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INTRODUCTION 

The concept of a complex number arose primarily from the need 
to automatize calculations. Even the most elementary algebraic 
operations involving real numbers take us beyond the domain of 
real numbers. It will be recalled that not every algebraic equation 
can be solved in terms of real numbers. It is therefore necessary 
either to give up routine methods of solution and each time carry 
out a detailed investigation of the possibility of their application 
or extend the domain of real numbers so that basic algebraic ope­
rations can always be employed. Complex numbers are just such 
an extension of the domain of real numbers. A remarkable property 
of complex numbers is that the basic mathematical operations 
involving them do not take one outside the domain of complex 
numbers. 

The introduction of complex numbers and functions of a complex 
variable is likewise convenient when integrating elementary func­
tions, when solving differential equations, and in other cases when 
one frequently has to move into the domain of complex numbers. 
The complex notation is also convenient in the mathematical formu­
lation of many physical propositions (for example, in electrical 
engineering, radio engineering, electrodynamics, and so forth). 

One of the principal classes of functions of a complex variable­
analytic functions-is closely connected with solving the Laplace 
equation, to which numerous problems of mechanics and physics 
reduce. For this reason, the methods of the theory of functions of 
a complex variable have found extensive and effective use in solving 
a broad range of problems in hydrodynamics and aerodynamics, the 
theory of elasticity, electrodynamics and other natural sciences. 





CHAPTER 1 

THE COMPLEX VARIABLE 

AND FUNCTIONS 

OF A COMPLEX VARIABLE 

1.1. Complex Numbers and Operations 
on Complex Numbers 

a. The concept of a complex number 

We assume that the reader is acquainted with the concept of a 
complex number and with the definition of arithmetical operations 
involving complex numbers. A brief resume is given below. 

A complex number z is characterized by a pair of real numbers (a, b) 
having an established sequential order of the numbers a and b. This 
is stated succinctly in the notation z = (a, b). The first number a 
of the pair (a, b) is called the real part of the complex number z 
and is denoted by the symbol a = Re z; the second number b of the 
pair (a, b) is called the imaginary part of the complex number z 
and is symbolized hy b = Im z. 

Two complex numbers z1 = (a1 , b1) and z2 = (a2 , b2) are equal 
only when both the real and imaginary parts are equal, that is, 
z1 = z2 only when a1 = a2 and b1 = b2 • 

b. Operations on complex numbers 

Let us now define algebraic operations involving complex num­
bers. 

The sum of two complex numbers z1 = (a1 , b1 ) and z2 = (a2 , b2 ) 

is a complex number z = (a, b), where a = a1 + a2 , b = b1 + b2 • 

It will readily be seen that in this definition the commutative and 
associative laws for addition, z1 + z2 = z2 + z1 and z1 + (z2 + 
+ z3) = (z1 + z2 ) + z3 , hold true. As in the domain of real num­
bers, zero is a complex number 0 such that the sum of it and any 
complex number z is equal to z, that is, z + 0 = z. There is obviously 
a unique complex number 0 = (0, 0) that possesses this property. 

The product of the complex numbers z1 = (a1 , b1) and z2 = (a2 , b2 ) 

is a complex number z = (a, b) such that a = a1a2 - b1b2 , b = 
= a1b2 + a 2b1 • In this definition of a product, we find that the 
commutative [z1z2 = z2z1 ], associative [z1 (z2 ·z3) = (z1 ·z2 ) z3 ] and 
distributive [(z1 + z2 ) z3 = z1z3 + z2z3 ] laws hold. 
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Let us include the real numbers in the set of complex numbers 
and regard the real number a as the complex number a = (a, 0). 
Then, as follows from the definition of the operation:, of addition 
and multiplication, the familiar rules involving real numbers hold 
true fGr complex numbers as well. Thus, the set of complex numbers 
is regarded as an extension of the set of real numbers.* Note that 
multiplication by a real unit (1, 0) does not change a complex 
number: z ·1 = z. 

A complex number of the form z = (0, b) is called a pure imaginary 
number and is symbolized as z = ib. The pure imaginary number 
(0, b) = ib may be regarded as the product of the imaginary unit 
(0, 1) and a real number (b, 0). The unit imaginary number is 
ordinarily denoted by the symbol (0, 1) = i. By virtue of the defi­
nition of a product of complex numbers, the fo1lowing relation 
holds true: i ·i = i 2 = -1. It enables one to attribute a direct 
algebraic meaning to the real-imaginary form of a c.omplex number: 

z = (a, b) = a + ib (1-1) 

and perform operations of addition and multiplication of complex 
numbers in accordance with the usual rules of the algebra of poly­
nomials. 

The complex number z = a - ib is said to be the complex con­
jugate number of z = a + ib. 

The operation of subtraction of complex numbers is defined as 
the inverse operation of addition. A complex number z = a + ib 
is termed the difference between the complex numbers z1 = a1 + ib1 

and z2 = a2 + ib2 if a = a1 - a 2 , b = b1 - b2 • 

The operation of dividing complex numbers is defined as the 
inverse operation o_f multiplication. A complex number z = a + ib 
is called the quotient of the complex numbers z1 = a1 + ib1 and 
z2 = a2 + ib2 =I= 0 if z1 = z ·z2 , whence it follows that the real 
part a and the imaginary part b of the quotient z are found from the 
linear system of algebraic equations 

a2a - b2b = a1 

b2a + a2 b = b1 

with the determinant a; + b: different from zero. Solving this 
system, we get 

(1-2) 

• As will follow from subsequent analysis, the set of complex numbers, un­
like the set of real numbers, does not pos!Wss the property of ordering since there 
does not exist a rational system for comparing complex numbers. 
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c. The geometric interpretation of complex numbers 

The study of complex numbers is greatly facilitated by interpret­
ing them geometrically. Insofar as a complex number is defined 
as a pair of real numbers, it is natural to depict the complex number 
z = a + ib as a point in the x, y-plane with Cartesian coordinates 
x =a and y = b. The number z = 0 corresponds to the origin of 
the plane. We shall henceforward call this the complex plane; the 
axis of abscissas is the real axis, the axis of ordinates is the imag­
inary axis of the complex plane. We have thus obviously established 
a reciprocal one-to-one correspondence between the set of all 
complex numbers and the set of points of the complex plane, and 
also between the set of all complex numbers z = a + ib and the 
set of free vectors, the projections x and y of which on the axis of 
abscissas and the axis of ordinates are, respectively, equal to a and b. 

There is another extremely important form of representing com­
plex numbers. It is possible to define the position of a point in the 
plane by means of polar coordinates (p, q>), where p is the distance 
of the point from the coordinate origin, and q> is the angle which 
the radius vector of the given point makes with the positive direction 
of the axis of abscissas. The positive direction of the variation of 
the angle q> is the counterclockwise direction (-oo < q> < oo). 
Taking advantage of the relationship between Cartesian and polar 
coordinates x = p cos q>, y = p sin q>, we get the so-called trigo­
nometric form (or polar form) of 11: complex number: 

z = p (cos q> + i sin q>) (1-3) 

Here, p is usually called the modulus (or absolute value) and q> the 
argument (amplitude) of the complex number and p = 1 z 1, q> = 
,= Arg z. These formulas express the real and imaginary parts of 
the complex number in terms of its modulus and argument. It is 
easy to express the modulus and argument of a complex number in 

terms of its real and imaginary parts: p = V a2 + b2 , tan q> = !.. 
a 

(when choosing the value of q> in the latter equation, take into 
account the signs of a and b). Note that the argument of the complex 
uumber is not defined uniquely, but to within an additive multiple 
of 2n. In a number of cases, it is convenient to denote, in terms of 
nrg z, the value of the argument contained within the range 'Po ~ 
·-;;; arg z < 2:rt + q> 0 , where q>0 is an arbitrary fixed number (say, 
1p0 = 0 or q>0 = -:rt). Then Arg z = arg z + 2kn (k = 0, ±1, 
1::2, ... ). The argument of the complex number z = 0 is not defined 

nnd its modulus is zero. Two nonzero complex numbers are equal if 
nnd only if their moduli are equal and the values of their arguments 
nre either equal or differ by a multiple of 2:rt. Complex conjugate 
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numbers have the same modulus while the values of their arguments 
(given an appropriate choice of their ranges) differ in sign. 

Finally, taking advantage of a familiar formula due to Euler,* 
eicp = cos <p + i sin <p, we obtain the so-called exponential form 
of a complex number: · 

z = pdcp. (1-4) 

The earlier noted correspondence between the set of all complex 
numbers and the plane vectors enables us to identify the operations 

!I 

a, .:r: 

Fig._ 1.1 

of addition and subtraction of -complex numbers with the corres­
ponding operations involving vectors (Fig. 1.1). We thus readily 
establish the triangle inequalities 

I zl + z2 I ~ I zl I + I z2 I, I z1 - z2 I ;;;;:: I zl I - I z2 I (1-5) 

The modulus (absolute value) of. the difference of two complex 
numbers is geometrically interpreted as the distance between the 
corresponding points in the complex plane. Note also the obvious 
inequalities I z I ;;;;:: a, I z I ;;;;:: b. 

In performing operations of multiplication it is convenient to 
make use of the trigonometric form of representing complex numbers. 
By the rules of multiplication, we get** 

z = p (cos <p + i sin <p) = z1 ·Z2 

-----

= p1 (cos <p1 + i sin <p1) p2 (cos <p 2 + i sin <p2 ) 

= p1p2 (cos <p1 cos <p2 - sin <p1 sin <p2} 

+ iPtP2 (sin <p1 cos <p2 + cos <p1 sin <p2) 
= P1P2 [cos ( <J>1 + <J>2) + i sin ( <p1 + <J>2) I = Pt ·P2 ·ei(cp,H. > 

* For the time being we shall regard this expression as an abridged form of 
representing the complex number z = cos 1p + i sin I"P· The full meaning of this 
notation will be established later on. 

** This formula demonstrates that the earlier introduced function eicp pos­
sesses the propert-y eicp,.eicp, = ei(cp,+cp•>. 
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Whence p = p1 ·p2 , <p = <p1 + <p 2 , that is the modulus of the prod­
uct is equal to the product of the moduli, and the argument is 
equal to the sum of the arguments of the factors. A similar relation 

.!.!... = E!.. ei(<Pt-<P2l 
12 P2 

holds true in the case of division of complex numbers when p2 =I= 0. 

d. Extracting the root of a complex number 

The trigonometric and exponential forms of representing complex 
numbers are convenient for considering the algebraic operations 
of raising a complex number to a positive integral power and of 
extracting the root of a complex number. Thus, if z = z~, then 
p = p~ and <p = n<p1 • 

The complex number z1 = y/z is called the nth root of the com­
plex number z if z = ~. From this definition it follows that p1 = 
= ;Y"P and <p1 = 1... As has been pointed out, the argument of 

n 
a complex number is not defined uniquely, but to within an additive 
multiple of 2:rr. For this reason, from the expression for the argu­
ment of a complex number z1, 

<p 2:rtk 
fP~t=-+--n n 

where <p is one of the values of the argument of the complex num­
ber z, we get that there exist different complex numbers which, 
when raised to the nth power, are equal to one and the same complex 
number z. The moduli of these complex numbers are the same and 

are equal to ;Yp, while the arguments differ by a multiple of 2:rt. 
n 

The number of distinct values of the nth root of the complex num­
ber z is n. The points in the complex plane that correspond to diffe­
rent values of the nth root of the complex number z are situated on 
the vertices of a regular n-gon inscribed in a circle of radius ;Yf) 
centred at the point z = 0. The appropriate values of (jlR. are obtained 
as k takes the values k = 0, 1, ... , n- 1. 

Classical analysis posed tne problem of extending the set of real 
numbers so that not only the elementary algebraic operations of 
addition and multiplication but also the operation of extraction 
of roots does not require going outside the extended set. We thus 
~ee that the introduction of complex numbers solves this problem. 

Example 1. Find all the values of V~ Writing the complex num-
. :It. 

. t-

ber in exponential form as z = i = e 2 , we find the following ex pres-
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sions for the values of the square root of this complex number zk = 
i.!!.+i~ 

= e 4 2 , k = 0, 1 (Fig. 1.2), whence 

< n f- . . n v2 (1 + ") z0 =e =cos 4 - tsmT=z-. £ 

i~ i..:!. y2 
z1=e 4 = -e 4 = - 2 (1+i) 

I 
I 

I 
I 
I 

I 
\ 
\ 
\ 
\ 

-// 
/ 

/ 

--
II 

• .I( 

. '2 
z=t=e 

Fig. 1.2 

.J( 

z =e '7i" ,o 
\ 
\ 
\ 
I 

.r 

Example 2. Find all the values of pi, where p >0 is an integer . 
. 2n k 

Taking advantage of the representation 1 = ei0, we get Zk = / P 
as in the preceding example, k = 0, ... , p - 1, whence 

-2n 
io 1 '-= 2n+ .• 2n Zo=e = , Z1=e P =COS- £Sln-, . .. ,Zp-l 

p p 

l~p-1) -i~ 2n . . 2n 
=e P =e P =Cos --tsm-

p p 

Thus, the pth root of 1 has exactly p distinct values. These complex 
numbers correspond to the vertices of a regular p-gon inscribed in 
a circle of unit radius centred at the point z = 0, one of the vertices 
lying at the point z = 1. 
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J·:.mmJJle3. Find allthevaluesofV1-i V3. Since z=1-iV3= 
.1t 

= :z,. ':T, it follows that for values of the square root of this com-
.l't . 2l'tk 

plux number we get the expressions Zk · V2e-t6+t-2-, k=O, 1, 
whrr)(".o .. 

z0 =V2e-i: =V2(cosi--isi~-i-)= ~;i 
. 5l't ,;3- . V- t- r -! 

z1 = · 2 e 6 = - V 2 = - Zo 

Tlru~, to extract the nth root of a complex number, one has to 
represent it in exponential form, extract the nth root of the modulus 
of tlw given complex number (take the arithmetic-real and posit­
ive--viilues of the root), and divide the argument of the given com­
plex number by n. (Bear in mind the multivaluedness of the argu­
ment when obtaining all the values of the root.) 

1.2. The Limit of a Sequence of Complex Numbers 

a. The definition of a convergent sequence 

In building the theory of functions of a.l'mplex variable, it is 
of great importance to carry the princip8'id.eas of analysis into 
the complex domain. One of the fundamental concepts of analysis 
is that of a limit and, in particular, the concept of a convergent 
sequence of numbers. A similar role is played by the respective con­
cepts in the domain of complex numbers. Here, many of the defini­
tions associated with passage to the limit fully repeat the appropriate 
definitions in the theory of functions of a real variable. 

A sequence of complex numbers is a consecutive infinite set of complex 
numbers. We will denote a sequence of complex numbers by the 
symbol {zn}· The complex numbers Zn that form the sequence {zn} 
are called its elements.* 

The number z is called the limit of the sequence {zn} if for any positive 
number 8 it is possible to indicate an N (e) such that all subsequent 
elements Zn of the sequence satisfy the inequality 

I z- Zn I< 8 for n ~ N (e) 

• The definition of a sequence does not exclude the possibility of repeating 
elements and the particular case of all elements of a sequence coinciding. 

2-3878 
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The sequence {zn} which has a limit z is called a sequence convergent 
to the number z and is symbolized as lim Zn = z. 

n-+00 

For a geometric interpretation of the limit process in the complex 
domain it is convenient to use the concept of the e-neighbourhood 
of a point in the complex plane. 

The set of points z of the complex plane which lie inside a circle of 
radius e centred in the point z0 ( J z - z0 I < e) is termed the £-neigh­
bourhood of the point z0 • 

From this definition it follows that the point z is the limit of the 
convergent sequence {zn} if in any e-neighbourhood of the point z 
there lie all the elements of the sequence from a certain number on­
ward which is dependent on e. 

Since every complex number Zn = an + ibn is characterized by 
the pair of real numbers an and bn, to the sequence of complex num­
bers {zn} correspond two sequences of real numbers {an} and {bn}, 
which are respectively made up of the real and imaginary parts of 
the elements Zn of the sequence {zn}. 

The following assertion holds. 
T hem•em 1.1. A necessary and sufficient condition for the conver­

gence of a sequence {zn} is the convergence of the sequences of real 
numbers {an} and {bn} (zn = an + ibn). 

Proof. Indeed, if the sequence {zn} converges to the number z = 
= a + ib, then for any e > 0 I an - a I ~ I Zn - z I < e and 
I bn - b I< e for n ~ N (e). This proves the convergence of the 
sequences {an} and {bn} to a and b, respectively. The converse asser-
tion follows from the relation I Zn - z I = Y(an - a)2 + (bn - b)2 . 

where a and b are the limits of the sequences {an} and {bn} and z = 
=a+ ib. 

A sequence {zn} is called bounded if there exists a positive number 
M such that for all elements Zn of the sequence the inequality I Zn I < 
< M holds. The basic property of a bounded sequence is charac­
terized by the following theorem. 

Theorem 1.2. From any bounded sequence it is possible to extract 
a convergent subsequence. 

Proof. Since the sequence {zn} is bounded, it is clear that the real 
sequences {an} and {bn} corresponding to it are likewise bounded. 
Let us consider the sequence {an}. Since this sequence is bounded, 
we can extract a convergent subsequence {an1} the limit of which 
we denote by a. To the sequence {an.} there corresponds a sequence 

I 

{bn.}, which is also bounded. We can therefore extract from it a con· 
I 

vergent subsequence {bnk} wit.h limit b. And the corresponding 
sequence {ank} converges to a as before. From this it follows that 
the sequence of complex numbers {znk} = {ank + ibnk} is likewise 
convergent, and lim Zn" = z = a + ib. The theorem is proved. 

nk-oo 
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b. Cauchy's test 

When investigating the convergence of a sequence, it is often 
convenient to use the necessary and sufficient condition for the 
convergence of a sequence called Cauchy's test. 

Cauchy's test. A sequence {zn} converges if and only if for 
every e > 0 there is an N (e) such that 

I Zn - Zn+m I < e (1-7) 

for n ~ N (e) and for every integer m ~ 0. 
Proof. To prove Cauchy's test we again take advantage of the 

equivalence of convergences of the sequence {zn} and the sequences 
of the real numbers {an} and {bn}, and also of the fact that the Cauchy 
test is a necessary and sufficient condition for the convergence of 
a sequence of real numbers. We begin by proving the necessity of 
Cauchy's test. Since the sequence {zn} converges, it follows that 
the sequences of the real numbers {an} and {bn} also converge. Whence 
it follows that for every - e > 0 and for every integer m > 0 

e e 
I an- an+m I< 2 for n ~ N 1 (e) and Ibn- bn+m I< 2 for 
n ~ N 2 (e). Choosing for the N (e) the greater of N 1 and N 2 , we get 
I Zn- Zn+m I< e for n >N (e), by virtue of the triangle inequa­
lity. 

Now let us take up the sufficiency of Cauchy's test. For n ~ N 
there follow from the relation (1-7) the inequalit.ilr'l an- an+m 1.~ 
~ I Zn- Zn+m I< 8 and Ibn- bn+m I ~I Zn~ Zn+ml < 8 whiCh 
are sufficient conditions for the convergence of the sequences {an} 
and {bn}, that is, for the convergence of the sequence {zn}· We have 
thus proved that fulfilment of Cauchy's test is a necessary and suf­
ficient condition for the convergence of a sequence {zn} with complex 
elements. 

c. Point at infinity 

We introduce the concept of the point at infinity in the complex 
plane, which will be needed later on. Let there be a sequence of 
complex numbers {zn} such that for every positive number R there 
exists an integer N, beginning with which the terms of the sequence 
satisfy the condition I Zn I > R for n ~ N. We call such a sequence 
indefinitely increasing. According to the definitions introduced 
earlier the given sequence, like any subsequence of it, has no limit. 
This special instance of a sequence increasing without bou d gives 
rise to a number of inconveniences. We get around them · tro­
ducing the complex number z = oo, and we assume that every se 
increasing without bound converges io this number, to which, in t 
complex plane, there corresponds the point at infinity. We introduce 
the concept of the extended complex plane consisting of the ordinary 
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complex plane and a single infinitely distant element-the point 
at infinity z = oo. * If we illustrate this geometrically by associating 
the elements of an indefinitely increasing sequence {zn} with the 
points of the complex plane, we will see that the points of this sequence 
lie (as their number increases) outside concentric circles centred at 
the coordinate origin, the radii of the circles being arbitrarily large. 
Note that the points of the given sequence tend to the point oo 
irrespective of the direction in the extended complex plane. 

In connection with the concepts just introduced it is natural to 
use .the term neighbourhood of the point at infinity for the set of 
points z of the extended complex plane that satisfy the condition 
I z I >R, where R is a sufficiently large positive number. 

Let us determine the algebraic properties of the number z = oo. 
From the elements of an indefinitely increasing sequence {zn}, form 

the sequence { z~}. This sequence converges to the point z = 0. 
Indeed, from earlier considerations it follows that for every e > 0 

there exists a number N such that I z~ I < e for n ~ N. The con­
verse is obvious, i.e., if a sequence gn} converges to zero and con­

sists of nonzero elements, then the sequence { ~~} converges to the 

point at infmity. 

We thus assume ! = 0 and ~ -'--- oo. Generally, the following 

relutions are established for the point at infinity: z ·OO = oo for 

z =F 0, and z + oo = oo, __:. = 0 for z =F oo, which are natural 
00 

from the viewpoint of the limit process in operations of addition 

and multiplication. From this point of view, the operation : is 

naturally indeterminate. 

1.3. The Concept of a Function 
of a Complex Variable. Continuity 

a. Basic definitions 

We now introduce the concept of a function of a complex vari­
able-in the same way as that of a function of a real variable. We 
say that on a set E of the complex plane there is specified a function 
of a complex variable if a law is given that puts every point of 
E in a one-to-one correspondence with a certain complex number. 
The set E is called the set of values of the independent variable. 

• Note that the argument of the complex number oo is not defined, just as 
its real and imaginary parts are not defined. 
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The structure of this set may be extremely complicated and diver­
sified; however, in the theory of functions of a complex variable 
we consider sets of a special structure. Certain auxiliary notions 
will be needed in the sequel. 

A point z is called an interior point of the set E if there exists an 
e-neighbourhood of z, all the points of which belong to E. For in­
stance, the point z of the set I z I ~ 1 is an interior point if I z I < 1; 
the point z = 1 is not an interior point of the given set. 

The set E is called a domain if the following conditions are fulfilled: 
(1) every point of the set E is an interior point of the set; (2) any two 
points of the set E may be connected by a polygonal line, all the points 
of which belong to E. 

In this definition of a domain, the second requirement is the 
connectivity requirement of a domain. For example, the set of points 

!I 

Fig. 1.3 

I z I < 1 forms a domain. In exactly the same way, the E-neigh­
bourhood of the point z0 (I z - z0 I < e) forms a domain. The set 
of points I z I ~ 1 is not a domain, since not all its points are inte­
rior points. Neither are the set of points I z I =1= 1 and the set I z I < 
< 1, I z- 4 I< 2 (Fig. 1.3) domains, since they are not connected. 
The letters @l, G, D are ordinarily used to denote domains. 

The point z is an exterior point of the domain @l if there exists an 
E-neighbourhood of z such that none of its points lie in the domain @l. 

The point z is a boundary point of the domain @l if any E-neigh­
bow·hood of it contains both the points that belong to the domain @J 
and the points that do not belong to @l. For example, z = 1 is 
a boundary point of the domain I z I < 1. The collection of all boun­
dary points form the boundary of the domain. In the future we will 
ordinarily use the letters 1'• r, c to denote the boundary of a domain. 
The simplest instance of a boundary of a domain is, obviously, 
a curve; however, the boundary of a domain can also consist of 
a discrete set of points. For example, the point set I z I =1= 0 forms in 
the complex plane a domain whose boundary is the point z = 0. 
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The set obtained by adjoining to a domain all its boundary points 
is called a closed domain. We will denote a closed domain by a bar 
over the symbol of the domain ({ij", G, D). 

In the future we will consider those cases when the boundary of 
a domain is one or several piecewise smooth curves, which, in par­
ticular cases, can degenerate into individual points. Both singly 

!I 
connected and multiply connected domains 
.will be considered. For example, the do­
rna in I z - i I < 2 is a singly connected 
domain whose boundary is the circle I z -
- i I= 2; the annulus 1 <I zl < 2 (Fig. 1.4) 

2 is a doubly connected domain; the point 
--t:H'-t------1~-+H+-... .:r- set z =1= 0 is a singly connected domain, 

Fig. 1.4 

and so forth. 
If the domain @l lies entirely inside 

some circle of finite radius, it is called 
bounded, otherwise it is unbounded. 

We will mainly be concerned with cases 
when the set E of values of a complex 
variable represents a domain @l or a closed 

domain @l of the complex plane. Then, a single-valued function of 
a complex variable z specified in the domain @l is defined by a law 
that associates with every value of z in the domain @l a definite 
complex number w. This correspondence will be written symboli­
cally as follows: 

w = f (z) (1-8) 

The set of complex numbers w that correspond to all z E @l is 
called the set of values of the function f (z). Since every complex 
number i!i characterized by a pair of real numbers, the specification 
of a complex function w = u + iv of the complex variable z = 
= x + iy is equivalent to the specification of two real functions of 
two real variables; this may be written as 

w (z) = u (x, y) + iv (x, y) (1-9) 

The functions u (x, y) and v (x, y) are defined in the domain @l 
of the plane of real variables x, y, corresponding to the domain @l 
of the complex z-plane. The function u (x, y) is called the real part, 
and the function v (x, y) is called the imaginary part of the function 
w =I (z). In the future, unless otherwise stated, we will always use 
the representation (1-9), denoting the real part of the function I (z) 
by the symbol u and the imaginary part by the symbol v. 

One is frequently concerned with multiple-valued functions of 
a complex variable when every value z E @l is associated with several 
complex numbers. In the present chapter we will only consider 
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single-valued functions of a complex variable. A detailed analysis 
of multiple-valued functions will be given later. 

The set of values w of the function f (z) in the complex w-plane 
can have a highly diversified structure. In particular. it may be a 
domain G or a closed domain G. We will consider only such cases 
in the future. The geometrical interpretation of the concept of the 
function I (z) of a comylex variable consists in the fact that the 
equality w = f (z) estab ishes a law of correspondence between the 
points of the domain @J of the complex z-plane and the points of 
the domain G of the complex w-plane. The converse correspondence 
is also established: with every point w E G there is associated one 
or several points z of the domain @I. This signifies that in the domain 
G there is specified a (single-valued or multiple-valued) function 
of the complex variable w: 

z = q> (w) (1-10) 

This function is called the inverse function of f (z). The domain G 
of specification of the function q> (w) is obviously tho domain of 
values of the function f (z). If tho function cp (w), which is the inverse 
of the single-valued function I (z) specified in the domain @I, is 
a single-valued function in the domain G, then a one-to-one cor­
r~~spondence is established between the domains @I and G. 

The function f (z) is called a univalent function in the domain @J 
if at distinct points z of this domain it assumes distinct values. 

