curve, P, points near P on the normal to
the curve at P are separated by P into an inner segment and an outer
segment. If we arbitrarily select a direction along the curve as posi-
tive, at any point the angle from the tangent to the curve in the positive
direction, and the inner normal to the curve will either be 90°, or —90°,
and will preserve its sign for the whole curve. Since the sign of this
angle depends on the orientation of the axes, for a particular set of axes
we may define a positive direction on the curve as that for which the
angle is 90°, or such that the relation of the positive direction on the curve
to the inner normal direction is the same as that of the positive z-axis
to the positive y-axis. We regard this direction as bounding the area
of the curve taken as positive. Similarly we regard the curve, tra-
versed in the opposite direction, as bounding the area of the curve con-
sidered as negative.

Similarly, for a closed surface in three dimensions, which bounds a
volume, we may determine at each point a direction of an inner normal,
and a direction of an outer normal. In a portion of such a surface, we
may have u,» codrdinates which are determined by curves such that
any u curve cuts each v curve at a non-zero angle. Let us assign posi-
tive directions to the u and v curves, for example taking the direction
in which v increases as the positive direction along all curves u equals
constant. Then, if the orientation of the tangents to the u,» curves and
the inner normal is the same as that of the z-, y- and z-axes, we consider
the portion of the surface taken as positive for the u,» codrdinates to be
associated with the volume bounded taken as positive.

If we are working in a two- or three-dimensional space, we consider a
particular set of axes for this space as positive. We then regard any set
of axes with the same orientation as a positive set, and any set obtained
from a positive set by reversing one axis as negative. In calculating a
multiple integral, we take dV, as the positive product, or the negative
of this according as the axes are a positive or a negative set. With this
convention, we may extend the equations (70) and (80) as well as the
formula for the element of volume given in connection with the latter
to transformations where the Jacobian is negative throughout.

When we are working at the same time with integrals of different
orders, we begin with the definition of a positive orientation for the
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largest dimension used. We then use this, and the association of the
inner normal with the last coordinate, to determine the positive orien-
tation in a figure of dimension one lower, which bounds a surface or
volume. Thus, from a set of axes in three dimensions regarded as
positive, we can determine when a set of codrdinate curves on a surface
which bounds a volume is to be taken as positive. From this, we can
proceed to determine when a curve on the surface which bounds an area
is to be taken as positive.

Our conclusions persist if the bounding curves or surfaces are made
up of a finite number of smooth pieces. We call such curves or surfaces
piecewise smooth.

234. Green’s Theorem in a Plane. This theorem asserts that, if P
and @ are any two functions of x and y for which the partial derivatives
dP/dy and 0Q/dx are continuous throughout the area 4, of suitably
restricted type, then

_[(%Q_¢or
‘/; Pdz+ Qdy = j; (6z ay) dd,,, (124)

where the first expression is a line integral as defined in section 180.
It is taken about C, a closed piecewise smooth curve bounding the area
A. We assume that the area A4 is of type D* defined at the end of sec-
tion 224. Both C and 4 must be taken with a positive orientation in
accordance with the convention of the
¥, () preceding section.
v We note that, if x and y are inter-
z(y z,(y) changed, and P and Q are interchanged
in equation (124), a minus sign is in-
troduced. This is because we must

v _ now reverse the direction along the
vi{2) curve, or else reverse the sign of the
of & %"  eclement of area, to make the two posi-

tively related for the axes taken in
reversed order.

To establish the relation, we first consider the case where the area is
such that every straight line through an interior point and parallel to
either coordinate axis cuts the boundary in exactly two points. Then
if the line with coérdinate y cuts the boundary in the points z; (y) and
z2(y), we have:

FiaG. 19.

23(y)
7z = @) - Q). (125)
1) z
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Since the segment x;,72 consists of inner points of the area, our con-
vention is such that the direction of increasing y is positive for z, and
negative for z;. Thus, if ¥" and y’/ are the least and greatest values of
y, we shall have:

L Q(za,y) dy — f Qzny) dy = fc Qy) dy.  (126)

If the curve contains a whole segment with y = y’, or '/, this contri-
butes nothing to the line integral on the right.

Similarly, if the line with coérdinate z cuts the boundary in y,(z)
and ya(z), we have:

vs(z) o p

J Sy = Pgs) — P, (120)
y(x) £)

But, from our convention, the positive direction on the curve is now

that of increasing z at y; and that of decreasing = at y5. Thus we have:

[ Pewras - [ Pyt = - [Payds  (29)

‘We may conclude from the last four equations that

" W) yz(x)
.ﬁmﬂﬁwif@ @uifw 3@(m)
[ v

zn(y) m(z)

But the repeated integrals may be replaced by double integrals over 4,
so that the result (124) follows.

The equation may be applied to any area A which is the sum of a finite
number of pieces of the kind described, if the right member is taken over
the total area, and the left over the entire boundary, which may consist
of one or more closed curves. If any of the curves bounding parts of 4
have arcs in common, these will be oriented oppositely for the two parts,
since the inner normal of one part will be the outer normal of the other.
Thus these arcs may be neglected, since the integrals for them cancel.

2356. Exact Differential Expressions. If P and Q have continuous
partial derivatives dP/dy and 6Q/0z, and these are equal in a domain D,
then for any area A consisting entirely of points of D the integral in the
right member of equation (124) will be zero. Hence the line integral

fPM+Q@ (130)

will be zero over every closed path C in D which is the boundary of an
area A in D. If M and N are any two points in D, joined by two arcs L



380 MULTIPLE INTEGRATION [Crap. X1

and L, which together bound an area 4 in D of simple type, then
dex+Qdy—dex+Qdy=0. (131)
L L,

For the difference is the integral over a closed curve, proceeding from M
to N along the first arc and from N to M along the second arec. Thus the
integral along L, equals the integral along L.

If Ly and L; do not bound an area of simple type, for example if they
intersect an infinite number of times, we may find a third arc L3 in D,
which bounds a simple area with L;, and a simple area with L,. In this
case the preceding argument shows that the integral over Lj equals that
over L, and also equals that over Lg, so that the latter two are equal, and
again the integral over L; equals that over L.

To deseribe the hypothesis stated, we say that the differential expres-
sion P dz 4 Q dyis “ exact ”in D. If zo,y, is a fixed, and z,y a variable
point in D, we may write

Ty
J Pzt aay=rFay), (132)
Zalo
at least in a suitably restricted portion of D. For, in such a restricted
neighborhood, it will be possible to join 24,y to z,y by paths related like
the L; and Ly mentioned above, and we use paths of this type in calcu-
lating the left member of equation (132). Let us take z,y and x + Az,y
in the restricted portion of D, and use two paths differing by a straight
line segment parallel to the z-axis. If z,y is an interior point of the
restricted region, for Az sufficiently small, the line segment will lie in the
restricted region. Then we have:

z4+Az,y
F(z + Az,y) — F(z,y) ==f P dz. (133)
Yy

Since y is constant, this is an ordinary integral, and by the mean value
theorem is
Az P(x’:y)’ (134)

where z’ is a suitably chosen value between z and z + Az. Thus

F(x + Ax;y) - F(x;y)

o = P(z'yy). (135)

From the fact that z’ is between x and z + Az, and that the function
P(z,y) is continuous, we may deduce that:
oF

ol P. (136)
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In the same way we may prove that

-a—f = Q. (137)
dy
Thus we have
oF oF
= — —dy = P d:
dF axdx+aydy Pdx 4+ Qdy, (138)

so that when P dx 4 Q dy is an exact differential expression in the sense
of this section, there is a function F(z,y) for which P dx 4 Q dy is the
total differential as defined in section 211.

We observe that, if G(z,y) is any second function which has
P dz + Q dy as the total differential, we have:

IF—G@ F—-6)
x  dy

d(F —G) =0 and 0. (139)

Hence by section 215, the function F — @ is a constant in some suitably
restricted portion of D. Thus:
F—G=k and F(zy) = Gzy) +k, (140)
80 that
F(z,y) = F(z,y) — F(zo,50) = G(z,y) — G(zo,%0), (141)

and by equation (132)
Y
[T Pan+ @y = 6y) — Gopo). (142)
Zo¥o

Let us next suppose that we start with the function F(z,y), and form
its total differential, which we set equal to P dz + Q dy, as in equation
(138). Then, if the partial derivatives of P and Q exist and are con-
tinuous, by section 213,

oP a%F a%F Q
9y Odydxr IJxdy Oz

Our discussion shows that, if the derivatives dP/dy and 3Q/dx both
exist and are continuous functions of z and y, the condition

P 9Q

Fode P (144)

(143)

18 both necessary and sufficient for the existence of a function F(z,y)
which has P dz + @ dy as its total differential.

When the condition holds, we call P dz + Q dy an exact differential
expression, and the integral in equation (132) is independent of the path
of integration for z,y in a suitably restricted region.
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236. Stokes's Theorem. If a portion of a smooth surface in three
space is bounded by a piecewise smooth closed curve C, there is a relation
analogous to equation (124), namely:

me+Q@+R&=
c

IR 9Q aP 4R

L[(ay az>l+ (az 6x>m+
In this equation the integral on the left is the line integral taken over the
curve C, while that on the right is the surface integral taken over the
area A bounded by C. Each of these is to be taken with a positive orien-
tation in accordance with the convention of section 233. The numbers
1,m,n are the direction cosines of the normal, or more precisely of that
direction on the normal used as the analogue of the z-axis in determining
orientation. As in equation (96), they may be obtained by dividing
the appropriate direction ratios by the positive square root of the sum
of their squares.

For example, if the smooth surface is the x,y plane, the normal to be
used is the positive z-axis, so that the direction cosines are I = m = 0,
n = 1 and the equation (145) reduces to equation (124).

The right member of equation (145) is easily recalled if it is written in
symbolic determinant form:

(%g - %’) n] ds. (145)

1 m n
a3 a ad

‘/; e L (146)
P Q R

where the determinant must be expanded in products of elements ordered
according to rows, so that the operators of the second row act only on the
elements of the third row.

To establish equation (145), it will be sufficient to show that:

dex—f( m-———n)dS, (147)

since the equality of the terms in Q and R will then follow by permuting
the letters.

If » and » are parameters in the surface, as in section 232, so chosen as
to give a positive system, we may express the integral in the left member
of equation (147) in terms of « and v,

dex—fP——du+P—dv (148)
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If A’ is the area in the u,» plane bounded by the curve in that plane
which corresponds to C on the surface, we may apply Green’s theorem,
equation (124), in the u,» plane and so transform the last expression to:

-/;[ % (P %) - ;,, (P 32)] Ay, (149)

oP &
6P 9z oL oz, (150)
au v v au

The integrand is

since the term in the mixed derivative cancels when the surface is such
that 9%z/0u dv and 8%z/dv du exist and are continuous, which we shall
assume to be the case.

If we use the relations:

oP OP oz f ] aP 9z

du Jdr du 9y du 9z ou’

151
8P 9P oz 9P oy 9P oz (151)
v dx dv  dy I az av
we may reduce the expression for the integrand (150) to
P
J zy + zz; (152)

where we use the notation of equation (107).
This shows that

oP
fP do = f S A — f oy T (59)

If we recall equation (70) for transforming multiple integrals, we may
rewrite the right member as

aP apP
Al dAza: - a dAzy, (154)
9y
where the integrals are taken over areas in the 2z plane and in the
2y plane which correspond to A’.
But because of our convention as to orientation we have:

1
dS = sec BdA;, = p dA,. (155)

and

1
dS = sec ydA,, = - da,,. (156)
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Here equation (155) is obtained from equation (156) by permuting the
letters, and equation (156) is obtained from equation (88) and equation
(96). We took the positive sign for the radical in equation (88) because
the positive area was associated with the standard orientation of the
z- and y-axes.

