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INTRODUCTION

The concept of a complex number arose primarily from the need
to automatize calculations. Even the most elementary algebraic
operations involving real numbers take us beyond the domain of
real numbers. It will be recalled that not every algebraic equation
can be solved in terms of real numbers. It is therefore necessary
either to give up routine methods of solution and each time carry
out a detailed investigation of the possibility of their application
or extend the domain of real numbers so that basic algebraic ope-
rations can always be employed. Complex numbers are just such
an extension of the domain of real numbers. A remarkable property
of complex numbers is that the basic mathematical operations
involving them do not take one outside the domain of complex
numbers.

The introduction of complex numbers and functions of a complex
variable is likewise convenient when integrating elementary func-
tions, when solving differential equations, and in other cases when
one frequently has to move into the domain of complex numbers.
The complex notation is also convenient in the mathematical formu-
lation of many physical propositions (for example, in electrical
engineering, radio engineering, electrodynamics, and so forth).

One of the principal classes of functions of a complex variable—
analytic functions—is closely connected with solving the Laplace
equation, to which numerous problems of mechanics and physics
reduce. For this reason, the methods of the theory of functions of
a complex variable have found extensive and effective use in solving
a broad range of problems in hydrodynamics and aerodynamics, the
theory of elasticity, electrodynamics and other natural sciences.






CHAPTER 1
THE COMPLEX VARIABLE
AND FUNCTIONS

OF A COMPLEX VARIABLE

1.1. Complex Numbers and Operations
on Complex Numbers

a. The concept of a complex number

We assume that the reader is acquainted with the concept of a
complex number and with the definition of arithmetical operations
involving complex numbers. A brief résumé is given below.

A complex number z is characterized by a pair of real numbers (a, b)
having an established sequential order of the numbers a and b. This
is stated succinctly in the notation z = (a, b). The first number a
of the pair (a, b) is called the real part of the complex number z
and is denoted by the symbol a = Re z; the second number b of the
pair (a, b) is called the imaginary part of the complex number z
and is symbolized by b = Im z.

Two complex numbers z, = (@;, b,) and z, = (a,, b,) are equal
only when both the real and imaginary parts are equal, that is,
2; = 2, only when a, = a, and b; = b,.

b. Operations on complex numbers

Let us now define algebraic operations involving complex num-
bers.

The sum of two complex numbers z;, = (a,, b,) and z, = (a,, b,)
is a complex number z = (a, b), where ¢ = a, + a,, b = b, + b,.
It will readily be seen that in this definition the commutative and
associative laws for addition, 2z, + z, = z, + 2, and 2z, + (2, +
+ 23) = (2; + 2,) + 23, hold true. As in the domain of real num-
bers, zero is a complex number 0 such that the sum of it and any
complex number z is equal to z, thatis, z + 0 = z. There is obviously
a unique complex number 0 = (0, 0) that possesses this property.

The product of the complex numbers z, = (a,, b;) and z, = (a,, b,)
is a complex number z = (a, b) such that a = a,a, — byb,, b =
= a,b, + a,b;. In this definition of a product, we find that the
commutative [z,z, = 2,2,], associative [z, (z,-25) = (z,-2,) 23] and
distributive [(z, + 2,) 23 = 2,25 + 2z,2;] laws hold.
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Let us include the real numbers in the set of complex numbers
and regard the real number a as the complex number a = (a, 0).
Then, as follows from the definition of the operations of addition
and multiplication, the familiar rules involving real numbers hold
true fer complex numbers as well. Thus, the set of complex numbers
is regarded as an extension of the set of real numbers.* Notethat
multiplication by a real unit (1, 0) does not change a complex
number: z-1 = z.

A complex number of the form z = (0, b) is called a pure imaginary
number and is symbolized as z = ib. The pure imaginary number
(0, b) = ib may be regarded as the product of the imaginary unit
(0, 1) and a real number (b, 0). The unit imaginary number is
ordinarily denoted by the symbol (0, 1) = i. By virtue of the defi-
nition of a product of complex numbers, the following relation

holds true: i-i = i> = —1. It enables one to attribute a direct
algebraic meaning to the real-imaginary form of a complex number:
z2=(a, b)=a 4+ ib (1-1)

and perform operations of addition and multiplication of complex
numbers in accordance with the usual rules of the algebra of poly-
nomials.

The complex number z = a — ib is said to be the complex con-
jugate number of z = a -+ ib.

The operation of subtraction of complex numbers is defined as
the inverse operation of addition. A complex number z = a + ib
is termed the difference between the complex numbers z, = a; + ib,
and 2, = a, + ib, if a = a, — ay, b = b; — b,.

The operation of dividing complex numbers is defined as the
inverse operation of multiplication. A complex number z = a - ib
is called the gquotient of the complex numbers 2z, = a, 4 ib, and
2, = @y + ib, 5= 0 if 2z, = z.2,, whence it follows that the real
part a and the imaginary part b of the quotient z are found from the
linear system of algebraic equations

aa — bb = ay
boa + ab =05
with the determinant a; + b} different from zero. Solving this

system, we get

% aia2+b1b2 . bqag—aibg _
2= T T ahr T T arn (1-2)

* As will follow from subsequent analysis, the set of complex numbers, un-
like the set of real numbers, does not possess the property of ordering since there
does not exist a rational system for comparing complex numbers.
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c. The geometric interpretation of compler numbers

The study of complex numbers is greatly facilitated by interpret-
ing them geometrically. Insofar as a complex number is defined
as a pair of real numbers, it is natural to depict the complex number
z = a + ib as a point in the z, y-plane with Cartesian coordinates
z =a and y = b. The number z = 0 corresponds to the origin of
the plane. We shall henceforward call this the complex plane; the
axis of abscissas is the real axis, the axis of ordinates is the imag-
inary axis of the complex plane. We have thus obviously established
a reciprocal one-to-one correspondence between the set of all
complex numbers and the set of points of the complex plane, and
also between the set of all complex numbers z = a + ib and the
set of free vectors, the projections x and y of which on the axis of
abscissas and the axis of ordinates are, respectively, equal to a and b.

There is another extremely important form of representing com-
plex numbers. It is possible to define the position of a point in the
plane by means of polar coordinates (p, ¢), where p is the distance
of the point from the coordinate origin, and ¢ is the angle which
the radius vector of the given point makes with the positive direction
of the axis of abscissas. The positive direction of the variation of
the angle ¢ is the counterclockwise direction (—oo << @ << ).
Taking advantage of the relationship between Cartesian and polar
coordinates z = p cos ¢, y = p sin @, we get the so-called trigo-
nometric form (or polar form) of a complex number:

z = p (cos ¢ + isin @) (1-3)

Here, p is usually called the modulus (or absolute value) and ¢ the
argument (amplitude) of the complex number and p = |z |, ¢ =
= Arg z. These formulas express the real and imaginary parts of
the complex number in terms of its modulus and argument. It is
casy to express the modulus and argument of a complex number in

terms of its real and imaginary parts: p = } a® + b2, tan ¢ = %

(when choosing the value of ¢ in the latter equation, take into
account the signs of a and b). Note that the argument of the complex
number is not defined uniquely, but to within an additive multiple
of 2n. In a number of cases, it is convenient to denote, in terms of
arg z, the value of the argument contained within the range ¢, <<
< arg 2 << 2n 4 @,, where @, is an arbitrary fixed number (say,
9o =0 or 9y = —n). Then Argz =argz+ 2kn (k =0, +1,
£2, . ..). The argument of the complex number z = 0 is not defined
nnd its modulus is zero. Two nonzero complex numbers are equal if
and only if their moduli are equal and the values of their arguments
are either equal or differ by a multiple of 2n. Complex conjugate
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numbers have the same modulus while the values of their arguments

(given an appropriate choice of their ranges) differ in sign.
Finally, taking advantage of a familiar formula due to Euler,*

ei® = cos ¢ + isin ¢, we obtain the so-called exponential form

of a complex number: - _
z = peie, (1-4)

The earlier noted correspondence between the set of all complex
numbers and the plane vectors enables us to identify the operations

l“/

Fig. 1.1

of addition and subtraction of .complex numbers with the corres-
ponding operations involving vectors (Fig. 1.1). We thus readily
establish the triangle inequalities

Iz + 2 <z |+ 12 |65—2=2]z]—]2| (1-5)

The modulus (absolute value) of the difference of two complex
numbers is geometrically interpreted as the distance between the
corresponding points in the complex plane. Note also the obvious
inequalities |z | >=a, |2 | >=.

In performing operations of multiplication it is convenient to
make use of the trigonometric form of representing complex numbers.
By the rules of multiplication, we get**

z = p (cos @ + isin @) = 2,2,
= p; (cos @; + isin @) p, (cos @, + i sin @,)
= ;P (COS @ cOs P, — sin ¢, sin @,)
+ ip1p2 (sin @, cos @, + cos ¢, sin @,)
= py0s [Cos (@, + @) + i sin (@ + @,)] = py +p, -€it@:+0s)

* For the time being we shall regard this expression as an abridged form of
representing the complex number z = cos ¢ -+ i sin ¢. The full meaning of this
notation will be established later on. )

*# This formula demonstrates that the earlier introduced function ¢'® pos-

sesses the property e*®1.ei®: — (H(®i+0s),
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Whernce p = py+Ps, © = ¢+ @y, that is the modulus of the prod-
uct is equal to the product of the moduli, and the argument is
equal to the sum of the arguments of the factors. A similar relation

2 P oie1-02)
2 P2

holds true in the case of division of complex numbers when p, 5= 0.

d. Extracting the root of a complex number

The trigonometric and exponential forms of representing complex
numbers are convenient for considering the algebraic operations
of raising a complex number to a positive integral power and of
extracting the root of a complex number. Thus, if z = z{, then
p =py and ¢ = ng,.

The complex number z, = ,/ z is called the nth root of the com-
plex number z if z = 2. From this definition it follows that p, =

=V p and ¢, = % As has been pointed out, the argument of

a complex number is not defined uniquely, but to within an additive
multiple of 2n. For this reason, from the expression for the argu-
ment of a complex number z,,

9 2nk
Pr=

where ¢ is one of the values of the argument of the complex num-
ber z, we get that there exist different complex numbers which,
when raised to the nth power, are equal to one and the same complex
number z. The moduli of these complex numbers are the same and

are equal to V p, while the arguments differ by a multiple of 27“

The number of distinct values of the nth root of the complex num-
ber z is n. The points in the complex plane that correspond to diffe-
rent values of the nth root of the complex number z are situated on
the vertices of a regular n-gon inscribed in a circle of radius V 0
centred at the point z = 0. The appropriate values of ¢, are obtained
as k takes the values k=0, 1, ..., n — 1.

Classical analysis posed the problem of extending the set of real
numbers so that not only the elementary algebraic operations of
addition and multiplication but also the operation of extraction
of roots does not require going outside the extended set. We thus
see that the introduction of complex numbers solves this problem.

Ezxample 1. Find all the values of Vz Writing the complex num-

ber in exponential form asz = i = e 2 ' , we find the following expres-
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sions for the kvalues of the square root of this complex number z;
’l . 23T
— 41 ==

=e 2, k=0,1 (Fig. 1.2), whence

zo—e —cos-—-l—zsm 1/2(1+z)

5x¢ F13
2L i~
=e b =—¢ b= —ﬁu—l—z)
¥
A o
Z
z=i=e °
/// {-\\\\
// \\ X
/ z=e ¢
/ \
/ \
// \\

- | .
{ z2=0 Mz
\ /

\ /
\ /
\ /

G gx //
z=¢ =—z<\ 7
Fig. 1.2

Ezxample 2. Find all the values of VT, where p >0 is an integer.

2::
2y
Takmg advantage of the representatlon 1= e’°, we get 2z, = e
as in the preceding example, & = 0, , p — 1, whence
;270
b 2n , . . 2m
Zp=¢e%=1, zy=e P =cos -p—+zsm7, ceerZpa
2% . 27
{——(p-1) =i 21 2
—=e P =e P —cos—p—-—zsan-

Thus, the pth root of 1 has exactly p distinct values. These complex
numbers correspond to the vertices of a regular p-gon inscribed in
a circle of unit radius centred at the point z = 0, one of the vertices
lying at the point z = 1.
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Iirample 3. Find all the values of Vi —iV3. Since z=1—i)/ 3=

. It

{ —

= 2¢ %, it follows that for values of the square root of this com-
. 2mk
. a5 —iE S

plex number we get the expressions zx = V2e T , k=0, 1,

whence

-

5 —i% 5 n ,. = V3—i
Zo—‘—_—v2e =V2 (COST—lSInT) =—1—/—2—
. 57 3 .
Zl:-—.-l/gel 6 = — ‘/J—L =

= — = —3
V2 ’

Thus, to extract the nth root of a complex number, one has to
represent it in exponential form, extract the nth root of the modulus
of the given complex number (take the arithmetic—real and posit-
ive—values of the root), and divide the argument of the given com-

plex number by n. (Bear in mind the multivaluedness of the argu-
ment when obtaining all the values of the root.)

1.2. The Limit of a Sequence of Complex Numbers

a. The definition of a convergent sequence

In building the theory of functions of agfbmplex variable, it is
of great importance to carry the principal ideas of analysis into
the complex domain. One of the fundamental concepts of analysis
is that of a limit and, in particular, the concept of a convergent
sequence of numbers. A similar role is played by the respective con-
cepts in the domain of complex numbers. Here, many of the defini-
tions associated with passage to the limit fully repeat the appropriate
definitions in the theory of functions of a real variable.

A sequence of complex numbers is a consecutive infinite set of complex
numbers. We will denote a sequence of complex numbers by the
symbol {z,}. The complex numbers z, that form the sequence {z,}
are called its elements.*

The number z is called the limit of the sequence {z,} if for any positive
number & it is possible to indicate an N (g) such that all subsequent
elements z, of the sequence satisfy the inequality

lz—2,|<<e for n>=N (g) %

* The definition of a sequence does not exclude the possibility of repeating
elements and the particular case of all elements of a sequence coinciding.

2—3878
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The sequence {z,} which has a limit z is called a sequence convergent
to the number z and is symbolized as lim z, = z.

n->o0o

For a geometric interpretation of the limit process in the complex
domain it is convenient to use the concept of the e-neighbourhood
of a point in the complex plane.

The set of points z of the complex plane which lie inside a circle of
radius € centred in the point z, (| 2 — 2, | << &) is termed the e-neigh-
bourhood of the point z,.

From this definition it follows that the point z is the limit of the
convergent sequence {z,} if in any e-neighbourhood of the point z
there lie all the elements of the sequence from a certain number on-
ward which is dependent on e.

Since every complex number z, = a, + ib, is characterized by
the pair of real numbers a, and b,, to the sequence of complex num-
bers {z,} correspond two sequences of real numbers {a,} and {b,},
which are respectively made up of the real and imaginary parts of
the elements z, of the sequence {z,}.

The following assertion holds.

T heorem 1.1. A necessary and sufficient condition for the conver-
gence of a sequence {z,} is the convergence of the sequences of real
numbers {a,} and {b,} (2, = a, + ib,).

Proof. Indeed, if the sequence {z,} converges to the number z =
=a + ib, then for any ¢ >0 |a, —a |< |2, —z ]| <& and
| b, — b | << e for n = N (g). This proves the convergence of the
sequences {a,} and {b,} to a and b, respectively. The converse asser-
tion follows from the relation |z, — z | = V (a, — a)? + (b, — b)2.
where a and b are the limits of the sequences {a,} and {b,} and z =
= a + ib.

A sequence {z,} is called bounded if there exists a positive number
M such that for all elements z, of the sequence the inequality |z, | <
<< M holds. The basic property of a bounded sequence is charac-
ierized by the following theorem.

Theorem 1.2. From any bounded sequence it is possible to extract
a convergent subsequence.

Proof. Since the sequence {z,} is bounded, it is clear that the real
sequences {a,} and {b,} corresponding to it are likewise bounded.
Let us consider the sequence {a,}. Since this sequence is bounded,
we can extract a convergent subsequence {a,.i} the limit of which
we denote by a. To the sequence {an} there corresponds a sequence
{bn,}, which is also bounded. We can therefore extract from it a con-
vergent subsequence {bn,} with limit b. And the corresponding
sequence {anh} converges to a as before. From this it follows that
the sequence of complex numbers {zn,} = {an, + ibn,} is likewise
lim In, =2 =20 + ib. The theorem is proved-

nh—bw

convergent, and
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b. Cauchy's test

When investigating the convergence of a sequence, it is often
convenient to use the necessary and sufficient condition for the
convergence of a sequence called Cauchy’s test.

Cauchy’s test. A sequence {z,} converges if and only if for
every € >0 there is an N () such that

' Zp — Zn4m I <e (1‘7)

for n = N (&) and for every integer m = 0.

Proo]' To prove Cauchy’'s test we again take advantage of the
equivalence of convergences of the sequence {z,} and the sequences
of the real numbers {a,} and {b,}, and also of the fact that the Cauchy
test is a necessary and sufficient condition for the convergence of
a sequence of real numbers. We begin by proving the necessity of
Cauchy's test. Since the sequence {z,} converges, it follows that
the sequences of the real numbers {a,} and {b,} also converge. Whence
it follows that for every -&¢ >0 and for every integer m >0

|@n — @nim | <5 for n>N;(e) and |by — buim | <7 for

n = N, (&). Choosing for the NV (e) the greater of N, and N,, we get
| 2, — Zn4+m | << & for n > N (&), by virtue of the triangle inequa-
lity.

Now let us take up the sufficiency of Cauchy's test. For n = N
there follow from the relation (1-7) the inequalitiger| a, — a,4+m | <
< Izn_zn+m |<e and |bn—bn+m |<|Z" zn+ml<8 which
are sufficient conditions for the convergence of the sequences {a,}
and {b,}, that is, for the convergence of the sequence {z,}. We have
thus proved that fulfilment of Cauchy’s test is a necessary and suf-
ficient condition for the convergence of a sequence {z,} with complex
elements.

¢. Point at infinity

We introduce the concept of the point at infinity in the complex
plane, which will be needed later on. Let there be a sequence of
complex numbers {z,} such that for every positive number R there
exists an integer IV, beginning with which the terms of the sequence
satisfy the condition |z, | > R for n == N. We call such a sequence
indefinitely increasing. According to the definitions introduced
earlier the given sequence, like any subsequence of it, has no limit.
This special instance of a sequence increasing w1thout boupd glves
rise to a number of inconveniences. We get around them
ducing the complex number z = oo, and we assume that every se
increasing without bound converges to this number, to which, in t
complex plane, there corresponds the point at infinity. We introduce
the concept of the extended complex plane consisting of the ordinary
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complex plane and a single infinitely distant element—the point
at infinity z = oo.* If we illustrate this geometrically by associating
the elements of an indefinitely increasing sequence {z,} with the
points of the complex plane, we will see that the points of this sequence
lie (as their number increases) outside concentric circles centred at
the cocrdinate origin, the radii of the circles being arbitrarily large.
Note that the points of the given sequence tend to the point oo
irrespective of the direction in the extended complex plane.

In connection with the concepts just introduced it is natural to
use.the term neighbourhood of the point at infinity for the set of
points z of the extended complex plane that satisfy the condition
|z | >R, where R is a sufficiently large positive number.

Let us determine the algebraic properties of the number z = oo.
From the elements of an indefinitely increasing sequence {z,}, form

the sequence {;:} This sequence converges to the point z = 0.
Indeed, from earlier considerations it follows that for every e > 0
there exists a number N such that H:l << ¢ for n > N. The con-
verse is obvious, i.e., if a sequence {{,} converges to zero and con-
sists of nonzero elements, then the sequence {é} converges to the
point at infinity.

We thus assume & = 0 and %— = oo. Generally, the following
relations are established for the point at infinity: z-0o = oo for
270, and z 4+ oo = oo, é———O for z 5= oo, which are natural
from the viewpoint of the limit process in operations of addition
and multiplication. From this point of view, the operation g is

naturally indeterminate.

1.3. The Concept of a Function
of a Complex Variable. Continuity

a. Basic definitions

We now introduce the concept of a function of a complex vari-
able—in the same way as that of a function of a real variable. We
say that on a set E of the complex plane there is specified a function
of a complex variable if a law is given that puts every point of
E in a one-to-one correspondence with a certain complex number.
The set E is called the set of values of the independent variable.

* Note that the argument of the complex number oo is not defined, just as
its real and imaginary parts are not defined.
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The structure of this set may be extremely complicated and diver-
sified; however, in the theory of functions of a complex variable
we consider sets of a special structure. Certain auxiliary notions
will be neéded in the sequel.

A point z is called an interior point of the set E if there exists an
e-neighbourhood of z, all the points of which belong to E£. For in-
stance, the point z of the set | z | <C 1 is an interior point if | z | < 1;
the point z = 1 is not an interior point of the given set.

The set E is called a domain if the following conditions are fulfilled:
(1) every point of the set E is an interior point of the set; (2) any two
points of the set E may be connected by a polygonal line, all the points
of which belong to E.

In this definition of a domain, the second requirement is the
connectivity requirement of a domain. For example, the set of points

| 2] <1 forms a domain. In exactly the same way, the &-neigh-
bourhood of the point z, (| 2 — z, | << &) forms a domain. The set
of points | z | << 1 is not a domain, since not all its points are inte-
rior points. Neither are the set of points | z | %= 1 and the set | z | <<
<1, |z — 4| < 2 (Fig. 1.3) domains, since they are not connected.
The letters 8, G, D are ordinarily used to denote domains.

The point z is an exterior point of the domain & if there exists an
e-neighbourhood of z such that none of its points lie in the domain &.

The point z is a boundary point of the domain @ if any e-neigh-
bourhood of it contains both the points that belong to the domain &
and the points that do not belong to &. For example, z =1 is
a boundary point of the domain | z | << 1. The collection of all boun-
dary points form the boundary of the domain. In the future we will
ordinarily use the letters ¥, I', C to denote the boundary of a domain.
The simplest instance of a boundary of a domain is, obviously,
a curve; however, the boundary of a domain can also consist of
a discrete set of points. For example, the point set | z | 5= 0 forms in
the complex plane a domain whose boundary is the point z = 0.
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The set obtained by adjoining to a domainr all its boundary points
is called a closed domain. We will denote a closed domain by a bar

over the symbol of the domain (&, G, D).

In the future we will consider those cases when the boundary of
a domain is one or several piecewise smooth curves, which, in par-
ticular cases, can degenerate into individual points. Both singly
connected and multiply connected domains
will be considered. For example, the do-
main |z — i |<<2 is a singly connected
domain whose boundary is the circle | z —
—i|=2; the annulus 1 <<| z| << 2 (Fig. 1.4)
is a doubly counected domain; the point
set 25 0 is a singly connected domain,
and so forth.

If the domain & lies entirely inside
some circle of finite radius, it is called
bounded, otherwise it is unbounded.

We will mainly be concerned with cases
when the set E of values of a complex
variable represents a domain & or a closed
domain @ of the complex plane. Then, a single-valued function of
a complex variable z specified in the domain & is defined by a law
that associates with every value of z in the domain & a definite
complex number w. This correspondence will be written symboli-
cally as follows:

Fig. 1.4

w = f (2) (1-8)

The set of complex numbers w that correspond to all z € @ is
called the set of values of the function f (z). Since every complex
number ig characterized by a pair of real numbers, the specification
of a complex function w = u + iv of the complex variable z =
= x + iy is equivalent to the specification of two real functions of
two real variables; this may be written as

w(z) =u(z y + vy (1-9)

The functions u (z, y) and v (z, y) are defined in the domain &

of the plane of real variables z, y, corresponding to the domain &

of the complex z-plane. The function u (z, y) is called the real part,

and the function v (z, y) is called the imaginary part of the function

w = f (z). In the future, unless otherwise stated, we will always use

the representation (1-9), denoting the real part of the function f (2)
by the symbol u and the imaginary part by the symbol v.

One is frequently concerned with multiple-valued functions of

a complex variable when every value z € @ is associated with several

* complex numbers. In the present chapter we will only consider
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single-valued functions of a complex variable. A detailed analysis
of multiple-valued functions will be given later.

The set of values w of the function f (z) in the complex w-plane
can have a highly diversified structure. In particular. it may be a
domain G or a closed domain G. We will consider only such cases
in the future. The geometrical interpretation of the concept of the
function f (z) of a complex variable consists in the fact that the
equality w = f (2) estainshes a law of correspondence between the
points of the domain @& of the complex z-plane and the points of
the domain G of the complex w-plane. The converse correspondence
is also established: with every point w € G there is associated one
or several points z of the domain &. This signifies that in the domain
G there is specified a (single-valued or multiple-valued) function
of the complex variable w:

z = ¢ (w) (1-10)

This function is called the inverse function of f (z). The domain G
of specification of the function ¢ (w) is obviously tho domain of
values of the function f (z). If the function ¢ (w), which is the inverse
of the single-valued function f (z) specified in the domain &, is
a single-valued function in the domain G, then a one-to-one cor-
respondence is established between the domains & and G.

The function f (z) is called a univalent function in the domain ®
if at distinct points z of this domain it assumes distinct values.

From this definition it follows that a function which is the inverse
of a univalent function is single-valued.

b. Continuity

Let us discuss the continuity of a function of a complex variable.
Let a function f (z) be defined on a certain set £. We consider various
soquences {z,} of points of this set which converge to some point z,
and consist of points z, that differ* from the point z, (z, # z,),
and the associated sequences {f (z,)} of values of the function. If,
irrespective of the choice of the sequence {z,}, there ezists a unique limit,

lim f(z,) = w,, then this limit is called the limiting value, or

n-s29

the limit, of the function f (z) at the point z,. This is written as

lim f(z) =w, (1-11)

zZ=+20

* Here it is assumed that the point z, is the condensation point of the set £,
i.e., there exist sequences {z,} of points of this set which converge to the point
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A different definition * of the concept of limiting value (or limit)
of a function is frequently used.

A number w, is called the limiting value of a function f (z) at the
point z, if for every ¢ >0 there is a 8§ >0 such that for all points
2 € E and satisfying the condition 0 << |z — 2, | << 6, the inequality
| f(2) — wy | << & holds.

We shall demonstrate the equivalence of these definitions. Let
the function f (z) satisfy the second definition. Take an arbitrary
positive number & and choose for it a corresponding & (¢). Consider
an arbitrary sequence {z,} —z,. We find N [8 (¢)] = N (¢), for
which henceforth 0 << |z, — 2, |<<6. Then, by hypothesis,
| f (z,) — wy | << & for n == N (&), and since & is an arbitrary num-
ber greater than zero, this means, by virtue of the arbitrary choice
of the sequence {z,}, that lim f(z,) = w,: that is, the function

Zn—>z
f (2) satisfies the first definition 0a's well. Hence, the first definition
follows from the second.

Now let us prove that the second definition follows from the first.
Assume that this is not so. Then there is an &g, >0 such that for
every 8, >0 there is a point z, € E such that for 0 < |z, — 2, | <
< 6, the inequality |f(z,) — w, | >¢€, will be fulfilled. Choose
a sequence {§,} —0 and a corresponding sequence {z,} of points
satisfying the foregoing inequalities. Obviously, {z,} —z, and the
sequence {f (z,)} does not converge to the number w,, since all terms
of this sequence differ from w, by more than &,. But the result thus
obtained contradicts the first definition. Hence, the assumption does
not hold and the second definition follows from the first. The equi-
valence of both definitions is proved.

As in the case of a real variable, an important role is played by
the concept of continuity of a function. Let us begin with the concept
of continuity at a point. We will consider that the point z, at which
this concept is defined must belong to the set £ over which the func-
tion is specified.

A function f (z), specified on a set E, is called continuous at a point
29 € E if the limiting value of the function at the point z, exists, is
finite and coincides with the value f (z,) of f (2) at the point z,; i.e.,

lim f(z) =  (zo).

20
This definition of continuity is extended both to interior points
and boundary points of the set.**

* Note that this definition, unlike the first one, is meaningful only for
finite values of z, and w,.

** If a point z, isan isolated point of the set E (i.e., there exists an e-neigh-
bourhood of z, in which there are no other points of the set E), then, by defini-
tion the function f (z) is considered continuous at the point z,.
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If the function f (z), which is specified on a set E, is continuous
at all points of the set, then we say that f (z) is continuous on the
set E. In particular, we will consider functions which are continuous
in a domain, in a closed domain and on a curve. We once again
stress the point that by virtue of the definitions given above one
should regard the limiting values of the function f (z) only on sequen-
ces of points that belong to the given set (in the latter cases, a
closed domain, a curve, etc.).

With the aid of the &-8 definition of a limiting value, the-con-
ditions of continuity of the function f (z) at a point z, may also be
formulated as follows. The function f (2) is continuous at a point z,
if for every € >0 there is a 8 >0 such that for all points z € E which
satisfy the inequality |z — z, | << 8, the inequality |f (z) — f (30)| <<
<< ¢ holds. Geometrically, this signifies that a function of a complex
variable which is continuous at a certain point* z, associates with
every point of a d-neighbourhood of the point z, a certain point
belonging to the e-neighbourhood of the point w, = f (z,).

From the continuity of the function of a complex variable f (z) =
= u (z, y) + iv (z, y) there follows the continuity of its real part
u (z, y) and imaginary part v (z, y) in the variables z, y taken
together. The converse assertion is also true; i.e. if u (z, y) and
v (2, y) are continuous functions of the variables z, y taken together,
at some point (z,, y,), then f (z) = u (z, y) + iv (z, y) is a func-
tion of the complex variable z = x 4+ iy continuous at the point
2, = x5 -+ iy,. These assertions follow from the fact that the neces-
sary and sufficient condition for the convergence of a sequence of
complex numbers is the convergence of the sequences of their real
and imaginary parts.

This enables us to extend to functions of a complex variable the
basic properties of continuous functions of two real variables. Thus,
the sum and product of two functions f, (z) and f, (z) of a complex
variable which are continuous in the domain & are also continuous
functions in that domain; the function ¢ (z) = 2—2:% is continuous
at those points of the domain & where f, (z) 7= 0, the function f(z)

continuous on a closed set £ is bounded in modulus on E , etc.

* Note that the %iven definitions of the concept of continuity of a function
/ (z) at a point z, hold true not only in the case of the finite point z,, but also
in the case of the point at infinity z, = oo. Then, by virtue of the definition given
on page 24, the limiting value of tjle function f (z) at the point oo should be un-
derstood as the limit of the sequence {f (z,)}, where {z,} is any indefinitely in-
creasing sequence. In the second definition of continuity, the condition
|z — 25| < 6 has to be replaced by the condition | z| > R.
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¢. Ezamples

Let us consider some elementary examples.
1. Consider the following linear function as an instance of a func-
tion of a complex variable:

f(Z)=w=az+b (1-12)

Here. a and b are specified complex constants. We assume that a 5= 0,
otherwise the function (1-12) associates with all points z of the com-
plex plane one and the same complex number b. The function (1-12)
is defined for all values of the independent variable z. Its domain
of definition is the entire* complex z-plane. To every value of z
there corresponds only one value of w; i.e. f (z) is a single-valued
function of z. Quite obviously, the inverse function ¢ (w) =z =
= % w— % = a;w + b, possesses the same properties that f (z)
does. Thus, f (2) is a univalent function of z in the entire complex
plane establishing a one-to-one correspondence between the planes
z and w. By virtue of the continuity of the real and imaginary parts
of f (z) with respect to the variables z, y taken together, this func-
tion is continuous over the entire complex plane (for all finite values
of z. y). To clarify the geometrical meaning of this correspondence,
consider the auxiliary function { = az. By the rule of multiplica-
tion of complex numbers we have

= la]-|z|-{cos (arg a + arg z) + i sin (arg a + arg z)}

Whence it follows that | { | = |a |-|z ]|, arg { = arg z + arg a.
That is to say, the function { = az associates with every complex
number z a complex number {, the modulus of which is | a | times
the modulus of z, and the argument is obtained from the argument
of z by adding a constant term—the argument of the complex num-
ber a. The geometrical meaning of this transformation is obvious:
a stretching of the z-plane by a factor of | a | and a rotation of the
plane as a whole around the point z = 0 through the angle arg a.

Returning to the function (1-12), which can now be written as
w = § + b, we see that the gcometrical meaning of the latter trans-
formation consists in a translation of the z-plane characterized by
the vector b.

Thus. a linear function transforms the complex z-plane into the
1complex w-plane by means of a stretching, a rotation, and a trans-
ation.

* In future we will say that tho function of a complex variable f () is de-
fined in the entire complex plane if it is defined for all values of the complex
argument z bounded in absolute value, and we will say that f (z) is defined in
;h(e e)xtended complex plane if it is specified for z = oo as well. In our example,

o) = o0o.
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2. As a second example, consider the function

1
w=f@)=+ (1-13)
This function is likewise defined in the extended complex plane;
f (0) = oo and f (00) = 0. As in the first example, we establish that
f (z) is a single-valued and univalent function of z mapping the
entire z-plane onto the entire w-plane. It is readily found that the

z2=0

&)

Fig. 1.5 Fig. 1.6

function f (z) is continuous in the entire complex plane, with the
exception of the point z = 0. For a geometrical interpretation of
this function, we take advantage of the exponential form of repre-

senting complex numbers: w = reiv = %e"'“’ (z = pet?). This

equality states that argw = —argz, |w| = |—:|- . The relations
obtained permit regarding the mapping, by the given function,
as a combination of two mappings: { = { (z), where | { | = |z |,
arg o = —arg z, and w = w ({), where |w | = I—éi, arg w = arg .

The first mapping has the geometrical meaning of a mirror reflection

about the real axis, in which the point z is carried into the point z,
and the second mapping has the meaning of an inversion* in the

o L. . . s . . 1
unit circle, which inversion carries the point z into the point w = —

(Figs. 1.5, 1.6). In this case, the points of the z-plane that lie outside
the unit circle are carried into points lying inside the unit circle
of the w-plane, and vice versa.

* Inversion (or transformation of inverse radii) in a circle of radius a is a
transformation in which with every point inside (or outside) the circle there
is associated a point outside (inside) the circle lying on the ray drawn from the
centre of the circle to the given point so that the product of the distances of
ttese poilnts from the centre of the circle is equal to the square of the radius of
the circle. .
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3. We consider the function
' w=f(z) = 22 (1-14)

This function is a single-valued function of the complex variable z
defined on the extended complex z-plane. By representing the complex
numbers in exponential form (z = pei®, w = rei® = p2ei2®) it will
readily be concluded that the points of the z-plane lying on the
ray forming the angle @ with the positive direction of the real axis
go into points of the w-plane lying on the ray which forms an angle
2¢ with the positive direction of the real axis. Therefore, to the
points z and —z, the arguments of which differ by = and the moduli
are the same, there corresponds one and the same value of w
(e*2™ = cos 2n + i sin 2n = 1). Thus, the inverse function turns
out to be multiple-valued. Consider the mapping by the function
w = 2% The upper half of the z-plane goes into the extended w-
plane together with the real axis. For the sake of definiteness,
suppose that in the upper half-plane the argument of z lies
within the range 0 << ¢ << n. Then to different points of the
range 0 < ¢ << n there correspond distinct values of w. Such
a range of an independent variable, to various points of which
there correspond distinct values of the function, is called the domain
of univalence of the function. In the previous examples the uni-
valence domain was the entire domain of definition of the function;
in the given case, the half-plane is the univalence domain for the
function w = z?, the domain of definition of the function being the
extended complex z-plane. Note that in the case under consideration,
the boundaries of the univalence domain—the rays ¢ = 0 and
¢ = n—go into one and the same straight line, which is the positive
part of the real axis of the w-plane. Continuing our examination,
it is easy to demonstrate that the function w = 2% also maps the
lower half of the z-plane, together with the real axis, onto the extend-
ed w-plane. Thus, the inverse function

z2=VYw (1-15)

defined over the extended w—plane is no longer a single-valued func-
tion: one point of the w-plane is associated with two distinct points
o{ the z-plane, one in the upper and the other in the lower half-
plane.

In order to study the mapping generated by the given function,
let us again take advantage of the exponential form of representing
a complex number: w = rei¥, Then, by the law of extracting the
root of a complex number, we get two distinct values of the function

1

= 5 (b+2xk)
z2(w): zx = Vre? ran (k =0, 1) (note that argz, — arg z, =
= a1). In the w-plane, consider a certain closed curve C without



1.3. The Concept of a Function of a Complex Variable 29

self-intersections. Specify on it a point w,, to which we assign a
definite value of the argument y,; we find z, (w,), z; (w,) and note
the variation of the functions z, (w) and z, (w) as the point w moves
continuously along the curve C. The argument of the point w on the
curve C varies continuously. Therefore, as is readily seen, the func-
tions 2z, (w) and z, (w) are continuous functions of w on the curve C.
Here, two different cases are possible. In the first case, the curve C
does not contain the point w = 0 inside it. Then, after traversing
the curve C, the argument of the point w, will return to the original
value arg w, = ¢,. Hence, the values of the functions z, (w) and
2, (w) will also be equal to their orlgmal values at the point w = w,
after traversing the curve C. Thus, in this case, two distinct single-
valued functions of the complex variable w are defined on C: z, =

i
=Vre? and z, = Vre? T (2 (1]3 varies continuously on C begin-

ning with the value ¢, at the point w,). Obviously, if the domain D
of the w-plane has the property that any closed curve in the domain
does not contain the point w = 0, then two distinct single-valued
continuous functions z, (w) and z, (w) are defined in D. The func-
tions z, (w) and z, (w) are called branches of the multiple-valued
function z (w) =V w.

In the second case, the curve C contains the point w = 0 inside.
Then, after traversing C in the positive direction, the value of the
argument of the point w, will not return to the original value 1,
and will change by 2n: arg w, = P, + 2n. Therefore, the values of
the functions z, (w) and 2, (w) at the point w,, as a result of their con-
tinuous variation after traversing the curve C will no longer be
equal to the original values. More exactly, we get 2y (Wy) = 2z, (W) €7
2, (w,) = 2, (w,) €i*. That is, the function z, (w) goes into the func—
tion 2, (w), and vice versa.

If for the point z, it is possible to indicate an e-neighbourhood such
that for a single circuit about the point z, along any closed contour
lying entirely in the e-neighbourhood one branch of the multiple-
valued function goes into another, then the point z, is called a branch
point of the given multiple-valued function. In the neighbourhood
of a branch point, the individual branches of a multiple-valued func-
tion can no longer be regarded as distinct single-valued functions,
since in successive circuits about the branch point their values vary.
In the example at hand, the branch point is w = 0.

Note that traversal of a circle | z | = R of arbitrarily large radius

corresponds to going round the point { = 0 in the plane { = —
along the circle || =p = %. According to Subsection 1.2.c

we have the relation % = oo. And so we will consider that the cir-
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cuit of a circle of infinitely large radius (R — oo0) is the circuit of
the point at infinity 2 = oo. As is readily seen, in the case at hand,

one branch of the function z = J/'w goes into another as a circuit
ismade about the point w = oo. Hence, w = oo is the second branch

point of the function z = }/w in the complex w-plane. The domain
D, in which are defined single-valued branches of the function z =

= V w, is any domain of the w-plane in which encircling the branch
points w = 0 and w = oo along a closed contour is impossible. Such
a domain is, for instance, the entire w-plane with a cut (branch
cut) along the positive real axis. Here, the edges of the branch cut
are the boundary of the given domain, so that in the case of
continuous motion inside the domain we cannot intersect the branch
cut (the boundary of the domain).

If it is assumed that the argument of the points w for the first
branch varies over the range 0 << arg w << 2n and for the second,
over the range 2n << arg w << 4m, then the first branch of the func-

tion z = J/w maps the plane with the branch cut onto the upper
half of the z-plane and the second branch of the given function maps
the same domain onto the lower half of the z-plane.

In similar fashion it may readily be shown that the function
w = z" (n >0 is an integer) maps any sector g%k < arg z2 < E’%—H)
(k=0,1, ..., n — 1) of the z-plane onto the entire u-plane cut

along the positive real axis. These sectors are thus domains of uni-
valence of the given function. The inverse function z = Y w is
multiple-valued, and the points w = 0 and w = oo are its branch
points.

1.4. Differentiating the Function
of a Complex Variable

a. Definition. Cauchy-Riemann conditions

Up to this point, the theory of functions of a complex variable
has been built up in complete analogy with the theory of functions
of a real variable. However, the concept of a differentiable function
of a complex variable, which was introduced by analogy with the
corresponding concept in the theory of functions of a real variable,
leads to essential differences.

Let us give a definition of the derivative of a function of a complex
"variable. Let there be given a function f (z) in the domain & in the
complex z-plane. If for the point z, € & there exists, as Az —0,
a limit (limiting value) of the difference quotient

f (204 A2) —f (30)
Az
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then this limit is called the derivative of the function f (z) with respect
to the complex variable z at the point z, and it is denoted by f' (z,); i.e.

’ . Az) —

Then f (z) is called a differentiable function at the point z,. We stress
once again that if the limit (1-16) exists, it does not depend on
the manner in which Az tends to zero; that is, on the manner in
which the point z = 2z, + Az approaches the point z,. The require-
ment of differentiability of a function of a complex variable at a
point z, imposes extremely important conditions on the behaviour
of the real and imaginary parts of this function in the neighbourhood
of the point (z,, y,). These conditions are known as the Cauchy-
Riemann conditions. They can be stated in the form of the following
theorems.

T heorem 1.3. If a function f (z) = u (z, y) + iv (z, y) is diffe-
rentiable at a point z, = z, + iy,, then at the point (z,, y,) there
exist partial derivatives of the functions u (z, y) and v (z, y) with
respect to the variables z, y, and the following relations* hold:

du (0, Yo) __ v (To, Yo) du (zo, Yo) __ __ v (o, Yo)
oz - ay ’ Yy - o (1-17)
Proof. By hypothesis, there exists the limit (1-16) that is inde-
pendent of the manner in which Az approaches zero. Put Az = Ax
and consider the expression

u (zg+ Az, yo) —u (9, Yo)
Az +

f' (z9)= lim
Ax-+0 .

v (zo+Az, yo) —v (g, Yo)
Az

+ilim
Ax—0
From the existence of the limit of a complex expression there follows
the existence of the limits of its real and imaginary parts. Therefore,
at the point z,, y, there exist partial derivatives with respect to z
of the functions u (z, y) and v (z, y) and we have the formula
' (20) = ux (Zoy Yo) + v (Tgy Yo)

Putting Az =i Ay, we find
u (g, Yo+ Ay) —u (2o, yo)+

f'(z0) = _‘};TO Ay
+ Alyin:y — yo+A:3—v(zo. o) —iuy (Zo, Yo)+ vy (Zos Yo)

Comparing these two formulas, we are convinced of the validity
of the relations (1-17).

* The relations (1-17) are ordinarily called Cauchy-Riemann relations.
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Theorem 1.4. If the functions u (z, y) and v (z, y) are differen-
tiable at the point (x4, Y,), and their partial derivatives are connected
by the relations (1-17), then the function f (z2) = u (z, y) + v (z, y)
is a differentiable function of the complex variable z at the point
Zo = xo + iyo.

Proof. By the definition of differentiability, the increments of
the functions u (z, y) and v(z, y) in the neighbourhood of the'point
(2o, yo) may be written as

u (zo + Az, yo + Ay) — u (o, yo) =
= Uy (Zg, Yo) Az + uy (2o, Yo) Ay + E (z, )
v (zy + Az, yo + Ay) — v (zg, ¥o) = 4 .
= Vg (ZTos Yo) Az + vy (29, Yo) Ay +1 (z, y) (1-18)
where the functions §(z, y) and n(z, y) approach zero, as z — z,,

y — Yo, faster than Az and Ay ( | Alilm0 E(IIA’Z‘IT) =O’|/}i|mon I(Z; Iy)= ,

|Az| = V (Az)2+ (Ay)? ) Now let us form the difference quotient
f (201 Az) — £ (29)

Az , where Az=Az+4iAy and, utilizing (1-18) and
(1-17), transform it to the form

f (z0+ Az) —§ (20) Az+iAy iAz—Ay

Az = Uz (%o, Yo) Tpray T V= (%0 Yo) oAy T+
+ (=, Ayz:*}_—:nA;x, ) = Uy (xm .l/o) +ivy (l‘g, yo) + QA(ZZ)

[T (2) =& (2, y) + in (z, y)]

Note that the last term of this formula approaches zero as Az tends
to zero, and the first terms remain unchanged. Therefore, there

is a limit, lim ]W#@- = f' (z,), and this proves the diffe-

Az—+0
rentiability of the function f (z) at the point z,.
If a function f (3) is differentiable at all points of some domain &,
and its derivative is continuous in this domain, then the function f (z)
is called an analytic function* in the domain .

* The definition of an analytic function given here differs from that usually
given in the literature by the additional requirement that the derivative be
continuous. This is done in order to facilitate subsequent proofs. As follows from
a more detailed investigation, the mathematical content of the concept of an
analytic function is not thereby altered. For one thing, it may be shown that if
we further require that the function f (z) in the domain @ be continuous, ful-
filment of the Cauchy-Riemann conditions (1-17) everywhere in the domain is
a necessary and sufficient condition for the analyticity of f (z) and the continuity
of all its derivatives in ®&. (See [10].)



1.4. Differentiating the Function of a Complex Variable 33

The continuity of partial derivatives, it will be recalled, is a
sufficient condition for the existence of the first differential (diffe-
rentiability) of a function of many variables. It therefore follows
from Theorems 1.3 and 1.4 that a necessary and sufficient condition
for the analyticity of a function f(2) =u (z, y) + iv(z, y) in a
domuain & is the existence, in that domain, of continuous partial deri-
vatives of the functions u (z, y) and v (z, y) connected by the Cauchy-
Riemann relations (1-17).

The concept of the analytic function is basic to the theory of
functions of a complex variable by virtue of the specific role played
by the class of analytic functions both in the solution of numerous
purely mathematical problems and in various applications of func-
tions of a complex variable in cognate fields of the natural sciences.

The Cauchy-Riemann relations are frequently employed in study-
ing various properties of analytic functions. The equalities (1-17)
are not the only possible form of the Cauchy-Riemann relations.
As the reader himself can establish, the real and imaginary parts
of the analytic function f (z2) = u (p, ¢) + iv (p, ¢) of the complex
variable z = pe'®? are connected by the relations

du 1 ov 1 du v
B vm W % (1-19)

where p and @ are the polar coordinates of the point (z, y). In similar
fashion, it is easy to establish that the modulus and argument of
the analytic function f (z) = R (z, y) ¢i®*¥) are connected by the
relations

oR oD R ad
w =R =R (1-20)
We will also note that the relations (1-17) permit obtaining various
expressions for the derivative of a function of a complex variable:

f' (2) = uy (.2', y) + iv, (x’ y) = Uy (.‘E, y) + v, (x‘l y)
= Ux (I, y) - iuy (x’ y) = Uy (.‘l:, y) - iuy (Iv y) (1'21)

Here, the derivative f’' (z) is each time expressed in terms of the
partial derivatives of the functions u (z, y) and v (z, y).

D. Properties of analytic functions

The definition of a derivative (1-16) permits extending to ana-
lytic functions of a complex variable a number of properties of
differentiable functions of a real variable.

1. If the function f (z) is analytic in the domain @&, then it is
continuous in this domain.
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2. If f,(z) and f, (z) are analytic functions in the domain &,
then their sum and product arc also analytic functions in & and
the function ¢ (z) = I3 e an analytic function wherever

72(2)
fy (2) 5 0. ’

3. If w=f(z) is an analytic function in the domain & of the
plane of the complex variable z, and an analytic function { = ¢ (w)
is defined in the range G of its values in the w-plane, then the func-
tion F (z) = ¢ [f (2)] is an analytic function of the complex variable z
in the domain @.

4. If w=f(z) is an analytic function in the domain &, and
| (2) | = 0 in the neighbourhood of a point z, € &, then in the
neighbourhood of the point w, = f (z,) of the domain G of values
of the function f (z) is defined an inverse function z = ¢ (w), which
is an analytic function of the complex variable w. We then have

the relation f' (z,)) = Tk

Proof. For the existence of an inverse function, it is necessary
that the equations u = u (z, y) and v = v (z, y) be solvable for
z, y in the neighbourhood of point w,. For this purpose it is suffi-
cient that in the neighbourhood of point z, the following condition
be fulfilled:

Uy Uy
=UUy— UV, 7~ 0

Uy Uy

By virtue of the relations (1-17) this condition may be rewritten
as ui + vy = 0. But when |/’ (2) | 5= 0, this holds true. Thus, the

existence of the inverse function z = ¢ (w) is proved. Forming the
1

difference quotient '%Z—:—Aw , it is easy to prove the existence and
Az
the continuity of the derivative ¢’ (w,), provided that | f* (z,) | 5= 0.
5. Let the function u (z, y), which is the real part of the analytic
function f (z), be given in the domain & of the z, y-plane. Then the
imaginary part of this function is defined to within an additive
constant. Indeed, by virtue of the Cauchy-Riemann conditions, the
total differential of the unknown function v (z, y) is determined
uniquely from the given function u (z, y):

dv = v, dr +v,dy = —u, dzr + u, dy

This proves the assertion.

6. Let the function f(z) be analytic in the domain &. Consider
in the corresponding domain of the z, y-plane, families of the curves
u(z, yy =C and v (z, y) = C, which are level lines of the real
and imaginary parts of the function f (z). By means of the relations
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(1-17) it is easy to demonstrate that at all points of the given domain,
grad u-grad v = uw, + uw, = —uu, + uyu, = 0. Since a gra-
dient is orthogonal to a level line, it follows that the families of
curves u (r, y) = C and v (z, y) = C are mutually orthogonal.

¢. The geometric meaning of the derivative of
a function of a complex variable

Let f (z) be an analytic function in some domain &. Choose some
point 2z, € 8 and draw through it an arbitrary* curve y, lying en-
tirely in &. The function f(z) maps the domain & of the complex
z-plane onto some domain G of the complex w-plane. Let the point
2z, go into the point w, and the curve y, into the curve I'; that passes

y|

A

|
&)

Fig. 1.7

through w, (Fig. 1.7). It is given that there exists a derivative f’ (2)

of the function w = f (z) at the point z,. Suppose that f’ (z,) 5= 0

and represent the complex number f' (z,) in exponential form**
, . Aw ;

2z — —_— 10 =

f () = lim 32— ke (1-22)

We choose Az to approach zero in such a manner that the points

z = 2y + Az should lie on the curve y,. Obviously, the points w =

= w, + Aw corresponding to them lie on the curve I';. The complex

numbers Az and Aw are depicted by the vectors of transversals

to the curves y; and I';, respectively. Note that arg Az and arg Aw

have the geometric meaning of angles of the appropriate vectors

with positive directions of the axes z and u, and | Az | and | Aw

* Here and henceforward, unless otherwise stated, an arbitrary curve is to
be understood as a smooth curve.

':;] The condition f’ (z,) 5= 0 is necessary for such a representation to be
possible.

3»
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are the lengths of these vectors. As Az —0, the vectors of the trans-
versals pass into vectors of tangents to the corresponding curves.
From (1-22) it follows that

a=arg f’ (zo)) = Alinz arg Aw— Alin}) arg Az'= O, —9, (1-23)

i.e., the argument o of the derivative has the geometric meaning of
the difference of the angle @, of the vector of the tangent to the curve
T, at the point w, with the u-axis and the angle @, of the vector of
the tangent to the curve y; at the point z, with the z-axis (Fig. 1.7).
Since the derivative f' (z,) does not depend on the manner in which
the limit is approached, this difference will lre the same for any other
curve passing through the point z, (though the values of the angles
®, and ¢, themselves may change). Whence it follows that in a
mapping accomplished by the analytic function f (z) satisfying the
condition f’ (z,) = 0, the angle ¢ = ¢, — @, between any curves
., 71 intersecting in the point z, is equal to the angle ® = @, — @,
between their images (the curves I'y, and T',) intersecting in the point
w, = f (z,). Observe that in the process, not only the absolute value
of the angles between the curves y,, ¥, and their images is preserved,
but the directions of the angles are preserved as well. This property
of the given mapping is called the anrgle-preserving property.
Analogously, from the relation (1-22) we get

k=11 @0)| = lim {321 (1-24)

That is, to within higher-order infinitesimals, we have the equality
| Aw | = k | Az |. Observe that this relation too is independent
of the choice of the curve y,. The geometric meaning of this rela-
tion consists in the fact that in the case of a mapping accomplished
by an analytic function satisfying the condition f' (zy) 7= 0, infini-
tesimal line elements are transformed in a similar fashion, and
| ' (zo) | defines the coefficient of magnification. This property of
the given mapping is called the property of invariance of stretching.

The mapping of a neighbourhood of a point z, onto the neighbourhood
of a point w, accomplished by an analytic function w = f (z) and
possessing at the point z, the angle-preserving property and invariance
of stretching is called a conformal mapping. In conformal mapping
of the neighbourhood of the point z, onto the neighbourhood of the
point w,, infinitely small triangles with vertex at the point z, are
transformed into similar infinitely small triangles with vertex at
the point w,. The fundamentals of the theory of conformal mapping
will be given in more detail in Chapter 6.
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d. Ezamples

To conclude this section, we note that, as may readily be verified,
the linear function and the function w = z? which were introduced
at the beginning of the section are analytic functions over the entire

complex plane; the function w = -1— is analytic everywhere with

the exception of the point z = 0. Since the definition of the deriva-
tive (1-16) is similar to the definition of a derivative of a function
of one real variable, it follows that for the derivativesof the given
functions of a complex variable we have the expressions
’ 1\ 1
(az+b) =a, () =22, (7) =— (1-25)
Let us consider the function of the complex variable w = €%,
which is widely employed in a variety of applications. We define
this function by specifying the analytic expressions of its real and
imaginary parts:

u(z, yy =€ cosy, v(z, y)=¢€siny (1-26)

On the real axis this function coincides with the real function e*
of the real argument z and, as will be demonstrated later on, it
preserves the basic properties of an exponential function in the
complex domain. It is therefore natural to maintain the notation

e* = e (cosy-+isin y) =e*-e'¥ (1-27)

We shall show that e¢” is an analytic function throughout the
entire complex z-plane. To do this, verify the fulfilment of the
Cauchy-Riemann conditions (1-17):

du av du

—=c"cosy=—, — e
oz = Y=%, oy

=—esiny=———
and note that all the derivatives in these equalities are continuous
with respect to the collection of arguments throughout the entire
z, y-plane. Computing the derivative of ¢* by the formulas (1-21),
we get
(€)' =u, +ive,=e"(cosy+isiny)=e*

Analogously,

(e%2)" = qexz (1-28)

where a is an arbitrary complex constant.
Let us consider two more functions f; (z) and f; (z) defined by means
of the relations

L@ =5 E ), fo(a) = (€ —e ™) (1-29)
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As is readily seen, for the real values of the complex variable z = z,
these functions coincide with cos z and sin z; therefore, it is natural
to preserve the earlier notation for them. Later on we will make
a detailed study of the properties of these functions; for the present
we need only observe that, as complex functions of an analytic
function, cos z and sin z are analytic over the entire complex plane.

By direct verification it will readily be seen that (cos z)’ = —sin z.
Indeed, by means of (1-28) we get
L@ =5 —e*)=—fi(2) (1-30)
Similarly, direct computation yields
fi@@+fi(z) =1 (1-31)

since, by the rule of raising a complex number to an integral power,
from (1-27) we get
(e%2)? = g2az (1-32)

1.5. An Integral with Respect
to a Complex Variable

a. Basic properties

Let a piecewise smooth curve C of finite length L be given in the
complex z-plane. Utilizing the parametric representation of the
curve C, specify the coordinates &, n of each of its points by the equa-
tions § = & (£), n = (t), where § (¢) and n (¢) are piecewise smooth
functions of the real parameter ¢ varying over the range o <<t << B
(o and P can respectively take the values —4-o0), which functions
satisfy the condition [§’ (£)1* + [n' (¢)]? = 0. Specifying the coor-
dinates &, m of this curve C is equivalent to specifying the complex
function { (¢) = & (¢) + in (¢) of the real variable :.

Let the value of the function f ({) be defined at every point §
of the curve C. An important concept in the theory of functions of
a complex variable is that of the integral of a function f (§) over
the curve C. This concept is introduced as follows. Partition the
curve C into n arcs by the division points §,, &;, &3, . .., Cn, which
correspond to increasing values of the parameter ¢ (¢;4, >¢;). Denote
Al; = C; — {;, and form the sum

S (G t= 21 @D AL (1-33)

where (} is an arbitrary point of the ith arec.
If as max | Af; | =0 there exists a limit of the sum (1-33) that
is independent of the manner of partitioning C and of the choice of
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points L}, then this limit is called the integral of the function f ()
over the curve C and is denoted as

{1 (1-34)
C

The question of the existence of the integral (1-34) reduces to the
question of the existence of certain line integrals of the real part u
and the imaginary part v of the function f (z). Indeed, writing
f(81) = u (P}) +iiv (P}), AL, = A§; + i An;, where P, (§f, ni)
is a point of the curve C on the z, y-plane, we can represent the
expression (1-33) as

S (Lis Ci*)=i§ {u (P7) AL —v (P) Any}

+i1§1 {u (P}) An: +v (PF) AL}

The real and imaginary parts of S (&;, &f) are integral sums of
the line integrals of the second kind

Sud?;—vdn and Sudn+vd§ (1-35)
C C

respectively, whence the assertion follows. We stress that for the
existence of the line integrals (1-35) and thus of the integral (1-34)
with respect to a complex variable, it suffices that the functions u
and v of real variables be piecewise continuous. This means that
the integral (1-34) also exists when the function f (z) is nonanalytic
if the function is piecewise continuous.

Thus, we represent the integral (1-34) in the form

{twde=[ud—vin+i[udntoa (1-36)
(] C

c

This relation can by itself serve as a definition of the integral of
a function f (z) over the curve C. There follow from it a number of
properties which are an obvious consequence of the respective prop-
erties of line integrals:

1. froa=——roa (1-37)
AB BA
2. froa+froa= | 1o « (1-38)

Ci Cs Ci+4-Cy
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3. If a is a complex constant, then

fet@a=afroa (1-39)
Cc Cc
4 [rho+roya={noa+{noa @40
[+ c c
5. REGCESCIE (1-41)
Cc C

where ds is the differential of the arc length of the curve C, and the
integral on the right is a line integral of the first kind. Indeed, by
virtue of the triangle inequality we have

n

|Jroa|=| 1m S renas|
[

max|Ag,|-0 =1

n

< lim @0k = 17@)ds
(4

maxlA;il-»O i=1

If nclzzx |f() | = M and L is the arc length of the curve C, then
€
|Jrod|<m-L (1-42)
c

6. The following formula for changing the integration variable
holds:

[t@a={ro@e @ (1-43)
c r

where z = @ ({) is an analytic function of { which establishes a one-
to-one correspondence between the curves C and TI'. In particular,

g
{t@a={remzoa (1-44)
c @ '
where z = z (f) is the parametric representation of the curve C,
and z (o) and z (B) are the initial and terminal points of the latter.
Ezxample. As an example (which will be essential for what follows)
of computing an integral over a complex variable, we consider the
integral

- dg -
I—CS — (1-45)

P
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where the curve C, is a circle of radius p centred in the point z,,
which circle may be traversed counterclockwise. Taking advantage
of the parametric form of representing the curve C,, { = z, + pei®
O< p<<2n), we get

2n "’d 2%
_ ([ _ipe%dp _ ]
1_5 - (de(p oni (1-46)

Whence it follows that the integral (1-45) does not depend either
on p or on z,

Note. Formula (1- 36) by virtue of which an integral with respect
to a complex variable is a complex number, the real and imaginary
parts of which are line integrals of the second kind, and also the
relation (1-44) permit carrying the concept of an improper integral
from a function of a real variable directly to the case of a complex
variable. In this course we deal mainly with improper integrals of
the first kind, which are integrals over an infinite curve C. An im-
proper integral of the first kind over an infinite curve C is said to be

convergent if the limit exists of a sequence of integrals S 7 (D) dg

Cn
over any sequence of finite curves C, that constitute a part of C,
when C, tend to C; this limit does not depend on the choice of the
sequence {C,}. Only if for a certain choice of the sequence {C,}

there exists a limit of the sequence of integrals S f (%) dg is the

Cn

improper integral said to be convergent in the principal-value sense.

In the future we will consider integrals of functions that are
analytic in a certain bounded domain; we will be interested in the
case when the boundary of the domain is a piecewise smooth closed
curve without self-intersections. A -piecewise smooth closed curve
without points of self-intersection will be called a closed contour. If
a function z (2) (¢ << ¢ << P) represents parametrically a closed con-
tour, then it satisfies the condition z (¢;) 5= z (¢;) for ¢; 5% i, except
for t; = o, t, = P. The integral (1-34) along a clused contour is
often called a contour integral.

b. Cauchy’'s Theorem

Since the value of a contour integral depends on the sense of
integration, let us agree to take for the positive sense of traversing
a contour a direction such that the interior domain bounded by the
given closed contour remains on the left of the direction of motion.
We will denote integration in the positive sense by the. symbol
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S f (2) dz or simply ‘ f (2) dz and integration in the negative sense
c+ c
by the symbol Sf (2) dz.

The properties of integrals, along a closed contour, of functions
that are analytic inside the domain bounded by the given contour
are largely determined by the familiar properties of line integrals
of the second kind.* Let us recall** that for line integrals along
a closed contour the following assertion holds: if the functions P (z, y)

and Q (z, y) are continuous in a closed domain & bounded by a piece-
wise smooth contour C, and their partial derivatives of the first order
are continuous in &, then

5de—|—0dy=55 {%—%} dz dy (1-47)
c (6]

Let us now take up the proof of the basic proposition of this section.

T heorem 1.5 (Cauchy’s theorem). Let a single-valued ana-
lytic function f (z) be given in a singly connected domain &. Then the
integral of this function f (z) along any closed contour T' lying entirely
within & is equal to zero.

Proof. According to formula (1-36)

Sf(c)d:,:S wdz—vdy+i S vdz+udy
r T T

Since the function f (z) is analytic everywhere inside the contour T,
it follows that the functions u (z, y) and v (z, y) possess continuous
partial derivatives of the first order in the domain bounded by this
contour. We can therefore apply formula (1-47) to the line integrals
on the right-hand side of the last equation. Besides, the partial deri-
vatives of the functions u (z, y) and v (z, y) are connected by the
Cauchy-Riemann relations. Therefore,

5 udr—vdy= SS {—%—%} dzdy=0
r ®

* By our definition, the contours of integration are always piecewise smooth
curves.

** Elsewhere this theorem has been proved with the supplementary condition
of boundedness of the partial derivatives of the functions P and Q in the do-
main @, this condition being introduced to simplify the proof. In the case of
a piecewise smooth boundary, this condition can %e removed with the aid of an
additional passage to the limit. Here we will not give the detailed proof and
will confine ourselves to the remark just made.
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and

ivdz—i—udy: S@S 'ZTu—g_; }dzdy:O

This proves the assertion of the theorem.

Thus, Theorem 1.5 establishes the fact that the integral of an
analytic function over any closed contour lying entirely in the singly
connected domain of its analyticity is zero. Given the supplementary
condition of continuity of the function in the closed domain, the
given assertion holds true also for a closed contour which is the
boundary of the domain of analyticity. This latter assertion is actual-
ly a slightly modified formulation of the Cauchy theorem. Because
of its importance in practical applications, however, we will state
it as a separate theorem.

Theorem 1.6 (Second formulation of Cauchy’s the-
orem). If a function f (z) is an analytic function in a singly connected
domain & bounded by a piecewise smooth contour C and iscontinuous in the

closed domain @, then the integral of the function f (z) along the boun-
dary C of the domain & is equal to zero:

| 1@ dz=0 (1-48)

c

Cauchy’s theorem establishes one of the basic properties of an
analytic function of a complex variable. Its fundamental significance
will be evident from what follows. For the present, we confine our-
selves to the following remark.

The theorem was stated for a singly connected domain, but it
can readily be generalized to the case of a multiply connected do-
main. Then the total boundary of the domain consists of several
closed contours: the exterior contour C, and the interior contours
Cy, Cy, ..., C,. The positive sense of traversal of the total boundary
of a multiply connected domain will be that sense for which the
domain is always on the left. The exterior contour is traversed in
the positive sense and the interior contours are traversed in the
negative sense.

T heorem 1.7. Lel f (2) be an analytic function in a multiply con-
nected domain & bounded from without by the contour C, and from
within by the contours C,, C,, . .., C,, and let f (z) be continuous

in the closed domain &. Then S f(2) dt = 0, where C is the total

¢
boundary of the domain & consisting of the contours Cy, Cy, .. ., Cy;
the boundary C is traversed in the positive sense.
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Proof. Draw smooth curves y,, . . ., Y, connecting the contour C,
with the contours C,, C, and so forth (Fig. 1.8). Then the domam
bounded by the curves Cy, Cy, ..., C, and the curves y;, y,, . ..
<<+ Yn,» which are traversed twice in opposite directions, proves

Fig. 1.8

to be singly connected*. By virtue of Theorem 1.6, the integral
around the boundary of this domain is zero. But the integrals along
the auxiliary curves y,, . .., y, are taken twice in opposite direc-
tions and so cancel when summed. Therefore, we have the equality

[foa+ 1o+ ..+ S/(é‘.) &=0  (1-49)
cs Cy Cn

(the plus and minus signs on C; indicate the sense of traversal).

c. Indefinite integral

The following proposition is an important consequence of Cauchy’s
theorem. Let a function f (z) be an analytic function in a singly con-
nected domain @. In this domain, fix some point z, and denote by

S f (¢) dC the integral along a certain curve lying entirely in &

and connecting the points z and z,. By virtue of Cauchy’s theorem,
this integral is independent of the choice of the integration curve

* It is easy to see that the curves v, . . ., y, can always be chosen so that
they do not intersect; that is, we obtain a snngly connected domain.
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in the domain & and is a single-valued function of z:
z
[fOd&=0@ (1-50)
20

T heorem 1.8. Let a function f (z) be defined and continuous in
some singly connected domain & and let the integral of this function
around any closed contour T lying entirely in the given domain be zero.

z

Then the function ® (z) = Sf (%) dT (z, z, € B) is an analytic func-

tion in the domain @ and @' (2) = f (2).
Proof. Form the difference quotient

O (24 A2)— @ (2) 1 =+ ae z | 144z
Az =E{ S f(C)dC—Sf(Z)d§}=_A.; 3 @ dg

The latter equality holds true due to the fact that the value of the
integral defining the function @ (z) is independent of the path of
integration and (1-38). Let us choose the straight line connecting
the points z and z + Az as the integration path of the last integral.
This integration path is convenient since we have the obvious relation
z4Az
dt = Az. Let us evaluate the expression
z
z4-Az

| vo—tena

D (z+4+A2)—D (2) 1
I Az _f(z)l_|Az|

<

1

max -_— Z) |- AZ = max _ z
[Az] CE[z.z+Az]|,(§) f(2)[-1Az] CE[z,z+Az]lf(§) f(2)
By virtue of the continuity of the function f (z) at the point z, for
any positive number e there is a value of § >0 such that for | Az | <<

<8 max |f(E)—f()I<<e, i.e. for any & >0 there
Celz, z+Az)

is a § >0 such that

Qa0 _f(5)|<e for 0 < |Az]<?

This means that there exists
lim ® (24 Az) — D (2)
Az-0 Az

Thus, the function ® (z) defined by the integral (1-50) at all points
of the domain & has a continuous derivative [by hypothesis, the

=0 () =1 (2) (1-51)
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function f (z) is continuous in &]. Thus, @ (z) is an analytic function
in the domain &.

The foregoing theorem permits us to introduce the concept of
the indefinite integral of a function of a complex variable. The
analytic function @ (z) is called the primitive of the analytic func-
tion f (z) in the domain & if in this domain the relation @' (z) =
= f (2) holds. It is obvious that the function f (z) has an assemblage
of different primitives, but, as may be readily proved, all the
primitives of this function differ solely in constant terms.*

The collection of all primitives of the function f (z) is called the
indefinite integral of the function f (z). Whence it follows that just
as in the case of a function of a real variable, we have the formula

z2

[foa=F@)—F@)

z4
where F (z) is any primitive of f (z). Indeed, the integral on the left
is independent of the integration path. It can therefore be repre-
sented as

[roa={roa-{roa

where z, is an arbitrary point of the domain &. According to (1-50),
each of the integrals on the right of this formula is a value of the
definite primitive at the appropriate points, and since all primitives
differ only by a constant, it is immaterial what primitive is sub-
stituted into the given formula.