From this defmition it follows that a function which is the inverse 
of a univalent function is single-valued. 

b. Continuity 

Let us discuss the continuity of a function of a complex variable. 
Let a function f (z) be defined on a certain set E. We consider various 
st1quences {zn} of points of this set which converge to some point z0 

and consist of points z,. that differ* from the point z0 (zn =1= z0), 

and the associated sequences {/ (zn}} of values of the function. If, 
irrespectiue of the choice of the sequence {zn}, there exists a unique limit, 
lim I (zn) = w0 , then this limit is called the limiting value, or 

r, •zo 
the limit, of the function f (z) at the point z0 • This is written as 

lim /(z) =Wo (1-11) 
z-+zo 

• Here it is assumed that the point z., is the condensation point of the set E 
l.t•., there exist sequences {zn} of points of this set which converge to the poini 
'o· 
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A different definition* of the concept of limiting value (or limit) 
of a function is frequently used. 

A number w0 is called the limiting value of a junction f (z) at the 
point z0 if for every e > 0 there is a B > 0 such that for all points 
z E E and satisfying the condition 0 < I z - z0 I < B, the inequality 
I f (z) - w0 I < e holds. 

We shall demonstrate the equivalence of these definitions. Let 
the function f (z) satisfy the second definition. Take an arbitrary 
positive number e and choose for it a corresponding B (e). Consider 
an arbitrary sequence {zn} -+ z0 • We find N [l) (e)] = N (e), for 
which henceforth 0 < I Zn - z0 I< B. Then, by hypothesis, 
If (zn) - w0 I< e for n > N (e), and since e is an arbitrary num­
ber greater than zero, this means, by virtue of the arbitrary choice 
of the sequence {zn}, that lim f (zn) = w0 : that is, the function 

zn~zo 

f (z) satisfies the first definition as well. Hence, the first definition 
follows from the second. 

Now let us prove that the second definition follows from the first. 
Assume that this is not so. Then there is an e0 > 0 such that for 
every Bn > 0 there is a point Zn E E such that for 0 < I Zn - z0 I< 
< Bn the inequality If (zn) - w0 I > e0 will be fulfilled. Choose 
a sequence { Bn} -+ 0 and a corresponding sequence {zn} of points 
satisfying the foregoing inequalities. Obviously, {zn} -+ z0 anrl the 
sequence {/ (zn)} does not converge to the number w0 , since all terms 
of this sequence differ from w0 by more than e0 • But the result thus 
obtained contradicts the first definition. Hence, the assumption does 
not hold and the second definition follows from the first. The equi­
valence of both definitions is proved. 

As in the case of a real variable, an important role is played by 
the concept of continuity of a function. Let us begin with the concept 
of continuity at a point. We will consider that the point z0 at which 
this concept is defined must belong to the set E over which the func­
tion is specified. 

A function f (z), specified on a set E, is called continuous at a point 
z0 E E if the limiting value of the junction at the point z0 exists, is 
finite and coincides with the value f (z0) off (z) at the point z0 ; i.e., 
lim f (z) = f (z0 ). 
Z-+ZO 

This definition of continuity is extended both to interior points 
and boundary points of the set.** 

* Note that this definition, unlike the first one, is meaningful only for 
finite values of z0 and w0• 

* * If a point z0 is an isolated point of the set E (i.e., there exists an e-neigh­
bourhood of z0 in which there are no other points of the set E), then, by defini­
tion the function f (z) is considered continuous at the point z0 • 
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If the function f (z), which is spec.ified on a set E, is continuous 
at all points of the set, then we say that f (z) is continuous on the 
set E. In particular, we will consider functions which are continuous 
in a domain, in a closed domain and on a curve. We once again 
stress the point that by virtue of the definitions given above one 
should regard the limiting values of the function f (z) only on sequen­
ces of points that belong to the given set (in the latter cases, a 
closed domain, a curve, etc.). 

With the aid of the e-l> definition of a limiting value, the- con­
ditions of continuity of the function f (z) at a point z0 may also be 
formulated as follows. The function f (z) is continuous at a point z0 

if for every e > 0 there is a l> > 0 such that for all points z E E which 
satisfy the inequality I z - z0 I < l>, the inequality If (z) - f (z0) I < 
< e holds. Geometrically, this signifies that a function of a complex 
variable which is continuous at a certain point* z0 associates with 
every point of a <'>-neighbourhood of the point z0 a certain point 
belonging to the e-neighbourhood of the point w0 = f (z0). 

From the continuity of the function of a complex variable f (z) = 
= u (x, y) + iv (x, y) there follows the continuity of its real part 
u (x, y) and imaginary part v (x, y) in the variables x, y taken 
together. The converse assertion is also true; i.e. if u (x, y) and 
v (x, y) are continuous functions of the variables x, y taken together, 
at some point (x0 , y0 ), then f (z) = u (x, y) + iv (x, y) is a func­
tion of the complex variable z = x + iy continuous at the point 
z0 = x0 + iy0 • These assertions follow from the fact that the neces­
sary and sufficient condition for the convergence of a sequence of 
complex numbers is the convergence of the sequences of their real 
and imaginary parts. 

This enables us to extend to functions of a complex variable the 
basic properties of continuous functions of two real variables. Thus, 
the sum and product of two functions f1 (z) and f 2 (z) of a complex 
variable which are continuous in the domain @3 are also continuous 

functions in that domain; the function <p (z) = ;~~;~ is continuous 

at those points of the domain @J where f 2 (z) =j=. 0, the function f (z) 
continuous on a closed set E is bounded in modulus onE, etc. 

* Note that the given definitions of the concept of continuity of a function 
I (z) at a point z0 hold true not only in the case of the finite point z0 , but also 
in the case of the point at infinity zQ = oo. Then, by virtue of the definition given 
on page 24, the limiting value of the function f (z) at the point oo should be un­
derstood as the limit of the sequence {/ (z 11 )}, where {z11 } is any indefinitely in­
ereasing sequence. In the second definition of continuity, the condition 
I z- z0 I < 6 has to be replaced by the condition 1 z 1 > R. 
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c. Examples 

Let us consider some elementary examples. 
1. Considet· the following linear function as an instance of a func­

tion of a complex variable: 

I (z) = w = az + b (1-12) 

Here. a and bare specified complex constants. We assume that a =I= 0, 
otherwise the function (1-12) associates with all points z of the com­
plex plane one and the same complex number b. The function (1-12) 
is defined for all values of the independent variable z. Its domain 
of definition is the entire* complex z-plane. To every value of z 
there corresponds only one value of w; i.e. I (z) is a single-valued 
function of z. Quite obviously, the inverse function IP (w) = z = 
= _!_ w - .!!... = a1w + b1 possesses the same properties that I (z) 

a a 
does. Thus, I (z) is a univalent function of z in the entire complex 
plane establishing a one-to-one correspondence between the planes 
z and w. By virtue of the continuity of the real and imaginary parts 
of f (z) with respect to the variables x, y taken togetluw, this func­
tion is continuous over the entire complex plane (for all linite values 
of x. y). To clarify the geometrical meaning of this corrrspondence, 
consider the auxiliary function ~ = az. By the rule of multiplica­
tion of complex numbers we have '= I a 1·1 z !·{cos (arg a+ arg z) + i sin (arg a+ at·g z)} 

Whence it follows that I ' I = I a 1·1 z 1, arg ' = arg z + arg a. 
That is to say, the function ~ = az associates with every complex 
number z a complex number ~. the modulus of which is I a I times 
the modulus of z, and the argument is obtained from the argument 
of z by adding a constant term-the argument of the complex num­
ber a. The geometrical meaning of this transformation is obvious: 
a stretching of the z-plane by a factor of I a I and a rotation of the 
plane as a whole around the point z = 0 through the angle arg a. 

Returning to the function (1-12), which can now be written as 
w = ~ + b, we see that the geometrical meaning of the latter trans­
formation consists in a translation of the z-plane characterized by 
the vector b. 

Thus. a linear function transforms the complex z-plane into the 
complex w-plane by means of a stretching, a rotation, and a trans­
lation. 

* In futuro we will say that tho function of a complex variable f (.z) is de­
fined in the entire complex plane if it is defined for all values of the complex 
argument z bounded in absolute value, and we will say that f (z) is defined in 
the extended complex plane if it is specified for z = oo as well. In our example, 
f (oo) = oo. 
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2. As a second example, consider the function 

W= I (z) =.! z 

27 

( 1-13) 

This function is likewise defined in the extended complex plane; 
I (0) = oo and I ( oo) = 0. As in the first example, we establish that 
I (z) is a single-valued and univalent function of z mapping the 
entire z-plane onto the entire u,_plane. It is readily found that the 

z=O 

Fig. 1.5 
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function I (z) is continuous in the entire complex plane, with the 
exception of the point z = 0. For a geometrical interpretation of 
this function, we take advantage of the exponential form of repre-

senting complex numbers: w = rei'i> = .! e- i41l (z = petq,). This 
r 

equality states that arg w = -arg z, I w I = I! I . The relations 

obtained permit regarding the mapping, by the given function, 
as a combination of two mappings: ~ = ~ (z), where I ~ I = I z 1. 
arg ; = -arg z, and w = w ( ~), where I w I = I~ 1 , arg w = arg ~­
The first mapping has the geometrical meaning of a mirror reflection 
about the real axis, in which the point z is carried into the point z, 
and the second mapping has the meaning of an inversion* in the 

unit circle, which inversion carries the point z into the point w = .! z 
(Figs. 1.5, 1.6). In this case, the points of the z-plane that lie outside 
the unit circle are carried into points lying inside the unit circle 
of the w-plane, and vice versa. 

• Inversion (or transformation of inverse radii) in a circle of radius a is a 
transformation in which with every point inside (or outside) the circle there 
is associated a point outside (inside) the circle lying on the ray drawn from the 
centre of the circle to the given point so that the product of the distances of 
these points from the centre of the circle is equal to the square of the radius of 
the circle. . 



28 Ch. 1. Functions of a Complex Variable 

3. We consider the function 

w = f (z) = z2 (1-14) 

This function is a single-valued function of the complex variable z 
defined on the extended complex z-plane. By representing the complex 
numbers in exponential form (z = peiiP, w = rei~ = p2ei21P) it will 
readily be concluded that the points of the z-plane lying on the 
ray forming the angle cp with the positive direction of the real axis 
go into points of the w-plane lying on the ray which forms an angle 
2«p with the positive direction of the real axis. Therefore, to the 
points z and -z, the arguments of which differ by n and the moduli 
are the same, there corresponds one and the same value of w 
(et2n = cos 2n + i sin 2n = 1). Thus, the inverse function turns 
out to be multiple-valued. Consider the mapping by the function 
w = z2• The upper half of the z-plane goes into the extended w­
plane together with the real axis. For the sake of definiteness, 
suppose that in the upper half-plane the argument of z lies 
within the range 0 < «p < n. Then to different points of the 
range 0 < «p < n there correspond distinct values of w. Such 
a range of an independent variable, to various points of which 
there correspond distinct values of the function, is called the domain 
of univalence of the function. In the previous examples the uni­
valence domain was the entire domain of definition of the function; 
in the given case, the half-plane is the univalence domain for the 
function w = z2, the domain of definition of the function being the 
extended complex z-plane. Note that in the case under consideration, 
the boundaries of the univalence domain-the rays «p = 0 and 
«p = n-go into one and the same straight line, which is the positive 
part of the real axis of the w-plane. Continuing our examination, 
it is easy to demonstrate that the function w = z2 also maps the 
l~wer half of the z-plane, together with the real axis, onto the extend­
ed w-plane. Thus, the inverse function 

z=Yw (1-15) 

defined over the extended w-plane is no longer a single-valued func­
tion: ~me point of the w-plane is associated with two distinct points 
of the z-plane, one in the upper and the other in the lower half­
plane. 

In order to study the mapping generated by the given function, 
let us again take advantage of the exponential form of representing 
a oomplex number: w = reilll. Then, by the law of extracting the 
root of a complex number, we get two distinct values of the function 

- ...!.. (IIJ+2nk) 
z (w): Zk = V re 2 (k = 0, 1) (note that arg z1 - arg z0 = 
= n). In the w-plane, consider a certain closed curve C without 
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self-intersections. Specify on it a point w0 , to which we assign a 
definite value of the argument 'ljl0 ; we find z0 (w0), z1 (w0) and note 
the variation of the functions z0 (w) and z1 (w) as the point w moves 
continuously along the curve C. The argument of the point won the 
curve C varies continuously. Therefore, as is readily seen, the func­
tions z0 (w) and z1 (w) are continuous functions of won the curve C. 
Here, two different cases are possible. In the first case, the curve C 
does not contain the point w = 0 inside it. Then, after traversing 
the curve C, the argument of the point w0 will return to the original 
value arg w0 = 'ljl0 • Hence, the values of the functions z0 (w) and 
z1 (w) will also be equal to their original values at the point w = w0 

after traversing the curve C. Thus, in this case, two distinct single­
valued functions of the complex variable w are defined on C: z0 = 

i~ i 
V- _ v- -<~+2ll) = re 2 and z1 = re 2 ('ljl varies continuously on C begin-

ning with the value 'ljl0 at the point w0). Obviously, if the domain D 
of the w-plane has the property that any closed curve in the domain 
does not contain the point w = 0, then two distinct single-valued 
continuous functions z0 (w) and z1 (w) are defined in D. The func­
tions z0 (w) and z1 (w) are called branches of the multiple-valued 
function z (w) = Vw. 

In the second case, the curve C contains the point w = 0 inside. 
Then, after traversing C in the positive direction, the value of the 
argument of the point w0 will not return to the original value 'ljl0 

and will change by 2n: arg w0 = 'ljl0 + 2n. Therefore, the values of 
the functions z0 (w) and z1 (w) at the point w0 , as a result of their con­
tinuous variation after traversing the curve C, will no longer be 
equal to the original values. More exactly, we get-z0 (w0) = z0 (w0) eill, 

~· (w0) = z1 (w0) eill. That is, the function z0 (w) goes into the func­
tion z1 (w), and vice versa. 

If for the point z0 it is possible to indicate an e-neighbourhood such 
that for a single circuit about the point z0 along any closed contour 
lying entirely in the e-neighbourhood one branch of the multiple­
valued function goes into another, then the point z0 is called a branch 
point of the given multiple-valued function. In the neighbourhood 
of a branch point, the individual branches of a multiple-valued func­
tion can no longer be regarded as distinct single-valued functions, 
since in successive circuits about the branch point their values vary. 
In the example at hand, the branch point is w = 0. 

Note that traversal of a circle I z I = R of arbitrarily large radius 

corresponds to going round the point ~ = 0 in the plane ~ = ! 
along the circle I ~ I = p = ! . According to Subsection 1.2.c 

we have the relation ~ = oo. And so we will consider that the cir-
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cuit of a circle of infinitely large radius (R - oo) is the circuit of 
the point at infinity z = oo. As is readily seen, in the case at hand, 
one branch of the function z = Vw goes into another as a circuit 
is made about the point w = oo. Hence, w = oo is the second branch 
point of the function z = Vw in the complex w-plane. The domain 
D, in which are defined single-valued branches of the function z = 

= Vw, is any domain of the w-plane in which encircling the branch 
points w = 0 and w = oo along a closed contour is impossible. Such 
a domain is, for instance, the entire w-plane with a cut (branch 
cut) along the positive real axis. Here, the edges of the branch cut 
are the boundary of the given domain, so that in the case of 
continuous motion inside the domain we cannot intersect the branch 
cut (the boundary of the domain). 

If it is assumed that the argument of the points w for the first 
branch varies over the range 0 < arg w < 2n and for the second, 
over the range 2n < arg w < 4n, then the first branch of the func-
tion z = Vw maps the plane with the branch cut onto the upper 
half of the z-plane and the second branch of the given function maps 
the same domain onto the lower half of the z-plane. 

In similar fashion it may readily be shown that the function 
n ( 0 · · } 2:tk < 2:t(k+1) w = z n > IS an mteger maps any sector-< arg z n n 

(k = 0, 1, ... , n - 1) of the z-plane onto the entire w-plane cut 
along the positive real axis. These sectors are thus domains of uni-
valence of the given function. The inverse function z = }Yw is 
multiple-valued, and the points w = 0 and w = oo are its branch 
points. 

1.4. Differentiating the Function 
of a Complex Variable 

a. Definition. Cauchy-Riemann conditions 

Up to this point, the theory of functions of a complex variable 
has been built up in complete analogy with the theory of functions 
of a real variable. However, the concept of a differentiable function 
of a complex variable, which was introduced by analogy with the 
corresponding concept in the theory of functions of a real variable, 
leads to essential differences. 

Let us give a definition of the derivative of a function of a complex 
· variable. Let there be given a function f (z) in the domain @ in the 
complex z-plane. If for the point z0 E@.! there exists, as 11z -o, 
a limit (limiting value) of the difference quotient 

f (zo+~z)- f (zo) 
~z 
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then this limit is called the derivative of the function f (z) with respect 
to the complex variable z at the point z0 and it is denoted by f' (z0); i.e. 

/'(z0)= lim /(so+tu)-/(so) (1-16) 
6.z-+O llz 

Then f (z) is called a differentiable function at the point z0 • We stress 
once again that if the limit (1-16) exists, it does not depend on 
the manner in which l!.z tends to zero; that is, on the manner in 
which the point z = z0 + !!.z approaches the point z0 • The require­
ment of differentiability of a function of a complex variable at a 
point z0 imposes extremely important conditions on the behaviour 
of the real and imaginary parts of this function in the neighbourhood 
of the point (x0 , y 0). These conditions are known as the Cauchy­
Riemann conditions. They can be stated in the form of the following 
theorems. 

Theorem 1.3. If a function f (z) = u (x, y) + iv (x, y) is diffe­
rentiable at a point z0 = x0 + iy0 , then at the point (x0 , y0 ) there 
exist partial derivatives of the functions u (x, y) and v (x, y) with 
respect to the variables x, y, and the following relations* hold: 

au (:ro, Yol av (zo, Yo) au (xo, Yo) Ov (xo, Yo) (1-17) 
ax ay ay =- ax 

Proof. By hypothesis, there exists the limit (1-16) that is inde­
pendent of the manner in which l!.z approaches zero. Put !!.z = !!.x 
and consider the expression 

f'(zo)= lim u(xo+llx, Yo)-u(xo, y0) + 
6.x-+O . llx 

+i lim v(xo+llx, Yo)-v(xo, Yo) 
6.x-+O llx 

From the existence of the limit of a complex expression there follows 
the existence of the limits of its real and imaginary parts. Therefore, 
at the point x0 , y0 there exist partial derivatives with respect to x 
of the functions u (x, y) and v (x, y) and we have the formula 

f' (z0) = Ux (x0 , Yo) + ivx (xo, Yo) 
Putting !!.z = i l!.y, we find 

!'() . 1. u(xo,Yo+lly)-u(zo.Yo)+ z0 = -~ 1m • 
6.y-+O '-'Y 

+ lim v(zo, Yo+ll:~-v(zo. Yo)= -iu11 (xo, Yo)+v11 (Xo, Yo) 
6.y-+O 

Comparing these two formulas, we ~re convinced of the validity 
of the relations (1-17). 

• The relations (1-17) are ordinarily called Cauchy-Riemann relations. 
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The01•em 1.4. If the functions u (x, y) and v (x, y) are differen­
tiable at the point (x0 , y0), and their partial derivatives are connected 
by the relations (1-17), then the function f (z) = u (x, y) + iv (x, y) 
is a differentiable function of the complex variable z at the point 
Zo = Xo + iYo· 

Proof. By the definition of differentiability, the increme!'lts of 
the functions u (x, y) and v (x, y) in the neighbourhood of the-' point 
(x0 , y0) may be written as 

u (xo + L\x, Yo + L\y) - u (xo, Yo) = 

= Ux (x0 , y0) L\x + Uy (x0 , y0) L\y + £ (x, y) 

v (xo + L\x, Yo + L\y) - v (xo, Yo) = 
---:- Vx (x0 , y0 ) L\x + Vy (x0 , y0 ) L\y + fJ (x, y) ( 1-18) 

where the functions s (x, y) and fJ (x, y) approach zero, as x-+ x 0 , 

f t th A d A { 1" s (x, y) 0 l" TJ (x, y) 0 y-+ y0 , as er an ux an uy 1m ~~ I = , 1m -1-~-1-= , 
JMJ-+0 z J~zJ-+0 z 

I L\z I= V (L\x)2 + (L\y}2 ) • Now let us form the difference quotient 

f (zo+ ~~~- f (zo) , where L\z = L\x + ii\y and, utilizing (1-18) and 

(1-17}, transform it to the form 

/(zo+~z)-/(z0) ~x+i~y t~x-~y 
~z =Ux(Xo, Yo) ~x+i~y +vx(Xo, Yo) ~x+i~y + 

+ s (x, y) +iT] (x, y) · u (x y ) + iv (x y ) + lJ:L 
~x+ i ~y X O• 0 X 0• 0 ~z 

[~ (z) = £ (x, y) + i1] (x, y)l 

Note that the last term of this formula approaches zero as L\z tends 
to zero, and the first terms remain unchanged. Therefore, there 
is a limit, lim /(zo+~;)-/(zo) = f' (z0), and this proves the diffe-

~z-o z 
rentiability of the function f (z) at the point z0 • 

If a function f (z) is differentiable at all points of some domain @J, 
and its derivative is continuous in this domain, then the function f (z) 
is called an analytic function* in the domain @J. 

* The definition of an analytic function given here differs from that usually 
given in the literature by the additional requirement that the derivative be 
continuous. This is done in order to facilitate subsequent proofs. As follows from 
a more detailed investigation, the mathematical content of the concept of an 
analytic function is not thereby altered. For one thing, it may be shown that if 
we further require that the function f (z) in the domain GS be continuous, ful­
filment of the Cauchy-Riemann conditions (1-17) everywhere in the domain is 
a necessary and sufficient condition for the analyticity off (z) and the continuity 
of all its derivatives in &. (See [10].) 
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The continuity of partial derivatives, it will be recalled, is a 
sufficient condition for the existence of the first differential (diffe­
rentiability) of a function of many variables. It therefore follows 
from Theorems 1.3 and 1.4 that a necessary and sufficient condition 
for the analyticity of a function f (z) = u (x, y) + iv (x, y) in a 
domain @ is the existence, in that domain, of continuous partial deri­
vatiues of the functions u (x, y) and v (x, y) connected by the Cauchy­
Riemann relations ( 1-17). 

The concept of the analytic function is basic to the theory of 
functions of a complex variable by virtue of the specific role played 
by the class of analytic functions both in the solution of numerous 
purely mathematical problems and in various applications of func­
tions of a complex variable in cognate fields of the natural sciences. 

The Cauchy-Riemann relations are frequently employed in study­
ing various properties of analytic functions. The equalities (1-17) 
are not the only possible form of the Cauchy-Riemann relations. 
AJ; the reader himself can establish, the real and imaginary parts 
of the analytic function f (z) = u (p, qJ) + iv (p, qJ) of the complex 
variable z = petcp are connected by the relations 

iJu 1 iJv 1 iJu iJv 
-ap=paii' p-~= --ap (1-19) 

where p and q> are the polar coordinates of the point (x, y). In similar 
fashion, it is easy to establish that the modulus and argument of 
the analytic function f (z) = R (x, y) ei<I>(x, 11> are connected by the 
relations 

(1-20) 

We will also note that the relations (1-17) permit obtaining various 
expressions for the derivative of a function of a complex variable: 

/' (z) = Ux (x, y) + ivx (x, y) = v11 (x, y) + ivx (x, y) 

= Ux (x, y) - iu11 (x, y) = v11 (x, y) - iu11 (x, y) (1-21) 

Here, the derivative f' (z) is each time expressed in terms of the 
partial derivatives of the functions u (x, y) and v (x, y). 

b. Properties of analytic functions 

The definition of a derivative (1-16) permits extending to ana­
lytic functions of a complex variable a number of properties of 
differentiable functions of a real variable. 

1. If the function f (z) is analytic in the domain @J, then it is 
continuous in this domain. 
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2. If / 1 (z) and / 2 (z) are analytic functions in the domain 0.!, 
then their sum and product are also analytic functions in @.l and 

the function (p (z) = 111((z) is an analytic function wherever 
2 Z) 

/ 2 (z) =I= 0. 
3. If w = f (z) is an analytic function in the domain @.l of the 

plane of the complex variable z, and an analytic function ~ = rp (w) 
is defined in the range G of its v11lues in the w-plane, then the func­
tion F (z) = rp [/ (z)l is an analytic function of the complex variable z 
in the domain @.l. 

4. If w = f (z) is an analytic function in the domain @.l, and 
I f' (z) I =I= 0 in the neighbourhood of a point z0 E @.l, then in the 
neighbourhood of the point w 0 = f (z0) of the domain G of values 
of the function f (z) is defined an inverse function z = rp (w), which 
is an analytic function of the complex variable w. We then have 

the relation f' (z0 ) = ,..!.-( ) . 
(j) Wu 

Proof. For the existence of an inverse function, it is necessary 
that the equations u = u (x, y) and v = v (x, y) be solvable for 
x, y in the neighbourhood of point w0 • For this purpose it is suffi­
cient that in the neighbourhood of point z0 the following condition 
be fulfilled: 

By virtue of the relations (1-17) this condition may be rewritten 
as u~ --1-- v~ =1= 0. But when I!' (z) I =1= 0, this holds true. Thus, the 
existence of the inverse function z = <p (w) is proved. Forming the 

difference quotient · :~ = tl1w , it is easy to prove the existence and 

-xz 
the continuity of the derivative <p' (w0), provided that If' (z0) I =I= 0. 

5. Let the function u (x, y), which is the real part of the analytic 
function f (z), he given in the domain @J of the x, y-plane. Then the 
imaginary part of tlris function is defined to within an additive 
constant. Indeed, by virtue of the Cauchy-Riemann conditions, the 
total differential of the unknown function v (x, y) is determined 
uniquely from the given function u (x, y): 

dv = Vx dx + Vy dy = -uy dx + Ux dy 

This proves the assertion. 
6. Let the function f (z) be analytic in the domain @3. Consider 

in the corresponding domain of the x, y-plane, families of the curves 
u (x, y) = C and v (x, y) = C, which are level lines of the real 
and imaginary parts of the function f (z). By means of the relations 
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(1-17) it is easy to demonstrate that at all points of the given domain, 
grad u ·grad v = UxVx + UyVy = -uxuy + UyU.x = 0. Since a gra­
dient is orthogonal to a level line, it follows that the families of 
curves u (x, y) = C and v (x, y) = C are mutually orthogonal. 

c. The geometric meaning of the derivative of 
a function of a complex variable 

Let I (z) be an analytic function in some domain @J. Choo~e some 
point z0 E @J and draw through it an arbitrary* curve y1 lying en­
tirely in @J. The function f (z) maps the domain @J of the complex 
z-plane onto some domain G of the complex w-plane. Let the point 
z0 go into the point W 0 and the CUrve i'1 into the CUrve rl that passes 

!I 

%=0 
--~--------------~ 

.X 

v 

r, 
w=O 

Fig. 1.7 

through w0 (Fig. 1.7). It is given that there exists a derivative f' (z) 
of the function w = I (z) at the point z0 • Suppo~e that I' (z0) =1= 0 
nnd repre~ent the complex number f' (z0) in exponential form** 

f' (z0) = lim ~w = keia 
Az->0 z 

(1-22) 

We choose /:iz to approach zero in such a manner that the points 
z = z0 + !:iz should lie on the curve y1 . Obviously, the points w = 
= w0 + !:iw corresponding to them lie on the curve r 1• The complex 
uumbers /:iz and !:iw are depicted by the vectors of transversals 
lo the curves y1 and r1 , respectively. Note that arg /:iz and arg /:iw 
hnve the geometric meaning of angles of the appropriate vectors 
with positive directions of the axes x and u, and I /:iz I and 1 !:iw 

• Here and henceforward, unless otherwise stated, an arbitrary curve is to 
ho understood as a smooth curve. 