From equations (153) through (156) it follows that:

~ oP  oP
fc Pds = fA <¥ o )dS 157)

which is the equation we were seeking to prove.
By using equations (155), (156) and the third equatxon obtained from
them by permuting the letters, we may write

L Ay

(158)

in place of the right member of equation (145). The symbolic form
analogous to equation (146) is:

dA yz dAw dAtﬂ

3 9 3
= = — . 1
f or ay oz (159)
P Q R

In the expression (158) the elements of integration must be given proper
algebraic signs, determined by the relations:

dA,, =148, dA.. = mdS, d4,, = ndS, (160)

so that for actual calculation the form (145) is more explicit.

237. Green’s Theorem in Three Dimensions. If P, @ and R are
three functions of z, y and z which, with the partial derivatives dP/az,
3Q/dy, and R /9z, are continuous in all three variables in some domain,
D, we have:

5Q
f(ax LN z)‘“’= —j;(Pl+Qm+Rn)dS, (161)

where the triple integral on the left is taken over a volume V, and the
double integral on the right over a closed surface S which bounds the
volume V. We assume S and V lie in D, and the orientations are so
taken that the z-, y-, z-axes have the same orientation as the parametric
directions for  and v in S, followed by the direction of the inner normal
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to the surface, [, m, n. We also assume that V is a domain of type D*,
defined at the end of section 228, and that its boundary, 8, is a piecewise
smooth surface.

‘We proceed as in section 234, assuming at first that every straight line
through an interior point of V and parallel to one of the coordinate axes
cuts S in exactly two points. Then, for z and y fixed, if the points in V
form the segment 2;,2;, we have:

“ 6R
. dz =R (it,y,Zz) R (x:yizl)- (162)

2

Thus, since the triple integral equals the repeated integral in any order
when the integrand is continuous, we have:

1’5 v = f [R(@y,2) — R@y,z)] de dy

- [Reym)a4n) - [Reya) dds. (63)

Our conventions make the inner normal at z; in the direction of increas-
ing z, while that at 23 is in the direction of decreasing z. Moreover, parts
of 8 with normals parallel to the xy plane have a projection on the
zy plane of zero area. Hence we have:

f—dV— —fRdA,,,_ —fRndS (164)

by equation (156).

Similarly, the terms in P and @ in equation (161) may be shown to be
equal.

If we use the signed elements given by equation (160), we may write
in place of equation (161):

f( +aQJr )dV=-[deA,,+deA,,+fRdA,,].

(165)

The minus sign in equations (161) and (165) disappears if we replace
the direction cosines by those for the direction along the outer normal,
and modify the signs of the elements to conform with equation (160).

The result applies to any volume V which is the sum of a finite number
of pieces of the kind already discussed, as we may show by an argument
similar to that used at the end of section 234.
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EXERCISES XI

1. Prove that, when f(z,y) is continuous, and a < b

j; " ay f ’ fe) do = f i f " je) dy.

2. Show that, if f(z,y) is continuous, and for all zp,5 in some two-dimen-
sional domain,

Lo Yo
f s [ i) dy = Faom), then
a b

% F
3z 0y = f(zy).
Conversely, show that if the second condition holds, then

f ® fb " fay) dy = Flaoge) — Flage) — Flzob) + Fad).

3. Show that the area bounded by thelinesz = a,z = b,y = 0andy = f(xz),
where f(z) = 0, 1sequaltof fz) dz, orfb dz,ifa < b.

4. Show that the area of a domain of type D of section 224 equals the line

integral — j; y dz, taken over C, the boundary of D, in the positive direction.

Hint: Take a new z-axis below the points of C, and use problem 3. Check by
using Green’s theorem.

6. Deduce f zdyand 1/2 f (x dy — y dx) as alternative expressions for
c c

the area of the domain of problem 4.

6. Using a procedure similar to that of section 225, with comparison areas
@’ and G made up of sectors, and noting that the definitions given of content or
area make area G” = area G if ¢’ includes all points of G, show that the area of

b
a sector is given by 1/2 f 2 df, with r = f(f) the equation in polar coérdinates
u.
of the curve bounding the sector, together with8 = a,6 = b.
7. Identify 1/2 | (z dy — y dz), taken along the arc bounding the sector,

with the integral of problem 6. Hint: Either decompose the sector into tri-
angles and areas like that in problem 3, or else note that # = r cos 6,y = rsin @

implies that z d—‘/ -y @ = d0
dt dt dt

8. Deduce from problem 6 that in polar codrdinates the repeated integral
f do f r dr represents area. Hence the same is true of the double integral, or
repeated integral in reverse order. For the double integral, verify directly by
applying the transformation formula of section 229 to f d4 = f dz dy.
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9. Show that in the transformation to orthogonal curvilinear coérdinates

(1, %2,73)

2
of problem 32 of Exercises X,[ ] = h2h3h%. Hence show that
a(ulyu2yu3)

f dx, dzs dzs = f hihohs duy dus dus, taken over corresponding volumes, with

proper signs given hy,hoh;.  Hint: Use the rule of multiplication of determinants
of problem 19, Exercises X and the relations of problem 31 of Exercises X.
10. For the spherical polar codrdinates of problem 34 of Exercises X, show

that the integral for volume is f rsin ¢ dr d¢p df. Hint: Use problem 9.

11. Let z = f(z,y) represent a portion of a surface, and let the projections in
the z,y plane of the curves for which + is constant be found. If the area bounded
by one of these curves alone, or with 4 fixed boundary independent of the curves

is H(7), show that the area of the surface may be expressed as f H'(v) sec v dv.

Hint: If AH is the area between the curves for o and vy + Aw, the corresponding
part of S, the area of the surface is AH sec ¥, where ¥ is a suitable value between
v and v + Ay.

12. If 72 = 2% + y?, z = f(r) is the equation of a surface of revolution. Show

that the surface area between two values of 7 may be written 2ur f r ds, where 8

is arc length. Hint: Use problem 11.

13. If one nappe of a cone with vertex at the origin cuts off a surface area Q
from a unit sphere, Q is called the solid angle for the vertex. If the cone cuts off
a simple closed curve on any surface, bounding a surface S, show that the solid

angleﬂ=j;g’—f‘:’_m ds=j;m:ﬂ” dS. Here 12 = 2?4 y2 +2,

(r,N) means the angle between the radius drawn from the origin, and the normal
N to the surface. The direction cosines of N are I, m, n.
14. Prove Gauss’s theorem, that the integral over a simple closed surface,

f W—) dS, is 4 if S includes the origin as an interior point, 2r if the origin

is a boundary point of S at which S has a tangent plane, and 0 if the origin is an
exterior point. Hinl: Use the interpretation of problem 13.

16. If P, Q and R are such functions of z, ¥ and z that f Pdz + Q dy +
c

R dz = f(x,y,2) — f(xo,90,20) i8 independent of the path joining Ao = (zo,y0,20)

and 4 = (z,y,2), show that P = 9 »Q = 9 and R = L) - Also prove the
ox ay 9z

converse.
16. Show that if r = V22 + 32 + 22, then | g()(x dz + ydy + z d2) is

independent of the path. In particular evaluate the integral when g(r) = r*.
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il
17. The relatlon -_— + —9- + -é- = 0 is a necessary and sufficient condition

that f (Pl + @m + Rn) dS should equal zero when taken over any closed

surface. An example is P = f(y,2), @ = g(2,2), R = h(z,y).
oC 9B a4 oC dB 04

18. IfP=-a;—5z—,Q=-5;—~£,R=5;—3—y‘,then

BQ
6:1: +
Conversely, if this last condition holds, there are functions A, B, C for which the
first three equations hold. Hiné: If A is any function, and B is determined to
within an additive function of y and z by the third relation, then C is determined
to within an additive function of z from the differential, exact in z and y

daC =(%1;1 -—Q)dz+(P+-a£>d

6
19. The condmon (—’; Q + — = (0 is a necessary and sufficient condition

that f (Pl + Qm + Rn) dS taken over a portion of a surface bounded by a

simple closed curve L should depend only on the boundary, L. Hint: For the
necessity, note that two surfaces bounded by C together make a closed surface,
and use section 237 or problem 17. For the sufficiency, use problem 18 and sec-

tion 236 to reduce the integral to the line integral fL (A dz + Bdy + C d2).

20. If V is the volume bounded by a closed surface S, N denotes the outer
normal, and otherwise the notation is as in problem 13,

V= 1/3frcos (r,N) dS = 1/3L(lx+m+m)d8.
8
21, If P, @, R are homogeneous second degree polynomials in z, y and z, and
8 is a closed surface bounding a volume whose eenter of gravity is at the origin,
show that | (Pl+ Qm + Rn) dS = 0.
22. Show that:

ou o auév
./;“A"M'”*.L(axaz )‘“" f “N®

) . v W dy | ]
where C is a closed curve bounding 4, A v = az’+ W and N is the diree-

tional derivative of » along the outer normal to the ecurve C. Hini: Apply

, v ov
Green’s theorem with P = —ua'andQ-ua‘
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23. With the notation of problem 22, show that:

dv du
‘/;(uAv—vAu)dA,,=j;<ugﬁ—vE)ds.

This is often called Green’s theorem.
24. With the notation of problem 22, show that:

fA o= [ 24
. udd, = o dN s.
26. Show that:

[oavars [(ay 2o 00y [
y oo Nz Tayay Tagay) ' ~Js¥an ™

. . o 3%
where S is a closed surface bounding the volume V, A v = @+ 5&*’37’

dv
and — is the directional derivative of » along the outer normal to the surface S.

dN

a d
Hint: Apply Green’s theorem in three dimensions with P = u a—z ,Q =u 5—5 s
fe
= U ay .

26. With the notation of problem 25, show that:

Lwnvmvanar= [ (s -0 8)us
V(u v—vAu) = sudN_de .

27. With the notation of problem 25, show that:

du
ﬁA<udV=£Jﬁﬁ.

28. We may form multiple Duhamel sums by replacing each y; in F(y;) by
fi(®1, T3, -+ - , Ta) and otherwise proceeding as in section 164. Show that, when
all the functions are continuous, and we use a sequence of subdivisions for which
the maximum diameter, 8, —> 0, the Duhamel sums approach the multiple

integralfl"’ [fi(2p)] AV, where dV, = dz; dos - - - dZa.



CHAPTER XII
SEQUENCES OF FUNCTIONS

Similar to a sequence of numbers approaching a limit, we may have a
sequence of functions approaching a limiting function. When the func-
tions of the sequence are continuous, the condition that the limiting
function is continuous reduces to the condition that two operations of
taking limits give the same result regardless of the order in which they
are applied. An important sufficient condition for this is related to the
notion of uniform convergence of a sequence of functions. We accord-
ingly introduce this notion and apply it to other problems involving
two limit operations. In connection with the integral of & limiting
function we discuss sequences of functions which converge in the mean.

We also investigate certain conditions under which it is possible to
select, from an infinite set of functions, a second infinite sequence of
functions which approaches a limiting function. The conditions involve
& property known as equi-continuity. We discuss this property, and
develop certain simple conditions on a sequence which guarantee that it
is equi-continuous.

238. Limiting Function. Consider a variable function, f,(z), defined
over some range of the real variable x for an infinite succession of values
of t. As in section 17, this succession may be discrete or continuous.
As an example of a discrete succession of functions, we have the sum of
the first » terms of an infinite series of functions,

(@) = T wa), @

k=1

or the product to n factors of an infinite product:
pn(@) = IL11 + w(@)]. @)

A continuous succession of functions of the variable z may be obtained
from any function of two variables g(z,y), defined for

aszr=bh c=sy=d, 3)
by the following procedure. Select a particular value of y, say yo, in

the open interval ¢,d and for any continuous sequence of values of ¢ in
390
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the interval ¢,d with t — yo, define:
ft (I) = g(x)t)) (4)

so that each function of the sequence is defined fora < z < b.