As an example of what will be of essential interest later on, con-

sider the function
Z

1= % (1-52)

1

Since the integrand function is analytic over the entire complex
z-plane, except at the point z = 0, the expression (1-52) is meaning-
ful provided that the integration curve does not pass through z = 0.
Here, in any singly connected domain & of the complex plane not
containing the point z = 0, the function f (z) is a single-valued analy-
tic function of z that does not depend on the choice of integration
path in the formula (1-52). We consider as such a domain the extended

* Indeed, since @’ (z) = ®; (z) — @3 (2) = 0, where @, (z) and @, (z) are
different primitives of the function f (z), it follows from (1-21) that all partial
derivatives of the real part and imaginary part of the function @ (z) are iden-
tically zero, whence, by a familiar theorem of analysis, we get @ (z) == constant.
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complex z-plane cut along the negative real axis, that is, the domain
—n < arg z<<n. We will assume that the integration path in
(1-52) lies entirely in the domain —n << arg z << m; i.e. it does not
intersect the cut and does not pass through the point z = 0. Then,
choosing for the integration path in the formula (1-52) an appropriate
segment of the real axis, for the real positive values z = z we get

x

f(x)= S —éi= Inx (1-53)
1

That is, for the positive values of its argument the function f (z)

coincides with the logarithmic function of a real variable. Therefore,

for the function (1-52) in the domain under investigation (—n <<

< arg z << m) we retain the earlier notation, putting

Inz= S = (1-54)
1

This equality (in which the integration path is chosen in the manner
described above) may be regarded as the definition of a logarithmic
function for all complex values of its argument, except values lying
on the negative real axis z = 2 <{ 0. Later on (Chapter 3) we will
study the properties of this function in detail; for the present we
need only observe that by virtue of (1-51) we have the relation

(lnz)’ =+ (1-55)

In the domain —n << arg z << n the derivative of the logarithmic
function has the same expression as for real positive values of the
argument. It will be established later on that the function (1-54)
is the inverse function of w = e® introduced in Section 1.4.

1.6. Cauchy’s Integral

a. Deriving Cauchy’s formula

In Section 1.5 we proved Cauchy’s theorem, which implies a num-
ber of important corollaries; in particular, it permits establishing
a definite relation between the values of an analytic function in the
interior points of the domain of its analyticity and the boundary
values of the function. Our job now is to establish this relation.

Let the function f (z) be analytic in a singly eonnected domain &
bounded by the contour C. Take an arbitrary interior point z, and
construct a closed contour I' which lies entirely in & and contains
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the point z,. Consider the auxiliary function

o) =12 (1-56)
The function ¢ (z) is obviously analytic everywhere in the domain
@ except at the point z,. Therefore, if in & we take a closed contour
v lying inside T so that the point z, lies inside a domain bounded

Fig. 1.9

by the contour y, then the function ¢ (z) will be analytic in the
doubly connected domain &*, which lies between the contours T’
and y. According to Cauchy’s theorem, the integral of the function
¢ (z) along the curve I' 4+ y is zero:

£—20
-

[+ | Gamo
T+

Reversing the sense of integration in the second integral, we can
rewrite this equation as

@ 0 (_ 1O _
R =i a0
T+ v

Since the integral on the left is independent of the choice of con-
tour y, the integral on the right has this property as well. For what
follows it will be convenient to take as the integration contour 7y
a circle y, of a certain radius p centred in the point z, (Fig. 1.9).
Putting { = z, + pei®, we have

2n
f@ ar
T =1 S f (@) do
™ 0
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We transform the latter integral as follows:

2n 27 23
{1 do= 17 @—1 @ do+ | £ (@) do
0 0 0

27

= {1 @ 1@ do+2nf(z) (1-59)
0

We now let p approach zero. Since f (z) is analytic and, consequently,
continuous in the domain &, it follows that for any positive num-
ber & there is a value of p such that | f (§) — f(z,) | << e for | L —
— 2, | << p. Whence it follows that as p —0 there exists a limit

2n

tim { (/) — £ (20)] dp =0
00 3

Since in formula (1-58) the last term is independent of p, it fol-
lows that S f(8) dop =2xf (z,) and consequentlyS f (O d§=2m‘f(zo)

and accordmg to (1-57)
f (20) = 5= S L& g (1-59)
T

The integral on the right-hand side of (1-59) expresses the value of the
analytic function f (z) at a certain point z, in terms of its value on any
contour T' lying in the domain of analyticity of the function f (z) and
containing the point z,. This is Cauchy’s integral. The formula (1-59)
is often called Cauchy's formula.

Note 1. In (1-59) the integration is performed around the closed
contour I' lying entirely within the domain of analyticity of the
function f (z) and containing the point z,. Given the supplementary

condition of continuity of f (z) in the closed domain &, a similar
formula holds true (by virtue of Theorem 1.6) also when integrating
along the boundary C of the domain &.

Note 2. The considerations remain valid in the case of a multiply
connected domain & as well. Here, when deriving the basic for-
mula (1-59), one should consider a closed contour I' such that can
shrink to the point z, all the while remaining in &. Then it is easy
to show that, provided that the function f (z) is continuous in the

closed domain & with a piecewise smooth boundary, formula (1-59)
holds true for integration in the positive sense around the complete
boundary C of the given multiply connected domain.

4—3878
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b. Corollaries to Cauchy’s formula

There are several remarks to be made regarding formula (1-59).
1. An integral of the form zim S JL_E)Z—OdC, around a closed con-

T
tour I' lying entirely in the domain & of analyticity of the function
f (2) is meaningful for any position of the point z, in the complex
plane, provided that this point does not lie on the contour I'. Then,
if z, lies inside I', the value of the integral is equal to f (zy); if z,
lies outside T', the value of the integral is zero, since in this case
the integrand function is analytic everywhere inside I'. And so

1 1@ dgz{f(z")’ zy inside T (1-60)

-El {—zp 0, 2z, outside T

For z, € I' the integral I (z,) = QmSQﬂg df does not exist
r

—2Z,

in the ordinary sense; however, given supplementary requirements
on the behaviour of the function f () on the contour I', this integral
can be imbued with definite meaning. Thus, if on the contour I
the function f ({) satisfies the Holder condition

[(F(@) =) ISKIL—8P 0<y<1

then a Cauchy principal value of the integral I (z,) exists:

2mi T—z

PV I (z0) = lim - ! S A
‘8
where T, is a portion of T' exterior to the circle |z — z, | < e.
Here,
1
PVI (z,) = ?f(zo)

2. Let f (z) be an analytic function in a singly connected domain
& and z, some interior point of the domain. Describe about this
point as centre a circle of radius R, lying entirely in &. Then by
Cauchy’s formula we obtain

f) =gz | 2
C

Ro

But on the circle Cg,, =12, Re’® and so
1 P2
f @) =5 | 1(20+ Ree'®) do (1-61)

0
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or

1) =g | 1@ s (1-62)

Ro

This is termed the mean-value formula and expresses the value of
an analytic function in the centre of a circle as the mean of its boun-
dary values.

c. The maximum-modulus principle
of an analytic function

Let a function f (z) be analytic in a domain & and continuous in

a closed domain ®. Then either | f (z) | = constant or | f (z) | attains
mazximum values only on the boundary of the domain.
It is given that a real function of two real variables

|7 (2)|=V u?(z, y)+ 12 (z, y)

is continuous in a closed domain. It therefore has a maximum value
M at some point (z,, y,) of that domain. That is

Zg= To+ 1Yo
M=i@)=/@] .5
Suppose that the point z, is an interior point of &. Construct in
@ a circle K, of some radius R centred in the point z,, and write

down the mean-value formula for z, and R. Taking into account
(1-63), we get

(1-63)

2nM=|2§“f<;> dg |<2jn|f<c) | dp<2nM
0 (1]

Consequently
25

{11 @)1dp=2am (1-64)

0

From this relation, by virtue of the continuity of the function f ()
on the integration contour and due to the inequality (1-63), it follows
that

[f(@)|=M for § =z, Rel® (1-65)

Indeed, by (1-63) the absolute value |f () | cannot be greater
than M at any one point of integration. If we assume that at some
point [, of the integration path the absolute value |f (&,) | is
strictly less than M, then from the continuity of | f (§) | it follows
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that | f () | is strictly less than M in some neighbourhood of the
point £, as well; i.e. there is an interval [@,, ¢,] of integration on
which

[FOI<M—e &>0

Then

2n P2 ) ) [ 21 2m

{11 @1de= {11140+ [ 11@1do+ [ 1701
0 @1 0 P2

(M —e) (92— @1) + M 20— (92— @1)] < 2nM

but this contradicts (1-64). And so the relation (1-65) indeed holds
true. This means that on a circle of radius R centred in the point z,
the function |f(z) | has a constant value equal to its maximum
value in the domain &. The same will occur on any circle of lesser

Fig. 1.10

radius with centre in the point z,, and, consequently, in the whole
of K,. It is now easy to demonstrate that the function | f (z) | has
this same value also at any other interior point z* of the domain &.
To do this, connect the points z, and z* by a curve C lying entirely
in @ and distant from its boundary by at least a certain positive
number d. Take a point z,, which is the last point of intersection
of the curve C with the circumference K, (Fig. 1.10). Since | f (z;) | =
= M, by repeating the above reasoning we can show that inside
K, = & of radius R, < d, centred in z,, the absolute value of the
function f (z) takes on a constant value equal to the maximum
value M. Taking on curve C a point z,, which is the last point of
intersection of the curve C and the circumference K,, and continuing
the given process, we finally (after a finite number of steps) find
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that inside the circle K,, to which the point z* belongs, the equality
|f(z) | = M holds true, thus proving the assertion.

We have thus demonstrated that if |f (z)| takes on a maximum
value M in some interior point of a domain, then |f(z) |= M
throughout the domain.*

Thus, if a function | f (z) | is not a constant quantity in a domain
@, then it cannot attain a maximum value in the interior points
of &. But since a function that is continuous in a closed domain
attains its maximum value in some point of the domain, in the
latter case the function |f(z) | must attain its maximum value
at boundary points.

One final remark. Note that if a function f (z) that is analytic in
a domain & is not zero at any point of the domain and is continuous

in @, then the minimum-modulus principle holds true. To prove this

assertion, it suffices to consider the function o (z) =% and

take advantage of the principle of the maximum modulus of this
function.

1.7. Integrals Dependent on a Parameter

a. Analytic dependence on a parameter

When considering the Cauchy integral, we see that the integrand
function depends on two complex variables: the variable of inte-
gration { and a fixed value of the variable z,. Thus, Cauchy’s inte-
gral is an integral which is dependent on a parameter z,. It is natu-
ral to pose the question of the general properties of integrals with
respect to a complex variable which depend on a parameter.

Let there be given a function of two complex variables** ¢ (z, {)
uniquely defined for the values of the complex variable z = z + iy
from the domain & and for the values of the complex variable
{ = E 4 in which belong to a certain piecewise smooth curve C.
The mutual positions of the domain & and the curve C may be quite
arbitrary. Let the function of two complex variables @ (z, {) satisfy
the following conditions:

(a) The function ¢ (z, C) for any value of ¢ € C is an analytic func-
tion of z in the domain &.

* As follows from the relations (1-20), in this case the argument of an ana-
lytic function f (z) also retains a constant value in the domain @&, whence it
follows that if the absolute value (modulus) of an analytic function is constant
jjn some domain, then the function is identically equal to the constant in that

omain.

** A function of two complex variables z, { is defined by a law which associ-
ates some complex number w with each pair of values z, { from the domain of
their definition. A short review of the theory of functions of many complex vari-
ables is given in Appendix 3.
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for its derivative:

” 2 f (@)
f (Z)=‘2—n—i‘§‘—(§—_—z)7d§ (1-71)
Since for any interior point z of the domain & a corresponding
closed subdomain &’ may be constructed, the formulas (1-70) and
(1-71) hold true at any point z. A more general theorem is also valid.

Theorem 1.9. Let a function f (z) be analytic in the domain & and
continuous in the closed domain &. Then there exists a derivative of
any order of the function f (z) in the interior points of &; for this deri-
vative we have the formula

! £ .
1 @)= g | g & 472

The proof of this theorem is obtained by repeating the foregoing
reasoning an appropriate number of times.

And so if a tunction f (z) is analytic in the domain &, then f ()
has continuous derivatives of all orders in that domain. This prop-
erty of an analytic function of a complex variable distinguishes
it in a very essential way from the function of a real variable having
a continuous first derivative in some domain. Generally speaking,
in the latter case, the existence of higher derivatives does not follow
from the existence of a first derivative.

Let us consider a number of important consequences of the prop-
erty just established concerning an analytic function of a complex
variable.

T heorem 1.10 (Morera’s theorem). Let a function f (z) be con-
tinuous in a singly connected domain & and let the integral of f (z)
around any closed contour lying wholly in & be zero. Then f (2) is
an analytic function in &.

Proof. It has been proved earlier that under the hypothesis of

the theorem, a function
¥4

Fa={r1®d
20

where z, and z are arbitrary points of the domain & and the in-
tegral is taken along any path connecting these points in &, is ana-
lytic in that domain, and F’ (z) = f (z). But, as has already been
established, the derivative of an analytic function is also an analytic
function; that is, there exists a continuous derivative of the func-
tion F’ (z), namely the function F” (z) = f’ (z). The theorem is
proved.

We note that Theorem 1.10 is, in a certain sense, the converse
of Cauchy’s theorem. It can readily be generalized to multiply con-
nected domains.
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Theorem 1.11 (Liouville's theorem). Let a function f (2) be
analytic throughout the complex plane, and let its modulus be uniformly
bounded. Then f (z) is identically equal to a constant.

Proof. Write the value of the derivative f’ (z) at an arbitrary point
z using the formula (1-70):

.

—z)2
& (E—2)

The integration will be carried out around the circumference of
a-circle of radius R with centre at the point z; i.e. | { —z | = R.
By hypothesis, there is a constant M such that | f (§) | < M irres-
pective of R. Therefore

R 1 M
17 @< | 2@ dsc L
Cr

Since the radius R may be chosen arbitrarily large, and f’ (z) is
independent of R, it follows that | f' (z) | = 0. Since the choice of
the point z is arbitrary, we conclude that |f (z) |= 0 over the
entire complex plane. Whence it follows that f (z) = constant.

In Section 1.4 we introduced the trigonometric functions of a com-
plex variable and demonstrated that they are analytic functions
throughout the complex plane. By virtue of the theorem just
proved, these functions cannot be uniformly bounded throughout the
complex plane. Whence it follows, in particular, that there are
values of the complex variable z for which

|sinz | >1 (1-73)

It is in this respect that the trigonometric functions of a complex
variable differ essentially from the corresponding functions of a real
variable.



54 Ch. 1. Functions of a Complez Variable

(b) The function @ (z, C) and its derivative %—f (z, §) are continuous

functions of the variables z, { taken together for an arbitrary variation
of z in the domain & and of { on the curve C.
The condition (b) signifies that the real and imaginary parts of

the function %p (z, §) are continuous with respect to the variables

xz, y, &, m taken together.

It is obvious that under the assumptions just made, the integral
of the function ¢ (z, {) along the curve C exists for any z € & and
is a function of the complex variable z:

F@={0@d=U@y+iV(y) (1-66)
o}

It is natural to pose the question of the properties of the function
F (z). 1t appears that under the given assumptions relative to the
function ¢ (z, §), the function F (z) is an analytic function of the
complex variable z in the domain &, and the derivative of the function
F (z) may be computed by differentiating under the sign of the integral.
To prove this assertion, let us consider the line integral )

U, )= u@ y,&ndi—v(z,y 5 ndn
c

Since it is assumed that the functions u and v possess partial deri-
vatives with respect to z and y, which are continuous with respect
to both variables together, the partial derivatives of the function
U (z, y) with respect to the variables z, y exist and may be com-
puted by differentiating under the integral sign:

Ux(xv y) = S uxdg—vxdn
C

Uy (z,y)= S uy d§—vy dn
c
The functions themselves U, and U, are continuous functions of
the variables z, y in the domain &. On the basis of similar prop-
erties of the function V (z, y) and taking advantage of the Cauchy-
Riemann conditions for the function @ (z, {), we obtain

Vy(z, y)=51’yd§+uyd7|= S Uy BE— v d=U,
c

¢ (1-67)

V:c(x’ y)= S deE,-i-uxdn—_— —S uydE—'Uy dnz _U”
4 c

Thus, for F (z) the Cauchy-Riemann conditions are fulfilled: the
partial derivatives of the functions U (z, y) and V (z, y) are con-
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tinuous and connected by the relations (1-67), which proves the
analyticity of F (z) in the domain &.
Note that

F'())=Us (2, 9) +Va(, 9)
= [ uedt—vean+i [v.detucan=[ Lo (1-68)
c c C

Whence it follows that it is possible to compute the derivative of
an integral by differentiating the integrand function with respect

to a parameter. And if z-;psatisﬁes the same conditions (a) and (b)
as @ (z, L), then F’ (z) is also an analytic function in the domain &.

b. An analytic function and the existence
of derivatives of all orders

The above-considered property of integrals depending on a para-
meter permits establishing important characteristics of analytic
functions. As we have seen, the value of a function f (z) that is
analytic in some domain & bounded by a contour I' and continuous
in a closed domain & can be expressed in the interior points of this
domain in terms of the boundary values by means of the Cauchy
integral:

1 f(©) _
1) =5y | ELat (1-69)
T
Let us consider, in a domain @&, a certain closed subdomain &,

all of whose points are farther from the boundary I' of the domain &
than some positive number d (| z — { | = d > 0). The function

¢ (2 )= é‘—_g_); is an analytic function of z in the domain @&’,

and its partial derivative ‘Z—(i = (gf_(l;z))z in this domain is a con-

tinuous function of its arguments. Thus, by virtue of the general
properties of integrals dependent on a parameter, the derivative
f' (z) may be represented at the interior points of the domain &’
in the form

roy_ |1 18
1 (z)—%—ii s d (1-70)
The integral (1-70) is again an integral that depends on a parameter,
and its integrand function has the same properties as the integrand
function of the integral (1-69). Consequently, f' (z) is an analytic
function of z in the domain &’; the following formula holds true



CHAPTER 2

SERIES OF ANALYTIC FUNCTIONS

In this chapter we will examine the principal properties of func-
tional series whose terms are functions of a complex variable. A spe-
cial role in the theory of functions of a complex variable is played
by series of analytic functions and, in particular, by power series

of the form 3 ¢, (z — 2,)", where c, are specified complex con-
n=0

stants and z, is a fixed point in the complex plane. A study of these

series is very essential both for elucidating a number of general

properties of functions of a complex variable and for solving a variety

of problems that involve applications of the methods of the theory

of functions of a complex variable.

2.1. Uniformly Convergent Series
of Functions of a Complex Variable

a. Number series

Let us first examine certain general properties of number series
involving complex terms, that is, expressions of the form

(]

2 ap (2-1)

k=1

where ‘{a,} is a given sequence of numbers with complex terms.
The series (2-1) is convergent if the sequence {S,} of its partial sums

S, = D) ax is convergent. Here, the limit S of the sequence {S,}
h=1

is called the sum of the series (2-1). The series ) a; is called the
k=n+1

remainder of the series (2-1) after the nth term. In the case of a con-

vergent series, the sum of its remainder after the nth term is denoted

by r, and is ordinarily also called the remainder of the series (2-1).

For a convergent series S = S, 4 r, and for any € > 0 there is

a number N such that |r, | << e for n = N. From the definition
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of a convergent series it follows that a necessary and sufficient con-
dition for convergence of the series is Cauchy’s test.* Namely, the
series (2-1) converges if and only if for any &€ > O there is a num-

n4p
ber N such that 2 ay
k=n
A necessary condition for convergence of the series (2-1) is the re-
quirement that lim e, = 0. Indeed, from the convergence of this

<< e for n = N and for any natural p.

n—00
series. by virtue of Cauchy’s test, it follows that for any £ >0
it is possible to indicate an N such that | a4+, | = | Sp4, — S | < &
for n > N.
If the series

2 lak l (2-2)
k=1

with real positive terms converges, then it is obvious that the se-
ries (2-1) will converge too. In this case it is termed an absolutely
convergent series. One of the most frequently used methods of inves-
tigating the convergence of a series involving complex terms is the
consideration of a series containing real terms which are the moduli
of the terms of the original series. It will be recalled that d’Alembert’s
test and Cauchy’s test for convergence are sufficient conditions for
convergence of a series with.real positive terms.

According to d’Alembert’s test, the series (2-2) converges if,
beginning with some number N, the ratio a;+’|<l<1 for
n

all n > N.

Note that if from some number N onwards, the ratio |2nt!

>
an, |=

== 1, then the series (2-1) with complex terms diverges. Indeed, in
this case all terms of the series (2-1), from a, onwards, satisfy the
relation |a, | = |ay | 7%= 0, i.e. the necessary condition for con-
vergence of a series is not fulfilled.

In accordance with the Cauchy test, the series (2-2) converges if
{/l a, | <qg<1 for all n > N. If, from some N onwards, for all

n =N, we have the relation {/I a, | =1, then the series (2-1)
diverges.

b. Functional series. Uniform convergence

We now take up the study of functional series whose terms are
functions of a complex variable. Let there be defined in a domain &
an infinite sequence {u, (z)} of single-valued functions of a complex

* This is a direct consequence of Cauchy’s test for convergence of a numerical
sequence {S;}; see page 19. i
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variable. An expression of the form

oo

D un (2) (2-3)
n=1
will be called a functional series. For a fixed value of z, € &, the
series (2-3) is transformed into a number series of the type (2-1).
The functional series (2-3) is convergent in the domain & if for any
z € @ the corresponding number series converges. If the series (2-3)
converges in the domain @&, then in this domain we can define a
single-valued function f (z) whose value at each point of & is equal
to the sum of the corresponding number series. This function is
called the sum of the series (2-3) in the domain &. In this case, by
virtue of the foregoing definitions, for any fixed point z € & and
for any specified positive number e it is possible to indicate a
number N such that

If(z)—— uk(z)]<s for n>N (e, 2)

Note that in the genelal case NV depends both upon & and z.

The concept of uniform convergence plays a special role in the
theory of series of functions of a complex variable, just as it does
in the case of a real variable. For example, as the reader will recall
from the course of analysis, a convergent series of continuous func-
tions does not by any means always converge to a continuous func-
tion. At the same time the sum of a uniformly convergent series of
continuous functions is always a continuous function. Uniformly
convergent series of functions of a complex variable, as in the case of
a real variable, have a number of very important properties, which
we will now examine. First a definition.

If for any positive number € it is possible to indicate a number N (&)
such that for n = N (&) the inequality

[Ha)— 3 un(@)]<e

is fulfilled at once for all points z of a domain &, then the series (2-3)
is called uniformly convergent in the domain &.

Denoting r, (z) = 2_, uy (z), the condition for the uniform
h=nt1

convergence of a series (2-3) may be written in the form |r, (2) | < ¢
for n = N (¢). A number of properties of uniformly convergent
series wi]l be given below.

We give a sufficient test for uniform convergence that is important
in applications.

Weierstrass' test. If the terms of a functional series (2-3) can
everywhere in a domain @ be bounded by terms of an absolutely convergent
number series, then the series (2-3) converges uniformly in the domain &.
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Proof. By hypothesis we have the uniform evaluation

|un (2)|<|an|, 2€8 (2-4)
Since the series ), |a,| converges, then for any &>>0 there
n=1

oo

exists an N such that D] |ax|<<e for n>>N. But by (2-4), in
h=n1

=N

the domain & we have the inequality

co

I 2‘. uh<z)|< L m @<, z Janl<e

for n = N. This proves the uniform convergence of the series (2-3)
in the domam 3.

One should bear in mind that the Weierstrass test is only a suffi-
cient condition for uniform convergence. The following necessary
and sufficient condition for uniform convergence holds.

Cauchy’s test. A necessary and sufficient condition for uniform con-
vergence of the series (2-3) in a domain @ is the existence for any € > 0
of an N (g) such that the following relation holds simultaneously at
all points of &

| Snam (2) — Sn (2) | < & (2-5)

for n = N and for any natural number m.

Proof (1) Necessity. From the uniform convergence of the series
(2-3) it follows that for any &€ >0 there exists an N (g) such that at
all points z of the domain @ we have the inequalities

f@=S$n (<5, [/@O—Smum@|<%F

for n = N and for any natural number m; whence (2-5) follows.
2) Sufﬁczency From the relation (2-5), by virtue of the Cauchy
test for a number sequence with complex terms,* it follows that
for any fixed z € & the sequence {S, (z)} is convergent. Hence, when
(2-5) is fulfilled, the series (2-3) converges in the domain & to a
certain function f(z) = lim S, (z). But, because of (2-5),

n-»o0o

1 | Spam (2)—Sn ()| =17 (2) —Sa(2)| <o for n=N (e)

m-—»oo

at all points of the domain & simultaneously. This proves the uni-
form convergence of the series (2-3) in the domain &.

* See Chapter 1, page 19.
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¢. Properties of uniformly convergent series.
Weierstrass’ theorems

Let us now examine certain general properties of uniformly con-
vergent series.
T heorem 2.1. If the functions u, (z) are continuous in a domain

@, and the series D, u, (z) converges in this domain uniformly to the

n=
function f (z), then f (z) is also continuous in the domain @.

Proof. We consider the expression |f(z 4 Az) — f(2) |, where
the points z and z 4+ Az belong to the domain &. By virtue of the

uniform convergence of the series D) u, (z), for any &> 0 there

n=1
exists an N such that the following inequalities are simultaneously
valid

N ’ N
|1a+80— D wG+sd| <3, |[f0-3F we|<t @6

R=1 k=1

for any points z and z 4+ Az belonging to the domain &. By virtue
of the continuity of the functions u, (z), at any point z € & for
a given ¢ and a chosen N there exists a § > 0 such that

N N N

|Z up (24 Az) — D) uh(z)|< |uh(Z+AZ)—~un(z)|<% (2-7)
k=1

k=1 k=1

for | Az | << 6. From (2-6), (2-7) and the fact that the absolute value
of a sum does not exceed the sum of the absolute values, it follows
that for any & > O there exists a 6 such that { f (z 4+ Az) — f (2) | <
< ¢ for | Az | << §. This proves the continuity of the function f (z)
in the domain &.

T heorem 2.2. If the series (2-3)- of continuous functions u, (z)
converges uniformly in a domain @& to the function f (z), then the
integral of this function along any piecewise smooth curve C lying
entirely in & may be computed by a termwise integration of the series
(2-3), that is,

[foa=3 [wod
C n=1C

Proof. Since the series (2-3) converges uniformly, then for any
specified € > 0 there exists a number N such that for all points

Le®
Irn (@< for n=N(e)
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where L is the arc length of the curve C. Then

|Sf<c)dc 3, § un )dc|—|§rn<§)dc]< Ira @ dt| <o

k=1 C

which proves the theorem.

Note that the properties of uniformly convergent series involving
complex terms formulated in Theorem 2.1 and Theorem 2.2 are
absolutely analogous to the corresponding properties of functional
series involving real terms, and the proofs actually repeat those of
the appropriate theorems of analysis.

We now consider a supremely important property of uniformly
convergent series that characterizes the behaviour of a series whose
terms are analytic functions.

Theorem 2.3 (Weierstirass’ first theorem). Let the functions

u, (z) be analytic in a domain , and let the series D) u, (z) converge
n=1

uniformly to the function f (z) in any closed subdomain &' of ®. Then
(1) f (2) is an analytic function in the domain .

@) M (2) = ) u® (a).

(3) The series 2 u{® (z) converges uniformly in any closed subdo-
n=1
main &' of the domain &.

Proof. We will prove each one of the foregoing assertions.

(1) Consider an arbitrary interior point z, € & and construct
a singly connected subdomain &’ of the domain & containing the
interior point z,.

By Theorem 2.1, f (z) is a continuous function in &. Consider the
integral of f (z) around an arbitrary closed contour C lying entirely
in the domain @’. By Theorem 2.2, this integral may be computed
by termwise integration of the series (2-3). Then, since the functions
u, (z) are analytic, we get

Sf(z:.)ds=2 fun®dg=0

n=1 C

Thus, all the conditions of Morera’s theorem are fulfilled. Hence,

f (2) is an analytic function in the neighbourhood @’ of the point z,.

Since the choice of the point z, is arbitrary, f (z) is analytic in the

domain &. Note that for any natural number r the function r, (z) =

= 2 uj (2) = f (2) — 2 u; (2), which is the sum of a finite
j=n+1 =1

number of analytic functlons is also analytic in &.
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(2) Fix an arbitrary point z, € & and choose an arbitrary closed
contour C lying entirely in &' and containing the point z, interior

Fig. 2.1

to it. Denote by d the minimal distance from the point z, to the
contour C. Consider the series

[0 _unl@
(z—z)h*! —Ei (z—2zg)R*
Since min |z — 25 | = d > 0, this series, by virtue of the hypo-

zeC
theses of the theorem, converges uniformly on C. Therefore, by
integrating it termwise along the contour C and by expressing the
derivative of an analytic function in terms of the Cauchy integral,
we get f®) (z,) =‘2 u® (zo). Since z, is an arbitrary point of the

—
domain @&, assertion (2) is proved.

(3) Consider an arbitrary subdomain & of ® and construct,
in 8, a closed contour C containing &’ so that the distance
from an arbitrary point z € @ to any point % € C is not less than

some positive number d, |z — §{ | = d >0 (Fig. 2.1). (It is obvious
that an appropriate contour C and number d can be found for any

subdomain &’ of the domain @.) Since r, (2) is an analytic
function in &, it follows that for any point z € 8’ we have the

relation %—l 5 -@—r_—"i—)g,)m df = r{® (z). And, in accordance with
c

the assertion that has just been proved, r{®) (z) is the remainder of

the series D) u{® (z). By virtue of the uniform convergence of the
n=1
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original series ), u, (z), for every & >0 there is an N such that

n=1
on the contour C for n > N there is a uniform evaluation | r, (§) | <<

k
<e- 2—’5—;, where L is the length of the contour C. Then

(*) k! | rn (©)
|’ (2) IS5 i m{t‘—ds<8

for all z € @’ simultaneously, and this completes the proof of asser-
tion (3). The foregoing proof refers,to the case of a singly connected
domain @&. The case of a multiply connected domain is considered
in analogous fashion. Thus, the theorem is proved.

Observe that this method permits proving uniform convergence
of a series of derivatives only in any closed subdomain &' of domain
@, even if the original series (2-3) converges uniformly in the
closed domain as well. As elementary examples show, it does not
follow from the uniform convergence of the series (2-3) in a closed

domain @ that in this domain a series composed of derivatives also
o0

. . zn .
converges uniformly. For example, the series 2 73 Converges uni-

n=1

zn

o0

formly in the cirele | z | << 1, and the series 2

n=|{

derivatives of terms of the original series cannot converge uniformly

in the circle |z | <C 1, since it diverges at z = 1. Thus, the asser-

tion of (3) of the theorem on the uniform convergence of a series,

composed of derivatives, only in a closed subdomain of the original
domain cannot, generally speaking, be extended.

Let us make one more remark. When proving Theorem 2.3,
we assumed uniform convergence of the series in any closed subdo-
main &’ of domain &. It is clear that the theorem will all the more
hold true in the case of uniform convergence of the series (2-3) in
the closed domain &. As the following theorem shows, the latter
condition may ‘be replaced by the condition of uniform convergence
of the series (2-3) on the boundary I of domain &.

T heorem 2.4 (Weierstrass’ second theorem). Let the

functions u, (z) be analytic in a domain @ and continuous in &, and

~1
— composed of

let the series D) u, (z) converge uniformly on the boundary T' of this
n={

domain. Then the series D) u, (3) converges uniformly in & as well.
n={



66 Ch. 2. Series of Analytic Functions

Proof. The difference of partial sums of the given series, i.e. the
function S,4p (2) — Sy (2), as a finite sum of analytic functions,

is analytic in ® and continuous in . From the uniform conver-
gence on I it follows that

| Sntp () = Sn (O) | = ltnsp () + . . . + unn O) I<e

for n == N for any natural number p and all points { € I' simulta-
neously. Consequently, by the maximum-modulus theorem of an
analytic function, |Sp4+p(z2) — S, (2) |<e for n >N for any
natural number p and for all z € 8. Thus, for the given series,
Cauchy’s condition is fulfilled, which proves the theorem.

Note. All the above-proved properties of functional series are
clearly true for the functional sequences.

d. Improper integrals dependent on a parameter

In Chapter 1 we considered the properties of integrals dependent
on a parameter and confined ourselves to the case of proper integrals
over a curve C of finite length. The Weierstrass theorem permits
generalizing the results to the case of improper integrals. We con-
sider an improper integral of the first kind dependent on a parameter,

F(z) = S f(z, t)dt, along an unbounded curve C. Let the func-

c

tion of two complex variables f (z, {) defined for z€ & and { € C
satisfy the same conditions as @ (z, ) in Sec. 1.7, namely:

(a) The function f (z, ) for any value { € C is an analytic func-

tion of z in the domain &.

(b) The function f (z, {) and its derivative ‘;—ﬁ (z, ) are con-
tinuous functions with respect to the two variables z, § for z € &
and { €C.

Let the improper integral of the first kind S f (z, €) A converge

c
uniformly with respect to the parameter z in any closed subdomain

@’ of the domain ®. This means that for any choice of a sequence of
finite curves C, constituting a part of C, as C, — C, the sequence of

functions u, (z) = S f (z, §) dT converges uniformly in @ to the

function F (z).
It can readily be shown that if all the foregoing conditions are

fulfilled, the function F (z) is analytic in & and
Fo={Leyd
c
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Indeed, as was demonstrated in Sec. 1.7, the proper integrals,

the functions u, (z) = S f(z, §) dC, are analytic functions in & and

Cn

Un (z)=5% (z, §) d{. The sequence {u,(z)} converges to F(z)
C'l

uniformly in any @’. Hence, by the Weierstrass theorem, the

function F (z) is analytic in & and F'(z)= S %(z, ) dt.

2.2, Power Series. Taylor’s Series

a. Abel’s theorem

In the preceding section we considered general functional series
(2-3); the form of the functions u, (z), however, was not specified.
Very important are the so-called power series for which u, (z) =
= ¢, (2 — 2,)", where ¢, are some complex numbers and z, is a fixed

oo

point of the complex plane. The terms of the series D) ¢, (z — z,)"
n=0

are analytic functions throughout the entire complex plane, and

for this reason the general theorems of the preceding section may

be applied in studying the properties of the series. As was estab-

lished, many important properties are consequences of uniform con-

vergence. Thus, in investigating the power series Z}cn (z — z)"
=0
it is important to establish the domain of its uniform convergence.

We 1mmedlate1y observe that the domain of convergence of a power
serles is determmed by the form of the coefficients ¢,,. For example,

the series 2 nl (z — z,)" converges only at one point z = z,. Indeed,

=0
the ratio of the absolute values of two successive terms of the series
Enitl = (m+1)|z—12| >1 for any fixed value z 5=z, be-

ginning with some N (z); according to the considerations on page 59,
this indicates that the given series is divergent. On the other hand,
by means of d’Alembert’s test it is easy to establish the absolute

w for any z.

convergence of the series 2

n=0

The following theorem is essential for determining the domain
of convergence of a power series.

5%
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T heorem 2.5 (Abel’s theorem). If a power series Z Cn (2—3y)"

converges at some point z, 5= z,, then it converges absolutely at any point
z which satisfies the condition |z —z, | << |2, — 32, |; in a circle
|2 —zy | < p of radius p less than |z, — z, |, the series converges
uniformly.

Proof. Take an arbitrary point z which satisfies the condition

©o

|z—2y |<<|2 —32,| and consider the series Y c, (z — z,)"
n=0
Denote |z —z, | =¢q |2 —z,|, g<<1. By virtue of the neces-
-]
sary condition for convergence of the series D) c, (3, — z,)", its
0

n=
terms tend to zero as n —-oo. Consequently, there exists a constant
M such that |c, |-|2, — z, |* << M. Whence, for the coefficients

¢, of the given power series, we get the evaluation | ¢, | << Ft%zo—l""
Then
—_ n
| 3 ene—20|< D lenl lz—aol'<M J| 222" (28)
n=0 n=0 n=0

z—13
Z4—2

The series Y, ¢", which is the

n=0

By hypothesis, g=

sum of an infinite geometric progression with common ratio

less than unity, converges. Then from (2-8) it follows that the

series under consideration converges too. In order to prove the uni-
-]

form convergence of the series )] ¢, (z — z,)" in the circle | z — z, | <<

n=0
<p< |z — 3y, it suffices, by virtue of the Weierstrass test,
to construct a convergent number series that dominates the given
functional series in the domain. It is obvious that such

a series is M 2 IZ l" , which is also the sum of an infinite
1=

geometric progressmn with common ratio less than unity. The
theorem is completely proved.
From Abel’s theorem we can derive a number of important corol-

laries.

Corollary 1. If a power series )} c, (z — z,)* diverges at some
0

n=
point z,, then it diverges at all points z which satisfy the inequality
l2—2, | > 12 — 2|



2.2. Power Series. Taylor's Series 69

Assuming the contrary, we find that by Abel’s theorem the series
should converge in any circle of radius p << | z — z, | in particular
at the point z;, which contradicts the hypothesis.

Consider the least upper bound R of the distances |z — z, |

from the point z, to the points z at which the series D) ¢, (z — z,)"
n=0

converges. If R 5= oo, then at all points 2z’ satisfying the condition
| 28 — 2z, | > R, the given power series diverges. Let R be strictly
greater than zero, then the circle |z — z, | << R is the greatest
domain of convergence of the given series. The series diverges every-
where outside this circle; at the boundary points|z—z, | =R
it may either converge or diverge. The domain |z —z, |< R
(R >0) is called the circle of convergence of the pcwer series, and the
number R is its radius of convergence.

Thus, we have established

Corollary 2. For any power series there exists a number R such
that inside the circle | z — z, | << R the given power series conver-
ges and outside the circle it diverges.

In the circle |z — 2y | << p << R of any radius p less than the

oo

radius of convergence R, the power series ) c, (z — z,)" converges
n=0

uniformly. Observe that, depending on the form of the coefficients,
the radius of convergence of a power series may have any value
between 0 and oo. The first limiting case will correspond to a series
convergent only at the point z,, the second, to a series convergent
throughout the entire complex plane. Examples of such series have
already been given. The radius of convergence of a power series may
be determined in terms of its coefficients c,.

Corollary 3. Inside the circle of convergence, a power series con-
verges to an analytic function. Indeed, the terms of the power series
U, (2) = ¢, (2 — z,)" are functions which are analytic throughout
the complex plane; the series converges uniformly in any
closed subdomain of the circle of convergence. Hence, by
Weierstrass’ first theorem, the sum of the series is an analytic
function.

Corollary 4. A power series inside the circle of convergence may
be integrated and differentiated term by term any number of times,
and the radius of convergence of the series obtained is equal to the
radius of convergence of the original series. This property is also
a direct consequence of the theorems of Abel and Weierstrass.

Corollary 5. The coefficients of the power series D) ¢, (z2—z,)"
’ n=0

are expressible in terms of the values of the sum of the series f (z)
and its derivatives in the centre of the circle of convergence by
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the formulas
1
en = o ™ (20) (2-9)

Setting z = z, in the expression of the sum of the power series f (z) =

= D) ¢ (2 — 2,)", we get f(z,) =c,; differentiating the series

n=0

termwise and setting z = z, in the expression for the derivative
(-]

P (2) = D) can (z — z,)™*, we get f'(z,) = c,; analogously, set-
n=1
ting z = z, in the expression for the kth derivative,

f® (z)= Skcnn (n—1)...(n—k41)(z—z)"*"

we get f® (z0)=cy-k!.
Corollary 6. The radius of convergence R of the power series

2 cn (2—2p)" is determined by the formula® R=—:—, where =

n=

0
=1im}/c.| is the upper bound** of the sequence {}/[cs|). First

n—-»>00

suppose that 0 <<l <Coo. We have to show that at any point 2z,
which satisfies the condition Izl—z‘,|<li the series converges, and

at any point z, which satisfies the condition |z, —zo| > —:—- it diverges.

Since ! is the upper bound of the sequence [',‘/rc_n—l}, for any ¢ >0
there is a number N beginning with which J/|¢c,[<<l-+e¢. On the
other hand, for the same & it is possible to find infinitely many
terms of the sequence {VFJ} that are greater than !—e. Take
an arbitrary point z, that satisfies the inequality /|2, —2z,|<<1 and

for ¢ take the number l:”z‘—_zﬂ>0. Then
2|z4—z|

Larn 1412 —
V leal lzl—zol<(l—|—8)lzl—zo|=_+—|;‘_z°_l=q<1

Whence it follows that the series ) cn(z;—2)" is dominated by
n=0

]

the geometric progression ) ¢" with common ratio less than
n=0

unity. This proves its convergence. Now taking some point

* This formula is frequently called the Cauchy-Hadamard formula.

** The upper bound z of a number sequence {z,} is the greatest limit
point of the sequence.
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z, that satisfies the inequality I |z, — z, | >1 and choosing for &

llzg—z9| —1 0
bt M E S—— we get
[a—5l  — &

Vieal lza—20| > (1= ) | 22— 20| =1

for an infinity of values of n. Whence |c, (2, — 2,)" | >1, and
this, on the basis of the necessary condition for convergence, indi-

the number

oo
cates that the series D ¢, (3, — 2,)" diverges.

n=
Note. We carried out the proof for the case 0 << I << co. Let us
now consider the limiting cases.

For 1 =0 the series cn (2—20)" converges at any point z, that
4 P

n=(
is, R =oo. Indeed, in this case, for any € >0 there is a number N

such that }/[c,|<Ce from N onwards. Taking for & the number

ﬁ—’ where z is an arbitrary point of the complex plane and
— %0

0<g<<1, we get |cn(2—2)"|<<q™ This proves the convergence

of the series D) cn (z—2)".
n=0

For = oo the series ) cn(z—2,)" diverges at any point z =< z,,

n=0
i.e. R=0. Indeed, in this case, for any number M there are infi-

nitely many coefficients ¢, such that V[ cn|>M. Let us consider
an arbitrary point zs%4z, and choose M so that M |z—z,|=¢g>1.

Then an infinity of terms of the series ) Cp(2—2,)" satisfies the
n=0

condition |c¢, (2—2p)"|>1; this proves its divergence.
Thus, the Cauchy-Hadamard formula R = Tl , where | = mﬁVm,

n-»>00
holds true for any value of I.
We illustrate with an example that will be important later on.

Let us consider the power series ) (z—z,)", all coefficients ¢, of

n=(
which are equal to 1. By d’Alembert’s test we find that the series
converges in a circle |z—z)|<<1 to some analytic function. To find
this function, we apply the direct definition of the sum of a series
as the limit of the partial sums:

f(2)=1imS, (z) = lim

n-—»>00 n—>o0o

1—(z—z)n 1
1—(z—2z9) ~ 1—(z—=20)

(2-10)

Here we have obviously taken advantage of the formula (which
holds true in the domain of complex numbers as well) of the sum
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of a geometric progression with a finite number of terms and
the possibility of a passage to the limit in the numerator of the
fraction, the denominator of which is nonzero. The equation (2-10)
signifies that the formula for the sum of an infinitely decreasing
geometric progression holds true in the complex domain as well.

b. Taylor's series

Thus, a puwer series inside the circle of convergence defines a
certain analytic function. The following question naturally arises:
can we associate, with a function that is analytic inside a certain
circle, a power series convergent to the given function in this circle?
The following theorem gives the answer.

Theorem 2.6 (Taylor's theorem). A function f (z) that is
analytic inside a circle | 2 — z, | << R may be represented in the circle

as a convergent power series f (z) = D) ¢n (2 — 2,)", the series being
0

n=
defined uniquely.
Proof. Choose an arbitrary point z inside the circle |z — z, | <<
< R and construct a circle C, of radius p << R centred at the point
z, and containing the interior point z (Fig. 2.2). Such a construction

Fig. 2.2

is obviously possible for any point z of the given domain. Since z
is an interior point of the domain |z —z, |<<p in which the func-
tion f (z) is analytic, it follows by Cauchy’s formula that

1= | £ (2-11)

%
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Transform the integrand of (2-11)

1t 1. 1 =1 o (a—z)" :
{—z L[—12 1 2—% T T—3 20 C—3z)m (2-12)
L—12 n=

Here we took advantage of formula (2-10) and the obvious relation
-Z:—;‘; < 1. For {€C, the series (2-12) converges uniformly in g,
since it is dominated by the convergent number series

S '—’,}L’iﬂ (|z—2| < p). Putting (2-12) into (2-11) and integrating

n=0
termwise, we obtain
- 1 d n
1@)= 3 o | L o — ) (2-13)

n=0 Cp

Introducing the notation
= | Tk d (2-14)

cr =51 ) T—s)n"!

Co

rewrite (2-13) in the form of a power series convergent at the chosen
point z:

0o

f@)= D en(z—2)" (2-15)

n=0

In formula (2-14) the circle C, may be replaced, by virtue of Cauchy’s
theorem, by any closed contour C lying in the domain |z — z, | < R
and containing the interior point z,. Since z is an arbitrary point
of the given domain, it follows that the series (2-15) converges to
f (z) everywhere inside the circle |z — z, | << R, and in the circle
|2 —2,| < p<<R the series converges uniformly. So the func-
tion f (z) that is analytic inside the circle |z — z, | << R can, in
this circle, be expanded in a convergent power series. On the basis
of formula (1-72) for derivatives of an analytic function, the coeffi-
cients (2-14) of the expansion are of the form

1 f@dr  __ f™ (z0) (2-16)

=55 C—znt —  nl
c

It remains to prove the uniqueness of the expansion (2-15). Sup-
pose we have the following expansion:

f(&)= 2 en(z—z0)" (2-15")

n=0
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where at least one coefficient ¢, 5= ¢,. The power series (2-15’) con-
verges in the circle |z — 2, | << R, and so on the basis of formu-
la (2-9), ¢, = fm;(lz") , which coincides with the expression (2-16)
for the coefficients ¢,. This proves the uniqueness of definition of
the coefficients.

The expansion of a function, which is analytic in the circle
|z — 2, | << R, into the convergent power series (2-15) is often
called Taylor's expansion, and the series (2-15) is termed Taylor's
series.

The theorem that has just been proved establishes a reciprocal
one-to-one correspondence between a function analytic in the neigh-
bourhood of some point z, and a power series centred at this point.
This means that the concept of an analytic function as an infinitely
differentiable function is equivalent to a function that can be
represented in the form of the sum of a power series.* This is not
only very important in constructing the theory of analytic func-
tions, but finds extensive application in the solution of practical
problems.

Note also that if a function f (z) is analytic in a domain & and z,
is an interior point of this domain, then the radius of convergence

[~ ]

of Taylor's series f(z) = 2, f(—":l—(l@ (z — z,)" of this function
n=0

is not less than the distance from the point z, to the boundary of

the domain @&.

c. Examples

1. To take a simple example, we consider the Taylor expansion
of the function f (z) = Tﬁﬁ . This function is analytic through-

out the complex plane with the exception of the points z,,, = +i
at which the denominator of the fraction vanishes. And so by virtue
of Theorem 2.6 this function can be expanded into a Taylor series
in any circle of the complex plane that does not contain the points

* Note that no similar equivalence occurs for functions of a real variable.
Indeed, from the existence, on an interval [a, b], of all derivatives of a function
f (z) there does not follow the possibility of expanding this function in a power

o

series of the form f (z) = 2 ¢, (z — zo)™, where z, € [a, b], that is convergent
n=0
. 1
over the whole interval [a, b]. For example, the function f (z) = IT= has
derivatives of all orders for any real z; however, for z, = 0 the power series
0
2 (—1)nz2n converges to the given function only in the interval —1 <2z <1

n=0
and not over the whole real z-axis.
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2,,, = +i. We begin with the circle | z | << 1. Under the condition

|z| <1, the expression 1-|1- may be considered to be the sum
of an infinitely decreasing geometric progression. And so, by (2-10),
1 oo
m'——- Z (—'1)” 22n (2-17)
n=0

which yields the desired expansion. Note that the radius of conver-
gence of the series (2-17) is equal to unity, that is, it is determined
by the distance from the centre of the expansion to the boundary of
the region of analyticity of the function f (z) = 1—_:_72
Now let us find the Taylor expansion of the function f(z)=
=1—# in the circle |z—1|<V§. In this case, determining the
coefficients ¢, of the series D) ¢, (z—1)" via the formula (2-16)
n=0
involves rather unwieldy computations. And so we represent the
1 1 1 1
T z—_—i—m} and take advantage of (2-10),
which in this case holds true provided |z—1|<<}/'2, to get

function as

1 < n 1
1+z2=2 (—=1) 27 [(1_,)n+1 —(1+i)n+1](2_1)n
n=0

Using the exponentla] form of writing the complex numbers, 1 —i=

—V2e 14—L—V2e ", it is now easy to obtain
. © sin (n+1)%
n=0 zT

As follows from the Cauchy-Hadamard formula, the radius of con-

vergence of the series (2-18) is equal to }/2, which is to say it is
again determined by the distance from the centre of the expansion
to the boundary of the regjon of analyticity of the function at hand.
2. By way of illustration, let us consider the Taylor-series ex-

z

pansion of the function f (z) =1lnz = S%; introduced in Chapter 1

1
(page 46). It was earlier established that this is an analytic function
over the entire complex plane cut along the negative part of the
real axis, and consequently inside the circle |z — 1 | << 1 as well.
Assuming z, = 1 and computing the coefficients ¢, by formula (2-16),
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we get
co=In1=0; cl=-:—z= =1
1 n- (n—‘l) 4 1 _
en = (— )™ [ —y-tl oa—2,3, .
Whence
nz= 3 (—1- L= (2-19)

n=1

As will readily be seen if we apply d’Alembert’s test, the circle
| 2z — 1 | < 1 is the circle of convergence of the series (2-19).

2.3. Uniqueness of Definition
of an Analytic Function

The properties of functions of a complex variable that we have
already studied permit concluding that in order to define a func-
tion analytic in a given domain, one need not specify the values
of the function throughout the domain. For instance, by specifying
the values of an analytic function on the boundary of the domain
we can, with the aid of Cauchy’s integral, define its values at all
interior points of the domain. Thus, a function that is analytic in a
given domain is defined by specifying incomplete information
about its values in that domain. The natural question arises: what
is the minimum information needed to completely define a function
analytic in a given domain?

a. Zeros of an analytic function

Let us first introduce the concept of a zero of an analytic func-
tion. Let f (z) be an analytic function in a domain ®&. The point
zy € @ is called a zero of f (z) if f (z) = 0. From the power-series
expansion of f(z) in the neighbourhood of the point z,, f (z) =

= X ¢, (z2 — 2,)", it follows that in the given case the coefficient
n=0
¢o = 0. If not only the coefficient c,, but also the coefficients c,,
Cyy .+ . ., Cn-y are equal to zero, and the coefficient ¢, is different
from zero, then the point z, is called a zero of order k of the function
f (2). According to formula (2-9), in a zero of order %, not only the
function itself but also its first £ — 1 derivatives are equal to zero,
and the kth derivative is nonzero. In the neighbourhood of a zero of
order k, the power-series expansion of the function f (z) is of the
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form

oo

fe)= 3 enls—a)"
= (=20 3 can = 20" = (G—20)" ¢ 2 (2-20)

where ¢ (z) is an analytic function in the neighbourhood of the
point z,, the power-series expansion of which function is of the

form @ (z) = D) cpyn (2 — 2,)" and @ (2,) 7= 0. Note that the last
n=0

series converges in the same circle as the original one.

b. Uniqueness theorem

Let us now state the basic proposition of this section.

T heorem 2.7. Let a function f(z) be an analytic function in a
domain & and let it vanish at various points z, €8, n = 1, 2, .
If a sequence {z,} converges to a limit a belongmg to that domam,
then the function f (z) is identically zero in the domain @.

Proof. Since a € &, the function f (z) may be expanded in a power

series in the neighbourhood of the given point, f (z) = D) ¢, (z — a)*,
n=0

and the radius R, of convergence of the given series is not less than
the distance of point a from the boundary of the domain. From the
definition of continuity of the function f (z) it follows that f (a) = 0.
Whence ¢, = 0, and the expansion of f(z) in the neighbourhood
of z = a is of the form

f(e)=(z—a) fu(a), where f (z) = go tnrs (2—a)"

We assume that all points of the sequence {z,} are different from a.
This does not diminish the generality of our reasoning, since only
one of these points could be equal to a. By the latter condition
fi (z) = 0, and by the definition of a continuous function, f; (a) = 0.
Whence ¢, = 0, and the expansion of f, (z) in the neighbourhood of a

takes on the form f, (z) = (z — a) f, (2), where f, (z) = 2 cn+2 (z—a)™.

As before, we also find that f, (a) = 0, i.e. ¢, = 0. Contmumg this
process indefinitely, we find that all the coefficients ¢, in the expan-

sion of f (z) in the power series f (z) = D) ¢, (z — @) in the neigh-
=

bourhood of the point a are equal to zero. This means that f(z=0
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within the circle |z — a | << R,. Let us now take up the proof*
that the function f (z) is identically equal to zero throughout the
domain &. It will suffice to show that f (z;) = 0, where z; is an
arbitrary point of the domain & lying outside the circle |z — a | <<
<< R,. To do this, connect the points a and z, by a rectifiable curve
L lying entirely in & and distant from its boundary by d >0.
Since any point of the circle | z — a | < R, lying within the domain
& may be regarded as the limit of a sequence of zeros of the func-
tion f (z), it is possible, by choosing as the new centre of expansion
the last point z = a, of intersection of the curve L with the circle
|z —a|= R,, to find that f (2) =0 inside the circle |z — a; | <
<< R;, where R, > d. Continuing in similar fashion, we cover the
entire curve L with a finite number of circles with radii not less
than d, within which f (z) = 0. In the process, the point z = z
is inside the last circle, thus, f (z,) = 0. Since z, is an arbitrary
point of the domain &, it follows that f (z2) = 0 in &.

This theorem has a number of important corollaries.

Corollary 1. The function f(z) == 0 and is analytic in the
domain @; in any closed bounded subdomain &’ of & it has only
a finite number of zeros.

If the totality of zeros of the function f (z) in the domain &’ is
infinite, then by Theorem 1.2 we can extract from it a convergent

sequence {z,} —>a, the limit a of this sequence belonging to &’

Whence f (z) = 0 in @, which contradicts the hypothesis.
Corollary 2. If the point z, € ® is a zero of infinite order** of the

function f (z) (i.e., all coefficients ¢, = 0 in the expansion of f (z) =

= D ¢, (z — 2,)" about the point z,), then f(z) =0 in the do
n=0

main &.
Corollary 3. An analytic function can have an infinite number

of zeros only in an open or unbounded domain.

The function of a complex variable that is analytic throughout
the complex plane (z 5= oo) is called an entire (or integral) function.
From what has been considered it follows that an entire function
in any bounded part of the complex plane has only a finite number
of zeros. Consequently, all the zeros of an entire function can be
arranged in some kind of order, for example in the order of increasing
absolute values. In the extended plane, an entire function can only
have a countable set of zeros, and the limit point of this set is the
point at infinity of the complex plane. Entire functions play an
important role both in the theory of functions of a complex variable

and its applications.

* This proof is analogous to that of the theorem on pages 51-53.
** 1t is obvious that in this case both the function f (z) and all its derivatives

at the point z, are equal to zero.
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T heorem 2.8. Let the functions f (z) and ¢ (z) be analytic in a
domain 8. If in @ there is a sequence, that converges to scme point a € 8,
of different points {z,} at which the values of the functions f (z) and
¢ (2) coincide, then f (z) = ¢ (z) in &.

To prove this theorem, it is sufficient to establish, with the aid
of Theorem 2.7, that the function ¢V (z2) =f(23) — ¢ (2) =0 in .

Theorem 2.8 is exceedingly important, since it signifies that
in a given domain & only a single analytic function can exist that
assumes specified values in the sequence of points {z,} convergent
to the point a € @. This theorem is called the uniqueness theorem
of definition of an analytic function.

The following corollaries to the uniqueness theorem find frequent
application.

Corollary 1. If the functions f, (z) and f, (z), analytic in a do-
main &, coincide on some curve L belonging to the given domain,
then they are identically equal in the domain &.

Corollary 2. If the functions f, (z) and f, (z), analytic respec-
tively in the domains &, and &, which have a common subdomain &,
coincide in @&, then there exists a unique analytic function F (z)
such that

fi(z), z€6,
F (‘)E{ 1), 2€6,

The uniqueness theorem and its corollaries can also be given the
following forms.

(1) Let there be chosen, in a domain &, a sequence of different
points z, € 8 convergent to the point a € . Then in this domain
there can exist only one analytic function f (z) that assumes specified
values at the points z,.

(2) Let a certain curve L be given in a domain &. Then in &
there can exist only one analytic function f (z) that assumes specified
values on L.

(3) Let there be given, in a domain @, a certain subdomain &’.
Then in & there will be a unique analytic function f (z) that takes
on specified values in the subdomain &’.

If there exists a function f (z) defined in the domain & [as men-
tioned in (1), (2), (3)], then it can be called an analytic continuation
into & from the set {z,}, from the line L or the subdomain &’.

Note that specification of the values of an analytic function on an
appropriate set of points cannot be performed in arbitrary fashion.
However, we will not discuss the requirements that these values
must satisfy so that they may be continued analytically in the
domain .



CHAPTER 3
ANALYTIC CONTINUATION.
ELEMENTARY FUNCTIONS

OF A COMPLEX VARIABLE

In this ehapter we will examine a number of fundamental conse-
quences of the theorem on uniqueness of definition of an analytic
function. It has been established that an analytic function is uniquely
defined by specification of its values on a certain set of points in
the domain of its definition. This circumstance permits constructing
an analytic continuation of elementary functions of a real variable
into the complex domain and to elucidate their properties in this
domain. We will also briefly consider the general principles of
analytic continuation.

3.1. Elementary Functions of a Complex Variable.
Continuation from the Real Axis

a. Continuation from the real azxis

The theorem on the uniqueness of definition of an analytic func-
tion permits extending elementary functions of a real variable
automatically to the complex domain. First observe the validity
of the following assertion: let there be given, on an interval [a, b]
of the real z-axis, a continuous function f (z) of a real variable;
then in some domain & of the complex plane that contains the inter-
val [a, bl of the real axis there can exist only one analytic function
f (z) of the complex variable z that takes on the given values of
f (z) on the interval [a, b]. We call the function f (z) an analytic
continuation of the function f (z) of the real variable x into the complex
domain @&.

We now consider some examples of the construction of analytic
continuations of elementary functions of a real variable. Among
the elementary functions of a real variable, of particular importance
are the exponential function e* and trigonometric functions sin z
and cos z. It will be recalled that these functions can be specified
by their Taylor-series expansions:

= S I (3-1)
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. i n z2n+l
sin x=ﬂ§0(—1) m (3-2)
s 2n
cosz= 3 (—1)" G, (3-3)

n=0

Note that these series converge for any value of z.
Consider the following power series in the complex plane:

> (3-4)
n=0
o 2211""
% (=1 g (3-5)
b 2n
2_]0(—1>"(;—,L,l (3-6)

For real z = z, the expressions (3-4), (3-5), (3-6), and (3-1), (3-2),
(3-3) coincide respectively.

As follows from Abel’s theorem, the domain of convergence of the
series (3-4) to (3-6) is the entire plane of the complex variable, i.e.
these series are entire functions of the complex variable z which
are analytic continuations onto the entire complex plane of the
elementary functions e, sin £ and cos z of a real variable. It is

natural to preserve the earlier notation for these functions. Let us
put

<\N

I
K
2|

(3-7)
n=0
. s n 2n+i
sinz= Y, (—1) (ZT‘+W (3-8)
n=0
00 on .
cosz= D (—1)" (;n)! (3-9)

3
I
o

With the aid of the function e® construct hyperbolic functions
of the complex variable »

coshz =% -{;e" (3-10)

6—3878
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and
et—e~2

sinh z = 3

(3-11)

These functions are also entire functions by virtue of the general
properties of analytic functions.

Similarly, we can construct the remaining trigonometric functions
tan z =2 | cosec z = -—.1—, etc., with the aid of the basic

cos z sin 2
trigonometric functions sin z and cos z, by means of a formal trans-
fer of the appropriate definitions to the complex domain. These func-
tions are not entire, since their analyticity breaks down at those
points of the z-plane where the denominators of the expressions de-
fining them vanish.

As will be shown below, many of the basic properties of the corres-
ponding elementary functions of a real variable are preserved for all
the constructed functions of a complex variable. This will be estab-
lished on the basis of certain general propositions; for the present
we will construct the continuation of two more elementary func-
tions into the complex domain. Consider the following power series:

S (=L (3-12)
n=1
and
o 143 ... (2n—1) z2nH
x+21 27.nl @1 1) (3-13)

The first series is known to converge in the interval 0 << £ << 2 and
the second in the interval —1 << z << 1 to the functions of the real
variable In x and arcsin z, respectively. It is easy to establish
that the power series

00

g =17

) (=)™ —— (3-127)
n=1
and
- 1-3... (2rn—1) z2n+1 ’
2+ % 27l @nt-1) (3-13°)

converge: the first converges inside the circle |z — 1 | <1, the
second, within the circle | z | << 1; and on appropriate intervals of
the real axis they coincide with the series (3-12) and (3-13). There-
fore, the analytic functions of the complex variable z defined by
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means of the series (3-12’) and (3-13') inside their circles of conver-
gence are analytic continuations of the elementary functions In z
and arcsin r of the real variable z onto the appropriate complex
domain. We again retain the earlier notation for these functions,
putting

Inz= 2( gyt L0 (3-14)

and

.(2n—1) z2n+l
2" nl (2n-+1)

arcsinz =z -} 2 1-3.
n={

Note that the functions (3-14) and (3-15), unlike the earlier intro-
duced functions (3-7) to (3-9), are not entire functions, since the
series defining them do not converge on the entire complex plane
but only inside circles of unit radius. The properties of these func-
tions will also be considered somewhat later. However, it may be
observed that the function (3-14) in the circle |z — 1 | << 1 coin-

(3-15)

cides with the function Inz = S%— (which was introduced by

1

a different method in Chapter 1, page 46), since both these analytic
functions are defined in the indicated domain and coincide on the
common interval of the real axis 0 << z << 2 with one and the same
function ln z. We will therefore use the same notation for both

functions. Thus, the function f (z) = S%deﬁned on the complex
1

plane z cut along the negative real axis is also an analytic con-
tinuation of the function lh x onto the appropriate domain.

In conclusion we observe that if the function f (z) of the real
variable z is specified by its power series

fz)= Z} an (z—2o)" (3-16)

convergent on the interval [a, b], then there exists an analytic
function f (z) of the complex variable z, which is an analytic contin-
uation of f (z) into the complex domain & that contains the inter-
val [a, b] of the real axis. This circumstance permits calling the
function of the real variable f (), which can be represented by the
series (3-16), an analytic function. Recall that the function of a
real variable that can be represented on an interval [a, b] by the
power series (3-16) has derivatives of all orders on this interval.
Obviously, the derivative /™ (z) is the analytic continuation of the
derivative f™ (z) into the domain &.

6¢
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b. Continuation of relations

We now consider further consequences of the theorem on unique-
ness of definition of an analytic function. This theorem permits not
only constructing analytic continuations of elementary functions
of a real variable but also analytically continuing into the complex
domain relations which occur between appropriate functions of a
real variable. As typical instances, consider first relations of the form

sin?z+4cos?z =1 (3-17)
enx =z (3-18)
and, secondly, relations of the form
ext.gX2 — g¥+x2 (3-19)
cos (z; + z,) = cos z, - cos x, — sin z, - sin 7, (3-20)

The relations (3-17) and (3-18) establish a connection between diffe-
rent functions of one real variable; relations (3-19) and (3-20) involve
functions of several variables. These are some of the basic relations
for elementary functions of real variables. It is natural to ask whether
they will hold true for analytic continuations of elementary func-
tions into the complex domain.

We will establish the fact that the identity (3-17) remains valid
for the complex domain as well. To do this, consider the function

F (z) = sin?z + cos?z — 1

of the complex variable z. According to the general properties of
analytic functions (see Chapter 1, page 33), F (z) is an entire function
of z, and for real values of z = z [by virtue of (3-17)] F (z) = 0.
Whence, by the uniqueness theorem, we find that throughout the
complex z-plane the relation

sin?z + cos?z=1 (3-21)

is fulfilled. Similar reasoning will suffice to prove the validity, in
the complex domain, of the expression (3-18) and of other relations
between different analytic functions of one complex variable. How-
ever, there is no need to carry out a special investigation each time.
We can formulate a general theorem.

Let there be given a function F [w,, ..., w,] of the complex

variables w,, ..., w,, which is analytic with respect to each vari-
able* w; € D; and such that it itself and its partial derivatives g% are
1

* Woe shall call a function of many complex variables F (z;, . .., z,) de-
fined for the values z; € D;, an analytic function of each of its variables z,
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continuous in all the variables wy, . .., w,. A function F [w,, . . ., w,]
having these properties will be called an analytic function of many
complex variables. Let there be given n functions f; (z), . . ., f, (3)
of the complex variable z which are defined in the domain & of the
complex z-plane, and let f; (2) € D;.

We will say that the functions f; (z) satisfy the relation
Flfi @), ..., fn(2)]=0 on the set M if this relation is satisfied
at all points z € M. In the sequel we consider relations specified
solely by analytic functions of many complex variables. Then we
have

T heorem 3.1. If the functions f; (z) are analytic functions of z
in the domain @ containing an interval la, bl of the real z-azis, then
from the relation Flf, (z), ..., fa (@)l =0 for a <<z <<b, there
follows the relation F [f, (z), . . ., fa (2)] = 0 for z € 8.

Proof. To prove the theorem it is sufficient to show that under
the formulated conditions the function @ (z) = F [f, (2), . . ., fa (2)]
is an analytic function of the complex variable z in the domain &.
We carry out the proof for the case of two variables w;, that is, when
@ (z2) = Flf, (z), /5 (2)]. In the domain & fix an arbitrary pqint
z, € 8 and denote f, (z,) = w} and f, (z,) = w3. Form the expres-
sion

® (20+ Az) — O (20) = F [+ Awy, w4 Ayl — F [wl, ] (3-22)

where Aw,, Aw, are increments of the functions f, (z) and f, (2),
which correspond to the increment Az of the independent variable z.
Since, by assumption, there exist partial derivatives of the function F
which are continuous in all the variables, it follows that (3-22)
may be transformed to

F
@ (20+ Az) — D (20) = -_jw‘ (W, Wi+ Awy) Awy + mAwy
F
+ ;7 W, w) Aw,+ng-Aw,  (3-23)

where the functions 1, and n, are infinitesimal as Aw;, and Aw, ap
proach zero, and, thus, as Az — 0. We now form the difference quo-

tient %if and, passing to the limit as Az — 0, since the partial
(i=1,2, ..., mym<xn) if for any i= 1, 2, ..., m the corresponding func-
tion @; (z;) = F (20, . . ., %y, Zi, 2341, - - -» 23) Of one complex variable z
obtained for arbitrary fixed values of the remaining variables z; = 3} (j # 1)

is an analytic function of the given variable. We will call the derivatives of
the function @, (z;) with respect to the appropriate variables, partial deriva-
tives of the function F (z;, ..., z,) of many complex variagles Di(z) =

oF (zy, .. ., . .
= (z P z"). A brief survey of the theory of functions of many complex

variables is Cgiven in Appendix III.
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derivatives of the functions F are continuous in all the variables,
we get

@ (20+AZ)—® (Zo) — aF

. ’ aF ’
Ll_rzlo A w0 (wi, wy) fi (20) + g (wg, w3) £, (20)

This proves the existence of the derivative @’ (z,) at the point z,.
On the basis of the assumptions that have been made, the function
@’ (z) is continuous at the point z,, and since z, i3 an arbitrary point
of the domain & it follows that the function @ (z) is analytic in the
domain @&. The proof is quite analogous for a larger number of
variables w;.