• • The condition f' (z0) =I= 0 is necessary for such a representation to be 
JIOSSible. 

3* 
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are the lengths of these vectors. As ~z ~ 0, the vectors of the trans­
versals pass into vectors of tangents to the corresponding curves. 
From (1-22) it follows that 

a = arg /' (z0) = lim arg ~w- lim arg ~z = <D1 - <p1 ( 1-23) 
~z-+0 ~z-+0 

i.e., the argument a of the derivative has the geometric meaning of 
the difference of the angle <1>1 of the vector of the tangent to the curve 
r1 at the point w0 with the u-axis and the angle <p1 of the vector of 
the tangent to the curve y1 at the point z0 with the x-axis (Fig. 1.7). 
Since the derivative f' (z0) does not depend on the manner in which 
the limit is approached, this difference will he the same for any other 
curve passing through the point z0 (though the values of the angles 
<1>1 and <p1 themselves may change). Whence it follows that in a 
m:1 pping accomplished by the analytic function f (z) satisfying the 
c•, ndition f' (z0) =fo 0, the angle <p = <p2 - <p1 between any curves 
~· ~, y1 intersecting in the point z0 is equal to the angle <I> = <1>2 - <1>1 

j,ptween their images (the curves r2 and r.) intersecting in the point 
w 0 = f (z0). Observe that in the process, not only the absolute value 
of the angles between the curves y2 , y1 and their images is preserved, 
but the directions of the angles are preserved as well. This property 
of the given mapping is called the angle-preserving property. 

Analogously, from the relation (1-22) we get 

k= I!' (zo) I= lim ll~wll 
~z-+0 z 

(1-24) 

That is, to within higher-order infi.nitesimals, we have the equality 
1 ~w I = k I ~z j. Observe that this relation too is independent 
of the choice of the curve y1 . The geometric meaning of this rela­
tion consists in the fact that in the case of a mapping accomplished 
by an analytic function satisfying the condition f' (z0) =fo 0, infi.ni­
tesimal line elements are transformed in a similar fashion, and 
I f' (z0) I defi.nes the coeffi.cient of magnifi.cation. This property of 
the given mapping is called the prqperty of invariance of stretching. 

The mapping of a neighbourlwod of a point z0 onto the neighbourhood 
of a point w0 accomplished by an analytic function w = f (z) and 
possessing at the point z0 the angle-preserving property and invariance 
of stretching is called a conformal mapping. In conformal mapping 
of the neighbourhood of the point z0 onto the neighbourhood of the 
point w0 , infinitely small triangles with vertex at the point z0 are 
transformed into similar infinitely small triangles with vertex at 
the point w0 • The fundamentals of the theory of conformal mapping 
will be given in more detail in Chapter 6. 
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d. Examples 

To conclude this section, we note that, as may readily be verified, 
the linear function and the function w = z2 which were introduced 
at the beginning of the section are analytic functions over the entire 

complex plane; the function w. = ! is analytic everywhere with 
the exception of the point z = 0. Since the definition of the deriva­
tive (1-16) is similar to the definition of a derivative of a function 
of one real variable, it follows that for the derivatives of the given 
functions of a complex variable we have the expressions 

(az +b)'= a, (z2)' = 2z, { ! )' = - z12 (1-25) 

Let us consider the function of the complex variable w = ez, 
which is widely employed in a variety of applications. We define 
this function by specifying the analytic expressions of its real and 
imaginary parts: 

u (x, y) = ex cos y, v (x, y) = ~sin y (1-26) 

On the real axis this function coincides with the real function ex 
of the real argument x and, as will be demonstrated later on, it 
preserves the basic properties of an exponential function in the 
complex domain. It is therefore natural to maintain the notation 

(1-27) 

We shall show that ez is an analytic function throughout the 
entire complex z-plane. To do this, verify the fulfilment of the 
Cauchy-Riemann conditions (1-17): 

ou x {)v ou ,. . 8v 
-=e cosy=- -= -e stny= --
b ~· ~ b 

and note that all the derivatives in these equalities are continuous 
with respect to the collection of arguments throughout the entire 
x, y-plane. Computing the derivative of ez by the formulas (1-21), 
we get 

Analogously, 
(1-28) 

where a is an arbitrary complex constant. 
Let us consider two more functions / 1 (z) and / 2 (z) defined by means 

of the relations 

/!(z) = ; (eiz + e-fz), /2(z) = ;i (eiz -e-"~z) (1-29) 
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As is readily seen, for the real values of the complex variable z = x, 
these functions coincide with cos x and sin x; therefore, it is natural 
to preserve the earlier notation for them. Later on we will make 
a detailed study of the properties ~f these functions; for the present 
we need only observe that, as complex functions of an analytic 
function, cos z and sin z are analytic over the entire complex plane. 
By direct verification it will readily be seen that (cos z)' = -sin z. 
Indeed, by means of (1-28) we get 

1; (z) = ~ (eiz- e-tz) = -/2 (z) (1-30) 

Similarly, direct computation yields 

t: (z) + 1: (z) == 1 (1-31) 

since, by the rule of raising a complex number to an integral power, 
from (1-27) we get 

1.5. An Integral with Respect 
to a Complex Variable 

a. Basic properties 

(1-32) 

Let a piecewise smooth curve C of finite length L be given in the 
complex z-plane. Utilizing the parametric representation of the 
curve C, specify the coordinates £, 11 of each of its points by the equa­
tions £ = s (t), 11 = 11 (t), where s (t) and 11 (t) are piecewise smooth 
functions of the real parameter t varying over the range a ::::;;; t ::::;;; ~ 
(a and ~ can respectively take the values ±oo), which functions 
satisfy the condition [£' (t)]2 + [fJ' (t)]2 =1= 0. Specifying the coor­
dinates £, 11 of this curve C is equivalent to specifying the complex 
function ~ (t) = £ (t) + if) (t) of the real variable t. 

Let the value of the function f ( ~) be defined at every point ~ 
of the curve C. An important concept in the theory of functions of 
a complex variable is that of the integral of a function f (~) over 
the curve C. This concept is introduced as follows. Partition the 
curve C into narcs by the division points ~ 0 , ~1 , ~ 2 , ••• , ~n• which 
correspond to increasing values of the parameter t (t;+I > t;). Denote 
.1. ~i = ~~ - ~~ -1 and form the sum 

n 

s <~h ~n = ~ t <~n .1.~, 
i=i 

(1-33) 

where ~t is an arbitrary point of the ith arc. 
If as max I .1.~ 1 I ~o there exists a limit of the sum (1-33) that 

is independent of the manner of partitioning C and of the choice of 
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points ~t, then this limit is called the integral of the function f ( ~) 
over the curve C and is denoted as 

j I(~) d~ (1-34) 
c 

The question of the existence of the integral (1-34) reduces to the 
question of the existence of certain line integrals of the real part u 
and the imaginary part v of the function f (z). Indeed, writing 
I (~T) = u (PT) +:iv (Pt), Ll~t = Ll~t + i LlfJh where Pt (~t. f)t) 
is a point of the curve C on the x, y-plane, we can represent the 
expression ( 1-33) as 

n 

s <~it ~n = 2} {u (J>r) Lls; -v (Pr) LlfJ;} 
i=1 

n 

+ i ~ {u (Pr} LlfJ; + v (Pt} Lls;} 
i=i 

The real and imaginary parts of S ( ~t. ~t) are integral sums of 
the line integrals of the second kind 

~ udS-vdfJ and ~ udfJ+vds (1-35) 
c c 

respectively, whence the assertion follows. We stress that for the 
existence of the line integrals (1-35) and thus of the integral (1-34) 
with respect to a complex variable, it suffices that the functions u 
and v of real variables be piecewise continuous. This means that 
the integral (1-34) also exists when the function f (z) is nonanalytic 
if the function is piecewise continuous. 

Thus, we represent the integral (1-34) in the form 

j /(~)d~= j udS-vdfJ+i j u dfJ+vdS (1-36) 
c c c 

This relation can by itself serve as a definition of the integral of 
a function f (z) over the curve C. There follow from it a number of 
properties which are an obvious consequence of the respective prop­
erties of line integrals: 

1. j I (~) d~ = - j I (~) d~ (1-37) 
AB BA 

2. j I(~) d~ + j I(~) d~ = j I(~) d~ 
m ~ ~+~ 

(1-38) 
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3. If a is a complex constant, then 

J al (~) d~ =a J I(~) d~ (1-39) 
c c 

4. J {ld~)+l2(~)}d~= J /d~) d~+ J ld~)d~ (1-40) 
c c c 

5. I J I(~) d~ I~ J I I(~) Ids (1-41) 
c c 

where ds is the differential of the arc length of the curve C, and the 
integral on the right is a line integral of the first kind. Indeed, by 
virtue of the triangle inequality we have 

n 

I J I (~) d~ I = I 
c 

lim ~ I (~t) L\~, I 
max(l1t1l-+0 i=i 

n 

~ lim ~ IJ(~t>IIL\~d= J ll(~)jds 
maxl<1tii-+O i=t C 

If max I I ( ~) I = M and L is the arc length of the curve C, then 
tEC 

1 J 1md~1~M·L 
c 

(1-42) 

6. The following formula for changing the integration variable 
holds: 

J I (z) d~ = J I l cp (~) 1 cp' (~) d~ (1-43) 
c r 

where z = cp ( ~) is an analytic function of ~ which establishes a one­
to-one correspondence between the curves C and r. In particular, 

II J I (z) dz = J f(z (t)] z' (t) dt (1-44) 
C a 

where z = z (t) is the parametric representation of the curve C, 
and z (a) and z (~) are the initial and terminal points of the latter. 

Example. As an example (which will be essential for what follows) 
of computing an integral over a complex variable, we consider the 
integral 

(1-45) 
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where the curve C P is a circle of radius p centred in the point z0 , 

which circle may he traversed counterclockwise. Taking advantage 
of the parametric form of representing the curve C P• ~ = z0 + peicp 
(0 ~ <p ~ 2n), we get 

2n 

I=~ 
0 

2n 

i) d<p= 2ni 
0 

(1-46) 

Whence it follows that the integral (1-45) does not depend either 
\ on p or on z0 • 

Note. Formula (1-36), by virtue of which an integral with respect 
to a complex variable is a complex number, the real and imaginary 
parts of which are line integrals of the second kind, and also the 
relation (1-44) permit carrying the concept of an improper integral 
from a function of a real variable directly to the case of a complex 
variable. In this course we deal mainly with improper integrals of 
the first kind, which are integrals over an infinite curve C. An im­
proper integral of the first kind over an infinite curve C is said to he 

convergent if the limit exists of a sequence of integrals J f ( ~) d~ 
Cn 

over any sequence of finite curves Cn that constitute a part of C, 
when Cn tend to C; this limit does not depend on the choice of the 
sequence { Cn}. Only if for a certain choice of the sequence { Cn} 

there exists a limit of the sequence of integrals J f ( ~) d~ is the 
Cn 

improper integral said to he convergent in the principal-value sense. 
In the future we will consider integrals of functions that are 

analytic in a certain hounded domain; we will he interested in the 
case when the boundary of the domain is a piecewise smooth closed 
curve without self-intersections. A piecewise smooth closed curve 
without points of self-intersection will be called a closed contour. If 
a function z (t) ((X ~ t ~ ~) represents parametrically a closed con­
tour, then it satisfies the condition z (t1) =1= z (tk) for t 1 =1= tk, except 
for t 1 =a, tk = ~- The integral (1-34) along a closed contour is 
often called a contour integral. 

b. Cauchy's Theorem 

Since the value of a contour integral dependl'l on the sense of 
integration, let us agree to take for the positive sense of traversing 
a contour a direction such that the interior domain hounded by the 
given closed contour remains on the left of the direction of motion. 
We will denote integration in the positive sense by the symbol 
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) f (z) dz or simply J f (z) dz and integration in the negative sense 
c+ c 
by the symbol ) f (z) dz. 

c-
The properties of integrals, along a closed contour, of functions 

that are analytic inside the domai.n bounded by the given contour 
are largely determined by the familiar properties of line integrals 
of the second kind.* Let us recall*"' that for line integrals along 
a closed contour the following assertion holds: if the functions P (x, y) 
and Q (x, y) are continuous in a closed domain @j bounded by a piece­
wise smooth contour C, and their partial derivatives of the first order 
are continuous in @I, then 

J Pdx+Qdy= J J { ~~- ~~} dxdy (1-47) 
c ~ 

Let us now take up the proof of the basic proposition of this section. 
T lteorem 1.5 (Cauchy's theorem). Let a single-valued ana­

lytic function f (z) be given in a singly connected domain @1. Then the 
integral of this function f (z) along any closed contour r lying entirely 
within @I is equal to zero. 

Proof. According to formula (1-36) 

J f (') d' = J u dx- v dy + i J v dx + u dy 
r r r 

Since the function f (z) is analytic everywhere inside the contour r, 
it follows that the functions u (x, y) and v (x, y) possess continuous 
partial derivatives of the first order in the domain bounded by this 
contour. We can therefore apply formula (1-47) to the line integrals 
on the right-hand side of the last equation. Besides, the partial deri­
vatives of the functions u (x, y) and v (x, y) are connected by the 
Cauchy-Riemann relations. Therefore, 

J u dx- v dy = J ) { av au } d ---- xdy=O ax ay 
r ~ 

• By our definition, the contours of integration are always piecewise smooth 
curves. 

* * Elsewhere this theorem has been proved with the supplementary condition 
of boundedness of the partial derivatives of the functions P and Q in the do­
main ~. this condition being introduced to simplify the proof. In the case of 
a piecewise smooth boundary, this condition can be removed with the aid of an 
additional passage to the limit. Here we will not give the detailed proof and 
will confine ourselves to the remark just made. 
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and 

This proves the assertion of the theorem. 
Thus, Theorem 1.5 establishes the fact that the integral of an 

analytic function over any closed contom lying entirely in the singly 
connected domain of its analyticity is zero. Given the supplementary 
condition of continuity of the function in the closed domain, the 
given assertion holds true also for a closed contour which is the 
boundary of the domain of analyticity. This latter assertion is actual­
ly a slightly modified formulation of the ·Cauchy theorem. Because 
of its importance in practical applications, however, we will state 
it as a separate theorem. 

Theorem 1.6 (Secon(l formulation of Cauchy's the­
orem). If a function f (z) is an analytic function in a singly connected 
domain @l bounded by a piecewise smooth contour C and is continuous in the 
closed domain @i, then the integral of the function f (z) along the boun­
dary C of the domain @l is equal to zero: 

\ t (~)a~= o 
c 

(1-48) 

Cauchy's theorem establishes one of the basic properties of an 
analytic function of a complex variable. Its fundamental significance 
will be evident from what follows. For the present, we confine our­
selves to the following remark. 

The theorem was stated for a singly connected domain, but it 
can readily be generalized to the case of a multiply connected do­
main. Then the total boundary of the domain consists of several 
closed contours: the exterior contour C 0 and the interior contours 
C1 , C2 , ••• , Cn. The positive sense of traversal of the total boundary 
of a multiply connected domain will be that sense for which the 
domain is always on the left. The exterior contour is traversed in 
the positive sense and the interior contours are traversed in the 
negative sense. 

T he01•em 1.7. Let f (z) be an analytic function in a multiply con­
nected domain @l bounded from without by the contour C 0 and from 
within by the contours C1 , C2 , .•• , Cn, and let f (z) be continuous 

in the closed domain @!. Then J f ( ~) d~ = 0, where C is the total 
c 

boundary of the domain @l consisting of the contours C0 , C1, ••• , Cn; 
the boundary C is traversed in the positive sense. 
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Proof. Draw smooth curves y17 ••• , 'Vn connecting the contour C0 
with the contours C1 , C2 and so forth (Fig. 1.8). Then the domain 
bounded by the curves C0 , C17 ••• , Cn and the curves y1 , y2 , ••• 

• • • , 'Vn• which are traversed twice in opposite directions, proves 

Fig. 1.8 

to be singly connected*. By virtue of Theorem 1.6, the integral 
around the boundary of this domain is zero. But the integrals along 
the auxiliary curves y1 , ••• , 'Vn are taken twice in opposite direc­
tions and so cancel when summed. Therefore, we have the equality 

) f (t) dt + J f (t) dt + ... + J f(t) dt = 0 (1-49) 

ct C} 

(the plus and minus signs on C1 indicate tile sense of traversal). 

c. Indefinite integral 

The following proposition is an important consequence of Cauchy's 
theorem. Let a function f (z) be an analytic function in a singly con­
nected domain @l. In this domain, fix some point z0 and denote by 

% J f (t) dt the integral along a certain curve lying entirely in @ 

%o 

and connecting the points z and z0 • By virtue of Cauchy's theorem, 
this integral is independent of the choice of the integration curve 

• It is easy to see that the curves '\'1o ••• , :Vn can always be chosen so that 
they do not intersect; that is, we obtain a singly connected domain. 
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in the domain @J and is a single-valued function of z: 
ll 

J I(~)~= <D (z) (1-50) 
zo 

Theorem 1.8. Let a function f (z) be defined and continuous in 
some singly connected domain @J and let the integral of this function 
around any closed contour r lying entirely in the given domain be zero. 

z 

Then the function <D (z) = J f ( ~) d~ (z, z0 E @J) is an analytic func-
z, 

tion in the domain @J and <D' (z) = f (z). 
Proof. Form the difference quotient 

z+.U z z+6z 

<D(z+~~~-<D(z)=L:{ J /(~)d~-J!(~)d~}=1z J /(~)d~ 
~ q z 

The latter equality holds true due to the fact that the value of the 
integral defining the function <ll (z) is independent of the path of 
integration and (1-38). Let us choose the straight line connecting 
the points z and z + L\z as the integration path of the last integral. 
This integration path is convenient since we have the obvious relation 
z+6z 

) d~ = L\z. Let us evaluate the expression 
z 

I <D (z+~z)-<D (z) 
~z 

z+Az 

I (z) I= I ~1z1 j J {/ (~) -/ (z)} d~ I 
% 

1 
~-~~I max 1/(~)-/(z)j·IL\zl= max 1/(~)-/(z) 

1 tE[z, z+6z] t;E[:, z+M] 

By virtue of the continuity of the function f (z) at the point z, for 
any positive number e there is a value of 6 > 0 sueh that for I L\z I < 
< 6 max If(~)- I (z) I< e, i.e. for any e >0 there 

i;E[z, z+t.z] 

is a 6 >0 such that 

I <D(z+~;~-<D(z) -/(z) J<e for 0 < jL\zl<6 

This means that there exists 

lim _ll_l (;...z...:.+_· ~-::z:-:-) _<D;...i;.;;.z:),;., 
Az-+0 ~z 

<I>' (z) =I (z) (1-51) 

Thus, the function <1> (z) defined by the integral (1-50) at all points 
of the domain @J has a continuous derivative [by hypothesis, the 



46 Ch. 1. Functions of a Complex Variable 

function I (z) is continuous in @l]. Thus, <I> (z) is an analytic function 
in the domain @L 

The foregoing theorem permits us to introduce the concept of 
the indefinite integral of a function of a complex variable. The 
analytic function <I> (z) is called the primitive of the analytic func­
tion I (z} in the domain @! if in this domain the relation <1>' (z) = 
= f (z) holds. It is obvious that the function f (z) has an assemblage 
of different primitives, but, as may be readily proved, all the 
primitives of this function differ solely in constant terms.* 

The collection of all primitives of the function f (z) is called the 
indefinite integral of the function I (z). Whence it follows that just 
as in the case of a function of a real variable, we have the formula 

Z2 

J I(~} d~ = F {z2)-F (z1) 

where F (z) is any primitive off (z). Indeed, the integral on the left 
is independent of the integration path. It can therefore be repre­
sented as 

Z2 Z2 Zt 

j I(~} d~ = j !(~) d~- j t (~} d~ 
Zl ZQ ZO 

where z0 is an arbitrary point of the domain @!. According to (1-50), 
each of the integrals on the right of this formula is a value of the 
definite primitive at the appropriate points, and since all primitives 
differ only by a constant, it is immaterial what primitive is sub­
stituted into the given formula. 

As an example of what will be of essential interest later on, con­
sider the function 

z 

I (z) = J d66 (1-52) 
1 

Since the integrand function is analytic over the entire complex 
z-plane, except at the point z = 0, the expression (1-52) is meaning­
ful provided that the integration curve does not pass through z = 0. 
Here, in any singly connected domain @! of the complex plane not 
containing the point z = 0, the function I (z) is a single-valued analy­
tic function of z that does not depend on the choice of integration 
path in the formula (1-52). We consider as such a domain the extended 

• Indeed, since Cl>' (z) = Cl>i (z) - Cl>~ (z) = 0, where Cl>1 (z) and Cl> 2 (z) are 
different primitives of the function f (z), it follows from (1-21) that all partial 
derivatives of the real part and imaginary part of the function ci> (z) are iden­
tically zero, whence, by a familiar theorem of analysis, we get ci> (z) == constant. 
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complex z-plane cut along the negative real axis, that is, the domain 
-n < arg z < n. We will assume that the integration path in 
(1-52) lies entirely in the domain -n < arg z < n; i.e. it does not 
intersect the cut and does not pass through the point z = 0. Then, 
choosing for the integration path in the formula (1-52) an appropriate 
segment of the real axis, for the real positive values z = x we get 

X 

j(x)= J a; =lnx (1-53) 
1 

That is, for the positive values of its argument the function f (z) 
coincides with the logarithmic function of a real variable. Therefore, 
for the function (1-52) in the domain under investigation ( -n < 
< arg z < n) we retain the earlier notation, putting 

z 

lnz= J :z (1-54) 
1 

This equality (in which the integration path is chosen in the manner 
described above) may he regarded as the definition of a logarithmic 
function for all complex values of its argument, except values lying 
on the negative real axis z = x ::::;;;: 0. Later on (Chapter 3) we will 
study the properties of this function in detail; for the present we 
need only observe that by virtue of (1-51) we have the relation 

(lnz)' =.!. (1-55) 
' 

In the domain -n < arg z < n the derivative of the logarithmic 
function has the same expression as for real positive values of the 
argument. It will be established later on that the function (1-54) 
is the inverse function of w = ez introduced in Section 1.4. 

1.6. Cauchy's Integral 

a. Deriving Cauchy's formula 

In Section 1.5 we proved Cauchy's theorem, which implies a num­
ber of important corollaries; in particular, it permits establishing 
a defmite relation between the values of an analytic function in the 
interior points of the domain of its analyticity and the boundary 
values of the function. Our job now is to establish this relation. 

Let the function f (z) be analytic in a singly oonnected domain @I 
bounded by the contour C. Take an arbitrary interior point z0 and 
construct a closed contour r which lies entirely in @J and contains 



48 Ch. 1. Functions of a Complex Vartable 

the point z0 • Consider the auxiliary function 

cp (z) =JJ&_ 
z-za (1-56) 

The function cp (z) is obviously analytic everywhere in the domain 
@I except at the point z0 • Therefore, if in @I we take a closed contour 
1' lying inside r SO that the point z0 lies inside a domain bounded 

c 

Fig. 1.9 

by the contour y, then the function cp (z) will be analytic in the 
doubly connected domain @I*' which lies between the contours r 
and y. According to Cauchy's theorem, the integral of the function 
cp (z) along the curve r + 1' is zero: 

Reversing the sense of integration in the second integral, we can 
rewrite this equation as 

(1-57) 

Since the integral on the left is independent of the choice of con­
tour y, the integral on the right has this property as well. For what 
follows it will be convenient to take as the integration contour y 
a circle YP of a certain radius p centred in the point z0 (Fig. 1.9). 
Putting C = z0 + peiQ>, we have 
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We transform the latter integral as follows: 
2n 2n 2n 

J f (~) dcp = J [/ (S)- / (z0)] dcp + J f (zo) dcp 
0 0 0 

2n 

= J [/(~)-/(z0)]dcp+2n/(z0) (1-58) 
0 

We now let p approach zero. Since f (z) is analytic and, consequently, 
continuous in the domain @S, it follows that for any positive num­
ber e there is a value of p such that I I(~)- I (z0) I< e for I ~­
- z0 I< p. Whence it follows that as p ._o there exists a limit 

2n 

lim J [/ (~)- f (z0)] dcp = 0 
P-+0 O 

Since in formula (1-58) the last term is independent of p, it fol-
2n 

lows that J f (~) dcp = 2nf (z0) and consequently J { ~~~0 d~ = 2nif (z0) 

0 y+ 
and according to (1-57) 

1 J t (~) /(z0)=~ -,.-d~ -:In ..,-z0 
r 

(1-59) 

The integral on the right-hand side of (1-59) expresses the value of the 
analytic function f (z) at a certain point z0 in terms of its value on any 
contour r lying in the domain of analyticity of the function f (z) and 
containing the point z0 • This is Cauchy's integral. The formula (1-59) 
is often called Cauchy's formula. 

Note 1. In (1-59) the integration is performed around the closed 
contour r lying entirely within the domain of analyticity of the 
function f (z) and containing the point z0 • Given the supplementary 
condition of continuity of f (z) in the closed domain @!, a similar 
formula holds true (by virtue of Theorem 1.6) also when integrating 
along the boundary C of the domain @. 

Note 2. The considerations remain valid in the case of a multiply 
connected domain @ as well. Here, when deriving the basic for­
mula (1-59), one should consider a closed contour r such that can 
shrink to the point z0 all the while remaining in @. Then it is easy 
to show that, provided that the function f (z) is continuous in the 
closed domain@ with a piecewise smooth boundary, formula (1-59) 
holds true for integration in the positive sense around the complete 
boundary C of the given multiply connected domain. 

4-3878 



50 Ch. 1. Functions of a Complex Variable 

b. Corollaries to Cauchy's formula 

There are several remarks to be made regarding formula (1-59). 