Let us return to the consideration of a particular sequence of functions,
fe(z). Suppose that there is a function F(z) such that, for a particular
value of z, say xo, we have:

lim f,(x0) = F(xo)- (5)

That is, for zo, corresponding to any positive quantity ¢, there is a point
in the succession of values T (e,2o), such that

[fe(xo) — F(xo)] < ¢, fortbeyond T (exo) (6)

in the succession of values of &.
If the relation (5) holds for all values of zo in a given range, say the
closed interval a,b, we write:

lim f.(x) = F(x), asT = br (7)

and say that in this range the sequence f;(z) approaches the limiting
function F(z).

239. Uniform Approach. As we have indicated in the notation
T (,20), the values of T for which the condition (6) holds will presumably
depend on 7y, as well as one. In fact, it may be impossible to find any T
that will serve for a given e for all values of z in the range. For example,
if

tx
w+1

where ¢ steadily increases through all positive values from 0 to + =,
and the range for zis 0 < z £ 1, we have

F(x)=1,ifz # 0; and F(0) = 0. ()]

For zo > 0, the condition (6) becomes:

fu(@) = @

|F (x0) — fi(xo)| = P <e (10)
For e < 1, this will hold if and only if:
L
€
t> (11)
o

Thus we may take the right member of the inequality (11) as T (¢,zo).
Any larger value may be used, but no smaller value will serve.
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Since F(0) — f:(0) = 0, for all¢, (12)

we may take T'(e,0) = 1 for all values of e.
However, for values of x, near 0, the values of

1
-1

min T (ezo) = —— (13)

Zo
are unbounded, since for e fixed and 2o — 0, the expression on the right
becomes infinite.

Thus in this example for any e with 0 < ¢ < 1, no value will serve as a
T (e,xo) for all 2o in the range 0 < 2, < 1.

For some sequences f,(z), for any positive ¢, there is a value which will
serve as a T (e,xo) for this e and all 2o in the range considered. Thus, if
we consider the sequence of functions defined by equation (8) for all
values of r in the range 1/2 < z =< 1, it follows from the relation (11)
that 2/e will serve as a T (¢,2,) for all 2, in this latter range.

To describe the second situation, we define:

A sequence of functions f,(z) approaches a limiting function F (x) uni-
Jormly in x for a certain range, if, for any given small postitive quantity e,
there is a value ., independent of z, such that

|F () — fi(2)] < €, fortbeyondt,, (14)

for all z in the range considered.

We use the phrase uniform convergence, to indicate that the limiting
function is uniformly approached, and non-uniform convergence to
indicate that this is not the case. In particular, we say that an infinite
series or product whose terms are functions of x converges uniformly in a
certain range, if the partial sums s,(z), or partial products, p, (@)
approach their limits uniformly for this range.

As the example (8) shows, we may have approach to a limit non-uni-
form in one range, but uniform in some smaller range.

240. The Cauchy Criterion. If a sequence of functions converges
uniformly for a certain range in z, for any given positive quantity »,
we may take e = 4/2, and find a ¢’ equal to a ¢, for which the relation (14)
holds. If then, u and » are any two values which follow ¢ in the succes-
sion of values, we may put { = u, e = 9/2 ort = v, ¢ = /2 in the re-
lation (14). From this, as in section 26, we may conclude that:

[fu(®) — fo(z)| < m, for u,» beyond ¢/, (15)

and all z in the range considered. Thus, when the convergence is uni-
form, the Cauchy condition holds uniformly throughout the range, in
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the sense that there is a ¢’ for which equation (15) holds which depends
on e but is independent of z.

Conversely, if the Cauchy condition may be satisfied for a sequence of
functions f:(z), for every positive value of ¢, uniformly throughout a
certain range, then the sequence of functions f¢(x) approaches a limiting
function F () uniformly for this range.

For, by the result of section 26, for any %o in the range, the sequence
of values f;(zo) approaches a limit. We define the function F(z) at zo
as the value of this limit.

For any positive quantity =, select 9 ' with 0 < 7’ < . Then there is
at mdependen’c of z, such that the condition (15) holds for v’. Thus,
for any z, in the range:

|fu(@o) = fo(@o)| < ', for u, beyond ¢'. (16)

Since this relation holds for all v beyond t’, we may let v run through the
sequence of values of ¢ beyond t'. Then, since under these conditions
fv(zo) — F(zo), we may conclude from the relation (16) that:

Ifu(@o) — F(2o)| <o, for ubeyond ¢'. an
Since 57 < #, and the value of ¢’ is independent of zo, it follows that:
Ifi(@) — F(z)] <n, fortbeyond @18)

which is the condition for uniform approach to a limit.

Our result may be formulated as a theorem:

A necessary and sufficient condition for a sequence of functions f(z)
to approach a limiting function F(z) uniformly is that the Cauchy condi-
tion (15) can be satisfied for every positive ¢, uniformly in z for the range
considered, that is, by values of ¢’ independent of .

241. Interchange of Order of Limits. Consider the values of F(z),
near r = a, where F(z) is the limiting function of a sequence f(z). If
these values approach a limit, it is

lim F(z) = lim [h‘m f:(x)] : (19)

Again, if the limits exist, we may take the limits on z and £ in reverse
order and consider:

li‘m [lim fi (:c)] . (20)

T~>a
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Even when all the limits exist, the results of (19) and (20) may be
different. Thus, for the sequence defined by equation (8), and a = 0,

we have:
tr
1 i — = 1
lim L hTw P 1] , (21)
hil I li ] = 0. 22
while lu_:zw[zlm =+ 1 (22)

However, for some sequences f;(z) the two combinations of operations
given by the expressions (19) and (20) do have the same value. We
give a sufficient condition for this in the theorem:

If lim fi(x) = F(z) exists, and the approach is uniform for some range
t
in z including the value z = a, and lim f,(z) = G(), for all t beyond a
r—ra

certain one t'’ in the sequence, then:

lim [lim f,(x)] and 11?[3'_1: f,(x)] (23)

z—>a t

both exist and are equal.
From the assumed uniform approach, for any positive quantity e,
there is a ¢, such that, for all values of z in the range:
Ifi(z) — F(z)] < ¢ for ¢beyond .. (24)

We take ¢, beyond ¢”/. Then, for « and v each values of ¢ beyond ¢.,
we have:
Ifu(@) — fo(z)| < 2 for wu,w beyond t.. (25)

Since this relation holds for all z in the range, we may let z — a and
deduce that
|G(w) — G(v)| < 2, for uwbeyond ¢.. (26)

This is the Cauchy convergence criterion and since it holds for any value
of ¢, with a suitable ¢,, we may conclude that, as ¢ runs through its
succession, () approaches a limit. Let A denote this limit. Then:

A= liin Gt) = litm I:lim ft(x)] 27)
Let us now select a particular value of ¢ beyond ¢, for which @ @ is
within e of its limit A. We denote this by w. Then
[4 — Gw)] < e (28)
But by the relation (24) which holds for ¢ = w,
fu@) — F@2)| <e (29)
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Again, since f,,(z) approaches G (w) when z — a, there is a § such that:

|Gw) — fu(z)] <¢ for |z —a|l <a. (30)
From the last three relations we may conclude that:
if | —a|l <35, |4 — F(z)| < 3e. 31)
This proves that:
11316 F(z) = A4, 32)
or A = lim [li{n f,(x)]- (33)

Equations (27) and (33) together show that the two repeated limits
each exist and have equal values. This is the conclusion of the theorem.

242. Two-Dimensional Limits. The theorem of the last section holds
when z — & is replaced by z — a-+. In this case it is sufficient if the
range of uniformity includes a as a left end point. Similarly we may
have £ —a—, or £ — 4, or —. With these extensions, z and ¢
play coérdinate réles. Thus we are led to write g(z,¢) in place of f().
If we replace ¢ by y, and for definiteness consider the case where z —a
and y — b, the theorem shows that if for all z in some interval includ-
ing a, hnrt g(z,y) exists and if lim g(z,y) exists for all y in some interval

y—> —ra

including b, and if one of these limits exists uniformly in the variable
held fast for all values in its range, then the repeated limits both exist

and are equal:
lim [lim g(x,y)] = lim [lim g(x,y)] . (34)
z—>a Ly—b y—=>b |_z—>a

A related, but not identical question, is the existence of the double or
two-dimensjonal limit:
lim g¢(zy) = 4. (35)
z,y—>a,b
We define this by a method analogous to that used in section 35 to
define a continuous function of two variables. That is, we write the
relation (35) if, for any positive ¢, there is a  such that:

if [r—al<s ly—0<y 4 - g(z.y)| < e (36)

As in section 35 we may show that this is equivalent to requiring that
for every discrete sequence of points (z,y») for which 2, — @, ya — b,
we have lim g(za,yn) = 4.

We may prove that, if one of the repeated limits exists and if the inner or
first limit exists uniformly with respect to the second variable throughout the
range used for it in the repeated limit, then the double limit exists.
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For, if when y —b, g(z,y) approaches F(x) uniformly in y, for
| — a| < h, we have for some &’:

[F(z) —glzy) <e for [y—dl <&, |z—a| <h. (37)
And, if the repeated limit exists,

A = lim [lim g(:v,y):l = lim F(z). (38)
s—a L y—b 2=>a
Thus, there is a 6’/ < h such that:
[A - F@) <e for |z—a] <" (39)
We may conclude from the relations (37) and (39) that:
|4 —gl@y) <2 if |z—al <5 |y—bl<s, (40)

where § is min (5,6”’). This is essentially the relation (36) which defines
the double limit, so that the double limit exists, and equals the repeated
limit under the assumed conditions.

Since the conditions of the theorem of section 241 include the uni-
formity and imply the existence of the repeated limit, when these con-
ditions hold, the double limit exists and equals the common value of the
two repeated limits.

However, the theorem just proved may apply when only one of the
repeated limits exists. Thus,

. .1
if g(x)y) =Y Sln;’ z 07 g(o>y) =0, (41)
and if we take 0,0 as the a,b of the discussion we have:

tim | lim g(e) | = , 42)

with the limit for y uniform in z, so that the double limit exists and
equals zero. However, wheny > 0andz — 0, g{z,y) does not approach
a limit, so that the repeated limit in the reversed order does not exist.

We also note that the double limit may exist, without either repeated
limit existing. An example, with a,b = 0,0, is:

g(O,y) = g(x,O) = 0}
1.1, .
and gxy) = @+ 4?) sin;smglf z#0, y=0. (43)
243. Continuous Limiting Function. The equations (8) and (9)

show that the limiting function may be discontinuous on a range even
if all the functions of the sequence approaching it are continuous on the
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range. However, if all the functions f,(x) are continuous at the point,
and the sequence approaches F (z) uniformly in z for some range includ-
ing the point ¢ as an interior point, then F(z) is continuous at a. For,
by the theorem of section 241, we have:

lim [lim ft(x)] = lim [lim f;(x)]. (44)
2=—>a t i T—>a
But each function f,(x) is continuous at a, so that:
lim fi(z) = fi(a). (45)
From this and the fact that:
Hgn filx) = F(2), (46)

we may deduce from equation (44) that:
lim F(z) = lim f:(a) = F(a), 47)
z—>a 11

which is the condition that F (z) be continuous at a.

The same result holds for a range, and consequently we have the
theorem:

The limiting function F () of a sequence of functions f,(x) is continuous
in any range in which the separate functions fi(x) are all continuous, and
the sequence approaches F (z) uniformly.

Since elementary operations do not disturb continuity, if the terms
of an infinite series are each continuous on a range and the series con-
verges uniformly for this range, then the sum of the series is continuous
on this range.