Theorem 3.1 permits analytically continuing into the complex
domain relations of the form (3-17), (3-18) between elementary
functions of one real variable. This is essential in the study of vari-
ous properties of elementary functions of a complex variable. Ap-
propriate examples will be given later on, for the present we confine
ourselves to the following remarks regarding Theorem 3.1.

Corollary. If the conditions of Theorem 3.1 are fulfilled and the
functions f, (z) are respectively equal: f, (z2) = f (2), f, (2) =" (2), . ..

. vy Jor1 (2) = f™ (2), then from the relation

Flf@), ..., /™ @] =0fora<<z<<b (3-24)
there follows '

FIf@), .. . /™@] =0, z€@ (3-25)

This signifies that if the function f (z) of a real variable is a solu-
tion of the differential equation (3-24), then its analytic continua-
tion f (z) into the domain & satisfies, in that domain, the differen-
tial equation (3-25), which is an analytic continuation of the rela-
tion (3-24) into &.

Let us now substantiate the analytic continuation of relations
of the form (3-19) and (3-20). We will not consider each one sepa-
rately but will state a general theorem.

T heorem 3.2. Let the functions w, =f, (3,), . . ., Wp=Ffn (2,) be
analytic functions of the complex variables z,, . . ., z, in the domains
&,, ..., @, containing the intervals la;, b;] (i =1, ..., n) of the
real x-axis. Let the function F [w,, . .., w,] be analytic with respect
to each of the variables w,, ..., w, in their range. Then from the
relation F [f, (z)), ..., fn ()] =0 for a; < x << b; there follows
the relation F [f, (2)), . .., fn (2,)] = O for z; € &,;.

Proof. Fix the values of the variables z, = 23, ..., z, = 2%
and consider the function @, (z,) = F [f, (z)), f, (z3), ..., fn ()]
This function, being a composite function of the complex variable
z; by virtue of the assertion on page 33 of Chapter 1, is an analytic
function of the complex variable z, € &,. Therefore, by the theorem
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on uniqueness of definition of an analytic function it follows from
the relation F [f, (z)), fo (23), . . ., fn (@0)] = 0 for a; < z; < by,
that F [fy (z), fa (@), ..., fn (zR)] =0 for 2z, € 8. Note that
by virtue of the arbitrariness of z3, . . ., 3 there follows from this
that F [f, (z,), f2 (z3), - - ., fn ()] = 0. Now fix an arbitrary value
of the complex variable 2? € &, and consider the function @, (z,) =
= F lfy (2)), fs (25), f3(23), . .., fn (z})]-of the complex variable
2, € 8,. The function D, (z,), just like @, (z), is an analytic
function of the variable z, € &,. Therefore, from the relation
Flfy (29), fa (x5), fs(23)s -« .y fn(@8)] =0 for a, < z, << b, there
follows F lfy (21), fs (22), f3 (23), ..., fa (z2)] =0, for z, €8,.
Since the choice of 2z is arbitrary, we find that the relation
Flfy (21), fa (za), f3(29), -« s fo (@)] =0 for a, < 2y < by, a, <
<z, < b, implies the relation F [f; (), f2 (2), f3(z9), ...
oo fan (@] =0 for z, €68,, 2z, €6,

Continuing in analogous fashion, we prove the theorem. It will
be noted that the proof of the theorem does not depend on the mutual
arrangement of the domains &;.

Theorem 3.2 permits constructing analytic continuations of rela-
tions of the form (3-19) and (3-20). For example, consider (3-19)
and introduce the functions w,, w,, w; of the complex vamables
2,, 2, and z; = 2z, + 3z,

w, =¢e', w,=e? Ww;=e8 =it (3-26)
Consider the function of three complex variables

F lwy, w,y, wg]l = wy — w, -w, (3-27)

Since the functions (3-26), (3-27) are entire functions of their vari-
ables, and F =0 for z;, = x,, 2, = z,, 23 = Z3 (—o0 < z; << o0), all
the conditions of Theorem 3.2 are fulfilled and this proves the va-
lidity of the relation (3-19) for any values of the complex variables
z, and z,.

¢. Properties of elementary functions

Now let us study in more detail the basic properties of the earlier
introduced elementary functions of a complex variable. By virtue of
Theorem 3.1 and Theorem 3.2 for all values of the complex variable
2, we have the relations

sinfz 4 cos? z =1 (3-28)
cosh? z — sinh?z =1 (3-29)

and other familiar identities for the various trigonometric and
hyperbolic functions of one complex variable. We also have the
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relations
erttz2 — e21. 022 (3-30)
sin (z; + 2,) = sin z4 €os 25 -} COs z; sin 2z, (3-31)
cos (2; + 2,) = cos 2, ¢os 2, — sin z, sin z, (3-32)

and other trigonometric formulas which are analytic continuations
into the complex domain of familiar relations for elementary func-
tions of a real variable.

We will establish a relationship between the exponential function
and the trigonometric functions of a complex variable. To do this,
we return to the expression (3-7) for the function e¢* and make the
substitution z = i{. Then

[+ <)
n
il — in _§_
e Z -
n=0

Breaking up this absolutely convergent series into a sum of two
series, we get

00

i - n L2n . n  fnH
eit= 3 (—1) (2n)!+‘2 (=) s
n=0 n=0
that is,
eit — cos ¢ + isin ¢ (3-33)

It is obvious that this identity holds for all values of the complex
variable .

The relation (3-33) which establishes a relationship between the
exponential function and the trigonometric functions of a complex
variable is called Euler’s formula, which yields the following very
important formulas*

cos 2= %- (e e (3-34)
and

sin z ='21—i (e —e™¥) (3-35)

Using these formulas and formulas (3-10) and (3-11), it is easy to
set up relations connecting the trigonometric and hyperbolic func-
tions of a complex variable:

sin z = —i sinh iz, cos z = cosh iz (3-36)
In particular,

sin iy = isinh y, cosiy = coshy (3-37)

* Recall that in Chapter 1, using these formulas, we defined the functions
cos z and sin 2, and also formally introduced the Euler relation.
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We will establish certain other important properties of these
functions. First, however, note that by virtue of formula (3-30)
we have the relation

w= e =W = ¢*.e% (3-38)
Whence it follows that | w | = ¢* and arg w = y.
z
Now let us consider the function w = In z = S ‘%, which is an

0
analytic continuation of In z into the complex plane cut along the
negative real axis. Since for real positive z, the function ln z is in-
verse of the exponential function, then by Theorem 3.1, in the inter-
val —n << arg z << m, the relation

ez — 7 (3-39)

holds, which is an analytic continuation of the relation enx =
= z (z >0) into the complex plane. Thus, the functior ln z is the

inverse of the function e®.
Note an important corollary to formula (3-39). By virtue of this
formula and of (3-38) it follows from w = uw + iv = In z that

= eUtiv — pu piv (3_40)

z = e¥
Whence |z | = ¢*, arg z = v, and since u and |z | are real vari-
ables, we finally get
u=1In|z|, v=argz (3-41)

where the symbol In |z | denotes the real logarithmic function
of a real positive argument. Thus, for the function In z of a complex
variable we get an algebraic notation in the form

Inz=1In|z|+ iargz (3-42)
From (3-42) we obtain the values: In i =i -;l. In (1) =0, In (—i) =
=—ig,In(1+)=In Y2+ i F and so forth.

In similar fashion, on the basis of Theorem 3.1, it is easy to show
that the function arcsin z defined by formula (3-15), is also the
inverse of the function sin z, i.e.

sin (arcsin z) = 2 (3-43)

Above we established a relationship between an exponential
function and the trigonometric functions. It is quite obvious that
the inverse functions of the given ones, say In z and arcsin z, are
also connected by definite relations.
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By virtue of (3-43), from the expression w = arcsin z there fol-
lows z = sin w, which, according to (3-35), may be rewritten as

1, . .
2= (e —e~i¥) (3-44)
or )
e 2ize™ 1 =0 (3-45)
Solving the quadratic equation (3-45) for ', we have
ev =iz 1—22 (3-46)

We do not write the sign + in front of the radical because the func-

tion }/1 — 2® of the complex variable z is itself a multiple-valued
function (see page 28, Chapter 1). Here the choice of branch of the

multiple-valued function J/'1 — 2% is made so that the function at
hand w = arcsin z is an analytic continuation of the corresponding
function of a real variable. From this last condition, it follows that
the value of the root to be taken must be positive for positive real
values of the radicand. From (3-39) and (3-46) it follows that

iw=Inliz+V1—22]

whence we finally obtain
w=arcsinz= —iln[iz+ ) 1—2%] (3-47)

At first glance, this expression is rather complicated, and one is
inclined to have doubts as to whether it indeed yields real values
of arcsin z for real values z = z satisfying the condition |z | << 1.

It is easy to dispel any doubts, however. Denote { = iz + V1 — 2°.
For real values z = z satisfying the condition |z |<<1, we
obtain! | { | =V +1 —22 =1 and arg { = arctan —— =

Vi—xz

= arcsin . Whence, by virtue of formula (3-42), we have —i ln £ =
= —i[ln1 + i arg &] = arg { = arcsin .

Since the function (3-42) is defined for all values of its argument
in the complex plane with a cut along the negative real axis, it
follows that formula (3-47) yields an analytic continuation of the
function arcsin z into a certain domain of the z-plane. Then the
points z = 41 turn out to be singular in a certain sense. Indeed, as
a result of circling any one of these points in the z-plane around
a closed curve belonging to a sufficiently small e-neighbourhood
of the point, upon continuous variation of the function (3-47) it
will change its value, since in a single circuit about the point z = 1

or z = —1 the function }/1 —z% changes its value.* For this rea-

* See pages 29-30.
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son, for the domain of single-valued definition of the function (3-47)
one can choose, say, the extended z-plane with cuts along intervals
of the real axis [—oo, —1], [1, ool.

d. Mappings of elementary functions

To conclude this section, which is devoted to the elementary
functions of a complex variable, we consider certain geometric
properties of mappings performed by these functions. We start with
the simplest examples.

Example 1. In Chapter 1 we considered the elementary power
function w = z2. We will now examine a mapping by the function

w=7z" (3-48)

where n is an arbitrary integer. This function is obviously an entire
function. In the study of the geometric properties of its mapping,
it is convenient to use the exponential notation of complex numbers:
z = pei®, w = rei® = p"in®, from which it follows that any sec-

tor* with central angle a = 27" of the z-plane is mapped by the

given function onto the extended complex w-plane. Different interior’
points of this sector are mapped onto different points of the w-plane.
In the process, the boundaries of the sector are mapped into one
and the same ray Y = ¢, in the w-plane. In order to establish a re-
ciprocal one-to-one correspondence between the univalence domain
of the function z" and the w-plane, we will take it that there is a
cut in the w-plane along the ray ¢y = ¢,, and with the boundaries
of the given sector of the z-plane are associated different lips of the

cuts. For example, the sector 0 << ¢ < 2%‘of the z-plane is mapped

by the function (3-48) onto the extended w-plane, and both boun-
daries of the sector, rays I and /I in Fig. 3.1, go into the positive

real u-axis of the w-plane. The sector 2—,’7‘<cp < é;—‘ is also mapped

onto the extended w-plane, etc. Therefore, the geometric image of
the function w = z" is the w-plane repeated n times. Thus, the
mapping of the extended z-plane onto the extended w-plane by this
function is not one-to-one. However, if for the geometric image
of the w function we consider a more complicated manifold than
the ordinary complex plane, the one-to-one nature of the mapping
can be preserved. Suppose we have n sheets of the w-plane cut along
the positive real axis, on each of which arg w varies over the interval
2n (b — 1) < arg w << 2nk, where k=1, 2, ..., n. Then, the

* By a sector we mean a closed domain together with its boundaries.
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function (3-48) associates with the sector 27? -1 <oKL 2n—” k of

the plane z the kth sheet of the w-plane; the ray ¢ = 2'—? (k—1)

goes to the upper lip of the cut of the kth sheet, and the ray ¢ = 2—2’-‘

to the lower lip of the cut of that sheet. Let us construct a contin-
uous geometric manifold out of these sheets so that to a continuous

motion of a point in the z-plane there corresponds a continuous mo-
tion of the point w on the given manifold. Note that the lower lip of
the cut of the kth sheet and the upper lip of the cut of the (k 4+ 1)th
sheet have the same argument ¢, = 2n-k. When the point z, moving
continuously in the z-plane, passes from one sector to another, its
corresponding point w passes from one sheet of the w-plane to an
adjacent sheet. Clearly, in order to retain the continuity of mapping,
we have to join adjacent sheets, the lower lip of the cut of the kth
sheet with the upper lip of the cut of the (k¥ + 1)th sheet. Then
the upper lip of the cut of the first sheet and the lower lip of the
cut of the nth sheet remain free. Let the point z make a complete
circuit about the point z = 0 in the z-plane, successively passing
through all n sectors of the plane, beginning with the first sector
and returning to its original position. Then the point w correspond-
ing to it will pass through n sheets, and we have to join the free
lips of the cuts of the 1st and nth sheets so that it can return to the
first sheet. Thus, the function w = z" associates with the extended
z-plane n sheets of the w-plane which are joined as indicated above.
Such a geometric manifold is a special case of a so-called Riemann
surface. The function w = z" is an n-valent function.

Ezample 2. Consider the mapping by the function w = ¢’. From
(3-38) it follows that this function asscciates with every complex
number z = x + iy a complex number w, the modulus of which is
¢* and the argument is y. This implies that the exponential function
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w = e* maps the straight line y = y, of the z-plane onto the ray
arg w = y, of the w-plane. As is readily seen, a strip of the z-plane
bounded by the straight lines y = 0 and y = 2r will go into the
extended w-plane, and the straight boundary lines y = 0 and y = 2n
will be mapped onto one and the same ray of the w-plane—the posi-
tive real u-axis (Fig. 3.2). There is thus established a one-to-one
mapping of the open domain 0 << y << 2n onto the w-plane with

g v

Fig. 3.2

removed positive real u-axis. In order to establish a one-to-one
mapping of the corresponding closed domains, we will assume that
a cut has been made along the positive real u-axis and a one-to-one
correspondence established between the upper lip of the cut and
the straight line y = 0, and also between the lower lip of the cut
and the straight line y = 25 of the z-plane. Thus, the exponential
function e* performs a one-to-one mapping of the strip 0 < y << 2=n
of the z-plane onto the extended w-plane cut along the positive real axis.*
In similar fashion it is established that the exponential function
performs a one-to-one mapping of any strip 2n-n < y < 2n (n + 1)
(n =0, &1, ...) of the z-plane onto the same extended w-plane
cut along the positive real u-axis. In the process, the points z, =
=z, + iy, and z, = x5 + i (y, + 2nk) (b = =1, 2, ...) pass
into one and the same point of the w-plane. This means that an
exponential function is an infinitely many-sheeted periodic function
of the complex variable z with imaginary period 2ni. The domain of
its univalence is any strip y, << y << y, + 2n that is mapped onto
the extended w-plane cut along the ray arg w = y,. Note that the
argument w in planes corresponding to different strips 2n.n <y <
<2n(rn+1) (n =0, 1, ...) varies respectively within differ-
ent limits. We thus obtain an infinite set of different sheets of the

* Then the boundary y = 0 of the strip goes into the upper lip of the cut of
the w-plane, and the boundary y = 2x into the lower lip.
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w-plane cut along the positive real u-axis. For a continuous motion of
w to correspond to the continuous motion of point z in the z-plane,
during which it passes from one strip to another, the appropriate
sheets of the w-plane have to be joined together; here it is obvious
that the upper lip of the cut of the rnth sheet must be joined to the
lower lip of the cut of the (» — 1)th sheet and the lower lip of the
cut of the nth sheet must be joined to the upper lip of the cut of the
(n 4 1)th sheet. The resulting geometric manifold forms a Riemann
surface with infinitely many sheets.

Similar reasoning also applies to trigonometric functions of a
complex variable. Note straight off that by virtue of formulas (3-34)
and (3-30) the trigonometric functions are infinitely many-sheeted
functions of a complex variable z that are periodic with real period 2x.
As in the case of the function e, it is easy to consider the geometric
properties of mappings accomplished by trigonometric functions.
We confine ourselves to the function cos z. With the aid of the above-
established properties of trigonometric functions we get

cosz =cos (z + iy) = u (z, y) + iv (2, y)
= cos z-cosh y — i sin z.sinh y

which implies that the function cos z maps the straight line z = z,
of the z-plane into a branch of the hyperbola

WYy (3-49)

cos? zg sin? zg

in the w-plane. For 0 < z, <-g , the straight line z = z, goes into

the right branch of the hyperbola, and the straight line £ = n — z,
goes into the left branch. As may readily be established, all hyper-
bolas (3-49) are confocal, their foci lying in the points =41 of the
n
2
onto the imaginary v-axis of the w-plane, and the straight linesz, = 0
and z, = m, into the rays [1, oo] and [—oo, —1] of the real u-axis
of the w-plane. Note that in the motion of the point z along a given
straight line (say the straight line z, = 0) the corresponding ray is
traversed twice. Thus, the function cos z executes a one-to-one mapping
of the strip 0 << x << = of the z-plane onto the extended w-plane cut
along the rays of the real axis [1, oo] and [—oo, —1]. In this case,
the upper semi-strip 0 <<z < m, y >0 goes into the lower half-
plane v << 0, and the lower semi-strip 0 << z < &1, y << 0 goes into
the upper half-plane v >0 (this is indicated by the appropriate
hatching in Fig. 3.3). It is easy to see that the next strip n <<z < 2n
is mapped by the function cos z onto the same extended w-plane
with cuts along rays of the real axis [1, oo] and [—oo0, —1]. Since
cos (z + n) = —cos z, the upper semi-strip n <<z <<2xn, y >0

real u-axis. The straight line z, = & is mapped by the function cosz
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goes into the upper half-plane v >0, and the lower semi-strip
n < z< 2n, y <0 goes into the lower half-plane v << 0 (Fig. 3.3).
The situation is obviously similar for any strip nn < 2 << (n + 1) .
Whence it follows that the strip nn << z < (r + 1) nt is the domain
of univalence of the function cos z. The function cos z is a function
of infinitely many sheets, and its range is the Riemann surface of

r\
Y7
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infinitely many sheets resulting from cutting the w-planes along
rays of the real axis [—oo, —1] and [1, oo] and joining them along
the appropriate lips of the cuts.

To conclude this discussion of the basic properties of an exponen-
tial function and the trigonometric functions, we investigate the
problem of the zeros of these functions. The exponential function
w = €* does not vanish for any value of the complex variable z,
as follows from formula (3-38). All the zeros of trigonometric func-
tions lie on the real axis. Indeed, if sin z = 0, then e** — e-** = 0,
e? = 1. But if the complex numbers are equal, then their argu-
ments differ by a multiple of 2%, whence z = nx, which proves the
assertion.
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Fig. 3.3

3.2. Analytic Continuation. The Riemann Surface

a. Basic principles.
The concept of a Riemann surface

The principal task of analytic continuation is the extension of
the values of a function f (z) specified in a certain domain &’ to a
larger domain @.
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Let there be given in the complex plane two domains &; and
@, having a common portion* &,, (Fig. 3.4). Let the single-valued
analytic functions f, (z) and f, (z) be given, respectively, in &, and
®,, and let them identically coincide in the intersection @&,,.
Then the function F (z) defined by the relations

. fl(z)’ ZE@1
F(Z)—{fz(‘”% z2€68,

is analytic in the extended domain & = &,; | &, and coincides
with f, (z2) in &, and with f, (z) in &,.

The function F (z) is called the analytic continuation of the func-
tion f, (2) (f, (2)) into the domain & = &; + &,. The function

(D)
@ &

Fig. 3.4 Fig. 3.5

(3-50)

fa (2) (fy (2)) is also called the analytic continuation of the function
f1 ) (f5 (2)) into the domain &, (&,).

It is readily seen that the analytic continuation of F (z) of the
function f, (z2) into the domain & = &, 4 &, is defined uniquely.
Indeed, an assumption that there are two different functions in the
domain & identically coinciding with f; (z2) in the domain &,
leads to a contradiction with the theorem of the uniqueness of defi-
nition of an analytic function that was proved in the preceding
chapter.

The foregoing method of analytic continuation of a function
f. (z) from a domain &, into a broader domain @ is the simplest
form of the principle of analytic continuation.

* Various cases are possible here. For example: (a) the domain @, lies within
the domain ®,, then @,, obviously coincides with @,; (b) the intersection ®,,
is a singly connected or multiply connected domain; (c) the intersection @,
consists of several (perhaps, infinitely many) separate connected domains.
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Now let us examine the case when the functions f, (z) and f, (z)
coincide identically only on the part &;, of the overlap, &,,, of

the domains &, and @, (Fig. 3.5). Consider the domain & = &, -+
+ 8, — ®;,, where @], = &,, — @,, is that part of the overlap
@®,, in which the functions f, (z) and f, (z) are different. According
to earlier considerations, a unique analytic function F (z) is defined
in @, which function is an analytic continuation of f, (z) specified

in the domain &, — &], into the domain &. This function coin-
cides indentically with the function f, (z) in the domain &, — &},

and with f, (z) in the domain , — @],. The function F (z) may
be analytically continued to the set &7, in two ways:

B F'(z), z2€@
F‘(Z)_{fl(z), €@, (3-51)

or

_[F(z), zc8
2 @) "‘{fz (2), z€6, -52)

This naturally makes it necessary for us to consider the multiple-
valued analytic function F (z) which is defined in the domain @ =
=@, +- &, and takes on different values at the same points of
the @], portion of the domain &. In particular, in the given case
we obtain a double-valued analytic function F (z) which at one
and the same point z, € &7, assumes two different values that coin-
cide with the values of the functions f, (z) or f, (z) at that point.

When dealing with the multiple-valued function F (z) having
different values at one and the same point of the complex plane,
one encounters difficulties in choosing its values at a given point.
To make the choice of these values more convenient, one frequently
makes use of the concept of a branch of an analytic function,* which
is single-valued and continuous in an appropriate part of the domain
of definition of the function F (z). However, there is a still more
convenient approach which permits regarding a given function as
single-valued but defined on a more complicated manifold than
the ordinary plane of a complex variable that has been used up
to now. Returning to the earlier example of the double-valued func-
tion F (z), we will consider that the domains &, and &, are joined
along the overlapping portion &;, in which the functions f, (z) and
fo (z) coincide, and the two sheets &7, that belong to the domains
@, and &, are left free.

Then, on the geometric manifold thus obtained, which is a union
of the domains &, and &, joined along &;, (so that the points

* That was our approach in Chapter 1 when studying the function z = |/ w.

7—3878
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belonging to &7, overlap twice), the function F (z) is a single-valued
analytic function.

A manifold constructed in this manner is called a Riemann surface
of the analytic function F (z), which is an analytic continuation of
the function f, (z) (f, (2)), and the separate sheets of the repeating
domains are different sheets of the Riemann surface.

Thus, instead of considering a multiple-valued function in the
complex z-plane, we can consider a single-valued function on a
Riemann surface. Asin the simplest case considered at the beginning
of this subsection this method of analytic continuation of a function
f1 (2) from a domain &, into a broader domain (which then repre-
sents a Riemann surface) is a particular form of the general principle
of analytic continuation. Clearly it is possible, in a similar manner,
to construct analytic continuations of single-valued analytic func-
tions specified on a Riemann surface. We will then, naturally,
arrive at Riemann surfaces of many sheets; these would form a geo-
metric manifold which one and the same domain of the complex
plane enters not as two sheets but as many sheets. Appropriate
examples will be considered in Subsection 3.2.c. We now consider
another mode of analytic continuation.

b. Analytic continuation across a boundary

In a number of cases, the following method is used for analytic
continuation of a function f; (2) originally specified in a domain &,.
Let the domains &; and &, have the piecewise smooth curve T,

2

Fig. 3.6

(Fig. 3.6) as their common boundary and let there be given the
analytic functions f, (z) and f, (z) which are respectively continuous
in 8 4Ty, and 8, +TI';, and coincide on T',. Consider the set
of points & = @, + @&, 4 I'y,. Since the points z € I';, are inte-
rior points of this set, the set & is a domain. We will show that the
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function F (z) defined by means of the relations
, { fi(z), 2€8;+Tys

F (z)=
f2(2), 2€@,+Ty

is analytic in the domain & = @&, 4 &, 4 I';,. It obviously
suffices to prove that for each point z, of & lying on the curve I';,
it is possible to indicate a neighbourhood such that in it the func-
tion F (z) is analytic. Take an arbitrary point z, € I';, and construct
a circle C, centred in this point and lying entirely in &. Consider
an integral of the Cauchy type:

' _1 F @)
@ (2) —mj e (3-54)
Co
By virtue of the earlier established properties of integrals dependent
on a parameter (Chapter 1, page 53), the function @ (z) is an analyt-
ic function of z for any position of the point z not lying on the curve
Co. We will show that when the point z lies inside the circle
Co, @ (z2) = F (z). Indeed, represent the integral (3-54) in the form
1 F@ - 1 1@ 1 f2 (©) _

WS {—z & =7a S T2 Bt o S T—s df  (3-55)

Co Cytvye V19+Cy
where C; and C, are parts of the circle C, lying in &, and
8,(Co =C, +C,) and v,, is a portion of the curve I,, lying
inside the circle C,. If the point z belongs to the domain &,, then

by Cauchy’s theorem,* we have

1 Hh@ g 1 f2 (£)

Sl S f-_—?dt'_jl (2)s brT S _§2-_—7dc=0 (3-56)
CiH+vyp ¥121+Ce

whence @ (z2) =f,(z2) = F(z2) for z€@,. Similarly, ® (z) =
= f, (z2) = F (2) for z € ,. In the point z,, which belongs to y,,,
by virtue of continuity of the functions @ (z), f; (z), f, (z) inside
the circle Cy, we will also have @ (zy) = f; (2z0) = f, (30) = F (o),
whence it follows that F (z) is an analytic function in the domain &.

As in the preceding case, we will say here that the function £, (z)
(f; (2)) specified in the domain &,; (®,) is aralytically continued
into the domain &, (8,). The above-constructed function F (z) is
an analytic continuation of the function f, (z) into the domain @ =
=@, 4+ @, + I'y,. This construction is a special form of the general
principle of analytic continuation—analytic continuation across the
boundary of a domain. And also, as in the previous cases, in contin-
uing across a boundary, we may find it necessary to consider a

(3-53)

* The applicability of Cauchy's theorem to the integrals on the right of
(3-55) is obvious due to the assumption that the curve I';, is piecewise smooth
and due to the choice of the curve C,.

7
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single-valued analytic function on a Riemann surface in cases when
the domains &, and &, have aside from the common portion of the
boundary TI';,, a nonempty intersection &,,, in which the functions
fi (2) and f, (2) are not identically equal to each other.

Let us now consider a number of examples in applying the general
principles of analytic continuation that lead both to multiple-valued
and single-valued functions.

¢. Examples in constructing analytic continuations.
Continuation across a boundary

Consider some examples of the construction of an analytic con-
tinuation of a function f, (z) originally specified in a domain &,
of the complex z-plane. As was noted above, in a number of cases
we find it necessary to examine functions that are multiple-valued
in the complex plane.

In Chapter 1 we already had an elementary example of a multiple-
valued function of a complex variable, the function w = }/ z*,
which is the inverse of the power function z = w?. We now consider
this and a few other functions from the general viewpoint of analytic
continuation.

Ezample 1. The function w = ;/z. According to the rule of ex-
tracting the nth root of a complex number, to one value of z there
correspond n distinct complex numbers w computed from the for-
mula

. 9427k

w=retv=7"pe *  (k=0,1,...,n—1) (3-57)

where z = pei® and ¢ is one of the values of Arg z. The function

w= .’/ z is a multiple-valued function having n distinct branches.
We will assume that ¢ varies within the interval 0 < ¢ < 2n and

we will choose that branch of the function w = 'z which is an

analytic continuation of the real function u = {/ z of the real posi-
tive variable z > 0. Clearly, it will be

A
w=y"pe " (0<o<2n) (3-58)

The domain @&, of definition of the function w, is the z-plane cut
along the positive real z-axis. The upper lip of the cut corresponds
to the value arg z = 0, the lower lip, to the value arg z = 2m.
Obviously, the function w;, which is the inverse of z = w", maps

the closed domain &, of the z-plane one-to-one onto the sector

* Here we have changed the designations of dependent variable and inde-
pendent variable.
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0 Largw < ?nﬁ of the w-plane. By virtue of the general properties

of analytic functions (see Chapter 1, page 33), the funetion wy in
the domain @&, is a single-valued analytic function whose deriva-
tive is computed from the formula
1 1 1-n
. 2 = - jo—1
wig) =5 at =g e e

Now consider the closed domain &,—the same z-plane .With a
cut along the positive real z-axis, but such a plane in which the
argument z varies within the interval 2n < arg z < 4n. The upper
lip of the cut corresponds to the value arg z=2m, the 10‘}’91‘
lip, to the value arg z = 4n. In this domain consider the function

_ e
wy () =y pe " (0<o<2n) (3-59)

This function maps one-to-one the closed domain &, onto the sector

zn—" K arg w <47n of the w-plane and is a single-valued analytic
function of z in the domain @,. The closed domains &, and &,
have a common portion of the boundary TI',,—the ray arg z = 2n—
on which the functions w, and w,, continuous, respectively, in
@, +T,, and &, 4 I, coincide. Therefore, by virtue of the
principle of analytic continuation across a boundary, the function
w, (z) is an analytic continuation of the function w, (z) into the
domain @,. On the other hand, &, and &, actually overlap in the
z-plane, since the points of a complex plane with equal moduli and
with arguments differing by 2x coincide. Since the functions (3-58)
and (3-59) have different values at one and the same point z, it
follows that by earlier considerations in order that the function

F.(2) ={ wy (z), 2€G;+Ty (3-60)
wy (2), 2€8,+Ty,
should be single-valued in the domain of its definition R, = &, +
+ @, + I, we have to assume that the manifold R, is @ Riemann
surface made up of the sheets &, and @, joined together. Clearly,
the sheets should be joined along the common portion of the boun-
dary T,, the ray arg z = 2n, by connecting the lower lip of the
cut of domain &, with the upper lip of the cut of the domain &,.
Repeating our reasoning, we will find that the function
_ jot2m
wiy (=7 pe " (0<e<2m) (3-61)

defined in the closed domain &,;, (2nk argz < 2n (k +1))
is an analytic continuation of the function w, (z) defined in &,.
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Note that the function w,+, (z) identically coincides with the func-
tion w, (z). And so it is natural to consider the single-valued ana-
lytic function

[ wy(2), 2 €8, 4Ty,
F(z)={ " (2), 2€8,+ T2 4145 (3-62)

..... e o o o o o o

Wn (z)r 2¢ @n‘l‘r‘n—i n

defined on the Riemann surface R =68, + 8, ... 46, +
+Ty +... +Th-1n built up in the way mentioned above by
joining the n sheets that form the z-plane with a cut along the posi-
tive real z-axis. Then the upper lip of the cut (arg z = 0) on the

Fig. 3.7

first sheet &, and the lower lip of the cut (arg z = 2nn) on the nth
sheet &, remain free. In order to retain the continuity of the func-
tion F (z) throughout the domain of its definition, we will join
these lips of the cuts (Fig. 3.7).* The function (3-62) is called the

complete analytic function w = V z, and the thus constructed closed
manifold R is termed the complete Riemann surface of this function.
On each sheet of the Riemann surface is defined a separate branch
of the given multiple-valued function.

We bring attention to the following circumstance. Fix on the
z-plane a certain point z, and draw through it a closed curve C.

* Join cut sheets of paper to get a better pictorial view of what occurs.
Howe\i']er, the last joint is physically impossible and can only be visualized
mentally.
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Then if arg z varies continuously in motion round the curve C, and
C intersects the branch cut in the z-plane, then two cases are a priori
possible in one complete circuit of the curve C (Fig. 3.8). In the
first case, the point z = 0 lies outside the curve C. Therefore, start-
ing from the point z = 2z, (arg zo = @,) on the Fkth sheet,* we
return, after a circuit of this curve, to the original point z, on the
same kth (arg z, = @,) sheet, although we crossed onto other sheets

0 - =
¢ (z) @)
z=0
/
., © O
(2) {2)
N ~

Fig. 3.8

as we intersected the branch cut. In the second case, the point z = 0
lies inside the curve C. And so, starting from the point z = z,
(arg zo = @,) on the kth sheet, we return, after traversing the curve
C, to the point z = z, not on the original kth sheet, but, say, on
the (k 4 1)th sheet (argz, = ¢, 4 2nt). The point z,, which is
encircled via any closed curve in a sufficiently small neighbour-
hood of the point and during the circuit of which we pass from one
sheet of the Riemann surface of the analytic function F (z) to another
sheet, is called the branch point of the function F (z). It is easy to
see that this definition of a branch point is equivalent to the defi-
nition given on page 29 of Chapter 1. Obviously, in the case at hand
of the function w = |z, the branch points are z = 0 and z = oo.

Ezample 2. The function w = Ln z.

In the closed domain &,, which is the z-plane cut along the nega-
tive real axis —xn < arg z < m, consider the function Iln z, which
was discussed in the preceding section:

wo=1In(2) =1In|z]| J-iargz, —nLagzLn (3-63)

We know that this single-valued analytic function is an analytic
continuation of the real function « = In z and is the inverse of
the function z = ¢ . Therefore the function (3-63) maps the domain
@, of the z-plane onto the strip —n <<I w <<z of the w-plane.

* Fig. 3.8 corresponds to the case k& = 1.
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In the closed domain @, (n << arg z < 3n) consider the function
wy,=1n,(z) =1n |z | 4iargz, =nLargzL3n (3-64)

Clearly, the function w, (z) is an analytic continuation of w, (z)
into the domain &,. Analogously, the function

w_,(z=In_,(¢) =1In|z]| f+iargz, —3n Largz L —an (3-64')

defined in the closed domain & _; (—3n < arg z < —n) is an ana-
lytic continuation of the function w, (z) in the domain & _,. The
same goes for the function wy, (z):

wr, (z) =In, (2) =In |z | 4iargz, n(2k—1) Largz K
<L n(2k +1) (3-65)

defined in the closed domain &, n (2k — 1) < argz < n 2k + 1),
which is the analytic continuation of the function wjy_; (). The
function wy (z), which uniquely maps the domain &, onto the
strip n (28 — 1) < Im w < nt (2k 4 1), is also the inverse function
of z = e" . Unlike the preceding case, not one of the functions
wy, (2) (k 5= 0) is identically equal to the function w, (z). Therefore
the given process of analytic continuation should be carried out
indefinitely both for ¥ > 0 and for k¥ << 0. Thus the complex ana-
lytic function

F(z)=Lnz=In|z|+4iArgz

wy(z), 2€68,+ T, 14Ty
=1! wy(z), 2€G9+Ty, 1+ 7Ty, -4 (3-66)
woy(2), 2€8_4+Tp, 4 +T_y,

is an infinitely-valued function in the ordinary z-plane and single-
oo

valued on the infinitely-valent Riemann surface R = ) &, com-

n= —oo

posed of infinitely many sheets &, by joining the upper lip of the
cut of each (¢ + 1)th sheet with the lower lip of the cut of the pre-
ceding kth sheet. As in the previous case, the points z = 0 and
z = oo are branch points of the function Ln z.

Note again that the function w = Ln z is the inverse of the func-
tion z = e*. This permits defining the power function z* for any
complex value of o in the form

7% = (lnz)a = ealnz (3-67)
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d. Examples in constructing analytic continuations.
Continuation by means of power series

In the cases we have examined, the various branches of an ana-
lytic function were specified explicitly in the entire complex plane
and the analytic continuation was constructed by an appropriate
joining of the domains of definition of the branches. We now consider
yet another method of construction of the analytic continuation
of an analytic function originally specified in some domain &,
of the complex z-plane.

Let the function f, (z) be analytic in the domain &,. Choose an
arbitrary point z, € 8; and expand f; (2) in a power series in the
neighbourhood of this point:

@)= ema—zn)=3 L@z (368

n=0 n=0
Consider the series on the right of (3-68). A priori, there are two
possible cases (Fig. 3.9). In the first case, the radius of convergence

1?

(a)
Fig. 3.9

R, of the series (3-68) does not exceed the distance from the point
2y to the boundary I'; of the domain @,. In this case, the expansion
(3-68) does not go beyond the boundary of the domain &, of the
original definition of the analytic function f; (z). In the second
case, the radius of convergence R, of the series (3-68) exceeds the
distance from the point z, to the boundary I'; of the domain &,.
In this case, the domain &, which is the circle |z — z, | < R, is
no longer a subdomain of ®&, but only has a common overlapping
portion &,,. In @,, the convergent power series (3-68) defines an
analytic function f, (z) that coincides with f; (z) in &,,. This func-
tion f, (z) is the analytic continuation of f, (z) into the domain
@,. Consequently, there is defined in the domain & = &, + &,
the analytic function

fi(z), z2€6,

(@), €6, (3-69)

F(z)={
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Thus, in the case at hand, the expansion (3-68) takes us beyond the
boundary T'; of the domain &, of the original definition of the ana-
lytic function f, (z2). Reasoning similarly for some point z, of the
constructed domain &,, then for point z, of &, and so forth, we
get the analytic continuation of the function f, (z) along a chain
of domains &;, 8,, ..., 8,, ... . Here, there may be such over-
lappings of domains of the chain that make it necessary to consider
the function F (z) as a single-valued analytic function defined not
in the ordinary complex z-plane, but on a Riemann surface.

Let us take an instance of this method of analytic continuation.

Ezxample 3. Let the function f, (z) be originally specified by its
power series

f1(2).= ’20 z" (3-70)

This series converges inside the circle |z | <<1 to the analytic

function f; (z) = -1-1—‘. Everywhere outside the circle |z | <1,

the series diverges; hence, f, (z) is not defined outside the circle
|2 | << 1. Choose some point z, inside the circle |z | <<1, and

construct the power-series expansion of f, (z), > ¢, (z — 2"
0

n=
centred in this point. Computing the coefficients ¢, from formu-
=™ - It is easy to show that the radius

of convergence of the given series p (z,) is |1 — 2z, |. As follows
from elementary geometric reasoning, when the point z, does not
lie on a segment of the real axis [0, 1], the circle of convergence of
the given series goes beyond the original circle of convergence | z | <<

la (2-16), we get ¢,=

< 1. Hence, the function f, (z) = > —1(’_47
n=0 ( —30)

continuation of the function f; (z) into the domain |z — z, | <
<|1—2]|
Note that the power series defining the function f, (z) is also read-

ily summable, and f, (2) = 1—12—. Therefore, taking as the new

centre of expansion the point 2, inside the circle |z — z5| <<
< |1—2], we get the series 2 (z———zif-

n—0 (1—zq)n+t
inside the circle |z —z, | << |1 — 2, | to the function f; (z) =
= ﬁ , which coincides with f, (z) and f, (z) in the overlapping
parts of the circle |z — 2, | << |1 — 2, | and of the domains of

definition of the appropriate functions. Thus, f, (z) is an analytic
continuation of f; (z) into a new domain. Note that for any choice

is an analytic

which converges
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of the point z;, the boundary of the appropriate circle of convergence
will pass through the point z = 1 (Fig. 3.10). In similar fashion it
is possible to construct the analytic continuation of the function
fi (2) into the extended plane of a complex variable, except the
point z = 1. Then, the function F (z) = 111
and analytic everywhere, except at the point z = 1, is the analytic
continuation of f, (z) obtained by means of power series.

defined everywhere

Fig. 3.10

We have thus been able to extend the domain of the original
specification of the analytic function F (z)—the circle |z | <<1
in which the function f, (z) was specified—to a greater domain. Ob-
serve that although there are numerous cases of overlapping of the
constructed chain of domains, the resulting analytic function F (z) =

=1 -1—3 is single-valued throughout the domain of its definition,

that is, in the extended z-plane with the point z = 1 removed. A
further analytic continuation of the function F (z) to a greater domain
is now impossible. The point z = 1, which is the limit of the domain
of analyticity of the function F (z) is, in a definite sense, a singular
point of this function. The behaviour of an analytic function in
the neighbourhood of such points deserves a more detailed study.
This will be done later on.
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e. Regular and singular points
of an analytic function

Let a function f (2) be given in a domain & bounded by a contour
I'. The point z, €  is called a regular point of the function f (z) if

there is a convergent power series ), ¢, (z — zo)", which in the overlap-
n=0

ping part of the domain & and of its circle of convergence |z — z, | <<
<< p (2zo) converges to the function f (z). Only one restriction is imposed
on the value of the number p (zp): p (z,) is strictly greater than
zero. The points z € 8, which are not regular points of the func-
tion f (z), are called singular points. Clearly, if f (z) is analytic in
the domain &, then all interior points of the domain are regular
points of the function f (z). The points of the boundary I' may be
either regular or singular points of the analytic function f (z). It is
obvious that all the points of the boundary I' lying inside the circle
|z — 25 | < p (20) centred in some regular point z, € & are also
regular points of the function f (z). Thus, in the above example, all
the points of the boundary |z | = 1 of the domain of the original

definition of the function f, (z) = D)z", with the exception of
n=0

z = 1, are regular points. The sole singular point of this function
can only be z = 1. It is also a singular point of the function F (z) =

11_2 , which is the analytic continuation of the function f, (z)

into the extended domain. Similarly, the points z =0, oo are
singular points of the functions }/'z and Ln z, considered in Subsec-
tion 3.2.c.

Let the analytic function f, (z) be originally given in the domain
@, and let all points of the connected section I'' of the boundary T’
of this domain be regular points of the function f; (z). Then from the
foregoing reasoning it follows that f, (z) may be analytically con-
tinued across I'’ into a greater domain. It may turn out that all the
points of the boundary I' of the domain @&, of the original specifica-
tion of the analytic function f (z) are regular. In this case, the func-
tion f (z) will be called analytic in the closed domain &,. It follows
from earlier reasoning that a function which is aralytic in a closed
domain &, may be analytically continued into the greater domain &
which contains &,.

Analytic continuation across a portion of a boundary containing
only singular points of the function f, (z) is obviously impossible.

We give an example of an analytic function (specified in a bound-
ed domain) that cannot be continued to a greater domain.
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Ezample 4. Consider the analytic function f (z) specified by the
power series

1@=3 (3-71)

As is readily determined by means of elementary characteristics,
the series (3-71) converges inside the circle |z | << 1. For a real

oo
z — 1, the sum ) z%" increases indefinitely; the point z = 1 is

n=0
thus a singular point of f (z). We will show that the points zy,,=

,om
1—m .

=e¢ 2* | where m =1, 2, 3, ..., 2 (k is any natural number)

are also singular points of the function f (z). To do this, consider the

.27

point  Zz , = p-el 2R " (0 <p< 1) and represent the value of
f (2) at this point in the form

h-1 oo
1 (2r, m) = 20 ZE, m+n2h zlg!. m (3-72)

The first term in (3-72), which is the sum of a finite number of terms,
is bounded in absolute value, and the second, by virtue of choice
of the point 2z, ,, may be transformed to
3 =3 (3-73)
n=R n=R
As p — 1, the sum of the expression on the right of (3-73) increases
without bound. This proves that the points z,, , are singular points
of the function f (z). But as &k — oo, these points are everywhere
dense* on the circle |z | = 1, thus implying that the function
(3-71) indeed cannot be extended across any arc of the circle.
While constructing the analytic continuation of the function

F (z) = Ti_z by means of power series we saw that the boundary

of the circle of convergence of every element f, (z) of it passes through
the point z = 1, which is a singular point of the function. Thus,
on the boundary of the circle of convergence of any one of the con-
structed power series there lies a singular point of the analytic
function to which the series converges. This property is a general
consequence of the following theorem.

T heorem 3.3. On the boundary of the circle of convergence of a power
series, there is at least one singular point of the analytic function F (z)
to which point the series converges.

* What this means is that there will be points of the sequence {3} in any
e-neighbourhood of every point of the circle | z| = 1.
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Proof. Suppose that all points of the circumference C, of the

00

circle K, of convergence of the series f(z)= ) ¢n(z—2,)" are
n=0

regular, i.e. for any point z€C, there exists a p(z) >0 such that

in the common part of the circle K, and of its circle of conver-

oo

gence |z—z|<p (z) the corresponding series }_‘, ¢n (2) (3—2)™ con-
verges to f(z). Let the radius of the circle Ko be R,.

Fig. 3.11

Consider the function p (2) defined on the circumference Co. We
will show that for any two points z1 and z2 on C, the condition

e () —p (2) | <|2— 2, (3-74)

is fulfilled. Indeed, suppose that it is not fulfilled; for example,
P(2) —p(z) = |2 —2, | +0, where &> O Then the circle

|z — 2z | < p (z,) of convergence of the series 2 cn (z,) (2 — zl)" =
n._.

= f, (2) lies inside the circle |z — z, | << p (25) of convergence of
the series D) e, (25)(z — z,)" = f, (2) (Fig. 3.11). In the overlapping
n=0

portion of these circles and of the circle K, both series converge to
the same function f(z). Hence, the function f, (z) is an analytic
continuation of the function f; (z). This means that in the circle
|z — 2, | <p (z) + 6 there is defined the analytic function fy(z),
which coincides with f; (z) in the circle | z — 2, | < p (z,). By Tay-
lor’s theorem it then follows that the radius of convergence of the
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(-]
series ) ¢, (2,) (z — 2z,)" is at least p (z;) + 8, which contradicts

n=0 .
the starting data. The condition (3-74) is thus established.
This condition implies the uniform continuity of the function

p (z) on the curve C,. Indeed, the relation |p (z) — p (z,) | < €

is fulfilled for any prescribed £>0 provided the condition |z, — Zyl <

< ¢ is fulfilled. Since the function p (‘) > 0, it is bounded from
below and by virtue of continuity attains its greatest lower bound

p (z) = > p (20) = po >0 on C,. This inequality holds true because

for all z € C, the strict inequality p (2) > 0 is fulfilled.

By the uniqueness of analytic continuation it may be asserted
that in the circle |z — zy | << Ry + po is defined a single-valued
analytic function F (z) that coincides with the function f (z) in the
circle |z — 2z, | << R,. Hence, the radius of convergence of the

original power series ), ¢, (z — 2,)" should be R, + po, and not

n=0

R,. But this contradicts the hypothesis of the theorem. Thus, the
supposition that all points of the boundary of the circle of conver-
gence are regular leads to a contradiction. The theorem is proved.

From Theorem 3.3 it follows that the radius of the circle of conver-
gence of a power series is determined by the distance from the centre of
convergence to the nearest singular point of the analytic function to
which the given series converges

f. The concept of a complete analytic function

The foregoing considerations have made it possible to construct
an analytic continuation of a function f, (z) given in a domain &,
to a greater domain 8 = &,; 4 &, or to a corresponding Riemann
surface. As we have seen it is possible to regard an analytic contin-
uation along a chain of domains &,;, &,, ..., &, having over-
lapping portions ®&; ;4, in which the analytic functions f; (z),
fa (), ..., fa (2) specified in the domains &,, &,, ..., &, coin-
cide. We then obtain, in the domain 8 =&, +8, ... + 8,
or on a corresponding Riemann surface R, a single-valued analytic
fur(nc)tion F (z), which is an analytic continuation of the function
h (2).

If the analytic function f, (z) is originally specified in a domain
@,, then, by constructing different chains of domains that go beyond
®,, we can obtain an analytic continuation of the function f, (z)
to various domains containing &,. Here, the essential thing is the
concept of a complete analytic function.

The function F (z) obtained by means of an analytic continuation
along all possible chains of domains extending beyond the domain &,
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of the original specification of the analytic function f, (z) is called the
complete analytic function. Its domain of definition R is called the
natural domain of existence of the complete analytic function.

According to the reasoning just carried out, the natural domain
of existence R of a complete analytic function F (z) may be a Rie-
mann surface. Observe that an analytic continuation of the function
F (z) beyond the boundary I of its natural domain of existence R
is then impossible. All points of this boundary are then singular
points of the function F (z). This can easily be proved. Assume that
the point z, € I' is a regular point of the function F (z). In that case,
by the definition of a regular point, there exists inside the circle
|z — 2o | << p (20) a certain analytic function @ (z) that coincides
with F (z) in the common part of the given circle and of the domain
@. But the circle |z — 2z | < p (30) definitely goes beyond the
domain &, and so @ (z) is an analytic continuation of the complete
analytic function across the boundary of its natural domain of
existence, which is not possible.

In the examples examined in the earlier parts of this section, we
constructed a series of complete analytic functions and their natu-
ral domains of existence. Thus, the natural domains of existence

of the complete analytic functions V z and Ln z are the n-valent and
infinitely-valent Riemann surfaces, respectively; the natural domain

of existence of the complete analytic function is the extended

1
1—3z
complex plane with point z= 1 removed; the natural domain of
existence of the function (3-71) considered in Example 4 is the unit
circle |z | < 1.

Here, the domain &; of the original specification of the analytic
function f, (z) is such that an analytic continuation of the function
f1 (z) across the boundary I'; of the domain &, is impossible. This
implies that f, (z) is a complete analytic function and &, is its
natural domain of existence. However, if the domain @, is such
that an analytic continuation of f; (z) into a greater domain is pos-
sible, then the function f, (z) is called an element of the complete
analytic function F (z). The analytic continuation f, (z) of the func-
tion f, (z), specified in the domain &,, into the domain &, having
with &, the overlapping portion &,;, will be called the direct ana-
lytic continuation of the function f, (z).



CHAPTER 4

THE LAURENT SERIES

AND ISOLATED SINGULAR POINTS

In this chapter we will study the behaviour of a single-valued
analytic function in the neighbourhood of its isolated singular
points. A knowledge of this behaviour not only permits penetrating
more deeply into the nature of analytic functions, but also finds
direct practical utilization in numerous applications in the theory
of functions of a complex variable.

In earlier chapters we saw the great role played by power series,
in particular, the Taylor series in studying the properties of analytic
functions in a domain where there are no singular points of the
functions under study. An analogous role, in the study of the proper-
ties of analytic functions in the neighbourhood of their isolated
singular points, is played by the Laurent series.

4.1. The Laurent Series

" a. The domain of convergence of a Laurent series

Consider a series of the form

(=]

D oen(z2—2z)" (4-1)

n=-00
where z, is a fixed point in the complex plane, ¢, are certain com-
plex numbers, and the summation is over both positive and negative
values of the index n. The series (4-1) is called the Laurent series.

Let us determine its domain of convergence. To do this, represent
(4-1) as

D en(z—2z)"= Z cn (2— 20)" + 2 (T—c—_:.T (4-2)
n=-00 n=0 n=1

It is obvious that the domain of convergence of (4-1) is the common
part of the domains of convergence of each of the terms of the right

side of (4-2). The domain of convergence of the series ) ¢, (z — z,)"

n=0
is a circle of a certain radius R, centred at z, (as was established in
Chapter 2, the value of R, may, as a particular case, be zero or
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infinite). Inside the circle of convergence this series converges to
a certain analytic function of a complex variable:

oo

f1(2)= D) en(z2—20)", |2—20| <Ry (4-3)

©o

To determine the domain of convergence of the series 2 e
(z—zg)"
n={
make the change of variable §=7—1-z— . This series will then become
%0

oo

2 c.n&™ which is an ordinary power series convergent, within its
n=1

circle of convergence, to some analytic function ¢ ({) of the com-
plex variable {. Denote the radius of convergence of the resulting

power series by % . Then

1
? Q)= D) cul™, IB<z (4-4)
n=1
Returning to the earlier variable and putting ¢ (g (2)) = f, (2), we
get

fZ(z) Z (Z—Z )n ’ Iz—z0I>R2 (4-5)

This implies that the domain of convergence of the series 2 (z—z"o);
n={ \*7

in negative powers of the difference (z — z,) is the domain exterior
to the circumference |z — z, | = R, (the value of R,, like that
of R,, may, in a part1cula1 case, be zero or infinite).

So each of the power series of the right side of (4-2) converges in
its domain of convergence to an appropriate analytic function. If
R, < R,, then there is a common domain of convergence of these
series—the annulus R, << |z — z, | < R, in which the series (4-1)
converges to the analytic function

f@)=fH@) +/f(2)= 2 cn (2—329)", Ry<<|z2—32|<<R;y (4-6)
Since the series (4-3) and (4-4) are ordinary power series, it follows
that in this domain the function f (z) has all the properties of the
sum of a power series. This means that the Laurent series (4-1) con-
verges inside its annulus of convergence to some function f (z), which
is analytic in that annulus.

If R, > R,, the series (4-3) and (4-5) do not have a common do-
main of convergence, so in this case the series (4-1) does not con-
verge anywhere to any function.
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b. Ezxpansion of an analytic function
in a Laurent series

The natural question arises: Is it possible to associate a function,
which is analytic in some annular region, with a Laurent series
convergent Lo the function in the given annulus? The answer is
found in the following theorem.

Theorem 4.1. The function f(z), analytic in the annulus
R, < |z — z, | << Ry, is uniquely represented in the annulus by a
convergent Laurent series.

Proof. Fix an arbitrary point z inside an annulus R, << | 2 — 2z, |<<
<< R, and construct circles Cp; and Cr, centred at z, and of radii

Fig. 4.1

which satisfy the conditions R, << R; << R; << R,, R, << |z2—32,|<<
< R; (Fig. 4.1). According to Cauchy s formula for a multiply
connected domain, we have the relation

f@ =g | L a4 o 5—’1", dt (4-7)

C—»

CR1 R2
The inequality IZ:—:Eng<1 holds true on Cg;. And so,
1

representing the fraction —— in the form

— 4
2z

1 _ 1 G (a1
{—z C—2)—(@—2) (-2 , 32—z L[—2 Z (C—zo)

n=0

8*
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and performing term-by-term integration, which is possible by
virtue of the uniform convergence of the series in variable { (for
details see Chapter 2), we get

WO =g | L dt=3 cnc—2) (4-8)
Ch; n=0
where
1 A(9)
Cn':—m S Wdc, n>0 (4'9)
ai

5 We again have

Since the inequality l E—

giz == z—izo 20 ( 5:: )"

n=

Term-by-term integration of this series yields

h@)=gy | L&dr= 2 P (410)
Cﬁ;
where
Con= — 5o [ 1o @—ztat (4-11)
C-,

Reversing the direction of integration in (4-11), rewrite the expres-
sion in the form

_1 1(©)
Cen = S de, n>0 (4-12)
R3

Note that the integrand functions in (4-9) and (4-12) are analytic
in the annulus R, < |z — 2, | < R,. And so by virtue of Cauchy’s
theorem, the values of the corresponding integrals will not change
under an arbitrary deformation of the contours of integration in
the domain of analyticity of the integrand functions. This permits
us to combine formulas (4-9) and (4-12)

cn=—.’—5—‘”—§)‘_dc. n=0, &1, £2,... (413)

2ni ) (E—z)n*!

where C is an arbitrary closed contour lying in the annulus R, <<
< |z —2y| <R, and containing the point z, inside. Returning
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to (4-7), we obtain

f(z)= Z en (2 —20)" + 2 -Eé';‘—o)T= 2 cn(z—2z)" (4-14)
n=0 n=1 N=-00

where the coefficients ¢, for all values of the index »n are determined
by the uniform formula (4-13). Since z is an arbitrary point inside
the annulus R, << | z — 2, | << R,, it follows that the series (4-14)
converges to the function f (z) everywhere inside the annulus; and
in the closed annulus R, < R; < |z — z, | < R; < R, the series
converges to the function f (z) uniformly. It remains to prove the
uniqueness of the expansion (4-14). Assume that we have another
expansion:

oo

f@= 2 en(z—z)

n=-—o00

where at least one coefficient ¢, 5= ¢,. Then everywhere inside the
annulus R, << |z — z, | < R, we have the equality

2 ca(z—320)" = Z Cn (2—20)" (4-15)

Ne=—o00 n=-o00

Draw a circle Cy of radius R, R, < R << R,, centred at the point
z,. The series (4-15) converge on Cg uniformly. Multiply them by
(z — 2,)~™-!, where m is a fixed integer, and integrate termwise.

Consider S (z — zp)» ™! dz. Putting z — z, = Re'®, we have

Cr
25
> 0 ntm
—p\-m-1,, __ pn-m; i(n—m) — ’ -
cS(z %) di=R zéeﬂmwdw {2:ni, n=m (4-16)
R

Taking into account (4-16), we find that after the indicated integra-
tion of the expression (4-15), the infinite sums in the left and right
members of this expression will have only one term each that is
different from zero. And so we get ¢, = cp,. Since m is an arbitrary
number, this proves the uniqueness of the expansion (4-14). The
theorem is completely proved.

From the results obtained, it follows that the annular region
R, < |z — 2, | < Ry, on the boundaries of which there is at least
one singular point (singularity) of the analytic function f (z) to which
the series (4-1) converges, is the exact domain of convergence of the
Laurent series (4-1). This assertion is a corollary to Theorem 3.3.
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4.2. A Classification of the Isolated Singular Points
of a Single-Valued Analytic Function

A point z, is an isolated singular point of a function f (z) if f (2)
is single-valued and analytic in the annulus 0 < |z — z, | <
<< R, and the point z, is a singular point of the function f (z). The
function f (z) may not be defined at the point z, itself. Let us study
the behaviour of f (z) in the neighbourhood of z,. According to the
preceding section, the function f (z) in the neighbourhood of the
point z, may be expanded in the Laurent series (4-14), which is con-
vergent in the annulus 0 << |z — 2z, | << R,. Three different cases
are then possible:

(1) The resulting Laurent series does not contain terms involving
negative powers of the difference (z — z,).

(2) The Laurent series contains a finite number of terms with
negative powers of the difference (z — z,).

(3) The Laurent series contains an infinite number of terms con-
taining negative powers of the difference (z — z,).

The foregoing serves as a basis for classifying isolated singular
points. Let us examine each one of the above cases in detail.

(1) The Laurent series of the function f (z) in the neighbourhood

of its isolated singular point z, does not involve terms with negative
00

powers of the difference (z — z,), i.e., f(2) = D¢, (z — zo)" It is
0

n=
readily seen that as z — z, there is a limiting value of the function
f(z), and it is equal to c,. If f (2) was not defined at z,, then we
redefine it putting f (z5) = ¢,. If the originally specified value of
f (z,) does not coincide with c,, we change the value of the function
f () at the point z,, putting f (z30) = ¢,. The function f (z) thus
defined will be analytic everywhere inside the circle |z — z, | <<
< R,. We have thus removed the discontinuity of the function
f (z) at the point z,. Therefore, an isolated singularity z, of f (z)
for which an expansion of f (z) in a Laurent series about z, does not
contain terms with negative powers of the difference (z — z,) is
called a removable singularity.
The foregoing proves the following theorem.
T heorem 4.2. If a point z,, is a removable singularity of an analytic
function f (z), then there exists a limiting value lim f (z) = c,, where

zZ -+ 29
¢y | << o0.
Note that in the neighbourhood of a removable singularity the
function f (z) is bounded and can be represented in the form

f(2) = (z — z)"9 (2) (4-17)
where m > 0 is an integer and ¢ (z,) = 0. Here, if lim f (z) =0,

z 179
then in the representation (4-17) the number m >0 determines
the order of the zero of the function f (z) at the point z,.
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The converse also holds true. We will prove it in a stronger for-
mulation.

Theorem 4.3. If a function f(z) which is analytic in the
annulus 0 << |z — 2z, | << R, is bounded (|f(z) |<M for 0 <
< |z — 2, | < R,), then the point z, is a removable singularity
of 1 (2).

Proof. Expand the function f (z) in the Laurent series (4—14) and
consider the expression (4-13) for the coefficients of the series:

=g | Lt

2ni (g —3zy)
C

For the contour of integration take a circle of radius p centred at
the point z,. Then, by hypothesis, we have the upper evaluation

len | < Mp™ (4-18)

We will consider coefficients with negative index n << 0. Since the
value of the coefficients ¢, is not dependent on p, from (4-18) we
get ¢, = 0 for n << 0, which proves the theorem.

(2) The Laurent series of the function f(z) about its isolated
singularity z, contains a finite number m of terms involving nega-

0o

tive powers of (z — z,), that is f(z) = D) ¢n (z — 2)". In this

n=—m

case, the point z, is called a pole of order m of the function f (z). The
behaviour of an analytic function in the neighbourhood of its pole
is determined by the following theorem.

T heorem 4.4. If a point z, is the pole of an analytic function f (z),
then as z — z, the absolute value of the function f (z) increases without
bound no matter how z approaches z,.

Proof. Represent the function f (z) about the point z, as

f(2)= 20)m+ o + 2 cn (2—20)"

n=0

=(z—2z)™ {C-m+c—m+l (z—z)+...4cy (z_ zo)m_‘}
+n§0 cn (2—20)" = (2— 2™ @ (2) +n20 cn(z2—12)"  (4-19)

The function ¢(z) is obviously a bounded analytic function about
the point z,. From the representation (4-19) it follows that, as
2—> 2, the absolute value of the function f(z) increases without
bound irrespective of the approach path of z to z,, which completes
the proof. Note that if we redefine the function ¢(z) at the point
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zg, putting @(z9) = c_p, 5= 0, then formula (4-19) may be rewritten as
1 (@)= 28 (4-20)

(3—2)™
where P (z) is an analytic function and ¥ (z,) 5= 0; the number m
is called the order of the pole.

The converse of Theorem 4.4 is also valid.

T heorem 4.5. If a function f (z) which is analytic about its isolated
singularity z, increases indefinitely in absolute value for any approach
path of z to z,, then the point z, is a pole of the function f (z).

Proof. 1t is obvious that, by hypothesis, for any number 4 >0
there is an e-neighbourhood of z, such that in it | f (z) | > 4. Con-

sider the function g (z) = % In the indicated e-neighbourhood

of z, this function is analytic and bounded and lim g (z) = 0.
zZ =2
Therefore, on the basis of Theorem 4.3, the point z, is ; removable

singularity of the function g (z), and g (z), by virtue of formula (4-17),
can be represented in the neighbourhoed of z, as g (z) = (z—2,)"9(2),
where @ (z) is analytic; ¢ (2,) = 0 and m >0. Then for the original
. . 1 1

func:mn f (2) we have the representation f (z) = 2@ = T
X 0l in the neighbourhood of z,. Because @ (z,) =0, it can
be rewritten in the form f (z) = 7—2(;)—7 which coincides with
the representation (4-20), where v (z) is an analytic function. Whence
it follows that the point z, is a pole of order m of the function f (z).
The theorem is proved.

Observe that the po nt z,, which is a zero of order m of the analyt-
ic function g (z), is a pole of the same order m of the function

[ (@) = ﬁ. and vice versa. This establishes a very simple rela-

tionship between the zeros and poles of analytic functions.
(3) The Laurent series of the function f (z) has in the neighbour-
hood of its isolated singularity z, an infinite number of terms involv-

ing negative powers of the difference (z—3z,), i.e. f(z) = D) ¢n(2—2,)"-
Nn=—0oo

In this case, the point z, is called an essential singularity of the func-

tion f (z). The behaviour of an analytic function in the neighbour-

hood of its essential singularity is described by the following theo-

rem.

T heorem4.6 (T heorem of Sokhotsky and Weierstrass).
No matter what €0, in any neighbourhood of an essential singularity
2, of the function f (z) there will be at least one point z, at which
the value of the function f (z) differs from an arbitrarily specified
complex number B by less than e.
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Proof. Suppose that the theorem is not true; that is, for a given
complex number B and a specified ¢ >0, there is an ny >0 such
that at all points z of the n,-neighbourhood of the point z, the value
of the function f (z) differs from the given B by more than e:

[f(@) —B|>e |z2—2z|<n (4-21)

Consider an auxiliary function ¢ (z) = #ﬁ' By virtue of
(4-21) the function ' (z) is defined and bounded in the m,-neigh-
bourhood of the point z,. Hence, by Theorem 4.3, 2, is a removable
singularity of the function v (z). This implies that the expansion
of the function ¢ (z) about the point z, is of the form

~

(@) =(@—2)" 9(2), ¢(z)*0

Then, by the definition of the function v (z), the following expansion
of f (z) is valid in the given neighbourhood of z,:

f@=@@—2)"0( +B (4-22)

where the analytic function ¢ (2) — -1 is bounded in the No-
z

neighbourhood of z;. But the expansion (4-22) signifies that the
point z, is either a pole of order m, or, for m = 0, a regular point
of the function f (z), and the Laurent-series expansion of the latter
must have only a finite number of terms, which contradicts the
statement of the theorem. This contradiction proves the theorem.

Theorem 4.6 describes the behaviour of an analytic function in
the neighbourhood |z — z, | << m, of an essential singularity as
follows: at an essential singularity 2z, there does not exist a finite
or infinite limiting value of the analytic function. Depending on
the choice of a sequence of points converging to the point z,, we can
obtain sequences of the values of the function that are convergent
to different limits. It is always possible to choose a sequence that is
convergent to any preassigned complex number, including oo.

There is clearly no necessity to prove the converse of Theorem 4.6,
since if, as z — 2, there does not exist either a finite or infinite
limit of the function f (z), then by Theorems 4.2 and 4.4 the point
z, cannot be either removable or a pole.

Also note that if the point z, is an essential singularity of the
function f (z) with f (z) 5= 0 in some neighbourhood of z,, then z,
is an essential singularity for the function g (z) = 1/f (z) as well.

The three cases that we have examined exhaust the possible types
of Laurent-series expansion of an analytic function in the neigh-
bourhood of its isolated singularity and are of decisive importance
for investigating the general course of variation of an analytic func-
tion in the neighbourhood of its singular points.
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From the foregoing it follows that there are two possible diffe-
rent viewpoints (each leading to the same results) concerning the
classification of isolated singular points of a single-valued analytic
function. We proceeded from the analytic point of view based on
the nature of the Laurent-series expansion of the function and estab-
lished the behaviour of the function itself as it approached a singu-
lar point. A different, geometric, approach is possible in which the
classification is based on the behaviour of the function in the neigh-
bourhood of an isolated singularity. Here, if the function is bounded
in the neighbourhood of a singularity, then this point is termed
removable and, as follows from Theorem 4.3, the Laurent-series
expansion of the given function in the neighbourhood of that singu-
lar point does not involve negative powers. If in the approach to
a singularity the function has an infinite limit, then the point is
a pole and the Laurent-series expansion has a finite number of
negative powers. Finally, if the function, in its approach to a sin-
gular point, does not have a finite or an infinite limit, then we have
an essential singularity and the Laurent-series expansion contains
an infinite number of negative powers.

To conclude this section, let us investigate the behaviour of an
analytic function in the neighbourhood of the point at infinity.
The point at infinity of a complex plane is an isolated singular point
of a single-valued analytic function f (z) if a value of R is indicated
such that outside the circle |z | > R the function f (z) does not have
any singularities at a finite distance from the point z = 0. Since f (2)
is an analytic function in the annulus R << |z | << oo, it may be
expanded in the Laurent series

2 cng", R<|z|<oo (4-23)

n=-oo

convergent to f (z) in the given annulus. As in the case of the finite
isolated singularity z,, there are three possible cases:

(1) The point z = oo is called a removable singularity of the
function f (z) if the expansion (4-23) does not have terms involv-

00

ing positive powers of 2z, i.e. f(z) = Lno O—I—Z—or if

=0 2"
as z —- oo there exists a finite limiting value of the functlon f (2)
that is mdependent of the approach path to the limit. If ¢ = ¢c_; =
.= C_m+1 = 0, ¢c_n 5= 0, then the point at infinity is a zero
of order m of the function f (2).
(2) The point z = oo is a pole of order m of the function f (z) if
the expansion (4-23) contains a finite number m of terms involving

positive powers of z, that is, f (3) = Z ¢ 2" (m >0) or if the func-

n=—oo
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tion increases indefinitely in absolute value as z —» oo irrespective
of the kind of limit process.

(3) The point z = oo is called an essential singularity of the func-
tion f (z) if the expansion (4-23) contains an infinite number of

terms involving po&utwe powers of z, i.e. f(z) = D cnz" or if,
oo

depending upon the choice of the sequence {z,} — oo, it is possible
to obtain a sequence of values {f (z,)} convergent to any prescribed
limit.