1. An integral of the form -21 . f ~(~) d~ around a closed con­
m J ,-zo 

r 
tour r lying entirely in the domain @! of analyticity of the function 
I (z) is meaningful for any position of the point z0 in the complex 
plane, provided that this point does not lie on the contour r. Then, 
if Zo lies inside r, the value of the integral is equal to I (zo); if Zo 

lies outside r, the value of the integral is zero, since in this case 
the integrand function is analytic everywhere inside r. And so 

_1_. f _l_ill_ d~ = {f (zo), Zo inside r (1_60) 
2m ~ (;-zo 0, Zo outside r 

For Zo E r the integral I (zo) = -21 . r /((;) d~ does not exist 
m J ,-z0 

r 
in the ordinary sense; however, given supplementary requirements 
on the behaviour of the function f ( ~) on the contour r, this integral 
can be imbued with definite meaning. Thus, if on the contour r 
the function f ( ~) satisfies the Holder condition 

If (~1)- I (~2) I~ K I ~1- ~2 IV, 0 < y < 1 
then a Cauchy principal value of the integral I (z0) exists: 

PV I (z0) = lim -21 . I / ((;) d~ 
E-+0 1(£ J \> -Zo 

re 
where re is a portion of r exterior to the circle I z- Zo I < e. 
Here, 

1 
PV I (z0 ) = 2 I (z0) 

2. Let f (z) be an analytic function in a singly connected domain 
@! and z0 some interior point of the domain. Describe about this 
point as centre a circle of radius R 0 lying entirely in @!. Then by 
Cauchy's formula we obtain 

1 J t ((;) /(zo)=-2 . -r-d~ :ru ,-z0 
0Ro 

But on the circle CRo• ~=z0+R0eiQl and so 
2n 

f (zo) = 2~ J f (z0 + R0e1~P) dcp 
0 

(1-61) 
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I (zo) = - 1 - i I(~) ds 
2rrR0 J 

CRo 

51 

(1-62) 

This is termed the mean-value formula and expresses the value of 
an analytic function in the centre of a circle as the mean of its boun­
dary values. 

c. The maximum-modulus principle 
of an analytic function 

Let a function f (z) be analytic in a domain @l and continuous in 
a closed domain @. Then either If (z) I = constant or I f (z) I attains 
maximum values only on the boundary of the domain. 

It is given that a real function of two real variables 

is continuous in a closed domain. It therefore has a maximum value 
M at some point (x0 , y0 ) of that domain. That is 

Zo= Xo+iYo 
M=l/(zo)I;;::IJ(z)j, zE@ (1-63) 

Suppose that the point z0 is an interior point of @l. Construct in 
@S a circle K 0 of some radius R centred in the point z0 , and write 
down the mean-valpe formula for z0 and R. Taking into account 
(1-63), we get 

2n 211 

2n.M =I J f (~) dcp ~~) If(~) I dcp~2nM 
0 0 

Consequently 
211 

11 I (~) I dcp = 2nM (1-64) 
0 

From this relation, by virtue of the continuity of the function f ( ~) 
on the integration contour and due to the inequality (1-63), it follows 
that 

If(~) I= M for ~ = z0 + Rei~P (1-65) 

Indeed, by (1-63) the absolute value If ( ~) I cannot he greater 
than M at any one point of integration. If we assume that at some 
point ~ 0 of the integration path the absolute value I f ( ~ 0} I is 
strictly less than M, then from the continuity of If(~) I it follows 
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that I I ( ~) I is strictly less than M in some neighbourhood of the 
point ~ 0 as well; i.e. there is an interval [<p1, <p2] of integration on 
which 

II(~)I~M-e, e>O 
Then 
2n ~2 ~~ 2n 

J I I(~) I d<p ~ J I I m I d<p.+ j I I(~) I d<p + j I I(~) I d<p 
0 ~I 0 ~2 

~(M-e) (<p2- <p1) + M [2n- (<pz- <p1)] < 2nM 

but this contradicts (1-64). And so the relation (1-65) indeed holds 
true. This means that on a circle of radius R centred in the point z0 

the function I I (z) I has a constant valuo equal to its maximum 
value in the domain @J. The same will occur on any circle of lesser 

Fig. 1.10 

radius with centre in the point z0 , and, consequently, in the whole 
of K 0 • It is now easy to demonstrate that the function I I (z) I has 
this same value also at any other interior point z* of the domain @L 
To do this, connect the points z0 and z* by a curve C lying entirely 
in @.! and distant from its boundary by at least a certain positive 
number d. Take a point z1 , which is the last point of intersection 
of the curve C with the circumference K 0 (Fig. 1.10). Since I I (z1 ) I = 
= M, by repeating the above reasoning we can show that inside 
K1 c @.! of radius R1 -< d, c~ntred in z1 , the absolute value of the 
function I (z) takes on a constant value equal to the maximum 
value M. Taking on curve C a point z2 , which is the last point of 
intersection of the curve C and the circumference K 1 , and continuing 
the given process, we finally (after a finite number of steps) find 
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that inside the circle Kn, to which the point z* belongs, the equality 
I f (z) I = M holds true, thus proving the assertion. 

We have thus demonstrated that if If (z) I takes on a maximum 
value M in some interior point of a domain, then If (z) I= M 
throughout the domain.* 

Thus, if a function I f (z) I is not a constant quantity in a domain 
@, then it cannot attain a maximum value in the interior points 
of @5. But since a function that is continuous in a closed domain 
attains its maximum value in some point of the domain, in the 
latter case the function I f (z) I must attain its maximum value 
at boundary points. 

One final remark. Note that if a function f (z) that is analytic m 
a domain @5 is not zero at any point of the domain and is continuous 
in @, then the minimum-modulus principle holds true. To prove this 

assertion, it suffices to consider the function cp (z) = ttz) and 
take advantage of the principle of the maximum modulus of this 
function. 

1.7. Integrals Dependent on a Parameter 

a. Analytic dependence on a parameter 

When considering the Cauchy integral, we see that the integrand 
function depends on two complex variables: the variable of inte­
gration ~ and a fixed value of the variable z0 • Thus, Cauchy's inte­
gral is an integral which is dependent on a parameter z0 • It is natu­
ral to pose the question of the general properties of integrals with 
respect to a complex variable which depend on a parameter. 

Let there be given a function of two complex variables** q> (z, ~) 
uniquely defmed for the values of the complex variable z = x + iy 
from the domain @J and for the values of the complex variable 
~ = s + iT] which belong to a certain piecewise smooth curve C. 
The mutual positions of the domain @5 and the curve C may be quite 
arbitrary. Let the function of two complex variables cp (z, ~) satisfy 
the following conditions: 

(a) The function q> (z, ~) for any value of ~ E C is an analytic func­
tion of z in the domain @. 

* As follows from the relations (1-20), in this case the argument of an ana­
lytic function f (z) also retains a constant value in the domain Ql, whence it 
follows that if tho absolute value (modulus) of an analytic function is constant 
in some domain, then the function is identically equal to the constant in that 
domain. 

** A function of two complex variables z, ~ is defined by a law which associ­
ates some complex number w with each pair of values z, ~ from the domain of 
their definition. A short review of the theory of functions of many complex vari­
ables is given in Appendix 3. 
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for its derivative: 

!" (z) = _2,.. i I(~) d~ 
2m J (~-z)3 

r 
(1-71) 

Since for any interior point z of the domain @J a corresponding 
closed subdomain @!' may be constructed, the formulas (1-70) and 
(1-71) hold true at any point z. A more general theorem is also valid. 

Theorem 1.9. Let a function f (z) be analytic in the domain @! and 
continuous in the closed domain @. Then there exists a derivative of 
any order of the function f (z) in the interior points of @!; for this deri­
vative we have the formula 

/ (nl (z) = ~ i I (t) d"" 
2rri J (~ -zjn+t 'o. 

r 
(1-72) 

The proof of this theorem is obtained by repeating the foregoing 
reasoning an appropriate number of times. 

And so if a tunction f (z) is analytic in the domain @!, then f (z) 
has continuous derivatives of all orders in that domain. This prop­
erty of an analytic function of a complex variable distinguishes 
it in a very essen.tial way from the function of a real variable having 
a continuous first derivative in some domain. Generally speaking, 
in the latter case, the existence of higher derivatives does not follow 
from the existence of a first derivative. 

Let us consider a number of important consequences of the prop­
erty just established concerning an analytic function of a complex 
variable. 

T heol'em 1.10 (.l'I or era'.~ theorem). Leta function f (z) be con­
tinuous in a singly connected domain @J and let the integral of f (z) 
around any closed contour lying wholly in @! be zero. Then f (z) is 
an analytic function in @!. 

Proof. It has been proved earlier that under the hypothesis of 
the theorem, a function 

z 

F(z)= J /(~)d~ 
zo 

where z0 and z are arbitrary points of the domain @J and the in­
tegral is taken along any path connecting these points in @!, is ana­
lytic in that domain, and F' (z) = f (z). But, as has already been 
established, the derivative of an analytic function is also an analytic 
function; that is, there exists a continuous derivative of the func­
tion F' (z), namely the function F" (z) = f' (z). The theorem is 
proved. 

We note that Theorem 1.10 is, in a certain sense, the converse 
of Cauchy's theorem. It can readily be generalized to multiply con­
nected domains. 
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Theorem 1.11 (Liouville's theorem). Let a junction/ (z) be 
analytic throughout the complex plane, and let its modulus be uniformly 
bounded. Then f (z) is identically equal to a constant. 

Proof. Write the value of the derivative f' (z) at an arbitrary point 
z using the formula (1-70): 

I 1 f /{6) d 
f (z) = 2ni J (~ -z)2 ~ 

CR 

The integration will be carried out around the circumference of 
a circle of radius R with centre at the point z; i.e. I ~ - z I = R. 
By hypothesis, there is a constant M such that If(~) I -< M irres­
pective of R. Therefore 

I/, (z) 1::;:::-1 f J1.illl ds::;:=:~ 
""'= 2n J R 2 ""'= R 

Cn 

Since the radius R may be chosen arbitrarily large, and f' (z) is 
independent of R, it follows that If' (z) ·1 = 0. Since the choice of 
the point z is arbitrary, we conclude that If' (z) I= 0 over the 
entire complex plane. Whence it follows that f (z) == constant. 

In Section 1.4 we introduced the trigonometric functions of a com­
plex variable and demonstrated that they are analytic functions 
throughout the complex plane. By virtue of the theorem just 
proved, these functions cannot be uniformly bounded throughout the 
complex plane. Whence it follows, in particular, that there are 
values of the complex variable z for which 

I sin z I> 1 (1-73) 

It is in this respect that the trigonometric functions of a complex 
variable differ essentially from the corresponding functions of a real 
variable. 
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(b) The function <p (z, ~) and its derivative : (z, ~) are continuous 

functions of the variables z, ~ taken together for an arbitrary variation 
of z in the domain @3 and of ~ on the curve C. 

The condition (b) signifi:es that the real and imaginary parts of 

the function :~ (z, ~) are continuous with respect to the variables 

x, y, £, '11 taken together. 
It is obvious that under the assumptions just made, the integral 

of the function <p (z, ~) along the curve C exists for any z E @3 and 
is a function of the complex variable z: 

F (z) = J <p (z, ~) d~ = U (x, y) + iV (x, y) (1-66) 
c 

It is natural to pose the question of the properties of the functioa 
F (z). It appears that under the given assumptions relative to the 
function <p (z, ~), the function F (z) is an analytic function of the 
complex variable z in the domain @3, and the derivative of the functio:n 
F (z) may be computed by differentiating under the sign of the integral. 

To prove this assertion, let us consider the line integral 

U (x, y) = J u (x, y, £, '11) ds-v (x, y, £, '11) dTJ 
c 

Since it is assumed that the functions u and v possess partial deri­
vatives with respect to x and y, which are continuous with respect 
to both variables together, the partial derivatives of the function 
U (x, y) with respect to the variables x, y exist and may be com­
puted by differentiating under the integral sign: 

Ux (x, y) = J Ux d£-vxd'll 
c 

Uu (x, y) =) Uy d£-vy dtl 
c 

The functions themselves U x and U y are continuous functions of 
the variables x, y in the domain @3. On the basis of similar prop­
erties of the function V (x, y) and taking advantage of the Cauchy­
Riemann conditions for the function q> (z, ~), we obtain 

Vy(X, y)=) Vud£+uud1J=) uxd£-vxd1J=Ux 

c c (1-67) 
Yx(x,y)=) Vxd£+uxdTJ=- J uyd£-vydT)=-Uy 

c c 
Thus, for F (z) the Cauchy-Riemann conditions are fulfilled: the 
partial derivatives of the ftinctions U (x, y) and V (x, y) are con-
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tinuous and connected by the relations (1-67), which proves the 
analyticity of F (z) in the domain @. 

Note that 

F'(z)=Ux(X, y)+iVx(X, y) 

= r Uxd~-Vxdll+i J V;,_d~+uxdll= J: (z, s)ds (1-68) 
c c c 

Whence it follows that it is possible to compute the derivative of 
an integral by differentiating the integrand function with respect 

to a parameter. And if :~satisfies the same conditions (a) and (b) 

as q> (z, s), then F' (z) is also an analytic function in the domain@. 

b. An analytic function and the existence 
of derivatives of all orders 

The above-considered property of integrals depending on a para­
meter permits establishing important characteristics of analytic 
functions. As we have seen, the value of a function f (z) that is 
analytic in some domain @ bounded by a contour r and continuous 
in a closed domain <fi" can be expressed in the interior points of this 
domain in terms of the boundary values by means of the Cauchy 
integral: 

f(z) = - 1-. r J.JQ_ ds 
2m J ~-z 

r 
(1-69) 

Let us consider, in a domain @, a certain closed subdomain @', 
all of whose points are farther from the boundary r of the domain@ 
than some positive number d (I z - \; I ;;?: d > 0). The function 

fP (z, \;) = f~z is an analytic function of z in the domain @!', 

and its partial derivative 00~ = (~~~~~) 2 in this domain is a con­

tinuous function of its arguments. Thus, by virtue of the general 
propPrties of integrals dependent on a parameter, the derivative 
f' (z) may be represented at the interior points of the domain @' 
in the form 

f , (z) = _1_ f I(~) ds 
2ni J (~-zJ2 

r 
(1-70) 

The integral (1-70) is again an integral that depends on a parameter, 
and its integrand function has the same properties as the integrand 
function of the integral (1-69). Consequently, f' (z) is an analytic 
function of z in the domain @'; the following formula holds true 



CHAPTER 2 

SERIES OF ANALYTIC FUNCTIONS 

In this chapter we will examine the principal properties of func­
tional series whose terms are functions of a complex variable. A spe­
cial role in the theory of functions of a complex variable is played 
by series of analytic functions and, in particular, by power series 

00 

of the form 2J Cn (z - z0)", where cn are specified complex con-
n=O 

stants and z0 is a fixed point in the complex plane. A study of these 
series is very essential both for elucidating a number of general 
properties of functions of a complex variable and for solving a variety 
of problems that involve applications of the methods of the theory 
of functions of a complex variable. 

2.1. Uniformly Convergent Series 
of Functions of a Complex Variable 

a. Number series 

Let us first examine certain general properties of number series 
involving complex terms, that is, expressions of the form 

00 

2J a" 
k=i 

(2-1) 

where {an} is a given sequence of numbers with complex terms. 
The series (2-1) is convergent if the sequence { Sn} of its partial sums 

1! 

Sn = ~ ak is convergent. Here, the limit S of the sequence {Sn} 
h=l 

00 

is called the sum of the series (2-1). The series 2J a" is called the 
k=n+i 

remainder of the series (2-1) after the nth term. In the case of a con~ 
vergent series, the sum of its remainder after the nth term is denoted 
by rn and is ordinarily also called the remainder of the series (2-1). 
For a convergent series S = Sn + rn and for any e > 0 there is 
a number N such that I rn I < e for n ~ N. From the definition 
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of a convergent series it follows that a necessary and sufficient con­
dition for convergence of the series is Cauchy's test.* Namely, the 
series (2-1) converges if and only if for any 8 > 0 there is a num-

ber N such that I:~: ak I < 8 for n ~ N and for any natural p. 

A necessary condition for convergence of the series (2-1) is the re­
quirement that lim a12 = 0. Indeed, from the convergence of this 

71~00 

series. by virtue of Cauchy's test, it follows that for any 8 > 0 
it is possible to indicate anN such that I a,+1 I = I S,-t 1 - sn I< 8 

for n ~ N. 
If the series 

00 

~ Ia, I 
k=l 

(2-2) 

with real positive terms converges, then it is obvious that the se­
ries (2-1) will converge too. In this case it is termed an absolutely 
convergent series. One of the most frequently used methods of inves­
tigating the convergence of a series involving complex terms is the 
consideration of a series containing real terms which are the moduli 
of the terms of the original series. It will be recalled that d'A lembert's 
test and Cauchy's test for convergence are sufficient conditions for 
con vergence of a series with. real positive terms. 

According to d'Alembert's test, the series (2-2) converges if, 

beginning with some number N, the ratio j a;: 1 1-< l < 1 for 

all n ~ N. 

Note that if from some number N onwards, the ratio I a;: 1 I~ 
~ 1, then the series (2-1) with complex terms diverges. Indeed, in 
this case all terms of the series (2-1), from a,v onwards, satisfy the 
relation I a, I~ I aN I =I= 0, i.e. the necessary condition for con­
vergence of a series is not fulfilled. 

In accordance with the Cauchy test, the series (2-2) converges if 
;Y~-< q < 1 for all n ~ N. If, from some N onwards, for all 
n ~ N, we have the relation ;Yra:i ~ 1, then the series (2-1) 
diverges. 

b. Functional series. Uniform convergence 

We now take up the study of functional series whose terms are 
functions of a complex variable. Let there be defined in a domain @J 
an infinite sequence {un (z)} of single-valued functions of a complex 

* This is a direct consequence of Cauchy's test for convergence of a numerical 
sequence {Sn}; see page 19. · 
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variable. An expression of the form 
00 

~ Un (z) (2-3) 
n=1 

will be called a functional series. For a fixed value of z0 E @3, the 
series (2-3) is transformed into a number series of the type (2-1). 

The functional series (2-3) is convergent in the domain @3 if for any 
z E @J the corresponding number series converges. If the series (2-3) 
converges in the domain @J, then in this domain we can define a 
single-valued function f (z) whose value at each point of @.! is equal 
to the sum of the corresponding number series. This function is 
called the sum of the series (2-3) in the domain @.!. In this case, by 
virtue of the foregoing definitions, for any fixed point z E @J and 
for any specified positive number e it is possible to indicate a 
number N such that 

n 

lf(z)- 2J uh(z)l<e for n?;::N(e, z) 
h=1 

Note that in the general case N depends both upon .e and z. 
The concept of uniform convergence plays a special role in the 

theory of series of functions of a complex variable, just as it does 
in the case of a real variable. For example, as the reader will recall 
from the course of analysis, a convergent series of continuous func­
tions does not by any means always converge to a continuous func­
tion. At the same time the sum of a uniformly convergent series of 
continuous functions is always a continuous function. Uniformly 
convergent series of functions of a complex variable, as in the case of 
a real variable, have a number of very important properties, which 
we will now examine. First a definition. 

If for any positive number e it is possible to indicate a number N (e) 
such that for n ?::: N (e) the inequality 

n 

If (z)- ~ uh (z) I< e 
h=1 

is fulfilled at once for all points z of a domain @J, then the series (2-3) 
is called uniformly convergent in the domain @J. 

co 

Denoting rn (z) = ~ uh (z), the condition for the uniform 
k=n+t 

convergence of a series (2-3) may be written in the form 1 rn (z) I < e 
for n?;:: N (e). A number of properties of uniformly convergent 
series will be given below. 

We give a sufficient test for uniform convergence that is important 
in applications. 

Weie1•strass' test. If the terms of a functional series (2-3) can 
everywhere in a domain @J be bounded by terms of an absolutely convergent 
number series, then the series (2-3) converges uniformly in the domain @J. 
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Proof. By hypothesis we have the uniform evaluation 

I Un (z) I~ I an I, z E @J 

00 

(2-4) 

Since the series ~ I an I converges, then for any e > 0 there 
n=1 

00 

exists an N such that ~ I alt I< e for n;;;;::N. But by (2-4), in 
lt=n+t 

the domain @J we have the inequality 

00 00 00 

I~ U~t(z)l~ ~ jult(z)j~ ~ !a~t!<e 
lt=n+1 lt=n+i lt=n+i 

for n ~ N. This proves the uniform convergence of the series (2-3) 
in the domain @l. 

One should bear in mind that the Weierstrass test is only a suffi­
cient condition for uniform convergence. The following necessary 
and sufficient condition for uniform convergence holds. 

Ca,uchy 's test. A necessary and sufficient condition for uniform con­
vergence of the series (2-3) in a domain ~ is the existence for any e > 0 
of an N (e) such that the following relation holds simultaneously at 
all points of @l 

I Sn+m (z) - Sn (z) I < e (2-5) 

for n ~ N and for any natural number m. 
Proof. ( 1) Necessity. From the uniform con vergence of the series 

(2-3) it follows that for any e > 0 there exists an N (e) such that at 
all points z of the domain @J we have the inequalities 

1/(z)-Sn(z)l< ~, 1/(z)-Sn+m(z)j< ~ 

for n ~ N and for any natural number m; whence (2-5) follows. 
(2) Sufficiency. From the relation (2-5), by virtue of the Cauchy 

test for a number sequence with complex terms,* it follows that 
for any fixed z E @l the sequence {Sn (z)} is convergent. Hence, when 
(2-5) is fulfilled, the series (2-3) converges in the domain @l to a 
certain function f (z) = lim Sn (z). But, because of (2-5), 

n->oo 

lim I Sn+m (z)-Sn (z) I= If (z) -S n (z) I < e for n?;:::N (e) 
m->oo 

at all points of the domain @J simultaneously. This proves the uni­
form convergence of the series (2-3) in the domain @J. 

* See Chapter 1, page 19. 
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c. Properties of uniformly convergent series. 
Weierstrass' theorems 

Let us now examine certain general properties of uniformly con­
vergent series. 

1' he01•em .2.1. If the functions Un (z) are continuous in a domain 
00 

@, and the series ~ Un (z) converges in this domain uniformly to the 
n=l 

function f (z), then f (z) is also continuous in the domain @L 
Proof. We consider the expression If (z + ~z) - f (z) 1. where 

the points z and z + ~z belong to the domain @J. By virtue of the 
00 

uniform convergence of the series ~ un (z), for any e > 0 there 
11=1 

exists an N such that the following inequalities are simultaneously 
valid 

N N 

/f(z+~z)- ~ uk(z+~z)l< ~, 
k=l 

If (z)- ~ u11 (z) I< ; (2-6) 
k=\ 

for any points z and z + ~z belonging to the domain @. By virtue 
of the continuity of the functions uk (z), at any point z E @3 for 
a given e and a chosen N there exists a <') > 0 such that 

N N N 

I~ uk (z+~z)- ~ uk (z) /~~I uk (z+~z)- u 11 (z) I<~ (2-7) 
h=l k=l k=l 

for I ~z I<<'). From (2-6), (2-7) and the fact that the absolute value 
of a sum does not exceed the sum of the absolute values, it follows 
that for any e > 0 there exists a <') such that j f (z + ~z) - f (z) I < 
< e for I ~z I < <'). This proves the continuity of the function f (z) 
in the domain @. 

Theot'em 2.2. If the series (2-3) of continuous functions Un (z) 
converges uniformly in a domain @J to the function f (z}, then the 
integral of this function along any piecewise smooth curve C lying 
entirely in @J may be computed by a termwise integration of the series 
(2-3), that is, 

00 

J f (~) d~ = ~ J un (s) d~ 
C n=l C 

Proof. Since the series (2-3) converges uniformly, then for any 
specifi.ed e > 0 there exists a number N such that for all points 
s E @J 

lrn(~)l< 1 for n;:::N(e) 
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where L is the arc length of the curve C. Then 
n 

IJt(~)d~-~ J Un(~)d~I=IJ rn(~)d~~~IIrn(~)d~l<e 
c li=t c c c 

which proves the theorem. 
Note that the properties of uniformly convergent series involving 

complex terms formulated in Theorem 2.1 and Theorem 2.2 are 
absolutely analogous to the corresponding properties of functional 
series involving real terms, and the proofs actually repeat those of 
the appropriate theorems of analysis. 

We now consider a supremely important property of uniformly 
convergent series that characterizes the behaviour of a series whose 
terms are analytic functions. 

T he01•em 2.3 (JV eie l'l~f I'Ut1,~' first theol'em). Let the functions 
00 

un (z) be analytic in a domain@, and let the series ~ Un (z) converge 
n=1 

uniformly to the function f (z) in any closed subdomain @J' of @J. Then 
(1) f (z) is an analytic function in the domain @. 

00 

(2) f<"l (z) = ~ u~l (z). 
n=l 

00 

(3) The series ~ u~l (z) converges uniformly in any closed subdo-
n=t 

main @' of the domain @. 
Proof. We will prove each one of the foregoing assertions. 
(1) Consider an arbitrary interior point z0 E @J and construct 

a singly connected subdomain @!' of the domain @J containing the 
interior point z0 • 

By Theorem 2.1, f (z) is a continuous function in @J. Consider the 
integral of f (z) around an arbitrary closed contour C lying entirely 
in the domain @J'. By Theorem 2.2, this integral may be computed 
by termwise integration of the series (2-3). Then, since the functions 
Un (z) are analytic, we get 

00 

J /(~)d~= ~ J Un(~}d~=O 
C n=l C 

Thus, all the conditions of Morera's theorem are fulfilled. Hence, 
f (z) is an analytic function in the neighbourhood @!' of the point z0 • 

Since the choice of the point z0 is arbitrary, f (z) is analytic in the 
domain @J. Note that for any natural number n the function rn (z} = 

oo n 

= ~ ui (z) = f (z) - ~ u1 (z), which is the sum of a finite 
i=n+l i=l 

number of analytic functions, is also analytic in @!. 
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(2) Fix an arbitrary point z0 E @J and choose an arbitrary closed 
contour C lying entirely in @J' and containing the point z0 interior 

Fig. 2.1 

to it. Denote by d the minimal distance from the point z0 to the 
contour C. Consider the series 

"" f (z) = ~ Un (z) 

(z- z0)k+1 (z- z0)k+1 
n=1 

Since min I z - z0 I = d > 0, this series, by virtue of the hypo-
zec 

theses of the theorem, converges uniformly on C. Therefore, by 
integrating it termwise along the contour C and by expressing the 
derivative of an analytic function in terms of the Cauchy integral, 

00 

we get f<k> (z0) = ·~ uhh) (z0). Since z0 is an arbitrary point of the 
n=1 

domain @3, assertion (2) is proved. 
(3) Consider an arbitrary subdomain @J' of @J and construct, 

in @3, a closed contour C containing @J' so that the distance 
from an arbitrary point z E @I' to any point s E C is not less than 
some positive number d, I z- ~ I~ d >0 (Fig. 2.1). (It is obvious 
that an appropriate contour C and number d can be found for any 
subdomain @I' of the domain @l.) Since Tn (z) is an analytic 
function in @), it follows that for any point z E @!' we have the 

l t . kl i rn(~) dr - (h) ( ) And · d •th re a wn 2ni J (~-z)k+l ., - rn z . , m accor ance WI 
c 

the assertion that has just been proved, rh"> (z) is the remainder of 
00 

the series ~ u~> (z). By virtue of the uniform convergence of the 
n=1 



2.1. Uniformly Convergent Series of Complex- Variable Funct>ons 65 

OD 

original series 2} Un (z), for every e > 0 there is an N such that 
n=l 

on the contour c for n ~ N there is a uniform evaluation I rn m I < 
2ndk+1 < e · """'kiL, where L is the length of the contour C. Then 

l r(h)(z)j:S::::~ r lrn(~)l ds<e 
n ""= 2:n: J ~~-zJk+1 

0 

for all z E ~ simultaneously, and this completes the proof of asser­
tion (3). The foregoing proof refers, to the case of a singly connected 
domain @!. The case of a multiply connected domain is considered 
in analogous fashion. Thus, the theorem is proved. 