Again, if the factors of an infinite product are each continuous func-
tions on a range and the product converges uniformly for this range,
then the function given by the infinite product is continuous on this range.

In all these results the range may be a closed interval, the result hold-
ing for the end points by our conventions as to continuity at these
points and the fact that our basic theorem holds for z — a+ orz — b—

244. Improper Integrals. Let

F@) = [ o) du (48)

be a convergent improper integral for all values of the parameter z in a
certain range. Then, for z in this range

F(z) = lim f g(u,x) du. (49)
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Thus we have a sequence of functions:
2
1@ = [ o) du, (50)

converging to a limiting function. By the Cauchy criterion of section
240, the sequence will converge uniformly if, for each positive ¢, there is a

t, such that:
o
S oz du
tl

[fe(@) = for(2)| =

In case g(u,x) is a continuous function of » and z for all values of
u > a and all z in the range, the integral in equation (50) is a continuous
function of z, by section 220. Hence, if this is the case and if we have
uniform convergence for x in the range, by the theorem of section 243,
the limiting function or the improper integral in equation (48) will be a
continuous function of z.

With slight modification the discussion applies to improper integrals
of the second kind.

We may define improper repeated integrals as the limits of proper
repeated integrals. If the repeated limits

<e¢ for ¢, ¢ >t. (51)

lim [ lim du f Sluw) dv:l (52)
and

i i d d

tim [ tim "o [ u0) a0 ] (53)

both exist, we may not deduce from the fact that:

‘/:duj:l dv f(up) = J:l dvj;zf(u,v) du (54)

that the improper integrals

f " £ " dof(ug), and fb " f ) du (55)

exist and have the same value (see problem 27).

If either of the integrals in (55) exist when f(u,v) is replaced by
g(w,v) where [f(u,v)| < g(u,v), then both the integrals exist and are
equal as we see by considering the double series of positive terms

n+1 m+1
22 ams Where amn = f du f g(uv) dv. (66)
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246. Weierstrass M-test for Uniform Convergence. An important
and useful test for uniform convergence of a series is contained in the
following theorem:

If M} is a convergent series of positive terms and if Tux(z) i3 a series
of funetions, and if for all k, and all x in a certain range,

lue (z)| < Ma, (57)
then the series ux(x) converges uniformly in x for the range in gquestion.

Since the series with terms M} converges, by the theorem of section
188, for each positive quantity e, there is some positive integer N, such
that, for any integer k¥ > N, and all positive integers p

[Meps + Mega + - - + Mryy| <e (58)
But it follows from the condition (57) that:

P P P
2 uker(2)| = z [uer (@) = }:1 Miyr. (59)

Since the M} are all positive, the last sum is the same as the sum in the
left member of the relation (58), and:

él Uk4-r (ID)

That is, the partial sums of the series with terms u(x) satisfy the
Cauchy convergence criterion uniformly in z for the range considered,
and therefore by section 240 the series converges uniformly in z for this
range. This proves the theorem.

The condition of the theorem is sufficient but is not necessary. In
fact, for some uniformly convergent series there may not be any series
of constants M, for which the condition (57) holds with M}, the terms of
a convergent series.

For example, let the range be 0 < z < 1, and let

up(z) =0, if = #,—t, and u (%) = ’% (61)
The remainder after N terms of the series will be less than ¢, if N > 1/e,
so that the series converges uniformly. However, any M, satisfying the
condition (57) for the entire range will have M), 2 1/k, so that the series
2 M;, will diverge.

In place of using a convergent series of positive constants, we could
use a series of positive functions of z, my(z), uniformly convergent in »
for the range in question and such that, for this range:

fug(@)| < my (). 62)

<e¢ if k>N, and p>0. (60)
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In this case, we deduce from section 240 that for some N,

<eif k>N.and p > 0. (63)

ré m(x)

We may use this in place of the relation (58), and complete the argument
exactly as before.

We describe the relation (62) by saying that the function my(z)
dominates the function uz(z). To indicate that this holds for all k,
we say that the series 2 my(x) dominates the series 2uz(x). Thus the
result just proved may be stated as follows:

An infinite series of functions converges uniformly in x for a range if it is
dominated by an infinite series of positive functions which converges uni-
Jormly in x for the range.

In this and the preceding theorem, since the argument applies equally
well to the series X |ux(z)|, it follows that the series converges absolutely
for any z in the range.

We may extend the considerations to improper integrals and prove
that:

The tmproper integral

f g(u,z) du = lim g(u,x) du (64)
a t—0 J,

converges uniformly in z for a range if, for all uw 2 a, and all = in the range,
lgu,z)| = M (), (65)

where M (u) is a function, necessarily positive or zero, for which

f " M) du (66)

converges.
The proof depends on the fact that the relation (65) implies that:

[ otz au
t

This enables us to proceed from the Cauchy criterion for the sequence
of integrals approaching the integral (66) to the Cauchy eriterion for
the sequence of integrals approaching the integral (64), as expressed in
equation (51). Since the latter then holds uniformly in x, the uniform
convergence of the improper integral follows. A similar result holds for
an improper integral of the second kind.

We have stated the result for a function M (u) independent of z,

4t

< j; lo(u,z)| du < [ M@ de.  (67)
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because this is the most important case in practice. A more general
result is:

The improper integral of g(u,z) with respect to u converges uniformly in z
for a range X, tf, for all values of u in U, the range of integration, and all x
in the range X, the function g(u,x) is dominated by a function m(u,zx),
necessarily positive or zero, for which the integral with respect to u over the
range U converges uniformly in x for xin X. For any x in X, the improper
integral of g(u,z) converges absolutely.

This is proved by similar reasoning, using the relation:

lg(u,x)| < m(uz), winU, zinX, (68)
to prove that:

f g(u,x) du
v

The range U of u may be a, « as in equation (64), or a,c for an
improper integral of the second kind.

The Weierstrass M-test depends on the application of the comparison
test for convergence. Any other test for the convergence of an infinite
geries, improper integral, or infinite product may be used to establish
convergence uniform with respect to z if the test determines a place in
the sequence, independent of z, beyond which the difference between the
approximation and the limit is small.

246. Integration of Series. For a sequence of functions, the limit of
the sequence of integrals, as well as the integral of the limiting function
of the sequence, may both exist without being equal. An example is:

o v
< fu lg(u,z)| du < l muz) du.  (69)

fi(x) = 7% 2z, (70)
Here we have:
1 1
f e—tz’zwdx - _e—l.’c’ = 1 - e—t, (71)
0 o
so that: .
lim €% Az dr = 1. (72)
400 ¢/
But:
lim ¢ 2z = 0, (73)
t—>+0
so that:

1
f lim (¢ 2) dz = 0. (74)
0

Lepf-00
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However, we may prove a result of somewhat similar character to that
of section 241, namely:

If each of the functions f,(x) is continuous in x for the rangea < x £ b,
and if fi(x) approaches a Limiting function F(x) uniformly in x for this
range, then:

b b
lim f fi@) dz and f lim f,(z) dz (75)

each exist and the two have the same value.

By the theorem of section 243, the limiting function F (x) is continuous,
so that it has an integral. Thus:

f lim f,(2) de = f ' Fo) dn, (76)

exists.
From the assumed uniform convergence, for any positive ¢, there is a
t., such that:

[F(z) — fi(z)] <e¢ for tbeyondt, a =<z b (W)
It follows from this that:

fabF(x) dz — fabft(x) do

b
- [ 7o - o

b
s [ IF@ - @)l do

< |b~ ale (78)
This shows that:

b b
lim f i) do = f F(z) dx, (79)

so that the limit on the left exists. A comparison of equations (76) and
(79) shows that the two limits are equal, as stated in the theorem.
Corresponding to a series of integrable functions 3_uy (x), we may form

z
a series X, f ux(x) dz, which we refer to as the integrated series or the
a

series obtained by termwise integration. For a finite sum, we have:
n z r n
Py f ug(z) de = f 2 ug(x) dx. (80)
k=1J, e k=1

If the ux(z) are all continuous functions, the partial sum of the series to
n terms,

(@) = T (@) 81)
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will be a continuous function. If the series converges to s(z) uniformly
in a range @ < z S b, we may apply the theorem just proved to s,(z),
and deduce for any z in this range:

”lim;fs,.(x) d:c=[s(x) dz. (82)

As the integral on the left is the series obtained by termwise integration,
it follows that under the conditions stated the series converges to the
integral of the sum function of the original series.

Furthermore, for

a<b<B (b—a)=s(B-—a (83)
Thus the inequality (78) holds with right member (B — a)e, for all b
satisfying the relation (83). This proves that the convergence of the
first integral of (75) is uniform in b.

These results are expressed in the following theorem:

An infinite series of continuous functions which converges uniformly in z
Jor a £ z < B to a sum function s(x) may be inlegrated lermwise over the
range a,z to give a new series which converges to the integral of s(x) from
a to z. The convergence of the integrated series is uniform in z, for
asz<B.

We may also apply the first theorem of this section to improper inte-
grals. If the improper integral

S st du = tim [ o) au (84)

converges uniformly in z, for  in the range @ < = < b, we have:

j; bdz j: i g(u,x) du = Lu: j: bda; j: tg(u,a;) du. (85)

But, for the proper integral of a continuous function of two variables:

fbdx jjg(u,‘a:) du = f‘du ja‘bg(u,:v) dz, (86)

#0 that under the assumed conditions:

jjd"’ ‘/:wy(u,:v) du = j;w dujfg(u,x) dzx. (87)

A similar result holds for

_/: " &) f g (u,2) du = f du f " o) da, (88)
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where the integrand g(u,z) is continuous in the two variables for
3

@ <z =bandr £ 4 <c, and the integral f g(u,x) du is an improper

integral of the second kind, which converges uniformly with respect to
zfora <z b

247. Dominated Sequences. If, for all ¢ sufficiently far out in the
sequence,

[fi(@)]| < g(x), (89)

we say that the function g(z), necessarily positive or zero, dominates the
sequence f;(z).

We may prove the result of the theorem given in equation (75) with
the conditions relaxed near a finite number of points, provided that in
some interval including each of these points, the sequence is dominated
by a function g(z) integrable over this interval. It will be sufficient to
consider one such point, taken as the right-hand end point, and then
formulate the theorem in detail for this case as follows:

If each of the functions f,(x) is continuous in x for the range a < z < c,
Ji(z) approaches a limiting function F(x) in this range and the convergence
ts uniform in x for each range a < xz X b, where b is any number such that
6 <b <c, then if the sequence is dominated tn some open interval ¢,c
by a function g(z), integrable in this interval,

lim f @) dz and f clirtn @) da (90)

each exist and the two have the same value.

To prove this, we select a small positive quantity ¢, and a number ¢/,
such that ¢’ < ¢/’ < ¢ and

'/t’ g(z)dz < e (91)

We may do this since g(x) is integrable in ¢/, c. And, since g(z) 2 0,
we may take ¢’/ > a.
Since each function f,(x) is continuous in the range a < z < ¢ and

c
dominated by an integrable function in ¢’,c, the integral f Sfi(z) dz
exists. Also, ’

c c—h
[ 1w o = [ r@a e, ©92)

where
Bls1 if '<c—h<e (93)
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Again, by the first theorem of section 246, we may deduce the existence
and equality of

c—h c—h
lra f fu(@) dx = f lra f(2) da. (94)

But, since the integrand on the right is dominated by g(z) in ¢’ ¢ it follows
that the integral exists with upper limit ¢ and that:

c c—h
f lim f,(z) dz = f lim f,(z) dz + 0'e, ©95)

where |¢'] < 1.
If we take ¢’ such that for ¢ beyond ¢’ in the sequence the integral in
the left member of equation (94) is within e of its limit and take account

of equations (92) and (95), we find:
f lim f,(z) dz — f fu(z) dz
a t a

Since e is arbitrary, this proves that:
lim f fu(@) dz = f lim f.(x) da, ©7)
t Jg a

and the conclusion of the theorem follows.