It is obvious that the equivalence of all the foregoing definitions
of the nature of the isolated singularity z = oo may be proved in
the same way as for the case of a finite isolated singularity. Be-

. . . . 1 . .
sides, as is readily seen, the transformation z = — carries the point oo

of the z-plane to the point { = 0; the character of the singularity
does not change in this transformation by virtue of the following
general theorem.

T heorem 4.7. Let the point z, be an isolated singular point of the
function f (z) analytic in the domain ®&. Let the analytic function
L = ¢ (2) establish a one-to-one correspondence between the domain &
and the domain &' of the complex {-plane in which the inverse function
z = @ (L) is defined. Then the point §, = } (2,) is an isolated singular
point of the aralytic function F () = f l¢ (§)], and the character of
this singular point is the same as that of the point z,.

This theorem is an obvious consequence of the property of ana-
lytic functions that was established in Chapter 1, by virtue of which
the analytic function of an analytic function is analytic, and also
of the geometric properties of an analytic function in the neighbour-
hood of an isolated singular point.

Example. Consider the function f (z) = . This multiple-

1
V1Fz2
valued function has two branch points z = 4-i. The point z = oo
is its regular point. Therefore, in the annulus 1 << |z | << oo are
defined two branches of the function; they are single-valued analytic
functions in the given annulus. Choose the branch which is a direct

1
V1fa®

variable z 1, and construct its Laurent-series expansion about

analytic continuation of the real function of the real

the point z = oo. To do this, put {= —i— and map the given annulus

onto a circle of unit radius in the {-plane (then the point z= oo goes

into the point { = 0) and expand the function ¢ (§) = 1
Vs

in a Taylor series in the neighbourhood of its regular

S Vite
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point §{ = 0. First note that the function ¢ ({) is a derivative of
the function ¢ () = V' 1+ 2. (Here our choice of the branch of
the original function f (z) determines the choice of that branch of
the function ¥ (§) for which ¢ (0) = +1.) To expand the function
P () in a Taylor series, put w = {* and consider the function
% w) = V1 + w. Computing the derivatives of the function x (w),
we get

1
A @) fomo =5 (5 —1) - (g—n+1) A+w)*

— (_1)11-1

oo
(2rn—2)!
221 (n—1)
Then the expansion of the chosen branch of the function y (w) in the
annulus | w | << 1 is of the form

(2n—2)l wn

R 72 BT o qyn-t__(rn—ao)lwt
=Y B4 3 (- A

Whence, for the function () for || <<1, we get

(2n—2)1 g2n
22n=1 ( __4)I nl

YO=VIFT=1+ 3 (—1)**

n=1{

and for the function ¢ ({)

_ _ — _qyn-1_(@2n—2)12n ne
PO=V Q== S (i A

n=1
— - =t (2n—2)! 211,- h (21‘)‘ 2k+41
Ei (—1) 92n-2 [(n—i)l]’ Z (— 22" (k1)2 ¢

Finally, for the chosen branch of the function f (z), in the annulus
1 < |z | << oo we get the Laurent-series expansion

2k)! 1
- 2 (— 1)k zz(u (3“)2 2R (4‘24)
h_

(z)_VH-zﬂ



CHAPTER 5

RESIDUES AND THEIR APPLICATIONS

5.1. The Residue of an Analytic Function
at an Isolated Singularity

a. Definition of a residue.
Formulas for evaluating residues

We introduce the concept of the residue of a single-valued ana-
lytic function at an isolated singularity. It will be found to have
extensive application.

Let a point z, be an isolated singularity of a single-valued analy-
tic function f (z). According to earlier investigations, in the neigh-
bourhood of this point, f (z) is capable of a unique expansion in a
Laurent series:

oo

f@=_3 cnz—2)" (5-1)

where -
=7 ) e d (5-2)

and, in particular, ‘
c_1=-2%§ fod (5-3)

The residue of an analytic function f (z) at an isolated singularity
3, is a complex number equal to the value of the integral %m S f(%) dg

taken in the positive direction around any closed contour y ly;?ng in the
domain of analyticity of the function f (z) and containing a unique
singularity z, of the function f (z). For a residue we will use the desig-
nation Res [f (z), z,]. It is clear that if the point z, is a regular
point or a removable singularity of the function f (z), the residue of
f (2) at this point is zero. To evaluate the residue of the function
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f (2) at an isolated singularity, we can use formula (5-3):

Res [f (2), 2l =555 | £ (0) d = o (5-4)

c

However, in a number of cases, a simpler method of computing
a residue is possible: it reduces to differentiating the function f (z)
in the neighbourhood of the point z,. Thus, the evaluation of the
contour integral of an analytic function may be replaced by comput-
ing the derivatives of this function at certain points lying inside
the contour of integration. This circumstance determines one of
the basic applications of the calculus of residues. Let us examine
such cases.

(1) Let the point z, be a first-order pole of the function f (z).
Then in the neighbourhood of this point we have the expansion

f@)=ca(z—2)"+co+e(z—z)+ ... (9-9)

Multiplying both sides of (5-5) by (z — 2,) and passing to the limit
as z —z,, we get
c-y=lim (z —z) f (2) (5-6)

zZ-20

Note that in the given case the function f (z) may in the neighbour-
hood of z, be represented in the form of a ratio of two analytic func-
tions:

9 (2)
fa) =22 (5-7)

@ (20) = 0 and the point z, is a first-order zero of the function ¥ (z),
that is,

P () =(—2) ¥ () + ¥ c—z)t ..., W (@) £ 0 (5-8)

Then from (5-6) (5-8) we get the following formula.
A formula for computing the residue at a first-order pole:

_ @ (3) __9(2) _
Res(/ (2), 2l =rey (1 (0=533) (5-9)
Ezample 1. Let f (z) = ?Tf-—_i . The function f (z) has the singu-
— 20k
lar points zz =31 =e¢ 7 (k=0,1, ..., n—1), and all these

points are first-order poles. Let us find Res [f (z), zx]. According
to formula (5-9), we get
AR

Res(f(z), sl =—2p=—-zh=—e ® (d=1) (5-10)

nz n
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(2) Let the point z, be a pole of order m of the function f (z).
From the foregoing, in the neighbourhood of this point we have
the expansion
J@=cm@—2z2)"+ ... +eca(z—2)"+¢

+ea@E—2)+... (1)

Multiplying both sides of (5-11) by (z — z,)™, we get

(z2—20)"f(2) =com+comtr1(2—329) + ...+ ey (z—2)" " +
(5-12)

Taking the derivative of order (m — 1) of both parts of this equality

and passing to the limit as z —»z,, we finally get the following

formula.
A formula for evaluating the residue at a pole of order m:

Res [/ (2), 20l = gy lim g (e— )" f(@)] (5-13)

It is easy to see that formula (5-6) is a special case of this formula.
1
Example 2. Let f (z) = A -

points z,,, = =i; both of these points are poles of order n. Compute
Res [f (2), il. According to (5—13) we have

R"S[(Tiiﬁ)“n' i]= <n 1"“ az- l[(z <1+zz)" ]

1 . an—t
= (n—l)l ]Z.l_{? dzn—1 [(Z+l)n]
—(— ot . @n—2) 1 l

This function has the singular

- (n—=1)! EFiznt
_ g @2 4 @n—2)l
= (=" wm = i weonr 019

b. The residue theorem

We now investigate the more important applications of the con-
cepts we have introduced. The following theorem is very essential
in numerous theoretical investigations and practical applications.

T heorem 5.1 (Residue theorem). Let the function f (z) be

analytic everywhere in a closed domain ®, except at a finite number of

isolated singularities z, (k =1, ..., N) lying inside the domain &.
Then
N
[ 1@ ac=2mi 3 Resif(2), ol (5-15)
I+ h=1
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where T* is the complete boundary of the domain @& traversed in the
positive direction.

Proof. Recall that if a function f (z) is analytic in a closed domain
@, then all points of the boundary I' of that domain are regular
points of f (z). Isolate each of the singularities z; of the function
f (z) by a closed contour y, not containing other singularities, except

Fig. 5.1

the point z,. Consider a closed multiply connected domain bounded
by the contour T and all the contours y, (Fig. 5.1). The function f (z)
is analytic everywhere inside this domain. Therefore, by Cauchy’s
second theorem, we have

N
froa+ [roa=o (5-16)

r+ h=1 i

Transporting the second term in (5-16) to the right, we obtain by
formula (5-4) the assertion of the theorem

N
[ 1@ ac=2mi 3 Resif (@), aal
k=1

I+

The great practical value of this formula lies in the fact that
in many cases it turns out to be much simpler to evaluate the resi-
dues of the function f (z) at singularities lying inside the domain
of integration than to evaluate directly the integral in the left-
hand member of (5-15). Later on we will consider a number of im-
portant applications of this formula. Let us now introduce one
more concept—the residue at the point at infinity.

Let the point z = oo be an isolated singularity of the analytic
function f (z).
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The residue of the analytic function f (z) at the point z = oo is a comp-
lex number equal to the value of the integral

= 5f<c)dc———jf<c)dc

where the contour C is an arbitrary closed contour, outside of which
the function f (z) is analytic and does not have any singular points
different from oo. Clearly, by the definition of the coefficients of
a Laurent series, we have the formula

Res [f(2), o0l = — 5 S f(@) = (5-17)

2mi

From this it follows, in particular, that if the point z = oo is
a removable singularity of f (z), then Res [f (z), co] may prove to be
nonzero, whereas the residue at a finite removable singularity is
always equal to zero.

The formulas (5-15) and (5-17) permit proving the following
theorem.

Theorem 5.2. Let the function f (z) be analytic in the extended
complex plane, with the exception of a finite number of isolated singu-
lar points z, (k =1, 2, ..., N), including also z = oo (zy = o0).
Then

N
2, Resf (2), z1=0 (5-18)

Proof. Indeed, consider the closed contour C containing all (N — 1)
singularities z, located at a finite distance from the point z = 0.
By Theorem 5.1

N-1

o= | 1@ dt= 3 Res[f(a). 2]

c+ k=1

But by virtue of (9-17), the integral on the left is equal to the
residue (with sign reversed) of the function f (z) at the point z = oo.
This asserts Theorem 5.2.

This theorem occasionally permits simplifying the computation
of the integral of a function of a complex variable around a closed
contour. Let f (z) be a single-valued analytic function in the entire
complex plane, except at a finite number of isolated singularities,
and let it be required to compute the integral of f (z) around some
closed contour I'. If inside I' there are many singularities of the
function f (2), then application of formula (5-15) may involve arduous
calculations. It may turn out that outside I' the function f (z) has
only a few singularities z, (k =1, 2, ..., m), the values of the

0-—3878
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residues at which, and also the residue at the point at infinity, are
determined in a simple enough manner. Then in place of a straight-
forward evaluation of the desired integral by formula (5-15) it is
more convenient Lo take advantage of the obvious consequence of
formulas (5-15) and (5-18):

{ f@©dl= —2mi 3} Res(f(s), ] —2miRes[f (), 0]  (5-19)

Tt k=1

The formula (5-19) permits readily obtaining a generalization of
the Cauchy formula [see Section 1.6, formulas (1-59), (1-60)] to
the case of an unbounded domain. Let us consider a function f (2)
that is analytic outside a closed contour I', which is the boundary
of a bounded domain &. Let all the points of I' be regular points
of the function f (z) and let the point z = oo be its removable sin-
gularity. Denote lim f (z) = f (c0). Exterior to I' we construct

Z-»00
the function ¢ (z) = zj_(z )zo’ where z, is an arbitrary point of the
complex plane. Clearly, z = oo is a removable singularity of the
function @ (z) as well, and Res [¢ (2), 0] = —f (o0).

If the point z, lies inside I', then the function ¢ (z) does not have
any other singular points. If the point z, lies outside I', then z = z,
is a pole, not exceeding the first order, of the function ¢ (z), and
Res [¢ (2), z,] = f (z0).

f

Let us consider the integral S ¢ (§)dt= Sgi—clod(, in which the
™+ T+
contour T is traversed so that the domain & remains on the left-
hand side. By formula (5-19) we obtain

1 (0 _f f(o0), 2o inside T
WFS T2 dg“{ f(c0)—f(z), 7o outside T 20

The formula (5-20) is precisely the generalization of Cauchy’s integ-
ral formula to the case of f (z) analytic in an unbounded domain.

9.2. Evaluation of Definite Integrals by Means
of Residues

The theorems of Section 5.1 find numerous applications not only
in evaluating the integrals of functions of a complex variable, but
also in evaluating various definite integrals of functions of a real
variable. Very often one is able to obtain an answer in cases where
the use of other methods of analysis proves complicated. Let us
consider a number of typical cases.
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2%
a. Integrals of the form S R (cos 0, sin 0) do
0

We consider the integral

2%
- S R (cos 0, sin 0) do (5-21)

0

where R is a rational function of its arguments. Type (5-21) integrals
can easily be reduced to integrals of an analytic function of a comp-
lex variable over a closed contour. To do this, make the change of
variable of integration, introducing the complex vanable z, which
is connected with the variable 0 by the relation z = €', It is obvious
that

do = % —‘:i, cos 0= -%— (€19 4-e~19)

=% (z+—1—), sin6=§1i—(z—-17)

As 0 varies between 0 and 2n, the complex variable z runs over the
closed contour, the circle | z | = 1, in the positive direction. Thus,
the integral (5-21) is transformed into an integral around the closed
contour of a function of a complex variable:

1 1 17d
=3 | R[z4+5, s—1]% (5-22)
Izl=1

By virtue of the general properties of analytic functions, the inte-
grand in (5-22), which is obviously a rational function,

= ag+ a3+ ...+ apzn
R =3 10t Fomem (5-23)

is a function analytic inside the circle | z | = 1 everywhere except

at a finite number V < m of singular points z,, which are the zeros
of the demominator in (5-23). Therefore, by Theorem 5.1,

N
I=2=n ij Res[R (z), zx] (5-24)
The points z, are poles of the function R (z). Let «; be the order of

the pole z, (clearly, 2 ay << m). Then on the basis of formula (5-13)
a=1
9‘
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we can rewrite (5-24) as

ad 1 P
I=2n§‘ DT I =T [(E— %) RE@ (52)

Ezample 1. Evaluate the integral

2n
do
I= § s lel<t (5-26)

Putting z=¢", we get

1 1 & 2 -
=T ) TaronyEieT ) @rnre 62D
' IzlS——l 1+% (z+i) g i 1a.zﬂ+2¢_|..a

The zeros of the denominator z,,, = — % :1:]/% —1 are singularities

of the integrand function. They are poles of order ome. Since
z,-2,=1, only one of these points lies inside the circle |[z]|=1.

As is readily seen, this is the point z; = ——+]/-———1. There-
fore, by Theorem 5.1,

1 1 27
I = 4n Res [am, Z‘] =4ﬂm P’1=—lf—1-ﬁ (5-28)
b. Integrals of the form S f (z) dz

We now consider applymg the calculus of resxdues to evaluating
improper integrals of the first kind of the form S f (z) dz. We will

consider the case when the function f (z) is speclﬁed on the entire
real axis and may be analytically continued into the upper half-plane
so that its continuation satisfies certain supplementary conditions.
These conditions will be formulated below in Theorem 5.3.

For what follows we will need some auxiliary propositions.

Lemma 1. Let the function f (z) be analytic everywhere in the upper
half-plane Im z >0, with the exception of a finite number of isolated
singular points, and let there exist positive numbers Ry, M anrd & such
that for all points of the upper half-plane which satisfy the condition
|z2| >R, we have the evaluation

lf(’)'<|‘,|1?_w |z|> R, (5-29)
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Then
lim S f(©) dt=0 (5-30)
R-+00 Ch

where the contour of integration Cg is a semicircle |z | = R, Im z >0

in the upper half of the z-plane (Fig. 5.2).
Indeed, by virtue of (1-41) and the conditions of the lemma, for
R >R,
M=nR M
|| 1@ a|< | 1710 1e<iF="255=0
Cr

Cr

which proves the lemma.

Note 1. 1f the conditions of the lemma are fulfilled in some sector
¢, < arg z << @y of the z-plane, then formula (5-30) is valid in
integration along the arc Cr of a circle lying in the given sector.

Note 2. The conditions of the lemma will obviously be fulfilled
if the function f (z) is analytic in the neighbourhood of the point

g

’

Ce

8Y

z=0]
Fig. 5.2
at infinity and the point z = oo is a zero of order not below second

of the function f (z). Indeed, in this case, a Laurent-series expansion
of f(z) in the neighbourhood of z = oo is of the form

fo=2+2+... =20

and |V (2) | < M, whence we get the evaluation (5-29) for 8§ = 1.
Lemma 1 finds broad application in computing a number of im-

proper integrals of the form S f (z) dz.
Theorem 5.3. Let it be pos;icl;le for the function f (z) specified on

the entire real azxis —oo << z << oo to be analytically continued into
the upper half-plane Im z = 0; its analytic continuation, the function
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1 (2), satisfies the conditions of Lemma 1 and does not have singularities
on the real axis. Then the improper integral of' the first kind

S f (x) dz exists and

oo N
S f (z) dz =27 S| Res[f (2), 2] (5-31)

— 00 h=1

where z), are singularities of the function f (z) in the upper half-plane.

Proof. By hypothesis, the function f (z) in the upper half-plane
has a finite number of singularities z;, and they all satisfy the con-
dition | z, | << R,. Consider in the upper half-plane a closed contour
consisting of a segment of the real axis —R <z << R (R >R,)
and the semicircle Cg, |z | = R. By the residue theorem

R N
S f (z) dz+ 5 f(2)dz=2ni ) Res(f(z), 2]  (5-32)
-R k=1

CRr

Since the conditions of Lemma 1 are fulfilled, the limit of the second
term on the left of (5-32) is zero as R — oo; the right side of (5-32)
is independent of R for R > R,. Whence it follows that the limit
of the first term exists and its value is defined by formula (5-31).
The theorem is proved.

Ezxample 2. Compute the integral

¢ dz
I= S T (5-33)
Analytic continuation of the integrand function into the upper
half-plane, the function f (z) = ;ﬁ_—i , obviously satisfies the condi-

tions of Theorem 5.3. Its singular points in the upper half-plane
x4 2mh
are the points z,, =e¢ * (k=0,1); both of these points

are first-order poles. Therefore

I=2ni {Res[ =, eiﬁ"]“‘”[ﬁ?«' eia%‘]}

— i {4_:3_ } —2V2 (534

z=e 4
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Note 1. If the function f(z) is even and satisfies the conditions
of Theorem 5.3, then

0o N
S f(z)dz=mi > Res[f(z), z] (5-35)
0 k=1

Indeed, if f(z) is an even function, then

jnf(:c)dx=-;— f’j(x)dx

0

whence follows formula (5-35).

Note 2. Obviously, a similar theorem holds true also in the case
when the analytic continuation of the function f (x) into the lower
half-plane satisfies conditions analogous to those of Lemma 1.

oo

¢. Integrals of the form S eiox f () dz.

Jordan's lemma

Evaluation of the following important class of improper integrals
by means of the calculus of residues is based on the use of the so-
called Jordan lemma, which we will now prove.

Lemma 2 (Jordan’s lemma). Let the function f (z) be analytic
in the upper half-plane Im z >0, with the exception of a finite number
of isolated singularities, and let it tend uniformly to zero in arg z
O<argz<<n)as |z | >oo. Then for a >0

lim S' eiat f () d; =0 (5-36)

Cr

where Cg is a semicircular arc | z | = R in the upper half of the z-plane.
Proof. The condition of uniform approach of f (z) to zero implies
that for |z | = R we have the evaluation

@) I<pmr lz|l=R (5-37)

where up -0 as R —oo. Using the relation (5-37) we evaluate
the desired integral. Make a change of variable, putting { = Rel®,
and take advantage of the obvious relation

sin (p}%(p for Og(pg-‘zi (5-38)
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We then obtain
T
|§ @ dt|<pn-& e
Cr 0

. /2
= PR'R S e-aRsing dq, =2PR'R S e—aRsing d(P
0 0

/2 _2aR‘v
<2pgr-R S e = dcp=-j‘l pn(i—e—an)—>R0 (5-39)
° —> 00

which proves the lemma.

Note 1. If a <0 and the function f (z) satisfies the conditions
of Jordan’'s lemma in the lower half-plane Im z < 0, then formu-
la (5-36) is valid in integration around the semicircular arc Cg

in the lower half of the z-plane. Similar

4 assertions hold for a = =+ ia (@ >0)

as well when integrating, respectively,

in the right (Re z = 0, Fig. 5.3) or left

(Rez<C0) half of the z-plane. The

, proofs of these statements are carried

Ge out in an exactly similar manner, so we

(1 leave them to the reader. The following

form of Jordan's lemma, which refers to

integration in the right half-plane, will
be needed in future applications:

Jim S e-Rf()dL=0, a>0 (5-40)

R-»0c0

5

CR
where Cg is the semicircular arc |z | =
=R in the right half-plane Re z > 0.
Formula (5-40) and a number of others
Fig. 5.3 that follow will be extensively used in
Chapter 8 for evaluating various integ-
rals that play an important role in operational calculus.
Note 2. Jordan’s lemma holds true for the case when the function
f (z) satisfies the above-formulated conditions in the half-plane
Imz >y, (y, is a fixed number which may be either positive or
negative), and the integration is carried out along thesemicircular
arc | z — iy, | = R in the half-plane Im z > y,. The proof is simi-
lar to the previous proof. When evaluating the integral, make
a change of the variable of integration: { = Rei® 4 iy,.
Note 3. Jordan's lemma holds true also for relaxed conditions
imposed on the function f (z). Let the function f (z) in the upper half-
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plane Im z >y, for |z | > R, tend to zero uniformly in the argu-
ment z — iy, as | 2 | — oo in the sectors —@, << arg (z — iy,) << ¢,
n— @, < arg (z — iy;) < © + @, and let it be uniformly bounded
in the sector @, << arg (z — iy;) < n — @,, where ¢@,, ¢, and @,

are specified positive numbers 0 < @4, @, @3 << -’21 and y; >y,

Then the integral Se"“cf () d¢ tends to zero along the arc Cp
Cr
of the circle |z — iy, | = R, Im 2 >y, for a >0 and as R —» 0.

To prove this, split the integral into the sum I =1, + I, +
+ I,+ I, + Is of integrals along the arcs C® (y; >1Im z >y,,
arg (z—iy) < 0), CRO < arg (z — iy) < @), CR
(p<arg(z —iy)<nm— @), CR@—p<arg(z—iy) <
< mn) and C® (y; >Im z >y, arg (z — iy;) >n) and prove the
convergence, to zero, of each integral separately. For the integral
I, we get | I, | < pre~*oLf’, where L§}’ is the length of the curve
C#. As R — o the quantity L§’ remains bounded and tends to the
value y; — y,. Therefore | I, | -0 as R — oo. Analogously, I's — 0.
The convergence to zero of the integrals I, and I, is established by
a technique used in the proof of Jordan’'s lemma. For the integral Iy
it is easy to obtain the estimate | Iy | << Ce eRsine* R (5 — @,—@,),
where | f () | < C and ¢* = min {@,, @,}, from which it follows
that /g -0 as R — oo.

Thus, the Jordan lemma holds under considerably weaker restric-
tions imposed on the function f (z) than in the case of Lemma 1.
This is connected with the presence, in the integrand function, of
an additional factor eist, which, for a >0, ensures a sufficiently
rapid decrease of the integrand function in the sector 0 < ¢, <
Sarg(z—iy) <n — @, as |z | —oo.

Jordan’s lemma finds numerous applications in the calculation
of a broad class of improper integrals.

T heorem 5.4. Let it be possible for a function f (z) given on the
entire real azis —oo << x < 0o to be continued into the upper half-
plane Im z >0, and let its analytic continuation f (z) in the upper
half-plane satisfy the conditions of Jordan’s lemma and have no sin-

gularities on the real axis. Then the integral Sei“ f (z) dz, a >0,

exists and is equal to
[ n
S eioxf (z) dz=2ni > Res[eiorf (z), z,] (5-41)
- 00 h=1

where zy are singularities of the function f (z) in the upper half of
the z-plane.
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Proof. By hypothesis, the singular points z, of the function f (z)
in the upper half-plane satisfy the condition |z, | << R,. Consider,
in the upper half of the z-plane, a closed contour consisting of a seg-
ment of the real axis — R <<z <R, R >R, and of the arc Cy
of the semicircle [z | = R in the upper half of the z-plane. By the
residue theorem

eiexf (z) dz + S eialf () df = 2mi 2 Res [¢i2f (z), zx] (5-42)

h

1
x“"’ -]

By Jordan’s lemma, the limit of the second term on the left of (5-42)
is zero as R.— oo. This asserts the theorem.
Ezample 3. Evaluate the integral

.
oo

I- | 5% dz, a>0, a>0 (5-43)

In order to be able to take advantage of Jordan's lemma, note that
by Euler’s formula

o .
Tax

I—Rel,=Re S S da (5-44)
The analytic continuation of the integrand of the integral I,, the
function e'* zz-if—a” , satisfies the conditions of Theorem 5.4 and

in the upper half-plane has a unique singularity z, = ia, which
is a first-order pole. Therefore,
-aa

. . € k11
la]——-2ﬂl‘—2-':a— =

— p— o
a

1,_2mRes[ P

Whence
I=Rel;=" ¢ o= (5-45)

Note 1. If f(x) is an even function that satisfies the conditions
of Theorem 5.4, then for a >0

f(z) cosaz dz=nRei D, Res|eio*f(z), z4]

k=1

o3

= —nIm Z Res [eiezf (z), zx] (5-46)

k=1
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Note 2. 1f f (x) is an odd function that satisfies the conditions of
Theorem 5.4, then for a >0

CJ n
S f(z)sinazdz=nRe ) Res[eief (), z4] (5-47)
0 h=1
We proved Lemma 1 and Lemma 2 on the assumption that the
function f (z) has only a finite number of singularities in the upper
half-plane. However, as will readily be seen, a slight change in the
statements of these lemmas makes them hold true for the case of
an infinite number of isolated singularities of the function f (z).
Let us require that there be a sequence of numbers R, increasing
indefinitely as n —-oo, such that on the semicircular arcs Cg,
in the upper half-plane the conditions (5-29) or (5-37) are fulfilled.
Then the assertions (5-30) or, respectively, (5-36) of Lemma 1 and
Lemma 2 will hold true provided that the limit process in the integ-
rals under consideration occurs with respect to the sequence of
arcs Cp, asn—>oo. It is also clear that if the appropriate integrals
exist we can extend the integration methods at hand to the case
of functions with an infinite number of isolated singularities. The
meromorphic functions constitute an important class of such functions.
The function f (z) of a complex variable is meromorphic if it is defined
on the entire complex plane and if in a finite portion of the plane it
does not have singularities different from poles. It is easy to see that
in any bounded domain of the complex plane, a meromorphic func-
tion has a finite number of singularities. Indeed, if the number of
singularities in a bounded domain were infinite, then by Theo-
rem 1.2, in this domain there would be a limit point of the given
set which would thus not be an isolated singular point. This contra-
dicts the condition. Examples of meromorphic functions are fraction-
al-rational functions, trigonometric functions tan z, sec z.
In proving Theorems 5.3 and 5.4 we assumed that the function
f () does not have singularities on the real axis. However,
slight supplementary considerations enable one to use these theorems
to evaluate improper integrals even when the function f (z) has
several singularities on the real axis.
Let us illustrate this by a simple example.
Ezample 4. Evaluate the integral
I— S SR G, a>0 (5-48)
0
Taking advantage of Euler’'s formula and the evenness property
of the integrand function, perform the formal transformation

oo

I=Lim f *” dr=tIml, (5-49)

2 x
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Note that the integral 7, is meaningful only as the principal value
of an improper integral of the second kind:

I,=V.p. j; e*:“ dz=lim {Ei; dz+ g-ff; d:c} (5-50)

In the upper half-plane Im z > 0, consider a closed contour T
consisting of segments of the real axis [—R, —p], [p, R] and semi-
circular arcs Cg, |z | = p, and Cg, |z | = R (Fig. 5.4). The func-

4

&Y

-A L1/r ;
Fig. 5.4

tion i.:, which is an analytic continuation into the upper half-
z . eiax . ees
plane Im z >0 of the function — specified on the pesitive real
x

axis 0 << £ << oo, does not have any singularities in the domain
bounded by the conteur I'. Therefore, on the basis of Cauchy’s theo-
rem

Sf(ﬁ) dt= Spei;d.u} f-—'?—dz-;- S ii?_d§+ S i‘;;_@:o
: - ° 3 K

(5-51)

By Jordan’s lemma, the last term on the left of (5-51) approaches
zero as R — oo. Consider the third term. Noting that in this integ-
ral the semicircle C, is traversed in the negative sense (clockwise)
and making the change of integration variable { = pei®, we get

0

ial

I= | ,Z dp=i | elwwcororising dg (5-52)
n

Co
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The integrand in (5-52) is a continuous function of the para-
meter p and its limit is 1 as p — 0. Therefore,
limI3= —in (5-53)
p—>0

Passing to the limit in (5-51) as p—0 and R — oo, we get,
according to (5-50) and (5-53),

P
L=Vop. | L dz—in, a>0 (5-54)

whence

oo

S*‘in“‘dz=%, a>0 (5-55)

z
0

For & <<0 we have the formula

S’“‘“’dz: —2 a<0 (5-56)

z 2
0

This becomes obvious if we change the sign of a in (5-55).

d. The case of multiple-valued functions

In all the preceding considerations we proceeded from Cauchy’s
formula, which is valid for a single-valued analytic function. Hence,
these methods are applicable only when the analytic continuation
f (2) of the function f (z) from the real axis into a domain bounded
by the contour of integration is a single-valued analytic function.
In those cases when the complete analytic function F (z) is multi-
ple-valued in the extended complex z-plane, the contour of integra-
tion must be chosen so that there are no branch points of the func-
tion F (z) inside it, and we have to consider only the single-valued
branch f (z) of the complete analytic function F (z), which is a direct
analytic continuation of the function f (z) into the complex domain.
This reasoning enables us to extend the foregoing methods to a num-
ber of improper integrals that are frequently encountered in appli-
cations. We consider a few typical cases.

(1) Integrals of the form

oo

I=S:c°"-‘f(:c)dx, 0<a<i (5-57)
0

Let it be possible for the function f (z) specified on the positive real
axis to be analytically continued into the entire complex plane.
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Let its analytic continuation f (z) be a single-valued analytic func-
tion, except for a finite number of isolated singularities z, (k =
=1, ..., n) not lying on the positive real axis, and let z = oo
be a zero of order not lower than first of the function f (z), and let
the point z = 0 be a removable singularity. The function

® (2) = 2271 f (2) (5-58)
in the domain & [0 < arg z << 2n], which is the z-plane cut along

the positive real axis, is obviously the analytic continuation of the
integrand function, which coincides with it on the upper lip of

Fig. 5.5

the cut (arg z = 0). The function ¢ (z) is a single-valued function
in the domain @&, and its singular points coincide with the singu-
larities z, of the function f (z). In the domain & we consider a closed
contour I' composed of segments of the real axis [p, R] on the upper
and lower lips of the cut, and of open circles C,, |z | = p, and
Crn, |2 ]| = R (Fig. 5.5). By the residue theorem

Scp@)d = ]§ z-1f @) de+ | 7Y Q) dL+ § ' (0 dt
] cﬁ R

+ [ Q& =20 3, Res(aH (), al (5:59)

R=
o =1



5.2. Evaluation of Definite Integrals by Means of Residues 143
Let us consider each of the terms on the left-hand side of (5-59).

[1z]=

Sc,“"j(g) dg gL’;’i 2nR=2nMR*™! ———0 (5-60)
CR

since by hypothesis in the neighbourhood of the point z = oo we
have for the function f(z) the evaluation |f (z) | < —g—'- The third
term in (5-59) is an integral over the lower lip of the cut, where

argz==2n, that is, z=z.€i2* (z>0) and 2%~-1=z%-1.¢i2n@-1),
Therefore,

[ R
{1 @ dt= —eirma-n [ =11 (2) de (5-61)
Finally, ! ’

| S L' (@) dE| < Mipn-12mp——> 0

(5-62)
&)
since in the neighbourhood of the point z = 0 we have the evalua-
tion |f(z3) < M, and o >0.
Taking the limit in (5-59) as p -0 and R — oo, we finally get
[on the basis of (5-60) to (5—62)]

Sxa 1f (z) dz = 2“,’2,.., 2 Res [22-1f (2), zx] (5-63)
E:tample 5. Evaluate the mtegrdl
N 2% i
I= S Tdz, 0<a<t (5-64)
0

The integrand function in (5-64) satisfies all the conditions
enumerated above. Therefore

2ni 2%~ Zme"'(“ D n
I= ] _ei‘l.m Res [ 1 +z 1] - izaa = sin ot (5-65)
(2) Integrals of the form *
1
S 2%~ (1 —2)~%f (z)dz, O0<a<1 (5-66)
0

* It is readily seen that this integral can be reduced to an integral of the
type (5-57) by the substitution y = 1 _z . However, in a number of cases it
is simple to evaluate the integral (5-66) directly. That is what is done here.
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Let it be possible for the function f (z), specified on the interval
(0, 1) of the real axis, to be analytically continued over the entire
complex plane. Let its analytic continuation be a single-valued
analytic function, except for a finite number of isolated singularities
zp (k=1,2, ..., N) not lying on the interval 0 << z <1, and
let the point z = oo be a removable singularity of the function f (z).
Then the integral (5-66) can readily be evaluated by methods similar
to those investigated above. Note that the analytic continuation
of the integrand function @ (z) = z*! (1 — 2)-%f (z) has two branch
points: z =0 and z = 1. The point z = oo is a removable singu-
larity of the function @ (z). Indeed, a complete circuit around a cir-
cle of sufficiently large radius containing both branch points z = 0
and z = 1 does not change the value of the function @ (z). We con-
sider the domain &, which is the extended z-plane cut along the
real-axis interval [0, 1]. The branch of the function @ (z) that coin-
cides, on the upper lip of the cut, with the integrand function (5-66)
of the real variable x is a single-valued analytic function in @.
In @ we choose a closed contour I' consisting of both lips of the cut
[0, 1], the circles that close them C;, |z | =p,and Cp, |2 — 1 | =
= p, of sufficiently small radius p, and the circle Cp, |2 | = R,
containing the interval [0, 1] and all the singularities of the func-
tion f (z) (Fig. 5.6). By the residue theorem

1-p
S 291 (1 —2)"%f () dz+ Xm(é)dg
[ cr

foqa=
r

+ f oty dt+ o+ o

t-p Cp” Ch
N
=2ui’§ Res[z%-1(1 —2)"%f(z), 2] (5-67)
1

Consider each term in the left member of the equality (5-67). It is
given that z = oo is a removable singularity of f (z), i.e. in the
neighbourhood of z = oo we have the expansion

fla)=ae+=1 + ... (5-68)
where ag= lim f(z).

Consider the function

P =2t (1—2) "= (+=)° (5-69)
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which is the above-indicated branch of the function @ (2)/f (2).
The point z = oo is a regular point of the chosen branch of the

A |

Fig. 3.6

function @ (z); therefore, the function @ (z) in the neighbourhood
of z = oo may be represented in the form

o) =" +02 (5-70)
where P, (z) is a bounded analytlc function in the neighbourhood

of the point z = oo. Whence, for a Laurent-series expansion of the
function @ (z) about the point z = oo we get the expression

® (z) =a, +"’ @) (5-71)

where ¢ (2) is a bounded analytlc function in the neighbourhoed
of the point z = oco. From (5-71) we find

Res[® (z), co] = — a,ein® (5-72)
Therefore, by formula (5-17),
j @ (8) dL = 2nia,et™ (5-73)
Ch

Since, when we encircle the point z = 1 clockwise, the argument
of the expression (1 — z) varies by —2n, the argument of the func-
tion @ (z) is greater on the lower lip of the cut than the argument

10 3878
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on the upper lip of the cut by 2na. Therefore,
0 1-p
S @ (L) df = — ei2na S @ (z) dz (5-74)
i-p [
As may readily be demonstrated with the aid of evaluations similar
to (5-62), for 0 << @ << 1 the integrals over the small circles C,
and C; tend to zero as p —0. Then, taking the limit in (5-67),
as p —0, we obtain

N
(1 —et2ma) I 4 2qietnagy = 2ni D) Res [22-1 (1 —2)" % f(2), 2]
k=1
whence

N
2n _
=i na + 3 Reslat (1= 1 @), 3l (5-75)

where a,= hmf (2).
Ezample 6 Evaluat,e the integral *

I— S %11 —z)"%dz, 0<a <1 (5-76)
0

Since all the earlier formulated conditions are fulfilled and e, = 1,
it follows that

= = X (5'77)
Sin na
(3) Integrals of the form
I= S f(z)lnzdz (5-78)
0

Let f (z) be an even function which may be analytically contin-
ued onto the upper half-plane Im z >0, and let its analytic contin-
uation satisfy the conditions of Lemma 1. Consider, in the upper
half-plane, the closed contour I' consisting of segments [—R, —pl.
[p, R] of the real axis and the semicircles Cp, |z | = p, and Ckg.
| 2 | = R, connecting them. The function @ (z), which is a branch
of the complete analytic function and coincides with f (z) In z on
the positive real axis (x >0), on the negative real axis, for z =
= |z ]ei® = gei® = —z (z >0), takes the value

@ (Z) I 2 = xei® = f (.‘L‘) In (xe“‘) = j (x) [ln z + lﬂ]
* Note that the integral at hand is a particular case of the B function:
1

B (p, q)+S zp-t (1 —z)0-1dz
0
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Therefore,

R R
Sm(g)d§= [ 1) lnzdz+S @ (¢) dg+ S f(2)[In 2+ in) dz
r [

v+
[Y C'r

N
"+ Sm(c) dt=2ni > Res(f(z)Inz, z] (5-79)
C")— k=1
Consider the second term on the left of (5-79):

IS M S“ Clds= ,+GS]lnR+iarg§[ds

Ch

—°V1n23+n2;>0 (5-80)

By carrying out similar evaluations, it is easy to show that the last
term in the left member of (5-79) also approaches zero as p — 0.

Finally, the improper integral S f (z) dx exists and, by (5-35), is
0
equal to

o N
Sf(x) dz=mni > Res(f(z), z] (5-81)
0

k=1
Therefore, taking the limit in (5-79) as p—0 and R—o0, we get

oo N
I= S f(#)Inzdz=ni 3 Res[f(s) (lnz—7), n] (5-82)
0 h={
Ezample 7. Evaluate the integral

1
I= S Fer (5-83)
According to the foregomg reasomng,

I=gmi Res[(H_ 2)ﬂ( ) ]—-—— (5-84)

5.3. Logarithmic Residue
a. The concept of a logarithmic residue

Let there be given in a domain @ a single-valued function f (3)
analytic everywhere in & except at a finite number of isolated
singularities z, (k =1, ..., p), all z, being poles. Assume that

10*
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on the boundary I of the domain & there are no zeros and no singu-
larities of the function f (z); we consider the auxiliary function

o(=L8 (5-85)

The function @ (z) is often called the logarithmic derivative of the
function f (z), and the residues of the function ¢ (z) at its singula-
rities z,, (m = 1, ..., M) are called the logarithmic residues of the
function f (z). Define the singularities of ¢ (z) in &. By virtue of the
general properties of analytic functions it is clear that the zeros
2y (k =1, ..., n) and the poles z, (k = 1, ..., p) of the function
f (z2) will be the singularities of the function ¢ (z). Let us find the
value of the residue of the function ¢ (z) at each of its singular
points. Let the point z = 2z, be a zero of order n, of the function
f (z2). Then the function f(z) in the neighbourhood of this point
is of the form

f@)=@E—2)" f@), f@E)#%0 (5-86)

and the point z, is a regular point of the function f, (z). Evaluating
the function ¢ (z) in the neighbourhood of the point z = z, by
formula (5-85), we obtain

9()=(nf (@) =m (In G—5)) +(n ) = 2 + G
zZ— 2zZp 1

Whence it follows that the point z, is a pole of order one of the
function @ (z), and the residue of the function @ (z) at this point
is equal to n,. Thus, at a zero of order n, of the function f (z), its
logarithmic residue is equal to ny, that is, to the order of the zero:

Res —ff—((-z%)— , ;h:] =Ny (5-87)

Let the point z, be a pole of order p, of the function f (z). Then
in the neighbourhood of this point the function f (z) is of the form

f@)=—1E_ f (@) £0 (5-88)
(z—zm) *
and the point z, is a regular point of the function f, (z). Therefore,
for the logarithmic derivative of the function f (z) in the neighbour-
hood of the point z = z, we get the expression

@(Z)= — Pr +f;(2)

z2—zp ' f1(3)

From this it follows that the point z, is also a first-order pole of
the function ¢ (z), and the residue at this point is —p,. Thus, at
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a pole of order p, of the function f (z) the logarithmic residue of the
function is equal to the order of the pole with a minus sign:

Res [ I , zh] = —pp (5-89)

b. Counting the number of zeros
of an analytic function

The results obtained enable us to prove the following important
theorem.

T heorem 5.5. Let a function f (z) be analytic everywhere in a closed
domain & except at a finite number of isolated singularities z; in-
side &, which are all poles, and let f (z) be nonvanishing at any point
of the boundary T of the domain &. Then the difference between the
total number of zeros and the total number of poles of f (z) in the do-
main @& is determined by the expression

_ 1 (1 )
N—P=— mj__j 2 dt (5-90)

By the total number of zeros (poles) is meant the number of zeros N
(poles P) counting multiplicities:

n y4
N=Dm, P=D pm (5-91)
R=1 k=1

Proof. To prove the theorem, note that the integral over I' of the
function ¢ (z) = ff((:)) may be evaluated by means of the residue
theorem; and since all the singularities of the function ¢ (z) are
zeros and poles of f (z), and the residues at these points are deter-
mined by the formulas (5-87) and (5-89), it follows that

M
S @ () dt=2ni D) Res[o (2), zm)
r+ m=1

= 2mi {é nh——éph} — 2ni (N — P)

k=1 h=1

which proves the theorem.
To see the simple geometric meaning of this theorem, transform
the integral on the right of (5-90):

%Iiff'(%)) dL = Sdlnf(g)__Sd{lnlf(C | +iargf(2)}

=2im5dln|f(m+2—n faargr ) (5-92)
T+ T+
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The real function In | f () | is a single-valued function; therefore,
its variation, as the point  traverses the closed contour T, is zero.
Hence, the first term on the right of (5-92) is zero. The second term
is the total variation of the argument of the function f (%), as the
point [ traverses the closed contour I', divided by 2n. Thus,

N —P = Var(arg f (z) r+ (5-93)

Let us depict the values of the function w = f (z) using points
in the complex w-plane. Since the function f (z) is continuous on the
contour I', for a complete traversal of the contour I' by z in the
z-plane, the corresponding point in the w-plane describes a certain
closed contour C. The point w = 0 may lie either inside or outside
the domain bounded by the contour C. In the former case, the varia-
tion of the argument w in a complete traversal of C is obviously
equal to zero. In the latter case, the variation of the argument w
is determined by the number of total circuits about the point w = 0
performed by w in its motion along the contour C. The point w can
encircle the point w = 0 either counterclockwise (in a positive sense)
or clockwise (in a negative sense). And so the difference between the
total number of zeros and poles of the function f (z) in the domain &
is determined by the number of circuits performed by the point
w = f (z) about w = 0 as the point z traverses the contour I' in
a positive sense. This reasoning is often essential when counting
the total number of zeros of an analytic function in a given domain.
In many cases, the computations can be appreciably simplified by
the following theorem.

Theorem 5.6 (Rouché’s theorem). Let the functions f (z)

and @ (z) be analytic in a closed domain &, with the following in-
equality valid on the boundary T' of &:

[f@ Ir>19 (@) I (5-94)

Then the total number of zeros in & of the function F (z2) = f (2) +
+ @ (2) is equal to the total number of zeros of the function f (z).
Proof. All the conditions of Theorem 5.5 are fulfilled for the
functions f (z) and F (z) = f (z) + @ (z). Indeed, f (z) does not have
singularities on T (it is analytic in &) and does not vanish on T
by virtue of (5-94). These conditions are also fulfilled for the func-

tion F (z), since | F (2) b =1f() +9 @ |=|f@)Ir—19@ Ir>
> 0. Therefore, by formula (5-93), we get

Nif(2+o(2)] =gVar[arg(f+<P)lr

and
N [/ (2)] = 5= Var [arg f (9)Ir
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Consider the difference
Nif (2 +0@1—NIf (@)
— oL Var [arg (1 +¢) —arg flr = o= Var[arg (142 ],
(arg (f-+) —arg f = arg £2)

We introduce the function w =1 +‘?(L:)) . It will readily be seen
that as the point z traverses the contour I' the corresponding point w
describes a closed curve C, which by virtue of the condition (5-94)

o

Fig. 5.7

will lie entirely inside some circle |w — 1 | < po <1 (Fig. 5.7).
And so the point w = 0 lies outside the curve C. Consequently,
Var [arg wlr = 0, which proves the theorem.

Ezample. Find the total number of zeros of the function F (z) =
= 2% — 525 — 22 + 1 inside the unit circle |z | << 1. Represent
the function F (z) in the form F (z) = f (2) 4 @ (2) putting f (z) =
= —52° 41 and @ (z) = 2 — 2z. Then

lf(Z) ||ll=l>|_5z"’l |z|==1 —1 =4
| @ (2) [121=1<<| 2®| j1=1 + | 22 [jz=1 = 3
whence | f(z)|jz)=1> |9 (2) ||z;=1 > 0. Hence, the total number

of zeros in the domain |z | << 1 of the function F (z) is equal to the
total number of zeros of the function f (z), but the latter clearly has
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s /o 2
Zp = -5—8 :

k=0, 1, ..., 4)

exactly five zeros:

An important fundamental corollary to Rouché’s theorem is
Theorem 5.7 (The fundamental theorem of algebra).
Every polynomial of degree n in the complex plane has n zeros, count-
ing multiplicities.
Proof Represent the polynomial F (z) = aq2" -}-alz
. 4an as F(z) =f(@@) +¢ (), putting f (s) = apz ,1q>(z)

— -1 9(2) 1

= alz" —}-1 . +a,. Form the ratio D -5-0 —+ .. :
.+ '-1—’1 -+ It will then be seen that for any specified values

of the coefﬁclents ao, @y, . - ., a, there will always be a value R,,

such that for all the values | z | = R > R, the following inequality
holds:

9 (3) -
O<‘ 1@ |z|=n< 1 (5-99)
By Rouché’s theorem, from (5-95) it follows that the total number
of zeros of the function F (z) in the circle | z | = R is equal to the

number of zeros in this circle of the function f (z) = ao2z". But the
function f (z) = aoz" in the entire complex plane has a unique
n-fold zero—the point z = 0. The assertion of the theorem follows
by virtue of the arbitrariness of R = R,.



CHAPTER 6

CONFORMAL MAPPING

A study of the geometric properties of conformal mappings carried
out by analytic functions is of great importance both in constructing
the general theory of functions of a complex variable and in its
numerous applications. In Chapter 1 we introduced the concept
of a conformal mapping under which angles are preserved and
stretching is invariant. The fundamental task of the theory of
conformal mappings is the following. Given two domains of
a complex plane, it is required to find the function that accomplishes
a one-to-one and conformal mapping of one domain onto another.
There naturally arise questions of the conditions of existence and
unique definition of such a function.

In this chapter we will briefly discuss the basic concepts of the
theory of conformal mapping. We will also consider some geometric
properties of mappings carried out by a number of analytic functions
in practical applications.

6.1. General Properties

a. Definition of a conformal mapping

The concept of a conformal mapping was introduced in Chapter 1
when we considered the geometric meaning of the modulus and
argument of a derivative. It was shown that if a function w = f (2)
is single-valued and analytic in the neighbourhood of some point z,
and f’ (zo) = 0, then the mapping accomplished by the given func-
tion preserves angles and invariance of stretching at the point z,.
That is, the angle between any two smooth curves intersecting at
the point z, is equal in magnitude and sense to the angle between
their images in the w-plane at the point wy = f (z,), and infinitesi-
mal line elements emanating from the point z, are transformed
in similar fashion. This means that in such mapping any infinitely
small triangle with vertex at z, is transformed into a similar infi-
nitely small triangle with vertex at the point w,. Note that by virtue
of the general properties of analytic functions* the analytic function

* See Chapter 1, page 33.
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z = @ (w) is defined in the neighbourhood of the point w,. In this
way, a one-to-one correspondence is set up between the neighbour-
hoods of the points z, and w,. We introduce the following fundamen-
tal definition.

A one-to-one mapping of a domain & of the complex z-plane onto
a domain G of the complex w-plane is called conformal if at all points
z € 8 the mapping preserves angles and invariance of stretching.
Let it be stressed that this definition tacitly implies continuity
of the mapping.

From the foregoing it is clear that in the conformal mapping of
a domain @ into a domain G, infinitely small plane figures of the
domain & are transformed into similar infinitely small figures
of the domain G. It is also evident that in a conformal mapping
the property of mutual orthogonality of the system of curves in the
plane is preserved. Indeed, let there be given two mutually orthog-
onal one-parameter families of curves @ (z,y) =cand ¢ (z,y) =¢
in the domain & of the z-plane (z = z 4 iy) and through any point
of & there passes one line of each family. Then, in a conformal
mapping of the domain @ onto a domain G of the w-plane (w =
= u 4 iv), the images of the given curves in the w-plane—the
curves @ (v, v) = ¢ and ¥ (u, v) = ¢c—will be mutually orthogonal
on the basis of the property of preservation of angles. This means
that if in @ we introduce some orthogonal curvilinear system of
coordinates, then in a conformal mapping this system of coordinates
transforms into an orthogonal system.

Let us now see what properties a function of a complex variable
must have so as to effect a conformal mapping.

We have the following theorem.

Theorem 6.1. Let f (z) be a single-valued and univalent analytic
function in the domain & and f' (z) 5= 0 for z € 8. Then f (z) maps
the domain & conformally onto the domain G of the complex w-plane,
which is the range of values of the function w = f (z) for z € &.

Proof. Indeed, by virtue of the condition f'z 5= 0, for z € & the
mapping, by the function f (z), possesses at all points of & the
properties of preservation of angles and invariance of stretching,
which proves the theorem.

To summarize, then, the conditions of analyticity and univalence,
and the fact that the derivative of a function of a complex variable
is nonzero are sufficient conditions for the function to map confor-
mally. The natural question to ask is whether these conditions
are necessary. The following theorem gives the answer.

T heorem 6.2. Let the function f (z) map a domain & of the comp-
lex z-plane conformally onto the domain G of the complex w-plane and
let it be bounded in . Then the function f (z) is univalent and analytic
in the domain &, and f' (z) = 0 for z € @.
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Proof. Since the function f (z) maps conformally, the mapping
is one-to-one, and at any point z, € & the angles are preserved and
stretching is invariant. Hence, for any points z, and z, belonging
to the neighbourhood of the point z,, the following relations hold
to within infinitesimals:

arg Aw, — arg Aw, = arg Az, — arg Az, (6-1)
and
[Awg| _ |Awy| -
Tara] — T8z] — ¢ 70 (6-2)

where Az, = z; — 2o and Az, = z, — 2, are infinitely small line
elements emanating from the point z,, and Aw, and Aw, are their

AW,
z, ) w,
az, 4%,

2]

Fig. 6.1

images (Fig. 6.1). Note that by (6-1) the corresponding angles at the
points z, and w, are not only equal in magnitude but in sense as well.
Aw, Awy

Ay by a, we find from (6-1) that arg =%

as well. Indeed

Denoting arg

arg —AA—%‘ = arg Aw,—arg Az, = arg Aw, —arg Az, = arg /2—':: =a (6-3)
From (6-2) and (6-3) we find that, to within infinitesimals, the
relation

Aw, _ Awi . .
vy vl (6-4)

holds true. Since the choice of points z; and z, in the neighbour-
hood of the point z, is arbitrary, the relation (6-4) implies that

there is a limit of the difference quotient -AA—';' as Az— 0. By defi-

nition, this limit is the derivative of the function f(z) at the
point z,. Since k=40, this derivative is different from zero:

lim Z2 =" (z0) 70 (6-5)
Az»o B2
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The point z, is an arbitrary point of the domain &; therefore, it
follows from (6-5) that f (z) is an analytic function* in @ and f’ (z) 7=
5= 0 for z € . The univalence of f (z) follows from the one-to-one
nature of the mapping. The theorem is proved.

Thus, a conformal mapping of a domain & of the complex z-plane
onto a domain G of the complex w-plane is effected only by univalent
analytic functions of a complex variable with derivative different from
zero at all points of the domain &.

Note that the condition f' (z) = 0 everywhere in the domain &
is a necessary but not sufficient condition for the mapping of the
domain & onto the domain G performed by the function f (z) to be
conformal. Clearly, if the function f (z) is analytic in the domain &
and f’ (z) 5= 0 everywhere in &, but the function f (z) is not univa-
lent in &, then the mapping effected by this function will not be
one-to-one, and thus will not be conformal. An elementary case
is the function w = z* specified in the semi-annular region 1 <
<212, 0 KLargz < n. This function is analytic in the given
domain, and w’ = 4z® = 0 everywhere in the given semi-annular
region. However, this function maps the given semi-annular region
onto the domain 1 < |w| 16, 0  arg w < 4=, that is, a domain
that twice covers the corresponding annulus in the w-plane; but
this violates one-to-one correspondence.

Thus, univalence of a single-valued analytic function in a do-
main & is an extremely important condition for a conformal map-
ping. As will be shown later on (see Theorem 6.3—the principle
of one-to-one correspondence), this condition is necessary and suf-
ficient for a mapping to be conformal.

As has already been pointed out, the property of preserving angles
means that not only the magnitude of the angles is preserved between
curves intersecting at a point z, and their images but the direction
of the angles is preserved as well. A mapping in which the magni-
tudes of the angles between curves and their images are preserved but
the sense of the angles is reversed is termed a cornformal mapping
of the second kind. The mapping considered above is called a conformal
mapping of the first kind.

It is easy to show that a conformal mapping of the second kind
is accomplished by functions of a complex variable which are comp-
lex conjugate to analytic functions with nonzero derivatives. Indeed,
let the function w = f (z) perform a conformal mapping of the
second kind of some domain & of the complex z-plane onto a domain
G of the complex w-plane. Let us consider the function w;, = w
which maps G onto G* of the complex w,-plane. Clearly, the geomet-
ric meaning of the latter mapping consists in a mirror reflection
of G about the real u-axis of the w-plane. But in a mirror reflection

* See footnote on page 32.
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the angles preserve magnitude but the sense is reversed. This means
that the mapping by the function

() =wmy=w=7[(z), z€86 (6-6)

of the domain & onto the domain G* is a conformal mapping of the
first kind. Thus, the function @ (z) must be analytic in the domain &,
and @' (z) = 0, z € 8. But from (6-6) it follows that f (z) = ¢ (2).
This proves the assertion. Up to now we have assumed that a bounded
domain @ is mapped conformally onto a bounded domain G. In some
cases, one has to consider the mapping of the neighbourhood of
a point z, onto the neighbourhood of the point w = oo (or vice
versa). We will then call the mapping conformal if the neighbour-
hood of the point z, is conformally mapped onto the neighbourhood

of the point { = 0, where §=—;-. In similar fashion we define

the conformal mapping of the neighbourhood of the point z = oo
onto the neighbourhood of the point w = oo.

b. Elementary examples

In the previous chapters we have already considered a number of
geometric properties of mappings accomplished by a variety of
elementary functions. Let us now see if these mappings are confor-
mal, and if they are, then in what domains.

It is readily seen that the linear function w = f (2) =az + b
(@ =0 and b are arbitrary complex constants) maps conformally
the extended complex z-plane onto the extended w-plane, since
this function is univalent and its derivative f’ (z) = a is nonzero
at all points of the z-plane. To be satisfied of the conformal nature
of the mapping of the neighbourhood of the point z = oo onto the
neighbourhood of the point w = oo, we put (in accord with the

remark made above) ¢ =—i— and =% . The function w = az 4+ b

is transformed into the function { = which maps the neigh-

¢
a+bt’
bourhood of the point ¢ = 0 conformally onto the neighbourhood
of the point { = O (the point ¢ = 0 is a regular point of this function,

and T (8) limo =5 7 0).

We saw above that the geometric meaning of a mapping accom-
plished by a linear function consists in a similarity stretching and a
translation of the z-plane. This function can therefore be used for
constructing conformal mappings of similar figures.

Ezample 1. Construct a function to map conformally the circle
}z—1—1i| <2 onto the unit circle |w | 1.
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Since the domains & and G are similar figures, the problem may
be solved by means of a linear function which accomplishes similar
stretching of the z-plane and translation of the coordinate origin.
It is easy to see that the desired function is of the form

w=a(z—1—i

where | a |=-—;— and the argument a of the complex number can

have any value and determines the rotation of the w-plane about
the point w = 0.

We consider the power function w = f (z) = z", where n > 1
is an integer. It follows from the reasoning of Chapter 1 and Chap-
ter 3 that the function carries out a one-to-one mapping of the domain

of its univalence—the sector P, << arg z <<, +2—: —onto the
extended w-plane cut along the ray arg w = ny},. Its derivative

g e’
~
D’ \\

’
/ ~< /><5
N PN

N %

/\’]}\/ \«\’ I~ d
8
/// //\A/ \ ///
z=0 x =0 u
. Fig. 6.2

f' (z) = nz"-! is nonzero and is bounded everywhere within the
given sector and at points of its boundary, with the exception of
z = 0 and z = oo. Therefore, the given function maps conformally
onto the cut w-plane a domain within the indicated sector. Any
infinitely small plane figure lying inside the'given sector is trans-
formed into a similar infinitely small figure in the w-plane; for
instance the parallelogram ABCD, whose sides are the coordinate
lines of -the polar system of coordinates (Fig. 6.2), will be trans-
formed into a similar infinitely small parallelogram A’B’C’'D’ whose
sides are also the coordinate lines of the polar system of coordinates
in the w-plane. However, at the boundary point z = 0 the confor-
mality of the mapping is violated. Indeed, consider the curves vy,
and y, lying inside the given sector and intersecting at the point
z = 0 at an angle ¢, (Fig. 6.3). Clearly, the function w = z" trans-
forms these curves into the curves I'; and T'; which intersect at the
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point w = 0 at an angle @, = ng, %= ¢,. Thus, the given function
will map an infinitely small triangle with vertex at the point z = 0
onto a triangle which is no longer similar to the original one. We note
that at the point z = 0 where conformality of mapping is violated,
the derivative of the function f (z) = z" is zero. Continuing our
investigation, we readily see that the function w = z" maps confor-
mally the domain of the complex z-plane, which is the extended
z-plane, with the exception of the points z = 0 and z = oo, onto

an n-valent Riemann surface of the inverse function z =}/ w.
To the points z = 0 and z = oo, at which conformality of mapping

% \2
7
% 5
7
0,
B=n%
.y = w=0 u
Fig. 6.3

is violated, there correspond the points w = 0 and w = oo, which
are branch points of the inverse function.
In the general case, the power function w = f (z) = 2*, where

o >0 is a given real number, maps the sector —zgk <argz <

<27n(k +1) (=0, 1, ...) of its Riemann surface (which is

infinite-sheeted for irrational a, finite-sheeted for rational «, and
the ordinary z-plane for integral @) onto the extended w-plane (the

ray arg z = 271: k is mapped onto the positive real axis). Its derivative

f' (z2) = az*-! exists and is nonzero everywhere inside the given
sector, except at the points z = 0 and z = oo. Thus, this function
too maps the given sector conformally onto the cut w-plane.

As in the case of the function w = z", the conformality of the map-
ping is violated at the points z = 0 and z = oo.

Ezample 2. Construct a function that maps the first quadrant
of the z-plane (Re z> 0, Im z > 0) conformally onto the upper
half of the w-plane (Im w > 0).

It is easy to see that the function

w=az® 4+ b
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where a = 0 and b are arbitrary real constants, yields the solution
to this problem. At the points z = 0 and z = oo conformality is
violated.

In Chapter 3 we examined a mapping by the exponential function
w = f () = ¢*. It was shown that this function maps in one-to-one
fashion any domain of univalence—the strip y, << Im z << y, 4 2n
of the z-plane—onto the extended w-plane cut along the ray arg w =
= y,. Since the derivative of the function at hand, f' (z) = ¢*,
is nonzero everywhere inside the given strip, the mapping is confor-
mal. It is easy to see that in this mapping an orthogonal grid of
Cartesian coordinates z = C,, y = C, inside the given strip is
transformed into an orthogonal grid of polar coordinates | w | = €°1,
arg w = C, in the w-plane. The complete analytic function F (z) =
= ¢°, which is an entire function in the z-plane, maps the extended
z-plane conformally onto the infinite-sheeted Riemann surface of
the inverse function* z = Ln w. Note that the conformal mapping
breaks down in the neighbourhood of the points w = 0 and w = oo
of the w-plane, which are branch points of the function Ln w, where
the mapping is not one-to-one.

Ezample 3. Construct a function that maps the strip 0 << Rez << a
conformally onto the upper half-plane Im w > 0.

The function 2z, =%z maps the original strip onto the strip

0 < Rez < xn. The function 2z, = iz, transforms the resulting
strip into the strip 0 << Im z, << m. Finally, the function w = ez2
maps the given strip conformally onto the upper half-plane Im w >
> 0. Therefore, the function which accomplishes the given confor-
mal mapping may be taken in the form
i’-E-z
w=e®%

¢. Basic principles

We considered a few elementary examples of functions that map
conformally and, with their aid, we solved the basic problem of
conformal mapping for a number of elementary domains. More comp-
licated examples require the use of general principles of conformal
mapping. Let us investigate these principles. In a number of cases
we will confine ourselves solely to a statement of the appropriate
propositions without substantiating them rigorously, for this would
take us beyond the limits of our course.

(a) One-to-one correspondence. It has been pointed out that a con-
formal mapping of a domain @ of the complex z-plane onto a domain G

* For construction of the Riemann surface of the function Ln w, see Chap-
ter 3, page 103.
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of the w-plane, which is accomplished by a function f (z) analytic
in @, sets up a one-to-one correspondence between these domains.
Thus, the condition of univalence of the function f (z) in the domain
@ is a necessary condition for the conformality of the mapping.
It turns out that this condition is also sufficient.

T heorem 6.3, Let f (z) be a single-valued analytic function in a
domain @ which maps the domain & one-to-one onto a domain G of the
complex w-plane. This mapping is then conformal.

Proof. To prove the theorem it is evidently sufficient to demonst-
rate that if the conditions of the theorem are fulfilled the derivative
of f (z) is nonzero everywhere in the domain &. Suppose this is not
the case, i.e. that in the domain & there exists a point z, at which
f' (z,) = 0. Since f (z) is analytic in &, then by virtue of the suppo-
sition its power-series expansion about the point z, must be of the
form

f(2) =ap +an (2 —20)* + apsy (2 — 2" + ... (6-7)

and & > 2 and a, 5= 0. If f’ (z) 550, then z, cannot be a limit point
of the zeros of the function f’ (z). This means that there is a value §’
such that f’ (z) 5= 0 at all points z 5% z, inside the circle | z — zy | <
<< 6'. Also, it is obviously possible to choose a value §” such that
we will have the inequality

V(@) =ar +ap1(G—2) +...5%0
for |z —z | < 6.
Choosing 6 = min {§’, 6"}, we have
f'(z) 0 for z5£z,
Y (z2)=ar+ aru1(2—20)+ oo 70

From the latter relation, by virtue of the continuity of the funce
tion v (z), it follows that

} for |2—2| <8 (6-8)

min | (z—20)* $ (2) jezo1mt =m >0

Choose some complex number & which satisfies the condition | a | <<
< m. By Rouché’'s theorem, the analytic function

P@E) =@E—z2) @) —a=f@)—a—a (6-9)

has inside the circle | z — z, | < 8 just as many zeros as the func-
tion (z — z)™p (z). The latter, by the condition (6-8), has in the
given circle k zeros; the point z = z, is its zero of order k. Then
from (6-9) it follows that the equation

Fd) =20 +a (6-10)
11—3878
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has k roots in the circle | z — z, | < 8, and all these roots are simple,
since the point z = 2, is not a root of the equation (6-10) and, by
(6-8), f' (2) #= 0 at the remaining points of the given circle. This
means that at % distinct points of the circle |z — z, | < 6 the
function f(z) assumes the same value f(z) = a, + @. But this
contradicts the condition of one-to-one mapping of the domain &
onto the domain G, which proves the theorem.

It thus follows from the theorem that we have proved that the
condition of univalence of f (z) in the domain @& is a necessary and
sufficient condition for a single-valued function f (z) analytic in the
domain & to map this domain conformally onto some domain G
of the w-plane.

(b) The principle of correspondence of boundaries. When solving
concrete problems in the conformal mapping of a given domain &
onto a given domain G, the usual procedure is to see that the desired
function f(z) maps the boundary vy of the domain & onto the
boundary I of G, without specially considering the mapping of the
interior points. This can be done by virtue of the so-called principle
of boundary correspondence which we will prove below. First, note
that if in a domain @& there is given a single-valued continuous
function w = f (z), it is obvious that the function transforms any
closed curve y lying entirely in & into a closed curve I in the w-plane.
We will say that in a mapping of the curve y, by the function
f (z), the sense of the traversal is preserved if in continuous motion
of the point in the positive direction along the curve y the correspond-
ing point goes around the curve I' in the positive direction as well.
Let us now examine the principle itself.

T heorem 6.4. Let there be given, in a finite domain & bounded by
a contour y, a single-valued analytic function f (2) which is continuous

in @ and maps the contour y one-to-one onto some contour T' of the
complex w-plane. Then, if in such a mapping of contours the direction
of traversal is preserved, the function f (z) maps the domain & confor-
mally onto the interior domain G bounded by the contour T.

Proof. It is evidently sufficient to show that the function f (z)
sets up a one-to-one correspondence between the domains & and G;
that is, we have to show that the function f (z) associates with every
value z € & a certain point w € G and for every point w, € G there
will be ope and only one point z, € 8 such that f (z,) = w;. To do
this, consider two arbitrary points w, € G and w, § G (Fig. 6.4)
and construct in @ the auxiliary functions

F = - [} E @
FOZIOZ e ite (6-11)

Count the number of zeros of these functions in the domain & using
formula (5-93). Since it is given that a positive traversal of the
contour I' corresponds to a positive traversal of the contour y, we
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obtain

N[Fy(3)]=— Var [arg (f—wy)]l,=1 (6-12)
and

N[F,(s)] = Var [arg (f—ws)ly=0 (6-13)

Since the choice of the point w, outside the domain G is arbitrary,
it follows from (6-13) that all the values of the function f (z) for
z € @ belong to G. From (6-12) it follows that for any point v, € G

Fig. 6.4

in the domain & there is one and only one point z, for which f (z,) =
= w,; this proves that the given mapping is one-to-one. The theorem
is proved.

Note. If the function f (z) is analytic in the domain @&, with the
exception of a unique singular point z, which is a first-order pole,
and the direction of traversal is reversed in a mapping of the boun-
dary of @ (the contour y) onto the contour I' of the w-plane, then
the function f (z) maps the domain & conformally onto the domain
G’, which is exterior to the contour I', in the w-plane (the point z,
corresponds to the point w = oo).

This assertion is proved in a manner similar to that of the pre-
ceding theorem; in place of (6-12) and (6-13) we get the relations

NFy () —1= o Vor [arg(f—wp)ly=—1  (6-14)
and
N[Fy(2)—1 = Var(arg (f—w;)ly=0 (6-15)

from which follows the validity of the assertion.
11*
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We give the assertion without proof; in a sense it is the converse
of the theorem that has just been proved.

T heorem 6.5. If a functionf (z) maps a domain & of the complex
z-plane conformally onto a bounded domain G of the w-plane, the
boundary of which does not contain the point w = oo, then the func-
tion f (z) is continuous on the boundary of & and generates a contin-
uous one-to-one correspondence between the boundaries y and T of the
domains @ and G.