Observe that this method permits proving uniform convergence 
of a series of derivatives only in any closed subdomain @1 of domain 
@!, even if the original series (2-3) converges uniformly in the 
closed domain as well. As elementary examples show, it does not 
follow fmm the uniform convergence of the series (2-3) in a closed 
domain @J that in this domain a series composed of derivatives also 

OD 

converges uniformly. For example, the series ~ :: converges uni-
n=i 

OD 

zn-1 
formly in the cirde I z I ::::;:;; 1, and the series ~ -n- composed of 

n=l 

derivatives of terms of the original series cannot converge uniformly 
in the circle I z I ::::;:;; 1, since it diverges at z = 1. Thus, the asser­
tion of (3) of the theorem on the uniform convergence of a series, 
composed of derivatives, only in a closed subdomain of the original 
domain cannot, generally speaking, be extended. 

Let us make one more remark. When proving Theorem 2.3, 
we assumed uniform convergence of the series in any closed subdo-
main @!' of domain @!. It is clear that the theorem will all the more 
hold true in the case of uniform convergence of the series (2-3) in 
the closed domain @! •. As the following theorem shows, the latter 
condition may ·be replaced by the condition of uniform convergence 
of the series (2-3) on the boundary r of domain @J. 

Theorem 2.4 (JVeierstrass' second theorem). Let the 
functions Un (z) be analytic in a domain @J and continuous in @J, and 

OD 

let the series 2} un (z) converge uniformly on the boundary r of this 
n=1 

OD 

domain. Then the series 2} un (z) converges uniformly in @J as well. 
n=1 
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Proof. The difference of partial sums of the given series, i.e. the 
function Sn+p (z) - Sn (z), as a finite sum of analytic functions, 
is analytic in @ and continuous in @. From the uniform conver­
gence on r it follows that 

I Sn+p (~)- Sn (~)I= I Un+p (~) + ... + Un+l m l<e 
for n ~ N for any natural number p and all points ~ E r simulta­
neously. Consequently, by the maximum-modulus theorem of an 
analytic function, I Sn+p (z) - Sn (z) I < e for n ~ N for any 
natural number p and for all z E @. Thus, for the given series. 
Cauchy's condition is fulfilled, which proves the theorem. 

Note. All the above-proved properties of functional series are 
clearly true for the functional sequences. 

d. Improper integrals dependent on a parameter 

In Chapter 1 we considered the properties of integrals dependent 
on a parameter and confined ourselves to the case of proper integrals 
over a curve C of finite length. The Weierstrass theorem permits 
generalizing the results to the case of improper integrals. We con­
sider an improper integral of the first kind dependent on a parameter, 

F (z) = J f (z, ~) d~, along an unbounded curve C. Let the func-
c 

tion of two complex variables f (z, ~) defined for z E @ and ~ E C 
satisfy the same conditions as cp (z, ~) in Sec. 1. 7, namely: 

(a) The function f (z, ~) for any value ~ E C is an analytic func­
tion of z in the domain @. 

(b) The function f (z, ~) and its derivative :~ (z, ~) are con­
tinuous functions with respect to the two variables z, ~ for z E @ 

and ~ E C. 
Let the improper integral of the first kind J f (z, ~) d~ converge 

c 
uniformly with respect to the parameter z in any closed subdomain 
@' of the domain @J. This means that for any choice of a sequence of 
finite curves Cn constituting a part of C, as Cn -+ C, the sequence of 

functions Un (z) = J f (z, ~) d~ converges uniformly in @!' to the 
Cn 

function F (z). 
It can readily be shown that if all the foregoing conditions are 

fulfilled. the function F (z) is analytic in @! and 

F' (z) = J :~ (z, ~) d~ 
c 
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Indeed, as was demonstrated in Sec. 1. 7, the proper integrals, 

the functions Un (z) = J f (z, ~) d~, are analytic functions in @! and 
en 

u~ (z) = J : (z, ~) d~. The sequence {un (z)} converges to F (z) 
en 

uniformly in any @!'. Hence, by the Weierstrass theorem, the 

function F (z) is analytic in @! and F' (z) = J :: (z, ~) d~. 
c 

2.2. Power Series. Taylor's Series 

a. Abel's theorem 

In the preceding section we considered general functional series 
(2-3); the form of the functions Un (z), however, was not specified. 
Very important are the so-called power series for which u71 (z) = 
= Cn (z - z0)n, where Cn are some complex numbers and z0 is a fixed 

00 

point of the complex plane. The terms of the series 2j c11 (z - z0)" 
71=0 

are analytic functions throughout the entire complex plane, and 
for this reason the general theorems of the preceding section may 
be applied in studying the properties of the series. As was estab­
lished, many important properties are consequences of uniform con-

00 

vergence. Thus, in investigating the power series 2j c11 (z - z0)" 
n=O 

it is important to establish the domain of its uniform convergence. 
We immediately observe that the domain of convergence of a power 
series is deteimined by the form of the coefficients c11 • For example, 

00 

the series 2j nl (z- z0)n converges only at one point z = z0 • Indeed, 
n=O 

the ratio of the absolute values of two successive terms of the series 

I u~: 1 I = (n + 1) I z - z0 I > 1 for any f1xed value z =I= z0 , be­
ginning with some N (z); according to the considerations on page 59, 
this indicates that the given series is divergent. On the other hand, 
by means of d'Alembert's test it is easy to establish the absolute 

00 

"" (z-z )71 

convergence of the series LJ nlo 
n=O 

The following theorem is essential 
of convergence of a power series. 

for any z. 

for determining the domain 

5* 
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00 

Theorem 2.5 (Abel's theorem). If a power series~ cn (z-z0)n 
n=O 

converges at som~ point z1 =I= z0 , then it converges absolutely at any point 
z which satisfies the condition I z - z0 I < I z1 - z0 I; in a circle 
I z - z0 I ~ p of radius p less than I z1 - z0 I, the series converges 
uniformly. 

Proof. Take an arbitrary point z which satisfies the condition 
00 

I z - z0 I< I z1 - z0 I and consider the series ~ Cn (z - z0)n. 
n=O 

Denote I z- z0 I = q I z1 - z0 I, q < 1. By virtue of the neces--
oo 

sary condition for convergence of the series ~ Cn (z1 - z0)n, its 
n=O 

terms tend to zero as n -+ oo. Consequently, there exists a constant 
M such that I Cn 1·1 z1 - z0 In~ M. Whence, for the coefficients 
Cn of the given power series, we get the evaluation I Cn I ~ M -...:::: lst-zoln · 
Then 

00 00 00 

I ~ Cn (z- zot ~~ ~ I Cn I·IZ-Zo ln~M ~ I ;1--:_':0 In (2-8) 
n=o n=O n=O 

00 

By hypothesis, q = I z- zo I < 1. The series "" qn, which is the 
Zt-ZO LJ 

n=O 

sum of an infinite geometric progression with common ratio 
less than unity, converges. Then from (2-8) it follows that the 
series under consideration converges too. In order to prove the uni-

oo 

form convergence of the series ~ en (z - z0)n in the circle I z - z0 I ~ 
n=O 

~ p < I z1 - z0 I, it suffices, by virtue of the Weierstrass test~ 
to construct a convergent number series that dominates the given 
functional series in tht. domain. It is obvious that such 

00 

a series is M ~ I pn In, which is also the sum of an infinite 
...:::::J Zt-Zo 
n=O 

geometric progression with common ratio less than unity. The 
theorem is completely proved. 

From Abel's theorem we can derive a number of important corol­
laries. 

00 

Corollary 1. If a power series~ cn (z - z0)n diverges at some 
n=O 

point z1 , then it diverges at all points z which satisfy the inequality 
I z - Z0 I > I Z1 - Z0 1. 
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Assuming the contrary, we find that by Abel's theorem the series 
should converge in any circle of radius p < I z - z0 I in particular 
at the point z1 , which contradicts the hypothesis. 

Consider the least upper bound R of the distances I z - z0 I 
00 

from the point z0 to the points z at which the series ~ Cn (z - z0}" 
n=O 

converges. If R =1= oo, then at all points z' satisfying the conditiOn 
I z' - z0 I > R, the given power series diverges. Let R be strictly 
greater than zero, then the circle I z - z0 I< R is the greatest 
domain of convergence of the given series. The series diverges every­
where outside this circle; at the boundary points I z - z0 I = R 
it may either converge or diverge. The domain I z - z0 I < R 
(R > 0) is called the circle of convergence of the pcu·er series, and the 
number R is its radius of convergence. 

Thus, we have established 
Corollary 2. For any power series there exists a number R such 

that inside the circle I z - z0 I < R the given power series conver­
ges and outside the circle it diverges. 

In the circle I z - z0 I ~ p < R of any radius p less than the 
00 

radius of convergence R, the power series ~ Cn (z - z0)n converges 
n=O 

uniformly. Observe that, depending on the form of the coefficients, 
the radius of convergence of a power series may have any value 
between 0 and oo. The first limiting case will correspond to a series 
convergent only at the point z0 , the second, to a series convergent 
throughout the entire complex plane. Examples of such series have 
already been given. The radius of convergence of a power series may 
be determined in terms of its coefficients en. 

Corollary a. Inside the circle of convergence, a power series con­
verges to an analytic function. Indeed, the terms of the power series 
Un (z) = Cn (z - z0)"n are functions which are analytic throughout 
the complex plane; the series converges uniformly in any 
closed subdomain of the circle of convergence. Hence, by 
Weierstrass' first theorem, the sum of the series is an analytic 
function. 

Corollary 4. A power series inside the circle of convergence may 
be integrated and differentiated term by term any number of times, 
and the radius of convergence of the series obtained is equal to the 
radius of convergence of the original series. This property is also 
a direct comequence of the theorems of Abel and Weierstrass. 

00 

Corollary 5. The coefficients of the power series ~ Cn (z-z0)" 
· n=O 

are expressible in terms of the values of the sum of the series f (z) 
and its derivatives in the centre of the circle of convergence by 
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the formulas 

(2-9) 

Setting z = z0 in the expression of the sum of the power series I (z) = 
00 

= 2] Cn (z - z0t, we get I (z0) = c0 ; differentiating the series 
n=O 

termwise and setting z = z0 in the expression for the derivative 
00 

t' (z) = 2] cnn (z - z0)n-t, we get /' (z0) = c1; analogously, set-
n=1 

ting z = z0 in the expression for the kth derivative, 
00 

j<li.)(z)= 2] Cnn(n-1) ..• (n-k+1)(z-z0)n-k 
n=k 

we get l<k) (z0) = Ck ·k!. 
Corollary 6. The radius of convergence R of the power series 

"" 
~ Cn (z- z0)n is determined by the formula* R = + , where l = 
n=O 

= lim -VI Cn I is the upper bound** of the sequence ( Yl Cn I ) . First 
n-+oa 

suppose that 0< l < oo. We have to show that at any point z1 

which satisfies the condition I z1 -z0 I< : the series converges, and 

at any point z2 which satisfies the condition I z2 - z0 1 > + it diverges. 

Since l is the upper bound of the sequence {VTc.J), for any e > 0 
there is a number N beginning with which y/-1 Cn I< l +e. On the 
other hand, for the same e it is possible to find infinitely many 
terms of the sequence /J!/1 en I/ that are greater than l-e. Take 
an arbitrary point z1 that satisfies the inequality ll z1 -z0 I< 1 and 
fore take the number 1 ;1llzt-~ol >0. Then 

Zt-Zo 

n/1-1 I )I I 1+llzt-zol V Cnl Zt-Zo <(l+e Zt-Zo = 2 q<1 

"" Whence it follows that the series 2] Cn (z1 -z0)n is dominated by 
n-=0 

"" 
the geometric progression 2] qn with common ratio less than 

n=O 
unity. This proves its convergence. Now taking some point 

* This formula is frequently called the Cauchy-Hadamard formula. 
** The upper bound x of a number sequence {xn} is the greatest limit 

point of the sequence. 
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z2 that satisfies the inequality l I z2 - z0 I > 1 and choosing for e 
the number llzj-zo IIi > 0, we get 

Zz-zo 

Yi~lz!l-zol > (l-e) lz2 -z0 1 = 1 

for an infinity of values of n. Whence I en (z2 - z0)n I > 1, and 
this, on the basis of the necessary condition for convergence, indi-

00 

r>,ates that the series ~ en (z2 - z0)n diverges. 
n=O 

Note. We carried out the proof for the case 0 < l < oo. Let us 
now consider the limiting cases. 

00 

For l =0 the series ~ Cn (z-z0t converges at any point z, that 
n=O 

is, R =oo. Indeed, in this case, for any e>O there is a number N 
such that VI Cn I< e from N onwards. Taking for e the number 

I q I , where z is an arbitrary point of the complex plane and Z-Zo 
0 < q < 1, we get I c11 (z- z0)n I< qn. This proves the convergence 

00 

of the series 2J Cn (z -z0t. 
n=O 

00 

For l=oo the series 2J Cn(z-z0t diverges at any point z=l=z0 , 
n=O 

i.e. R = 0. Indeed, in this case, for any number M there are infi-
nitely many coefficients Cn such that VI Cn I> M. Let us consider 
an arbitrary point z=l=z0 and choose M so that Mlz-z0 l=q>1. 

00 

Then an infinity of terms of the series 2J Cn (z-z0)n satisfies the 
n=O 

condition lcn(z-z0tl>1; this proves its divergence. 

Thus, the Cauchy-Hadamard formula R = : , where l =limy/len I, 
n-+oo 

holds true for anv value of l. 
We illustrate ,;ith an example that will be import~t later on. 

00 

Let us consider the power series ~ (z-z0t, all coefficients en of 
n=O 

which are equal to 1. By d'Alembert's test we fmd that the series 
converges in a circle I z -z0 I< 1 to some analytic function. To find 
this function, we apply the direct definition of the sum of a series 
as the limit of the partial sums: 

. . 1-(z-zo)n 1 
f(z)=hmSn(z)=hm 1_( _) = 1_( -~) (2-10) 

n-+oo n-+oa Z Zo Z ""0 

Here we have obviously taken advantage of the formula (which 
holds true in the domain of complex numbers as well) of the sum 
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of a geometric progression with a finite number of terms and 
the possibility of a passage to the limit in the numerator of the 
fraction, the denominator of which is nonzero. The equation (2-10) 
signifies that the formula for the sum of an infinitely decreasing 
geometric progression holds true in the complex dom;tin as well. 

b. Taylor's series 

Thus, a puwer series inside the circle of convergence defines a 
certain analytic function. The following question naturally arises: 
can we associate, with a function that is analytic inside a certain 
circle, a power series convergent to the given function in this circle? 
The following theorem gives the answer. 

Theorem 2.6 (Taylor's theorem). A junction f (z) that is 
analytic inside a circle I z - z0 1 < R may be represented in the circle 

00 

as a convergent power series f (z) = ~ Cn (z - z0t, the series being 
n=O 

defined uniquely. 
Proof. Choose an arbitrary point z inside the circle 1 z - z0 I< 

< R and construct a circle C P of radius p < R centred at the point 
z0 and containing the interior point z (Fig. 2.2). Such a construction 

Fig. 2.2 

is obviously possible for any point z of the given domain. Since z 
is an interior point of the domain I z- z0 I< p in which the func­
tion I (z) is analytic, it follows by Cauchy's formula that 

I (z) = - 1 r 1 <~> d~ (2-11) 
2nt J ~-z 

cP 



2.2. Power Series. Taylor's Series 73 

Transform the integrand of (2-11) 
00 

_1_=_1_. 1 =-1-""' (z-:o)n 
,_, b-zo :-:o ~-:o LJ (1;-:o)n (2-12) 

1--- n=O 
~-:o 

Here we took advantage of formula (2-10) and the obvious relation 

j ~=:: I< 1. For ~ E Cp the series (2-12) converges uniformly in ~. 
since it is dominated by the convergent number series 

00 

~ I';.:~ In (I z-z0 1 < p). Putting (2-12) into (2-11) and integrating 
n=O 
termwise, we obtain 

(2-13) 

Introducing the notation 

Cn = 2~i J (~~~:~n+i d~ (2-14) 

cP 

rewrite (2-13) in the form of a power series convergent at the chosen 
point z: 

00 

f (z} = ~ Cn (z-zo)n (2-15) 
n=O 

In formula (2-14) the circle C P may be replaced, by virtue of Cauchy's 
theorem, by any closed contour C lying in the domain I z - z0 I < R 
and containing the interior point z0 • Since z is an arbitrary point 
of the given domain, it follows that the series (2-15) converges to 
f (z) everywhere inside the circle I z - z0 I< R, and in the circle 
I z- z0 I -<: p < R the series converges uniformly. So the func­
tion f (z} that is analytic inside the circle I z - z0 I< R can, in 
this circle, be expanded in a convergent power series. On the basis 
of formula (1-72) for derivatives of an analytic function, the coeffi­
cients (2-14) of the expansion are of the form 

c = _1_ r f (b) d~ = t<n> (so) 
n 2:rti J (~-:0)n+1 nl 

c 
(2-16) 

It remains to prove the uniqueness of the expansion (2-15). Sup­
pose we have the following expansion: 

00 

f (z) = ~ c~ (z-z0)n (2-15') 
n=O 
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where at least one coefficient c~ =1== en. The power series (2-15') con­
verges in the circle I z - z0 I < R, and so on the basis of formu-
la (2-9), c~ = tcn:\zol , which coincides with the expression (2-16) 

for the coefficients en. This proves the uniqueness of definition of 
the coefficients. 

The expansion of a function, which is analytic in the circle 
I z - z0 I < R, into the convergent power series (2-15) is often 
called Taylor's expansion, and the series (2-15) is termed Taylor's 
series. 

The theorem that has just been proved establishes a reciprocal 
one-to-one correspondence between a function analytic in the neigh­
bourhood of some point z0 and a power series centred at this point. 
This means that the concept of an analytic function as an infinitely 
differentiable function is equivalent to a function that can be 
represented in the form of the sum of a power series.* This is not 
only very important in constructing the theory of analytic func­
tions, but finds extensive application in the solution of practical 
problems. 

Note also that if a function I (z) is analytic in a domain @I and z0 

is an interior point of this domain, then the radius of convergence 
00 

of Taylor's series I (z) = ~ tcn~\zo) (z - z0}n of this function 
n~O 

is not less than the distance from the point z0 to the boundary of 
the domain @1. 

c. Examples 

1. To take a simple example, we consider the Taylor expansion 

of the function I (z) = 1 ~z2 • This function is analytic through­

out the complex plane with the exception of the points z1 , 2 = ±i 
at which the denominator of the fraction vanishes. And so by virtue 
of Theorem 2.6 this function can be expanded into a Taylor series 
in any circle of the complex plane that does not contain the points 

• Note that no similar equivalence occurs for functions of a real variable. 
Indeed, from the existence, on an interval (a, b), of all derivatives of a function 
1 (x) there does not follow the possibility of expanding this function in a power 

00 

series of the form 1 (x) = ~ en (x - x0)n, where x 0 E (a, b), that is convergent 
n=O 

over the whole interval (a, b). For example, the function f (x) = 1 ~ xz has 

derivatives of all orders for any real x; however, for x0 = 0 the power series 
00 

~ (-f)nx2n converges to the given function only in the interval -1 < x < 1 
n=O 
and not over the whole real x-axis. 
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z1 , 2 = ±i. We begin with the circle I z I< 1. Under the condition 

I z I< 1, the expression i~z2 may be considered to be the sum 
of an infinitely decreasing geometric progression. And so, by (2-10), 

00 

1 _ "" ( 1 )n 2n 1+z2- LJ - z (2-17) 
n=O 

which yields the desired expansion. Note that the radius of conver­
gence of the series (2-17) is equal to unity, that is, it is determined 
by the distance from the centre of the expansion to the boundary of 

the region of analyticity of the function f (z) = 1 ~ zZ. 

Now let us find the Taylor expansion of the function I (z) = 

= 1 ~z2 in the circle I z-11 < y2. In this case, determining the 
00 

coefficients en of the series ~ Cn (z-1t via the formula (2-16) 
n=O 

involves rather unwieldy computations. And so we represent the 
. 1 1{1 1} functwn as t+z2 =2i z-i-z+i and take advantage of (2-10), 

which in this case holds true provided I z-11 < y2, to get 
00 

1~z2= ~ (- 1)n ;i L1-!)n+1 
n=O 

Using the exponential form of writing the complex numbers, 1- i = 
• 1t • 1t 

=V2e-tT, 1+i=V2/T, it is now easy to obtain 

1 00 sin(n+i) ~ 
I+z2= ~ (-1t ~ (z-1t (2-18) 

n=O 2 2 

As follows from the Cauchy-Hadamard formula, the radius of con­
vergence of the series (2-18) is equal to V2, which is to say it is 
again determined by the distance from the centre of the expansion 
to the boundary of the regjon of analyticity of the function at hand. 

2. By way of illustration, let us consider the Taylor-series ex-· 
z 

pansion of the function I (z) = In z = ) ~~ introduced in Chapter 1 
1 

(page 46). It was earlier 'established that this is an analytic function 
over the entire complex plane cut along the negative part of the 
real axis, and consequently inside the circle I z - 1 I < 1 as well. 
Assuming z0 = 1 and computing the coefficients Cn by formula (2-16), 
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we get 

c0 = ln 1 = 0; c1 = .!..' = 1 z z=i 

Cn=_!_l (-1)n-t(n-1)1r =(-1)n-t.!_, n=2, 3, ••· 
n zn z=i n 

Whence 
00 

lnz= ~ (-1)n-t (z-:f)n (2-19) 
n=i 

As will readily be seen if we apply d 'Alembert 's test, the circle 
I z - 1 I < 1 is the circle of convergence of the series (2-19). 

2.3. Uniqueness of Definition 
of an Analytic Function 

The properties of functions of a complex variable that we have 
already studied permit concluding that in order to define a func­
tion analytic in a given domain, one need not specify the values 
of the function throughout the domain. For instance, by specifying 
the values of an analytic function on the boundary of the domain 
we can, with the aid of Cauchy's integral, define its values at all 
interior points of the domain. Thus, a function that is analytic in a 
given domain is defined by specifying incomplete information 
about its values in that domain. The natural question arises: what 
is the minimum information needed to completely define a function 
analytic in a given domain? 

a. Zeros of an analytic function 

Let us first introduce the concept of a zero of an analytic func­
tion. Let f (z) be an analytic function in a domain @l. The point 
Z0 E @l is called a zero of f (z) if f (z0) = 0. From the power-series 
expansion of f (z) in the neighbourhood of the point z0 , f (z) = 

"" = ~ Cn (z - z0)n, it follows that in the given case the coefficient 
n=O 

c0 = 0. If not only the coefficient c0 , but also the coefficients c1 , 

c2 , ••• , ck _1 are equal to zero, and the coefficient ck is different 
from zero, then the point z0 is called a zero of order k of the function 
I (z). According to formula (2-9), in a zero of order k, not only the 
function itself but also its first k - 1 derivatives are equal to zero, 
and the kth derivative is nonzero. In the neighbourhood of a zero of 
order k, the power-series expansion of the function f (z) is of the 
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form 
DO 

f (z) = ~ Cn (z-z0)n 
n=k 

DO 

=(z-z0)11 ~ Cn+k(z-zo)"=(z-z0)11 cp(z) (2-20) 
n=O 

where cp (z) is an analytic function in the neighbourhood of the 
point z0 , the power-series expansion of which function is of the 

DO 

form cp (z) = ~ Cn+k (z - z0t and cp (z0) =I= 0. Note that the last 
n=O 

series converges in the same circle as the original one. 

b. Uniqueness theorem 

Let us now state the basic proposition of this section. 
Theorem 2.1'. Let a function I (z) be an analytic function in a 

domain @j and let it vanish at various points Zn E @l, n = 1, 2, .... 
If a sequence {zn} converges to a limit a belonging to that domain, 
then the function f (z) is identically zero in the domain @l. 

Proof. Since a E @l, the function I (z) may be expanded in a power 
"" 

series in the neighbourhood of the given point, I (z) = ~ Cn (z- a)'t, 
n=O 

and the radius R 0 of convergence of the given series is not less than 
the distance of point a from the boundary of the domain. From the 
definition of continuity of the function f (z) it follows that f (a) = 0. 
Whence c0 = 0, and the expansion of I (z) in the neighbourhood 
of z = a is of the form 

DO 

I (z) = (z-a) fi(z), where /I(z} = ~ Cn+dz-a)" 
n=O 

We assume that all points of the sequence {zn} are different from a. 
This does not diminish the generality of our reasoning, since only 
one of these points could be equal to a. By the latter condition 
/ 1 (zn) = 0, and by the definition of a continuous function, / 1 (a) = 0. 
Whence c1 = 0, and the expansion of ft (z) in the neighbourhood of a 

00 

takes on the form /1 (z) = (z- a) / 2 (z), where / 2 (z) = ~ Cn+2(z-a)". 
n=O 

As before, we also find that / 2 (a) = 0, i.e. c2 = 0. Continuing this 
process indefinitely, we find that all the coefficients Cn in the expan-

DO 

sion of f (z) in the power series f (z) = ~ en (z -a)" in the neigh-
n=O 

bourhood of the point a are equal to zero. This means that f (z) = 0 
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within the circle I z- a I< R 0 • Let us now take up the proof* 
that the function f (z) is identically equal to zero throughout the 
domain @!. It will suffice to show that f (z1) = 0, where z1 is an 
arbitrary point of the domain @ lying outside the circle I z - a 1 < 
< R 0 • To do this, connect the points a and z1 by a rectifiable curve 
L lying entirely in @l and distant from its boundary by d > 0. 
Since any point of the circle I z- a I< R 0 lying within the domain 
@ may be regarded as the limit of a sequence of zeros of the func­
tion f (z), it is possible, by choosing as the new centre of expansion 
the last point z = a1 of intersection of the curve L with the circle 
I z - a I = R 0 , to find that j (z) = 0 inside the circle I z- a1 I< 
< R1 , where R 1 ~ d. Continuing in similar fashion, we cover the 
entire curve L with a finite number of circles with radii not less 
than d, within which f (z) == 0. In the process, the point z = z1 

is inside the last circle, thus, f (z1) = 0. Since z1 is an arbitrary 
point of the domain @, it follows that f (z) = 0 in @. 