In particular, this theorem holds if the functions f;(x) are all uniformly
bounded, since in this case we may take g(x) as a constant.

The theorem may be applied to series, as in the last section, if the
partial sums are uniformly bounded or are dominated by an integrable

function.

We may also apply it to improper integrals. It sometimes enables us
to reverse the order in a repeated integral where both integrals are
improper, if for one inner integral the convergence is uniform for the
modified outer range and otherwise dominated by an integrable func-
tion. For example, if in addition to the conditions used to justify

equation (87) we have:
ft
with G(z) integrable from ¢’ to , we may conclude that

fw dxfwg(u,x) du = fw alu‘]“m g (u,x) dz. (99)

248. Differentiation of Series. Suppose that the sequence of func-
tions f;(x) is such that

= 3¢, t beyond ¢’ (96)

g(u,z) du| < G(z), ¢ <=z, (98)

lim fi(a) = F(a), (100)
¢
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and that the sequence of continuous functions g,(z), where
d
gi(x) = E;ft(-’”) (101)

converges to a function G(z), uniformly in 2 in the range ¢ < z < b.
Then we may conclude that there is a function F(z) to which the first
sequence f;(z) converges, and

F'(z) = G(z). (102)
For, if we apply the theorem of section 246 to the sequence g,(x), we find:

lim f gi(z) dz = f G(z) dz. (103)
We also have: ’ ’

[o@i= [Lr@ =10 1@ aon

so that:
1@ = 1@ + [ 0@ . (105)
From this and equations (100) and (103),
Ii‘m fi@@) = F(a) + j: G(z) dzx. (106)

Thus the limit on the left exists and equals F(a¢) forz = a. We call this
limit F(z). Then:

F(z) = F(a) + fG(x) dz. @1o7)

It follows from this that the function F(x) has a derivative and
F'(z) = G(x), so that the derivative of the limit exists and equals the
limit of the derivative, under the conditions stated.

We note that the condition (100) is necessary, as the example

2
f¢(a:)=t+£t, where ¢— o, (108)
shows. Here

0@ = 1@ = = (109)

so that in any bounded range for z, e.g., 0 < z < 1, g;(x) is continuous
and converges uniformly to the limit 0. However, there is no limit
function F(z) of which this is the derivative, since for every value of z,
the sequence f;(z) fails to converge as { — .
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Corresponding to a series of functions Y u;(x), each of which is differ-
entiable, we may form a series 3.8/3z uz(z), or Xoui(x), which we refer
to as the differentiated series, or series obtained by termwise differentia-
tion. We may apply the preceding considerations to an infinite series
and obtain the theorem:

An infinite series of functions, each having a continuous derivative, may
be differentiated termwise to give a new series which converges to the deriva-
tive of the sum function of the original series, provided that the original
series converges at some particular point of the interval a < z S b and
provided that the differentiated series comverges uniformly in x for this
interval.

These last conditions insure that the original sertes converges, so that
there is a sum function and that this sum function has a derivative.

We may apply similar considerations to an improper integral of either
kind. For the first kind, the theorem is:

If the improper integral
00
f g(u,z) du (110)

converges at some particular point of the interval a < ¢ < b and the deriva-
tive 3/0x g(u,x) s continuous in the two variables for a S x £ b and
u > r, and such that the improper integral

j: %g(u,x) du (111)

converges uniformly in x for a < x < b, then the integral (110) converges
for all values of x in the interval and for x in this interval has a derivative
with respect to x given by the integral (111).

The interchange of the operation of differentiation and some limit
process may sometimes be justified by establishing the corresponding
result for integration by the theorems of section 247, or that given later
in sections 251 and 253.

249. Convergence in the Mean. A sequence of functions f;(z), is
said to converge in the mean to a function F (z) over the interval a,b if the
integral of the square of the error:

b
E;,= f |F(z) — fi(2)|? dz (112)

approaches zero as t — «. Since the integrand is always positive or
zero, if |[F(z) — fi(z)| > M over one or more subintervals of total length
L, or a set of content L,

E, > M?L. (113)
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Thus E, can not be <eif |F(x) — fi:(x)] > k on a set of content exceed-
ing ¢/k2. This shows that a restriction on E; implies a restriction on the
size of |[F(z) — fi:(x)] in the sense of some average, or mean.

If |[F(z) — fi(z)] < e throughout the interval, we have

E, < &b —al, (114)

and it follows from this that if the sequence of functions f;(z) converges
to F(z) uniformly, then it also converges in the mean over any finite
interval a,b. However the sequence may converge in the mean without
converging at any point. To form an example, let us arrange the closed

intervals

in order and designate the nth interval by I,. Then define a discrete
sequence of functions f,(z) by

fa(z) = 1forzinI,, f,(x) = Ofor z notin I,. (116)

For this sequence of functions, we find:
1
f 10 — f(@)[2 dz = length I,. 117)
0

As this approaches zero when n — «, the sequence converges in the
mean to F(z) = 0 on the interval 0,1. However, the sequence does not
converge for any value of z in this interval, since for any given z, say o,
there are functions f,(z) with » arbitrarily large for which f,(z¢) = 0,
and also other values of n arbitrarily large for which f, (z) = 1.

The importance of the notion of convergence in the mean is due to the
fact that certain processes of integration, when applied to sequences
convergent in the mean, lead to sequences which actually converge to a
limit in the fundamental sense. To develop this, we shall need an
inequality, to which we proceed.

250. The Schwarz Inequality. Let f(z) and g(z) be real functions
whose product and squares are integrable on the interval a,b. Then for
the repeated integral

f@  f@)

b b
1= o f e o

we find by expanding the square, reducing the terms to products of single
integrals, and changing the dummy variable y to z,

1-2f @R ds f @P s - 2[ [ ' 1@0@) dx]z. (119)

2
ay, (118)
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Since the integrand in the first form of I, (118) is a square, the value of I
is positive or zero. Thus we find from the second form of I, (119),

that:
[[r@n@a] s [ uere [era  am

which is the Schwarz inequality. It states that the square of the inte-
gral of the product of two functions does not exceed the product of the
integrals of their squares.

251. Integration and Convergence in the Mean. We shall make use
of the Schwarz inequality in proving that, if the sequence f,(x) converges
in the mean to F(z), if g;(z) converges in the mean to G(z) over the
interval a,b, and if certain integrals exist, then

b b
lim f fu2)g:(®) do = f F(2)G(z) da. (121)

We begin by applying the Schwarz inequality, (120), to the functions
[F(z) — fi(x)] and G(x). We have:

b 2 b
[[ e - 106@ | 5 [ 1Fe) - s ae [ eeras,
(122)

if these integrals exist. The existence of the first integral on the right
is implied by the convergence in the mean of f;(z) to F(z). The second
exists if we make the further assumption that the integrals converge in
the mean to functions F(z) and G(x) each having integrable squares.
If the integral on the left exists as a proper integral when a finite number
of intervals, each of which may be taken arbitrarily small, are removed
from the range, as we shall assume, the integral of the left then exists
as an improper integral because of the domination given by the inequality
(122) for the modified range.

‘We now note that in the right member of the relation (122), the second
factor does not change with ¢, while the first factor approaches zero as ¢
runs through its sequence. It follows that the same is true of the left
member, since this is necessarily positive or zero. This shows that, if
the integral on the right exists:

lim f f1@)G () dz = f ' P )G @) do. (123)

This is the important special case of equation (121) in which all the
g:(z) are identically equal to G(r). We may reverse the roles of F(z)
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and G(z) and so write:
b
lim f 0:(2)F (z) dz = f F2)0() dz. (124)
t a a

Now apply the inequality (120) to the functions [F(z) — f;(z)] and
[G(x) — g:(z)]. We have:

b
s [ @ - fers [ 166) - a@Pa,  a2)

where

b
L= [ F@ - @166 - 0@]d
b b >
=f F2)G(@) do — f F(2)gi(x) dz — f G()fi(z) dz
a a a )
+ f Ji(@)g:(zx) dx.  (126)

From the assumed convergence in the mean, we see that, when £ runs
through its sequence, the right member of the relation (125) approaches
zero. Hence the same is true of the left member, since I2 = 0 and we
may conclude that lim I, = 0. But the second and third terms in the

¢

right member of equation (126) approach limits given by equations
(123) and (124), while the first term is independent of £. Consequently,
the last term must approach a limit, and this limit is given by the
following:

b b
lmm f £:@)gi(e) do = f F(£)G () da. (127)

This is the result we set out to prove. We have already noticed the
special case given in equation (123). A further specialization is obtained
by putting g;(x) = G(z) = 1, which gives:

b
lim f " @) de = f F(z) da. (128)

This shows that, if a sequence of functions converges in the mean to a
limiting function, the sequence of integrals converges to the integral of
the limiting function.

From the positive character of the integrand in equation (112), it
follows that, if a sequence of functions is convergent in the mean to
F(zx) over a,b then it is convergent in the mean over any subinterval.
Thus we may replace the limits @ and b by any two values in the closed
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interval a,b in such equations as (123), (127), and (128). In particular
we may take the integrals from b to x, where z is any point of the interval,
and the convergence will be uniform. Most of the results also hold over
infinite ranges, as @, or — »,x. However, for such ranges uniform
convergence does not imply convergence in the mean, and we may no
longer deduce equation (128), since a constant greater than zero is not
integrable over an infinite range.
262. Approximation in the Mean. If

b
BGo) = [ lo@) - 1@ ds (129)

does not exceed ¢, we say that the function f(z) approximates g(z) to
within e in the mean, for the interval a,b. If we have three functions,
f(x) approximating g(z) and g(x) approximating h(r), the following
inequality exists between the measures of the approximations:

EGHE < EGoF + E@h], (130)

where all the square roots are positive.
To prove this, put:

A@@) = |h() — g()|, B() = lg=) —f@)|. (131)

[h(z) — f(@)| = A=) + B(). (132)
Thus the inequality (130) will follow if we show that

{ f b [A(z) + B(@)P? dac]%s < { f ' 4 (x)]zdx}%

Then,

%

+ [ " B@P dx} »

(133)

for any two functions A (zr) and B(z). Since both members are posi-
tive, this will follow from the inequality obtained by squaring both sides.
When we do this and eancel corresponding terms, our problem is reduced
to proving:

¥

2 f ' 4@)B@) do < 2 { f AP d:c}-%{ f " B@)P d:c} . (134)

But this follows directly from the Schwarz inequality, so that the rela-
tion (130) is established.

The result shows that, if g(r) approximates h(zx) in the mean to
within e and if f(z) approximates g(z) in the mean to within ¢, then
f(z) approximates h(z) in the mean to within 4e.
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253. Infinite Series and Mean Convergence. We say that an in-
finite series converges to a sum function in the mean if the sequence of
partial sums s, (z) converges to a function s(z) in the mean. It follows
from equation (128) that, if a series converges in the mean to s(x), the
series obtained by termwise integration converges to the integral of s(z),
provided the assumptions as to integrability are satisfied. Also from
equation (123), we see that the series obtained by multiplying each
term by a function G(x) with integrable square and by integrating term-
wise converges to the integral of s(x)G(z).

264. Equi-continuity. Consider a sequence of functions, f,(z).
Any one of these functions is continuous at a point z, if for any positive
¢, there is a § such that:

[fe(@) — fi(@o)l < if |&— x| <8 (135)

The possible values of § will presumably depend on the value of ¢, the
value of z, 2o and the particular value of ¢ which determines the function
considered. We have already shown that a function continuous at all
points of a closed interval, say a < z < b, is uniformly continuous on
this interval. Thus, if we assume each of the functions is continuous on
the closed interval a,b for each e and ¢, we may select a & independent of z.