(c) Symmetry principle. This principle finds numerous applica-
tions in the solution of problems of conformal mapping of domains

Fig. 6.5

whose boundaries have straight-line segments. Let the boundary ¥y
of the domain & have a straight-line segment y’ (Fig. 6.5). The
domain & obtained by means of a mirror reflection of the domain &
about the straight line on which the segment y’ lies will be called
a domain symmetric to the domain & with respect to y’. The sym-
metry of points of the domains & and & will be denoted by the
symbol z <+ z. The symmetry principle may be stated in the form

of a theorem.
T heorem 6.6. Let there be given, in a closed domair @, the boun-

dary y of which has a straight-line segment ', a continuous function
1 (z2) which maps the domain & conformally onto the domain G of the
complex w-plane, the segment ' of the boundary y being transformed
into a straight-line segment T' of the boundary I' of the domain G.
Then, in the domain &, which is symmetric to & with respect to the
segment y', it is possible to construct a function f (2) which is an analyt-
ic continuation of the function f (z) from ® into & and which maps
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the domain & conformally onto the domain G of the complex w-plane,
which (G) is symmetric to the domain G with respect to the seg-
ment I".

Note that the domain & = & 4+ & thus obtained can have
a segment ®,, belonging simultaneously to the domains & and &.
Then the complete analytic function F (z) obtained by an analytic
continuation of the function f (z) into the domain & must be consid-
ered on an appropriate Riemann surface (the same refers to the
domains G and G).

Proof. We associate with each point z € 8 a point z € @ sym-
metric to it with respect to the segment y’; and with the point w € G,
a point w € G symmetric to it with respect to the segment I':

22, Wer (6-16)

In &, define the function f(z) specifying its values for every Z€ G
according to the scheme z<»z; z >w = f (z); w«>w; [ (2) = w.
It is readily seen that the constructed function f (z) is analytic in the
domain &. Indeed, by the correspondences of (6-16), from the exis-

tence of a limit of the difference quotient —L}A% there follows the

A

existence of a limit of the difference quotient —A_ The analytic
2z

functions f (z), z € ® and 7 (z), z € ®, coincide and are continuous
on the common segment ¢’ of the boundaries of the domains @ and
@. Therefore, by the principle of analytic continuation, the func-
tion f (z) is an analytic continuation of the function f (z) from the
domain @ into the domain &. The first part of the assertion of the
theorem is proved. By (6-16), the mapping of the domain & onto
the domain G by the function f (z) is one-to-one. Consequently,
on the basis of Theorem 6.3, this mapping is conformal. The proof
is complete.

Note. This theorem remains valid also for the case when the
straight-line segment y’ in the theorem is replaced by an arc of
a circle. In that case, symmetry with respect to the arc of the circle
is to be understood as a mirror reflection in the given circle carried
out by an inversion transformation. It will be shown below that
it is always possible to map a domain. & conformally onto a new
domain @, so that tl e segment 9" of the arc of a circle which is part
of the boundary v of the domain @ is transformed into a straight-
line segment y;, which is part of the boundary y, of the domain @,.
This proves the truth of the assertion.



166 Ch. 6. Conformal Mapping

d. Riemann’s theorem

Up to now we have reasoned on the assumption that there exists
a function f (z) that maps a given domain & of the complex z-plane
conformally onto a given domain G of the complex w-plane. We will
now formulate conditions which will guarantee the existence and
uniqueness of such a mapping. This theorem, which is a fundamental
theorem of the theory of conformal mappings, was proved by Rie-
mann in 1851. Proof of the existence of a conformal mapping goes
beyond the scope of this course and so we will confine ourselves
to a statement of the theorem.*

Theorem 6.7 (Riemann’s theorem). Every singly connected
domain @ of the complex z-plane whose boundary consists of more than
one point may be conformally mapped onto the interior of the unit circle
|w | << 1 of the w-plane.

It obviously follows from this theorem that it is possible to map
a given singly connected domain & of the z-plane conformally
onto a given singly connected domain G of the complex w-plane if

Fig. 6.6

the boundary of each of these domains consists of more than one
point. Indeed, mapping the domains & and G onto the auxiliary
circle | { | <1 (which is possible by Riemann’s theorem), we get
the desired mapping.

The condition of single connectivity of the domains & and G
is essential, for the supposition of the possibility of a conformal
mapping of a multiply connected domain @ onto a singly connected
domain G leads to a contradiction. Indeed, let us take in & a closed
contour v, inside of which lie the boundary points of the domain &.
The contour y is mapped onto some closed curve I' lying completely
in the singly connected domain G (Fig. 6.6). Make I' shrink to some
interior point w, of the domain G; then by virtue of the continuity
of the mapping, the contour y should also shrink to some interior

* A detailed proof is given in [1].
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point z, of the domain @, all the while remaining inside this domain;
but this is obviously impossible due to the multiple connectivity
of the domain & and to the indicated choice of the contour y. Thus,
a conformal mapping of a multiply connected domain onto a singly
connected domain is impossible. However, as will be shown below,
it is possible in a number of cases to effect a conformal mapping
of domains of equal connectivity.

Let us now examine the conditions which uniquely define a func-
tion capable of carrying out a given conformal mapping. It is clear
that such conditions are necessary, since, as is evident from earlier
examples, the unit circle can be conformally mapped onto itself
with the aid of the most elementary linear transformation, which
consists in a rotation of the complex plane. Therefore, if the function
f (2) maps conformally a given domain & onto the unit circle,
then any function obtained from f (z) by means of the indicated
linear transformation will conformally map the domain & onto
the same unit circle.

T heorem 6.8. A function f (z) which maps conformally a given
singly connected domain & (the boundary of which consists of more
than one point) onto the unit circle |w | << 1 so that f (z,) = 0 and
arg f' (z9) = @, (where z, € 8 and a, is a given real number) is defined
uniquely.

Proof. Suppose there are two different functions w;, = f, (z) and
w, = f, (2) in the domain &, effecting the given conformal map-
ping, i.e.,

fi (20) = 0, arg f; (z0) = @gs 1o (@) Iy = 1
fa (20) = 0, arg f; (z0) =g, |/, (2) |y =1

‘We note that by Theorem 6.5, the functions w; = f, (z) and w, =
= f, (2) set up a one-to-one and continuous correspondence between
the boundary y of the domain & and the circles |w;, | =1 and
| wy | = 1, respectively.

Since a one-to-one correspondence is established in a conformal
mapping, this means that there is also established a one-to-one
correspondence between the points of the unit circles |w; | <1
and | w, | << 1. Hence, the established correspondences define the
analytic function w, = ¢ (w,;), whick maps the unit circle | w, | << 1
conformally onto the unit circle | w, | << 1, and

9(0)=0, | ¢ () |wy=1 =1

Note that, besides, by virtue of the one-to-one correspondence of
the domains |w; | <1 and |w, | <1 we have the condition

@ (w) %0 for w, %0



168 Ch. 6. Conformal Mapping

Computing the value of the derivative %’: by the rule for deter-

mining the derivative of a composite function, we get

AUJg 3
d(P dWQ 1. Az kzemo ka
= im—=2—=-2>0
dwy |wi=0 dw1 wi=0  p,0AW1 Awy kie“aﬂ ky =
Az

Whence it follows that the derivative -%f at the point w; = 0 is

a positive real number. Let us consider the auxiliary function de
fined for |w; | <1

¥ (1) = 5 9 (@) (6-17)

The function y (w,) is obviously a single-valued analytic function
in the domain 0 << |w, | << 1. The point w, = 0 is a removable
singular point of this function. We redefine ¢ (w,) with respect to
continuity for w;, = 0. Expand ¢ (w,) in a Taylor series about w, = 0:

d
wz—‘P(wl)—‘P(O)'*'dw‘ 104=0 w4+ ... =%w‘=ow1+ coe

Taking the limit as w; — 0, we have

Y (0)= llm @y _

-0 Wi dwi

ks
4—0—7¢T>0 (6-18)

The function ¢ (w,) is continuous in the closed domain | w; | < 1,
and in this domain Y (w,) = 0 and

[ (1) fwy=1 =1 (6-19)

By the maximum- and minimum-modulus principle of an analytic
function, there follows from (6-19) that

1Y (wy) [=1for |uy | <1
whence, by footnote on page 53 (Chapter 1) we find that
P (w;) = constant for |w; | <1 (6-20)

In order to find this constant, note that by (6-18) it is equal to -kl ’

i.e. it is a positive real number. According to (6-19), the absolute
value of this number is unity, which implies that ¢ (w,) = 1. Hence,
w, = @ (w,) = w,. This is proof that there do not exist two dif-
ferent functions accomplishing a specific conformal mapping of a
given domain & onto the interior of the unit circle.

Note. The above-stated conditions for a unique definition of
a function f (z) accomplishing a conformal mapping of a given singly
connected domain & onto the interior of the unit circle |w | << 1
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may be replaced by the requirement that three boundary points
of the boundary y of the domain & correspond to three points of
the circle |w | = 1.

We confine ourselves to a statement of the assertion without giving
its proof.

We have examined a number of basic general properties of con-
formal mapping. However, these considerations do not yield general
procedures for solving the basic problem of constructing a confor-
mal mapping of a given domain & of the complex z-plane onto
a given domain G of the w-plane. It is not possible to indicate any
such procedure in the most general case. In solving concrete prob-
lems one has to resort to a variety of special methods. In this, a suf-
ficiently full grasp of the geometric properties of a number of func-
tions of a complex variable that are most often used in solving
practical problems will be of great help.

6.2. Linear-Fractional Function

A linear-fractional function is the function of a complex variable
of the form

w=1(s) =22 (6-21)

where a, b, ¢, d are given complex constants, which must obviously
satisfy the condition

a b

Pekairs (6-22)

since otherwise the function f (z) would be identically constant.
Without loss of generality, it may be taken that b~ 0 and d % 0,
for otherwise w would be transformed into the already studied

%. And so we can write (6-21)

linear function and the function w =

in the equivalent form
+ b
w=f(z)=).-;—;+—:, A==, a=%, p==, a=p (6-23)
The function (6-21), (6-23) is a single-valued analytic function
in the extended complex z-plane having one singularity—a first-

order pole z, = —% = —f. The inverse function
) __A—Pw
Z= m (6'24)

is a linear-fractional function defined in the extended w-plane. Here,

the point z, = ———;—= —PB is transformed into the point w = oo

b

and the point z = oo into the point w, = A =—.
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Let us find the derivative of the function w = f(2)

’ B—a
By the condition (6-22), the derivative of a linear-fractional func-
tion is nonzero at all finite points of the z-plane. This means that
a linear-fractional function maps the z-plane conformally onto the
w-plane. The conformality of the mapping at points at infinity
is readily verified by the above-mentioned method.

The expression of the linear-fractional function includes three
arbitrary parameters A, a, B; there are thus an infinity of linear-
fractional functions that map the extended z-plane onto the extend-
ed w-plane conformally. It is natural to pose the question of the
conditions that uniquely define a linear-fractional function.

Theorem 6.9. A linear-fractional function is uniquely defined
by specification of a correspondence between three different points of the
z-plane and three different points of the w-plane.

Proof. We have to prove that the conditions

f(z1) = wy, f(35) = w,, f(25) = ws (6-26)

where z,, z,, z3 and w,, w,, ws—given complex numbers—uniquely
define the values of the parameters A, o, p. Form the expressions

4 (z1—23) B—0) _
B A == (6-27)
. — 9 (5a—23) B—0) R
W — W= A B BT (6-28)
Dividing (6-27) by (6-28), we get
ws—ws _ 23—123 B+3% (6-29)

wy—ws ~ 23—z3 B+3
For an arbitrary point z we can write a similar relation

wy—w _ 31—3 Btz _

Wo—w 23—z P+ (6-30)
Eliminating the parameter § from the relations (6-29) and (6-30),
we finally get

Wy—w, wi—wy 21—32 %1% (6-31)
Wy —w " wo—wg Z9—32  Zg—33

The relation (6-31) is an implicit expression of the desired linear-
fractional function. By solving (6-31) for w, we evidently get an
explicit expression of the coefficients A, «, f of the linear-fractional
function in terms of the given numbers z,, z,, z3, w;, Wy, wy, Which
proves the theorem.

Note that since a linear-fractional function effects a conformal
mapping of the extended z-plane onto the extended w-plane, it
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follows that one of the points z; and one of the points w;, the speci-
fication of which defines the linear-fractional function, may be
points at infinity.

Let us consider the geometric properties of a mapping by a linear-
fractional function. To do this, we slightly transform the expres-
sion (6-23) to

1@ =2 (555 +1) (6-32)
and introduce the auxiliary functions
z,=p+3, z2=%, z3=MA(—P) 2, + A (6-33)

From the relations (6-33) it follows that a mapping by a linear-
fractional function is a collection of elementary mappings by the

linear functions z, and z; and by the function —:— considered in Chap-

ter 1. Thus, the mapping at hand is made up of stretchings, rota-
tions and translations of the complex plane, and also of the inver-
sion transformation in a circle. This mapping has a number of im-
portant properties which we will investigate.

T heorem 6.10 (Circular property of a linear-frac-
tional function). A linear-fractional function transforms circles
in the z-plane into circles in the w-plane. We include straight lines
in the family of circles, regarding them as circles of infinite radius.

Proof. 1t is obviously sufficient to show that the inversion trans-

formation by the function w =% possesses the circular property,

since preservation of the circle in a linear transformation does not
give rise to any doubt. Let us consider an arbitrary circle whose
equation in the z-plane is

A@+y)+Bz+Cy+D=0 (6-34)

where 4, B, C, and D are real numbers and 4 > 0, B? 4 C? = 4A4D.
Clearly, for A = 0 we get a straight line; for D = 0 the circle (6-34)
passes through the origin (point z = 0). In the transformation by

the function w = u + iv = —:-, the coordinates z, y are connected
with the coordinates u, v by the relations

T=grmr Y= —mper (6-35)
Therefore, the circle (6-34) in the new coordinates is of the form
DWW+ v)4+Bu—Cv+4=0 (6-36)

This proves the theorem.
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Note that for D = 0 equation (6-36) is the equation of a straight
line, i.e. the circle passing through the point z = Q is mapped into

a straight line by the function w =—§-.

The foregoing property of a linear-fractional function is widely
employed in solving many concrete problems of conformal mapping
associated with the mapping of domains with circular boundaries.
Indeed, suppose we have to map conformally a domain & bounded
by the circle y (in the z-plane) onto the domain G bounded by the
circle I' in the w-plane. It is known that the position of a circle
in a plane is completely defined by specification of three points.

|/ v

/Zz=l
/

z=0 z,=/ w =0 wy=1 wy=o

z 7 /e /il

Fig. 6.7

On the other hand, by Theorem 6.9, by specifying the correspondence
of three points z; in the z-plane lying on the circle y to three points
wy, of the w-plane lying on the circle I' we fully define a linear-frac-
tional function which maps the z-plane conformally onto the w-plane.
Then, according to Theorem 6.10, the circle y will be transformed
into the circle I'. If the correspondence of points z; and w; is chosen
so as to preserve the direction of traversal, then by Theorem 6.4
the given function maps the domain @& conformally onto the do-
main G. Note that the domain exterior to the circle p in the z-plane
is conformally mapped onto the domain exterior to the circle I
in the w-plane. If the correspondence of points z, and wj is estab-
lished so that the traversals of the circles y and I' are in opposite
senses, then the domain & is conformally mapped onto the domain
exterior to the circle I' in the w-plane.

Ezample 1. Find the function that maps the unit circle |z | < 1
conformally onto the upper half-plane Im w >0.

We start by establishing the following correspondence of the
boundary points of the given domains (Fig. 6.7):

5, =1->w =0 (6-37")
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Z, =i —>wy, =1 (6-37%)
23 = —1 >w; = oo (6-37")
and find the coefficients A, &, f of the linear-fractional function
which generates the desired mapping. From the conditions (6-37")

and (6-37") it is easy to see that the values of a and P are deter-
mined at once, and then the desired function takes the form

__a3—1
w= z+1
The last coefficient A is found from the condition (6-37"):
i—1
1= iF1
whence A = —i. Thus, the function which carries out the desired
mapping is of the form
. 1—2
w=l—1+_—‘ (6-38)

Note that the function (6-38) maps the domain |z | >1 confor-
mally onto the lower half-plane Im w << 0.

It follows from this example that construction of the desired
linear-fractional function is simplest when the given points of the
w-plane are the points w = 0 and w = oo, for then the values of
the coefficients o and P are determined at once.

The next property of linear-fractional functions consists in pre-
servation of points symmetric about a circle.

It will be recalled that the points P and P’ are called symmetric
with respect to a circle C if they lie on a common ray passing through
the centre O of the circle C, and the product of their distances from
the centre is equal to the square of the radius of the circle: OP-OP’ =
= R®. We have

Theorem 6.11. In a mapping by a linear-fractional function,
points symmetric with respect to any circle are transformed into points
symmetric with respect to the image of the circle.

Proof. We take advantage of the following auxiliary propositions
of elementary geometry.

Proposition 1. Every circle C’ passing through the points P and
P’ is orthogonal to the circle C.

Indeed, drawing a ray OP’ and a radius OA to the point of inter-
section of the circles C and C’ (Fig. 6.8), we get

OP.OP = (0A)* = R?

by virtue of the symmetry of the points P and P’ with respect to
the circle C. But this, by a familiar theorem of elementary geomet-
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ry,* implies that OA is a tangent to the circle C’ drawn from point O,
whence it follows that C’ 1 C.

Proposition 2. Two mutually intersecting circles C’ and C” ortho-
gonal to one and the same circle C intersect at the points P and P’,
which are symmetric with respect to the circle C.

Fig. 6.8

Through the point P of intersection of the circles C’' and C*,
which lies inside C, draw a ray OP. Suppose that OP intersects C’

Fig. 6.9

and C" at different points, P* and P**, respectively (Fig. 6.9).

Since the circles C’ and C” are orthogonal to C, by the above-men-

tioned theorem of elementary geometry we have the relations
OP«OP* = R* (6-39)
OP«.OP** = R? (6-40)

* The product of segments of a secant drawn from an exterior point of a
circle is equal to the square of the segment of the tangent drawn from the same

point.
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But since the points P* and P** lie on one ray, the equalities (6-39)
and (6-40) are only possible when the points P* and P** coincide,
P* = p** = p’; this proves the proposition.

Let us now prove the theorem. Let the points P and P’ be symmet-
ric with respect to the circle C. Through these points draw two auxi-
liary circles C’' and C". By Proposition 1, the circles C’ and C”
are orthogonal to C. In a conformal mapping accomplished by some
linear-fractional function, the circles C, C' and C” will be trans-
formed respectively into the circles K, K’ and K” and the circles
K’ and K" will be orthogonal to K. The points P and P’ of inter-
section of the circles C' and C” will be transformed into the points Q
and Q' of intersection of their images—the circles K’ and K”. But by
Proposition 2, the points Q and Q' must be symmetric with respect
to K, which proves the theorem.

It is obvious that the theorem holds true in the case of circles of
infinite radius (straight lines) as well.

This theorem finds numerous applications in the solution of con-
crete problems of conformal mapping, and in the future we will
repeatedly resort to it. Here, we confine ourselves to two examples.

Example 2. Find a function that will map conformally the unit
circle | z | << 1 onto itself so that a given interior point z, is trans-
formed into the centre of the circle.

The problem can obviously be solved by using a linear-fractional
function. Then the point z, and the point z,, symmetric to it with
respect to the circle | z | = 1, will be transformed into points sym-
metric with respect to the circle | w | = 1. But since a point sym-
metric to the centre of a circle is the point at infinity and the point
z, must be transformed into the point w = 0, it follows that the
point z, will have to transform into the point w = oco. Hence, the
desired linear-fractional function has the form

w=A—2 (6-41)

2—2

Since z,=—.1—, then (6-41) can be rewritten as
Zy

= Agp ——20 -
w "1 (6-42)
So that in the mapping (6-42) the circle | z | = 1 is also transformed
into the circle | w | = 1 of unit radius, the following condition must
hold:
- A0, " -
'A'ZO,' e’m’;o—: =l MO, ;o__e-gf =| }wZo =1
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This implies Az, = e!®, where « is an arbitrary real number, and
the solution of our problem is obtained in the form

—eia_2"% -
w=e 1 (6-43)
Note that we have obtained a solution defined to within one arbit-
rary parameter o, which obviously determines the rotation of the
circle | w | = 1 about the centre. Specification of the value of the
argument of the derivative of the function w at the point z = z,
completely defines the function w.
Example 3. Find a function that maps conformally an eccentric
annulus onto a concentric annulus.
Let it be required to construct a conformal mapping of a domain
bounded by two circles with noncoinciding centres (Fig. 6.10) onto

| Y

Fig. 6.10

some concentric annulus. Since we are dealing with doubly connect-
ed domains, Riemann's theorem on the existence of a conformal
mapping does not hold here and, as we will see, one cannot arbit-
rarily specify a ratio of the radii of circles of a concentric annulus,
onto which it is required to map conformally a given eccentric
annulus. For future convenience, let us suppose that the centre of
the larger circle C lies at the point z = 0, its radius is R, and the
centre of the smaller circle C’, of radius r, lies at the point z = a
on the real axis. We find the points P, and P,, which are simulta-~
neously symmetric with respect to both circles C and C’. These
points clearly lie on the real axis (Fig. 6.10). Then their abscissas
z, and z, must satisfy the relations

(zy —a) (zg — a) =r? (6-44)
z,-z4 = R3 (6-45)
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From (6-44) and (6-45) it follows that z, and z, are roots of the quad-
ratic equation

az® — (R*—r*+a®)z+aR?*=0 (6-46)

The discriminant of this equation (R? — r?® + a?)? — 4a2R? is
positive since the obvious relation R — r >a holds. We construct
the linear-fractional function

w=A2L (6-47)

——

where z; and z, are the abscissas of the points P; and P, found from
equation (6-46). The function (6-47) will map the circles C and C’
onto some circles X and K’ of the w-plane and it will map the point
P,, which is exterior to the circles C and C’, into the point w = oo.
The point P;, which is symmetric to the point P, with respect
to the circles C and C’, must be transformed into a point that is
symmetric to the point w = oo with respect to the circles K and K’.
But a point that is symmetric to the point at infinity is the centre
of the circle. Hence, in the mapping (6-47) the point P; will be
transformed into the common centre of the circles X and K’. The
desired mapping has been constructed. Note that in the expression
(6-47) the definition of the parameter A was arbitrary; however, any
variation in the parameter only results in a similarity stretching of
the w-plane, but this cannot change the ratio of the radii of the
circles of the concentric annulus thus obtained.

To conclude this section, let us examine the problem of applying
a linear-fractional function in the construction of conformal map-
pings of lunes. A lune (two-sided polygon) is a plane figure formed
by the intersection of the arcs of two circles of different radii, generally
speaking (Fig. 6.11). It is clear that the angles at the vertices of the
lune are equal. Let there be given a lune with vertices at the points
A (z,) and B (z,) and angle a at the vertex, and let it be required
to construct a conformal mapping of the interior domain of the
given lune onto the upper half-plane Im w > 0. Consider the auxi-
liary function

== (E=E+in) (6-48)
2

The linear-fractional function (6-48) maps the extended z-plane
conformally onto the extended {-plane; the point z = z, is trans-
formed to the point { = 0, and the point z = z, into the point
§ = oo. By virtue of the circular property of a linear-fractional
function, the circles forming the lune in the mapping (6-48) are
also transformed into circles. But the circle passing through the
points { = 0 and { = oo has an infinitely large radius. This means
that in the mapping (6-48) the sides of the lune will be transformed

12—3878
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into rays (I and IJ) emanating from the point { = 0, and the angle
between these rays will be equal to the angle a at the vertex of the
lune (Fig. 6.12). Thus, the function (6-48) performs a conformal
mapping of the given lune in the z-plane onto a sector with central

Fig. 6.11 Fig. 6.12

angle @ in the {-plane, and the ray I forms with the positive E-axis
an angle a, whose value is determined by the position of the verti-
ces A and B of the lune. As we have seen (Chapter 6, page 160),
the function

- (6-49)

which is a direct analytic continuation of the real function
T
z%, >0, maps the domain inside the sector ay<<arg{<<a,+a

conformally onto the half-plane %— n<<argw<< f;i n+xn. It now

remains to transform the half-plane thus obtained to the half-plane
Imw> 0. To do this, it is sufficient to rotate the entire plane as

a whole through the angle —-"—;'L:r. This may be done by multip-

-i%
lying the function (6-49) by the complex number e o Finally,
then, the desired function that will map conformally the lune AB
onto the upper half-plane Im w > 0 takes the form

4% P L2
w—e a"(};:zi)a (6-50)

Note that the conformality of mapping is violated at the points z,
and z,.
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Ezample 4. Construct a conformal mapping of the upper half of
the circle |z | < 1, Im z > 0, onto the upper half-plane Im w > 0.
Clearly, the given domain is a lune with vertices at the points

z, = —1 and zy = 1, and angle a = -’21 at the vertex. The auxiliary
function
Atz (6-51)

1—z
maps this lune conformally onto the first quadrant of the {-plane
and the function
w=(4EL)? (6-52)

1—z

yields the desired mapping.

6.3. Zhukovsky’s Function
The function of the complex variable

w=f ()= (s4++) (6-53)

is called Zhukovsky's function. It was widely used by N. E. Zhu-
kovsky in the solution of numerous problems in hydro- and aero-
dynamics.

The function (6-53) is clearly analytic in the entire complex plane,
except at the point z = 0, which is a first-order pole of the given
function. Computing the derivative of the function (6-53), we get

f =5 (1—%) (6-54)

Whence it follows that the derivative of the Zhukovsky function is
nonzero at all points of the z-plane except at the points +-1. Thus,
a mappiong by this function is conformal everywhere except at these
two points. Let us find the domains of univalence of the Zhukovsky
function. Suppose that two distinct points of the complex plane
2, = z, are transformed by the function f (z) into one and the same
point of the w-plane, i.e.,

1 1
Zl+z—‘=7-2+-zT

or
7y — gy =1 (6-55)
Since z, 7= z,, from the relation (6-55) it follows that
22 =1 (6-56)

12+
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The relation obtained implies that the domains of univalence of
Zhukovsky's function are, in particular, the domains inside (| z |<1)
and outside (| z | > 1) of the unit circle. Both of these domains are
mapped conformally by the function (6-53) onto one and the same
domain of the w-plane. To determine this domain, consider the
mapping of the circles | z | = ry by the function (6-53). To do this,
we take the exponential form of complex numbers: z = re!® and
find the expression for the real and imaginary parts of the func-
tion (6-53):
1 1 1 1 .
u(r, @)=~ (r-}—T) cosg, v(r,p)== (r——) singp (6-57)

r

'Putting r = r, and eliminating the parameter ¢, we obtain

u? v2
1 7+ Tz =1 (6-58)
7(ot=)" z(o—7)
From the relation (6-58) it follows that the function (6-53) maps the
concentric circles | z | = r, conformally onto ellipses. It will readily
be seen that the foci of all the ellipses (6-58) lie at the same points
of the real u-axis:

¢ = +1 (6-59)

Thus, the function (6-53) maps the family of concentric circles
| z | = ry of the z-plane onto the family of confocal ellipses of the
w-plane. Here, if r; << 1, then the positive direction of traversal
around the circle | z | = r; is associated with a negative direction

of traversal about the ellipse (6-58); if r, =71;. > 1, then with the

positive direction about the circle | z | = r, we associate a positive
direction of traversal about the ellipse (6-58). As r; — 1 the el-
lipse (6-58) degenerates into the segment [—1, 1] of the real u-axis
traversed twice. As r, — 0, the ellipse (6-58) is transformed into
a circle of infinitely large radius. Thus, the function (6-58) maps the
domain inside the unit circle | z | << 1 in the z-plane conformally onto
the w-plane cut along the segment [—1, 1] of the real axzis. The boun-
dary of the domain—the circle |z | = 1—is mapped onto this
segment, the upper semicircle being mapped onto the lower lip,
and the lower one onto the upper lip of the cut. Analogously, the
domain |z | > 1 outside the unit circle in the z-plane is mapped
onto the second sheet of the w-plane cut along the segment [—1, 1]
of the real axis, the upper semicircle |z | =1, Im z > 0 being
mapped onto the upper lip, and the lower semicircle |z | =1,
Im z << 0, onto the lower lip of the cut. Thus, Zhukovsky’s function
(6-53) maps the extended z-plane conformally onto the Riemann-
surface of the inverse function

z=@w)=w+ ) uwr—1 (6-60)
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The Riemann surface of the function (6-60) is a two-sheeted surface
made up of two sheets of the w-plane cut along the segment [—1, 1]
of the real axis. The lower lip of the cut of one sheet is joined to
the upper lip of the cut of the other sheet and conversely. The func-
tion (6-60) is a single-valued analytic function on its Riemann
surface with two branch points w = 4-1, upon going around each
of which we move from one sheet of this Riemann surface to the
other sheet. Note that in a simultaneous traversal of both branch
points w = 41 around a closed curve that does not intersect the
segment [—1, 1], we are all the time on one and the same sheet.

Thus, the functions (6-53) and (6-60) establish a one-to-one cor-
respondence between the extended z-plane and the given Riemann
surface. The mapping defined by these functions is conformal every-
where except at the points z = 41, at which the derivative of the
function (6-53) is zero. Note that these points are associated with
w = =1, the branch points of the function (6-60), which is the
inverse of the function (6-53).

In conclusion, let us find the image of the rays arg z = @, in the
mapping defined by the Zhukovsky function. To do this, eliminate
from the relations (6-57) the parameter r and put ¢ = @,. Then

u? v?

cos2 @, sin?qp 1 (6-61)
The relation (6-61) implies that in the mapping (6-53), segments
of the rays arg z = ¢, are transformed into branches of the hyper-
bola (6-61). Observe that for any value of @, the foci of this hyper-
bola lie in the points +1. Thus the Zhukovsky function defines
a transformation of the orthogonal system of polar coordinates in
the z-plane into an orthogonal curvilinear system of coordinates,
whose coordinate lines are the confocal families of ellipses (6-58)
and hyperbolas (6-61).

It has already been pointed out that Zhukovsky's function finds
extensive application in the solution of many concrete problems
of conformal mapping, particularly those associated with the inves-
tigation of hydrodynamic problems. We will deal with these prob-
lems somewhat later; for the present we will consider one more
function that finds numerous applications.

6.4. Schwartz-Christoffel Integral.
Transformation of Polygons

In the complex w-plane let there be given an n-gon with vertices
at the points A,, 4,, ..., 4, and with interior angles at these
n

vertices o7, @7, ..., &,%, respectively. (Obviously, > a;=
i=1

= n — 2, n > 2.) Let it be required to construct a conformal map-
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ping of the upper half of the z-plane onto the interior of such a poly-
gon. This problem is solved by means of the so-called Schwartz-
Christoffel integral, some properties of which will be studied in
this section.

Consider a function of the complex variable z defined in the upper
half of the z-plane with the aid of the expression

w=f@=C [ E—a) .. G—a™ &+ (6-62)

Here, ,, C, C, are given complex constants; a, ..., a, are real
numbers arranged in increasing order; a,, ..., &, are positive
constants that satisfy the conditions

n

M ai=n—2 (6-63)

i=1

I<a; <2 (6-64)

In the integrand we chose those branches of the functions ({ — a;)*: -1
which are a direct analytic continuation into the upper half-plane

of the real functions (z — a;)* ! of the real variable z > a;. In
that case, the function (6-62) is a single-valued analytic function
in the upper half-plane Im z > 0. The points a; lying on the real
axis are singularities of this function. The function (6-62) is the
Schwartz-Christoffel integral. For an appropriate choice of points a;,
the function (6-62) defines a conformal mapping of the upper half-
plane Im z > 0 onto the domain inside some rn-gon in the w-plane.
To start with, we consider that all the numbers a; are bounded.
We will show that the function (6-62) then remains bounded every-
where for Im z > 0. By virtue of the condition (6-64), the integral
(6-62) remains bounded in the neighbourhood of the singularities a;.
We will satisfy ourselves that the integral (6-62) remains bounded
when z— oo as well. Transform the mtegrand function by taking
advantage of the condition (6-63):

Q@=L rn (1ot (1)

R
=_gt_( _.i‘g_)‘““...( —“c—")“""‘ (6-65)

From this expression it follows that the integral is convergent as
2 — oo. Thus, the integral (6-62), which is a single-valued analytic
function of z in the upper half-plane Im z > 0, defines a mapping
of this half-plane onto some bounded domain & of the w-plane.
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Let us now see into what kind of curve the real axis of the z-plane
goes. Consider the expression of the derivative of the function (6-62):

f@)=CGE—a)™ ... (z—a,) ™! (6-66)

From this expression it follows that the derivative of the function
f (2) is nonzero everywhere in the upper half-plane Im z > 0, with
the exception of the singularities a; at which it vanishes or becomes
infinite. As z varies on every one of the intervals a; <z << a4,

An-l

Fig. 6.13

(=1, ..., n—1) of the real axis, the argument of the deriva-
tive does not change. Indeed, by virtue of the above-indicated choice
of branches of the functions (z — a;)*~! the argument of these
functions, on the given intervals of the real axis, takes the values

—-1), z<a
N S n (ai ’ 1 ~
arg (z—ay) —{ 0 2>, (6-67)
which proves the proposition. In view of the geometric meaning
of the argument of the derivative,* this means that the segments
ap < << apyq of the real axis are also mapped by the function
f (2) onto rectilinear segments of the w-plane. Points a, of the real
axis are transformed by the function (6-62) into points A, of the
w-plane—the ends of the corresponding straight-line segments 4,4+,
into which the function (6-62) maps segments [a,, ay+,] of the real
axis. Thus, the function (6-62) is continuous and single-valued on the
real axis and maps the real axis of the z-plane onto some closed polygo-
nal line AJA, ... A,, the elements of which are the straight-line
segments ApAy4, (Fig. 6.13). When the point z traverses the entire
real axis in the positive direction, the point w corresponding to it

* The argument of the derivative of the function f (z) at the point z, deter-
mines the size of the angle through which the tangent to a smooth curve y passing
through z, has to be rotated in order to obtain the tangent to the image of this
curve at the point wy = f (z,).
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makes a complete circuit of the closed polygonal line 4,4, ... 4,.
Note that, generally speaking, the polygonal line 4,4, ... 4,
can have points of self-intersection (Fig. 6.13d).

Now let us determine the size of the angles between adjacent
segments of the polygonal line obtained. To do this, consider the
variation of the argument of the derivative (6-66) as z passes through
the point a;. From (6-67) it follows that as the point z moves along
the real axis in the positive direction, during which the singular
point a; is taken round an arc of infinitesimal radius in the upper
half-plane, the argument of the derivative changes its value by
—xn (; — 1). By the geometric meaning of the argument of the
derivative, this means that the angle between the directions of the

Ai+/

‘ i~ Aiv
41 (@) o< (6) o;>1

Fig. 6.14

—_ —

vectors* A;_;A; and A;A 4, is equal to —n (a; — 1). For a; < 1,
—_——

the transition from the direction of the vector 4;_,4; to the direc-

-ﬁ
tion of the vector 4,4, occurs in the positive sense (Fig. 6.14a)
and for a; > 1 in the negative sense (Fig. 6.14b). As is easy to
see, in both cases the size of the angle in the transition in the positive

—_—
direction from the direction of the vector A;4,4, to the direction

—
of the vector 4,4, ., is ne; (Fig. 6.14). If a closed polygonal line
AA,; ... A, does not have self-intersections, it bounds some n-gon.
If, besides, the motion of a point z in the positive direction of the
real axis is associated with a traversal of the polygonal line 4,4, . . .

. A, in the positive direction, then the interior angle of the given
n-gon at the vertex A;, into which the point a; of the real axis of
the z-plane is mapped, is equal to na;. By the condition (6-63), the
sum of all the interior angles of the given n-gon will then be equal
to (n — 2) m, as it should be.

On the basis of the principle of correspondence of boundaries
(Theorem 6.4), it may be asserted that if the polygonal line 4,4, . . .
... A,, onto which the function (6-62) maps the real axis of the

* Here, by the angle between the directions of intersecting straight lines
by, by is meant the size of the angle of the shortest rotation bringing the straight
line b, to coincidence with the straight line b,.
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z-plane, does not have points of self-intersection and the direction
of traversal is preserved, then the function (6-62) maps the upper
half-plane Im z > 0 conformally onto the interior of the n-gon
bounded by the polygonal line 4,4, ... A,.

A thorough investigation shows that if an arbltrary n-gon is given
in the w-plane (the position of its vertices 4,, 4,, . .., 4, and the
angles at these vertices are known), then it is always possible to
specify the values of the constants C, C, and the points q,, . . ., a,
of the real axis so that a properly constructed function (6-62) maps
the upper half-plane Im z > 0 conformally onto the interior of the
given n-gon. We will not go into the proof of this proposition* and
will confine ourselves to a number of remarks and examples.

Note 1. The formula (6-62) involves a number of constants.
However, when constructing a conformal mapping of the upper
half-plane Im z > O onto a given polygon 4, . .. A, of the w-plane,
it is only possible to specify three points a;, a;, a; of the real z-axis
that go into any three chosen vertices of the polygon A;, A;, 4,.
The remaining constants in (6-62) are defined uniquely. Indeed, (6-62)

defines f (z) connected with the function 7 (z) = S (E—a)™t. ..

(t — a,)* 1 dl by a linear transformation that is a trans-
formatlon of a similarity stretching, of a rotation and of a pa-
rallel translation. Hence, if the function f (z) maps the upper
half-plane Im z > 0 onto a given polygon of the w-plane, then the

function f (z) maps this half-plane onto a polygon that is similar
to the given one. For the given values of a;, in order that an rn-segment
closed polygonal line into which the real axis is mapped by the

function f (z) be a polygon similar to the given one, it is sufficient
that n — 2 segments of this polygonal line be proportional to the
corresponding sides of the polygon. (The two extreme segments are
fully defined by specifying their directions.) We thus have n — 3
equations in n constants a;. If three of these constants are arbitrarily
specified, the remaining corresponding equations are defined uniquely.
This is a corollary to the Riemann theorem on the unique definition
of a function that carries out a conformal mapping of singly connect-
ed domains when a correspondence is specified of three points of
the boundary of one domain to three points of the boundary of the
other domain. Also note that the position of the given polygon
(the lengths of the sides and the size of the angles at the vertices
are given) in the plane is uniquely defined by the position of three
vertices.

Note 2. We assumed that all the numbers a; in formula (6-62)
are positive. Then the integral (6-62) converges for all values of

® See, for example, [13].
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Im z > 0. If some number «, is negative, then as z — a, the integ-
ral (6-62) diverges. This means that the corresponding vertex A,
of the polygon A, ... 4, lies at the point at infinity w = oo.
We then take the size of the angle at the vertex 4, to be equal to the
size of the angle (with the minus sign) between the prolongation
of the segments 4,4, _, and 4,A4,4, at the finite point of their
intersection. It is readily seen that for such a definition, the angle
at the vertex A, is equal to a,n (o << 0) and by virtue of the condi-
tion (6-63) the sum of the interior angles of the resulting r-gon
with vertex 4, at the point at infinity remains equal to (n — 2) m.
This remark holds true also for the case when several numbers o,
are negative.

Note 3. When we investigated formula (6-62) we assumed that
all the points a; are finite. It is easy to get rid of this condition.
Introduce a new complex variable ¢ connected with z by therelation

T=an—+ (6-68)

Then the point z = a, will pass into the point £ = oco. This trans-
formation means that in a mapping of the upper half-plane Im ¢ >0
onto the interior of the polygon A,4, ... A, of the w-plane, the
point at infinity ¢ = oo is mapped into the vertex 4,. In the com-
plex t-plane, the function (6-62) has the form

t

1\a,~1 1\%n-1—1
w:CS (an—al—?) LI (a,,—an_l—?)
fo

t
-1
%—l—Cl =A S (t—a)™ ... (v—ap_ )1 de 4 Cy
to
(6-69)
Here use is made of the relation (6-63) and the following notation
has been introduced:
1

an—3%

A=C(an—a)" ™" ... (@ —apoy)*n-17! (— 1)~

a;i=(a,— ai)—is ty

The relation (6-69) means that when in a conformal mapping of the
upper half-plane onto the interior of the polygon 4,4, ... A, the
point at infinity ¢ = oo passes into one of the vertices (4,), this
mapping is effected by the Schwartz-Christoffel integral (6-69),
in the integrand function of which the factor corresponding to the
given vertex (4,) has been omitted. This circumstance is frequently
made use of since, as we noted above (Note 1), when solving problems
on the construction of a conformal mapping of the upper half-plane
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Im z >0 onto a given polygon of the w-plane, one has to determine
a large number of unknowns in the case of a large number of vertices
of the polygon.

We consider a few of the simplest examples.

Ezample 1. Find a function that conformally maps the upper half-
plane Im z >0 onto the sector 0 < argw < amn, 0 <a << 2.

Since the given sector is a polygon with vertices 4; (w = 0) and
A, (w = oo), the Schwartz-Christoffel integral may be employed
to solve the problem. We establish the following correspondence of
points of the real z-axis to the vertices of the given polygon:

a; (z=0) >4, (w=0)
a, (z2 = 00) >A, (w = o)

(6-70)

Then by (6-69) the mapping function takes the form

z

w=f@=c | td+a

z0

Putting z, = 0 and using (6-70), we find that the constant C, is zero.
Whence

w=CS§“" dt=- g (6-71)
0

The function (6-71) is defined to within the constant factor defining
the similarity transformation. This arbitrariness is due to the fact
that the conditions (6-70) contain the demand that only two boundary
points correspond, but, as we have seen (see the note on page 168),
the function which effects a conformal mapping is defined uniquely
by specification of a correspondence of three boundary points. Now
requiring, for example, that in addition to (6-70) there occurs a sup-
plementary correspondence of boundary points

z=1->w=1

we determine the value of the arbitrary constant C = o that remains
in (6-71). ’
And so, finally, the function
w = z% (6-72)

defines a conformal mapping of the upper half-plane Im z >0 onto
the given sector of the w-plane. And by virtue of the earlier indicated
choice of branches in the integrand function of the Schwartz-Christof-
fel integral (6-62), that branch of the multiple-valued function (6-72)
must be taken which is a direct analytic continuation of the real
function z* of the real positive variable z.
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Ezample 2. Find a function which conformally maps the upper hali-
plane Im z >0 onto the rectangle A4,A4,4,;4, (Fig. 6.15).

Let the vertices of the rectangle in the w-plane be located at the
points A, (w = a), A, (w = a + ib), A, (w = —a + ib), 4, (W =
= —a). Let us suppose that with the aid of some function f, (z) we
have executed a conformal mapping of the first quadrant of the z-
plane (Re z >0, Im z >0) onto the right half 04;4,0" of the

v

w=-a+ib TO' w= ‘“,ig

A
ay a, q, a,
coctit!e!d?
r=f z=-] z=0 z=/ 224 A

Fig. 6.15

rectangle (Fig. 6.15), in which mapping the right part of the imagi-
nary axis of the z-plane goes into the segment OO’. Then on the basis
of the symmetry principle (see page 164) the function which is the
analytic continuation of f; (z) into the domain (Re z << 0, Im z >0)
maps conformally the given domain onto the left part of the original
rectangle. Here, the symmetric points of the real z-axis go into the
vertices 4; and 4,. The same occurs relative to the vertices 4, and A ;.
Therefore, we can establish the following correspondence of points:
a,(z=1) >4, (w=a) -
0 (= —1) > A, (w = —a) (6-73)
Besides, it is obvious that there must also be the correspondence
z2=0->w=20 (6-74)
The relations (6-73) and (6-74) establish a correspondence of three
boundary points. It is therefore impossible to specify arbitrarily
on the real z-axis the point a, that goes into the vertex A, of the
rectangle. Let us suppose that the point a, of the real z-axis with

coordinate—ik—(the value of which will be defined later on) goes into

the vertex 4,. Clearly, 0 < k < 1.
Thus, the function which defines. a conformal mapping of the
upper half-plane onto a given rectangle may be represented in the

form
1 1

_—1 —_—

w=1(z)=C" j -7 (=) (t+4)" @+17 e
%o

e @& '
+a=C| e t G 67

20



6.4. Schwartz-Christoffel Integral 189

Putting 2, = 0 and using the celation (6-74), we get C, = 0. Then

V= Cfvmzmﬁﬁﬁ ©19

It remains to determine the constants C and k% from the correspon-
dence of the points ¢, and a, of the real z-axis to the vertices 4, and A,.
Note that the mtegral (6-76) is not expressible in terms of elemen-
tary functions. This is a so-called elliptic integral of the first kird,
which is ordinarily denoted as

_ @ i
re b= e ©10

The conditions (6-73) yield

- dg .
a=C § Vi—ma—re (6-78)

The integral on the right is the so-called complete elliptic integral
of the first kind

1
ag
K (k)= —_— 6-79

® §1/<1—c2)(1—k=c=) 79
and is a well-studied tabulated function. The correspondence of
points a, (z=~;t—) <~ Ay (w=a-+ib) permits us to write

4
1

R
o & & .
Hw_c{i Vai—oarm 3,. Vi—mi—wp } (©-80)

whence, taking into account (6-78), we get

%_ 1
c 7= 6-
b= 5 *'/'(ga_.i) (1 —k3L2) =CF ( k? k) ( 81?
where the integral in (6-81) is denoted by F (%,k) . From (6-78)
and (6-81), given specified values of a and b, we can solve the
transcendental equation

aF (i, k) =bK (k) (6-82)
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and determine the values of the constants k and C. Thus, the func-
tion (6-76) which maps the upper half-plane Im z >0 conformally
onto the given rectangle of the w-plane is completely defined. On
the other hand, if the quantities k& and C are given in formula (6-76),
then this function defines a conformal mapping of the upper half-
plane Im z >0 onto the rectangle of the w-plane, the ratio of the

sides of which ( -2%) is defined by formula (6-82), and the absolute

value of the sides by the constant C. By varying the values of these
constants at will, it is possible to obtain a conformal mapping of the
upper half-plane Im z >0 onto any rectangle of the w-plane.



CHAPTER 7
ANALYTIC FUNCTIONS
IN THE SOLUTION

OF BOUNDARY-VALUE PROBLEMS

The methods of the theory of functions of a complex variable are
extensively and effectively employed in the solution of a great variety
of mathematical problems that arise in diverse fields of science.
For example, the use of analytic functions in many cases yields suf-
ficiently simple methods of solving boundary-value problems for
the Laplace equation, to which various problems of hydro- and
aerodynamics, the theory of elasticity, electrostatics and so forth
reduce. This is due to the close connection between analytic func-
tions of a complex variable and the harmonic functions of two real
variables. In this chapter we will examine certain general problems
of the employment of analytic functions in the solution of boundary-
value problems for the Laplace equation and will give a number of
examples of the solution of problems in physics and mechanics.

7.1. Generalities

a. The relationship of analytic
and harmonic functions

In a domain & of the complex z-plane, let there be given an ana-
lytic function f (z) = u (z, y) + iv (z, y). Then throughout this
domain the functions » and v are connected by the Cauchy-Riemann
conditions:

ou v du v

%W W e (7-1)
Since an analytic function in the domain & has derivatives of all
orders, the real functions u (x, y) and v (z, y) have partial deriva-
tives of any order in the appropriate domain of the z, y-plane. This
permits differentiation of the expressions (7-1) any number of times
with respect to the variables z, y. Differentiating the first equality
of (7-1) with respect to z and the second with respect to y and adding,
we get

9%u a%u

6—.2:2_+W=0' x, yEG (7-2)
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Similarly, differentiating the first of the equalities in (7-1) with re-
spect to y and the second with respect to 2 and subtracting one from
the other, we have

Gt ar=0 z,1€8® (7-3)

whence it follows that the functions u (z, y) and v (z, y) are har-
monic in the given domain of the z, y-plane. And so the real and
imaginary parts of the function f (z) analytic in the domain & are
harmonic functions in the corresponding domain of the z, y-plane.
Also, the given harmonic functions are connected by the conditions
(7-1). Conversely, if in the domain & of the z, y-plane there are
given two harmonic functions u (z, y) and v (z, y) that satisfy in
this domain the conditions (7-1), then the function f (z2) = u (z, y) +
+ iv (z, y) of the complex variable z = = + iy is analytic in the
appropriate domain of the z-plane. Thus, a necessary and sufficient
condition for the analyticity of the function f (z) = u (z, y) + v (z, y)
in a domain @ is the requirement that the functions u (z, y) and v (z, y)
be harmonic ard satisfy the conditions (7-1) in the appropriate domain
of the z, y-plane. In Chapter 1 (see page 34) it was shown that when
only the real (or only the imaginary) part of an analytic function of
a complex variable is given, the function is defined to within an addi-
tive constant. Whence it follows that all analytic functions of a
complex variable for which a given harmonic function of two real
variables is the real (or imaginary) part differ solely by an additive
constant.

This connection between analytic and harmonic functions permits
utilizing the properties of analytic functions in the study of various
properties of harmonic functions. Thus, for example, from the for-
mula of the mean value of an analytic function (see Chapter 1, page 49)
there follows in straightforward fashion the mean-value formula
for a harmonic function

u (2o Yo) =g | w(& mds (7-4)

where the point z,, y, is the centre of the circle Cg, of radius R,
lying wholly in the domain of harmonicity of the function u (z, y).

b. Preservation of the Laplace operator
in a conformal mapping

Let there be given a harmonic function u (z, y) in a domain &
of the z, y-plane, i.e.

2
Au=Z5+55=0, =z,y€@ (7-5)
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With the aid of a nondegenerate transformation of independent va-
riables

§=§(x y)v "l='fl(-’51 y) (7'6)
D&, )
D (z, y) 5&01 z, !/E‘B (7'7)

map the domain & of the z, y-plane onto the new domain &’ of
the E, n-plane. Note that specification of the two real functions (7-6)
of two real variables z, y is equivalent to the specification in the
domain & of the complex z-plane of a single function {=f (z2)=E§ (=,
y) + in (z, y) of the complex variable z = z + iy. Here, the func-
tion f (z) maps the domain & of the complex z-plane onto the domain
@' of the complex {-plane. By the condition (7-7), the equations
(7-6) are uniquely solvable for the old variables, and thus the func-
tion U (8, n) = ulz (8, ), y (§, n)] is defined in the domain &’
of the &, n-plane. Let us find out under what conditions imposed on
the transformation (7-6) the function U (§, n) will be a harmonic
function of the variables &, . Assuming that the functions (7-6) are
twice continuously differentiable in the domain &, we express second
partial derivatives of the function u (z, y) with respect to the old
variables in terms of the derivatives of the function U (§, n) with
respect to the new variables:

02 U 02U 02U ou ou
#:‘-ag_z'(gx)z'{‘Q Tangxnx +'a_rlz (Tlx)2+a_§§xx+‘aT Nxx

9%u U U

(7-8)
02U U au
a7 = &)+ 255 S+ 37 (M)* + 55 Euw -+ 5 Mo

Substituting these expressions into (7-5), we obtain the following
equation for the function U (§, n):

T @+ 8)+2 g Cetlet-Bm) 3o (i)
+ 5 Eext Ep) + 5 (ex 1) =0 (7-9)

For this to be Laplace’s equation, the following relations must be
fulfilled:

gxx + gyy = 01 Naxx + Nyy = 0 (7'10)
gxﬂx + §y"ly = (7'11)

and
E4+E=mx+m++0 (7-12)

The relations (7-10) imply that the functions & (z, y) and n (z, y)
must be harmonic in the domain &. Rewrite (7-11) in the form

e b _ ]
oYy (7-13)
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where p (z, y) is as yet some unknown function. Then the relation
(7-12) yields
E+E =1+ ml=ni+nj+%0

Whence p? (z, y)=1 for z, y € 8. Thus, .the unknown function
B (z, y) is defined: p = 41. For p = 1, the relations (7-13) yield

Ex = Ny Ey = N«

That is, the functions £ and n which are harmonic in the domain &
must satisfy the Cauchy-Riemann conditions in this domain. This
means that the function f (z) = & (z, y) + in (z, y) must be ana-
lytic in the domain @ of the complex z-plane. Note that from (7-7)
and (7-12) it follows that the mapping of the domain & onto &’
must be reciprocal one-to-one, and the derivative of the function
f (2) must satisfy the condition f’ (z) = 0 throughout the domain &.
This means that the mapping of the domain & of the z-plane onto
the domain @’ of the {-plane, defined by the function f (z), must
be conformal.
For p = —1, the relations (7-13) yield

§x = —MNy gy =MNx

As is easily seen, in this case the function f (z) = & (z, y) — in (z, y)
must be analytic, and the mapping defined by the function f (z) =
=t (z, y) + in (z, y) must be conformal of the second kind.
We thus have the final answer to the question posed at the begin-
ning of this subsection. /n a mapping of the domain & of the z-plane
onto the domain @' of the {-plane performed by the function f (z) =
= E (z, y) + in (z, y), Laplace’s equation for the function u (z,y)
goes into Laplace’s equation for the function U (§, n) = u [z’ (§, ),
¥ (&, m)] only if the given mapping is a conformal mapping of the first
or second kind. Note that under these mappings the Laplace operator

A, goes into the operator | f’' (z) |* Agy =TV OF Agy, where z =

= @ ({) is an inverse function defining the conformal mapping of
the domain &’ onto the domain &. Thus, even the simplest equation
of elliptic type with constant coefficients Au 4+ cu = 0, ¢ = con-
stant = 0, will, generally speaking, in a conformal mapping go into
an equation with the variable coefficient Agy U +-¢c | @' (0) P U =

.

¢. Dirichlet’s problem

The results obtained in the preceding subsection permit employing
the method of conformal transformations in the solution of boundary-
value problems for harmonic functions. Consider the basic idea of
this method in an example of the solution of the Dirichlet problem.
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It is required to find a function u (z, 2) that satisfies the Laplace
equation

Au=0

in the domain @, that is continuous in the closed domain 8=6+T
and that assumes specified values on the boundary T

u(P) Iy = a (P) (7-14)

where a (P) is a given continuous function of the point P on the
contour I'. As is known (see [17]), the solution of this problem by
the method of separation of variables may be obtained only for
a restricted class of domains @ with a sufficiently simple boundary I'.

The method of conformal transformations yields a sufficiently uni-
versal algorithm for the solution of the Dirichlet problem for two-
dimensional domains. Let us begin with the solution of the Dirichlet
problem for a circle of radius a. We introduce the polar system of
coordinates r, @ with origin at the centre of the circle. Then the func-
tion a(P) will be a function only of the variable ¢. Let us try to ex-
press the value of the unknown function u (r, @) at an arbitrary inte-
rior point (r,, @,) of the circle in terms of its boundary values & (¢).
To do this, construct a conformal mapping of the given circle onto
the unit circle | w | << 1 of the w-plane in which the point r,, @,
goes into the centre w = 0. The solution of this problem is readily
obtained with the aid of the linear-fractional function considered
in Chapter 6. The mapping function is of the form

— — rnpi®
w=f (5)= A2 = ) ST ; (7-15)
3—— z—— ¢'P0
) - To

where the constant A is selected from the condition that the boundary
points z = aei® of the given circle have gone into the boundary points

] w] =1 of the unit circle of the w-plane; here, | A | =ri, and
0

arg A, which defines the rotation of the circle | w | <1 about its
centre w = 0, may be chosen at will. As a result of this transforma-
tion, the desired function u (r, ¢) goes into the function U (p, ¢) =
= u[r(p, ¥), @ (p,P)], where p, ¥y are polar coordinates in the w-
plane connected with the coordinates r, ¢ by the relation (7-15).
The given boundary function a () will go into the function 4 (P) =
= a [p (1, P)]. Since the function U (p, ¢) is a harmonic function
of its variables, its value at the centre of the circle may be found
from the mean-value formula (7-4), whence

2n

u(ro, 90)=U oo =5 | A(9) ¥ (7-16)
0

13*



196 Ch. 7. Analytic Functions and Boundary-Value Problems

From (7-16) we get an explicit expression of the solution of the Di-
richlet problem for the circle, if we express the function A (¢) in
terms of the originally specified function a (¢). Note that for the
correspondence of the boundary points of the circle |z | << a and
the circle | w | << 1, the formula (7-15) yields

a  ae'®—pyet®

et =" (7-7)

whence

a?—r}

dp= a®+r2—2arg cos (9 — @) de

Therefore, if in the integral (7-16) we make a change of the variable
of integration P = ' (p), where the relation of the variables ¢ and
¢ is given by formula (7-17), we obtain

2n

1 a?—r}
U (Toy Po) = 05 T ey (@ de  (7-48)

Formula (7-18) then yields an explicit analytic expression for the
solution of the Dirichlet problem for a circle of radius a in terms
of the function of the boundary conditions a (¢). This formula,
which is known as the Poisson integral, may be obtained in a num-
ber of other ways too, for example by the method of separation of
variables or with the aid of a source function (see [17]).

The results obtained allow us, in principle, to solve the Dirichlet
problem for any domain & which may be conformally mapped onto
the unit circle | w | << 1 of the w-plane. Indeed, the Laplace equa-
tion is preserved in a conformal mapping, and the solution of the
Dirichlet problem for the circle is obtained. Making a change of the
variable of integration in the integral (7-18) or (7-16) and proceeding
from the relation of the boundary points of the domain & and the
unit circle |w | =1 for a given conformal mapping, we obtain
the expression of the solution of the Dirichlet problem at interior
points of the domain in terms of the boundary function (7-14).

Ezample 1. The solution of the Dirichlet problem for a half-plane.
Let it be required to determine the function u (z, y) bounded at
infinity, harmonic in the upper half-plane y >0, continuous for
y =0 and assuming given values:

u(r, 0)=a(z) fory=0 (7-19)
Map the upper half-plane Im z >0 conformally onto the interior

of the unit circle | w | << 1 so that the given point 2, = z, + iy, (yo>
> 0) goes into the centre w = 0 of the circle. It is easy to see that
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the transformation is accomplished by the linear-fractional function

w=f(z)="2 (7-20)
z2—2
Here, the boundary points are related by
eiv—=2"% (7-21)
T—12p

and the boundary function @ (z) goes into the function A (V) =
= a [z (P)], where z () is determined from the relation (7-21).
Note that (7-21) yields
—— %W .

dp= =2’ T3 dz (7-22)
The value of the desired function u (z, y) at the point z,, y, is deter-
mined by the integral (7-16). Making a change of the variable of
integration in it by formulas (7-21) and (7-22), we get

1
u (I07 yO) = T S ﬁm——ilg— o (x) d.‘l: (7-23)

which yields the solution of the problem. Formula (7-23) which
gives the solution of the Dirichlet problem for a half-plane is also
called Poisson’s integral.

d. Constructing a source function

The methods of conformal mapping permit constructing a source
function of the first boundary-value problem for the Laplace equa-
tion in a two-dimensional domain & which may be conformally
mapped onto the unit circle | w | << 1 of the w-plane. The source
function G (M,, M) of the given problem is defined by the following
conditions:

1) ApG My, M) =0 for M= M, (7-24)

(2) in the neighbourhood of the point M,

G (Mo, M)=—In ’l\:oM +v (Mo, M) (7-25)

where the function v (M,, M) is a harmonic function of the point M
throughout the domain &

(3) G (My, M)mer =0 (7-26)

where I' is the boundary of the domain @&. The following theorem
holds.
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Theorem 7.1. If a function w = f (2,, 2z) defines a conformal
mapping of a given domain & of the z-plane onto the interior of the unit
circle |w | << 1 so that point z, € 8 goes into the centre w = 0 of
the circle, then the function

G (Mg, M) = !

]

is the source function of tke first boundary-value problem for the Laplace
equation in the domain &. Here, the coordinates of the point M € &
arez, y and z =z + iy.

Proof. To prove the theorem we see if the function defined by
formula (7-27) satisfies the conditions (7-24) to (7-26). The function
f (2, z,) that defines the given conformal mapping is an analytic
gunction, and f (z, z,) 5= 0 for z 5= z,. Whence it follows that the
unction

(7-27)

In f (2, 2) = In | f (2, 30) | + i arg f (2, 3z,)

is also analytic throughout the domain &, with the exception of
the point z,. Since the real part of the analytic function is a harmonic
function, the condition (7-24) is fulfilled. Since f’ (z, z,)5<0 through-
out the domain & including the point z = z, and f (2, z,) = 0,
the point z, is a first-order zero of the given function; that is, in the
neighbourhood of this point we have the decomposition

f(zs zo) = (z - zo) P (Z, zo)

where ¢ (z, z,) is a function analytic in the neighbourhood of the
point z,, and @ (z, z,) = 0. Hence the condition (7-25) is fulfilled
for the function (7-27). Finally, since | f (z, 2z,) |[r = 1, the func-
tion (7-27) satisfies the condition (7-26) as well. The proof is complete.

The following is an application of this theorem.

Ezample 2. Construct the source function of the first boundary-
value problem for the Laplace equation in the strip —oo << z << oo,
I<y<m.

According to the theorem that has just been proved, to solve the
problem we have to construct a conformal mapping of the given
strip of the z-plane onto the interior of the unit circle | w | << 1, in
which mapping the given point z, goes into the centre of the circle
w = 0. Clearly, the function defining the required mapping is of
the form

Z__ p%0
fla, 2) ==—= (7-28)
ec—e
Since we have the relation

| €% — €70 | == {(€* cos y — %0 cos Yo)%+ (€* sin y— e sin y,)2} '/

x+xp

—¢ 2 V2 {cosh (z—zp) —cos (y— yo)}'/2
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it follows that after elementary transformations we get the desired
function in the form

1 _ 1, cosh(z—zp)—cos(y+yo .
In 17T =% Mob e—ro—eey—yg (729

G(Mm M) =T1ﬂ-

7.2. Applications to Problems
in Mechanics and Physics

a. Two-dimensional steady-state flow of a fluid

We will consider the two-dimensional potential steady-state
flow of an incompressible ideal fluid. It is known that in the case
of potential motion in a domain free from sources, the velocity vector
v (z, y) satisfies the equations (see [17])

curlv =0 (7-30)
divv =0 (7-31)

Since the motion is potential, there exists a scalar function u (z, y)
called the velocity potential related to the velocity vector v by

v = grad u (z, y) (7-32)

that is,

vx=-%;- and v,,=—:;—;— (7-33)
Here, the velocity vector v at every point of flow :is normal to the
level line u (z, y) = constant of the velocity potential. Putting
(7-32) into equation (7-31), we get

0%u d%u
The velocity potential is a harmonic function.

Construct an analytic function of the complex variable f (z) =
= u (z, y) + iv (z, y) for which the potential u (2, y) of the flow
under consideration is the real part. As has been pointed out (see
page 34), the function f (z) is then defined to within an additive
constant. Earlier (see page 34) it was shown that the level lines
u (xz, y) = constant and v (z, y) = constant of the real and imagi-
nary parts of the analytic function are mutually orthogonal. There-
fore, the velocity vector v at every point of the flow is tangent to
the level line v (z, y) = constant passing through the given point.
The function v (z, y), which is the imaginary part of the thus con-
structed analytic function f (z), is called the stream function, and
the function f (z) is the complex potential of the flow.
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The region of flow bounded by two streamlines v (z, y) = C,
and v (z, y) = C, is called a stream tube. Since the velocity of the
fluid at any point is tangent to the streamline the quantity of fluid
flowing in unit time through any two cross sections S; and S, of
the stream tube remains constant due to the incompressibility of
the fluid and the stationary character of motion. Thus, the diffe-
rence in the values of the constants C; and C, defines the fluid output
in a given stream tube.

From the Cauchy-Riemann conditions and formulas (7-33) it fol-
lows that the components of the velocity may be expressed in terms
of the partial derivatives of the stream function:

du v du v
vx=0_.z=W' Vy-_——a—!l—':'—'Tz' (7-35)

As was noted in Chapter 1, the complex number w = v, + iv,
may be interpreted as a plane vector with components v, and v,.
We have the obvious relation

. . gu . v Z7 7N
w=vx+zvy=—g;—+1%y—=—%—z%—=f (2) (7-36)
which relates the velocity vector and the derivative of the complex
potential of the flow.

In hydrodynamics an essential role is played by the concepts of
circulation and flux of the velocity vector. We express these quan-
tities in terms of the complex potential of flow.

Consider a piecewise smooth plane curve C (closed or open) and
introduce on it the vectors of the differentials of the arc ds and of
the normal dn with the aid of the relations

ds=1idzr+jdy (7-37)

dn =idy —jdx (7-38)
We have the obvious relation n ds = dn, where n is a unit normal
to the curve C and dsis the differential of arc length of the curve.

In a positive traversal of the closed curve C, formula (7-38) yields
the direction of the exterior normal.

The flux of the velocity vector v across the curve C (open or closed)
is the line integral of the normal component of the velocity

Ne= S (v n)ds (7-39)
c
This integral obviously defines the quantity of fluid flowing across
the curve C in unit time. Write the integral (7-39) as
du du
N¢e= S vdn= S Vedy —vydz = S Wdy—-a—dx
c c c
v ou
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In determining the lifting force of the flow of a fluid acting on a
body round which the fluid is streaming, an important role is played
by the vorticity of the flow, which is characterized by the circulation.
The circulation of the velocity vector along a curve C is the line
integral of the tangential component of the velocity vector:

To= S v.ds (7-41)
C

Expressing the velocity v in terms of the complex potential, we ob-
tain

I'c = S vds = S Vedz+vydy = ‘;—:dz—}——g—;f-dy
c c ¢

du v

Let us consider in the complex plane the integral of the derivative
of the complex potential along the curve C:

Sj'(z)dz=$2—2dz—g—:dy+i SZ—:dz—l-%dy (7-43)
c ¢ c
A comparison of (7-40), (7-42) and (7-43) leads to the formula

5 f (2)dz=T¢+iN (7-44)
c

This formula, which gives the expression of circulation and flux
of the velocity vector in terms of the derivative of the complex po-
tential, finds numerous applications in hydrodynamics. Note that
if the domain & in which the motion is considered is a singly con-
nected one, then the integral (7-44) around any closed curve C
lying entirely in & is equal to zero by the Cauchy theorem. In the
case of motion in a multiply connected domain &, the integral
around a closed curve C lying entirely in 8 may be different from zero.
This will occur inside the curve C when there is a domain &’ not
belonging to &, in which there are sources and vortex points of the
flow. Clearly, the equations (7-30) and (7-31) are violated in this
domain. In a particular case, the domain @’ may consist of separate
points which are then isolated singularities of the analytic function
f (z2)—the complex potential of flow.

Summarizing, any two-dimensional potential flow in a domain in
which there are no sources or vortex points may be described with the
aid of a complex potential that is an analytic function of a complex
variable. Thus, the entire apparatus of the theory of analytic func-
tions may be used in the study of this class of flows.
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Let us consider a number of examples of elementary flows de-
scribed by the elementary functions of a complex variable.
(a) Let the complex potential of flow have the form

f(2) =az (7-45)
where a = a; 4 ia, is a specified complex number. Then
u(z, y) = ax — azy, v(, y) = @z + ay

and the streamlines v (z, y) = C are straight lines, the slope of

which to the z-axis is defined by the expression tan o = —%‘
Formula (7-36) yields
w=v, +ivy=Ff (2)=a = a, — ia, (7-46)

whence it follows that the rate of flow is constant and the direction
of the velocity vector coincides with the straight lines v (z, y) = C.
And so the function (7-45) defines a plane-parallel flow.

(b) Let the complex potential of flow have the form

f(z)=alnz (7-47)

where a is a real number. In exponential notation, z = rei¢, we get
the expression of the potential and the flow function in polar coor-
dinates:

u(, 9 =alnr, v(r, ¢ =ae
The streamlines are thus rays emanating from the origin, and the
equipotential lines are circles centred at the origin. The absolute
value of velocity is then

IWI=II’(Z)|=!2|'="" (7-48)

r

and the velocity vector is directed along the ray ¢ = constant.
From (7-48) it follows that at the origin the velocity becomes infi-
nite. The point z = 0, a singularity of the function f (z), is in this
case the source of flow (positive source for a = 0, when the velocity
is directed from the origin, and negative source, or sink, for a << 0,
when the velocity is directed to the coordinate origin). Taking an
arbitrary closed contour C containing the point z = 0, we get, by
formula (7-44),

Sf’(z)dz=S§dz=12na=rc+iNc
) c
Whence N, = 2na. Thus, in the case at hand, the flow of fluid

across any closed contour containing the source is constant and equal
to 2ma. This quantity is called the strength of the source.
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(c) Let the complex potential have the form
f(@) =ialnz (7-49)

where a is a real number. In this case the streamlines are concentric
circles centred at the coordinate origin. From formula (7-44), as
in the preceding case, we get No =0, I'c = —2na. The point
z = 0 is here called the vortex point of the flow.