This theorem has a number of important corollaries. 
Corollary 1. The function f (z) ¥= 0 and is analytic in the 

domain @; in any clofed bounded subdomain ®' of @ it has only 
a finite number of zeros. 

If the totality of zeros of the function f (z) in the domain @' is 
infinite, then by Theorem 1.2 we can extract from it a convergent 
sequence {zn} -~o- a, the limit a of this sequence belonging to @i' 
Whence f (z) == 0 in @, which contradicts the hypothesis. 

Corollary 2. If the roint z0 E@ is a zero of infinite order** of the 
function f (z) (i.e., all coefficients Cn == 0 in the expansion off (z) = 

"" 
= ~ en (z - z0t about the point z0), then f (z) = 0 in the do 

n=O 
main @!. 

Cm•ollat•y 3. An analytic function can have an infinite number 
of zeros only in an open or unbounded domain. 

The function of a complex variable that is analytic throughout 
the complex plane (z =1= oo) is called an entire (or integral) function. 
From what has been considered it follows that an entire function 
in any bounded part of the complex plane has only a finite number 
of zeros. Consequently, all the zeros of an entire function can be 
arranged in some kind of order, for example in the order of increasing 
absolute values. In the extended plane, an entil"e function can only 
have a countable set of zeros, and the limit point of this set is the 
point at infinity of the complex plane. Entire functions play an 
important role both in the theory of functions of a complex variable 
and its applications. 

* This proof is analogous to that of the theorem on pages 51-53. 
** It is ohYious that in this case both the function f (z) and all its derivatives 

at the point z0 are equal to zero. 
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Theo1·em 2.8. Let the functions f (z) and <p (z) be analytic in a 
domain @3. If in@ there is a sequence, that converges to scme point a E @3, 
of different points {zn} at which the values of the functions f (z) and 
<p (z) coincide, then f (z) = <p (z) in @3. 

To prove this theorem, it is sufficient to establish, with the aid 
of Theorem 2. 7, that the function '\j) (z) = f (z) - <p (z) = 0 in @3. 

Theorem 2.8 is exceedingly important, since it signifies that 
in a given domain @ only a single analytic function can exist that 
assumes specified values in the sequence of points {zn} convergent 
to the point a E @. This theonm is called the uniqueness theorem 
of definition of an analytic function. 

The following corollaries to the uniqueness theorem find frequent 
application. 

Corollary 1. If the functions /1 (z) and / 2 (z), analytic in a do­
main@, coincide on some curve L belonging to the given domain, 
then they are identically equal in the domain @J. 

Corollary 2. If the functions / 1 (z) and / 2 (z), analytic respec­
tively in the domains @31 and @3 2 which have a common subdomain @3, 
coincide in @, then there exists a unique analytic function F (z) 
such that 

The uniqueness theorem and its corollaries can also be given the 
following forms. 

(1) Let there be chosen, in a domain @J, a sequence of different 
points Zn E@ convergent to the point a E @. Then in this domain 
there can exist only one analytic function f (z) that assumes speCified 
values at the points Zn· 

(2) Let a certain curve L be given in a domain @3. Then in @3 
there can exist only one analytic function f (z) that assumes specified 
values on L. 

(3) Let there be given, in a domain @, a certain subdomain @3'. 
Then in @ there will be a unique analytic function f (z) that takes 
on specified values in the subdomain @'. 

If there exists a function f (z) defined in the domain @ [as men­
tioned in (1), (2), (3)], then it can be called an analytic continuation 
into@ from the set {zn}, from the line Lor the subdomain @'. 

Note that specification of the values of an analytic function on an 
appropriate set of points cannot be performed in arbitrary fashion. 
However, we will not discuss the requirements that these values 
must satisfy so that they may be continued analytically in the 
domain @. 



CHAPTER 3 

ANALYTIC CONTINUATION. 

ELEMENTARY FUNCTIONS 

OF A COMPLEX VARIABLE 

In this ehapter we will examine a number of fundamental conse­
quences of the theorem on uniqueness of definition of an analytic 
function. It has been established that an analytic function is uniquely 
defined by specification of its values on a certain set of points in 
the domain of its definition. This circumstance permits constructing 
an analytic continuation of elementary functions of a real variable 
into the complex domain and to elucidate their properties in this 
domain. We will also briefly consider the general principles of 
analytic continuation. 

3.1. Elementary Functions of a Complex Variable. 
Continuation from the Real Axis 

a. Continuation from the real axis 

The theorem on the uniqueness of definition of an analytic func­
tion permits extending elementary functions of a real variable 
automatically to the complex domain. First observe the validity 
of the following assertion: let there be given, on an interval [a, b] 
of the real x-axis, a continuous function f (x) of a real variable; 
then in some domain @I of the complex plane that contains the inter­
val [a, b] of the real axis there can exist only one analytic function 
f (z) of the complex variable z that takes on the given values of 
f (x) on the interval [a, b). We call the function f (z) an analytic 
continuation of the function f (x) of the real variable x into the complex 
domain @J. 

We now consider some examples of the construction of analytic 
continuations of elementary functions of a real variable. Among 
the elementary functions of a real variable, of particular importance 
are the exponential function ex and trigonometric functions sin x 
and cos x. It will be recalled that these functions can be specified 
by their Taylor-series expansions: 

(3-1) 
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00 
,x2n+1 

sinx= ~ (-1}n(Zn+i)l (3-2} 
n=O 

00 

""' n ,x2n 3 cos X= LJ ( -1) (Zn)l ( -3) 
n=O 

Note that these series converge for any value of x. 
Consider the following power series in the complex plane: 

00 

00 

""'~ LJ nl 
n=O 

""' n z2n+1 
Ll (- 1) (2n+1)1 

n=O 
00 

~ ( -1}n (;:~! 
n=O 

(3-4} 

(3-5) 

(3-6) 

For real z = x, the expressions (3-4), (3-5), (3-6), and (3-1), (3-2), 
(3-3) coincide respectively. 

As follows from Abel's theorem, the domain of convergence of the 
series (3-4) to (3-6) is the entire plane of the complex variable, i.e. 
these series are entire functions of the complex variable z which 
are analytic continuations onto the entire complex plane of the 
elementary functions eX, sin x and cos x of a real variable. It is 
natural to preserve the earlier notation for these functions. Let us 
put 

00 

z ""' zn e =LJnr (3-7) 
n=O 

00 

1 2n+1 
sinz = ~ ( -1)n (2n+1)1 (3-8) 

n=O 
00 

""' n z2n 
COSZ= LJ (-1) (Zn)l (3-9) 

n=O 

With the aid of the function ez construct hyperbolic functions 
of the complex variable .,.., · 

coshz (3-10) 

6-3878 
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and 
. ez-e-z 

smh z = 2 (3-11) 

These functions are also entire functions by virtue of the general 
properties of analytic functions. 

Similarly, we can construct the remaining trigonometric functions 
sin z 1 t · h h 'd f h b · tan z = C'OsZ , cosec z = sinz, e c., Wit t e a1 o t e as1c 

trigonometric functions sin z and cos z, by means of a formal trans­
fer of the appropriate definitions to the complex domain. These func­
tions are not entire, since their analyticity breaks down at those 
points of the z-plane where the denominators of the expressions de­
fining them vanish. 

As will be shown below, many of the basic properties of the corres­
ponding elementary functions of a real variable are preserved for all 
the constructed functions of a complex variable. This will be estab­
lished on the basis of certain general propositions; for the present 
we will construct the continuation of two more elementary func­
tions into the complex domain. Consider the following power series: 

00 

~ ( _ 1)n-i (x~ 1)n (3-12) 
n=1 

and 
00 

x+"" 1·3 ... (2n-1)x2n+1 
LJ zn·nl (2n+ 1) 

(3-13) 
n=1 

The first series is known to converge in the interval 0 < x < 2 and 
the second in the interval -1 < x < 1 to the functions of the real 
variable In x and arcsin x, respectively. It is easy to establish 
that the power series 

00 

~ ( -1t-1 (z~f)n (3-12') 
n=1 

and 

(3-13') 

converge: the first converges inside the circle I z- 1 I< 1, the 
second, within the circle I z I< 1; and on appropriate intervals of 
the real axis they coincide with the series (3-12) and (3-13). There­
fore, the analytic functions of the complex variable z defined by 
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means of the ~eries (3-12') and (3-13') inside their circles of conver­
gence are analytic continuations of the elementary functions In x 
and arcsin x of the real variable x onto the appropriate complex 
domain. We again retain the earlier notation for these functions, 
putting 

00 

In Z = ~ ( -1}n-t (z~t)n (3-14) 
n=1 

and 
00 

. ~ 1·3 ... (2n-1) z2n+1 
arcsmz=z+ LJ 2n·nl(2n-+-1) (3-15) 

n=1 

Note that the functions (3-14) and (3-15}, unlike the earlier intro­
duced functions (3-7} to (3-9), are not entire functions, since the 
series defining them do not converge on the entire complex plane 
but only inside circles of unit radius. The properties of these func­
tions will also be considered somewhat later. However, it may be 
observed that the function (3-14) in the circle I z - 1 I < 1 coin-

z 

cides with the function In z = ) d~~ (which was introduced by 
1 

a different method in Chapter 1, page 46}, since both these analytic 
functions are defined in the indicated domain and coincide on the 
common interval of the real axis 0 < x < 2 with one and the same 
function In x. We will therefore use the same notation for both 

z 

functions. Thus, the function I (z) = J d~~ defined on the complex 
1 

plane z cut along the negative real axis is also an analytic con­
tinuation of the function In x onto the appropriate domain. 

In conclusion we observe that if the function I (x) of the real 
variable x is specified by its power series 

00 

flx) = ~ an (x-x0)n (3-16) 
n=O 

convergent on the interval [a, b], then there exists an analytic 
function I (z) of the complex variable z, which is an analytic contin­
uation of I (x) into the complex domain @J that contains the inter­
val [a, b] of the real axis. This circumstance permits calling the 
function of the real variable I (x), which can be represented by the 
series (3-16), an analytic function. Recall that the function of a 
real variable that can be represented on an interval [a, b) by the 
power series (3-16) has derivatives of all orders on this interval. 
Obviously, the derivative r> (z) is the analytic continuation of the 
derivative J<n> (x) into the domain @J. 

6• 
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b. Continuation of relations 

We now consider further consequences of the theorem on unique­
ness of definition of an analytic function. This theorem permits not 
only constructing analytic continuations of elementary functions 
of a real variable but also analytically continuing into the complex 
domain relations which occur between appropriate functions of a 
real variable. As typical instances, consider first relations of the form 

sin2 x +cos2 x = 1 

elnx =X 

and, secondly, relations of the form 

(3-17) 

(3-18) 

(3-19) 

(3-20) 

The relations (3-17) and (3-18) establish a connection between diffe­
rent functions of one real variable; relations (3-19) anrl (3-20) involve 
functions of several variables. These are some of the basic relations 
for elementary functions of real variables. It is natural to ask whether 
they will hold true for analytic continuations of elementary func­
tions into the complex domain. 

We will establish the fact that the identity (3-17) remains valid 
for the complex domain as well. To do this, consider the function 

F (z) = sin2 z + cos2 z - 1 

of the complex variable z. According to the general properties of 
analytic functions (see Chapter 1, page 33), F (z) is an entire function 
of z, and for real values of z = x [by virtue of (3-17)] F (x) = 0. 
Whence, by the uniqueness theorem, we find that throughout the 
complex z-plane the relation 

sin2 z + cos2 z == 1 (3-21) 

is fulfilled. Similar reasoning will suffice to prove the validity, in 
the complex domain, of the expression (3-18) and of other relations 
between different analytic functions of one complex variable. How­
ever, there is no need to carry out a special investigation each time. 
We can formulate a general.theorem. 

Let there be given a function F [w1 , .•• , wnl of the complex 
variables w1 , ••• , Wn, which is analytic with respect to each vari· 

able* w1 ED i and such that it itself and its partial derivatives ;:i are 

• We shall call a function of many complex: variables F (z11 ••• , zn) de­
fined for the values ::1 E D1, an analytic function of each of its variables z1 
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continuous in all the variables w1 , •.• , wn. A function F [w1 , •.. , wnl 
having these properties will be called an analytic function of many 
complex variables. Let there be given n functions / 1 (z), ... , In (z) 
of the complex variable z which are defined in the domain @3 of the 
complex z-plane, and let / 1 (z) E D1• 

We will say that the functions / 1 (z) satisfy the relation 
F [/1 (z), ... , In (z)]= 0 on the set M if this relation is satisfied 
at all points z EM. In the sequel we consider relations specified 
solely by analytic functions of many complex variables. Then we 
have 

Theorem 3.1. If the functions / 1 (z) are analytic functions of z 
in the domain@! containing an interval [a, b) of the real x-axis, then 
from the relation F [/1 (x), ... , In (x)] = 0 for a:::;;;;; x:::;;;;; b, there 
follows the relation F [/1 (z), ... , In (z)] = 0 for z E @!. 

Proof. To prove the theorem it is sufficient to show that under 
the formulated conditions the function <I> (z) = F [/1 (z), ... , In (z)) 
is an analytic function of the complex variable z in the domain @3. 
We carry out the proof for the case of two variables wi> that is, when 
<I> (z) = F [/1 (z), / 2 (z)). In the domain @ fix an arbitrary pQint 
z0 E@! and denote / 1 (z0) = w~ and / 2 (z0) = w~. Form the expres­
sion 

<I> (z0+ .!\z) -<I> (z0) = F [w~+ i\wh w~+i\w2] -F [w~, w~] (3-22) 

where .!\w1, .1w2 are increments of the functions /1 (z) and / 2 (z), 
which correspond to the increment .!\z of the independent variable z. 
Since, by assumption, there exist partial derivatives of the function F 
which are continuous in all the variables, it follows that (3-22) 
may be transformed to 

<D (zo + .!\z)- <I> (zo) = ::. (w~, w~ + .!\w2) .1w1 + f]1.1w1 

+ : 2 ( w~, w~) .1w2 + f]2 • .1w2 ( 3-23) 

where the functions fJ 1 and 1'] 2 are infinitesimal as .1w1 and .1w2 ap 
proach zero, and, thus, as i\z -o. We now form the difference quo-

tient ~~ and, passing to the limit as i\z -o, since the partial 

fi = 1, 2, ... , m; m -< n) if for any i = 1, 2, ... , m the corresponding func­
tion <I>, (z1) = F (zy, .•. , z~_1 , zt. z~+I• ... , z~) of one complex variable z1 
obtained for arbitrary fixed values of the remaining variables .:1 = .~, (j =1= t) 
is an analytic function of the given variable. We will call the derivatives of 
the function <1>1 (z1) with respect to the appropriate variables, partial deriva­
tives of the function F (z1, .•• , Zn) of many complex variables <I>; (z1) = 

iJF (zl' ' · ·' Zn) A b ' f f h h ' . = . iJz· • ne survey o t e t eory of functiOns of many complex 
I 

variables is given in Appendix III. 
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derivatives of the functions F are continuous in all the variables. 
we get 

l . <I> (zo+!J.z)-<1> (zo) = aF ( o 0 ) f' ( ) + aF ( o o) f' ( ) 
lm A a W1 , W2 I Zo "-·• W17 W2 2 Zo 
~•0 ~ ~ u~ 

This proves the existence of the derivative <I>' (z 0 ) at the point z0 • 

On the basis of the assumptions that have been made, the function 
<I>' (z) is continuous at the point z0 , and since z0 is an arbitrary point 
of the domain @3 it follows that the function <I> (z) is analytic in the 
domain @3. The proof is quite analogous for a larger number of 
variables wi. 

Theorem 3.1 permits analytically continuing into the complex 
domain relations of the form (3-17), (3-18) between elementary 
functions of one real variable. This is essential in the study of vari­
ous properties of elementary functions of a complex variable. Ap­
propriate examples will be given later on, for the present we confine 
ourselves to the following remarks regarding Theorem 3.1. 

0 OI'OllaJ•y. If the conditions of Theorem 3.1 are fulfilled and the 
jUnctions / 1 (z) are respectively equal: / 1 (z) =I (z), / 2 (z) = f' (z), ... 
. . . , fn+I (z) = J<n> (z), then from the relation 

F If (x), ... , f'n' (x)l = 0 for a< x < b (3-24) 

there follows 

F [f (z), ••. , f'n' (z)J = 0, z E @3 (3-25) 

This signifies that if the function f (x) of a real variable is a solu­
tion of the differential equation (3-24), then its analytic continua­
tion f (z) into the domain @3 satisfies, in that domain, the differen­
tial equation (3-25), which is an analytic continuation of the rela-
tion (3-24) into @3. · 

Let us now substantiate the analytic continuation of relations 
of the form (3-19) and (3-20). We will not consider each one sepa­
rately but will state a general theorem. 

TlleOI'em 3.2. Let the functions W1 =/1 (z1), ••• , Wn=fn (zn) be 
analytic functions of the complex variables z1 , ••• , Zn in the domains 
@3 1 , ... , @n containing the intervals Ia;, b;l (i = 1, ... , n) of the 
real x-axis. Let the function F lw1 , ••• , wnl be analytic with respect 
to each of the variables w1 , ••• , Wn in their range. Then from the 
relation F l/1 (x1), ... , In (xn)l = 0 for ai ~ x ~ bi there follows 
the relation F [/1 (zi), ... , In (zn)l = 0 for zi E @3;. 

Proof. Fix the values of the variables x2 = x~, ... , Xn = x~ 
and consider the function <1>1 (z1) = F [/1 (z1), fl (x~), ... , In (x~)). 
This function, being a composite function of the complex variable 
z1:-by virtue of the assertion on page 33 of Chapter 1, is an analytic 
function of the complex variable z1 E @J1• Therefore, by the theorem 
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on uniqueness of definition of an analytic function it follows from 
the relation F [ft (x1), 12 (x~), ... , In (x~)l = 0 for a1 ·~ x1 ~ bH 
that F [/1 (z1), 12 (x~), ... , In (x~)l = 0 for z1 E @11• Note that 
by virtue of the arbitrariness of x~, ... , x~ there follows from this 
that F [11 (z1), 12 (x2), ••• , In (xn)l = 0. Now fix an arbitrary value 
of the complex variable z~ E @1 1 and consider the function <!)2 (z2 ) = 
= F [/1 (z~), 12 (z2), Is (x~), ... , In (x~)l. of the complex variable 
z2 E @! 2 • The function <1>2 (z2), just like <!)1 (z1), is an analytic 
function of the variable z2 E @1 2 • Therefore, from the relation 
F 111 (z~), 12 (x2), Is (x~), ... , In (x~)l = 0 for a2 ~ x2 ~ b2 there 
follows F [/1 (z~), 12 (z2), 13 (x~), ... , In (x~)l = 0, for z2 E @! 2 • 

Since the choice of z~ is arbitrary, we find that the relation 
F [/1 (x1), 12 (x2), Is (xg), ... , In (x~)] = 0 for a1 ~ x1 ~ b1 , a 2 ~ 
~ x2 ~ b2 implies the relation F [11 (z1), 12 (z2), / 3 (xg), ... 
• . • , fn (x~)l = 0 for Z1 E @!1, Z2 E @1 2 • 

Continuing in analogous fashion, we prove the theorem. It will 
be noted that the proof of the theorem does not depend on the mutual 
arrangement of the domains @li. 

Theorem 3.2 permits constructing analytic continuations of rela­
tions of the form (3-19) and (3-20). For example, consider (3-19) 
and introduce the functions w1 , w2 , w 3 of the complex variables 
z1 , z2 and z3 = z1 + z2 

Consider the function of three complex variables 

F [w1 , w2 , w3] = w8 - w1 ·W2 

(3-26) 

(3-27) 

Since the functions (3-26), (3-27) are entire functions of their vari­
ables, and F=O for z1 =x1 , z2 = x2 , z3 =x3 (-oo<x1 < oo), all 
the conditions of Theorem 3.2 are fulfilled and this proves the va­
lidity of the relation (3-19) for any values of the complex variables 
z1 and z2 • 

c. Properties of elementary functions 

Now let us study in more detail the basic properties of the earlier 
introduced elementary functions of a complex variable. By virtue of 
Theorem 3.1 and Theorem 3.2 for all values of the complex variable 
z1 we have the relations 

sin11 z + cos11 z = 1 

cosh2 z - sinh2 z = 1 

(3-28) 

(3-29) 

and other familiar identities for the various trigonometric and 
hyperbolic functions of one complex variable. We also have the 
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sin (z1 + z2) = sin z1 cos z2 +cos z1 sin z2 

cos (z1 + z2) =cos z1 cos z2 - sin z1 sin z2 

(3-30) 

(3-31) 

(3-32) 

and other trigonometric formulas which are analytic continuations 
into the complex domain of familiar relations for elementary func­
tions of a real variable. 

We will establish a relationship between the exponential function 
and the trigonometric functions of a complex variable. To do this, 
we return to the expression (3-7) for the function ez and make the 
substitution z = it;,. Then 

Breaking up this absolutely convergent series into a sum of two 
series, we get 

00 00 

. ~2n "2n+1 
ett= ~ (-1t (2n)! +i ~ (-1)n (2~+1)1 

that is, 
n=O n=O 

eit = cos t;, + i sin t;, (3-33) 

It is obvious that this identity holds for all values of the complex 
variable t;,. 

The relation (3-33) which establishes a relationship between the 
exponential function and the trigonometric functions of a complex 
variable is called Euler's formula, which yields the following very 
important formulas*. 

(3-34) 
and 

(3-35) 

Using these formulas and formulas (3-10) and (3-11), it is easy to 
set up relations connecting the trigonometric and hyperbolic func­
tions of a complex variable: 

sin z = -i sinh iz, cos z = cosh iz (3-36) 
In particular, 

sin iy = i sinh y, cos iy = cosh y (3-37) 

• Recall that in Chapter 1, using these formulas, we defined the functions 
cos s and sin s, and also formally introduced the Euler relation. 
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We will establish certain other important properties of these 
functions. First, however, note that by virtue of formula (3-30) 
we have the relation 

(3-38) 

Whence it follows that I w I = ex and arg w = y. 
z 

Now let us consider the function w = In z = ~ di , which is an 
0 

analytic continuation of In x into the complex plane cut along the 
negative real axis. Since for real positive x. the function In x is in­
verse of the exponential function, then by Theorem 3.1, in the inter­
val -n < arg z < n, the relation 

elnz = z (3-39) 

holds, which is an analytic continuation of the relation e1n x = 
= x (x > 0) into the complex plane. Thus, the junction In z is the 
inverse of the junction ew. 

Note an important corollary to formula (3-39). By virtue of this 
formula and of (3-38) it follows from w = u + iv = In z that 

(3-40) 

Whence I z I = e'", arg z = v, and since u and I z I are real vari­
ables, we finally get 

u = In I z I, v = arg z (3-41) 

where the symbol In I z I denotes the real logarithmic function 
of a real positive argument. Thus, for the function In z of a complex 
variable we get an algebraic notation in the form 

In z = In I z I + i arg z (3-42) 

From (3-42) we obtain the values: In i = i ~ , In (1) = 0, In ( -i) = 

= -i ~ , In (1 + i) =In V2 + i ~ and so forth. 
In similar fashion, on the basis of Theorem 3.1, it is easy to show 

that the function arcsin z defined by formula (3-15), is also the 
inverse of the function sin z, i.e. 

sin (arcsin z) == z (3-43) 

Above we established a relationship between an exponential 
function and the trigonometric functions. It is quite obvious that 
the inverse functions of the given ones, say In z and arcsin z, are 
also connected by definite relations. 
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By virtue of (3-43), from the expression w = arcsin z there fol­
lows z = sin w, which, according to (3-35), may be rewritten as 

(3-44) 

or 
e2iw - 2izeiw - 1 = 0 (3-45) 

Solving the quadratic equation (3-45) for eiw, we have 

eiw=iz+ V1-z2 (3-46) 

We do not write the sign + in front of the radical because the func­
tion V 1 - z2 of the complex variable z is itself a multiple-valued 
function (see page 28, Chapter 1). Here the choice of branch of the 
multiple-valued function V 1 - z2 is made so that the function at 
hand w = arcsin z is an analytic continuation of the corresponding 
function of a real variable. From this last condition, it follows that 
the value of the root to be taken must be positive for positive real 
values of the radicand. From (3-39) and (3-46) it follows that 

iw = ln [iz + V 1-z2 ] 

whence we finally obtain 

W=arcsinz= -iln[iz+V1-z2 ] (3-47) 

At first glance, this expression is rather complicated, and one is 
inclined to have doubts as to whether it indeed yields real values 
of arcsin x for real values z = x satisfying the condition I x I ~ 1. 
It is easy to dispel any doubts, however. Denote {; = iz + V1- z2 • 

For real values z = x satisfying the condition I x I ~ 1, we 

obtainl I {; I = V x 2 + 1 - x2 = 1 and a. rg {; = arctan V :c = 
1-:c2 

= arcsin x. Whence, by virtue of formula (3-42), we have -i ln {; = 
= -i [ln 1 + i arg {;] = arg {; = arcsin x. 

Since the function (3-42) is defined for all values of its argument 
in the complex plane with a cut along the negative real axis, it 
follows that formula (3-47) yields an analytic continuation of the 
function arcsin z into a certain domain of the 2;-plane. Then the 
points z = ±1 turn out to be singular in a certain sense. Indeed, as 
a result of circling any one of these points in the z-plane around 
a closed curve belonging to a sufficiently small e-neighbourhood 
of the point, upon continuous variation of the function (3-47) it 
will change its value, since in a single circuit about the point z = 1 
or z = -1 the function V 1- z2 changes its value.* For this rea-

* See pages 29-30. 
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son, for the domain of single-valued defmition of the function (3-47) 
one can choose, say, the extended z-plane with cuts along intervals 
of the real axis [-oo, -1), [1, ool. 

d. Mappings of elementary functions 

To conclude this section, which is devoted to the elementary 
functions of a complex variable, we consider certain geometric 
properties of mappings performed by these functions. We start with 
the simplest examples. 