If it is possible to find a 8, for each positive ¢, which will serve for all
values of ¢, that is for all functions of the sequence, we say that the
sequence of functions is equi-continuous. The property of equi-continu-
ity is thus continuity not only uniform in the variable z, but also uniform
for the different functions considered. For one, or a finite number of
functions each continuous on the closed interval a,b the property is
automatically satisfied. However, for an infinite number of continuous
functions it imposes a restriction. 'We may apply it to any infinite set of
functions, not necessarily ordered, like those of a sequence, and define:

A set of functions is equi-continuous for the closed interval a,b if, for any
positive ¢, there is a value of 8., such that for every function f(x) of the set:

@) —f@o)l <& i |z — a0 <8 (136)
where z and o are any two points of the closed interval.
An important consequence of equi-continuity is given by the following
theorem, due to Ascoli:

From any infinite set of equi-continuous functions, bounded as a set, a
sub-sequence of functions may be selected which converges to a limiting
Junction uniformly on any interval of equi-continuity of the original set.

To prove this theorem, we consider any enumerable set of points
everywhere dense on the interval ¢ £ z < b, that is a set of points which
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may be ordered 7y, 72, 73, - - - , and such that every point of the interval
a £ z < bis a limit point of this set. The points on the interval with
rational coérdinates form one such set.

Now consider the totality of values of functions of the set at the point
r1. If there is only a finite number of distinct values, we may select an
infinite subset of functions

fu@), fi2(@), frs(@), - - (137)

which all have the same value at ry, F(r;). Otherwise there is an
infinity of distinct values, in which case there is a greatest limit point,
since they are all bounded. Accordingly, we may select an infinite
subset of functions (137) whose values at r, approach a limit, F (ry).

In either case, we have a subset of functions, f1x(x), such that:

im fig(ry) = F(ro). (138)
k>0

We next consider the totality of values of the functions fiz(z) at the
point r,. By reasoning as we did before, we may select a subset of
these functions, which we relabel as

J21(z), f22(x), fos(z), - - (139)
such that:
kl_lﬂ far(rz) = F(rz). (140)

We continue in this way, obtaining an enumerable number of se-
quences fnx(x), such that:
klim Jak(rn) = F(rs), (141)
—00

and each sequence f,.(x) is a subset of the preceding sequence fn—3 x(z)-
Finally we consider the diagonal sequence,

J11(®), fo2(x), faa(x) - -+ (142)

For any particular value of n, all the terms of this last sequence after
the nth form a subset of the functions f.x(x). Therefore it follows from
equation (141) that

;}iﬁ T (rn) = F(rn). (143)

As this is true for all n, it follows that the sequence of functions (142)
approaches a limit at all the points of the everywhere dense set of num-
bers r,. For simplicity, we drop one subscript and write fi(z) for
fix(x) in the sequel.

Now select any positive number ¢, and a 8, for which the condition
(136) is satisfied for all z in the interval. We may do this since the set of
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functions is equi-continuous. Next divide the interval a,b into intervals
each less than §./2. Since the points r, are everywhere dense, we may
select one such point in each of these intervals. Let P be the largest
subscript for any of these points. Then the finite set of points oy
with p < P is such that every interval of length &, anywhere on our
interval will include at least one point r,,.

Since the sequence fix (), or fi(z) is such that:

lim fi(rp) = F(rp), p=1,2,---P, (144)
k—»o0

we may select an N such that:
[falrp) — F(rp)l <¢ for n> N, p<P. (145)

For, we may do this for each sequence and need merely take the largest
of the P values so obtained.

Now consider any value of  on the closed interval a,b. It may or
may not be in the set 7,. For some value of p, p £ P, we have:

[rp — 2| <8 (146)
Consequently, from the condition of equi-continuity:
fe(rp) — fr(@)] < e forall k. (147)

In particular, for any two values n,n’ each greater than N, we have
from the last relation:

[falrp) — f2(@)l < ¢ (148)
and
[far(rp) — fu(@)] < . (149)
But, from the relation (145),
[fa(rs) — fur(rp)] < 2. (150)
From the last three relations, we may conclude that
[fa(®) — fo(z)] < 4¢, forn,n’ > N. (151)

This relation shows that, for any  in the interval, the sequence of func-
tions fi(z) approaches a limit for k— . We call this limit F(z).
Thus:
lim fi(z) = F(z). (152)
k>0

Also, since the N of the relation (151) or (145) is independent of z, it
follows that the convergence is uniform.

Finally, since the individual functions are continuous, the limit
function F (z) is continuous, by section 243. This proves the theorem.
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In place of the condition that the set of functions be bounded, it is
sufficient to require that the values of the functions at one point be
bounded. For, if we select a & corresponding to e in the condition of
equi-continuity, and then select a positive integer n so large that
b — a| < né, we may divide the interval a,b into n equal parts by
points z;. Then, from

f@) — f@i)| <e if ziasSzTS2H (153)
we may deduce that:
[f (@) — f(z0)] < me, (154)

where z is any point of the interval and z, is the point at which the values
of the functions are bounded. Thus:

[f(xo)| < M. (155)
But from the last two relations:
[f@)| <M + ne, (156)

so that the functions are bounded at all points.

Or, we may merely require that the values of the functions at one
point contain a convergent sequence, since this leads to a subset of
functions, infinite in number, with values bounded at one point.

That some condition of this kind in addition to the equi-continuity
is necessary may be seen from the discrete set of functions fa(z) = n.
This set is equi-continuous and in fact any positive number will serve as
a & of equi-continuity for all positive values of e. However, no con-
vergent infinite subset can be found.

265. Tests for Equi-continuity. In section 128 we showed that, if a
function had a derivative f'(r) at each point of a closed interval, uni-
formly bounded so that:

If @) = M, (157)
then, for any two points of the interval,
[f(ze) — f(@1)] < Mlza — @4]. (158)

We called the last relation a Lipschitz condition. Such a condition
implies continuity, and we may take:

—;Z as a possible value of 5, (159)
in the definition of continuity.

It follows from this that, if each of a set of functions satisfies a
Lipschitz condition with the constant the same for all the functions,
the set of functions is equi-continuous.
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Also, a set of functions each of which has a derivative, the derivatives
all admitting the same bound, is necessarily a set of equi-continuous

functions.
Under certain restrictions, the set of functions

: |
1@ = [ K@y dy (160)

give rise to a set of equi-continuous functions. In fact, if the function
K (z,y) is a fixed function continuous in the two variables z and y for y
in the closed interval a,b and z in the interval under consideration, and
if the functions g(y) are uniformly bounded, or at least satisfy the
condition

b T
f lgWPdy < M (161)

with the same M for all the functions, then the equation (160) defines a
set of equi-continuous functions.
To see this, we write:

b
J@ =10 = [ K@) - Keon)low)dy.  (162)
We now apply the Schwarz inequality which gives:
b b
U@ ~1eF s [ 1Kew) - KeoPdy [ g@Pdy.  (63)

From the assumed continuity of K (z,y), it follows that
IK@y) — K@)l <e, if [z —m| <d, a<y=<b (164)

so that we may conclude from this and equation (161) that
[fz) = f@o))? = [b — aleM, if |z — zo| < b (165)

Since e is arbitrary, this proves that the functions f(x) are members of an
equi-continuous set.

256. Several Variables, Complex Variables. The notion of uniform
convergence may be extended to functions of more than one variable.
Thus, a function of several real variables approaches a limit uniformly
in these variables, on a certain range, if beyond a certain point in the
sequence, ¢, independent of the values of these variables, the difference
between the limit and the approximation is numerically less than e.
A sequence of continuous functions of several variables, convergent uni-
formly in these variables, has a limiting function continuous in these
variables.
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The theorems just mentioned also hold for functions of one or more
complex variables.

Similarly the notion of equi-continuity and convergence in the mean
may be extended to functions of more than one real variable, or to the
complex case. In extending the idea of convergence in the mean to
complex values of the function we must replace the squares of the
differences by squares of the absolute value of the differences to preserve
the positive nature of the integrand.

EXERCISES XII
1+ t2? .
1. Let fi(z) = 1t T’ and F(z) = hm fi(z). Show that the convergence
-0
is not uniform in any interval including the origin and that F(z) is not continuous
at the origin,

2. Let the nth term of an infinite series be

z
1 + nx)(1 + [n + 112)
n
Show that the sum function s(z) = lim s,(z), where s,(z) = X w(x), is dis-
n—-00 k=1

un(z) =

continuous at z = 0. Deduce that the convergence is not uniform, and verify
by studying directly the values of s(z) — sa(x). Hint: First show that

1 _ 1 .
14z 1+ ®m+ 1z

3. Draw conclusions similar to those of problem 2 if un(x) =

sa(z) =

x .
A+a2"
1
Hint: Here s,(z) =1 — m .

4. If u.(z) =

2

x .
ITx;lflxl< landl

, where m = 2" show that the sum function is

1 -2z

1
e if |z] > 1, and show directly that the convergence
1
—2 1-gzn
. If fu(z) = t2 —, F(z) = hm fi(z) = 0,and f F(z) dz = 0. Show

1
that lim f, (z) dx = 7 /4, and investigate directly the non-uniformity near0.

t—>+0

6. Iff,(x) =ntsinwtz,0S =X 1/, and fi(z) =0, for 0< ¢, 1t<z =1,
1
show that /; F(z) dx = 0, where F(z) = lLim f,(z), but that
t—>4-00

is non-uniform near z = 1. Hint: Show that s,(z) =

1
thfwj; fi(z) dz = 2.
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7. Let un(z) = 1forall z such thatn = [I /lz[], the greatest integer contained
in 1/]z|, and otherwise zero. Show that the series Y u,(x) converges to 1 if
0 < |z| £ 1, and otherwise to zero. Also show that the convergence is non-
uniform near zero.

8. Show that, as { — 4+, f,(x) = |z|'" converges non-uniformly for x near
zero.

o0
9. If fi(z) = ttxe ®, and F(z) = lim fi(x), show that f F(z)dx =0,
t—>x0 0

o0
but that lim f Ji(x) dz = 1/2. Also show that the values remain 0 and 1 /2
t—>0 VO

if we replace the upper limit by p, any positive number.

10. Show that as t — o, fi(z) = 2 /(1 + #x) converges to 0 uniformly on the
interval 0 £ z < 1, but that g,(z) = 1/ + &) converges to zero, but non-
uniformly for values near zero. This shows that multiplying in an unbounded
factor, here 1/, may disturb uniformity.

11. Show that in problem 10, g,(x) converges in the mean to its limit, and
verify directly that over 0,1 the integral of the limit equals the limit of the
integral. Also deduce this result from section 247, with zero as the exceptional
point near which g,(z) is bounded.

12. For z and ¢ positive, show that f,(z) = tz(1 — z)* hag a single maximum
for z = 1/(t + 1) equal to (1 + 1/)7t1, so that as ¢t — 0, the maximum
approaches 1/e. Deduce that the convergence is non-uniform near zero, but
that the function is bounded. Hence use section 247 to prove that the integral
of the limit of f,(z) equals the limit of the integral over the interval 0 to D, any
positive number not exceeding unity. Also show this by direct calculation.

13. The behavior of g,(z) = 2z(1 — z)' may be deduced from problem 12,

1
since it is ffi(z). Show that for this function f lim g,(z) dz = 0, but
0 te>o

1
lim f g:(x) dx = 1.
t—>0 0
14. Let gu(*) be a discrete sequence approaching G(z) as n increases through

integral values and let the g.(x) be uniformly bounded, |g.(z)] < K. Then if
n
falt) = X —1' gn(p '2), F(z) = lim f,(x) exists. Show that the convergence
1p! n—m»

P
will be uniform if g,(x) — G(x) uniformly for all values of z.