(d) Let the complex potential of flow be of the form

f(zy=aln(z +h) —aln(z —h) (7-50)

where a is a positive real number and % is some complex constant.
According to the foregoing, this potential defines a flow with a posi-
tive source at the point z = —h and a sink at the point z = }h,
the strength of the source and sink is the same and is equal to 2na.
Rewrite (7-50) as

In(z4h)—In(z—h)

f (2) =a2h o

and pass to the limit as 2 — O assuming that the strength of the
source and sink then increases so that the quantity m = a2h re-
mains constant. We then get

fo(2) == (7-51)
The function (7-51) is the complex potential of a dipole of strength m

located at the origin of coordinates. The streamlines of the dipole
are obviously defined by the equation

my
—wrg ¢
or
C(@Z+y*)+my=0 (7-52)

that is to say, they are circles centred on the y-axis and tangent to
the z-axis at the origin of coordinates. Here, the absolute value of
the velocity, which is

lw|= l;nl2 - x“;n-y'-' (7-53)

tends to zero at infinity.
(e) Let us consider a flow whose complex potential has the form

[ (2) =Vez+ —'—:—- (7-54)

where ve and m are positive real numbers. It is obvious that this
flow is a superposition of a plane-parallel flow with velocity parallel
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to the z-axis and equal to vo and a flow generated by a dipole of
strength m located at the origin. The streamlines of this flow are
given by the equation

Vey— ey =C (7-55)
The value C = 0 is associated with the streamline whose equation is

m
v (v = ) =0
It breaks up into a straight line y = 0 and a circle 2® + y? = a?,
where a? = vm . Since

’ .oom a?
F @) =Vo— T =ve (1 —5), (7-56)
at infinity the flow velocity is vo and is directed along the z-axis.
At points of the circle > + y2 = a?, which is a streamline, the ve-
locity is directed tangentially to this circle. For the absolute value of
the velocity at points of the circle z = aei®, we get, from formu-
las (7-36) and (7-56),

|0|lu1=a = 7 @) lleima = Voo |1 — 29| =2van [ sin @] (7-57)

In the examples considered above we determined the hydrody-
namic characteristics of flow on the basis of a given complex poten-
tial. Let us examine the converse problem, that of determining the
complex potential of a flow from its hydrodynamic characteristics.
Note that since the physical velocity of flow is expressed in terms
of the derivative of the complex potential [see formula (7-36)],
the complex potential is not uniquely defined for a given flow. How-
ever, itsderivative is a single-valued analytic function. This means
that in the neighbourhood of any regular point of flow we have the
expansion '

£ @)= 3 an @) (7-58)
and in the neighbourhood of an isolated singular point, the expansion
f@= 3 bala—)" (7-59)

From (7-59) we obtain the following expansion for the complex po-
tential in the neighbourhood of the singular point z,:

f(2)=b_y1n (z—3zp) + n___z_m cn (2—20)" (7-60)



7.2. Applications to Problems in Mechanics and Physics 205

In particular, if the point at infinity z. belongs to the domain of
flow and the complex velocity

Weo = (Va)oo + i (V)
of flow at this point is bounded, then the expansion of the complex
potential about z, is of the form

f(8) =wez+bylnz+ D) 2 (7-61)

zn
n=0

From this we have

5 f' (2) dz = 2mib_y (7-62)

Cr
where Cp is a circle | z | = R of sufficiently large radius R, out-
side which there are no singularities of the function f (z), except the
point z,. On the other hand, by virtue of formula (7-44), the integ-
ral (7-62) defines a flux and a circulation of the velocity vector
across the curve Cg. Since the velocity at z. is bounded, this point
is not a source, and so the flux of the velocity vector across the
curve Cp is zero, and formula (7-62) yields

2ﬂib -1 — I‘w

Let us write down the final expansion of the complex potential in
the neighbourhood of the point at infinity, which is a regular point
of flow:

f(z)=wmz+2[‘—3:lnz+ ) :—: (7-63)
n=0

Let us now consider the problem of a plane-parallel flux streaming
around a closed contour. Let the flux, which at infinity has a given
velocity we and circulation I'y, stream around a body S bounded
by a closed contour C. It is required to determine the velocity- at
any point of the flux from the given hydrodynamic characteristics
at infinity, provided that at points of the contour C the flow velocity
is directed tangentially to the contour C. This latter condition im-
plies that the curve C is a streamline of the flow under consideration;
that is, the imaginary part of the complex potential describing the

given flow must preserve a constant value on the curve C

v (z, y) |¢ = constant (7-64)
The problem reduces to determining the analytic function f (z)

in the complex plane outside the contour C, in the expansion (7-63)

of which function are given the values wo and ', and the condition
(7-64) is fulfilled on the contour C. Since the complex potential is
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defined to within an additive constant, the value of the constant in
the condition (7-64) may be put equal to zero.

Let us begin with the problem of streaming around a circular cylin-
der of radius R centred at the coordinate origin. Let the flow veloc-
ity at infinity be v, and directed parallel to the z-axis, and let the
circulation be absent, I'n, = 0. We have to find the complex poten-
tial whose expansion about the point at infinity is of the form

Cn
Zn

(7-65)

1 (2) = vz -+ Z

n=0

and the imaginary part of which vanishes for | z | = R. We studied
a complex potential of this type in Example (e) on page 203. There-
fore, the solution of this problem is of the form

1) =veo (542 (7-66)

The velocity at points lying on the cylinder undergoing streaming
is determined by the formula (7-57), whence it follows that it van-
ishes at two critical points: at z = —R, at which the streamline

= 0 branches into two streamlines coinciding with the upper and
lower semicircles | z | = R, and at the point z = R, at which these
streamlines converge again into the straight line y = 0. These points
are, respectively, called the branch point and the convergence point.
Note that if the velocity of flow at infinity is not parallel to the
z-axis and has the form we = Vaei®, then with the aid of the trans-
formation { = ze~i% we arrive at a problem in the {-plane that has
already been considered. Then we get the following expression for
the solution of the original problem

1 () = ez 2= (7-67)

Now let the circulation I',, be nonzero. As we have already seen
[see Example (c) on page 203], the streamlines of a flow with the
complex potential ia In z (a is a real number) are concentric circles
centred at the origin of coordinates. Therefore, the complex poten-
tial of a flow streaming around a circular cylinder of radius R with
a given velocity at infinity v. and a given circulation I', has the
form

f(2) =Voo (z—{—f:—)—}--g—:‘.—ln? (7-68)

Let us find the critical points of the flow at which the flow velocity
vanishes. According to formula (7-36) we have

5o @=va (1) 4oL 0
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Whence

R I _

22 v z2—R2=0 (7-69)
and

4nv¢., + ‘/ - 16n2v’ (7-70)

For R>|-E£;‘ the radicand in (7-70) is positive. Therefore,

TZ,
1 —
| 2er | = VR 16:rt2v2 T 16nzvi =R

that is to say, both critical points lie on the circle |z | = R of the
cylinder, and for ' > 0 (Voo > O) both points lie in the upper semi-
circle, and for ', << 0 (Voo > 0) in the lower semicircle. Thus, the

\_/
-

~Or

Fig. 7.4

presence of circulation brings closer together the branch point and
the convergence point of the streamlines (Fig. 7.1). For v | =
= R, both critical points coincide (with the point z = iR for Pco

> 0 or with the point z = —iR for ', << 0). Finally, for,——|>

> R, in the domain | z | > R there is only one critical point lying
on the imaginary y-axis. (As follows from equation (7-69), the prod-
uct of the roots of this equation is equal to —R?, and so the second
critical point lies inside the circle | z | = R.) Through this point
passes the streamline separating the closed streamlines of flow from
the open streamlines (Fig. 7.2).

The results obtained permit, in principle, the problem of stream-
ing around an arbitrary clesed contour C to be solved. Indeed, let
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the function { = ¢ (z) define a conformal mapping of the domain &
(of the complex z-plane) exterior to the contour C onto the domain &’
of the {-plane, which domain is exterior to the unit circle | { | =
=1, so that @ (c0) = oo. Then, obviously, the problem at hand is
equivalent to the problem of streaming around a circular cylinder
of unit radius. Here, the flux velocity at infinity, which generally

T~

Fig. 7.2

speaking will vary, may be readily determined. The complex poten-
tial f (z) of the initial flow goes into the function F (§) = f [z ({)]
in the given conformal mapping. And so by formula (7-36) we find

WordF | _df| | _o od
Wm_ d§ ’§=ao— dz |z=oc0 dg ;m_ww d§ {=00
and _
dz
Woo = Woo ’E‘ c-m

By formulas (7-67) and (7-68), the solution of the transformed
problem is of the form

57 Woo I
“Whence, for the solution of the original problem, we get the expres-
sion
» dz
~ 4z ® L |pmoo ; Too
1) =FE@) =wagr|_ 0@ +—gmt==+3=-lno(s) (7-11)




7.2. Applications to Problems in Mechanics and Physics 209

By way of illustration let us consider noncirculatory flow of a
two-dimensional fluid around an infinite plate. Let the z, y-plane
intersect the plate along the segment —a <z <{a, and let the
velocity vector of the flow lie in the z, y-plane and at infinity have
a given value ww. As follows from a consideration of the properties
of the Zhukovsky function (see Chapter 6, page 179), the function

1
=5 (t+7)=+© (7-72)
defines a conformal mapping of the exterior of the unit circle of the
C-plane onto the z—plane cut along the segment —a < z < a. Then,

VP (00) = oo and %

valent to that of a noncirculatory flow around a circular cylinder
of unit radius in the {-plane, which at infinity has the complex veloc-

= g- For this reason, the problem is equi-

ity W ==—-wm The complex potential of the latter problem has
the form

F (@) =5 (wel +5)

Substitute in place of { and — ! the following quantities from (7-72):

Here, V' 2® — a® > 0 for z = z > a. Partition we into a real part
and an imaginary part:

Woo=(Vx)oo + i (V}) oo

Then for the complex potential of the original problem we get the
final expression

F@)=(Vwi—i(vy)oV E— (7-73)

In conclusion we find the force with which the flow acts on the
body. The force of pressure acting on an element ds of arc of the
contour C is proportional to the hydrodynamic pressure p at the
given point of flux and is directed along the inner normal —dn =
= —idy +jdz. We therefore get the following expressions for
the components of force acting on the contour C:

R.=—{pdy, R,=(pds
C C

Determining the hydrodynamic pressure p from Bernoulli’s integral

14—3878
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where A is constant and p is the density of the fluid, and introduc-
ing the complex quantity R = R, | iR,, we obtain

R= —-—sz(dx—zdy)-——-é— sz?d_z (7-74)
c c

(The integral of the constant A around the closed contour C is clearly
zero.) We transform the integral (7-74). Since at points of the con-
tour C the velocity is directed tangentially to the contour, the com-
plex velocity of flow w is connected with the magnitude of the phys-
ical velocity v by the relation w = vei®, where ¢ is the angle be-
tween the z-axis and the tangent to the contour. Then formula (7-36)
yi(&is ve‘i‘P‘ = f' (z). On the other hand, dz = dse~®. Therefore
vidz =v2 "W dsei® = f'?dz and formula (7-74) takes the form

R=—2% S % (2) dz (7-75)
c

This is Chaplygin’s formula, which expresses the force exerted by
a flow on the body round which it is streaming. It expresses it in
terms of the derivative of the complex potential. From the expres-
sion (7-63), for the complex potential outside the body, we get

F D) =Tat = tg S

n=2

’ Woo I -— bp
IZ(Z)__—_nr.__z___l_w;_i_ 22;-1—1!
Hence,

3 S 12 (2) dz = 2weTo
C

Substituting this expression into formula (7-75) and separating the
real and imaginary parts, we find

Ry =p (v))olw, By = —p (vV:)oln (7-76)
|RI1=p|ve [T | (7-77)

Formula (7-77) is Zhukovsky’s theorem on a lifting force: the force
of pressure of an irrotational flow having velocity v at infinity and
flowing round a contour C with circulation T is expressed by the for-
mula | R]| =p | Vo |- | T'|. The direction of this force is obtained
by rotating the vector v through a right angle in the direction oppo-
site that of the circulation.

The apparatus of analytic functions of a complex variable enab—
led Zhukovsky and Chaplygin to develop methods for solving hydro-

Whence
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and aerodynamics problems which served as the theoretical founda-
tion for practical aircraft construction. In this way, the methods
of complex-variable theory played a great role in the development
of modern aviation.

b. A two-dimensional electrostatic field

The methods of complex-variable theory used in the preceding
subsection in the study of the two-dimensional potential flow of
an ideal fluid may be just as successfully employed in the study of
any two-dimensional vector field of a different physical nature.
Let us consider the use of these methods in solving problems of
electrostatics.

Problems of electrostatics consist in determining the stationary
electric field generated in a medium by a given distribution of charges.
Depending on the statement of a specific physical problem,
we are given either the density of distribution of charges as a func-
tion of the coordinates or the total charge distributed over the sur-
face of an ideal conductor. In the latter case, the principal aim of the
investigation is to determine the density of the distribution of
charges on the surface of a conductor.

In order to obtain the basic equations for the intensity vector of
an electrostatic field, we will proceed from the general system of
Maxwell’s equations (see [16]) in an isotropic medium:

1 oD

ot

divD= —4np, divB=0
D=¢E, B=pH

curl H= +2% jt, curl E—- — L 28

at

In the case of a stationary electromagnetic field, Maxwell’s cqua-
tions for the intensity vector E of an electric field in a homogeneous
medium take the form

1E= ivE=24"
curl E=0, divE= —p (7-78)

where & is the dielectric constant of the medium and p is the density
of. static qharges generating the given field. We will take e = 1 and
yvlll consider the two-dimensional problem, when charges generat-
ing the field are distributed in space so that their distribution den-
sity is not dependent on one of the coordinates (say the z-coordinate),
but is a function solely of the two other coordinates, i.e. p =p (2, y).
Clearly, the vector E then has only two nonzero components, which
are also functions of the coordinates z, y alone:

E (z, y) =iE, (z, y) +iE, (z, y) (7-79)
14»
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By virtue of the first of the equations (7-78), the field E is a poten-
tial field:

E(r, y) = —gradv(z, 1), E.=—gr, E,=—2= (7-80)

on the basis of the second of the equations (7-78) the function v (z, y)
satisfies the equation
Av = —4np (z, y) (7-81)

From (7-81) it follows that in a domain free of charges, the poten-
tial function v (z, y) is harmonic. It is therefore possible in this
domain to construct an analytic function of a complex variable:

f@) =u y +wly (7-82)

for which the potential function v (z, y) of the given electrostatic
field is the imaginary part.

The function (7-82) is the complex potential of the electrostatic
field. The level lines v (z, y) = C are the equipotential lines of the
given field. From formulas (7-80) it follows that at every point of
the equipotential line v (z, y) = C the intensity vector E is normal
to this line. Since the lines v (z, y) = C and u (z, y) = C are mu-
tually orthogonal, the direction of the vector E coincides with the
tangent to the line u (z, y) = C at each point of the curve. The lines
u (z, y) = C are therefore force lines of the given field.

We associate with the vector E a complex number w = E, 4
+ iE,. Then by (7-80) and from the Cauchy-Riemann conditions
we get

. [ 8 . a Ry
= —i %_;0_;’)=—zf (z) (7-83)
Whence
[El=1f () | (7-84)

Formulas (7-83) and (7-84) yield the expression of the components
of the intensity vector of an electrostatic field in a domain free of
charges in terms of the derivative of the complex potential.

Let the charges generating the given electrostatic field be con-
centrated in some domain bounded by the closed curve Cy.* Then the
integral, around any closed contour C containing C,, of the normal

* This means that in space the charges are distributed inside an infinite
cylinder, the contour of the cross section of which is the curve Cg; the distribu-
tion density of the charges does not depend on the coordinate z along the gene-
ratrix of the cylinder, but is only a function of the coordinates z, y in the cross
section.
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component of intensity of the electric field is, by the Gauss theorem,
(see [16]) equal to the total charge (referred to unit length of the cylin-
der in which the charges are distributed in space):
| Bnds = tne (7-85)
c

On the basis of formulas (7-80), (7-37) and (7-38), and taking into
account the Cauchy-Riemann relations, we obtain

5; E,ds = é: Z—:dz—%dy

Since the electrostatic field is everywhere potential, the circulation
of the field around any closed contour is zero, i.e.

S E,ds= — S 2 dz 43 dy=0
C c

Consider the integral of the derivative of the complex potential
around the closed contour C:

, a a . d a
if (2) dz = 5} B g 2y s;a—gdwra_‘;dy (7-86)

A comparison of the foregoing formulas yields

{r@ds={ Ends=tne (7-87)
c c

that is, a charge contained in a domain bounded by the contour C is
defined by the integral, along this contour, of the derivative of the com-
plex potential of the electrostatic field generated by the given charge dis-
tribution. If C, is the contour of the cross section of an ideally con-
ducting cylinder, then the entire charge is concentrated on its sur-
face with surface density o (s), and

lg o(s)ds=e (7-88)
0
The following relation is known to hold (see [12]):
1 1
0(s) =47 En (=~ W (grad v), e, (7-89)

On the other hand, from (7-83) and (7-89) we get
1 4
0 ()=t |1 (2) fey (7-90)
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The sign in (7-90) is determined by the sign of the overall charge e,
distributed over the surface of the given ideally conducting con-
ductor. Formula (7-90) finds extensive application in the solution
of a diversity of problems in electrostatics.

Note, finally, that as in the problems of hydrodynamics, the deri-
vative f' (z) of the complex potential is, by (7-83), a single-valued
analytic function of z. If the intensity of the given electrostatic
field is bounded at infinity, then the expansion of f' (z) about the
point z = oo is of the form

n

zn

M s

f (@) —wet

n

1

Whence for the complex potential itself we get the expansion

f(2) =wwz+co+bInz4 N = (7-91)
n={
Since
1 .
bFWS f (2) dz
Cr

where the contour C contains all the charges generating the given
field, from (7-87) we get the final expansion of the complex potential
about the point z = oo in the form

f(2) =wez—i2elnz+ 3 -2 (7-92)

n=0

We thus see that the complex potential of an electrostatic field
has very much in common with the complex hydrodynamic poten-
tial.* Therefore, the investigation of a two-dimensional electrostatic
field with the aid of the complex potential may be carried out by
the very same methods as the solution of the corresponding hydro-
dynamic problems. Thus, all the examples of flows examined on
pages 202-203 admit a simple electrostatic interpretation.

For example, consider the electrostatic field described by the
complex potential

f(z) = —i2elnz e>0 (7-93)

* It is quite obvious that the fact that the potential function in electrostat-
ics is the imaginary part of the complex potential and in hydrodynamics the
potential of velocity is the real part of the complex potential is an unessential
difference that may be eliminated by introducing an additional factor equal to
—i. However, we hold to the established terminology in which the indicated
difference exists.
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Introducing the polar coordinates r, ¢ and taking into account that
z = rel?, we get

v(r, ¢)= —2eln|z|=2eln-—:—, u(r, ) =2eargz=_2eq

This implies that the equipotential surfaces of the given field are
concentric circles centred at the origin, and the force lines are the
rays ¢ = constant. The vector E is at every point z %= 0 directed
along a ray @ = constant and, by formula (7-84), is in absolute value
equal to

El=If @)=

Since the integral of the normal component of intensity of the given
field around any circle | z | = r has a constant value equal to 4me,
it is obvious that the field is generated by a point charge of magnitude
e situated at the origin (in space, the charges generating a given field
are distributed with constant density e along a straight line perpen-
dicular to the z, y-plane and passing through the origin of coordi-
nates).

Let us consider some typical problems in electrostatics that may
be solved with the aid of a complex potential.

(a) Determining the distribution density of a charge on an ideally
conducting conductor. Let the lateral surface of such a conductor be
an infinite cylinder whose cross section is bounded by the contour C.
Suppose that the distribution density of the charge is constant along
the generatrices of the cylinder and there is charge e per unit length
of the cylinder. It is required to determine the surface density of
charge o (s) on the contour C of the cross section. The solution of
the problem is obviously given by formula (7-90) for the normali-
zation condition (7-88). The problem thus reduces to constructing
the complex potential f (z), which is an analytic function outside
the contour C, provided that the imaginary part of f (z) is constant
on C and the expansion of f (z) in the neighbourhood of the point
z = oo is given by (7-92), where ws, = 0 and the coefficient e is
equal to the charge per unit length of conductor.

Start with the simplest case when the conductor is a circular cyl-
inder of unit radius. It was shown above (see page 214) that the
equipotential lines of the complex potential (7-93) are concentric
circles centred at the coordinate origin. Therefore, to satisfy the
condition on the boundary of the conductor, it is natural to seek
the potential of the given field in the form

f(@ =—iClnz

where C is a constant that needs defining. From the condition at
infinity (7-92) we get C = 2e. Then formula (7-90) yields the obvi-
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ous result
e
ag (S) = ‘W

If the contour of the cross section of the conductor is an arbitrary
closed curve C, then by mapping, by means of the function { =
= @ (2), the field exterior to the contour C conformally onto the
exterior of the unit circle | { | > 1 in such a manner as to satisfy
the condition @ (o0) = oo, we reduce the problem to that which
has just been solved. Then the complex potential will have the form

f(2) = —i2eln @ (2) (7-94)

and for the density of surface charges we get the following expres-
sion in accordance with (7-90):

1 &

¢(z) dz
e

= 2n

0 (8) =7 @) lo=o .

-1
ie1=1

a4
dg

__ e

&L e
¢ 2n

dz

(7-95)

By way of illustration, let us consider the problem of determin-
ing the charge density in a strip of width 2a. Let this strip inter-
sect the z, y-plane along the segment —a << z << a. The function

=4 (5+4)

defines a conformal mapping of the exterior of the unit circle of the
{-plane onto the z-plane cut along the segment —a << z << @ of the
real axis. Therefore, formula (7-95) yields

N D S S
Ri=t  an [E2—1]p g

g

e

0(2) =5

(7-96)

Since
L= z+ Vz’Ta’

a
and

g1 =2 (a4 F=@) =22 (s Y A )
formula (7-96) yields

o(z)=22. 1 . ! = e
2 Yi—2 [z+iV @2 |-acaca 2 Va—a

(7-97)

Note that the charge density increases without bound as the edge
of the plate is approached. This fact has a simple physical interpre-
tation. The edge of the plate has an infinite curvature, and so an
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infinite charge has to be placed on it in order to charge it to some
potential.

(b) Determining the field of an infinite two-dimensional capacitor.
Let it be required to find the electrostatic field between two ideally
conducting nonintersecting cylindrical surfaces charged to a certain
potential, the generatrices of which surfaces are parallel and the
directrices pass through the point at infinity of the z-plane (Fig. 7.3).

Fig. 7.3

Here the problem consists in determining, in a curvilinear strip @,
the complex potential f (z), which is an analytic function the imag-
inary part of which assumes the constant values v; and v, on the
curves C; and C,. Clearly, the analytic function w = f (z) defines

Fig. 7.4

a conformal mapping of the given curvilinear strip of the z-plane
onto a strip of the w-plane bounded by the straight lines ITm w =v,,
Im w = v,. Thus, to solve the problem it suffices to construct the
indicated conformal mapping.

To illustrate, let us find the field of the capacitor shown in Fig. 7.4
if the values of the potential on the curves C, and C, are.0 and 1,
respectively. First find the function z = ¢ ({) that defines the con-
formal mapping of the upper half of the {-plane, Im { > 0, onto
the given curvilinear strip @ of the z-plane. Since the domain is
the triangle* A4,4,4,, the desired mapping may be obtained by

* Note that the vertices 4, and A4, lie at infinity.
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means of the Schwartz-Christoffel integral (see Section 5.4). We estab-
lish the following correspondence of points of the real axis of the -
plane and the vertices of the triangle:

A2 -> C = 00
A>T =—1
Since the angles at the vertices of the triangle are equal, respec-
tively, tono; = 0, na, = —na and na; = n (1 4 a), the desired
integral must be of the form
4
—c{rraryra+a (7-98)
To
From the correspondence of the points A4 (z = ik) and { = —1
it follows that for {, = —1, we get
C (¢
2=C S —(%C—)—dc—}- ih (7-99)

-1

In order to determine the constant C, note that to the counterclock-
wise traversal of the point { = O in the upper half-plane around the
semicircular arc of infinitely small radius p there corresponds a tran-
sition from the side 4,4, to the side 4,4,. Here, the increment
of z is

Az = ih

On the other hand, from (7-99), putting { = pe'® and taking
the limit as p — 0, we get

Az=iC lim S (1 + pei®)® dp — inC
p—>0 0

Whence C =%and the final expression for the integral (7-99) is

of the form
4
h (H—C) .
2= S dt +in

-1

The function { = e defines a conformal mapping of the strip
0 < Im w <1 of the w-plane onto the upper half of the C-plane.
Therefore, the function

W

h @
2=— S %dc +ih (7-100)
-1
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defines a conformal mapping of the strip 0 << Im w << 1 of the w-
plane onto the given curvilinear strip & of the z-plane. In the process,
the straight line Im w = 0 goes into the lower plate of the capaci-
tor A,4,, and the straight line Im w =1 into the upper plate, which
is the polygonal line A,4;4,. From (7-100) for v = Im w = con-
stant we get the parametric equations of the potential curves of the

4 b4
/ U=> U,<5
Y, >2- ‘4 2/ ‘7/2
v=7 A3 } / //
ey
_______ - | //
A—————7 ’/ -
——————— !
v=0 2=0 Zparx z
Fig. 7.5

given electrostatic field. For example, in the particular case of
o = 1 the integral (7-100) may be evaluated in terms of elementary
functions:

z=%(1 + nw 4 e™)

Then the parametric equations of the equipotential curve v = v, =
= constant (0 < vy << 1) assume the form

x=%(1 ~+ Tu 4 cos nw, - e™)
— oo <l u<<oo

y= % (7wy + sin mvg, - e™)

In particular, the equation of the mean equipotential line
(0= '
Vo =7) has the form

h ’—‘x—i

- h_ oh
y——2‘+?e

Equipotential lines corresponding to various values of v are given
in Fig. 7.5. For vy, > % it is easy to determine the value of .y
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from the formula

h
Zmax =?ln ( " cos g )

The results obtained make it easy to determine the distance from
the edge of the capacitor, shown in Fig. 7.5, on which the field of
the capacitor may, to within a specified degree of accuracy, be con-
sidered two-dimensional.

Generally speaking, conformal-mapping methods are widely em-
ployed in designing two-dimensional electrostatic and magnetostatic
lenses used for focussing electronic beams, which find extensive
application in numerous physical devices.



CHAPTER 8

FUNDAMENTALS OF OPERATIONAL CALCULUS

The methods of operational calculus represent a peculiar approach
to the solution of various mathematical problems, mainly differen-
tial equations. Underlying these methods is the idea of integral
transformations. Here we associate with the solution of the original
problem [a function f (f) of a real variable] some function F (p) of
a complex variable so that the ordinary differential equation for the
function f (f) is transformed into an algebraic equation for F (p).
In a similar manner, an ordinary differential equation may be asso-
ciated with a partial differential equation for a function of two real
variables, and so forth. This simplifies computational techniques.
In operational calculus, the fundamental entity is the Laplace trans-
formation, to the study of which we now turn.

8.1. Basic Properties of the Laplace Transformation

a. Definition

The Laplace transformation associates a function F (p) of the
complex variable p with a function f (¢) of a real variable ¢ by means
of the relation

0

F(p)=[eri@at
0

Naturally, this integral is not meaningful for every function f (¢).
We therefore begin with a definition of the class of functions f (&)
for which the given transformation can definitely be realized. Con-
sider the function f (¢) defined for all values of the real variable
—oo0 < t<< oo and satisfying the following conditions:

1. For t <0 f(t)=0.

2. For t = 0, the function f () has on every finite interval of the
t-axis at most a finite number of discontinuities of the first kind.

3. The function f (f) has a bounded order of growth at — oo,
i.e. for every function of the class under consideration there exist
positive constants M and a, such that for all >0

1f (@) ] < Me® 81)
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The greatest lower bound of those values of a for which inequality
(8-1) holds is called the index of the order of growth of the function
f (¢). It is easy to see, in particular, that the index of the order
of growth of the power function f (¢)=1¢" is zero.

Note that f (f) may be a complex function of the real variable t:
f () =f (1) +if, (¢), where f; (¢) and f, (¢) are real functions.

We introduce the basic definition:

The Laplace transformation of a given function f (t) of the real va-
riable t is a transformation which associates with a function f (t) a
function F (p) of the complex variable p defined by the integral

oo

Fp)=|emia (8-2)
0

Note that the integral (8-2) is an improper integral dependent
on the variable p as a parameter. Generally speaking, the integral
(8-2) does not converge for all values of the parameter p. Indeed,
if the function f () approaches a nonzero limit as ¢ - oo, and Re p <<
<< 0, then the integral definitely diverges. It is therefore natural
to pose the problem of the domain of convergence of the integral (8-2),
and hence also that of the domain of definition of the function F (p).

T heorem 8.1. The integral (8-2) converges in the domain Re p > a,
where a is the index of the order of growth of the function f (t), and
in the domain Re p == zy > a the integral converges uniformly.

Proof. For any p = z + iy for x > a, we can specify* an ¢ > 0,
such that z>a, =a + & and |f(f) | << Me®:. Then, taking
advantage of the comparison test for the convergence of improper
integrals, we get

oo [}

\F (o)) =| | emryat|<mr [ e-stemtar=—2_ 254 (33
0 0

r—ay
which is grounds for concluding that the integral (8-2) converges for
z>a. If x > 2y > a, then an analogous evaluation yields

M
To—ayq

F(p)|< | emtremenar = (8-4)
0

which, by the Weierstrass test, proves the uniform convergence of
the integral (8-2) with respect to the parameter p in the domain
Re p > 2y > a.

The foregoing proof rested substantially upon the conditions (2)
and (3) of the definition of this class of functions f (t) of the real

* This permits considering the unbounded functions with zero index of the
order of growth.
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variable ¢. However, it is possible to extend the class of functions

f (¢) which admit the Laplace transformation. First we prove the

following lemma.

Lemma. Let the function f (t) of the real variable t be defined for

all t =0 and let there exist a complex number p, such that the integral
S e-Potf (1) dt < M (8-5)
0

converges. Then for all p satisfying the condition Re p > Re p, the

integral

S e-Pif (t) dt (8-6)
0

converges.
Proof. Denote @ (t) = e~Pot f (t) and introduce an auxiliary func-

tion F (t) = — j @ (1) dt. Note that F’ (£) = ¢ (). Besides, by

t
virtue of the convergence of the integral (8-5) it is obvious that for
a given & > 0 it is possible to indicate a T, such that | F (¢) | <
< ¢ for t =T,
Ty
Now consider the integral S e~Pif (t)dt, where T, and T, are
T1
arbitrary real numbers satisfying the condition T, > T,, and
represent it in the form
T Ty Ty
S e-tf (t) dt = | e-@-porg (t) dt = S e-(-PtF' (t) dt
T1 T4 Ty
Evaluating the last integral by parts, we obtain
Tg
| e-w-rnp () at

T
Tq

= e~(P-PIT:F (Ty) — e~ ®=PITsF (Ty) 4 (p— Po) S e~®-PF (t) dt
T4
From this, for 7,, T,>T, and Re (p— py) >0 we get

T2
IS e-Ptf (t) dt lg(e-ne(p-p.)r. + e=Re(@-r)T1) g’
T4

IP—pol (,-Re- ~Re(p- ' Ip—po |
g’ LP—P0l_ (p-Rew-p,)T: _ g~Re(p-p,)Ts) g [2 tP—Pol_
& Re oo | ‘ <2t Reo—po
% e—Re(—po)To
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Obviously, it is always possible to choose the value of T, so that
the expression obtained is less than any prescribed € > 0. This, on
gl-eﬁ)basis of the Cauchy test, proves the convergence of the integral

It is also possible to prove the uniform convergence, in the para-
meter p, of the integral (8-6) in the domain Re p = Re p, > Re p,.

On the basis of the lemma that has been proved, we can regard
the functions satisfying the condition (8-5) as the basic class of
functions f (z) of the real variable ¢ for which the Laplace transfor-
mation (8-2) is constructed. Functions satisfying the given condi-
tion will be called functions belonging to the class A (p,).

Thus, with the aid of the transformation (8-2), the function F (p)
of the complex variable p is defined in the half-plane of the complex
p-plane to the right of the straight line Re p = a, parallel to the
imaginary axis.

Observe that from formula (8-3) it follows that | F (p) | = 0 as
Re p — oo.

The function F (p), defined in terms of the function f () with
the aid of the transformation (8-2) is called the Laplace transform
of f (t). The function f (¢) is the original function of F (p). We will
denote the relationship of the functions f (¢) and F (p) by the sym-
bols*

f(@)=F (p) or F(p)=1(?) &7
It should be noted that in practical applications frequent use is
also made of the so-called Heaviside transformation:

oo

Fp)=p | et (1) at (8-8)
0

which differs from the Laplace transformation by the additional
factor p. It is clear that the domain of definition of the function
F (p) is the same as that of the function F (p). We will only consider
the Laplace transformation (8-2). The properties of the Heaviside
transformation (8-8) are readily obtained from the properties of the
Laplace transformation that will now be examined.

As we have seen, analytic functions form the most important
class of functions of a complex variable. Let us find out whether
the function F (p) is analytic.

T heorem 8.2. The Laplace transform (8-2) of the function f (&) is
an analytic function of the complex variable p in the domain Re p > a,
where a is the index of the order of growth of f (1).

* Other notations are: F (p) — f (¢),
F (p) > f (1),
F(p) Il f (2), etc.
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Proof. By Theorem 8.1, the improper integral (8-2) converges in
the domain Re p > a. Let us partition the integration interval
into subintervals [¢;, t;+,] of arbitrary finite length; also t, = 0
and ¢, - oo as n — co. Then the function F (p), for Re p > a, is
the sum of the convergent series

o tn4s oo

Fio)=3 | emfydt=3 un(p) (8-9)
n=0tn n=0

Note that since the nth remainder of the series (8-9) is

equal to S e-Ptf (1) dt, by Theorem 8.1 the series (8-9)converges

tne
uniformlymin the domain Re p > z, > a. Each of the functions

un(p)=, | ef (0t

tn

is defined as an integral, dependent on the parameter p, over a sub-
interval of finite length in the complex ¢-plane. On the basis of
the general properties of integrals of functions of two complex variab-
les dependent on a parameter,* the functions u, (p) are entire func-
tions of p. From the foregoing reasoning, it follows that the series
(8-9) in the domain Re p > a satisfies all the conditions of the Weier-
strass theorem** and, hence, the function F (p) is analytic in the
domain Re p > a and its derivatives may be computed by diffe-
rentiating the integrand function in (8-2) with respect to the para-
meter p.

b. Transforms of elementary functions

Taking advantage of the definition (8-2), we find the transforms
of a number of elementary functions of a real variable.
(a) Heaviside unit function. Let

0, t<O
1o=00={," 1= (6-10)

Then

1) =F(p)= ig-pfdt=%

* See Chapter 1, page 53.
** See Chapter 2, page 63.

15—3878
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and the function F (p) is obviously defined in the domain Re p >0.
Hence

0, t<0 4
co(t)={1’ >0 T p° Rep>0 (8-11)

Observe that if in place of the Laplace transformation (8-2) we use

the Heaviside transformation (8-8), then the function F (p)=1
will be the transform of the unit function o, (f). This explains the
relative popularity of the Heaviside transformation. However, in
the case of the Heaviside transformation (8-8) a number of other
formulas, including the formula of the inverse transformation and
the formula of the transform of a convolution (see page 232 below),
become more complicated.

Let us agree from now on (unless otherwise specified) to regard
the function f (t) as the product f ()- o, (¢), that is, as a function
identically zero for t << 0, without specially indicating this in the
appropriate formulas.

(b) Ezponential function:

£ty =ex (8-12)
Computing the integral (8-2), we get

F(p): S e_P'eatdtz‘p—_ia-. Rep> Rea
0

e%t —

1
—a Rep>Rea (8-13)

(c) Power function:
f@=t,v>—1 (8-14)
In this case, the integral (8-2) is of the form

Fp)=[emf@yat=[ervar, Rop>0  (8-15)
0 0

Note that for v << 0, the function (8-14) no longer satisfies Condi-
tion 2 on page 221 (the point t = 0 is a discontinuity of the second
kind of this function) and thus does not belong to this basic class
of functions of a real variable, for which the Laplace transform exists.
However, as is readily seen, for v > —1 this function belongs to an
extended class introduced on page 223 [the integral (8-15) converges
for Re p > 0 and v > —1]. For this reason, in the case —1 <<v <0
as well the Laplace transform of the function (8-14) in the domain
Re p > 0 exists and is defined by formula (8-15). ;
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Let us evaluate the integral (8-15). We begin with the case when
the variable p assumes a real value p = z > 0. Making the change
of variable xt = s in the integral (8-15), we get

w 1 ¢ T (v+1
F(z)= S e-x!t‘\' dt:-zv—-l_i— S e“s"ds='—%‘ (8-16)
0 0

where I' (v 4 1) is Euler’s gamma-function. Since the function F (p)
defined by formula (8-15) is analytic in the domain Re p > 0, which
on the positive real axis £ > 0 has the value (8-16), it follows that
by virtue of the uniqueness of analytic continuation for the function
F (p) in the domain Re p > 0 we get the expression

F(p)= S e-PIY dt = L}‘;;:A (8-17)
0

Here, in the case of fractional v one should choose the branch of the

multiple-valued function -VL_H which is a direct analytic continua-

p

tion into the domain Re p > O of the real function '%{ of the real
z

variable z > 0. Thus,

e TOED -y 4, Rep>0 (8-18)
p
For integral v = n, we get from formula (8-18)
n_. I 1 !
e T . Rep>0 (8-19)

Computing the integral (8-2), we can get the transforms of some more
functions of a real variable; however, in many cases it turns out to
be more convenient, when computing the transforms of a given func-
tion, to take advantage of the general properties of the Laplace
transform, which we will now investigate.

c. Properties of a transform

(a) Linearity. By virtue of familiar properties of definite integrals
we have:
Property 1. 1f F; (p)=1f,(t), Rep>a; (i=1, ..., n), then

F(p)= ‘Z)i a.F; (p)= {;}1 aifi (1), Rep>maxa; (8-20)

where a; are specified constants (real or complex) and a; are indices
of the order of growth of the functions f; (¢).

15
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This property enables one, on the basis of the transforms of the
functions (8-13), (8-18) and (8-19) that we have found, to find the
transforms of a polynomial, and of trigonometric and hyperbolic
functions. For example, with the aid of (8-13), we get

1, . | 1 1
coswt=—2—(e“"‘+e""")7———2-(p_im+p+iw)= p’-lpimz ’
Rep>|Imo| (8-21)
Similarly,
sin mt:——'ﬁ, Rep>|Ima| (8-22)
(b) Property 2. Let F (p)=1f(t), Rep>a, then
1 .
7F(%),=f(at), a>0, Rep>a (8-23)
Indeed,

¢ 1 -2 1
{e-ntfatyar== S €f(x)di=—oF (Z)
0 0
(c) Property 3 (Time-delay theorem). Let F (p)=f(t), Rep>a
and let the following function be given:
0, t<t, >0

Then
f< (t) = F< (p) =e~7"F (p) (8-25)
Indeed,

Fo(p)={enttyat= [ emfe—rvar
0

T

In the last integral make a change of variable putting t—t=1¢'.
Then,

Fq(p)={ e-e+0f (t) &t = e-7F (p)
)
which proves Property 3.
As a first example, consider the transform of the step function
o, t<rw
f@)y= nfy, m<t<<(n4+1)vr, n=1, 2, ...

Represent f, (t) by means of Heaviside’s unit function g,:

f@)="Fologo(t—7%)+ 0o (t—27)+ ...]

(8-26)
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Using the linearity property and the time-delay theorem, we get

fO=F@R)=femttfemty =l T gy

Similarly, it is easy to show that the transform of the periodic func-
tion

N oni<t < (2n41)7
f ("‘{ —fo @nHANI< t< @n+2) 7
is the function

n=0,1,2, ... (828)

) =F(p)=L2 tanh £ (8-29)

The time-delay theorem permits obtaining a rather general for-.
mula for the transform of a periodic function. First consider the case
when the function f (f) of the real variable ¢ is of the form

1), 0t<
ro={%" .= (8-30)

Denote the transforms of the functions @ () = ® (p) and ¢ (¢
+ 7) == @O (p). Rewrite (8-30) in the form
0, <t<r
FO=90+ _g 14, 1oe

Taking advantage of the linearity of the transform and using the
time-delay theorem; we obtain

f@#®)=F (p)=D(p)—e-7D (p) (8-31)

Now let the function ¢ (¢) be a periodic function of ¢ with period T,
that is,

9 (t +7) =0 (8-32)

Then @, (p) = ® (p) and formula (8-31) will permit expressing the
transform @ (p) of the periodic function @ (¢) in terms of the trans-
form F (p) of the function f (¢), which is equal to the function ¢ ()
in the first period 0 ¢t < v and to zero outside it for ¢ = t:

o (=18 (8-33)

By way of illustration, let us find the transform of the function

o) =|sinwt]|, 0o >a (8-34)
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This function is periodic for ¢t > 0 with a period -% . First find the
transform of the function

sin wt, Ogtg-g-

1= ) (8-35)
0 E‘<t

By means of formulas (8.31) and (8.22) and the equality sinw X

X (t+_:;-)= —sin o we obtain

£ ELd

fO=F () =g +e " ® orm=mrrar (14 °7)

Whence, by formula (8.33) we get

LY
L e e
P+ o? -, pPto*
[0]

| sin ot | = ecoth ;—g (8-36)

(d) The transform of a derivative. We now proceed to prove one
of the basic properties of a transform which enables us to replace
differentiation of the original function by multiplication of the
transform by an independent variable.

Property 4. If a function f' (t) satisfies the ezistence conditions of
the transform and f (f) == F (p), Re p > a, then

f'®)=pF(p)—f(0), Rep>a (8-37)

Indeed, integrating by parts, we obtain

fl

— S e=Ptf’ (t) dt = e~Pif (t) |;°+p S e-?!f (t) dt = pF (p)— { (0)
0 0

which proves the property.
Similarly, we can prove the following property.
Property 4'.If a function f™ (t) satisfies the existence conditions of
the transform and f (t) = F (p), Re p > a, then
0 () (n-1) (0
f""(t)=p {F(p)__f(_)_&._ e _.f”—p:‘(_)_}, Rep>a
(8-38)
Formula (8-38) is partxcularly simplified when f (0) = f (0) =

== (0) =
™ (1) = p°F (p) (6-39)
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The result obtained finds numerous applications,

By way of illustration let us consider the solution of the following
Cauchy problem for an ordinary linear differential equation with
constant coefficients:

ay™ 4 a y ™ ... Fay (@) =71() (8-40)
yO =y 0)=...=y">(0)=0 (8-41)

where f (¢) is a function of ¢ specified for ¢ = 0. Putting f () =0
for t <<0, we can, if f () satisfies the existence conditions of a trans-
form, construct the transform F (p) of the function f (£). Suppose that
a function y (t), which is the solution of the problem (8-40), (8-41),
and all its derivatives up to order n satisfy the existence conditions
of a transform. Then, multiplying both sides of (8-40) by e-** and
integrating with respect to ¢ from O to oo, we get, by virtue of the
linearity of the transform and the initial conditions (8-40),

Y (p) {aoP" +a,p™"*+ ... +a,}=F (p)
where the transform of the desired solution of the problem (8-40),

oo

(8-41) is denoted in terms of Y (p) = S e-? y (t) dt. Denoting P, (p)=
0
= aop" 4+ a;,p"' +... 4 a,, we get

_F ~
Formula (8-42) gives a sufficiently simple expression of the trans-
form of the desired solution y (f) in terms of known functions—the
polynomial P, (p), the coefficients of which are defined by the equa-
tion (8-40), and the transform F (p) of the given right side of the
equation. Thus, if we can determine the unknown original function
y () from its known transform Y (p), then the problem (8-40), (8-41)
will be solved. Below we will consider various methods of determi-
ning the original function from a given transform. For the present
let us continue examining a number of general properties of trans-
forms.

(e) The transform of an integral.

Property 5. Let f (t) = F (p), Re p > a. Then

t
ot)=|1@di=1F(p), Re p>a (8-43)
0

Indeed, it is easy to verify that the function @ (t) satisfies all the
existence conditions of a transform, and @ () has the same index of
the order of growth as f (f). Computing the transform of the func-
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tion ¢ (z) from formula (8-2), we get

©co

t t
S 1) dr.,.;.S e-Pt dt S f(v)de
0 0 0
Changing the order of integration in the last integral, we get
¢ o oo o
- ot it | o- =4
if(-c) dt= if(r)dri e~Ptdt= - 5) e~P'f (1) dr = > F(p)

and this proves formula (8-43).
In similar fashion we can prove the following property.
Property 5'. Let f (t) = F (p), Re p > a; then

t 11 7,90
fan§atn... { 1 dtae22-F(p), Rep>a (8-44)
0 0 0

Properties 5 and 5’ find numerous applications in the computation
of transforms of various functions.

For example, find the transform of the saw-tooth function f (¢),
which is a periodica]ly repeating isosceles triangle with base 2t
and altitude fot. As is readily evident, this function is an mtegral
from O to ¢ of the function (8-28), the transform of which is given hy
the formula (8-29). Therefore

f(t)==-—=- tanh = (8-45)
(f) The transform of a convolutwn. The convolution of the functions
{1 () and f, (¢) is the function ¢ () defined by the relation

t
o= @ht—d={ft—vf@d (&4
0 0

The validity of this equality becomes evident if we make a change

of the integration variable ¢ — v = #’ in the first integral. The fol-

lowing property holds true.

 Property 6- 111, (9=Fy (), Re p > a1, (6 = Fs (), Re p > oy
en

t
9= | L@ 10— dr=2Fy(p) Fa(p), Rep>max{a, 00} (8-47)
0

The convolution of the functions f, (£) and f, (£) with bounded
order of growth is also a function with bounded order of growth.
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Indeed,
t i
|| afe—nar |<anm, | evene-nae
0 0

= MM oo ety MiMa =
=i {emrt—e =}<lai_a2| e®, a=max{a;, a,}

The order of growth of the convolution is obviously equal to the
greatest order of growth of the functions f; (f) and f, (z). Clearly
@ (t) also satisfies the other conditions of the existence of a trans-
form. To evaluate the transform of a convolution, use formula (8-2)
and change the order of integration:

{eneat S h@he—mdi={f (vdr fentat—v)at
0 0 0 T

Making the change of variables t — v = ¢’ in the inner integral,
we finally get
t oo L
[ h@ne— dee | evy, @ [ et @) de=Fy (0) Fa(p)
0 0 0
This proves Property 6.

In applications, formula (8-47) is frequently used to determine
the original function from a given transform, when .the specified
transform can be partitioned into factors for which the original func-

tions are known.
For example, let it be required to find the original of the function

___po
Flr) =trom
Earlier, we found [see formulas (8-21) and (8-22)] that
ﬁm—,,& coswi, 'p“_-ol)-mi == sin ol
Therefore,

.

t
F (p) = S sin 0t-cos o (¢t — ) d‘r=-tz—sinmt
0

Let us consider some more general properties of transforms.
(g) Differentiation of a transform.
Property 7. Let F (p) = f (t), Re p > a, then

F' (p) = —t] (1), Re p>a (3-48)
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Indeed, above we pointed out that the derivative of an analytic
function F (p) in the domain of its definition Re p > a may be
computed by differentiating the integrand function in the improper
integral (8-2) with respect to a parameter. Doing this, we get

oo

F (p)= — { e-mttf (t) dt == — tf(t)
0

This proves Property 7. Noting that multiplication of the function
f (t) by any power function " does not change its order of growth,
we get

Property 7'. If F (p)=1/f(t), Re p > a, then

F® (p) = (—1)""f (1) (8-49)

Formulas (8-48) and (8-49) may be used to evaluate the transform
of the product of ¢ by a function f () for which the transform is
known. Later we will derive a general formula expressing the trans-
form of a product in terms of the transforms of thefactors. Let us
now consider yet another property of transforms.

(h) Integratiorn of a transform.

Property 8. If a function -f—(t—t) satisfies the existence conditions

of a transform and f () = F (p), Re p >a, then

1O [ ertlOa= [ F(g ag (8-50)
0 P
Denote
1(p)= [ erlfa ®=0)

0
By Theorem 8.2, the function I (p) is analytic in the domain
Re p > a, and by virtue of the remark on page 224, I (c0) = 0. We

find the derivative of the function I (p) by differentiating the in-
tegral (8-51) with respect to a parameter:

I'(p)=— | et (tydt=—F (p)
0

From this, taking into account the condition I (co0) = 0, we obtain

P 0o
I(p)=1(e0)— | F(g)dg= | F(q)dg

This proves Property 8.
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As an illustration, let us find the transform of the function
it follows that

L ; ; . @
< sin ot. Since sin wf == pom

dp= -—g- —arctan -%- (8-52)

t

1 oo
— sin wt S s
P

With the aid of Property 5 we get, from expression (8-52),

Sit= S sil"d =éi— (%—arctan p) (8-53)

The function Si ¢ is called the sine integral.

(i) The last property of transforms that we consider in this sec-
tion is called the shift theorem.

Property 9. If f(t) = F (p), Re p >a, then for any complex
number A

F(p+A)=eMf(t), Rep>a—Rel (8-54)

Indeed, the function ¢ (¢) = e ™ f (f) obviously satisfies the con-
ditions of existence of a transform, which, by formula (8-2), is de-
fined in the domain Re p >a — Re A, but

oo oo

S e~Ple=Mf (1) dt — S e-@+Mt f () dt = F (p+A)
0

0

This proves the shift theorem.

Formula (8-54) may be used to determine the transform of the
product of the function e*t by the function f (£) for which the trans-
form is known. Thus, with the aid of this formula and the trans-
forms already obtained we can find

te“‘—,='(p—_1_;)?, Re p>Rea (8-55)
thext = @_"—;)-m, Rep>Rea (8-56)
e~ sin of == m"ﬁ, Rep>|Imw|—Rea  (8-57)

and so forth.

We conclude this section with a table of the properties of trans-
forms we have considered and a table of the transforms of a number
of elementary and most frequently used special functions.
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d. Table of properties of transforms
Let f()==F (p). Then
n n
1) {21 aifi (‘)%{21 a;F; (p), @;=-constant

(2) ]‘(at)-='LF (%) , a=constant, a >0

t
(3) f (t)—{ it >T), <, f<(t)=e-7*F (p)

(4) f (t).=‘p"{F(p)_f_9_,_,_i""T‘:<0)_}

(5) gf(v)dr.é%mp)

(6) j f1(x) fo(t—71)dr= 3 10 (t—) f2 (x) de==Fy (P) Fs (P)
() F™ (p) = (— )" ()

® | F(pap=sl®

b 4
(9) F(p+1)==eMf(t)
e. Table of transforms
(1) ===, Rep>0
@ t'= ‘"“"“’, v>—1, Rep>0
(3) t"== nli, n an integer, Re p >0

(%) e‘",=--p_i—a, Re p>>Rea

(5) sinmtéﬁ, Rep>|Imo|
(6) wsmtéﬁ, Rep>|Imo|
(7) sinh Af== 1,',, Rep>|ReA|
(8) coshM= M , Re p>|ReA|
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nl

Nyt o R

(9) trex = —ayt ep>Rea

. . 2
(10) tsmwt-———-(pT_‘i——m;z)z, Rep>|Ima|
(11) tcosowt °(p‘;;$;,, Rep>|Imo]
(12) e*‘sinmt#m, Re p> (ReA+|Imw])

—A

(13) e“cosmts,='(—p:pm, Rep> (ReA+|Imw|)

et .
(14) 5= =5 —arctan £, Rep>|Imo|

1, 2kt < (2k+-1) -r} 1 -
(15) { —1, (@k41)r<t<(2k+2) )T p 2oR G, Rep>0
k=0,1, 2, ...

(16) |sinot|=—7— ’+¢n’ coth 5— pn , Rep>|Imw]|
(17) e—a't'_—_-lfz-’i i (1—o (%))

—at 1
18) ——===
(18) Ve © Vpta

22 Vi . 1 2 o
19 S=e (1-0(55))
o 1

(20) Jo (at)?ﬁ

1
@) J@VD=e ®
_Wprti—p)"
(22) T () = HE IR
(23) Si t=‘i- (—-—arctan p)

@6 ©(Val) = Vp T

-2 Vp
(25) 1— a:o( 77 p L e-a

For real values of the parameters in the function f (¢) in formu-
las (17) to (25), the transforms of the corresponding functions are
definitely defined in the domain Re p >0.
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8.2. Determining the Original Function from
the Transform

In this section we consider methods for determining the original
function from a given transform, and we also give certain sufficient
conditions under which a given function F (p) of the complex va-
riable p is a transform of the function f (¢) of the real variable ¢.

First, note that there are various tables of transforms of the most
frequently occurring functions, so that when solving practical prob-
lems it is often possible to find, in reference works, the expression of
the original function for the transform obtained.

Second, the properties of transforms (1) to (9) that were given
in the preceding section enable one, in many cases, to solve the in-
verse problem of constructing the original function from a given
transform. This applies above all to the shift theorem, integration
and differentiation of transforms and to the transform of a convolu-
tion of functions. A number of examples were already considered in
Section 8.1, others will be added later on.

However, all these methods are actually trial and error methods.
The basic aim of this section is to give a general method for const-
ructing the original function from the transform.

a. Mellin's formula

We begin with the case when it is known that the given func-
tion F (p) of the complex variable p is the transform of a piecewise
smooth function f (f) with bounded order of growth | f () | << Me**;
the value of the constant a is given. It is required, from the given
function F (p) to construct the desired function f (¢). This problem
is solved with the aid of the following theorem.

T heorem 8.3. Let it be known that the given function F (p) in the
domain Re p > a is the transform of a piecewise smooth function f ()
of a real variable t and possesses an order of growth a.

Then )

1 x41ic0
)= S ePF (p)dp, z>a (8-58)
x-— 100

Proof. By hypothesis, the function f (¢) exists and we know its
order of growth. Consider the auxiliary function @ (£) = e~ f (¢),
z >a. This is a piecewise smooth function which on any bounded
interval of the f-axis has a finite number of discontinuities of the
first kind and exponentially tends to zero as ¢t — oco. It can be repre-
sented with the aid of the Fourier integral

p(0)=5 | & | om)ete-man (8-59)
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Putting into (8-59) the expression of the function ¢ () in terms of
the sought-for function f (¢), we get

estf () = | & | e=nf (m) ebe-m
=g | et | et (m)an  (8-60)

—o 0

since f () =0 for n < 0.

Denote p = z + i§ and note that the inner integral in (8-60)
is the given transform F (p) of the sought-for function f (£). Then
the expression (8-60) becomes

oo x4-ico
1 1
f (t) = S ex+ibt p (p) dt =5 S ePtF (p) dp

This proves the theorem. Observe that in formula (8-58) the inte-
gration is performed in the complex p-plane along a straight line
parallel to the imaginary axis and passing to the right of the straight
line Re p = a. The value of the integral (8-58) is independent of z,
provided that the straight line of integration lies to the right of the
straight line Re p = a.

Formula (8-58) is often called Mellin's formula. In a sense, it
is the inverse of the Laplace transformation [formula (8-2)] since
it expresses the original function in terms of a given transform.
Note that since, in deriving the Mellin formula, we went from the
unknown function f () itself to its Fourier integral, which converges
to f (t) only at the points of continuity of this function, it also fol-
lows that formula (8-58) defines the function f (£) only at its points
of continuity.

To illustrate the application of this theorem, let us consider the
question of determining the transform of a product from the known
transforms of the factors.

T heorem 8.4. Let f, (t) = F, (p), Re p >a, and f, (t) = F, (p),
Re p >a,. Then

x+4i00
tO=HWhO=FE)=5g | R@Fp—ad
x_1m1 x+4i00
= | Fp—0Fa@dg (861)
x—1c0

and the function F (p) is defined and analytic in the domain Re p >
>a, + a,, and integration is performed along any straight line paral-
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lel to the imaginary axis lying to the right of the straight lines Re p = a,
and Re p = a,.

Proof. Since the function f (¢) satisfies all the existence conditions
of a transform, the following Laplace transformation holds:

fO=F@)={ertifma (8-62)
0

If in (8-62) we represent the function f, (f) in the form of its Mellin
integral (8-58) and change the order of integration, which is pos-
sible due to the uniform convergence of the given improper integ-
rals dependent on a parameter, we get

g x-4ioco
F (p) =2Lm 5 e~Pif, (1) dt S et F, (q) dg

0 x-1io0

x+i00 oo

1
=omi 5 Fy(q) dg S e—(®-tf, (¢) dt
x—-{o00 0
x+ico
1
= | F@F(p—qds (8:63)

Note that in (8-63) Re ¢ = z >a,, and the function F, (p — q)
is defined for Re (p — q) > a,, whence Re p >a, + a,. If in (8-62)
we replace the function f, (£) according to the inversion formula,
we can get the second equality in (8-61). The theorem is proved.
It will be seen that this theorem is,in a sense, the converse of Prop-
erty 6. '

Ezample 1. Let f, (t) = cos &t, f, () = t. Find the transform of
the function f (f) = ¢ cos wt.

Since cos ot == pﬂi—mﬂ' t,——'%, it follows that
1 x+1i00 d
—_ qdg e
Flp) =55 S{ @®+0?) (p—9? (8-64)

where Re p > | Im ® | and the integration is performed along any
straight line parallel to the imaginary axis and lying to the right
of the straight line Re ¢ = | Im ® |. For such a straight line of
integration we choose the straight line passing to the left of the
point ¢ = p, and consider (in the complex g-plane) the closed con-
tour I', which consists of the segment [z — iR, z + iR] of the given
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straight line and the arc of the semicircle | g — =z | = R completing
it in the right half-plane. Within the given contour, the integrand
function of (8-64) is everywhere analytic except at the point ¢ = p,
which is a second-order pole of the given function. The point g = oo
is a third-order zero of this function. Therefore, by virtue of Lem-
ma 1, Chapter 5, the value of the integral (8-64) is determined by
the residue at a singular point of the integrand function. Noting that
the contour I' is traversed in the negative direction, we find

——_4fr_a — PPt
(0=~ | @Fe5 o= v o
And so
2 (2
toosmt-,=-(7{’,+—$2), (8-65)

b. Ezistence conditions of the original function

Here we will consider certain sufficient conditions under which
a given function F (p) of the complex variable p is the transform
of some function f (¢) of the real variable ¢, and will show how the
latter may be found.

T heorem 8.5. Let a function F (p) of the complex variable p =
= z + iy satisfy the following conditions:
(a) F (p) is an analytic function in the domain Re p > a;

(b) in the domain Re p > a, the function F (p) tends to zeroas | p | —
—- 0o uniformly in arg p;

(c) for all Re p = x >a the following integral* converges:
x+41i00
{ 17p1dy<M, 2>a (8-66)

X— 100
Then F (p), for Re p >a, is the transform of the function f (t) of
the real variable t, which is defined by the expression

x4-ic0

fO =5z | #F(prdp, 2>a (8-67)

x—100
Proof. And so we have to prove that the integral (8-67) is the orig-
inal of the function F (p). First, the question arises as to the exist-

* The integral (8-66) is an improper integral of the first kind of the real
function | F (p) | along the straight line Re p = =z.

16—3878
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ence of this improper integral.* Clearly

1 x-ico x+4-ico
]2—,,,- S eP‘F(p)dpl\z,, S |eP'F (p) o] dp|
x—-1c0 x—~ioo
t x+1o0 M
=5 | 1Pyt (869
x—i00

whence follows the convergence of the integral (8-67) for any z > a.
We note, for the sequel, that from the evaluation (8-68) there fol-
lows the uniform convergence of the integral (8-67) with respect to
the parameter ¢ on any finite interval 0 <<t < T.

In order to prove that the integral (8-67) is the original of the
given function F (p), we have to establish that:

(1) the integral (8-67) is independent of x and defines the func-
tion f (2) of the variable ¢ alone;and thisfunction has a bounded order

of growth;

(2) for t<<O f(t)=0;

(3) the given function F (p) is the Laplace transform of the func-
tion f (2).

We now prove each of these propositions.

(1) In the domain Re p >a, consider a closed contour I' con-

sisting of segments of straight lines [xl id, =, + iA] and [z, —

— iA, z, + iA] parallel to the imaginary axis, and of the straight
lines connecting them [z, — id, z, — idl, [:::1 + id, =z, + idl,
which are parallel to the real axis (Fig. 8.1). Here, 4 >0, z,, Ty
are arbltrary numbers greater than a. Since the function F (p) is
analytic in the domain Re p > a, then by the Cauchy theorem the
integral of the function ¢”F (p) around the contour I' is zero. Let 4
tend to infinity and let z, and z, remain fixed. Then by condition
(b) of the theorem, the integrals over the horizontal segments of the
integration path will in the limit yield zero whereas the integrals
over the vertical straight lines will pass into the integral (8-67).
This yields

x1}1i00 xg+ioco
eP'F (p) dp = S e?'F (p)dp

xq—-1i00 xg—1i00
* The improper integral (8-67) is calculated alonf the straight line Re p = z

and is to be taken in the sense of the principal value, i.e.

x+4100 x+iA
S ePtF (p) dp=1lim S eptF (p)dp
A~+oo

x—-1{o00 x-
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which, since z; and z, are arbitrary, proves proposition (1). Thus,
the integral (8-67) is a function of only the single variable ¢. It will

17 Z,+ A x,+iA
p=0 |r=a
—mn 3
Z,-iA x,-iA
Fig. 8.1

be noted that from the evaluation (8-68) it immediately follows that
the integral (8-67) is a function of bounded order of growth with
respect to ¢, and the index of the order of growth of this function is a.

7 “ x+ iR
) Cr
p=—o-< z=a >—t T
x
x-iR
Fig. 8.2

(2) Consider the value of the integral (8-67) for ¢ << 0. To do this,
consider, in the domain Re p > a, a_closed contour C consisting of
the straight-line segment [z — iR, z + iR], z >a, and of the arc
Cr of the semicircle | p — z | = R completing it (Fig. 8.2). By the

16+
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Cauchy theorem, the integral of the function e F (p) over the given
contour is zero. By the remark concerning the Jordan lemma (see
Chapter 5, page 135) the integral over the arc Cg tends to zero for
t <0 as R — oo. Therefore

x+1ioc0
) =o 5 ertF (p)dp=0, t<0, Rep>a (8-69)

x—1i00

and the assertion (2) is proved.
(3) Construct the Laplace transform of the function (8-67) and
consider its value for some arbitrary p,, where Re p, > a:

o ) x+4i00
(emfyat=st {e-mtar | emP(p)ap (8-70)
0 0 x—1ic0

The inner integral in (8-70) is independent of z. Choose a value of z
that satisfies the condition a << x << Re p, and change the order of
integration. This is possible by virtue of the uniform convergence of
the corresponding integrals. We get ‘

oo x-+}ioo oo
2
S e-Poff (t) dt—_—z_m S F (p) dp i e—-(Po-p)t d¢
0 x—1ioo
x-+-i00
1 dp
= ) Flop2s 61

The integral (8-71) can be computed with the aid of residues, since
by condition (b) of the theorem, the integrand function, as | p | — oo,

tends to zero faster than the function —:— . Therefore, taking into account

that the only singularity of the integrand function—a first order
pole—is the point p = p, and, upon completion of (8-71) in the
right half-plane, the integration is performed in the negative direc-
tion, we obtain

1(t)= § e-votf (t)dt = F (po) (8-72)
0

Since p, is an arbitrary point in‘the domain Re p > a, the theorem
is proved. The integral (8-67) naturally coincides with Mellin’s
formula (8-58) which was derived on the assumption of the existence
of an original function. We have thus established certain sufficient
conditions under which a given function F (p) of the complex vari-
able p is a transform.
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¢. Computing the Mellin integral

In many cases of practical importance, the integral (8-58), (8-67),
which yields an expression of the original function in terms of the
given function F (p) of a complex variable, may be computed with
the aid of earlier considered (see Chapter 5) methods of computing
contour integrals of functions of a complex variable. Let F (p),
originally specified in the domain Re p > a, be analytically extended
to the entire p-plane. Let its analytic continuation satisfy, for
Re p < a, the conditions of Jordan’s lemma. Then for ¢ >0

S e?F (p) dp—>0, R—oo (8-73)

C'r
where CR is the arc of the semicircle | p — 2 | = R in the left-
hand half-plane. In this case, the integral (8-67) may be computed

with the aid of the calculus of residues. Let us consider some exam-
ples.

Example 2. Find the original function of F(p)=-TmmT',
Re p>0, @>> 0. Since the conditions of Theorem 8.5 are fulfilled,

x~4-i00
F()=f)=gg | 5o dp =0
X—100
The analytic continuation of the function F (p) into the left half-
plane Re p << 0, the function;)z—_(;_)(ﬂ)—2 , satisfies the conditions of the

Jordan lemma and has two singularities—poles of the first order for
P1, 2 = tiw. Therefore, for ¢t >0,

(oe“‘" we™ ot

@)= Z Res [eP' T ph]_—zl(—o——Tm=smmt t=0
h—

The conditions of Theorem 8.5, in particular (c), are sufficient
conditions for the existence of the original function of the func-
tion F (p), analytic in the domain Re p >a. It is easy to indicate
examples which show that if this condition does not hold, then the
function F (p) can still be the transform of some function of a real
variable.