Example 1. In Chapter 1 we considered the elementary power 
function w = z2 • We will now examine a mapping by the funetion 

(3-48) 

where n is an arbitrary integer. This function is obviously an entire 
function. In the study of the geometric propetties of its mapping, 
it is convenient to use the exponential notation of complex numbers: 
z = peiiP, w = reiiP = pneincp, from which it follows that any sec-

tor* with central angle a = Zn of the z-plane is mapped by the 
n 

given function onto the extended complex w-plane. Different interior· 
points of this sector are mapped onto different points of the w-plane. 
In the process, the boundaries of the sector are mapped into one 
and the same ray 'ljl = '¢0 in the w-plane. In order to establish a re­
ciprocal one-to-one conespondence between the univalence domain 
of the function zn and the w-plane, we will take it that there is a 
cut in the w-plane along the ray 'ljl = '¢0 , and with the boundaries 
of the given sector of the z-plane are associated different lips of the 

2n · 
cuts. For example, the sector 0 ~ <p ~ -of the z-plane is mapped 

n 
by the function (3-48) onto the extended w-plane, and both boun­
daries of the sector, rays I and II in Fig. 3.1, go into the positive 

real u-axis of the w-plane. The sector Zn ~ <p ~ 4n is also mapped 
n n 

onto the extended w-plane, etc. Therefore, the geometric image of 
the function w = zn is the w-plane repeated n times. Thus, the 
mapping of the extended z-plane onto the extended w-plane by this 
function is not one-to-one. However, if for the geometric image 
of the w function we consider a more complicated manifold than 
the ordinary complex plane, the one-to-one nature of the mapping 
can be preserved. Suppose we have n sheets of the w-plane cut along 
the positive real axis, on each of which arg w varies over the interval 
2n (k- 1) ~ arg w ~ 2nk, where k = 1, 2, ... , n. Then, the 

• By a sector we mean a closed domain together with its boundaries. 
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function (3-48) associates with the sector 2~ (k- 1) ~ cp ~ 2Jt k of 
n n 

the plane z the kth sheet of the w-plane; the ray cp = 2Jt (k - 1) 
II 

goes to the upper lip of the cut of the kth sheet, and the ray <p = 2~k 
n 

to the lower lip of the cut of that sheet. Let us construct a contin­
uous geometric manifold out of these sheets so that to a continuous 

v 

Fig. 3.1 

motion of a point in the z-plane there corresponds a continuous mo­
tion of the point won the given manifold. Note that the lower lip of 
the cut of the kth sheet and the upper lip of the cut of the (k + 1)th 
sheet have the same argument""" = 2n ·k. When the point z, moving 
continuously in the z-plane, passes from one sector to another, its 
corresponding point w passes from one sheet of the w-plane to an 
adjacent sheet. Clearly, in order to retain the continuity of mapping, 
we have to join adjacent sheets, the lower lip of the cut of the kth 
sheet with the upper lip of the cut of the (k + 1)th sheet. Then 
the upper lip of the cut of the first sheet and the lower lip of the 
cut of the nth sheet remain free. Let the point z make a complete 
circuit about the point z = 0 in the z-plane, successively passing 
through all n sectors of the plane, beginning with the first sector 
and returning to its original position. Then the point w correspond­
ing to it will pass through n sheets, and we have to join the free 
lips of the cuts of the 1st and nth sheets so that it can return to the 
first sheet. Thus, the function w = zn associates with the extended 
z-plane n sheets of the w-plane which are joined as indicated above. 
Such a geometric manifold is a special case of a so-called Riemann 
surface. The function w = zn is an n-valent function. 

Example 2. Consider the mapping by the function w = ez. From 
(3-38) it follows that this function asscciates with every complex 
number z = x + iy a complex number w, the modulus of which is 
ex and the argument is y. This implies that the exponential function 
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w = ez maps the straight line y = Yo of the z-plane onto the ray 
arg w = y0 of the w-plane. As is readily seen, a strip of the z-plane 
bounded by the straight lines y = 0 and y = 2rc will go into the 
extended w-plane, and the straight boundary lines y = 0 and y = 2rc 
will be mapped onto one and the same ray of the w-plane-the posi­
tive real u-axis (Fig. 3.2). There is thus established a one-to-one 
mapping of the open domain 0 < y < 2rc onto the w-plane with 

II 
g=M ___ _ v 

v=-2Jf 

Fig. 3.2 

removed positive real u-axis. In order to establish a one-to-one 
mapping of the corresponding closed domains, we will assume that 
a cut has been made along the positive real u-axis and a one-to-one 
correspondence established between the upper lip of the cut and 
the straight line y = 0, and also between the lower lip of the cut 
and the straight line y = 2rc of the z-plane. Thus, the exponential 
function ez performs a one-to-one mapping of the strip 0 ~ y ~ 2rc 
of the z-plane onto the extended w-plane cut along the positive real axis.* 
In similar fashion it is established that the exponential function 
performs a one-to-one mapping of any strip 2rc ·n ~ y ~ 2rc (n + 1) 
(n = 0, ±1, ... ) of the z-plane onto the same extended w-plane 
cut along the positive real u-axis. In the process, the points z0 = 
= x 0 + iy0 and z1 = x 0 + i (y 0 + 2nk) (k = +1, ±2, ... ) pass 
into one and the same point of the w-plane. This means that an 
exponential function is an infinitely many-sheeted periodic function 
of the complex variable z with imaginary period 2ni. The domain of 
its univalence is any strip Yo < y < Yo + 2rc that is mapped onto 
the extended w-plane cut along the ray arg w = y0 • Note that the 
argument w in planes corresponding to different strips 2rc ·n ~ y ~ 
~ 2rc (n + 1) (n = 0, ±1, ... ) varies respectively within differ­
ent limits. We thus obtain an infinite set of different sheets of the 

• Then the boundary y = 0 of the strip goes into the upper lip of the cut of 
thew-plane, and the boundary y = 2n into the lower lip. 
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w-plane cut along the positive real u-axis. For a continuous motion of 
w to correspond to the continuous motion of point z in the z-plane, 
during which it passes from one strip to another, the appropriate 
sheets of the w-plane have to be joined together; here it is obvious 
that the upper lip of the cut of the nth sheet must be joined to the 
lower lip of the cut of the (n - 1)th sheet and the lower lip of the 
cut of the nth sheet must be joined to the upper lip of the cut of the 
(n + 1)th sheet. !The resulting geometric manifold forms a Riemann 
surface with infinitely many sheets. 

Similar reasoning also applies to trigonometric functions of a 
complex variable. Note straight off that by virtue of formulas (3-34) 
and (3-3!1) the trigonometric functions are infinitely many-sheeted 
functions of a complex variable z that are periodic with real period 2n. 
As in the case of the function ez, it is easy to consider the geometric 
properties of mappings accomplished by trigonometric functions. 
We confine ourselves to the function cos z. With the aid of the above­
established properties of trigonometric functions we get 

CM z = cos (x + iy) = u (x, y) + iv (.x, y) 

= cos x ·cosh y - i sin x ·Sinh y 

which implies that the function cos z maps the straight line x = x0 

of the z-plane into a branch of the hyperbola 
u2 vz 

-----=1 cos2 x0 :;in2 xo 
(3-49) 

in thew-plane. For 0 < x 0 < ~ , the straight line x = x 0 goes into 

the right branch of the hyperbola, and the straight line x = n - x 0 

goes into the left branch. As may readily be established, all hyper­
bolas (3-49) are confocal, their foci lying in the points ±1 of the 

real u-axis. The straight line x 0 = ~ is mapp<'d by the function cos z 

onto the imaginary v-axis of the w-plane, and the straight lines x0 = 0 
and x 0 = n, into the rays [1, oo] and [-oo, -1] of the real u-axis 
of the w-plane. Note that in the motion of the point z along a given 
straight line (say the straight line x 0 = 0) the corresponding ray is 
traversed twice. Thus, the function cos z executes a one-to-one mapping 
of the strip 0 ~ x ~ n of the z-plane onto the extended w-plane cut 
along the rays of the real axis [ 1, oo] and [-oo, -1]. In this case, 
the upper semi-strip 0 ~ x ~ n, y > 0 goes into the lower half­
plane v < 0, and the lower semi-strip 0 ~ x ~ n, y < 0 goes into 
the upper half-plane v > 0 (this is indicated by the appropriate 
hatching in Fig. 3.3). It is easy to see that the next strip n ~ x ~ 2n 
is mapped by the function cos z onto the same extended w-plane 
with cuts along rays of the real axis [1, oo] and [-oo, -1]. Since 
cos (z + n) = -cos z, the upper semi-strip n ~ x ~ 2n, y > 0 
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goes into the upper half-plane v > 0, and the lower semi-strip 
n ~ x ~ 2n, y < 0 goes into the lower half-plane v < 0 (Fig. 3.3). 
The situation is obviously similar for any strip nn ~ x ~ (n + 1) n. 
Whence it follows that the strip nn < x < (n + 1) n is the domain 
of univalence of the function cos z. The function cos z is a function 
of infinitely many sheets, and its range is the Riemann surface of 

Fig. 3.3 

infinitely many sheets resulting from cutting the w-planes along 
rays of the real axis [-oo, -1] and [1, oo] and joining them along 
the appropriate lips of the cuts. 

To conclude this discussion of the basic properties of an exponen­
tial function and the trigonometric functions, we investigate the 
problem of the zeros of these functions. The exponential function 
w = ez does not vanish for any value of the complex variable z, 
as follows from formula (3-38). All the zeros of trigo~ometri~ func­
tions lie on the real axis. Indeed, if sin z = 0, then e'2 - e-u = 0, 
e2iz = 1. But if the complex numbers are equal, then their argu­
ments differ by a multiple of 2n, whence z = nn, which proves the 
assertion. 

3.2. Analytic Continuation. The Riemann Surface 

a. Basic principles. 
The concept of a Riemann surface 

The principal task of analytic continuation is the extension of 
the values of a function f (z) specified in a certain domain @!' to a 
larger domain @J. 
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Let there be given in the complex plane two domains @Jt and 
@J 2 having a common portion* @.112 (Fig. 3.4). Let the single-valued 
analytic functions ft (z) and / 2 (z) be given, respectively, in @Jt and 
@.1 2, and let them identically coincide in the intersection @.1 12• 
Then the function F (z) defined by the relations 

F ~z) = { /1 (z), z E @.It (3_50) 
/2 (z), z E @.12 

is analytic in the extended domain @.1 = @.It + @J 2 and coincides 
with It (z) in @Jt and with / 2 (z) in @.1 2• 

The function F (z) is called the analytic continuation of the func­
tion ft (z) (/2 (z)) into the domain @.1 = @Jt + @J 2• The function 

Fig. 3.4 Fig. 3.5 

f2 (z) Ut (z)) is also called the analytic continuation of the function 
It (z) (/2 (z)) into the domain @.1 2 (@.It)· 

It is readily seen that the analytic continuation of F (z) of the 
function ft (z) into the domain @.1 =@It + @1 2 is defined uniquely. 
Indeed, an assumption that there are two different functions in the 
domain @.1 identically coinciding with ft (z) in the domain @.It 
leads to a contradiction with the theorem of the uniqueness of defi­
nition of an analytic function that was proved in the preceding 
chapter. 

The foregoing method of analytic continuation of a function 
ft (z) from a domain @Jt into a broader domain @J is the simplest 
form of the principle of analytic continuation. 

* Various cases are possible here. For example: (a) the domain & 1 lies within 
the domain ®1 , then (»12 obviously coincides with QJ1; (b) the intersection <Mu 
is a singly connected or multiply connected domain; (c) the intersection &n 
consists of several (perhaps, infinitely many) separate connected domains. 
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Now let us examine the case when the functions / 1 (z) and f 2 (z) 
coincide identically only on the part @; 2 of the overlap, @3 12 , of 
the domains @1 and @ 2 (Fig. 3.5). Consider the domain @l = @3 1 + 
+ @3 2 - @37 2 , where @; 2 = @12 - @; 2 is that part of the overlap 

@3 12 in which the functions / 1 (z) and / 2 (z) are different. According 
to earlier considerations, a unique analytic function F (z) is defined 
in@, which function is an analytic continuation of /1 (z) specified 
in the domain @3 1 - C3!; 2 into the domain @. This function coin­
cides indentically with the function ft (z) in the domain @3 1 - @;2 

and with / 2 (z) in the domain @ 2 - @3; 2 • The function F (z) may 
be analytically continued to the set @; 2 in two ways: 

Fl (z) ={ F (z), zE@ (3-51) 
/1 (z), z E @;2 

or 

(3-52) 

This naturally makes it necessary for us to consider the multiple­
valued analytic function F (z) which is defined in the domain @J = 
= @1 + @3 2 and takes on different values at the same points of 
the @72 portion of the domain @. In particular, in the given case 
we obtain a double-valued analytic function F (z) which at one 
and the same point z0 E @;2 assumes two different values that coin­
cide with the values of the functions / 1 (z) or / 2 (z) at that point. 

When dealing with the multiple-valued function F (z) having 
different values at one and the same point of the complex plane, 
one encounters difficulties in choosing its values at a given point. 
To make the choice of these values more convenient, one frequently 
makes use of the concept of a branch of an analytic function,* which 
is single-valued and continuous in an appropriate part of the domain 
of definition of the function F (z). However, there is a still more 
convenient approach which permits regarding a given function as 
single-valued but defined on a more complicated manifold than 
the ordinary plane of a complex variable that has been used up 
to now. Returning to the earlier example of the double-valued func­
tion F (z), we will consider that the domains @ 1 and @ 2 are joined 
along the overlapping portion @; 2 in which the functions / 1 (z) and 
f 2 (z) coincide, and the two sheets @~ 2 that belong to the domains 
@J 1 and @J 2 are left free. 

Then, on the geometric manifold thus obtained, which is a union 
of the domains @ 1 and @ 2 joined along @; 2 (so that the points 

• That was our approach in Chapter 1 when studying the function I = vu;. 
7-387/l 
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belonging to @!; 2 overlap twice), the function F (z) is a single-valued 
analytic function. 

A manifold constructed in this manner is called a Riemann surface 
of the analytic function F (z), which is an analytic continuation of 
the function ft (z) (/2 (z)), and the separate sheets of the repeating 
domains are different sheets of the Riemann surface. 

Thus, instead of considering a multiple-valued function in the 
complex z-plane, we can consider a single-valued function on a 
Riemann surface. As in the simplest case considered at the beginning 
of this subsection this method of analytic continuation of a function 
ft (z) from a domain @lt into a broader domain (which then repre­
sents a Riemann surface) is a particular form of the general principle 
of analytic continuation. Clearly it is possible, in a similar manner, 
to construct analytic continuations of single-valued analytic func­
tions specified on a Riemann surface. We will then, naturally, 
arrive at Riemann surfaces of many sheets; these would form a geo­
metric manifold which one and the same domain of the complex 
plane enters not as two sheets but as many sheets. Appropriate 
examples will be considered in Subsection 3.2.c. We now consider 
another mode of analytic continuation. 

b. Analytic continuation across a boundary 

In a number of cases, the following method is used for analytic 
continuation of a function It (z) originally specified in a domain @lt. 
Let the domains @lt and @! 2 have the piecewise smooth curve f 12 

Fig. 3.6 

(Fig. 3.6) as their common boundary and let there be given the 
analytic functions ft (z) and / 2 (z) which are respectively continuous 
in @lt + f 12 and @! 2 + f 12 and coincide on f 12 • Consider the set 
of points @! = @lt + @! 2 + r12 • Since the points z E f 12 are inte­
rior points of this set, the set @! is a domain. We will show that the 
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function F (z) defined by means of the relations 

, { It (z), z E @Jt + fu 
F (z) = 

l2(z), zE@J2+f12 
(3-53) 

is analytic in the domain @J = @Jt + @2 + fu. It obviously 
suffices to prove that for each point z0 of @J lying on the curve f 11 
it is possible to indicate a neighbourhood such that in it the func­
tion F (z) is analytic. Take an arbitrary point z0 E r 12 and construct 
a circle C0 centred in this point and lying entirely in @J. Consider 
an integral of the Cauchy type: 

'<D (z) = _1_. J F (~) d~ 
2m ~-: 

(3-54) 
Co 

By virtue of the earlier established properties of integrals dependent 
on a parameter (Chapter 1, page 53), the function <D (z) is an analyt­
ic function of z for any position of the point z not lying on the curve 
C0 • We will show that when the point z lies inside the circle 
C0 , <D (z) === F (z). Indeed, represent the integral {3-54) in the form 

_ 1_ r F <~> dt = _ 1_ r Jd~> dt+ _t_ r ts <~> dt (3-55) 
2ni J ~-z 2ni J t-z 2nt J ~-z 

Co Ct+Yt2 Yts+C2 

where Ct and C2 are parts of the circle C0 lying in @1 1 and 
@1 2 (C0 = C1 + C2) and '(12 is a portion of the curve f 111 lying 
inside the circle C0 • If the point z belongs to the domain @J1 , then 
by Cauchy's theorem,* we have 

1 r tdtl dt =I (z) 
2nt J t-z t ' 

(3-56) 
Ct+Yt2 

whence <D (z) = It (z) = F (z) for z E @11 • Similarly, <D (z) = 
= 12 (z) = F (z) for z E @! 2 • In the point z0 , which belongs to '(12, 

by virtue of continuity of the functions <D (z), 11 (z), 12 (z) inside 
the circle C0 , we will also have <D (z0) = It (z0) = Is (z0) = F (z0), 

whence it follows that F (z) is an analytic function in the domain @. 
As in the preceding case, we will say here that the function /1 (z) 

(/2 (z)) specified in the domain @1 1 (@1 2) is analytically continued 
into the domain @1 2 (@J 1). The above-constructed function F (z) is 
an analytic continuation of the function ft (z) into the domain @I = 
= @J 1 + @J 2 + f 12 • This construction is a special form of the general 
principle of analytic continuation-analytic continuation across the 
boundary of a domain. And also, as in the previous cases, in contin­
uing across a boundary, we may find it necessary to consider a 

• The applicability of Cauchy's theorem to the integrals on the right of 
(3-55) is obvious due to the assumption that the curve rlll is piecewise smooth 
und due to the choice of the curve C0 • 

7* 



100 Ch. 3. Analytic Continuation 

single-valued analytic function on a Riemann surface in cases when 
the domains @l 1 and @3 2 have aside from the common portion of the 
boundary r 12• a nonempty intersection @312• in which the functions 
/ 1 (z) and / 2 (z) are not identically equal to each other. 

Let us now consider a number of examples in applying the general 
principles of analytic continuation that lead both to multiple-valued 
and single-valued functions. 

c. Examples in constructing analytic continuations. 
Continuation across a boundary 

Consider some examples of the construction of an analytic con­
tinuation of a function /1 (z) originally specified in a domain @3 1 

of the complex z-plane. As was noted above, in a number of cases 
we find it necessary to examine functions that are multiple-valued 
in the complex plane. 

In Chapter 1 we already had an elementary example of a multiple-
valued function of a complex variable, the function w = Vz*, 
which is the inverse of the power function z = w2 • We now consider 
this and a few other functions from the general viewpoint of analytic 
continuation. 

Example 1. The function w = ;YZ. According to the rule of ex­
tracting the nth root of a complex number, to one value of z there 
correspond n distinct complex numbers w computed from the for­
mula 

. cp+2l"lk 

w=rei11l={Y.pe1_n_ (k=O, 1, ... , n-1) (3-57) 

where z = peiQJ and q> is one of the values of Arg z. The function 
w = ;;/z is a multiple-valued function having n distinct branches. 
We will assume that q> varies within the interval 0 -< q> -< 2n and 
we will choose that branch of the function w = .;Yz which is an 
analytic continuation of the real function u = ;Yx of the real posi­
tive variable x > 0. Clearly, it will be 

.QJ 
n~ t­

Wt= Y pe n (3-58) 

The domain @3 1 of definition of the function w1 is the z-plane cut 
along the positive real x-axis. The upper lip of the cut corresponds 
to the value arg z = 0, the lower lip, to the value arg z = 2n. 
Obviously, the function w1, which is the inverse of z = wn, maps 
the closed domain @3 1 of the z-plane one-to-one onto the sector 

• Here we have changed the designations of dependent variable and inde­
pendent variable. 
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0 -< arg w-< 2n of the w-plane. By virtue of the general p-roperties 
n 

of analytic functions (see Chapter 1, page 33), the function w1 in 
the domain @J1 is a single-valued analytic function whose deriva­
tive is computed from the formula 

' 1 ...!. - 1 1 ..!... - 1 ((j) 1..::~-
wttz)=-zn =-pn •e n 

n n 

Now consider the closed domain @J 2-the same z-plane with a 
cut along the positive real x-axis, but such a plane in which the 
argument z varies within the interval 2n -< arg z -< 4n. The upper 
lip of the cut corresponds to the value arg z = 2n, the lower 
lip, to the value arg z = 4n. In this domain consider the function 

. (cp+2n) 

w2 (z) =JYpe'_n_ (O::::;;<p~2n) (3-59) 

Th.is function maps one-to-one the closed domain @J 2 onto the sector 

:n -< arg w -< ~ of the zp-plane and is a single-valued analytic 

function of z in the domain @J 2• The closed domains @1 and @J, 
have a common portion of the boundary f 12-the ray arg z = 2n­
on which the functions w1 and w2 , continuous, respectively, in 
@J 1 + f 12 and @J 2 + f 12 , coincide. Therefore, by virtue of the 
principle of analytic continuation across a boundary, the function 
w2 (z) is an analytic continuation of the function w1 (z) into the 
domain @J 2 • On the other hand, @J 1 and @J 2 actually overlap in the 
z-plane, since the points of a complex plane with equal moduli and 
with arguments differing by 2n coincide. Since the functions (3-58) 
and (3-59) have different values at one and the same point z, it 
follows that by earlier considerations in order that the function 

Ft {z) = { w1 (z), z E @Jl + f12 ( 3_60) 
w2 (z), z E @J2 + f12 

should be single-valued in the domain of its definition R1 = @Jl + 
+ @J 2 + f 12 , we have to assume that the manifold R 1 is a Riemann 
surface made up of the sheets @J 1 and @32 joined together. Clearly, 
the sheets should be joined along the common portion of the boun­
dary r 12• the ray arg z = 2n, by connecting the lower lip of the 
cut of domain @ 1 with the upper lip of the cut of the domain ~ 2 • 
Repeating our reasoning, we will find that the function 

• ·cp+2nk 

Wk+t (z) = y/p e'_n_ (0::::;:; <p::::;;2n) (3-61) 

defined in the closed domain @11+1 (2nk -< arg z -< 2n (k + 1)) 
is an analytic continuation of the function w 11 (z) defined in @J". 
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Note that the function Wn+l (z) identically coincides with the func­
tion w1 (z). And so it is natural to consider the single-valued ana­
lytic function I. Wt (z), z E @1 + r12 

F(z)= ~z~Z~, .':~:~~~:~~2: 
Wn (z), z E <Sn + r n-1 n 

(3-62) 

defined on the Riemann surface R = @ 1 + @ 2 + ... + @n + 
+ r 12 + ... + r n -1 n built up in the way mentioned above by 
joining the n sheets that form the z-plane with a cut along the posi­
tive real x-axis. Then the upper lip of the cut (arg z = 0) on the 

Fig. 3.7 

first sheet @ 1 and the lower lip of the cut (arg z = 2nn) on the nth 
sheet @Jn remain free. In order to retain the continuity of the func­
tion F (z) throughout the domain of its definition, we will join 
these lips of the cuts (Fig. 3. 7). * The function (3-62) is called the 
complete analytic function w = ;Yz, and the thus constructed closed 
manifold R is termed the complete Riemann surface of this function. 
On each sheet of the Riemann surface is defined a separate branch 
of the given multiple-valued function. 

We bring attention to the following circumstance. Fix on the 
z-plane a certain point z0 and draw through it a closed curve C. 

• Join cut sheets of paper to get a better _pictorial view of what occurs. 
However, the last joint is physically impossible and can only be visualized 
mentally. 
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Then if arg z varies continuously in motion round the curve C, and 
C intersects the branch cut in the z-plane, then two cases are a priori 
possible in one complete circuit of the curve C (Fig. 3.8). In the 
first case, the point z = 0 lies outside the curve C. Therefore, start­
ing from the point z = z0 (arg z0 = <p0) on the kth sheet,* we 
return, after a circuit of this curve, to the original point z0 on the 
same kth (arg z0 = <p0) sheet, although we crossed onto other sheets 

Fig. 3.8 

as we intersected the branch cut. In the second case, the point z = 0 
lies inside the curve C. And so, starting from the point z = z0 
(arg z0 = <p0) on the kth sheet, we return, after traversing the curve 
C, to the point z = z0 not on the original kth sheet, but, say, on 
the (k + 1)th sheet (arg z0 = <p0 + 2n). The point z0 , which is 
encircled via any closed curve in a sufficiently small neighbour­
hood of the point and during the circuit of which we pass from one 
sheet of the Riemann surface of the analytic function F (z) to another 
sheet, is called the branch point of the function F (z). It is easy to 
see that this definition of a branch point is equivalent to the defi­
nition given on page 29 of Chapter 1. Obviously, in the case at hand 
of the function w = :Y z, the branch points are z = 0 and z = oo. 

Example 2. The function w = Ln z. 
In the closed domain @ 0 , which is the z-plane cut along the nega­

tive real axis -n ~ arg z ~ n, consider the function In z, which 
was discussed in the preceding section: 

w0 = In (z) = In I z I + i arg z, -n ~ arg z ~ n (3-63) 

We know that this bingle-valued analytic function is an analytic 
continuation of the real function u = In x and is the inverse of 
the function z = ew • Therefore the function (3-63) maps the domain 
@l 0 of the z-plane onto the strip -n <I w < n of the w-plane. 

• Fig. 3.8 corresponds to the case k = 1. 
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In the closed domain @! 1 (n -<. arg z -<. 3n) consider the function 

w1 = ln1 (z) = ln I z I + i arg z, n -<. arg z -<. 3n (3-64) 

Clearly, the function w1 (z) is an analytic continuation of w0 (z) 
into the domain @! 1• Analogously, the function 

w _1 (z) === ln _1 (z) = ln I z I + i arg z, -3n -<. arg z -<. -n (3-64') 

defined in the closed domain @ _1 ( -3n -<. arg z -<. -n) is an ana­
lytic continuation of the function w0 (z) in the domain @! _1 • The 
same goes for the function wk (z): 

Wk (z) = Ink (z) = ln I z I + i arg z, n (2k - 1) -<. arg z -<. 
-< lt (2k + 1) (3-65) 

defmed in the closed domain @!k, n (2k - 1) -<. arg z-<. n (2k + 1), 
which is the analytic continuation of the function wk _1 (z). The 
function wk (z), which uniquely maps the domain @!k onto the 
strip n (2k - 1) < Im w < n (2k + 1), is also the inverse function 
of z = ew . Unlike the preceding case, not one of the functions 
wk (z) (k =f=. 0) is identically equal to the function w0 (z). Therefore 
the given process of analytic continuation should be carried out 
indefinitely both for k > 0 and for k < 0. Thus the complex ana­
lytic function 

F (z) = Ln z = ln I z I+ i Arg z 

j ~t(z), zE@!,+fo.t+ft2 

= wo(z), zE@Jo+fo.t+fo.-l 

w_1 (z), z E @J_, + fo. -1 +Lt. -2 

(3-66) 

is an infinitely-valued function in the ordinary z-plane and single-
oo 

valued on the infinitely-valent Riemann surface R = ~ @jn com-
n=-oo 

posed of infinitely many sheets @!n by joining the upper lip of the 
cut of each (k + 1)th sheet with the lower lip of the cut of the pre­
ceding kth sheet. As in the previous case, the points z = 0 and 
z = oo are branch points of the function Ln z. 