16. Let hn(z) be continuous functions with 0 < 4,(z) < K, converging to
H@)for -1 z=<1 LetH(0) =1, and H(z) = 0for0< |z| < 1. Show
that if we put ga(z) = k, (sin 7z) the sequence f,(z) defined in problem 14 will

converge non-uniformly near every rational value and hence in every interval.
n

A simple example is hn(z) = (1 — 22)*, fa(z) = > l' cos 2" (p ! xx).
p!

p=1
16. The series with u,(x) = (—1)*/n converges uniformly, since the terms
are independent of . Show that it is not dominated by any convergent series
of positive terms and so the uniformity can not be proved by the Weierstrass
M-test.
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17. Draw conclusions similar to those of problem 16 for the uniformly con-
vergent series with ua(z) = 1/z if 1/(n + 1) S 1/z = 1/n, and ua(z) = O for
other values of z.

18. Let un(z) be the general term of a series proved to be uniformly con-
vergent by the Weierstrass M-test. Show that if v,(z) form a set of uniformly
bounded functions, |v(2)| < K, then the series va(z}un(z) converges absolutely
and uniformly. An example is un(z) = 1/(n? + %), v(z) = sin nz.

19. Show that we may replace the condition on vn(z) in problem 18 by the
condition that v,(x) approaches a finite limit, uniformly in z, as n increases
through integral values. An example is ua(z) = 1/(n® + %), va(2) =
2?7 /(1 — z2"), for the range x 2 1 + p, or the range |z| < 1 — p, where p is any
positive number less than one.

20. If for each fixed z, v.(r) decreases as n increases’ and approaches zero
uniformly in z, while for all values of » and = under consideration the sums

n
Y u,(z) are numerically less than some fixed number K, the series with general
k=1

1
term v,(z)u,(z) converges uniformly. An example is va(z) = m , Un(Z) =
sin nz. Hint: Use section 199.

(_ 1)" xz»

1 — a2

21. Show that the series with ua(z) = converges uniformly in
any closed interval not including 1 or —1. Hint: Use problem 20.

22. In problem 29 of Exercises IV, the expansion of (1 -4 z)™ in a power series
3™ C,.z™ was obtained, for |z] < 1. In section 195 we showed that this expan-
n=0
sion converged for £ = —1, if m > 0, and had all the terms of the same sign
after a certain point. Show that the series converges uniformly for |z} = 1,
and, since it represents a continuous function in this closed interval, must equal
(1+z)™forz=1,o0r ~1.

23. Prove that |z} = X'2Caa' 2" (2 — a?)" for —a Sz < q, the series

n=0

of polynomials being uniformly convergent in this interval. Hint: Put || =

xg /2
a [1 - (1 - ;’)] and use problem 22.

24. A continuous function made up of a finite number of linear segments, or &
polygonal line, may be expressed as the sum of a linear function and a number of
functions of the form A|z — z,|, one for each vertex. Also on a finite closed
interval any continuous function may be uniformly approximated by a polygo-
nal function. From these facts, and problem 23, deduce that the continuous
function may be uniformly approximated to within any preassigned degree by a
polynomial. The theorem is due to Weierstrass, the method of proof here
suggested is due to Lebesgue.

95. Let the sequence fi(r) converge to G(z) uniformly in a closed interval
and converge in the mean to F(z), on the same interval. Prove that if F(z) and
G(z) are continuous, F(z) = G(z).
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26. Let the sequence of functions f;(z) converge in the meanto F (z) onaclosed
interval on which F(x) is continuous. Prove that if the functions fi(z) form
an equi-continuous set and any subset is selected which converges at all points
of the interval, the limit of this subset will be F(z). Hint: Use problem 25.

27. In the open rectangle a < z < b, ¢ < y < d, let Q(z,y) be continuous and
G(z,y) = 8°F [3z dy. Show that, if the repeated limits exist,

b
fdyf G(z,y) dz = lim [lim H(xx,yx,xz,yz)]'
c a Yi—>c T—>a

yr—>d  z—b

where H(z,y1,2y2) = F(zo,y2) — F(zey) — Flzyys) + F(zy,y1). This
enables us to construct improper repeated integrals whose value depends on
the order of integration. Examples are: F(z,y) = (z — ) /(z + y), Glz,y) =
2~ ) [+ 9)° or Fzy) = tan™! (y/x), Glz,y) = (42 — 2?) /(z%?)? with b
and d positive and a and ¢ either both zero, or both .

28. If for each fixed z, p(u,r) decreases as u increases to « and approaches

q
zero uniformly in z, for a £ z L b, while, f flu,z) du| < M for all positive
o
0

values of g, then the improper integral p(u,x)f(u,x) du converges uniformly
0

inzfora < < b. Hint: See problem 29 of Exercises IX.
29. Ifa > 0,5 > 0, and ¢'(z) is continuous and integrable from 0 to % so that

00
‘/; g'(x) dz = g(+ =) — g(0), prove that:

SR gyt gt L ot

z

00
Hint: Show that f ¢’ (uz) dz converges uniformly for @ < u < b, and invert
0

b @
the order in f du f g'(ux) dz. As examples,
a V]

f‘” tan~! bz — tan—! ax
0 z

b ooe-bz__e—az

T a
dx=§log da:=logz-

a' 0 z

30. If a > 0, b > 0 show that the order may be inverted in

00
f de fa e+ gy and deduce that:
0 0
- 2 4 pe
foo(l e—az)cosbxdx _ lloga +? ,
1] xz 2

b2
0 z 2 a

® sin bz

31.Showthatf de = =ifb>0,0ifb=0and — = if b<O0.
o z 2 2

Hint: For the first case, take the limit as a— + of the last integral of prob-
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lem 30, noting that the term in the integral involving ¢™*® is dominated by

00
1
f e dr = e For the last case, put z = —u.
0

/2 0 0 o
32. Prove that f do f e rdr = f dz f " dy, and deduce that
0 0 0 0

ST . : .
f e dx = - Hint: If we call the first integral with upper limit o«
0

replaced by R, Ig, a direct calculation shows that Ip increases with R and ap-
proaches /4. If the second double integral, with both upper limits « replaced
by a is J,, the positive nature of the integrand shows that J, increases with g,
and I; < Jg < I, so that the second double integral converges and to the same
value as the first.
2 a2 e~ ,\/;r
7 -

33. Show that f ¢ #dg=
0

Hint: Either show that if I(a)
is the mtegral I'(a) = —21 (a); or replace the integral from 0 to o by that from

0 to a® plus that from a to ©. Then put = a/u in one integral, and take
z — a/x as a new variable. In either procedure the result of problem 32 must

be used. sin? az
34. Show that f 2 [a] 3" Hint: Either integrate by parts, or
0
differentiate the integral with respeet to a, and use problem 31.

35. Ifa > 0,0 > O,f fu )du converges and f(u) is continuous for « > 0

and has a derivative at, u=0, thenf 'de=j(0) log -
. 0 x b ’
(Frullani.) Hint: Deduce

f“f(u) 10 4 [ =10,
0 0 z
j:f(bz) S f:ﬂu) 50 f du

36. Illustrate problem 35 for f(u) = ¢, sin u, cos u, and compare the results
with those of problems 29, 31, and 30.

37. Assuming that g(u) — g(oo) = f(u) satisfies the conditions unposed on
f(«) in problem 35, deduce the equation of problem 29. Show that tan™! u
satisfies these alternative conditions.

38. Deduce the Schwarz inequality from the fact that the quadratic expres-

and hence

L

sion in u, f [f () — u g(x)]? dz, cannot change sign. Compare the proof of
a

the inequality for sums in the hint to problem 9, Exercises X.



CHAPTER XIII
FUNCTIONS OF COMPLEX VARIABLES

So far we have only applied the processes of differentiation and inte-
gration to functions of a complex variable built up from elementary
functions. We now wish to consider the more general functions of a
complex variable to which these operations can be applied. Such func-
tions are connected with transformations of the plane which preserve
angles and are also coextensive with the class of functions which have
power series developments. We call them analytic functions and
develop several of their characteristic properties. We illustrate their
use in evaluating certain real, definite integrals.

A number of processes are described which, when applied to analytic
functions, lead to new analytic functions. Finally we briefly indicate
how some of the theorems may be extended to analytic functions of
several complex variables.

257. Functions. We have already applied the notion of functional
dependence to complex values of the variable in section 101. Let us
again consider two complex variables, or variable complex numbers,
z =1z + 7y and w = u + 7, with w a function of z. We shall usually
take as the range of values of z some two-dimensional region of the plane,
for example a circle or a rectangle, in which the function is single-valued.

Thus, each value of 2, or (z,y) in the region R will determine a single
value of w, or (uw),

w = f(z) = u(zy) + w(z,y). 1)

Each such function leads to two real, single-valued functions of two
real variables, u(z,y) and v(z,y). Conversely each ordered pair of real
functions of this type may be used to define a single-valued function of
one complex variable.

The function f(2) is continuous for the value 2o, if

lim f(z) = f(zo), 2)

2>z

where as in section 102 the limit must exist as a two-dimensional limit

of the kind discussed in section 242. Thus, in particular, the limit must

equal f(z,) for every discrete or continuous sequence of values z; — zq.
422
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As pointed out in section 102, an equivalent condition for continuity at
2p is that there is a number & for each positive number e such that:

If(2) — f(zo)] < if |z~ 2| < de ®3)

Also, the function f(z) is continuous at 2o = o + 7y, if, and only if, the
two real functions u(z,y) and v(z,y) are each continuous at (xo,yo).

268. Derivatives. We recall the definition of the derivative of f(2)
given in section 110, namely,

dw Aw
= —= lim — 4
S =7 = lim °2 @
provided the limit exists as a two-dimensional limit.
Let us investigate the conditions that this imposes on v and v. We
have:
A_w Au 4+ Av

Az Ar + 1 Ay 5)

If the limit exists as a two-dimensional limit, it will exist for any sequence
of values of Az — 0. In particular, we may take Ay = 0, and Az — 0
and conclude from equations (4) and (5) that:

dw odu O
Ez- = -a—a-; + 1 5 ’ 6)
where the existence of the limits on the right follows from the existence
of that on the left by section 99.
Similarly, we may take Az = 0, and Ay — 0, and deduce that:

dw du v
-ty @)
As u and v and hence their partial derivatives are real, the last two
equations imply that:
5} 9 d v
Z_Z o - 8)
dr 9y oy dar
These are known as the Cauchy-Riemann differential equations. It
follows from our discussion that:

A mnecessary condition for w = u + w = f(z) to have a derivative at
20 = zo + Yo s that the functions u(z,y) and v(z,y) have first partial
derivatives for (xo,y0) which satisfy the Cauchy-Riemann differential
equations (8).
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There are no further conditions of this kind imposed on the values of
the partial derivatives of u and v at the point in question. In fact, we
shall prove that:

If u(z,y) and v(z,y) have partial derivatives which are continuous at
(x0,y0) and satisfy the Cauchy-Riemann differential equations, (8) for
(%o,¥o), then the function f(z) = w -+ has a derivative f'(z) at
2z = Ty + Wo.

By section 211, the conditions on u and » make them differentiable in
z and y at xo,yo, SO that:

ou du
Mu==Art Ay +adstqly, ©)
and =Tt Tyt atetan a0
- — € €
oz dy yre e

where all the e approach zero with Az and Ay, or with Az.
It follows from the equations (8), (9), and (10) that:

Au+1 Ay = gg+iga(Ax+iAw-kJAz+e"A% (11)
where
¢ =€ +ie, and € = e + ieq 12)
Consequently,
Aw  du .0 , Az 7 Ay
—=— — — — 13
2w tat nt A (13)
Since |Az| < |4z] and |ay| = |42,
Az Ay
— =1 d =1 14
s Bl .