Ezample 3. Find the original function of the function F (p) = !

g
—1<a<0, Re p >0. This function is multiple-valued in the
domain under consideration. For the function F (p) we will take
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that branch of the given multiplé-valued function which is a direct

analytic continuation into the domain Re p >0 of the real func-

tion %_H of thereal variablez >0. Then we will obviously have to take
x

arg p = 0 for p = z, £ > 0. The function F (p) does not satisfy the

condition (c) of Theorem 8.5. However, we will show that the func-

tion

x+ico
1 1
) =5m; S e —rrdp, >0 (8-74)

is the original function of the given function F (p).
The analytic continuation of F (p) into the left half-plane
Rep << 0 is a multiple-valued function having as branch points the

Re p=x

\ I-[ﬁ’

Fig. 8.3

points p = 0 and p = oo. In the domain &, which is the complex
p-plane cut along the negative real axis, we will consider that

branch of the multiple-valued function a;-H , which is the immediate
p
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analytic continuation of the function F (p) originally specified in
the right half-plane Re p > 0. In the domain & we consider a closed
contour I' consisting of a straight-line segment [z — iR’, = + iR’],
z >0, of the segments —R << z << —p on the lips of the cut and
of the arcs of the circle Cy, | p | = p which complete them, and of
the arcs of the circle Cg, | p — = | = R’, connecting the lips of the
cut with the vertlcal segment [z — iR’, z + iR’] (Fig. 8.3). Since

the function e"—a;-l does not have any singularities in the do-

main &, by the Cauchy theorem the integral of this function around
the contour T is zero. Let R’ go to infinity, and p to zero. By virtue
of the Jordan lemma, the integrals along the curves Cg. will yield
zero in the limit. Evaluate the integral around the circle Cg, put-

ting p = pei®:

3
1 dp 1
—_— Pt tpCOS @
|2m' S' ¢ ptt |< 2np% S € de
Cp -=

Since —1 < o < 0, the integral around C, will also tend to zero
as p —0. This leaves only the integrals along the straight-line
segments of the contour of integration. Note that on the lower lip

of the cut arg p = —mn, on the upper lip, arg p = n. We thus get
x-4io0 d
P
f() 2m S eptpa-l-i
x—1i00

0
- { | =t S

-]
=2im e-iﬂa S e—xfz—(l—i dx__e{ﬂa

z)@-}-i —-ina }

e-xtg-a-1 da:}

O'_’18 A

— Sin(—na) j e~*tz-a~1dz (8-75)
Making the change of variable of integration zt—=s in the integ-
ral (8-75), we get
j(t)=t°s£(;_"°‘)_p(_a)
Taking advantage of the equality
F'(—a)T'1+a)=

sin ( o)
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we finally obtain the formula
1

A O

which is the inverse of the formula (8-18). This proves our assertion.
Ezample 4. Find the original function of F (p) = % e=2V?, 0. >0,

Re p >0. As in the preceding example, we consider that branch
of the multiple-valued function }/p whichisadirect analytic contin-
uation into the domain Re p >0 of the real function J/'z of the
real variable z > 0. It will be recalled that in this case we have to
put arg p =0 for p = £ >0. The analytic continuation of the
function F (p) into the left half-plane Re p << 0 again has for branch
points the points p = 0 and p = oo. We consider the domain & —
the p-plane cut along the negative real axis. In this domain is

ta

(8-76)

defined the single-valued analytic function 3 ¢-aV5 which is a direct

analytic continuation of the function F (p). We note that the func-
tion F (p), for Re p >0, satisfies the conditions of Theorem 8.5,
and its analytic continuation in the domain & in the left half-plane
Re p << 0 satisfies for ¢ >0 the conditions of the Jordan lemma.
For this reason, if we choose the same contour of integration I' as

in the previous example and note that on the upper lip of the

LT
cut, argp=mn, which yields p=tein= —t, Vp=VEe2=iVE
and on the lower lip of the cut, argp= —mx, which yields

p=te-in= —&, Vp=VEe I=—iVEE>0), we get

“+‘.°° o Vp

F=ft)=p | o dp
:-{n
iaV‘ € e—aVp
e e ) it o
c
Since
F 19 o~% Voe'2 i
hmz—i-s ep“oe— ipei®dop=1
p—0 pe

it follows that

O R

0
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Change the variable in this integral, putting VE==z, taking into
account that

sinaz ¢
— = S cos fz df
0
and change the order of integration. We get
oo . - a [ ]
S e-aﬂgl/é dE=2 S dp S e-1%2 cos Pz dr (8-77)
0 o 0

It is easy to compute the inner integral in (8-77)*. It is

8
S e~1*% cos ﬁ:cdz=% % —nTe &t

0
Whence

a Bﬁ

S e 4 dp

0

&=

f(t)=1—72—

=
B

Vit

F(p)=%e-°‘1/5.='1—q)(

Putting =, we finally get

a
2—VtT) a>0, Re p>0 (8-78)

where the function

0(2):72_:; S =" dn (8-79)
0

is the so-called error function. **

d. The case of a function regular at infinity

Let us examine one more special case when it is particularly easy
to determine the original function for a given function F (p) of a
complex variable. Let the analytic continuation of a function F (p),
originally specified in the domain Re p > a, be a single-valued func-
tion in the extended plane of the complex variable p, and let the
point p = oo be a regular point of F (p). This means that a Lau-
rent-series expansion of the function F (p) about the point p = oo

* For example by differentiating with respect to a parameter,
** For a definition and the properties of the function @ (z) see [17].
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is of the form

©co

Fip=3 = (8-80)
n=0
When considering the properties of a transform, we noted that
| F(p) | >0 as Re p - +oo. Therefore, in the expansion (8-80)
the coefficient ¢, is zero and

oo

F(p=3 = (8-81)
n={

It is easy to find the function f (£) of the real variable ¢ for which
the function (8-81) is the transform.

T heorem 8.6. If the point p = oo is a regular point of the func-
tion F (p) and F (o00) = 0, then F (p) is the Laplace transform of the
function of the real variable

0, t<<0
fo={ 2 ) &5
2’0 Cnsl '% ) t > 0

where c, are the coefficients of the Laurent-series expansion (8-81) of
the function F (p) about the point p = oo.

Proof. Earlier (see page 116) it was shown that the coefficients of
the expansion (8-81) are given by the formula

1
Cn =5 S F(p) p"*dp
Cr

where Cy is the circlé | p | = R, exterior to which there are no sin-
gularities of the function F (p). Since the point p = oo is a zero of

F (p), it follows that | F (p) |<%— or | z | > R. Therefore, the
formula for ¢, yields
|en| << MRt

From this evaluation there follows the convergence of the series (8-82).
Indeed,

oo
tn
IE Cn+1 nl.
n=0

From this it follows that in a circle of any finite radius, the series
(8-82) converges uniformly, thus defining some entire function of the

- t|n o Rnlt
<)) |¢n+1|JT,|—<M2 ——’!l—l—=M8Rm
n=0 n=0
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complex variable ¢:

~ > tn
f (t) = Z cn+l';l'
n=0

Note that we can regard the function f (¢) defined by the formula (8-82)
as the product of the function f (¢) by the Heaviside unit function
o, (2).
Multiplying f (¢) by e-** and mtegratmg term-by-term with re-
spect to ¢ the uniformly convergent series (8-82), we get, on the basis

of " = nH (see 8-19), the relation
1 oo

z Cn+1 = Z Cn+1 Tl p‘nﬂ = 2 Cn.p-ﬂ —F(p) (8—83)

n=0 n=0 n’={
This proves the theorem

Ezample 5. Let
1
F(p)=m (8-84)

This function has two singularities p,,, = =i and is a single-valued
analytic function about the point p =oo; as was shown above (see
example on page 123), in the nelghbourhood of this point the func-
tion F (p) may be expanded in a Laurent series:

(2k) 1

F(p)=h2 (— 0" gy
=0
And so formula (8-83) yields
o o ( ¢ )2"
i R L2/
VP—_’-I—i T—Eg(—i) 22k (k1)2 _éo( 1) (k)3 (8'85)

The series on the right of (8-85) is the expansion of an extremely im-
portant special function called the Bessel function* of zero order:

Sz
Jo(t)=2( 1)" whz
k=0
And so
1

o=t (6-86)

* For definition and properties of the Bessel function see [17].
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Observe that by representing
1 - 1 . 1
PFT " V@il Vrtl
and taking advantage of the transform of the function sin # ([see
formula (8-22)], we get

t
SJo(t)Jo(t——'r)dt: sin ¢
0

on the basis of the convolution theorem.
Example 6. Let
1
1 - —
—_— — p
F(p)=—-e

This function evidently satisfies the conditions of Theorem 8.6, and

oo

n- 1
F(p)=2 (—1) vy 1

n=1

- 21/'? 2k
.=.2 ('— (nl)"‘ 2( 1)h(—(1‘])2l_=]0(2v;)

(8-87)
8.3. Solving Problems for Linear Differential
Egquations by the Operational Method

In this section we consider the application of the methods of ope-
rational calculus to the solution of a number of problems for linear
differential equations,

a. Ordinary differential equations

In Section 8.1 we saw how operational methods could be used to
reduce the Cauchy problem with zero initial conditions for a linear
differential equation to a simple algebraic problem involving the
transform. Let us consider the more general Cauchy problem:

agy™ () +ay™ P @)+ ... +a.y (t)=1() (8-88)
YO0 =yo ¥ (0)=y1, ..., 4" (0)=yn4 (8-89)
where a,, a;, ..., @Gy, Yoy Y1, - - «» Yn-1 are specified constants,

f (t) is the given function of an independent variable ¢, which is
assumed to satisfy all the existence conditions of a transform. (See
page 221 on the existence conditions of a transform.) Since the prob-
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lem (8-88), (8-89) is linear, we can consider separately the solution of
the homogeneous equation with initial conditions (8-89) and the
solution of the nonhomogeneous equation (8-88) with zero initial
conditions. .

We begin with the first problem. It suffices to construct a funda-
mental system of solutions of the homogeneous equation (8-88).
For this system we choose the solutions of the homogeneous equation

a By (8) +a i () + . . Fanbr () =0, k=0, 1,...,n—1

(8-90)
which satisfy the initial conditions
(”(O)—G k=0,1,...,n—1 8.91)
. M5 -0,1,...,n—1 (
where
1, k=j
6“={ 0, k=]

The functions vy (¢) clearly form a fundamental system, since their
Wronskian determinant, for ¢ = 0, is definitely nonzero. The solu-
tion of the problem (8-88), (8-89) for f (¢) = 0 is expressed in the
most elementary manner in terms of these functions:

n-1
y(@t)= h§0 Yrr ()

We apply the operational method to determine the functic ns; (2).
Bearing in mind that the function y; (f) and all its derivatives up
to order n satisfy the existence conditions of a transform,* we, by

(8-91) and (8-38), get
Vi (t).—_:‘llfh (p)r Wy) (t) -=.pj [‘Fh (P)—%] y J= 1,2,...,n
where
{ 0, i<k
TV, >k

Multiplying both sides of theequation (8-90) by e-P* and integrat-
ing with respect to Z, we obtain

¥y () Pn (p) = Px (p) (8-92)
where the polynomials P, (p) and P, (p) are equal, respectively, to
P, (p)=aop"+a;p" '+ ... +a,

* Indeed, the functions 1y (t), as solutions of the equation (8-90), are smooth

functions which at infinity do not grow faster than an exponential function with
linear exponent.
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and
Py (p) = app™** 4 a,p"**D |t an_ gy (8-93)
From (8-92)
__Pru(p) _
Y(p)=515 k=0,1,...,n—1 (8-94)

and, in particular,

_ Pna(p) ___ ag
¥na () =320 =5 p) (8-95)

Formula (8-95) will be used in the sequel. The originals of the func-
tions ¥, (p) may be found by Mellin's formula:

. 1 100
V) S @O=gg | P8 dp, z>a  (896)

x—1io0

where the straight line £ = a passes to the right of all singularities
of the integrand function of (8-96). Since the function (8-94) is a
ratio of two polynomials, only the zeros of the denominator P, (p)
(all of them are poles) can be its singular points. Besides, for ¢ >0,
the integrand of (8-96) obviously satisfies the conditions of the Jordan
lemma in the left half-plane Re p << a. Therefore,

. |
a (t)=3) Res [ 22EL, p] (8-97)
i=1

where the p; are zeros of the polynomial P, (p).
If all the zeros p; of the polynomial P, (p) are simple, then
. n

by representing it in the form of a product P, (p)=a, [| (p — py)
i=1

we get, from formula (8-97),

Pr (1) = D) apiet (8-98)
=1
where
apy = —n () (8-99)

a [ (i—p))
j#i

If the zeros p; of the polynomial P, (p) are multiple, then

the expansion of the polynomial is of the form P, (p)=
'm

=a, H (p—p:)®, where @; is the multiplicity of the approp-

i=1
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m
riate zero and Z o;=n. In this case, utilizing the rule for eva-
i=1
luating the residue at a pole of order X1 and computing the
derivative of the product by the Leibniz formula, we get

B ()= 2 qui (0) ™ (8-100)

where the polynomials gx; (¢) have the form
Ght (8) =bo, wat™ by pit™ 2 b (B-101)

and the coefficients b, x,; are computed from the formula

— 1 am Py (p) - _
bm, kot =73 @ —m—1) ™ T - (8-102)
a [| ®w—pn™ .

i#i

Note that the zeros p; of the polynomial P, (p) coincide with
the zeros of the characteristic polynomial for the equation (8-90).
Therefore, formulas (8-98) and (8-100) yield a representation of each
of the particular solutions of equation (8-90), satisfying the initial
conditions (8-91), in terms of the particular solutions of equation
(8-90) which are obtained with the aid of the characteristic equation.

Ezample 1. Solve the Cauchy problem

y(lv)+2yn+y=0, y(0)=y' (0)=y" (0)=0, yl"(0)=1

The obvious solution is the function v, (f), which can be found
from formula (8-96):

x-+}1i00
1 d
=W O=g7 | e (8-103)
X—100

The integrand function in (8-103) has two singularities p, , = =i,
which are second-order poles. Therefore

_ _d_ ¢ 1 _‘!_ Dt ;
vO=g [ G Lot % [ o Lo

=1 (sint—tcost)  (8-104)

Let us now tackle the Cauchy problem with zero initial conditions
for the nonhomogeneous equation (8-88):

Liy®l=1(®
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By virtue of the zero initial conditions, when we pass to the trans-
forms* Y (p) ==y (t), F (p) =1 (¢) we obtain

Y (p) Pn (p) = F (p)
whence
__F
Y(P) =30 (8-105)
Since the function Y (p) is a transform, its original, by Theorem 8.3,
may be found with the aid of the Mellin integral. However, in the
given case we can dispense with computing this integral. Indeed,

by (8-95) the function P—af’;)-is the transform of the function vy, _y (£)—

the solution of the Caughy problem for the homogeneous equation
(8-90) with initial conditions of a special kind:

D (0)=8ng,5y §=0,1,...,n—1

And so by the convolution theorem from (8-105) we get
t

. 1
Y (p) =yt = | ¥aa (=) f (1) dr
0
The function v, _; (f) is often called the unit point-source func-
tion for the equation (8-90) and is denoted by g (). Using this nota-
tion, rewrite the solution of the Cauchy problem with zero initial
conditions for the equation (8-88) as

t
y)=5 [et—7 r@de (8-106)
0

Formula (8-106) is called Duhamel’s integral.**
Ezxample 2. Solve the Cauchy problem

y'+y=sint, y(0)=y"(0)=0

* Note that for the existence of the transform F (p) of the right side of
equation (8-88)—of the function f (£)—the behaviour of this function as t - oo
is in many cases inessential. Indeed, we are often interested in the solution of
(8-88) only over a bounded interval of time 0 <t < T, which solution is fully
determined by specifying the function f (¢) onhlis interval and is independent
of the behaviour of the function f (¢) for ¢ > T. We can therefore vary the val-
ues of the function f (¢) any way we please for ¢t > T, provided the conditions
for the existence of the transform F (p) of the function f (¢) are fulfilled. For
example, we can put f (t) = 0 for t > T. (We stress the fact that for the de-
termination of the transform F (p), the function f (¢) must be specified over the
entire infinite interval 0 < ¢ < o0.) We then, of course, obtain different trans-
forms, but their original functions naturally coincide for ¢t < T. One should
bear in mind that this situation refers not only to the case of equation (8-88),
but also to many other physical problems in which the solution is sought in a
restricted interval of time variation. )

*[‘17(])n the use of Duhamel’s integral in problems of mathematical physics,
see .



8.3. Solving Problems by the Operational Method 257
Find the function g (¢):

£ +g=0, g(0)=0, g'(0)=1
By formula (8-95), for its transform G (p) we get

1
G(P)=—pr

Whence by the table of transforms we find G (p)=sint and thus
t

y(@)= S sin (¢ —) sin-cdt=-;— (sinz—tcost)
0

b. Heat-conduction equation

Let us consider the operational method in the solution of boundary-
value problems for the heat-conduction equation in the case of the
propagation of the boundary conditions over a semi-infinite rod.

Let it be required to find the temperature distribution in a semi-
infinite rod 0 << z << oo if from an instant ¢ = 0 onwards a speci-
fied temperature regime is maintained on the left end z = 0. The
rod is at an initial temperature of zero. Mathematically, the prob-
lem consists in determining the solution u (z, ), bounded for 0 <
<z <<oo, t =0, of the equation

U = @y, 2 >0, t >0 (8-107)
with the supplementary conditions
u(z, 0) =0, u(0, t) =g () (8-108)

where ¢ (t) is a given function of time, which we will assume satisfies
the existence conditions of the Laplace transformation. Suppose that
the desired solution u (z, t) and also its derivatives that enter into
equation (8-107) satisfy the existence conditions for the Laplace trans-
formation with respect to ¢; and the conditions of bounded order of
growth, with respect to ¢, of the function u (z, t) and its derivatives
are independent of z. We then have

u(z, t) == U (z, p)
ug (zy t) = pU (z, p) (8-109)
Ugse (Ty t) = Ugy (7, D)
‘The second of the formulas (8-109) is obtained with account taken

of the zero initial condition (8-108). The last of the formulas (8-109)
is valid due to the fact that the assumptions are sufficient for com-

17—3878
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puting the derivatives of the improper integrals dependent on a para-
meter by differentiation of the integrand functions with respect to
the parameter.

Now passing to transforms, for the function u (z, f) we get the
boundary-value problem for the transform U (z, p) in place of the
problem (8-107), (8-108):

Uxx (.’C, p)—-apTU(x, P)=O (8-110)
U0, p)=0Q(p), |Ul(z, p)|<M (8-111)

This is a boundary-value problem for an ordinary differential equa-
tion; in this problem the variable p plays the role of a parameter.
It is easy to see that the solution of the problem (8-110), (8-111)
has the form
Vp
Uz, p)=0Q(p)e ¢ (8-112)

The solution u (z, t) of the original problem may be found from its
transform (8-112) with the aid of the Mellin formula; however, in
the case of the arbitrary function Q (p), computation of the appro-
priate integral can involve considerable difficulties. It is therefore
natural to attempt to avoid direct evaluation of the Mellin integral
in determining the original of the function (8-112). Note that above
we found the original function for the function (see Example 4, p. 248)

e-"dy  (8-113)

FeR=0(5y) =5

QL/)B

2Vt Vn
2Vt
Therefore, representing U (z, p) =Q (p)- p.e{_J‘{—px}—i— and taking
into account that by (8-113)
L ‘?"_—:1_m( L) =Gz, 1) (8-114)
p ° 22Vt ’

on the basis of the theorems of the transform of a derivative and a

convolution, we get
t

Uz, p) =u(z, )= S 26z, t—1)q(v)dr
0

Substituting the explicit expression (8-114) of the function G (z, t)
and differentiating, we get an expression of the solution of the prob-
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lem* (8-107), (8-108) in the form
t

x2
= z “%ai(t-7) q_(t)_. _
u(z, t) e VE 5) e T (= dv (8-115)

¢. The boundary-value problem for a partial
differential equation

The method described in Subsection 8.3.b may be formally extend-
ed to the solution of the boundary-value problem for a partial
differential equation of a more general type.

Consider the equation

P, lu(z, )] — Ly lu(z, 1)l =f(z, t) (8-116)

where P, [u] is a linear differential operator with constant coeffi-
cients of the type '

o"u oty du
Polul=aom+a5mg+ -t a5

L, (u) is a linear differential operator of the second order** of the
type

Lo (] =by (2) T4 4 by (2) 2 +-by (2) u (2, 1)

the coefficients b; (z) of which are functions of only one independent
variable z; f (z, t) is a given function of the variables z and ¢, which
is sufficiently smooth in the domain of solution of the problem. We
will seek the solutionu (z, t) of the equation (8-116) in the domain***
t >0, a<<xz<b, which solution satisfies the initial conditions

n—1
u(x, 0)=(po($), %(x’ 0)=(p1 (.‘E), . -i%f-':—(‘ri O)=(Pn.1 (I)

and the boundary conditions

a1%l£-‘(a, )+ Py (a, t) =1 (2), ag%(b, £) +Baut (b, £) =1, (2)

* Observe that this expression is obtained on the assumption that a solution
exists; thus, the foregoing reasoning amounts to a uniqueness proof of the solu-
tion of the given problem in the class of functions under consideration. If the
existence of a solution of the problem is not known beforehand, then it is neces-
sary to demonstrate that the formally obtained expression (8-115) is indeed a
solution of the problem at hand.

** The method at hand does not depend on the order of the differential ope-
rator L (like P); however, because of its special importance and for vividness
of exposition we confine ourselves to the case of the second-order operator L.

*&* This method can also be applied when a= — oo or b = oo or, simul-
taneously, a = — o0, b = + 0.

17+
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We assume that the initial and boundary conditions of the problem
and also the function f (z, t) are such that there exist Laplace trans-
forms, with respect to ¢, of the function u (z, ) and of all its deriva-
tives that enter into the equation (8-116):

u(z, )y=U (z, p)= S ePtu (z, t) dt
0

- (8-117)
g—:_—_' S e""% (=, t)dt
0

and so forth;and let us suppose that the conditions involving bound-
ed order of growth, with respect to ¢, of the function u (z, £) and
its derivatives are independent of z. Then, since the integral (8-117)
is uniformly convergent in the parameter x, we get

a . U 92 . 90U
= (Z, )= (2, P), 57 (2, 8) = (2, P)
and

R o -

o (2, ) =p*U (z, p)— p*'oy (2) — p* %1 (2) — . .. — Qaa (2)
Besides, we assume that there exist transforms, with respect to ¢, of
the functions f (z, t), ¥, (£) and ¥, (¢):

f@ )y=F(z, p) Y O)=Y1(p), ¥ () =¥, (p)

Then, taking transforms in equation (8-116), we get for the function
U (z, p) an ordinary differential equation with respect to the inde-
pendent variable z:

—Pn (p) U (p) + L, U (z, p)] = —F (z, p) — Fo (z, p) (8-118)

where
n-1

Fo(z, p)= ugo Py (p) @n-r1 (2)

and the polynomials P, (p) are defined by formula (8-93).
Equation (8-118) has to be solved with the boundary conditions

a,U, (a1 p) + ﬁlU (ar p) = ‘Fl (P) (8-119)
ayU, (b, p) + BU (b, p) = ¥, (p)

The boundary-value problem (8-118), (8-119), in which p plays the
role of a parameter, is solved by the usual methods of solving boun-
dary-value problems for ordinary differential equations. The inverse
transformation from transform U (z, p) to the solution of the origi-
nal problem may be performed with the aid of the inversion formu-
la (8-67).



APPENDIX 1

SADDLE-POINT METHOD

The saddle-point method is widely used for constructing asymp-
totic expansions* of certain contour** integrals of functions of a
complex variable. We consider integrals of the type

F)={ 9(s) e dz (I-1)
Cc

where @ (z) and f (z) are functions of the complex variable z analytic
in some domain & containing the curve C, which may be unbound-
ed; A is a large positive number. We assume that integral (I-1)
exists and our aim will be to obtain an asymptotic expansion of the
function F (A)in inverse powers of the parameter A. Integrals of type
(I-1) are frequently encountered in studies of the integral represen-
tations of a number of special functions and also in the solution
of many problems of mathematical physics and other divisions of
mathematics.

I.1. Introductory Remarks

Let us begin with suggestive remarks. We consider the integral
defining Euler’'s gamma function

T(p+1)= S aPe* dz (1-2)
0

and we shall try to find an approximate expression for it for large
positive values of p. Note that by putting zP = e?n* we reduce
integral (I-2) to integral (I-1). The integrand in (I-2) tends to zero
as £ —0 and z — co. Therefore the magnitude of the integral is
mainly determined by the value of the integrand function-in the

* Recall that an asymptotic expansion of .the function f (z) Iivn the neigh-
bourhood of a point z, is a representation of the form f (z)= aypy (z) +

h=
+ o (9x(z)), where a, are constant coefficients and the functions ¢ (z) as
z— z, satisfy the condition @, (2) = o (g (2)).
** Following established practice, the contour of integration need not here
be understood only as a closed curve.



262 Appendiz I. Saddle-Point Method

neighbourhood of its maximum. Let us transform the integrand to
zPe~* = PIN*-% = of® (I-3)

The function f (z) attains a maximum value at z = p, and

FB=plnp—p, 1@ hop=0, @ mp= =  (4)

Expanding the function f (z) in a Taylor series in the §-neighbour-
hood of the point = p and taking only the first terms of the expan-
sion, we get

p+0 1 . P8 (x-p)2
T'(p+1) ~ S NPT gy — preP S e 2 dz
p-90 p-6

(x-p)?

~ pPeP § e dz (I-5)

The approximate equalities occur because the integrand is small for
|z — p | >0 and rapidly tends to zero. In (I-5) make a change of

the integration variable, putting ]/;—p (x — p) = y. Then

(-]

T(p+1) =V 2ppPe® | e-vdy=Vmp(£)"  (16)

Formula (I-6) yields an approximate expression of integral (I-2) for
large values of p. As will be shown later on, it is the first term of
the asymptotic expansion of the integral (I-2). It is often called
Stirling’s formula.

In deriving this formula we did not evaluate the accuracy of the
approximations and so our considerations are only illustrative.
Later on, we will estimate the accuracy of formula (I-6). For the
present we offer some more remarks aimed at facilitating a grasp of
the basic idea of the saddle-point method. Formula (I-6) expresses
an approximate value of integral (I-2) in terms of the value of the
integrand at the point of its maximum (pPe-P) and a certain addi-
tional factor corresponding to the length of the interval of integra-
tion on which the value of the integrand is sufficiently close to
maximum.

Let us examine integral (I-1), in which the integrand is analytic
in the domain & of the complex z-plane. This integral can also be
approximately evaluated in terms of the maximum value of the
modulus of the integrand function with account taken of the speed



I.1. Introductory Remarks 263

of its decrease on the contour of integration. If the path of integration
connecting the points 2z, and z, is such that on a small section of it
the absolute value of the integrand reaches its maximum and then
rapidly decreases, it is natural to suppose that the quantity thus
found yields a good approximation. Since the function f (z) is ana-
lytic in the domain @&, then by virtue of the Cauchy theorem the
value of integral (I-1) is determined solely by specification of the
initial point z, and the terminal point z, of the path of integration
and not by the type of curve C. It thenfollows that for a given integ-
ral (I-1) the possibility of its approximate evaluation with the aid
of the methods under study is associated with the possibility of
choosing a contour of integration that will satisfy the requirements
indicated above. We are interested in the values of integral (I-1)
for large positive values of the parameter A in the exponent of the
exponential factor. It is therefore natural to expect that the major
contribution to the value of the integral will come from those por-
tions of the path of integration on which the function u (z, y)—
the real part of the function f (z2) = u (z, y) + iv (z, y)—attains the
greatest values. We must also bear in mind here that the function
u (z, y), which is harmonic in the domain &, cannot attain an abso-
lute maximum at interior points of the domain; i.e. inside the do-
main & there are no points at which the function u (z, y) can in-
crease or decreasein all directions.Thesurfaceof the function u (z, y)
can only have saddle points.

Let the point z, = z, + iy, be the sole saddle point of the surface
u (z, y) in the domain &. Let us consider lines of constant value
u (z, y) = u (z,, yo) = constant of the function u (z, y) which pass
through this point. By virtue of the maximum principle for harmon-
ic functions (see [17]), these lines cannot form closed curves (we do
not consider the trivial case f = constant in &); that is, they either
end at the boundary of the domain & or recede to infinity in the case
of an unbounded domain. The curves u (z, y) = u (z,, y,) partition
the domain & into sectors within which the values of the function
u (z, y) are, respectively, either less or greater than u (z,, y,). We
call the former sectors negative, the latter, positive.

If the end points z, and 2, of the integration curve lie in one sector
and the function u (z, y) at these points takes on different values,
then it is obviously possible to deform the contour so that the func-
tion u (z, y) will vary monotonically on it. Here, the dominant
contribution to the value of the integral is made by the neighbour-
hood of that end point at which the value of the function u (z, y) is
greatest. The same occurs when z, lies in] the positive sector and 2z,
lies in the negative sector or vice versa. The saddle-point method
is employed when the points z, and z, lie in different negative sectors,
which fact enables one to choose a contour of integration passing
through the saddle point z,, y, on which the function u (z, y) is
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maximum at the point z,, y, and rapidly decreases in the direction
of the end points. In this case, clearly, the dominant contribution to
the value of integral (I-1) will be made by a small section in the
neighbourhood of the saddle point, which section may be chosen the
smaller the faster the values of the function u (z, y) decrease along
the integration curve. The saddle-point method is also sometimes
called the method of steepest descent. This “mountaineering” terminol-
ogy has to do, most likely, with the topography of the surface of
the function u (z, y) in the neighbourhood of the saddle point. Let us
now estimate the accuracy of the method by means of which the
asymptotic formula (I-6) was obtained. We will also establish a num-
ber of propositions underlying the saddle-point method.

1.2. Laplace’s Method

We prove a number of auxiliary propositions underlying the so-
called Laplace method of asymptotic representation of integrals of
functions of a real variable.

Lemma 1. Forp >0 and as A — oo we have the asymptotic for-
mula*

4 A
S 271 dz =T (p) +O (e'T) (I-7)

0
Proof. We evaluate, for p>>1, the integral **

oo oo A
S e *zPldr=e-4 S eV(y+A)Pldy<<e4 { 5 (24)*teVdy
A 0 0

oo

+ [ enrtevay} =e-a (2t t—e-a 20 (0} (1)
0

Whence (I-7) follows for AP <<e4/2,

* The symbol O (#2), or more generally, O (t*) in an expansion of the form
n—1i

o(t) = 2 cyt® + O (¢") implies that for |¢| < & we have the uniform evalua-
R=0

n—1
tion I o(t) — 2 agth| < C I t |, where C is a constant.
r=0

oo oo
** For 0<p<1 S e~xzp-1dzr < S exdz=e"4,
A A
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In what follows a prominent role will be played by integrals
of the form

O\ = j Q) e-Mdt, 0<a<<oo

The following lemma is valid.
Lemma 2. Let the function ¢ (t) for |t | << 8 be representable in
the form
9 (t) =co+crt+0 () (1-9)
and for some hy>>0 let the integral
a
. S | @ () |e=Mtdt < M (1-10)

-a

converge. Then for A>> A, the asymptotic formula

O (M) = S Q (t) e~ dt=col/ ;i—-}-oorm) (I-11)

holds true.

Proof. The principal term of formula (I-11) is readily obtainable
from the following suggestive reasoning. If the function ¢ (¢) is bo-
unded for |Z | >a, then it is natural to expect that the value of
integral (I-11) will change but slightly if the limits of integration are
changed: —a to —oo and a to oo. Then the first term in the expan-
sion (I-9) yields the principal term of formula (I-11), the integral
of the second term is zero due to the oddness of the integrand, and
it remains to evaluate the remainder term. It is this evaluation and
the possibility of the indicated change of limits of integration that
comprise the basic content of the lemma. We now begin a rigorous
proof.

Split up the integral @ (A) into three terms:

-8 ] a
oM =[omermat|omermat|omera 12
-a -8 [)

where 6§ >0 is some fixed number. Evaluate the last term:

a a
, S (¢ e-Mdt Ige-(*—lo)é’ 3 | @ (2) | e=Pot* dt
o 3

KMerd2.e=M2 =0 (e-M%)  (I13)
Here we took advantage of the condition (I-10) and the obvious ine-
quality
M2 =A0% + A (12— 6%) > AO% + Ag (12 — %) = (A — Ag) 6% 4 Apt?
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that occurs for A >A,, ¢ > 6. Analogously, we evaluate the first
term in (I-12). It then follows that for sufficiently large A the prin-
cipal contribution to the value of the integral @ (A) is made by the
second term, whereas the extreme terms in (I-12) tend to zero expo-
nentially as A — oo.
Let us examine the principal term in (I-12). Putting in place of

¢ (¢) its expansion (I-9), we get

]
O, ()= | @) errar

-8

8

=Cy S e—M? dt—|—01
-0

e-Midt 4 | O(2)e-M2dt  (I-14)

é,L,;o.
]
OL’—‘Q

Due to the oddness of the integrand, the second integral in (I-14)
is zero. To evaluate the first integral, make a change of variable,
putting As2=1. We get

8 8 L M
~A2 Jf — M2 e 2% 15
_Soe dt 2§e dt wgr =% dr (I-15)

But by virtue of Lemma 1, as A—oco, we have the asymptotic
formula

M1 " M _ _e
S'r 2e-fdt=l‘(7)+0(e 2 )=V:rt+0(e 2 ) (1-16)
0

A2
Since for any fixed 6 the function e 2 tends to zero faster than
A~ %2 as A — oo, we can write

[\

o | M dt=c, )/ Z40 () (I1-17)

-8

It remains to evaluate the last term in (I-14):
8 8 8
S O (t?) e-M dt < cS t2e~M3 dt =2C S fe-Mrdt  (I-18)
-8 -0 0

In integral (I-18) again make the change of variable At?= 7. Then
we have
262

2\ e-M2 g —= ,‘:/2 S ti/2¢-%dr (I-19)
0

© ey O
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Integral (I-19) also satisfies the conditions of Lemma 1. Therefore we
finally obtain

3
Fowemacc 2L o) =o(F) @

Formulas (I-13), (I-17) and (I-20), after their substitution into (I-12),
prove the lemma.

A number of remarks are in order regarding this lemma.

Note 1. Repeating the earlier arguments, it is possible to prove
that if the function ¢ (¢) for | ¢| < § is expandable iu the Taylor
series

n—-1
k
ot)=2 et +0 (), a=-230 (1-21)
k=0
then we have the asymptotic expansion
n-1
a [_2_] r (m+.i.) _n+t
O\ = S(p(t)e—mdt= z com ———— +0 (A. 2 ) (1-22)
-a m=0 lm+-2-

where the symbol [f;—i] denotes the greatest integer less than
n—1

2

In particular, for n = 1, when the expansion of the function
@ (¢) is of the form ¢ (f) = ¢, + O (t), the remainder term in for-
mula (I-22) is of the order A, since in the evaluation of the remain-
der the main role is played by the integral

or equal to

[\ s s
S O(t) e-M? dl<c S ltle"'" dt=2C S te—M3 g
') ‘s ’

Note 2. The lemma holds true also for the case when the integra-
tion is performed over the interval [a,, a,], where a, << 0, a, >0
and —a, 5= a,. The next remark is so essential for what follows that
we state it in the form of a separate lemma.

Lemma 3. On the interval |t |<8, let the functions @ (t) and p (t)
be representable in the form

@ (1) =co + et + 0 () (1-9)
B (t) = csf® + O (9 (1-23)
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and as A — oo let the function 8 (A) < 8, satisfy the conditions*

A% (M) & o, A8%(A) -0 (I-24)
Then as A — oo we have the asymptotic formula
8(0) —
I0)= | o@et-rrmd=c, )/ 24007  (125)
=8)

Proof. 1t is easy to see that if the conditions (I-9), (I-23) and (I-24)
are fulfilled on the interval | ¢ | <C 6 (A), the following equality
holds:

@ (2) MO =co+ 1t +cocaht® -0 (1) 40 (M%) + O (M*)  (1-26)

Then, repeating the argument given in the proof of Lemma 2, we
find that upon substitution of the expansion (I-26) into formula (I-25)
the first term, by condition (I-24), yields the principal term of the
right side of (I-25); the second and third terms of the resulting expres-
sion vanish due to the oddness of the integrands; the last three terms
are infinitesimals of the same order O (A-%/2). The lemma is proved.

These lemmas enable us to prove the following theorem which
underlies the Laplace method of the asymptotic expansion of inte-
grals of functions of a real variable.

T heorem I.1. Let a functionf () giver on the interval [a, b] attair
its absolute mazximum at some interior point t,, " (¢,) <O, and let
there be a 8, >0 such that for |t — t, | << §, the following represen-
tation holds:

1) =1 (t0) + L5 t— )2+ (1) (1-27)

Then, if the functions @ (t) and p (t) for |t — t, | < 8, satisfy the
conditions of Lemma 3, i.e.

Q@) =co+ ¢ (t—2t) + 01— ¢ (I-9)
B () = c5 (8 — o) + O [(t — £,)1] (1-23)
the asymptotic formula
¥ ()= S o) M0dt=eiteo () —F o) +0 (")
(1-28)
holds if the following supplementary conditions are fulfilled:

* As is readily seen, the function § (A) = A-?/® for example satisfies the
conditions (I-24).
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(a) for a given 8, the following relations are fulfilled simultaneously:

for [t—ta|<8 |p(0)|<—LL (2 —1o)2

for |t—to| >8, 1 lte)—1(t)=h>0 (1-29)
(b) for some Ay=>0 the integral
b
{lo@ e a<m (1-30)

a
converges.

Proof. Let us split the integral in (I-28) into a sum of the
following terms:

b to—0o to—8(A)
¥ (1) =S @ (£) MO dt — S @ (£) MO dt + 3 o () M0 dt
P a to—8o
to+-8(A) to+-8o b
+ S @ () MO dt 4 S @ () MO dt + S o (f) MO dr  (1-31)
to—-6(A) to+38(0) to+8o

where the function & (A) satisfies the conditions (I-24) of Lemma 3.
The extreme integrals in (I-31) are evaluated as in Lemma 2. Indeed,
using the obvious inequality
ALf (20) — 1 (&)1 = (A—2o) [f (o) — f (8)1 + Do [£(20) — f (2)]
=h (h—Ao) + Aof (to) —Mof () (I-32)

which holds for a<<t<C¢,—6, and A > A,, we obtain
to—0o

J o @emoa

a

to -0
<eMito) S | @ (2) | e-Mrto)- 101 Gt

a

to=0o
< elh=A0)(to)~h(h~Ao) S | @ (£) | ehof® dt

< MeMtorthadh=fto)lg-rh — gt (e=M)  (I-33)

In the same way we evaluate the integral over the interval [¢, 4+
+ 8,, bl. To evaluate the second integral, take advantage of the
conditions (I-27), (I-29), by virtue of which, for ¢, — 8§, <t <
< t, — 6 (A), we have the inequality

S —f ) >—L8 gp> Ll ) (134)
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Therefore, repeating the computations carried out in deriving for-
mula (I-33), we obtain

to=0(M)

@ (2) €M) dt | = M@0 (e=CM2A)), C >0 (I-35)

to—8o

But by condition (I-24), the quantity on the right side of (I-35) is
also of an exponential order of smallness.* The fourth integral is
evaluated in similar fashion.
We now examine the principal integral of the formula (I-31):
to+8(0)
Y= | o@enma (1-36)
t9—8(2)

By virtue of condition (I-27), this integral may be rewritten as

to+6(A) A 1"(to) (£ to)241(t)
W, (A) = eMto) S p(t)e [ g ]dt (1-37)
to—08(A)

Reduce (I-37) to the form (I-25) by the change of variable — () (t")

X (t — t,)? = 12. It is clearly seen that the resulting integral satls—
fies all the conditions of Lemma 3. And so we finally get

¥, (A) = exf(to){]/_ pyo (t) @ (£) +0 ( k“"’z)} (1-38)

Since ¥, (A) differs from the integral being evaluated by an expo-
nentially small term, formula (I-38) proves the theorem.

Note 1. The theorem holds true for the case when one or both of
the limits of integration are infinite, since the evaluation of in-
tegral (I-33) holds true for a = —oo as well.

Note 2. We obtained only the first term in the asymptotic expan-
sion of integral (I-28). It is possible, in similar fashion, to obtain an
expression for the succeeding terms of the asymptotic expansion,
but we will not dwell on this point.

Note 3. The proof given here may be extended also to the case
when the maximum value of the function f (£) is attained at one of
the boundary points of the interval [a, b]. Then a supplementary

factor % appears in formula (I-28).

Note 4. When the function f (t) inside the interval [a, b] has seve-
ral maxima of equal magnitude, the asymptoticexpansion of integ-
ral (I-28) in terms of inverse powers of the large parameter A may

* For § (A\) = A2/ we get O (e'c"l/s).
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be obtained by evaluating integrals of the type (I-36) about the
8-neighbourhood of each of the maximum points and summing the
results.
We give an example of the application of this theorem.
Ezample 1. Obtain the asymptotic expansion of Euler’'s gamma
function

T(p+1)= S 2Pe* dz (1-2)
0

Represent the integrand in the form zPe~* = e?In*-* and make
the change of variable x = pt. Then integral (I-2) is transformed to

T (p4-1) =pP*t S ep(in t-1) gt (1-39)
0
This is an integral of type (I-28) with ¢ (¢)) =1 and f(¢) =1nt — ¢.
The function f () attains its maximum for £, = 1, and
fF) === =0, f () lt=g = —1 (I-40)

Therefore, by formula (I-28) we get
Lo+ =7 {)/ Zro(p-32)} p
-—V2np( {1+0( )} (1-41)

We have thus obtained an asymptotic evaluatlon of the accuracy of
formula (I-6) that was earlier obtained from suggestive reasoning.
As has been pointed out, these methods permit obtaining the subse-
quent terms of the asymptotic expansion as well. We give without
derivation the first few terms of Stirling’s formula:

(p+1)—V2np {1+12p+288p2—5118:2?)p3+“'}
(1-42)

1.3. The Saddle-Point Method

We now examine the saddle-point method proper for obtaining
asymptotic expansions of integrals of type (I-1):

F(d)= S @ (2) M@ dz
c
By the suggestive arguments of Section 1.1, it is natural to suppose

that if the contour C is such that on any small section of it the values
of the real part u (z, y) of the function f (z) = u (z, y) + iv (z, y) attain
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a maximum and then decay rapidly, while the imaginary part
v (z, y) remains constant (in order to guarantee the absence of unde-
sirable rapid oscillations of the integrand function), then the major
contribution to the magnitude of integral (I-1) is made by integra-
tion over the given section of the contour C. It is therefore advisable
in an approximate calculation of integral (I-1) to deform the con-
tour C so that the integrand possesses the indicated properties. In
this process, as was established by our earlier reasoning, the neces-
sary deformation of the contour C is determined primarily by the
topography of the level surface of the function u (z, y). In particular,
the contour of integration has to pass through the saddle point of
the surface of the function u (z, y) in the direction of fastest varia-
tion of this function.

Let us examine in more detail the topography of the surface of the
harmonic function u (z, y) in the neighbourhood of the saddle point
M, (zo, Yo)- We determine the directions of fastest variation of this
function passing through the point M ,. These directions are known
to be defined by the direction of the vector grad u. Let grad u 5= 0.
Since for the analytic function Vu.Vv= 0 (see page 34), the direction
of the vector grad u defines the curve v (z, y) = constant. Thus, if on
the curve v (z, y) = constant, grad u 5= 0, then the function u (z, y)
varies along this curve with greatest rapidity. However, at the sad-
dle point itself M, (z,, y,) of the surface of the function u (z, y)
the vector grad u (M,) = 0. Let us examine in more detail the beha-
viour of the functions u (z, y) and v (z, y) in the neighbourhood of
this point. Obviously, at the point M, the derivatives of the func-
tions u (z, y) and v (z, y) are zero with respect to the direction
of the tangent to the curve v (z, y) = constant passing through A ,:

a dv
= (@0, y0) =0, 27 (Z0, yo) =0 (1-43)

Since the derivative of an analytic function is independent of di-
rection, it follows that

7 (z) = 0 (1-44)

Consequently, the expansion of the function f (z) in the neighbour-
hood of the point z, is of the form

f(@) =1(2) + (z—2)°{feo +e1(z—2) + ...} (I-45)

where p > 2 and ¢, 5~ 0. Puttingc,=rpe®,, n = 0,1, ..., z — z,=
= pei?, we get

f (2) — f (z0) = P {roet ®®+0) 4 pryeilp+io+0l - [} (I-46)

With the aid of the introduced notationlet us write down the equa-
tions of the curves u (z, y) = constant and v (z, y) = constant pas-
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sing through the point z,. We have
U (py ¢) = 7o cos (pp + o) + prycos [(p + 1) ¢ + 8))] + ..

. =0 (I-47)
V (o, @) = rosin (pg + 8y) + pry sin [(p + 1) @ + 6,1 + ..

=0 (I-48)
Here,

u(z, y) — u (x4 Yo) = o?U (p, 9)
v(z, y) —v(x Yo) = 0"V (p, 9)

Since, when ¢ varies from 0 to 2r the function cos (pp -+ 0,) changes
sign 2p times, it follows from formula (I-47) that the neighbourhood
of the point z, is broken up into 2p curvilinear sectors, inside which
the function U (p, ¢) does not change sign. The boundaries of these
sectors are defined from the solution of equation (I-47). The sectors
in which U (p, ¢) << 0 will as before be called negative and the sec-
tors in which U (p, ¢) >0, positive. The directions of steepest de-
scent of the function u (z, y) obviously lie in the negative sectors and
are determined by those values of the angle @ for which, in the neigh-
bourhood of the point (z,, y,), V (0, ¢) = 0 and U (p, ¢) <O, i.e.
cos (pp + 0,) = —1. These values are equal to

= — °° o | 2mt1 2”‘“ n, m=0,1,...,p—1 (1-49)
Note that the d1rect10ns of steepest descent coincide with the bisectors
of the negative sectors.

In future we will only consider the case p = 2 when f” (zy) 5= 0.
Here, c, =5 f (z,) and 0,= arg f” (z,). In this case, there are only

two negatlve sectors inside which passes the line of steepest descent
of the function u (z, y). The direction of the tangent to this line at

the point z, is, according to formula (I-49), determined by the angles

(po=;e.# and (pl=.__e°_;_:§’_t_=(po+n (I_SO)

Evidently, the choice of angle ¢, or @, is determined by specification
of the direction of integration along the line of steepest descent.

Now let us take up the proof of the basic theorem of the saddle-
point method.

Theorem I.2. Let the functions ¢ (2) and f (2) = u (z, y) +
+ iv (z, y) be analytic in the domain & and satisfy the following con-
ditions:

(1) The surface of the functwn u (z, y) has inside @ a unique saddle
point z, = z, + iyo; 17 (30) 7=

(2) There is a 6 >0 such that on the line L of constant value of the
function v (z, y) = v (x4, Yo) Passing through the point z,, in both

18—3878
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negative sectors of this point the function u (z, y) outside the 8-neighbour-
hood of z, satisfies the condition

U (Zg) Yo) —u(x, y) =h >0 (I-51)
(3) For some value Ay, >0 the following line integral converges:
{10 () |ers v ds< M (1-52)

c

where the curve C lies entirely in the domain &, and its initial point
(2,) and terminal point (2,) lie in different negative sectors of the point
2o S0 that they may be joined with the curve L by curves y, and vy, of
finite length, on which the function u (z, y) satisfies the condition (1-51).
Then for all A = A, the following asymptotic formula holds:

— A(2) dg — eM(zo0) [ io,, -3/2
F(3) i@(z)e_ dz = eM(zo {V T e @ (20) €¥m+0 (A )}
(1-53)

where ¢ = ";6" +mn (m=0, 1) and 6,-- arg f" (z,). The choice
of value of ¢,, determines the sign in formula (I-53) and,
naturally, depends on the direction of integration along the
contour C.

Proof. Integral (I-53) does not change value if the integration
curve C is deformed into the curve I' = L + y, + y,. By condition
(I-51), for integrals along the curves y, and y, we have the evalu-
ation

| @ (2) 0 dz = ersa0 (e-r0) (I-54)
V1.2
Consider the integral
Fy(A) == S @ (z) M@ dz (1-55)
L

On the curve L we introduce the natural parameter s and consider
that the value s = 0 corresponds to the point z,. Write the equation
of the curve L in the form z = z (s). Making the change of variable
z = z (s) in (I-55), we obtain

b
. dz
F, (A) = eiho(xo, %) S D (5) MU — ds (I-56)
where

D(s)=9lz(s)], U(s) =ulz(s), y(s)
l<a<<oo, 0<b<< oo
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The integral (I-956) satisfies all the conditions of Theorem 1; the

dﬂU
<

function U (s) attains its maximum at the point s=0 and —o

< 0.
Then, according to (I-28)

Fl(),)_ehltzo\{l/ G @O F ©+007 ) 157)

and it remains to express the quantities entering into (I-57) in terms
of the values of the functions ¢ (z) and f (z) at the point z,. Clearly,

® (0)= ¢ (z,). Since £Y| =0, it follows that

ds? | L
au d? "
o [ =T~ @) (S) +f @ (58)
Whence, by (I-44), we obtain
dzUu " dz 2
T = @ [(F),] (1-59)

Since in the neighbourhood of the point z, we have the relation

z — 2z, = sei® to within higher-order infinitesimals, it follows that
dz

ds | s=0
gent to the curve L at the point z,. However, by the very mode of
construction of the curve L, the tangent to this curve at the point z,
coincides with the direction of the fastest variation of the function
u (z, y). Then, from (I-50), for the angle @,, we get the formula

= ¢i? and it remains to determine the direction of the tan-

Om=252 fma, m=0, 1 (1-60)

where 6, =arg f” (z,) and the value of m is determined by the
direction of integration. Note that _0<0 and I%‘ _0:1.
Then formula (I-59) may be wutten as

G| = =11 )] (1-61)

We then finally get )

Fay=eveo { )/ P g e 00} (162)

where the value of the angle ¢, is given by formula (I-60). The sign
of the principal term on the right side of (I-62) is determined by the
choice of value of m and is dependent on the direction of integration
along the curve C.

Some remarks are in order concerning this theorem.
18*
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Note 1. From this theorem it follows that if both end points z,
and z, of the integration curve C lie in the same negative sector of
the1 saddle point z,, then the evaluation (I-54) is valid for integral
(I-1).

Note 2. In applications, one is particularly often involved with
type (I-1) integrals in an unbounded domain with integration curve C
receding to infinity. From the foregoing arguments it is clear that
in this case it is necessary for the convergence of integral (I-1) that
the integration curve recede to infinity in the negative sectors of the
saddle point z,. Here, Theorem 2
and formula (I-53) remain valid.

Note 3. Theorem 2 was proved on
the assumption that the point z, is
a unique saddle point of the surface
of the function u (z, y) in the do-

main & and f" (z,) = 0. If these
,.__¢L._ assumptions are not fulfilled, similar
B - T reasoning may be carried out leading
z to asymptotic expansions of integral
(I-1) similar to formula (I-53).How-
ever, when there are several saddle
points in the domain®, the choice of
the integration contour requires a
special investigation. If the contour
Fig. 11 of integration passes through seve-
ral saddle points, the asymptotic
expansion of integral (I-1) may contain several terms, having the
same order, like the first term in (I-53), and this is capable of
altering substantially the final result.

We consider a number of examples involving the results obtained.

Example 2. An asymptotic formula for the Hankel function.

A Hankel function (see [17]) of the first kind H'M (z) may be repre-
sented with the aid of the integral

HY (.’L‘) — _:T S eix8in z—ivz Jz ([-63)
[+

S

z=0 2=

where the contour of integration C in the complex z-plane goes from
the half-strip — 5 << Re z < %+ Im 2 >0 to the half-strip 3 <

< Rez << %n, Im z <<0 through the point z,= 12[— (Fig. I.1). This
is a saddle point of the function f (z) = i sin z in the strip 0 <<
< Re z<< n since f’ (%)= o, 1" (-’25) = —is 0. The above-indicat-

ed half-strips are negative sectors of this saddle point, which, for
one thing, ensures convergence of the given improper integral. Let
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us find the asymptotic value of this integral for large positive values
of > | v |. The given integral, where f (z) = i sin z, @ (z) = ez,
obviously satisfies the conditions of Theorem 2. Therefore, the sad-
dle-point method can be used to evaluate it. Since f’ (z) = i cos z,

there is only one saddle point z, = %— in the strip — %< Rez <

<3n Here, f() =i () =0, If ()] =1, 6 =3

Taking into account the direction of integration, we get, from (I-50),
Qo = —% . Note that this direction coincides with the bisector of

the negative sector of the saddle point z, = —-275 Finally, on the basis
of formula (I-53) we get

HY (I)=_:Tei.x {I/i__ie—ivrn—i%_}_o(x_s/z)}
=/ 2 ({5 FBro(1)) s

Formula (I-64) finds extensive application in the solution of various
problems that involve asymptotic representation of cylindrical
functions
Example 3. An asymptotic formula for Legendre polynomials.*
We will proceed from the integral representation (see [9]) of the
Legendre polynomials

: 1
0 et (n+T) )

1
ny2 —Se V cosp—cosB de,

P, (cos0) = 0<b<an (I-65)

It is readily seen that the integrand function has an integrable sin-
gularity for ¢ = +0. Our aim is to obtain an asymptotic expression
for the function P, (cos 0) for large values of the index n. We con-
sider the analytic continuation of the integrand into the complex
plane z = z + iy:

i(n+—;—)z

e

_e—————— I'66

w(z) YV cosz—cos O (I-66)
The function w is analytic in the upper half-plane Im z > 0. There-
fore, the integral of this function along any closed contour lying
entirely in the upper half-plane is zero. We choose the closed con-
tour** I' consisting of the segment (y=0, —0 < x << 0) of the real

[‘ ]For a definition of Legendre polynomials and their basic properties,
see [17].

** Here we traverse the singularities z =+ 0 along arcs of circles of infi-
nitely small radius; the radius is then allowed to tend to zero.
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axis, the vertical segments (z = —0, 0Oy << H), (x=0, 0
< y << H) parallel to the imaginary axis, and a closing horizontal
¥
-6+iH 8+iH
-8 = Tz=0 8 e

Fig. 1.2

segment (y = H, —0 << z << 0) (Fig. 1.2). It is easy to see that on
the last segment the modulus

e— (124—%) H

| V cos (z-F iH) —cos 8|

|w|=

(1-67)

tends to zero exponentially as H — oo. For this reason, passing
to the limit as H — oo, we obtain

0 1'.(114—;-)@
e

I=—SG—W_O;;-_TP—____;0—SFd¢=II+12 (I‘68)
where
» _i(n-}-%)e —(n-l—)v .
I =ie S V cos (0—iy)—cos 0 dy (-69)
and
oo —(n+—i-)y
o i(n+%-)0 e 2
I, = —ie § e (1-70)

The saddle-point method is applicable for an approximate compu-
tation of integrals I, and I, for large values of n. Consider integral
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I, (I, is computed in similar fashio}l). Put y = t*> and denote n +
-+ —;—: A. Then from (I-69) we have

© —At2
= —ieiho], - e td I-71
¥ (g0l =2 ~§ V cos (06— it?) —cos © ( )
Clearly, integral (I-71) satisfies all the conditions of Theorem 1,
and f (t) = —t® and the point t, = 0, at which the function f (f)
attains its maximum f (0) = 0, coincides with the end point of the
interval of integration. Then f” (0) = —2 and
i
@ (to) =lim ¢ =L (1-72)
t-0 V cos(@—it2)—cosO V sin®

Therefore, by formula (I-28), into which we have to introduce a

supplementary factor-%, since the point ¢, coincides with the end

point of the interval of integration, we get

T 1 L .
‘F().).—_-]/%.me T oM (I-73)
whence
i(n+rL — Y ;L
Ilrie—i("*z)e ‘/——f———e 4 4+0(n-32) (I-74)
(n -} -Z—)Sine
Similarly

. 1 _
Izz_ie‘(’”r?)" ‘/+e17+0(n‘3/2) (I-75)
(n-{—-?)sin()

1
" Vot

s - .
differs from V % by a quantity of the order of O (r-%2), we

Then, after simplifications, taking into account that

finally get the asymptotic formula for Legendre polynomials which
holds for » >1 and 0 <O << m:

P, (c0s0) =/ 2 {cos [ (n+ %) 6—=]+0(} (1-76)



APPENDIX II

THE WIENER-HOPF METHOD

The Wiener-Hopf method finds extensive application when solv-
ing certain integral equations and various boundary-value prob-
lems of mathematical physics by means of the integral transfor-
mations of Laplace, Fourier, and others. This method was first em-
ployed, in a joint study by N. Wiener and E. Hopf (1931), in the
solution of integral equations with a kernel depending on the differ-
ence of arguments in the case of a semi-infinite interval:

u(x)=»A S v(z—s)u(s)ds+f (x)
0

Subsequently, equations of this kind were considered by
V. A. Fock in [5] who made a substantial contribution to the develop-
ment of general methods of their solution.

The general method of solving functional equations which became
known as the Wiener-Hopf method or the factorization method, has
been successfully employed in the solution of many problems of
diffraction and the theory of elasticity, of boundary-value problems
involving the heat-conduction equation, of integral equations in the
theory of radiative transport (known as Milne's problem), and many
other problems of mathematical physics.* Our aim is not to give
a rigorous mathematical substantiation of the Wiener-Hopf method,
but only to illustrate the basic idea in a series of examples involving
the solution of a number of important problems.

I1.1. Introductory Remarks

Let us begin with suggestive arguments illustrating the applica-
tion of methods of integral transformations in the solution of integ-
ral equations. Let us consider an integral equation of the type

00

u(@)=A | v@—s)u(s)ds+ (2 (11-1)

- 00

* Numerous examples involving the Wiener-Hopf technique are given in
[12] which contains an extensive bibliography.
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with kernel v (z — s) depending on the difference of the arguments.
We will not investigate the solvability conditions of this equation
or substantiate the methods of its solution, but only point out that
for real values of A, upon fulfilment of the conditions

(11 @Ppda<a, A [ pwia<t (11-2)

where 4 is an arbitrary fixed number, equation (II-1) has a unique
solution* u (z) that is quadratically integrable in the infinite interval
[ lu@pdz<oo (11-3)

— 00

We take it that there exist Fourier transforms of all functions
involved in equation (II-1):

U(k)= V’E fu(x) e** dz (I1-4)
V (k) = V—n §v(t) et dt (II-5)
F (k) =-];T_n f f (z) e*=dz (11-6)

1 e and integrating over the

Then, multiplying (II-1) by Ve
%14

infinite -interval, we obtain

oo

U(k)=F (k) +——= V— S e** dz Eov(z—s)u(s)ds=F(k)—}—I(k)

(I1-7)
Inverting the order of integration in the last term, we represent this
integral in the form

00

I(k)=—— V_ Su(s)ds ojoe““‘v(x—s) dz (11-8)

— 00

Making the change of variable z—s=¢, we have, by (II-4)
and (II-5),

I(k)=—1— V“ S.ou(s)ei"‘ds fu(t) eMdt =2V 2mU (k) V (k) (II-9)

- 00

* This question is discussed in detail by E. C. Titchmarsh in [18].
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Actually, formula (II-9) implies that the formula for the transfor-
mation of a convolution which we obtained for the one-sided Lapla-
ce transformation (see page 232) is also valid in the case of the Fou-

rier transformation.
Formula (I1I-7) may now be rewritten in the form

U (k) =F (k) +AV 2aU (k) V (k) (11-10)

Thus, with the aid of the Fourier transformation we have succeeded
in reducing the solution of the original integral equation (II-1) to
the solution of the algebraic equation (II-10) for the Fourier trans-
formation of the desired solution. It is easy to solve the last equa-
tion:

F (k)
= L . A— II-
U k) 1—AV2aV (k) (I-11)

Thus, the Fourier transformation (II-11) of the solution of
the original integral equation proved to be expressed in terms of
the Fourier transformation of the given functions—the kernel and
the right-hand side of the equation. The solution itself can readily
be expressed in terms of its Fourier transformation with the aid of the
familiar formula of inverse transformation:
7=
Van

-~ 00

inx g 1 F®Be®™ gk (1142
Ulk)e k V2n _.i 1—AV2rV (k) koo )

Formula (II-12) actually solves the problem, but it is not always
convenient since it requires the computation of the Fourier trans-
formation F (k) for every right-hand side of f (z). In many cases it is
more convenient to represent the solution of the nonhomogeneous
integral equation in terms of the resolvent kernel for the original
equation:

u(zr) =

oo

u@=1@+1 | gz—9f(9ds (I1-13)

- 0o

In order to obtain the required representation, note that for-
mula (II-10) may be transformed to the form

U(k)—F (k) =LV 2rF (k)G (k) (11-14)
where
V (k)

Gk =~ VaxV (k)

(11-15)

From relation (II-14), with the aid of the formula of inverse trans-
formation (I1I-12) and noting that by virtue of formula (II-9) the
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original of the function }/ 2xaF (k) G (k) is the function

o

[ e@—9rimds
where -
g(t)= 1/15?: _SmG(k)e""”dk (11-16)
we get
u(@=f@+2r | g@—51(9ds (11-13)

- 00

Thus, to determine the solution of the original integral equation
(IT-1) it is sufficient to find the function g (¢) defined by formula
(I1-16).

The function g (¢) is a solution of equation (II-1) for the special
type of function f (z). Indeed, from formulas (II-11) and (II-15)
it follows that for U (k) = G (k) the function F (k) is equal to V (k).
This means that the solution of equation (II-1) for f () = v (z) is
the function u (z) = g (z), that is, the resolvent kernel for equation
(I1-1) satisfies the integral equation

g(z)= S v(z—s)g(s) ds+v(2) (11-17)
Example 1. Solve the integral equation

u(x):==»A S v(z—s)u(s)ds+f(x) (11-18)

where
v(t)=e2t, a>0 (I1-19)

Let us find the function g (). To do this, calculate

1 ¢ i 1 2
V=~ Se-ame nt dtzﬁz;f_‘_k? (11-20)
Then by formula (II-15)
G (k) = V (k) 1 20 (I1-21)

1—Ay2aV (k) Vo Ftoi—2ad
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whence
1 c i 1 < —ikt

Assume 7\.<—°2i . Then the integral (II-22) is meaningful and may

readily be computed with the aid of the calculus of residues by
applying Jordan’s lemma. Simple manipulations yield

e—|t|Va2—2aA

Vo (11-23)

git)=a

and, finally

u(x)=f(z)+7571f—2_;7 [ e-w-avams(gas  (11-24)

Thus, the use of this method, which reduces the solution of the
original integral equation (II-1)to the solution of an algebraic equa-
tion, was associated with the possibility of applying the Fourier
transformation to the functions in this equation and of using the
convolution formula. Our immediate aim is to transfer these methods
to the solution of integral equations with a difference kernel in the
case of a semi-infinite interval

00

u(z)=A S v (z— ) u(s) ds+f (z) (11-25)
0
But for this we need some analytic properties of the Fourier trans-
formation, in particular, the definition of the domains of analyticity
of the Fourier transformation of functions of a real variable, func-
tions which both decrease and increase at infinity.

I1.2. Analytic Properties
of the Fourier Transformation

Let the function f (z) be defined for all values —oo << 2z << 0. We
consider the Fourier transformation of this function

F(k)=712=n j f (z) ™= dz (11-26)

We assume here that the parameter & of the transformation (II-26)
can, generally speaking, take on complex values as well. We pose
the question of the properties of the function F (k), which is regarded
as a function of the complex variable k. To do this, represent f (z) as

@ =1+ (@ +71-(2) (I1-27)



I1.2. Analytic Properties of the Fourier Transformation 285

where the functions f.(z) apd f+(x) are, respectively,

f(z)v 1!<O, , -'L'<O
f’(x)S{O, z>0, M@= {f(z), z>0

The Fourier transform F (k) of the function f (z) is then obviously
equal to the sum of the Fourier transforms F (k), F _ (k) of the func-
tions f4+ () and f_ (z). We find the analytic properties of F (k)
by establishing the analytic properties of the functions F, (k) and
F _ (k). Thus, consider the function

0, z<<0 11.98
he={jm, =0 (t-28)

Its Fourier transform is the function
Fok)=—75 Sn (2) €= dz (11-29)

Repeating the arguments of Theorems 8.1 and 8.2, it is easy to show
that if the function fi (z) satisfies the condition

| f+ () | < Me®* as £ — oo (11-30)

then the function F; (k) defined by formula (II-29) is an analytic
function of the complex variable k = ¢ 4 it in the domain
Im k> 7v_, and in this domain F; (k) > 0 as | £ | > oo. With the
aid of reasoning similar to that in Theorem 8.5, it may be shown
that the functions f, (x) and F; (k) are connected by the inverse
relation
00417

1 Fo (k) e die (11-31)

Vzﬂ —-0041%

where the integration is performed over any straight line Im k =
= 7 > 7. parallel to the real axis in the complex k-plane.

For t_ << 0 [i.e. for the functions f (x) decreasing at infinity] the
domain of analyticity of the function F (k) contains the real axis
and in formula (II-31) the integration may be performed along the
real axis. If T_ > O [i.e. the function f (z) increases at infinity, but
not faster than an exponential function with linear exponent] then
the domain of analyticity of the function F, (k) lies above the real
axis of the complex k-plane [here the integral (II-29) may diverge
on the real k-axisl. Similarly, if the function

, =<0
f'(z)—{f,() z>0

f+(2) =

(11-32)
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satisfies the condition
[-(x) < Me“+* as x—>—o0 (I1-33)

then its Fourier transform, the function

0
j f-(2) €™ dz (11-34)

— 00

F_(k) = — Vz

is an analytic function of the complex variable k¥ in the domain
Im k<< t;. The function f_(z) is expressed in terms of the func-
tion F_(z) with the aid of the relation

o0 iT
F_(k) e ™ dk (I1-35)

—oo}i%

(@) =
where Imk=-1<<7,.

1f v, >0, then the domain of analyticity of the function F_ (k)
contains the real axis.

Clearly, for t_ << 14 the function F (k) defined by formula (I1-26)
is an analytic function of the complex variable k& in the strip T_ <<
<< Im k << 4. Then the functions f (z) and F (k) are related by the
inverse Fourier transformation:

o041t
f(z) = 7‘2:n 5 F (k) e=** dk (11-36)

—00-}iT

where the integration is performed along any straight line, parallel
to the real axis of the complex k-plane, lying in the strip v_ <<
<Im k=1t <t4. In particular, for t_<<0 and 74 >0, the
function F (k) is analytic in the strip containing the real axis of
the complex k-plane.

Thus, the function V (z) = e~*I*l for @ > 0 has the Fourier
transform

7 2a
V==t (11-37)

which is an analytic function of the complex variable % in the strip
—a < Im k << a containing the real axis.

Let us now examine the basic idea of the Wiener-Hopf method.
We will first demonstrate it in solving a special type of integral
equation.
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I1.3. Integral Equations with a Difference Kernel

Let us begin with a homogeneous integral equation of the form

oo

u(z)=>» 5 v(z—s)u(s)ds (11-38)
0

whose kernel, the function v (z — s), depends on the difference r —
— s = £ and is defined for all values of its argument —oo << £ <<
<< oo. The solution of this equation is obviously found to within an
arbitrary factor; it may be found from the supplementary conditions
of the problem, for instance the normalization conditions. We as-
sume that equation (II-38) defines the function u (z)for all values of
the variable z, whether positive or negative. We introduce the
functions u_ and u,:

{u(z), z<<0, {O, <0
u-(@) =1 >0, “O=1u), >0
Clearly, u () = uy () 4 u_ (z), and equation (II-38) may be re-
written in the form

(11-39)

oo
Uy (2)= A S v(@—s)us(s)ds, >0 (11-40)
0

u-(r) =~ S v(x—s8)uy(s)ds, <0 (11-41)
0

That is, the function uy (z) is determined from the solution of the
integral equation (II-40), and the function u_ (z) is expressed in
terms of uy (z) and v (x) with the aid of the quadrature formula
(IT1-41). Here, the relation

us () +u (z) = A S V(T —8) uy () ds (11-42)
0

which is equivalent to the original equation (II-38), holds.
Let the function v (k) satisfy the conditions
Jv(E)|<<Me™t as E— oo
and
|v ()| << Me™+t as E—— oo (11-43)
where 1.<<0, 1, > 0. Then the function

0o

V<k>=7‘2_; [v@ema (11-44)

is analytic in the strip v_ < Im k < 14.
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We seek a solution of equation (II-38) that satisfies the condition*
|us (2) | < Mye** as & — oo (11-45)

where p << 74. And, as can easily be verified, the integrals on the
right sides of relations (II-40) and (II-41) are convergent, for the
function u_ (z) we have the evaluation

|u- (z) | << Mye™* as £ - — oo (I1-46)

From the conditions (II-45) and (II-46) it follows that the Fourier
transforms Uy (k) and U . (k) of the functions uy (z) and u_ () are

Uy k), L, (k)

T Im =1z,

I
Vik)

Im é:ﬂ

1

Im k:z;

YU k), L(K)
Fig. 114

analytic functions of the complex variable & for Im & > p and
Im k& < 74 respectively (for the sake of definiteness, we put p > 7.
in Fig. I1.1). '

Let us now solve the integral equation (II-38), or the equivalent
equation (II-42). We take advantage of the Fourier transform. Using
formula (II-9) of the convolution transformation, the truth of which
in the given case of a semi-infinite interval is evident almost imme-
diately, we get, from (II-42),

Up (k) + U- (k) = V2 AV (k) Uy (k)
or
LE Uy (k) +U_(k)=0 (I1-47)
where '

L (k) =1—V2nAV (k) (11-48)
Thus, with the aid of the Fourier transform we have again passed

from the original integral equation to an algebraic equation for
transforms. However, equation (II-47) now has two unknown func-

* We do not dwell on the proof of the existence of a solution of equation
(11-40) having this property. For details, see for example [5].
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tions. Generally speaking, two unknown functions cannot be deter-
mined uniquely from one algebraic equation. The Wiener-Hopf
method permits solving this problem for a definite class of functions.
It is primarily associated with a study of the domains of analyticity
of the functions entering into the equation and with a special repre-
sentation of this equation. The basic idea of the Wiener-Hopf tech-
nique consists in the following.