From this and the expression for the ¢ in equation (12), the last two
terms in equation (13) are seen to approach zero with Az, so that

Im —=— 47— (15)

and the function w = f(2) has a derivative at 2.
The added condition of continuity, or some condition to insure that
u and » are differentiable is necessary, as the following example shows:

(o) =lz it v(zw) = o. (16)

For (z,y) = (0,0) each of these functions has both partial derivatives
equal to zero, so that equations (8) are satisfied. However, the first
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function is not differentiable. The function f(z) = u + v has no
derivative at the origin. For,

Aw m
i = Ar + 1m? Az lim — = )
if Az = Az + im® Az, T e

a7

which varies with m, so that the two-dimensional limit does not exist.

269. Conformal Transformations. If we represent the values of z in
one plane with z and y codrdinate axes and the corresponding values of
w in a second plane with % and » coérdinate axes, we may interpret the
relation w = f(z) as a transformation of the points in some region R of
the first plane into certain other points of the w plane. Let us assume
that the functions u(z,y) and v(z,y) have partial derivatives, continuous
at some particular point zy,y, under consideration. Let us also assume
that the Jacobian

ou  du

dz ay
oup) _ = 0, (18)
a(z,y) E av

w oy

at this point zo,yo. Then, if g, is the point into which zo,yo is trans-
formed, by section 218 there is some two-dimensional neighborhood of
Ug,Yo in which the equations

u=u(zy), v=r0@y) (19)
have a solution of the form
z=z(up), y=yu). (20)

These functions will have partial derivatives continuous at ug,v, and
by problem 19 of Exercises X, such that:

oy 1
a(up)  aup) 0. @
a(z,y)

Any curve in the zy plane passing through the point zo,y, and having
a tangent at that point with direction components
'

dz
’ —_— — i
2’ = and y l (22)
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will be transformed, at least for some arc including z¢,y0, into a curve in
the ur plane, passing through the point ug,vy and having a tangent at
that point with direction components

, du

u=— = ut’ + wyy’, (23)

’

v ’ ’
v = = v + vy,

di
by the equations (19). Conversely, any curve in the second plane, with
a tangent at ug,vo in the direction given by equations (23) will have
some arc transformed by the inverse transformation (20) into an arc
through zo,y0 with the direction given by equations (22).

As in section 175, we have for the arc length in the wv plane

§'2 = 4’2 4 o2
= (2 + 02?4+ 2(wouy + va0)2y + (W +02)y% (24)
The equations (23) suggest the transformation:
U=uwX+wY, V=uvX+7, (25)

from an XY plane to a UV plane, where the coefficients are constants,
equal to the value of the partial derivatives at xo,yo for the functions of
equation (19). If

X=xz—20 and Y =7y — y, (26)

it follows from the differentiability of the functions that
u—uy=U+agX+ el and v—99=V + X + Y, (27)

where, as in equations (9) and (10), all the ¢ approach zero with X and
Y. Hence, for points near zo,%o the transformation given by equations
(19) may be approximated by putting

u—u=U and v—9vo=1V, (28)

and combining equations (25), (26) and (28) to obtain the relation
between x,y and u,. Since the last two of these equations merely
change the origin to the points under consideration, the character of the
approximating transformation is given by equations (25). These
represent an affine transformation, which takes parallel straight lines
into parallel straight lines. Equally spaced points on any one line in
one plane go into equally spaced points on some line in the second plane.
However, while the scale factor is the same for any two parallel lines, it
will usually differ for different directions. In fact, a circle in either
plane will go into an ellipse in the other plane, and the transformation
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may be generated by a combination of a rotation and two changes of
scale, usually different, along a certain pair of perpendicular axes — the
axes which are transformed into the principal axes of the ellipse.

‘When the two changes of scale are equal, the transformation reduces to
a similarity transformation, which may be generated by a combination
of a rotation about the origin and an expansion out from the origin or by
the same change of scale in all directions. In this case all lengths are
changed in the same ratio, and all angles are preserved. The imposing
of either of these properties on the affine transformation makes it a
similarity transformation. In fact, if we merely require all pairs of
perpendicular lines in one plane to go into perpendicular lines, the ellipse
which is the image of a circle must have all its pairs of conjugate axes
perpendicular and therefore must reduce to a circle, so that the trans-
formation reduces to a similarity transformation.

When the approximate transformation given by equation (25) is a
similarity transformation, the transformation given by equation (19) is
said to be conformal, or to preserve angles, at the point in question.
Since the equations for directions obtained from equations (25) are
identical with equations (23), it follows that in this case, two curves in
the uv plane intersecting at ugvo cut at the same angle as the curves in
the zy plane of which they are the images.

To find the condition for a transformation to be conformal, we note
that the circle

U2+VvVi=1 (29)

is transformed by the equations (25) into
(W2 + v2) X2 + 2(uguy + v0,) XY + (W2 +2)Y2=1.  (30)
This will reduce to the equation of a circle if, and only if,

gty + .0, = 0, (31)
and .
ul + 02 = ul + 0. (32)

Since we have assumed that the Jacobian of equation (18) is not zero,
v, and v, cannot both be zero. Suppose v, # 0, and put

U, = kvy. (33)
Then, from equation (31), we find:
vy = —kuy. (34)

It follows from the last two equations that:
u + o3 = k2 (u + v}). (35)
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A comparison of this equation and equation (32) shows that k2 = 1.

Thus, either
Uz = Uy, Uy = —Vg (36)

or Uy = —Oy, Uy = Up. 37)

Either of these pairs of equations imply equations (31) and (32).
If a transformation satisfies equations (36) its Jacobian

Ugly — Uty = uZ + uZ > 0. (38)
But for a transformation satisfying equations (37) its Jacobian
Ugby — Uy = —ul — u < 0. (39)

The discussion of section 233 shows that in the first case orientation is
preserved, while in the second case orientation is reversed. In fact, if
we interchange « and v, which reverses sense, the equations (37) reduce
to (36).

As the equations (36) are the Cauchy-Riemann differential equations
(8), we may summarize our results as follows:

A transformation given by two functions u = u(z,y) and v = v(z,y)
with partial derivatives continuous at a point and Jacobian different from
zero at the point preserves angles as to magnitude and sense at the point if,
and only if, the Cauchy-Riemann differential equations (36) are satisfied.

By the preceding section, under these conditions the function
w(z) = u -+ iv has a derivative given by equation (15),

dw .
or 5 = U= + 1v,. (40)

From this and equations (36),
d__w 2 a(u,p) )
dz a(z,y)
This shows that the derivative is not zero. In fact, from equations
(24), (36) and (41) we find:

u'? 402 =

(41)

2 2
= Uy + V7 = Uy — Vzly =

d 2
2@y, (42)

This shows that the numerical value of the derivative is the factor by
which the differential of length is multiplied by the transformation.
This was to be anticipated from equation (41), which shows that its
square is the Jacobian or factor by which the differential of area is
multiplied, together with the fact that for differentials the transformation
has the character of a similarity transformation.
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Some of these facts could be derived otherwise by noting that, when
there is a derivative:
|aw|  |du]
[az] ~ [

Also, if the derivative is not zero its argument is determined to within &
multiple of 27, by section 96, and for a suitable branch

dw
="
That all differential lengths are multiplied by the same factor follows
from equation (43), while equation (44) shows that the angle between
any direction and its transformed direction is the same, so that angles
are preserved as to magnitude and sense. Hence:

At any point where the function w(z) has a derivative dw/dz distinet

from zero, the corresponding transformation preserves angles as to magnitude
and sense and has a positive Jacobian.

(43)

Aw
lim —_— = 44
arg 2 arg (44)

260. Power Series. We have seen in section 112 that for a suitably
restricted range of the complex variable z, any elementary function has
a derivative. We wish to show now that a more general class of func-
tions of a complex variable which have derivatives, is the class of func-
tions expressible by power series. For this reason we shall consider
power series expansions in some detail.

A power series in z is an infinite series whose terms are products of
integral powers of z by complex constants:

2 an?". (45)
n=0

We may also consider power series in z — ¢, of the form
2 an(z — o)™ (46)
n=0

As these may be reduced to the first form by putting
Z=z-c (47)

most of their properties follow at once from the simpler form, and we
shall chiefly confine our attention to this first form (45).

Power series form a natural generalization of polynomials, which are
finite sums of similar terms. A power series may converge for all
values of z, as

2" 48)
Z;L—!' (48)
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Or a power series may diverge for all values of z except z = 0, as

: Inlz™ (49)

Also a power series may converge for some values and diverge for
others, as ‘

22", (50)

These properties of the examples follow from the test-ratio, which is
z/n, ne, z, respectively. Thus we have convergence, when these
approach a limit numerically less than one, or for all z in the first case,
and for |2| < 1in the third. Similarly we have divergence, when these
approach a limit numerically exceeding one, or for all z distinct from zero
in the second case and for |z| > 1 in the third.

261. Circle of Convergence. We generally omit from consideration,
series which converge only for z = 0, as being without interest. For
series not of this type, considerable information about the points for
which they converge is given by the following theorem:

If a power series in z converges for some value of 2, say 21 # 0, then it
converges absolutely for all values of z with |2| < lz1], and in fact uniformly
in any range |z| < r, where 0 < r < |z

From the assumed convergence of the series, |anz}| — 0, and so is
less than unity for all terms after a certain one, say the Nth. Hence if
M is the maximum of the finite set of numbers 1, |a,28| forp =0, 1, 2,---,
N, we shall have for all n,

lan2i| = M. (51)
For any [2| < [21|, we may find a positive number r such that:
lz] <7 < |21 (52)
If we then put:
c=—1 ¢<1. (53)
|21l

Hence, for the value of z under consideration,

2l < Men, (54)

lanz™| = lan?il z_l

But since ¢ is less than unity, Mc" is the nth term of a convergent geo-
metric series, Thus, by the Weierstrass M-test of sections 245 and 256,
the uniform convergence of X a,2" in the range [z| < r follows. The
absolute convergence of the series for the z considered, also follows.
The range [2| < r is the interior and boundary of a circle, with center
at the origin. We shall refer to such a circle as a circle of uniform con-



Agrr. 262] DIFFERENTIATION OF POWER SERIES 431

vergence. The theorem just proved shows that, if a series converges for
any value not zero, there are such circles.

Recalling sections 243 and 256, and the continuity of the powers of 2,
we see that the sum of a power series f(z) is a continuous function of z
at all points inside or on any circle of uniform convergence.

Suppose that a power series converges for z;, where |2;| = r1, and
diverges for z, where [22| = 7. Then, by the theorem just proved, it
will converge for all z with |2] < r;. Similarly, it will diverge for all 2
with |z| > r,, since the convergence for any such value would imply that
for z,, contrary to our assumption. This leads to a separation of values
of r into two classes, one containing values of 7y such that the series
converges for all z with |z| = r; and the other class containing values of
e such that the series diverges for some z with |z] = r5. All the con-
ditions of section 6 are satisfied and there is a number R such that the
series converges for all z with || < R, and diverges for all z with [z] > R.
For |z| = R itself the series may converge or diverge. The circle
|z2| = R is called the circle of convergence of the series. The number R is
called the radius of convergence of the series. It follows that unless the
series converges for no values except z = 0, when we put B = 0, or
converges for all values of z, when we put B = «, there is a finite radius
of convergence. By V of section 193 and section 204,

S | -1
= lim [a,/* or R =lim |a,| *. (55)
For each of the series
[ 0 zn -] zn 56
o I Iy (56)

we have R = 1. For the first, we have divergence at all points of the
circle of convergence. For the second we have convergence at all points
of the circle of convergence. For the third we have divergence for
z = 1 and convergence at all other points, by the Abel test of section 199.

262. Differentiation of Power Series. We shall now prove that:

For all values of £ inside the circle of convergence of a power series, the
Sfunction represented by the series has a derivat