Suppose it has been possible to represent equation (II-47) in the

form
Ly (k) Uy (k) = —L_ (k) U (k) (11-49)

where the left-hand side is analytic in the upper half-plane Im &k >
> w, and the right-hand side is analytic in the lower half-plane
Im &k << 74; note that p << 74 so that there is a common strip of
analyticity of these functions p << Im %k << 14. Then, by virtue of
the uniqueness of analytic continuation it may be asserted that there
exists a unique entire function of the complex variable which coin-
cides with the left-hand side of (II-49) in the upper half-plane and
with the right-hand side of (II-49) in the lower half-plane, respec-
tively. If it isalso known that the functions entering into (II-49) do
not increase at infinity faster than a finite power k", then by Liou-
ville’s theorem the given entire function is determined to within
multiplicative constants. In particular, in the case of a function
bounded at infinity we get

Ly (k) Uy (k) = —L_ (k) U. (k) = constant (11-50)

Whence the functions U, (k) and U_ (k) are determined uniquely.

Let us now apply the given scheme to solving equation (II-47).
From the reasoning given above it follows that the domains of anal-
yticity of Uy (k), U_ (k) and L (k) =1 — V' 2n AV (k) are, re-
spectively, the upper half-plane Im % > p, the lower half-plane
Im k < 14 and the strip v << Im k& << 1. This equation thus holds
true in the strip* p < Im k& << 74, which is the common domain of
analyticity of all the functions entering into the equation. In order
to transform equation (II-47) to the form (II-49), assume that the
following decomposition of the function L (k) is possible:

L, (k
L(k)= -E% (11-51)

where the functions L, (k) and L_ (k) are analytic for Im k> p
and Im %k << 14, respectively. Besides, suppose that in the domains
of their analyticity these functions do not increase at infinity faster
than k™, where n is some positive integer. The splitting (II-51) of

* For definiteness, put p > 7T_, otherwise the strip 7. < Im k& < 7, will
be the common domain of analyticity.

19—3878
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the analytic function L (k) is ordinarily called factorization. The
possibility of factorization of a given analytic function of a complex
variable will be substantiated below (see Lemma 1 and Lemma 2
on pages 293-294).
Thus, as a result of factorization the original equation is reduced
to the form
Ly (k) Uy (k) = —L_ (k) U_ (k) (I1-49)

From earlier arguments it follows that this equation defines some
entire function of the complex variable k.

Since Uy (k) >0 as | k| — oo, and L, (k) increase at infinity as
a finite power k™, the given entire function may only be a polyno-
mial P, _, (k) of degree no higher than n — 1.

If the functions L. (k) increase at infinity only as the first power
of the variable %, then from the relations (II-50), by Liouville's
theorem, it follows that the corresponding entire function is the
constant C. We then get the following expressions for the unknowns
U, (k) and U_ (k):

C C

Vo=t U-B)=—17 (I1-52)
which define the Fourier transforms of the desired solution to within
a constant factor; this factor may be found from the normalization
conditions. In the general case, the expressions

_ Pa(k) _ _Pn(k)

Us (k)—m, U_(k) = — A7) (I1I-53)
define Fourier transforms of the sought-for solution of the integral
equation (II-38) to within undetermined constants that may be found
from the supplementary conditions of the problem. The solution
itself is determined with the help of the inverse Fourier transform
(I1-31) and (1I-35).

Let us illustrate the use of this method with an example.

Ezxample 2. Consider the equation

u(z)="A S e-1==sly (s) ds (I1-54)
0
the kernel of which is of the form v (§) = e~ I¢1.
We find the Fourier transform of the function v (§):

V (k)= [ v@em d§=7§—;‘—-(2;“r—1) (11-55)

The function V (k) of (II-55) is an analytic function of the complex
variable k£ in the strip —1 << Im %k << 1. Represent the expression

L()=1—VZmav (k)= 2 &1 (11-56)
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in the form of (II-51), where

k2 —(2h —1
L. (k)=__k(+_i)_,
The function L4 (k) in (II-57) is an analytic function of % and is
different from zero in the domain Im k> Im /20 — 1. For 0 <

<A< %, this domain is determined by the condition Im k>

SVYT=2% and Y1 —2%2 K p<<1. ForA> —;— the function L (k)
is analytic and nonzero in the domain Im & > 0. The function L _ (k)
is obviously a nonzero analytic function in the domain Im k << 1.
Therefore, for 0 <7»<% both functions satisfy the required condi-
tions in the strip p < Im k << 1.

For -;—<7~, the strip 0 << Im & << 1 is the common domain of

analyticity of the functions Ly (k) and L_ (k). Thus, the necessary
factoring of the function (II-56) has been performed.

Consider the expressions U, (k) Ly (k). Since Ui (k)— 0 as
|k | > o0, and Ly (k), according to (II-57), increase at infinity as a
first power of %, the entire function P, (k), which coincides with
Ui (k) Ly (k) for Im k> p and with U_ (k) L_ (k) for Im k < 1,
can only be a polynomial of degree zero. Therefore,

L_(k)y=k—i (11-57)

Up (k) Ly (k) = C (11-58)
Whence
Us (b)=C gt (I1-59)
and, by (II-31),
004-1T
C k"‘i —ihx
e (@) = | == oy ¢ dk (11-60)
—oco}iT

where p <t<<1.
The integral (II-60) may be evaluated by the methods of Chapter 5.

Closing the contour of integration for £ > 0 by a semi-circular arc

in the lower half-plane and evaluating the integral along this arc

with the aid of the Jordan lemma, we get, after elementary compu-

tations,

sin V2L —1z

e } (11-61)

where D is a new constant. For 0 <A << % this solution grows expo-

u+(z)=D{cos]/2}\.—1x+

nentially with the growth of z; for -;—< A << oo, the solution is bo-
unded at infinity.
19*
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Thus, the example of solving the homogeneous integral equation
(II-38) has already demonstrated the basic idea of the Wiener-Hopf
method, which consists in representing (by factoring) the original
functional equation (II-47) in the form of the entire function (II-49).
Let us now justify the factoring process of an analytic function of a
complex variable. We will proceed from a somewhat more general
functional equation than (II-47).

IL.4. General Scheme of the Wiener-Hopf Method

In the general case, a problem solvable by the Wiener-Hopf
technique reduces to the following.

It is required to determine the functions ¥, (k) and ¥_ (k) of a
complex variable %, which are analytic respectively in the half-plane
Im k> t_and Im &k << 74+ (v_ << 74) and tend to zero as |k | & oo
in both domains of analyticity and satisfy in the strip - << Im k <<
<< 14+ the functional equation

ARYL(®) +BE®Y_(}) +CHR) =0  (11-62)

Here, A (k), B (k), C (k) are the given functions of the complex
variable k%, analytic in the strip 1. <<Im k < 14; A (k) and B (k)

are nonzero in this strip.
The main idea for the solution of this problem is based on the

possibility of factoring the expression A (k)/B (k), i.e. the possibility
of representing it in the form

Ak) _ Ly (k)
B(k) Li (%) (11-63)

where the functions Ly (k) and L _ (k) are analytic and different from
zero, respectively, in the half-planes Im & > 1 and Im %k << <, the
strips . <<Imk <1y and 7. <Imk <<t, having a common
portion. Then, using (II-63), equation (II-62) may be rewritten as

Ly (k) Yo (B) + L- () ¥ () + Lo () G- =0 (I1-64)
If the last term in (II-64) may be rewritten as
L- (k) g = D (k) + D~ (k) (11-65)

where the functions D, (k) and D _ (k) are analytic in the half-planes
Im k> <" and Im k < t], respectively, and all three strips v_ <<
<Imk<t, . <Im k<7, and 77 <Im k < 7] have a com-
mon portion—the strip t° << Im k << t{—then in thisstrip the follow-
ing functional equation holds true:

Ly (k) ¥4 (k) +Dy (k) = —L_ (k) ¥ (k) — D (k) (11-66)
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The left-hand side of (II-66) is a function analytic in the half-plane
1% << Im k, the right-hand side is a function analytic in the domain
Im & << t°. From the equality of these functions in the strip 1% <<
< Im k < 1 it follows that there exists a unique entire function
P (k) coinciding, respectively, with the left and right sides of (II-66)
in the domains of their analyticity. If all functions entering into
the right sides of (II-63) and (II-65) increase at infinity in their do-
mains of analyticity no faster than k™!, then from the condition
W, (k)— 0 as |k | > oo it follows that P (k) is a polynomial P, (k)
of degree not higher than n. In this way, the equalities

Pn — Ly
¥, (k) = _("L)mi)’ﬂ (11-67)
and
—P, (k)—D_(k
Y_ (k)= 2_)(1,) (k) (11-68)

define the desired functions to within constants. The constants may be
found from the supplementary conditions of the problem.

Thus, the use of the Wiener-Hopf method is based on the repre-
sentations (II1-63) and (II-65). The possibility of these representations
is guaranteed by the following lemmas.

Lemma 1. Let a function F (k) be analytic in the strip 1. <<Im k<<
<< 14+ and let F (k), in this strip, tend uniformly to zero as | k | - oo.
Then the following representation is ‘possible in the given strip:

F (k) =Fy (k) +F_ () (11-69)

where the function Fy (k) is analytic in the half-plane Im k > <t _ and
the function F _ (k) is analytic in the half—plane Tm k < 4.
Proof. Consider an arbitrary point k&, lying in the given strip and
construct a rectangle abed containing the point k, and bounded by
the straight-line segments Imk=+x/, Imk==1,, Re k= —A4,
Re k = A, where 1. <1 <1, <14 (F1g I1.2). By the Cauchy
formula

Ativ’ Atit),
1 F(©) FQ@
™ -45#&_'_ ¢ A-li‘t' t=ko
- Atit) - A+iv’
1 F@ F(©)
+ o S T—ko Bt 5oy 2m S T—ko ¢ (11-70)
A-+tit - A+it)

In (I1I-70) proceed to the hmlt as A — oo. Since it is given that F (k)
tends uniformly to zero as | k | - oo, the limit of the second and
fourth terms on the right of (II-70) is zero and we obtain

F (ko) = Fy (ko) + F - (ko) (II-71)
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where
oot
1 F
Fy (ko) =t S T__‘% dt (11-72)
~ooit’.
oo+‘l‘t_"_
__1 F@)
F_ (ko) = —r .i =Lt (11-73)
—o0 1‘!;_

As integrals dependent on a parameter,* the integrals (II-72) and
(II-73) define analytic functions of the complex variable k,, pro-
vided that the point %, does not lie on the contour of integration.

In particular, F; (k,) is an analytic function in the half-plane
Im ky > </, and F_ (k,) is an analytic function in the half-plane

s
d 74 c
°k
-A k=0 9 |4
a 24 ]
P
Fig. 11.2

Im k, << t,. By virtue of the arbitrariness of choice of point &, and
the straight lines t_ and 7., the relations (II-71) to (II-73) prove the
lemma.

Note 1. Note that from the convergence of the integrals (II-72)
and (II-73) it follows that the functions F; (k) and F _ (k) thus con-
structed are bounded in the given strip as | k | - oo.

Lemma 2. Let a function @ (k) be analytic and nonzero in a strip
1.<Imk <1y, and let @ (k) tend uniformly to unity in this strip
as |k | = oo. Then in the given strip we will have the representation

@ (k) = @y (k)-D_ (k) (11-74)

where the functions @4 (k) and © _ (k) are analytic and different from
zero in the half-planes Im k > t_ and Im k << 74 respectively.

* See page 53.
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Proof. Consider the function F (k) = In @ (k) which clearly
satisfies all the conditions of Lemma i. Thus, for the function F (k)
we can have the representation (II-71)-(II-73). Putting

@, (k) =oxp {F+ (K)}, O-(k)=exp(F_(R)}  (ILT5)

where the functions F, (k) and F_ (k) are defined by formulas (I1I-72),
(I1-73), we get

In @y (k) = Fy (k), In ®_(k) = F_(k) (II-76)
Then formula (II-71) yields
In @ (k) = In Oy (k) + 1n D_ (k) (11-77)

whence follows relation (II-74). Since, by Lemma 1 the functions
F, (k) and F_ (k) are analytic in the half-planes Im 2 > t_ and
Im k << t4, respectively, so also the functions @, (k) and ®. (k)
defined by formulas (II-75) will have the required properties. That
proves the lemma.

Note 2. The possibility of factoring (II-74) holds true when the
function @ (k) has a finite number of zeros %k; in the strip v_ <<
<Imbk<1,.

To prove Lemma 2, in this case it suffices to introduce the auxili-
ary function

(k2+bz)N/2
[T —rp*i

F(k)=1n [ ® (k)] (11-78)

where o; are the multiplicities of the zeros k;; N is the total number
of zeros counting multiplicities; the positive constant b > | 1. |,
| T+ | is chosen from the condition that the function under the sign
of the logarithm should not have additional zeros in the strip 1. <<
<< Im % << t4. This function clearly tends to unity at infinity. The
function F (k) thus constructed continues to satisfy all the conditions
of Lemma 1.

The lemmas just proved determine the possibility of the represen-
tations (II-63), (II-65), which form the basis of. the Wiener-Hopf
method.

We considered the Wiener-Hopf method used for solving the func-
tional equation (II-62). It is easy to see that the following rnonhomo-
geneous integral equation with a difference kernel on a semi-infinite
interval reduces to this equation:

u(z) = A S v(z—s)u(s)ds+f (z) (11-79)

0

We assume that the kernel of (II-79) and the function f (z) satisfy
the conditions (II-43) and we will seek a solution of (II-79) that
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satisfies the condition*
|us (x) | << Myet* as £ — oo (11-80)

(h<7t4)

Then with arguments similar to those involved in the derivation
of the functional equation (II-47) for a homogeneous integral equa-
tion, we find that in the case of (II-79) the following functional
equation should be satisfied in the strip p << Im k << 15

Ue(B)FU_(k)y=AV2aV (k) Uy (k) + Fy (k) +F- (k) (11-81)
or
LE Us (k) +U_(k) —F(k)=0 (11-82)
where __
L (k) =1—=V2nAV (k) (I11-83)
Equation (II-82) is a special case of equation (II-62). In the strip
1. << Im %k << t4 the function L (k) is analytic and uniformly tends
to unity as | k | > oo, since | V (k) | > 0 as | k | » oo. If, besides,
the function V (k) has a finite number of zeros in this strip, then all
the conditions of Lemma 2 are fulfilled and the function L (k) may
be represented in the form
L(=38 2’}3 (11-84)
where L, (k) is an analytic function in the upper half-plane Im & >
> 1_, and L_ (k) is an analytic function in the lower half-plane
Im k& << t4. Then equation (II-82) takes the form

Ly (k) Uy (k) +L_ (k) U_ (k) — L_ (k) F_ (k)
_F.(k)L_(k) =0 (II-85)

To reduce this equation to the form of (II-66), it is sufficient to svlit
up the last term:

Fy (k) L_ (k) =D+ (k) +D_ (k) (11-86)

into the sum of the functions D, (k) and D _ (k) which are analytic in
the half-planes Im ¥ > p and Im %k << 7t,, respectively.

To justify the possibility of such a representation, note that by
condition (II-43) the function F, (k) is analytic in the upper half-
plane Im %4> tv_ and tends uniformly to zero as |k | > co. The
function L _ (k) is analytic in the lower half-plane Im k << t4 and,
by the mode of its construction, by virtue of Lemma 2 and the note
referring to Lemma 1, it is possible to factor (II-84) in such a manner
that L_ (k) will remain bounded in the strip 1. < Im k << 74 as
| k | > oo. Whence it follows that all the conditions of Lemma 1

* Again, we dispense with justifying the existence of a solution of equation
(11-79) that satisfies the condition (II-80).
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are fulfilled for the function F, (k) L_ (k) in the strip t_ < Im k <
< 14, which is sufficient to substantiate the representation (II-86).
The foregoing considerations enable one, given the supplementary
conditions that the functions L. (k) do not increase at infinity faster
than k", to represent the Fourier transforms of the solution of the
nonhomogeneous integral equation (II-79) in the form

Pp ()4 D, (K
U, (k)= 2B+ Dy (B)

L, (k) ’
U_(k) — —Pn &+ L (k) F_ (k) + D_ (k) (11-87)
-4 Z_(%) )

The solution itself may be obtained from (II-87) by means of for-
mulas (II-31) and (II-35) of the inverse Fourier transform.

I1.5. Problems Which Reduce to Integral Equations
with a Difference Kernel

a. Derivation of Milne's equation

A large number of physical problems reduce to integral equations
with a difference kernel. As a first instance, we take the classical
Milne problem which describes the process of neutron (or radiative)
diffusion (transport) through a substance.

Let there be a flux of neutrons in the half-space z > 0 filled with
a homogeneous substance whose density is defined by the number r,
of particles per unit volume. We consider the particles to be heavy
atoms that scatter neutrons so that the absolute magnitude of neu-
tron velocity remains constant and only the direction varies. We
consider a steady-state process and assume that all neutrons have
the same absolute magnitude of velocity v, = 1 and their distribu-
tion density depends solely on the coordinate z. We introduce a
function f (z, p) that characterizes the neutron density in the cross
section z, the velocity of neutrons forming with the positive direc-
tion of the z-axis an angle 6 where p = cos 6.* The number of
neutrons in unit volume in a given cross section, the direction of
velocity of which lies within the limits (p, p -+ dp), is determined
by the quantity f (z, p) dp.

The total neutron density p (z) in a given section is

1
p@)={ f(z, mdp (I1-88)
-1

Our immediate aim is to derive an equation for the distribution
function f (z, p). To do this, form the relation of the total balance

* It is obvious that for 0 < 0 < «w we have —1 < p < 1.
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of the number of neutrons having direction of velocity in the inter-
val (w, p + dp) and lying in the layer between the sections z and
Zz + dz. Due to the steady-state nature of the process, the flux of
neutrons emerging from the given layer

uf (z 4 dz, p) dp — pf (z, p) dp (11-89)

is determined by the difference between the number of neutrons that
have acquired velocity in the given direction (u, p + dp) as a re-
sult of scattering on particles of the substance in the given layer and
the number of neutrons that had velocity in the given direction and
changed this direction after scattering. We take it that the scattering
of neutrons on particles of substance is isotropic (equally probable
in all directions) and the probability of the scattering of a neutron
on one particle is described by the effective scattering cross section
Q. Then it is clear that the number of neutrons that had a given
direction of velocity (u, p 4 dp) and were scattered in a given layer
is equal to

f (z, p) dp-0Qn, dz (11-90)

while the number of neutrons that acquired velocity in the required

direction as a result of scattering is
i

1 ’ ’
2 duQ-nq de f(z, ') dp (11-91)
e
On the basis of (II-89), (II-90) and (I1-91), the equilibrium equa-
tion is then written in the form

pf (z+dz, p) dp—pf (z, p) dp .
= —Q-naf (&, ) dpda+ %2 duda § f(z, w)dw  (11-92)

Z1
Divide both sides by dp dr and proceed to the limit as dz — O.
Taking into account (II-88), we get an equation for the function of
neutron distribution in the form

b —Onef (2, )+ L2 p () (11-93)

This equation is frequently called the transport equation. It holds
true not only in the case of the above-considered specific physical
problem, but also for many other physical processes associated with
the transport of matter or radiation.*

For what follows it will be more convenient to rewrite equation
(I1-93) in a somewhat different form, introducing a dimensionless

* For a detailed derivation of the transport equation for more general cases
see, for example, [11].
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spatial coordinate & connected with = by the relation £ = AE, where
A= ni_Qo is the mean free path. Then the transport equation takes
the form*

B =—fE& W+ ® (11-94)

The function f (§, p) must be subject to the boundary conditions
that follow from the physical statement of the problem. We will
assume that the flux of neutrons from the exterior half-space & << 0
is zero and as & — oo there is a constant neutron flux of unit inten-
sity in the negative direction of the E-axis (i.e. as & — oo there are
no neutrons whose direction of velocity forms an acute nonzero
angle with the negative §-axis). Then the boundary conditions for
the function f (§, p) will be written in the form

0, ») =0, p=0
f (00, p) =0, —1<p<O (11-95)
Let us establish important consequences of equation (II-94) and
conditions (II-95). To do this, first integrate (II-94) with respect to p:
1 L 1
i} 1
% J1Ewpd=— [ rGwdn+go® [an
-1 =1 -1

——p®+p®=0 (I1-96)

1
Since the integral j () = S f (€, p) udp is equal to the neutron

-1
flux through a given cross section, equation (II-96) yields

g—é=o or j(E)=—constant (11-97)
Due to the normalization conditions (as & — oo) we get f (§) =
= —1 (unit flux as § > 4 oo is in the negative direction of the
E-axis).
Now multiply (I1-94) by p and again integrate from —1 to 1.
1

Introducing the notation K (§) = S f( p ix.’ dp we have

-1

%gi:i or K(t)=K(0)+¢t (11-98)

where, by (II-95),
0

K (0)= { 1(0, p)p2dp (11-99)

-1
* For the function f (§, u) we retained the old designation.
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Equation (II-94) is an integro-differential equation, since the
unknown functions p (§) and f (§, p) are connected by the -integral
relation (II-88). However, it is easy to get an integral equation for
the function p(t). Solving the ordinary differential equation (II-94)
for the function f (§, p), we get, by (II-95),

13 n-§
Se B p(mdn, p>0

P& W =5 e (11-100)

0
- S e p(m)dy, p<O
£

Integrating (II-100) with respect to p from —1 to 1, we get an in-
tegral equation for the function p (§):

18-nl
A TR dndt -
)= \ §p<n>e B dn <L (11-101)
Changing the order of integration in (II-101), we get the final equa-
tion for the neutron density in the cross section E:
p®=|vE—meman (11-102)
0
This will be seen to be an integral equation with a difference kernel
in a semi-infinite interval:
_1&-n]

1
v(E—1) =7 S e B ‘;_“ (11-103)
0
Equation (II-102) -is ordinarily called Milne’s equation, after
E. Milne who first derived it in studies of the processes of radiative
transport in stellar atmospheres.
Observe that in many cases it is convenient to give a somewhat
different representation of the kernel that results from the change of
Lo
integration variable p =% in the integral X (f) = S e ¥ dTp,‘ Then

0
oo

X (@)= S e-l11vEL (11-104)
1

The integral (II-134) is often called the Hopf function. Integra-
tion by parts readily yields its asymptotic expansion for large posi-
tive values of £:

2!

x=- {14423y ) (11-105)
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b. I'nvestigating the solution of Milne's equation

Equation (II-102) belongs to the type of equations considered in
Section II.3 and it can be solved by the general algorithm of the
Wiener-Hopf method. We will not go into the detailed solution of
this equation and an investigation of its physical meaning,* but will
confine ourselves to a few remarks.

In many problems of a practical nature the main interest lies
only in determining the distribution function of neutrons emanating
from a given medium, i.e. the function f (0, n) for p< 0. According
to (II-100), this function is defined by the expresswn

I(O,u)=—;—PSe“p(n)dn m—ielﬂlp(n)dn, w<0 (I-106)
0

As is readily evident, by virtue of (1I-29), the last integral is nothing
other than a one-sided Fourier transform of the function p(n) for

k= ﬁ , i.e.
£(0, w) =2_|‘m-1/ 2n R, (ﬁr) (11-107)

Thus, in such problems it is enough to find the Fourier transform
of the solution, not the solution itself, of the integral equation (I11-102).
According to the general scheme of the Wiener-Hopf method, to
solve this problem, one has to find the Fourier transform of the ker-
nel of the integral equation, and then perform the factorization

(I1-51) of the function L (k) = 1 — Y/ 2x AV (k). In our case, A = 1
and

. 0 Lo
erxp (1) dor =——F—= S eikx dx S ew 22
VZn ~ 0 n

V (k)= 3
¢ v x + ¢ 1 d 1 tan k
+ itz gz ( e T_“}= L ,dp 1 arctan
_ 1 A4k
Therefore
L(k)=1—V3ImAV (k) = k_—alkc_tﬂﬁ (11-109)

The function L (k) is clearly analytic in the strip —1 < Im kA << 1
tending to zero in this strip as |k | - oco. The point £k =0 is a
second-order zero of thic function. This latter circumstance some-
what complicates factoring the function L (k).

* For a detailed discussion, see [7].
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In accordance with Note 2 (page 295), construct the auxiliary
function 'H L (k) to satisfy all the conditions of Lemma 2, and

consider the function
@ (k)=In [_" +1 7 L(x)]=1n n[ 242 (1_3—“‘k-aﬂ)] (11-110)

which can ke readily represented in the form @ (k) = GJ_(k) +
-+ @, (%), where the functions ®@_ (k) and @, (k) are analytic in the
lower Im k<<t <1 and upper Im &k >t_ > — 1 half-planes
respectively. Then

004-1T

1 ’

O (=g ) OO (11-410')
—oo41iT-

and the function L, (k), which is the numerator in the factorization
formula (II-51) of the function L (k):

L, (k
L(k)=-+%" Ek;
can be chosen in the form
L (K) = o e®) (11-111)

The function L, (k) is analytic in the upper half-plane Im & > t_
and, as | k | — oo, increases as the first power of %, since, due to the
convergence of integral (II-110'), @, (k) is bounded as | k | —oo.
Therefore, the function R, (k) is determined from formula (II-52):

Ry (k) = L:‘(k) =4 XL -au) (11-112)

From this it follows that when determining the distribution function
of neutrons emanating from the half-space z >0, it is necessary to
find @, (k). This can be done with the aid of formula (II-110’). To
compute this integral, put T = 0 and reduce it to the following
form:

O (B) =5 | @

LY

0
=—1—{5 ©) o=z k+ja><c> % } (11-113)

27

Taking advantage of the evenness of the function @ () and chang-
ing the integration variable {’ = — { in the first integral, we final-
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ly get

D, (k)= 5 @ (2) gzd_—ckz (11-114)
0

The last integral can easily be tabulated, and this enables us to
find f (0, p) for u << 0 to within the constant factor A. To determine
A, take advantage of the normalization condition (II-97) and the
following reasoning Multiply equation (II-94), which holds for

E >0, by ——¢*t and integrate it with respect to & from 0 to oo.
TI'.

Let k& be a complex quantity with small positive imaginary part.
Then, using the formula of integration by parts

Viﬂ iema gé 1/— —L_F(0, W) —ikFy(k, ) (II-115)

we get
— 1hpFs (kW)= o= £ (0 ) = — P (s W+5Re(k)  (I1-116)

or

Folbw)=[f= 1O )+ g Re() ] gy (IH17)

The integration of (II-117) from 1—1 to 1 with respect to p due

to the obvious relation R, (k)= S Fi(k,p)dp and to condition
-1

(I1-95), yields

1
(A [ _du -t 1 (O :
Ro(k)=(1—7 _Si ) e S{ CB) pdn  (11-418)

Since
7 i = g In =T (I1-119)

we finally get
R (k)= Vig (1-=522) _§ CBydp  (11-120)
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Expand the right-hand side of (420) in a Laurent series in the neigh-
bourhood of the point k¥ = 0. Taking advantage of the equality*

0 1
(1o, wpdn= {70, wmpdp=jO=—1 (-121)
1 =1

and the earlier introduced notation (II-99), we obtain
3 1 .

On the other hand, it is possible to find the first terms of the Lau-
rent-series expansion, about the point £ = 0, of the function on the
right side of formula (II-112).

First compute @, (0). Take formula (II-110’) and choose for the
path of integration the real axis with traversal of the point { = 0
along a semicircular arc in the lower half-plane. Allowing the radius
of this semicircle to approach zero and taking into account that by
virtue of the oddness of the integrand function the integral over por-
tions of the real axis is zero, we obtain

_1 241 __ arctan{ _ 1 _
@, (0) =~ Lim In [ =77~ (1 S )] ln = (I1123)

Utilizing (II-123) we find that the expansion of the function R, (k)
about the point & = 0 is of the form

Ry (k)= ALVB — (A +iCk+ ...} (11-124)

Comparing (II-122) and (II-124) we determine the value of the con-
stant A:

A= “//2:"“ i (11-125)

Putting the results obtained into the formulas (II-107), (II-112),
(I1-114), we finally get, for p << O

]/3 N r2+1 arctan { dg
O, p) = (1"|‘“"I)exp—05 In 2 (1'—' 3 )]!ngz_i_i
(11-126)

This yields the function of angular distribution of neutrons ema-
nating from the half-space x > 0.

* Equality (II-121) is valid by virtue of (I1I-95) and the normalization con-
dition (II-97).
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¢. Diffraction on a flat screen

The integral equations considered so far are Fredholm equations
of the second kind. However, a number of physical problems natu-
rally lead to integral equations of the first kind with a difference
kernel in a semi-infinite interval. As an example, let us consider
the problem of diffraction of electromagnetic waves on a flat screen.
Let there be placed in a homogeneous space a flat, perfectly conduct-
ing screen coinciding with the half-plane z >0, y = 0, —o0 <
< 2z << oo. Outside this screen let there be located local sources of
an electromagnetic field that generate periodic electromagnetic oscil-
lations of frequency o polarized so that the vector of electric-field
intensity E is parallel to the z-axis and is independent of the coor-
dinate z. Then for the amplitude u (z, y) of the vector E we get the
scalar problem

Au + K*u = —f (z, y)
u(z, 0) =0, z >0 (I1-127)

Besides, the function u (z, y) must satisfy the conditions of radiation
at infinity; these conditions determine the absence of waves arriv-

ing from infinity.* Here, kz% is the wave number (c is the veloc-

ity of light in the medium exterior to the screen), f (x, y) is a given
function defining the density of the sources. We will seek a solution
of the problem (II-127) in the form u (z, y) = u, (z, y) + v (z, ¥),
where the function u, (z, y) is the field generated by the given sources
in the absence of a screen; this field is expressed in terms of the
function f (z, y) in the form of the wave potential**

uy(@, y) = | | H® (kr) £ & w g dn (11-128)
S

where H{" (z) is Hankel’s function of the first kind, r = [(z — &) +
4+ (y — n2]Y/2 and the integration is carried out over the entire
domain S in which the sources are located. For the function v (z, y)
we get the problem

Av + kv =0 (11-129)

v(z, 0) = —uy(z, 0) x>0

Besides, v (x, y) must satisfy the radiation conditions at infinity.
We seek the solution of the problem (II-129) in the form of the wave
potential of a simple layer

0o

v(z,5)= | B Gy @ & (I1-130)

0

* For details on the statement of diffraction problems see [17].
** Tbid., for the defmition and properties of wave potentials.

20—3878
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where ' = [(z — E)?2 + y?]'/2 and u (&) is the unknown density, for
the determination of which, using the boundary condition z >0
for y = 0, we get an integral equation of the first kind:

oo

SH;n(klz_gl)u(g)dg—_-._uo(x, 0, z>0 (II-131)

0

Again we have a nonhomogeneous integral equation with a differ-
ence kernel in a semi-infinite interval. However, unlike (I1I-79), this
is now an equation of the first kind. This equation can also be solved
by means of the Wiener-Hopf method, but we will not go into the
details of this investigation.

I1.6. Solving Boundary-Value Problems for Partial
Differential Equations by the Wiener-Hopf Method

The Wiener-Hopf method may be used effectively not only for
solving integral equations but also for solving boundary-value prob-
lems for partial differential equations. The specific form of employ-
ing this method may differ somewhat from the foregoing, although
the general idea involved in factoring expressions of the type (II-63),
(I1-65) always forms the basis of the method. A typical example is
the following boundary-value problem for the Laplace equation.

Ezample 3. In the upper half-plane y >0, find a harmonic func-
tion that satisfies, for y = 0, the mixed boundary conditions

u(z, 0) = %%, a >0, z >0 (11-132)
‘;_;(x, 0)=0,z<0 (11-133)

and tends to zero as y — oo.

To solve this problem we employ a device that is frequently used
in mathematical physics. First we solve the boundary-value problem
(I1-132), (I1-133) for the equation

Au — %% =0 (11-134)

where x? = iv,, v >0, and then we proceed to the limit, as » — 0,
in the formulas obtained. Using the method of separation of vari-
ables (see [17]) it is easy to obtain the integral representation of
the general solution of equation (II-134), which solution decreases as
y — oo, in the form

u(z, y)= j f (k) e-vveir= dk (11-135)

where f (k) is an arbitrary function of the parameter k, and p =
= J/k* + x3 is that branch of the root being taken which is an imme-
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diate analytic continuation of the arithmetic value of the root p =
= | k| for x = 0. Note that then Rep >0 for —oo < k<< 00
and this ensures the decay of the function (II-135) as y — + oo.
The function (I1-135) will satisfy the boundary conditions (1I-132),
(I1-133) if the function f (k) satisfies the functional equations

S f (k) eirx dk = e=a%, 10 (11-136)
Sf(k)L(k)eiMdk;_:O, z<0 (11-137)

where the notation L (k) = p (k) = V/4* + »® is introduced. The
solution of the problem (II-136), (1I-137) can readily be constructed
if the function L (k) is an analytic function of the complex variable
k in the strip 1. < Im k < 14 (v_- << 0, 14 >0) and if in that strip
it may be represented in the form

L(k) = (K + a?) Ly (k)-L_ (k) (11-138)

where L, (k) is a function different from zero and analytic in the
upper half-plane Im & > 7_; for | k¥ | - 00 L, (k) tends to zero more
slowly than k72, and the function L _ (k) is analytic in the lower half-
plane Im %k << 74 and uniformly tends to zero at infinity.

If these conditions are fulfilled, it is easy to see by direct verifica-
tion that the equations (II-136), (II-137) are satisfied by the func-
tion

B c _ CL_(¥) :
TR =teranm="Tm (11-439)

where the constant C is determined from the condition
C= % L, (ia) (11-140)

Indeed, substituting into integral (II-136) the first of the equalities
(I1-139), closing the contour of integration by a semicircular arc of
infinitely large radius in the upper half-plane, the integral around
which, by virtue of the Jordan lemma is zero, we find, on the basis
of (I1-140), that the integral (II-136) is equal to e-%* for z > 0.
Similarly, using the Jordan lemma applied to the integral around
the semicircular arc of infinitely large radius in the lower half-
plane, it is easy to establish, for z << 0, the truth of (II-137) for the
function f (k) defined by the second formula in (I1-139). And so the
solution of the given problem is connected with the possibility of
the representation (II-138). In this case, due to the above-indicated

choice of branch of the root, the function L (k) = V%% + »2 is a
single-valued analytic function different from zero in the strip

20*



308 Appendiz II. The Wiener-Hopf Method

Im (ix) < Im k < —Im (ix) (Im (ix) << 0). Let wus consider the
function

= v Lk _ YVIRExd A
.Lh(k)— ViETE - Ve (T1-141)
For a > —Im (m) this function is also analytic and nonzero in

the given strip; L(k) —1 as | k | - oo. For this reason, by virtue

of Lemma 2 the required factorization of the function L (k), and
hence, L (k), is possible. It is easy to see that the functions

Viktix — Vik—ix :
Li(k) =75 L-(k)=— (11-142)

satisfy all the indicated requirements. Then, on the basis of formu-
las (II-135), (1I-139), (II1-142) we get the integral representation of
the solution of equation (II-134), which satisfies the conditions
(11-132) and (I1I-133) and decreases-as y — 4+ oo, in the form

o

. C .
- Wypikx -
u(z, y) —_S i i) e~ Weikx df (I1-143)

where the constant C, on the basis of (1I-140), (II-142), is equal to
c=Yiatin (I1-144)

T 2mi

Proceeding to the limit in (II-143), (II-144) as x —0, we get the
integral representation of the solution of the original problem

Vi -iE P ethly

F— . 3n 0 ) R’ iRk’
Vel S L
2n V=¥ (k' —ia)

_-i'. © o-hutikx
"l
0

A dk} (11-145)

In the first integral (II-145) make a change of the integration
variable &’ = —k. Since

0 N oo
S ek yv+ik’x . S e—ky—ihz

T ¥ — T — k
2 V =K (K —ia) J Vk (k+ia)

w{ e (1146
= | Srarm % O
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it follows that (II-145) assumes the form

- XD -hy-ik i E T —hutir
u(z, y) = gt"{e‘ﬂ T gkge'w {‘_—"”—dk}
2

- T —hytik
= ‘;“ Re{e iy ——’_L—dk} (I1-147)

To compute the integral (II-147), consider the integral
e~ %
VEE+D)

By the change of the variable of integration E,—}—ﬂ 7, thlS integral
may be reduced to the form

J (@, B)= S 3 (I1-148)

J (a, B) = %81 (a, B) (11449)
where
oo —an -
I(a, B)= Sn g dn (H-150)

The integral (II-150) may be evaluated by differentiating with res-
pect to the parameter:

aI e~ —a
.a;=_5 Vn ﬂdn__—e by = (I1-151)
Since
I(0, LI 11-152
(0, B) = j == (I1-152)
it follows that by integratmg (11- 151) we get
—F ,-ob —
I(@p=—r= Vu§ e da=—Ts U@ (V)] (I153)
where @ (z)= V_ Se—“’ dz is the error function. Whence
g —
J (a, B) =75 [1—@(Vah)] (I1-154)
Returning to (II-147), we obtain
u(z, y) =Re{e-=[1—®(V = az)l) (11-155)

where z =z iy.



APPENDIX III

FUNCTIONS OF MANY COMPLEX VARIABLES

The theory of functions of many complex variables, which is a
natural development of the theory of functions of one complex
variable, has come to the fore due to effective applications of the meth-
ods of this theory in a variety of sciences, and in particular in
quantum field theory. In this appendix we give a brief survey of the
fundamentals of the theory of functions of many complex variables.

III.1. Basic Definitions

We consider an N-dimensional complex space CN the points
2 = (23, ..., zy) of which constitute an ordered collection of com-
plex variables zy = z, + iyx. The complex space CN may be inter-
preted as an ordinary Euclidean space of the real variables
Iy, Y1, - -« Ty, Y of dimension 2N. For this reason, the notions of
an open and a closed region, an interior, an exterior, and a boundary
point, a §-neighbourhood, and so on are introduced just as they are
in the theory of functions of many real variables. For example, the
6-neighbourhood of a point z° will be regarded as a set C (8, z°) of
points z € CN that satisfy the condition

[z2n — 2 | < 8 k=12 .., N

The symbol 8 = (6, ..., 6y) stands for an ordered collection of
real numbers 8, >0. The set of points z € CN that satisfy the
condition |z, — 2} | << ry (rn > 0) is called a polycircle K (r, 2%
of radius r = (ry, . .., ry) centred at the point 2° = (2}, .. ., z§).

A functionw = f(2) = f (2, - . ., 2y) of many complex variables
2= (2, ..., 2y) specified on a set E — CN is defined by a law that
associates with every value z ¢ E a definite complex number w € C*.
Since the complex number w consists of a pair of real numbers u
and v (w = u + iv), specification of the function f (z) on the set
E < CV is tantamount to a specification, on an appropriate set of
a 2N-dimensional Euclidean space, of the two real functions

U(Zy Yiy -+ o Tny Yn), and v (T, Ypy - o -» Iy Yn) Oof 2N real
variables z,, ¥, . . ., ZTn, Yn:

f@=u@, ..., yv)+ i@, ..., yn) (IT1-1)
The functions u (zy, ..., yy) and v (z, ..., yy) are called the

real and the imaginary part, respectively, of the function f (z).
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It is clear that a number of the concepts and properties of functions
of many real variables can be carried over to functions of many com-
plex variables. For example, the function f (z) specified on the set
E — CV is continuous, at a point z° € E, with respect to the collec-
tion of variables z,, ..., zy if for any e >0 a 8 = (§;, . . ., &y)
llal] be found such that for all z € C (8, 2z°) the following inequality

olds:

1f@ —f@E)I<e (ITI-2)

From now on we will use the term continuous function for the funct-
ion f (z) that is continuous with respect to the set of variables z;, . . .

.o 2y

If the function f (z) is continuous at every point z € E, then it
is said to be continuous on the set E. The following theorem holds
true.

Theorem III.1. A necessary and sufficient condition for the con-
tinuity of the function f(2) = u (z;, - . ., Yn) + 0 (T4, . . ., Yn) ON
a set E = CN is the continuity with respect to the collection of va-
riables of the real functions u (z,, . .., Yyy) and v (z,, . . ., Yn) Of
2N real variables on the corresponding set of a 2N-dimensional Eucli-
dean space.

The properties of continuous functions of a single complex varia-
ble carry over directly to the case of many complex variables. A
series of continuous functions of many complex variables that is
uniformly convergent in a domain G converges to a continuous func-
tion.

"IIL.2. The Concept of an Analytic Function
of Many Complex Variables

As in the case of a single complex variable, one of the basic con-
cepts in the theory of functions of many complex variables is that
of an analytic function.

Given in a domain G < CN a function w = f (z) of many complex

variables. Fixing the values of the variables 2%, . . ., 23, 2%, « - -
..., 2%, we obtain the function
fi (zi) = f (Z?, .. 0y z?—lr Zi, z?—}—lt o o oy Z?V)

of a single complex variable z; specified in some domain G; of the
complex plane 2;. Suppose for arbitrary fixed values z,, cee 284,
2341, - . ., zi each function f, (z;) (i = 1, 2, , N) is an analytic
function of the complex variable z; € G;. Tn thls case we say that
the function f (2) is an analytic function in each variable in the do-
main G. The derivatives f; (z;) of the function f; (z;) with respect to
the variable z; will be called the partial derivatives of f (z) and will
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of

be denoted as 50 Clearly,
t
a_f= . f Bty «ovy Bigy i+ D24, Ziggy ooy BN)—F (24, ...y BN) _
7 Alzlir-[»lo Az, (I111-3)
The partial derivatives 91 can be expressed in terms of the partial

0z;
derivatives of the functions u (z;, ..., yn) and v (zy, ..., Yn):

af __ odu . v »
Lt (I11-4)

For them the Cauchy-Riemann conditions hold:

du av ou ov
Eiir i i P (-5)
We now introduce a basic definition:
A function f (z) of many complex variables z = (24, . . ., 2y) is said
to be analytic* in a domain G if in that domain the function f (z) is

analytic in each variable z; and all its partial derivatives are con-

9z;
tinuous.

Analytic functions of many complex variables have a number of
remarkable properties similar to those of an analytic function of
one complex variable. Below we give a brief survey of these prop-
erties. For the sake of simplicity we consider the case of two inde-
pendent variables, since the reasoning holds true for a larger number
of variables.

II1.3. Cauchy’s Formula

Suppose f (z,, 2z;) is an analytic function in the domain G = G, X
X Gy, the domains G, and G, being simply connected. In G, and G,
take arbitrary closed contours C, and C,, respectively, and consider
the iterated integral

affCut _
I= CS‘ de 652 @) m—Tp o (L-6)

where z, and z, are arbitrary points lying inside the contours Ci
and C,, respectively.

The integrand in (III-6) is continuous with respect to the set of va-
riables, which fact is a sufficient condition for the possibility of

* As in the case of a single complex variable, to simplify later proofs we
included in the definition of an analytic function of many complex variables the
extra condition of continuity of the partial derivatives, which, however, does
not restrict the class of functions under consideration; this follows from the
so-called Hartogs theorem (see, for example, [20]).
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changing the order of integration in the iterated integral. Hence

(g, (fCeld ™
- |\t (69
C2 Cy

Since the function f (§;, {,) is analytic in each variable, the inner
integral in (III-6) is, by virtue of the Cauchy formula (1-59), equal to

_ TG 8 o ge f(;:i, to) ]
C.E (31— 1) (22— Cg) dGy = 2mi =02t Gi—ta) (II1-7)

Taking advantage once again of the Cauchy formula, we finally get

_ (81, Lo) (2 -
I—jdclcj————(,i_m ) il —(—4n) [ (3, 2)  (IL9)

C1

which can be rewritten as

(G o)
1 (a1, 2) = WS §IS gl g, i)

Similarly, for the case of N variables we have the formula

f@) =1, -.-,zu)=(2nfTSd§1... [ Q% (1r40)
¢ 2 hH (22 —n)
=1

where the points z, lie inside the closed contours C, that belong to
the simply connected domains G, and the function f (z) is analytic
in the domain G = G, X ... X Gy. Formulas (III-9) and (III-10)
are generalizations of the Cauchy formula (1-59) to the case of many
complex variables.

From these formulas we can obtain some important properties of an
analytic function of many complex variables. In particular, as in
the case of one complex variable, using formula (I1I-9) we can show
that an analytic function of two complex variables has partial deriv-
atives of all orders for which the following expressions hold true:

onimf(zg, z5)  nlml (G4, Co) dLe
oy~ ) | bt (1)
1
The maximum modulus principle and other properties can similarly
be established.
The appropriate results are obtained from formula (III-10) for an

analytic function of many complex variables.
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III.4. Power Series

In the case of two independent variables, the following expression
is called a power series:

Dl Crm(z1—ay)" (23 —as)™ (111-12)
n=0 m=0
where C,, . a,, a, are specified complex numbers. An assertion si-
milar to the Abel theorem (Theorem 2.5) holds true.

Theorem III.2. If the series (111-12) converges absolutely at the
point 2°= (2} 5= a4, 2} 5~ a,), then it is absolutely convergent inside the
polycircle K (r°, a) of radius r°= (| 2} — a, |, | 23 — a, |), and in any
polycircle of smaller radius * centred at the point a the series is uni-
formly convergent.

Proof. By virtue of the absolute convergence of the series (II1I-12)
at the point z°, all terms of the series are uniformly bounded at this
point. We therefore have the following estimate for the coefficients
of series (III-12):

|G m|< M (I11-13)

|23 —aq|"|23—as|™

with the common constant M for all coefficients. Take an arbitrary
point z = (z,, 2,) inside the polycircle K (r% a) and set

|2, —ay | =q |20 —a, |, |25 —a, | =g, |23 —a, |

where 0 << ¢; <1, 0 < g, << 1. Then, using the estimate (13), we
get for the chosen point z,

|3 S Com = Ga—ai™|<M 3 S atar

n=0 m=0 n=0 m=0
= M
T (1—a) (I—1q0)

which completes the proof of the convergence of the series (III-12) at
the point z.

Since z is an arbitrary point of the polycircle K (r%, a), the abso-
lute convergence of the series (III-12) inside K (r°, a) follows. The
uniform convergence of the series (III-12) in any polycircle K (r?, a)
of smaller radius can be demonstrated with the aid of (III-14), just
as in the case of one complex variable (Theorem 2.5).

The theorem just proved enables one to establish that the domain
of convergence of the power series is the polycircle K (R, a) of ra-
dius R = (R,, R,). Inside K (R, a) the series (I1I-12) is absolutely

* We will say that the radius r@) of the polyclrcle K (r®, a) is less than the
radius r® of the polycircle K (r®, a)if r{’ <r{®, ..., r¥y <r@.

(I11-14)
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-convergent, outside it the series diverges; the series (III-12) is uni-
formly convergent in any closed subdomain of K (R, a). Note that
the radii R, and R, are defined Jomtly and cannot, generally, be
defined separately.

To illustrate let us consider the power series

(n+ m)!

fz)= 2 L (111-15)
. n=0 m=0

the coefficients of which are binomial coefficients. Since the series

is absolutely convergent within its polycircle of convergence, the

series with positive terms

Z Z LADL 2|2 (I11-16)

“alml
n=0 m=0
is convergent in the polycircle of convergence of the series (III-15).
Collecting terms in (III-16) with the sum of the powers n + m =
=5, we get

é‘b (EARSEA ) (111-16")

whence it follows that the radii R, and R, of the polycircle of con-
vergence of the series (III-15) are determined from the condition
R, + R, = 1, i.e., when R, decreases, the value of R, increases and
vice versa.

Consider the series (III-12) within its polycircle of convergence
K (R, a). Taking advantage of the absolute convergence of the series,
collect those terms whose sum of the powers m + n = s:

co

f(Z) =f (zh 22) =‘§0 Us (zh 22) (111-17)

The expression (III-17) is a representation of the original series in
the form of a series of homogeneous polynomials in the variables

Z, = 2 — G, Za=22'—-az
U, (21, 25) = Z Cr, s-h2iZy " (I11-18)

Since the functions u (z,, z,) are analytic in each variable and the
series converges uniformly within the polycircle K (R, a), it follows
by the Weierstrass theorem (Theorem 2.3) that the function f (2) is
also analytic in each variable within K (R, a), and its partial deriv-
atives may be computed by means of termwise differentiation of
the series (III-17). As can be readily seen, the radius of convergence
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of the resulting series is then equal to the radius of convergence of
the series (I1I-12), and the partial derivatives % and f are con-
tinuous inside K (R, a). From this it follows that wzthm the poly-
circle of convergence the power series (I111-12) converges to an analytic
function of many complex variables.

As in the case of one complex variable, it is easy to establish that
the coefficients of the power series (III-12) are expressed in terms of
the values of the partial derivatives of its sum in the centre of the
polycircle of convergence—at the point a = (a,, a,)—via the for-
mulas

f(2) l:=a (11I-19)

C =
M nlml 92} 0z

IT1.5. Taylor’s Series

We now show that with a function analytic in some polycircle
K (R, a) there can be associated a power series that converges to the
given function within X (R, a). The following theorem holds.

T heorem III.3. A function f (z) that is analytic inside a polycircle
K (R, a) is uniguely represented within K (R, a) in the form of the
sum of an absolutely convergent power series:

f(z) = 2 2 (21— a))" (25— a)™

n=0 m=0

Proof. Take an arbitrary point z€ K (R, a). By the formula (III-9)
we have

_ [ 1)
f)=—gm | & | iy & (L11-20)
Cl Cz

where C; and C; are circles with centres at the points a, and a, and
with radii R; and R, that satisfy the conditions |z, — a | <
< R, < R, and |2, — a, | < R; < R,. From earlier reasoning it

follows that the rational fraction m may be expanded

into an absolutely and uniformly convergent series with respect to
€, and &y

Z Z (g(z,—a.)" (33— am)™ (I11-21)

1 —ag)"* ([p—ag)m*!

(C1—21) (Cz— 79)

Substituting the expansion (III-21) into (III-20) and again perform-
ing term-by-term integration of the corresponding uniformly con-
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vergent series, we obtain

o0

f@)=23 3 Comn—a)" (@—a)" (111-22)
n=y0 m=
where Cp, , denotes the expressions

Coim=—1m | &t | it dls (I11:23)
i

(C4—ag)™*t (g —ag)mHt

’

Cs
By (IlI-11) this can be rewritten as

1 antmy(z)
n!'ml 0z} 0z

Cn.m'_—

. (111-24)

Since z is an arbitrary point of K (R, a), from (III-22) follows
the expandability of the function, which is analytic in the polycircle
K (R, a), into a convergent power series.

From a comparison of formulas (III-24) and (III-19) we conclude
that the expansion is unique, and this completes the proof of the
theorem.

By analogy with the results obtained for a function of a single
complex variable (see Theorem 2.6), it is natural to call the expan-
sion (III-22) the Taylor series of the function f (z).

To conclude, note that the radius R® of convergence of the series
(I1I-22) may turn out to be greater than the radius R of the polycircle
K (R, a). In that case the sum of that series will be a function that
is analytic in the polycircle K (R°, a) and is coincident with the
original analytic function f (z) in a polycircle K (R, a) of smaller
radius.

The foregoing reasoning is readily carried over to the case of many
complex variables.

IIL.6. Analytic Continuation

As in the case of a single complex variable, representing an analyt-
ic function of many complex variables with the aid of a power series
permits illuminating the question of the uniqueness of definition of
an analytic function (see Theorem 2.8). For instance, if we have two
analytic functions f, (z,, z,) and f, (2, 2,) in a domain G that coin-
cide in the subdomain G’ of G, then it can readily be demonstrated
that f, (z,, z,) = f, (31, 2,) for 2= (z,, 2,) € G. On this basis we can
introduce the principle of analytic continuation in the following
form.

T he principle of analytic continuation.Given, in domains
GY and G which have a common subdomain G ?, the analytic func-
tions f, (z2) and f, (z) that are coincident in G ® . These functions
are then an analytic continuation of each other, which is to say that
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in the domain G == GV + G? there is a unique analytic function
/ (z) that coincides with f, (z) in GV and with f, (z) in G®.

As in the case of one complex variable, it is possible to construct
an analytic continuation of an analytic function f, (z), originally
specified in some domain GV, along all possible chains of domains
emanating from G and having pairwise common portions.

For example, such an analytic continuation can be obtained by
expanding the function f (z) in the Taylor power series (I1I-22) about
various points z» € GY. If the radius of the polycircle of conver-
gence of any one of these expansions turns out to be greater than the
distance of the point z® to the boundary of the domain G, then
we obtain an analytic continuation of f (z) into the greater domain G
that contains GV.

In this manner we arrive at the concept of the total analytic func-
tion F (z) and its natural domain of existence G or, as it is common
to say, the region of analyticity (also sometimes called the region of
holomorphy). Generally, an analytic continuation can also lead to a
multivalued function whose region of analyticity is a certain multi-
sheeted manifold that results from the introduction of so-called
domains of superposition. *

An essential point in applications of the theoryof functionsof many
complex variables, in particular in the quantum field theory, is
whether or not a given domain G is a region of analyticity. In other
words, whether there is a function f (z) analytic in G for which the
domain G is the natural domain of existence. If G is not a region of
analyticity, then any function f (z) analytic in G can be continued
analytically into a greater domain G* containing G.

As we have seen (Example 4, Sec. 3.2), in the case of one complex
variable the unit circle |z | << 1 is a region of analyticity. Making
use of Riemann’s theorem on the possibility of a conformal map-
ping of an arbitrary domain into the unit circle, it is easy to show
that in the case of one complex variable any domain is a region of ana-
lyticity.

This assertion does not hold true in the case of many complex va-
riables.

To prove this we will show that even in C? the domain

G: {z=(21, 22): 1<|z|=(n[+|2[)* <5}

is not a region of analyticity.** To do this it suffices to demonstrate
that any function analytic in G can be continued analytically into
a greater domain G* that contains G, for instance, into the sphere
|z | <.

* This is discussed in detail in [20].
** This example is a slight modification of the example considered in [2].

See also [20].
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Now suppose f (z) is an arbitrary function analytic in G. Consider
the function

1 .

0@ =0, m) =g | 1EZla (I11-25)
1811=4

The function ¢ (z) is an integral dependent on the variables z, and

z, as parameters. The subdomain {|§, | = 4, | z, | << 3} belongs to

[lzzl

I

] 4 5 Tz,|

Fig. 1111

G (see Fig. I11.1). Therefore the function ¢ (2) is analytic in each va-
riable z, and z, in the polycircle K: {| z, | < 4, | 2, | << 3}. It is easy
to see that the partial derivatives of the function ¢ (2) are then con-
tinuous. From this it follows that in the polycircle K: {| z, | < 4,
| 2, | << 3} the function is an analytic function of two complex va-
riables z, and z,. In particular, ¢ (z) is also analytic in the closed
domain G": {|z, | <4, 1 < |2z, | <3} that simultaneously belongs
to the polycircle K and to the original domain G. By Cauchy’s for-
mula (1-59), we have, in G',

) B dl—f(n, ) (I11-26)

|t ]1=4

whence it follows that the analytic functions f (z) and ¢ (z) coincide
in G'. Hence, in the extended domain G* (in the sphere |z | << 5)
that contains the original domain G, there is defined an analytic
function F (z), equal to f (z) in G and ¢ (z) in K, which is an ana-
lytic continuation of f (z) in G*. The proof is complete.

To summarize, then, in the case of many complex variables not every
region is a region of analyticity. This fact markedly distinguishes the
theory of functions of many complex variables from the theory of
functions of one complex variable.
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WATSON’S METHOD

The Watson method is used chiefly in the summation and asymp-
totic analysis of series. This method was originally proposed by
G. N. Watson in 1919 in a study of the problem of the diffraction of
radio waves on a sphere. The method of separation of variables read-
ily enables one to obtain an analytic representation of the solution
of this problem in the form of a series in terms of eigenfunctions.
However, when the length of the incident wave is much less than
the radius of the sphere, which occurs for instance in problems of
the diffraction of radio waves on the earth’s surface, the resulting
series converges very slowly. Watson was able to develop a method
that permitted transforming this slowly convergent series into anoth-
er series that converges quite rapidly. This method came to be
known as Watson's method.

The principal idea behind Watson’s method is unusually simple and
is based on the fact that when computing the integral with respect to
a complex variable with the aid of- residue calculus, one can, by
closing the contour of integration in various ways, obtain a repre-
sentation of the original integral in the form of various series. How-
ever, despite the simplicity of the basic idea of the Watson method,
its realization in many specific cases requires a great deal of skill.

We illustrate the basic propositions of the Watson method in a
few simple instances.* Let it be required to sum the series

1

n=-oo

where a is a positive number.
Note that when a > 1 the numerical summation of the series
(IV-1) to a high degree of accuracy is not exactly a trivial problem.
Consider the auxiliary integral

1 1 el
d =2 S vifa? sinmy v (Iv-2)
Zr+Z-

* The examples given below in the use of the Watson method were suggested
by S. Ya. Sekerzh-Zenkovich to whom the authors are indebted.
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where the integration is performed on the complex v-plane along
the straight lines £* and £ - parallel to the real axis and at a dis-
tance d from it in the upper and lower half-planes with d <<a
(Fig. IV.1). The integration along the line Z* is from right to left,

Imy

Ty |2 EEYEE | Yes
4T A%
--ia
Fig. IV

along the line £ -, in the reverse direction. The improper integral
(IV-2) is absolutely convergent. Indeed, we have the obvious esti-
mate

eiav
sin v

2 2
= IV-3
tmved =TT | S iy (V9

We have a similar estimate also for Im v = —d. Thus the second
factor in the integrand of (IV-2) is bounded, while the first tends to
zero as 1/|v [?, and this ensures the absolute convergence of the
integral (IV-2).

We will show that the integral (IV-2) is equal to the sum of the
original series (IV-1). Construct the auxiliary integral

1 1 e’l:w
Iy =% ) VFa smav av (IV-4)

Ty
around the closed contour I'y which is made up of the segments &£y
and Zy of the straight lines £* and &£ - between the points

A= (W Foa), A= (=Nt d), aT~(—N=E, ~a),
Al =(N+5, —d)

respectively, and the vertical segments yy (ANAY) and yy (ANAY)
connecting them (Fig. IV.1). Within the domain bounded by the

213878
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contour I'y, the integrand in (IV-4) has poles of the first order at

the points vy, = k(k =0, +1, ..., =N). Therefore, when com-
puting the integral (IV-4) by the calculus of re51dues, we get

2
IN:JE Z Res[vz—}-as sinv’ ] Z Ic2—|-a2 (IVS)

k=-N h=-N
whence it follows that the sum S of the series (IV-1) is equal to
lim Iy.
N-+oo

On the other hand, the limit of the integral Iy as N — oo is equal
to the integral (IV-2). Indeed, by virtue of the absolute convergence
of the improper integral (IV-2) we have

1 q { ‘iﬂ

Nl_,ni 20 S VIFA® sinnawv swmy V=1 (Iv-6)
ey
and the integrals along the straight lines yy and y tend to zero as
N — oo, which fact can readily be established on the basis of the
estimate

i e~ Imv e~ Imv -
sinaw|lyy  [simm(Rev+iImv)] |yy  cosh(x Imv) VN<8 Iv-7)
Thus
at 1
§S= 2 aga =1 (IV-8)
n=-o00

and the original problem of summing the series (IV-1) reduces to
computing the integral (IV-2). This problem can again be solved
with the aid of residue calculus. Note that besides the singularities
on the real axis the integrand in (IV-2) has two poles at the points
v = =ia. To compute the integral along the straight line Z*, we
consider, in the upper half-plane, a closed contour C y consisting of
the segment Z§ and the closing arc Cx of the semicircle. It is easy
to see that for Im v >>d we have an estimate similar to (IV-3):
inv 2

(Iv-9)

e
sin 7V {fm v;ui< e2nd g

whence it follows that the integral around the arc Cy tends to
zero as N — oo. Therefore, when computing the integral along the
line £* by means of residue calculus, we obtain

1 1 Pl 2ni 1 v

-— S ——-———dv:—?i-Res[————-.——, za]

28 v24a? sinnv v24a2? sinnv
'+ .

gt e gy

2ia sinina 2a sinhna
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Similarly
1 1 einv T eﬂa
20 S vita sinv ¥ T2 sinhna (1v-11)

From this we have
1 q ei:w
I=o 5 e dv==cothna (IV-12)
L+re-

which completes the solution of the original problem of summing the
series (IV-1).

Despite the simplicity of the foregoing example it contains all the
basic elements of the Watson method. This method of an asymptotic
analysis of series consists of several stages. In the first stage, it is
-necessary to construct an integral with respect to a complex variable
that is equal to the sum of the original series. The integrand of this
integral must contain, as a factor, the analytic continuation of the
general term of the series into the complex plane of its number. The
next stage consists of an independent calculation of the integral
thus constructed. In many cases one is able to obtain an expression
of the desired integral in terms of the sum of the residues of the inte-
grand function at the singular points of the analytic continuation of
the general term of the series. If the number of such singular points
is finite, then we get an explicit expression for the sum of the origi-
nal series; if the number of these singular points is infinite, then we
transform the original series into a new series that may prove to be
simpler for an asymptotic investigation.

For the next example we consider the problem of computing the
series

F@O)= 3 (—1) 220 (IV-13)

cosh an

n=1

where 0 < 0 < m and o is a specified positive number that satisfies
the condition & € 1. The series (IV-13) is typical of many problems
in mathematical physics, the solution of which is handled by the
method of separation of variables. As is readily seen, by virtue of
the condition @ € 1 a large number of the initial terms of the series
are of the same order (for instance, when & = 10~% and 6 = O the
first 1000 terms of the series vary in absolute value from 1 to 0.995).
For this reason it is extremely difficult to perform a direct numerical
summation of the series (IV-13) for @ € 1. But if we apply the Wat-
son method, it is possible to transform the series (IV-13) into a new
seriesifor which it is easy to find an asymptotic representation when
a L1,

21*
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Let us consider the auxiliary integral

Io—=-L (___cosv®
2i cosh av sin vx

dv (IV-14)

where the contour of integration II on the complex v-plane is an
infinite loop enclosing the positive portion of the real axis (Fig. IV.2)

Im»

Ay

Fig. IV.2

and cutting the real axis at the point v = 1/2. Integration along the
contour II is carried out in the positive direction so that the real
axis remains to the left of the direction of motion. It is easy to see
that the integral (IV-14) is equal to the original series (IV-13). In-
deed, consider the integral
1 cos v0
In (0) =~ S cosh avsin v & (IV-15)
n

around the closed contour II, which consists of a finite portion of the
loop IT and the vertical section 4,4, that closes it and cuts the real

axis at the point v =n 4 -;— The integrand f(v) in (IV-15) is an ana-

lytic function of the complex variable v inside the contour of inte-
gration, with the exception of a finite number of isolated singular

points v, = i (i =1, 2, ..., n) which are poles of the first order
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Therefore, applying the residue theorem we obtain

2( 1)h cos k0 (IV-16)

“cosh ak
h=1

Let us estimate the value of the function f (v) in (IV-15) on the
section A;A4,. Since here Re v = n+—;—, by taking advantage of
the relation

8in Vit |Rev=n4-1/2 = Sin (2n4-1) % cosh (7 Im v)

+isinh (nImv) cos (2n+1) 5 = (—1)" cosh (n[mv)  (IV-17)

we obtain
| sin Vst |44, = cosh (s Im v) (IV-18)
We have the obvious estimate
| cos VO |4y, << O1TmVI| 4,44 (IV-19)
whence

l cos vl Al Imvi 2e=-1Imv|(-01| <2 (IV-20)
sin vit |AjAq cosh (7 Imv)|As4, < Al

On the other hand, it is clear that

| cosh av |4, 4, =% eaxn+1/2) | - g=20 | 4 4
> -;—| 1 —e-a@n+1) | eatnt1/2)  (IV-21)

By virtue of (IV-20) and (IV-21) the integrand in (IV-15) decreases
exponentially on A;A4, as n— oo. Therefore, by passing to the limit
in (IV-15) as n— oo, we get

cos k9
I1(6)= 2 (=)o =F ©) (Iv-22)

which completes the proof that the original series (IV-13) is equal
to the integral (IV-14).

Now let us evaluate the integral (IV-14). To do this, we analyti-
cally continue the integrand of (IV-14) into the entire complex v-

plane and determine the singularities of the function f(v) =

cos v0

= Soshav sV outside the loop II. These are obviously the points

va=n (0=0, —1, =2, ..), vy =i =(2k+1)F k=0, =,

42, ...). All of these points are poles of the first order. Also note
that the integrand f(v) is an odd function of the complex variable v.
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On the complex v-plane we construct a closed contour T, ,
consisting of a finite portion II, of the loop IT between the points

A, and A; (see Fig. I1V.2), the rectilinear segments A,4s, {A3='
1 1
=(n+ ('"4-__)“)} A4, {A4=(—n—-1 (m+1)n)}; A4y,

2 a 2 a
{A-, = (n +-%- .- ﬂm_ti)j_‘) } , and the contour 4,4;434;, which cons-
ists of the straight-line segment A, 4, with the circuit around the point
v=0 along an arc of a semicircle of sufficiently small radius p.
Consider the integral

Luin@®=9r | s dv (IV-23)

cosh av sin vnt

Th, m

where the integration is performed in the negative direction. Clearly

I, m(8) = —n{Res[f(v), O]+h§0 Res [f (v), val}  (IV-24)
On the other hand (see Fig. IV.2), '

Aq Ag
zn,m(e)=2‘—,.{nj f®) dv+§1f(~’) dv+§ f ) dv

Ag As Az
+tmavt [ fmavt [ rmav+ [ fmav) av-es)
cs Ap Ag A3

Since the function f(v) is odd,

Ag Ag
S f(v) dv+ S f()dv=0 (1V-26)
Aq Ap
Besides, it is clear that
. cos vo
‘131311 S solk v simve OV = ¢ (Iv-27)

0
Let us estimate the remaining integrals. By virtue of the estimates
given above [see formulas (IV-20), (IV-21)] the function f (v) tends
exponentially to zero as n — oo on the line segments 4,4, and 434 ,.
To estimate the function f (v) on the line segment A A4,, note that,
like (IV-17),
| cosh &V |tm v=mn/a =cosh (e Re v) >1 (Iv-28)

It is also clear that
mi

| €08 V8 [1m vem/a << E* (IV-29)



Appendiz IV. Watson’s Method 327

and
| sin VI |im ve=mm/a => —;—] 1 —g-2mn¥/a| gmndja > —2— em?/e (IV-30)
From (IV-29) and (IV-30) we get

I cos VO

mx
_ @ =9
SIn ViU |[Im v=mxt/a

<i4e (IV-31)

By (IV-28) and (IV-31) we conclude that the function f (v) tends ex-
ponentially to zero on the line segment 434, asm — oo and 6 < m.

Passing to the limit in (IV-25) as n, m — oo and p — 0 and taking
into account (IV-24) and (IV-15), we obtain, by virtue of the fore-
going estimates,

I(G)—%= —m {Bes [ (v), 014 D} Res[f(v), Vhl} (Iv-32)
=0

Since

cos v0 1
Res [ oo avsimvm * 0] =7 (1V-33)
and

Bes[_%’ L%(Qk‘i‘i)—g'}

cosh av sin v

(—gp cosh [g%(zu- y]

= (1V-34)
sinh [—;;; @k + 1)]
we finally get
On
1 bl cosh 2—(2k+1)
I@)=F@®)=—5+5 (=1 [ = ] (IV-35)
s sinh [W @k+ 1)]

It is obvious that the terms of the series (IV-35) are of the
x 1

asymptotic order e < (r+ 2)(“ » as a—0, and this ensures the

rapid convergence of the series (IV-35) for 6 <<z. If « is sufficiently

small, one can confine himself, in practical calculations, to only

a few of the terms of the series.

It must be stressed that the specific applications of Watson's meth-
od in each separate case may differ because there are different ways
of constructing the integral equivalent to the original series, and
there are different ways of evaluating it. The most effective realiza-
tion of the method in each concrete case depends on the specific na-
ture of the series being investigated.
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