Note again that the function w = Ln z is the inverse of the func­
tion z = ew. This permits defining the power function za. for any 
complex value of a in the form 

zG = (eLn z )a. = &- Ln z (3-67) 
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d. Examples in constructing analytic continuations. 
Continuation by means of power series 

In the cases we have examined, the vari.ous branches of an ana­
lytic function were specified explicitly in the entire complex plane 
and the analytic continuation was constructed by an appropriate 
joining of the domains of definition of the branches. We now consider 
yet another method of construction of the analytic continuation 
of an analytic function originally specified in some domain @t 
of the complex z-plane. 

Let the function ft (z) be analytic in the domain @t· Choose an 
arbitrary point z0 E @lt and expand ft (z) in a power series in the 
neighbourhood of this point: 

00 n 00 f (n} (zo) n 
/dz)= ~ Cn(z-z0) = ~ nl (z-zo) (3-68) 

n=O n=O 

Consider the series on the right of (3-68). A priori, there are two 
possible cases (Fig. 3.9). In the first case, the radius of convergence 

(a) tbJ 

Fig. 3.9 

R 0 of the series (3-68) does not exceed the distance from the point 
Zo to the boundary rl of the domain @ll. In this case, the expansion 
(3-68) does not go beyond the boundary of the domain @lt of the 
original definition of the analytic function ft (z). In the second 
case, the radius of convergence R 0 of the series (3-68) exceeds the 
distance from the point Zo to the boundary f 1 of the domain @l 1 . 

In this case, the domain @ 2 which is the circle I z - z0 I< R 0 is 
no longer a subdomain of ® 1 but only has a common overlapping 
portion @l 12 . In @ 2, the convergent power series (3-68) defines an 
analytic function / 2 (z) that coincides with /1 (z) in @12• This func­
tion / 2 (z) is the analytic continuation of It (z) into the domain 
@ 2 • Consequently, there is defined in the domain @3 = @lt + @3 2 

the analytic function 

F (z) = { It (z), z E @3t 
l2 (z), z E @J2 (3-69) 
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Thus, in the case at hand, the expansion (3-68) takes us beyond the 
boundary r 1 of the domain @31 of the original defini lion of the ana­
lytic function It (z). Reasoning similarly for some point z1 of the 
constructed domain @3 2, then for point z2 of @3 3 and so forth, we 
get the analytic continuation of the function /1 (z) along a chain 
of domains @3 1, @3 2, ••• , @n, .•.. Here, there may be such over­
tappings of domains of the chain that make it necessary to consider 
the function F (z) as a single-valued analytic function defined not 
in the ordinary complex z-plane, but on a Riemann surface. 

Let us take an instance of this method of analytic continuation. 
Example 3. Let the function /1 (z) be originally specified by its 

power series 
00 

(3-70) 

This series converges inside the circle I z I < 1 to the analytic 

function /1 (z) = 1 ~ 1 • Everywhere outside the circle I z I < 1, 
the series diverges; hence, /1 (z) is not defined outside the circle 
I z I < 1. Choose some point z0 inside the circle I z I < 1, and 

00 

construct the power-series expansion of /1 (z), ~ en (z- z0t, 
n=O 

centred in this point. Computing the coefficients en from formu-

la (2-16), we get en= (1_;o)n+1 • It is easy to show that the radius 
of convergence of the given series p (z0) is 11 - z0 1. As follows 
from elementary geometric reasoning, when the point z0 does not 
lie on a segment of the real axis [0, 1], the circle of convergence of 
the given series goes beyond the original circle of convergence I z I < 

00 

< 1. Hence, the function / 2 (z) = ~ (/~-~~~:1 is an analytic 
n=O So 

continuation of the function /1 (z) into the domain I z - z0 I < 
< 11- z0 I· 

Note that the power series defining the function / 2 (z) is also read-

ily summable, and / 2 (z) = 1 ~ z. Therefore, taking as the new 
centre of expansion the point z1 inside the circle I z - z0 I < 

00 

< I 1 - z0 I, we get the series ~ g__=- ~~:1 which converges 
n=O It 

inside the circle I z - z1 I < I 1 - z1 I to the function f 3 (z) = 
= 1 ~ 1 , which coincides with / 2 (z) and /1 (z) in the overlapping 

parts of the circle I z - z1 I < 11 - z1 I and of the domains of 
definition of the appropriate functions. Thus, f 3 (z) is an analytic 
continuation of /1 (z) into a new domain. Note that for any choice 
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of the point z1, the boundary of the appropriate circle of convergence 
will pass through the point z = 1 (Fig. 3.10). In similar fashion it 
is possible to construct the analytic continuation of the function 
It (z) into the extended plane of a complex variable, except the 

point z = 1. Then, the function F (z) = 1 
1 

111 defined everywhere 

and analytic everywhere, except at the point z = 1, is the analytic 
continuation of f. (z) obtained by means of power series. 

y 

-r------~~------~~--~-----­
.x 

Fig. 3.10 

We have thus been able to extend the domain of the original 
specification of the analytic function F (z)-the circle I z I < 1 
in which the function It (z) was specified-to a greater domain. Ob­
serve that although there are numerous cases of overlapping of the 
constructed chain of domains, the resulting analytic function F (z) = 

= -1 
1 is single-valued throughout the domain of its definition, 
-Ill 

that is, in the extended z-plane with the point z = 1 removed. A 
further analytic continuation of the function F (z) to a greater domain 
is now impossible. The point z = 1, which is the limit of the domain 
of analyticity of the function F (z) is, in a definite sense, a singular 
point of this function. The behaviour of an analytic function in 
the neighbourhood of such points deserves a more detailed study. 
This will be done later on. 
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e. Regular and singular points 
of an analytic function 

Let a function f (z) be given in a domain @3 bounded by a contour 
r. The point z0 E @l is called a regular point of the function f (z) if 

00 

there is a convergent power series ~ Cn (z - z0t, which in the overlap-
n=O 

ping part of the domain @3 and of its circle of convergence I z - z0 I < 
< p (z0 ) converges to the function f (z). Only one restriction is imposed 
on the value of the number p (z0): p (z0) is strictly greater than 
zero. The points z E @f, which are not regular points of the func­
tion f (z), are called singular points. Clearly, if f (z) is analytic in 
the domain @J, then all interior points of the domain are regular 
points of the function I (z). The points of the boundary r may be 
either regular or singular points of the analytic function f (z). It is 
obvious that all the points of the boundary r lying inside the circle 
I z - z0 I < p (z0 ) centred in some regular point z0 E @f are also 
regular points of the function f (z). Thus, in the above example, all 
the points of the boundary I z I = 1 of the domain of the original 

00 

definition of the function fi (z) = ~ zn, with the exception of 
n=O 

z = 1, are regular points. The sole singular point of this function 
can only be z = 1. It is also a singular point of the function F (z) = 
= 1 ~ z , which is the analytic continuation of the function /1 (z) 

into the extended domain. Similarly, the points z = 0, oo are 
singular points of the functions .;Y'z and Ln z, considered in Subsec­
tion 3.2.c. 

Let the analytic function ft (z) be originally given in the domain 
@Jt and let all points of the connected section f' of the boundary r 
of this domain be regular points of the function ft (z). Then from the 
foregoing reasoning it follows that /1 (z) may be analytically con­
tinued across f' into a greater domain. It may turn out that all the 
points of the boundary r of the domain @Jt of the original specifica­
tion of the analytic function f (z) are regular. In this case, the func­
tion f (z) will be called analytic in the closed domain @1. It follows 
from earlier reasoning that a function which is analytic in a closed 
domain @ft may be analytically continued into the greater domain @3 

which contains @31• 

Analytic continuation across a portion of a boundary containing 
only singular points of the function ft (z) is obviously impossible. 

We give an example of an analytic function (specified in a bound­
ed domain) that cannot be continued to a greater domain. 
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Example 4. Consider the analytic function f (z) specified by the 
power series 

00 

f (z) = 1] z2n (3-71) 
n=O 

As is readily determined by means of elementary characteristics, 
the series (3-71) con verges inside the circle I z I < 1. For a real 

00 

x -+ 1, the sum 1] x2n increases indefinitely; the point z = 1 is 
n=o 

thus a singular point off (z). We will show that the points zk,m= 
.211 
'lim k · = e 2 , where m = 1, 2, 3, ... , 2 (k is any natural number) 

are also singular points of the function f (z). To do this, consider the 
.211 

- 'lim 
point zk.m = p·e 2 (0 < p < 1) and represent the value of 
f (z) at this point in the form 

(3-72) 

The first term in (3-72), which is the sum of a finite number of terms, 
is bounded in absolute value, and the second, by virtue of choice 
of the point zk,m• may be transformed to 

(3-73) 

As p -+ 1, the sum of the expression on the right of (3-73) increases 
without bound. This proves that the points zk,m are singular points 
of the function f (z). But as k -+ oo, these points are everywhere 
dense* on the circle I z I = 1, thus implying that the function 
(3-71) indeed cannot be extended across any arc of the circle. 

While constructing the analytic continuation of the function 

F (z) = 1 ~ z by means of power series we saw that the boundary 

of the circle of convergence of every element fk (z) of it passes through 
the point z = 1, which is a singular point of the function. Thus, 
on the boundary of the circle of convergence of any one of the con­
structed power series there lies a singular point of the analytic 
function to which the series converges. This property is a general 
consequence of the following theorem. 

Theorem 3.3. On the boundary of the circle of convergence of a power 
series, there is at least one singular point of the analytic function F (z) 
to which point the series converges. 

• What this means is that there will be points of the sequence {zk.m} in any 
e-neighbourhood of every point of the circle I z I = 1. 
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Proof. Suppose that all points of the circumference C0 of the 
00 

circle K 0 of convergence of the series f (z) = 2J en (z-z0t are 
n=O 

regular, i.e. for any point i E C0 there exists a p (z) > 0 such that 
in the common part of the circle K0 and of its circle of conver-

oo 

gence I z-z I< p (z) the corresponding series 2J en (z) (z-z)n con-
n=o 

verges to f (z). Let the radius of the circle K 0 be R0 • 

Fig. 3.11 

Consider the function p (z) defined on the circumference C0 • We 
will show that for any two points i 1 and i 2 on C0 the condition 

(3-74) 

is fulfilled. Indeed, suppose that it is not fulfilled; for example, 
P (z2) - p (i1) = I z1 - i2 I + ~. where ~ > 0. Then the circle 

00 

I z - zl I < p (z1) of con vergence of the series 2J Cn (zl) (z - z1)n = 
n=O 

= / 1 (z) lies inside the circle 1 z - z2 1 < p (z2) of convergence of 
00 

the series 2J en (z2)(z - z2t = /2 (z) (Fig. 3.11). In the overlapping 
n=O 

portion of these circles and of the circle K 0 both series converge to 
the same function f (z). Hence, the function / 2 (z) is an analytic 
continuation of the function ft (z). This means that in the circle 
I z - z1 I < p (z1) + ~ there is defined the analytic function / 2(z), 
which coincides with ft (z) in the circle I z - z1 I < p (z1). By Tay­
lor's theorem it then follows that the radius of convergence of the 
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00 

serieS 2] Cn (zl) (z ........ z1)n is at least p (z1) + f>, which contradicts 
n=O 

the starting data. The condition (3-74) is thus established. 
This condition implies the uniform continuity of the function 

p (z) on the curve C0 • Indeed, the relation I p (z1) - p (z2) I< e 

is fulfilled for any prescribed 8 > 0 provided the condition I z~ - z2 1 < 
< 8 is fulfilled. Sinee the function p (~ > 0, it is bounded from 
below and by virtue of continuity attains its greatest lower bound 
p (~) ~ p (z0 ) = p0 > 0 on C0 • This inequality holds true because 
for all z E C0 the strict inequality p (z) > 0 is fulfilled. 

By the uniqueness of analytic continuation it may be asserted 
that in the circle I z - z0 I < R 0 +Po is defined a single-valued 
analytic function F (z) that coincides with the function f (z) in the 
circle I z - z0 I < R 0 • Hence, the radius of convergence of the 

00 

original power series 2] cn (z - z0)n should be R 0 + p0 , and not 
n=O 

R0 . But this contradicts the hypothesis of the theorem. Thus, the 
supposition that all points of the boundary of the circle of conver­
gence are regular leads to a contradiction. The theorem is proved. 

From Theorem 3.3 it follows that the radius of the circle of conver­
gence of a power series is determined by the distance from the centre of 
convergence to the nearest singular point of the analytic function to 
which the given series converges 

f. The concept of a complete analytic function 

The ioregoing considerations have made it possible to construct 
an analytic continuation of a function fi (z) given in a domain @1 

to a greater domain @J = @3 1 + @ 2 or to a corresponding Riemann 
surface. As we have seen it is possible to regard an analytic contin­
uation along a chain of domains @J1 , @J 2 , ••• , @Jn having over­
lapping portions ~Mi. 1+1 in which the analytic functions /1 (z), 
/ 2 (z), ... , In (z) specified in the domains @J 1 , @J 2 , ••• , @Jn coin­
cide. We then obtain, in the domain @J = @J 1 + @J 2 + ... + @Jn 
or on a corresponding Riemann surface R, a single-valued analytic 
function F (z), which is an analytic continuation of the function 
/1 (z). 

If the analytic function II (z) is originally specified in a domain 
@3 1 , then, by constructing different chains of domains that go beyond 
@1, we can obtain an analytic continuation of the function /1 (z) 
to various domains containing @J 1• Here, the essential thing is the 
concept of a complete analytic function. 

The function F (z) obtained by means of an analytic continuation 
along all possible chains of domains extending beyond the domain @1 
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of the original specification of the analytic function / 1 (z) is called the 
complete analytic function. Its domain of definition R is called the 
natural domain of existence of the complete analytic function. 

According to the reasoning just carried out, the natural domain 
of existence R of a complete analytic function F (z) may be a Rie­
mann surface. Observe that an analytic continuation of the function 
F (z) beyond the boundary r of its natural domain of existence R 
is then impossible. All points of this boundary are then singular 
points of the function F (z). This can easily be proved. Assume that 
the point z0 E r is a regular point of the function F (z). In that case, 
by the definition of a regular point, there exists inside the circle 
I z - z0 I < p (z0) a certain analytic function <I> (z) that coincides 
with F (z) in the common part of the given circle and of the domain 
@!. But the circle I z - z0 I < p (z0) definitely goes beyond the 
domain @!, and so <I> (z) is an analytic continuation of the complete 
analytic function across the boundary of its natural domain of 
existence, which is not possible. 

In the examples examined in the earlier parts of this section, we 
constructed a series of complete analytic functions and their natu­
ral domains of existence. Thus, the natural domains of existence 
of the complete analytic functions ;/z and Ln z are the n-valent and 
infinitely-valent Riemann surfaces, respectively; the natural domain 

of existence of the complete analytic function 1 ~ z is the extended 

complex plane with point z = 1 removed; the natural domain of 
existence of the function (3-71) considered in Example 4 is the unit 
circle I z I < 1. 

Here, the domain @1 of the original specification of the analytic 
function / 1 (z) is such that an analytic continuation of the function 
ft (z) across the boundary r 1 of the domain @t is impossible. This 
implies that ft (z) is a complete analytic function and @ 1 is its 
natural domain of existence. However, if the domain @.lt is such 
that an analytic continua,tion of ft (z) into a greater domain is pos­
sible, then the function ft (z) is called an element of the complete 
analytic function F (z). The analytic continuation / 2 (z) of the func­
tion /1 (z), specified in the domain @.lt, into the domain @! 2 having 
with @!t the overlapping portion @! 12 will be called the direct ana­
lytic continuation of the function ft (z). 



CHAPTER 4 

THE LAURENT SERIES 

AND ISOLATED SINGULAR POINTS 

In this chapter we will study the behaviour of a single-valued 
analytic function in the neighbourhood of its isolated singular 
points. A knowledge of this behaviour not only permits penetrating 
more deeply into the nature of analytic functions, but also finds 
direct practical utilization in numerous applications in the theory 
of functions of a complex variable. 

In earlier chapters we saw the great role played by power series, 
in particular, the Taylor series in studying the properties of analytic 
functions in a domain where there are no singular points of the 
functions under study. An analogous role, in the study of the proper­
ties of analytic functions in the neighbourhood of their isolated 
singular points, is played by the Laurent series. 

4.1. The Laurent Series 

a. The domain of convergence of a Laurent series 

Consider a series of the form 
00 

n=-oo 
(4-1} 

where z0 is a fixed point in the complex plane, Cn are certain com­
plex numbers, and the summation is over both positive and negative 
values of the index n. The series (4-1) is called the Laurent series. 
Let us determine its domain of convergence. To do this, represent 
(4-1) as 

00 00 00 

~ Cn (z-zo)n = ~ Cn (z- Zo)n + ~ (z~~)n (4-2) 
n=-oo n=O n=t 

It is obvious that the domain of convergence of (4-1) is the common 
part of the domains of convergence of each of the terms of the right 

00 

side of (4-2). The domain of convergence of the series ~ c11 (z - z0)n 
n=O 

is a circle of a certain radius R1 centred at z0 (as was established in 
Chapter 2, the value of Rf may, as a particular case, be zero or 
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infmite). Inside the circle of convergence this series converges to 
a certain analytic function of a complex variable: 

00 

/t{z)= 2J Cn(z-zo)n, lz-zol<RI 
n=O 

To determine the domain of convergence of the series 
n=l 

make the change of variable ~ = - 1- . This series will then become 
Z-Zo 

00 

~ c_n~" which is an ordinary power series convergent, within its 
n=! 
circle of convergence, to some analytic function <p ( ~) of the com­
plex variable ~. Denote the radius of convergence of the resulting 

power series by ~2 • Then 
00 

(4-4) 
n=i 

Returning to the earlier variable and putting <p ( ~ (z)) = f 2 (z), we 
get 

00 

/2(z)= ~ (z~;o)n, lz-zoi>R2 (4-5) 
n=i 

oo' 

This implies that the domain of convergence of the series ~ ( c_n )n 
n=l z-zo 

in negative powers of the difference (z - z0) is the domain exterior 
to the circumference I z - z0 I = R 2 (the value of R 2 , like that 
of R 1 , may, in a particular case, be zero or infinite). 

So each of the power series of the right side of (4-2) converges in 
its domain of con vergence to an appropriate analytic function. If 
R 2 < R 1 , then there is a common domain of convergence of these 
series-the annulus R 2 < I z- z0 I < R 1 in which the series (4-1) 
converges to the analytic function 

00 

n=-C» 

Since the series (4-3) and (4-4) are ordinary power series, it follows 
that in this domain the function f (z) has all the properties of the 
sum of a power series. This means that the Laurent series (4-1) con­
verges inside its annulus of convergence to some function f (z), which 
is analytic in that annulus. 

If R 2 > R1 , the series (4-3) and (4-5) do not have a common do­
main of convergence, so in this case the series (4-1) does not con­
verge anywhere to any function. 
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b. Expansion of an analytic function 
in a Laurent series 

115 

The natural question arises: Is it possible to associate a function, 
which is analytic in some ann.ular region, with a Laurent series 
convergent to the function in the given annulus? The answer is 
found in the following theorem. 

'l'heorem 4.1. The function f (z), analytic in the annulus 
R 2 < I z- z0 I< R 1 , is uniquely represented in the annulus by a 
convergent Laurent series. 

Proof. Fix an arbitrary point z inside an annulus R 2 < I z - z0 I< 
< R 1 and construct circles C R' and C R' centred at z0 and of radii 

I 2 

.. 

Fig. 4.1 

which satisfy the conditions R2 <R;<R;<R1 , R;<lz-z0 i< 
< R; (Fig. 4.1). According to Cauchy's formula for a multiply 
connected domain, we have the relation 

f(z)=-1-. I ...ffiL d~+~ I ...ffiL d~ (4-7) 
2m J ~-z 2m J ~-z 

0 Ri 0 R2 

The inequality I~=;~ I :=:;;;; q < 1 holds true 

representing the fraction ~ ~ z in the form 

on CR'· And so, 
1 

00 

1 _ 1 1 _ 1 ~ ( z-zo } n 
~-z - (~-Zo)- (z-zo) - ~-zo' 1 z-zo - ~-Zo Ll ~-z0 

- ~-zo n=O 

8* 
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and performing term-by-term integration, which is possible by 
virtue of the uniform convergence of the series in variable ~ (for 
details see Chapter 2), we get 

(4-8) 

where 

(4-9) 

Since the inequality I ~-zo I< 1 holds on CR'' we again have 
z-zo 2 

00 

'~z =- Z~Zo ~ ( ;_~: r 
n=O 

Term-by-term integration of this series yields 
00 

/2 (z) = 2~i ) {!5~ d~ = ~ (z~;0)n 
c:Rj n=1 

(4-10) 

where 

(4-11) 

Reversing the direction of integration in (4-11), rewrite the expres­
sion in the form 

t r t <~) o 
C-n = 2:ni J ('-Zo) n+t d~, n > 

CR2 

(4-12) 

Note that the integrand functions in (4-9) and (4-12) are analytic 
in the annulus R 2 < I z - z0 I < R1 • And so by virtue of Cauchy's 
theorem, the values of the corresponding integrals will not change 
under an arbitrary deformation of the contours of integration in 
the domain of analyticity of the integrand functions. This permits 
us to combine formula~ (4-9) and (4-12) 

I r /IC P 
Cn = 2ni J ( ~- zo)n+l d~e, 

c 
n=O, ±1, ±2, ... (4-13) 

where C is an arbitrary closed contour lying in the annulus R 2 < 
< I z - z0 I < R 1 and containing the point z0 inside. Returning 
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to (4-7), we obtain 

"" "" "" 

where the coefficients en for all values of the index n are determined 
by the uniform formula (4-13). Since z is an arbitrary point inside 
the annulus R 2 .< I z- z0 I< R 1 , it follows that the series (4-14) 
converges to the function I (z) everywhere inside the annulus; and 
in the closed annulus R 2 < R; ~I z- z0 I~ R; < R 1 the series 
converges to the function I (z) uniformly. It remains to prove the 
uniqueness of the expansion (4-14). Assume that we have another 
expansion: 

"" I (z) = ~ c~ (z-z0)n 
n=-oo 

where at least one coefficient c~ =1= en. Then everywhere inside the 
annulus R 2 < I z- z0 I< R1 we have the equality 

"" "" 
~ Cn (z-z0)n= ~ c~ (z-z0)n (4-15) 

n~-oo n~-~ 

Draw a circle C8 of radius R, R 2 < R < R1 , centred at the point 
z0 • The series (4-15) converge on C8 uniformly. Multiply them by 
(z - z0)-m-t, where m is a fixed integer, and integrate termwise. 

Consider J {z- z0)n-m-l dz. Putting z - z0 = Re"~. we have 
CR 

2n O 
i (z-z0t-m- 1 dz=Rn-mi l' eitn-m>~d«p={ '. n=l=m (4-16) 

CJ J 21n, n = m 
R 0 

Taking into account (4-16), we find that after the indicated integra­
tion of the expression (4-15), the infinite sums in the left and right 
members of this expression will have only one term each that is 
different from zero. And so we get em= c~. Since m is an arbitrary 
number, this proves the uniqueness of the expansion (4-14). The 
theorem is completely proved. 

From the results obtained, it follows that the annular region 
R 2 < I z - z0 I< R 1 , on the boundaries of which there is at least 
one singular point (singularity) of the analytic function I (z) to which 
the series (4-1) converges, is the exact domain of convergence of the 
Laurent series (4-1). This assertion is a corollary to Theorem 3.3. 
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4.2. A Classification of the Isolated Singular Points 
of a Single-Valued Analytic Function 

A point z0 is an isolated singular point of a function f (z) if f (z) 
is single-valued and analytic in the annulus 0 < I z - z0 I < 
< R 1 and the point z0 is a singular point of the function f (z). The 
function f (z) may not be defmed at the point z0 itself. Let us study 
the behaviour of f (z) in the neighbourhood of z0 • According to the 
preceding section, the function f (z) in the neighbourhood of the 
point z0 may be expanded in the Laurent series (4-14), which is con­
vergent in the annulus 0 < I z - z0 I< R 1 • Three different cases 
are then possible: 

(1) The resulting Laurent series does not contain terms involving 
negative powers of the difference (z - z0). 

(2) The Laurent series contains a finite number of terms with 
negative powers of the difference (z - z0 ). 

(3) The Laurent series contains an infmite number of terms con­
taining negative powers of the difference (z - z0). 

The foregoing .serves as a basis for classifying isolated singular 
points. Let us examine each one of the above cases in detail. 

(1) The Laurent series of the function f (z) in the neighbourhood 
of its isolated singular point z0 does not involve terms with negative 

00 

powers of the difference (z- z0), i.e., f (z) = ~ c,. (z- z0 )". It is 
n=O 

readily seen that as z -+ z0 there is a limiting value of the function 
f (z), and it is equal to c0 • If f (z) was not defined at z0 , then we 
redefine it putting f (z0 ) = c0 • If the originally specified value of 
f (z0) does not coincide with c0 , we change the value of the function 
f (z) at the point z0 , putting f (z0) = c0 • The function f (z) thus 
defined will be analytic everywhere inside the circle I z - z0 I < 
< R 1 • We have thus removed the discontinuity of the function 
f (z) at the point z0 • Therefore, an isolated singularity z0 of f (z) 
for which an expansion off (z) in a Laurent series about z0 does not 
contain terms with negative powers of the difference (z - z0 ) is 
called a removable singularity. 

The foregoing proves the following theorem. 
Theorem 4.2. If a point z0 is a removable singularity of an analytic 

function f (z), then there exists a limiting value lim f (z) = c0 , where 
z- zo 

I c0 I< oo. 
Note that in the neighbourhood of a removable singularity the 

function f (z) is bounded and can be represented in the form 
f (z) = (z- z0)mcp (z) (4-17) 

where m ~ 0 is an integer and cp (z0 ) =I= 0. Here, if lim f (z) = 0, 
z- Z'O 

then in the representation (4-17) the number m >0 determines 
the order of the zero of the function f (z) at the point z0 • 
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The converse also holds true. We will prove it in a stronger for­
mulation. 

Theorem 4.3. If a function f (z) which is analytic in the 
annulus 0 < I z - z0 I < R1 is bounded (I/ (z) I < M for 0 < 
< I z - z0 I < R 1}, then the point z0 is a removable singularity 
of I (z). 

Proof. Expand the function f (z) in the Laurent series (4-14) and 
consider the expression (4-13) for the coefficients of the series: 

For the contour of integration take a circle of radius p centred at 
the point z0 • Then, by hypothesis, we have the upper evaluation 

(4-18) 

We will consider coefficients with negative index n < 0. Since the 
value of the coefficients c11 is not dependent on p, from (4-18) we 
get C11 = 0 for n < 0, which proves the theorem. 

(2) The Laurent series of the function f (z) about its isolated 
singula'rity z0 contains a finite number m of terms involving nega-

. 00 

tive powers of (z - z0}, that is f (z) = ~ Cn (z - z0)n. In this 
n=-m 

case, the point z0 is called a pole of order m of the function f (z). The 
behaviour of an analytic function in the neighbourhood of its pole 
is determined by the following theorem. 

Theorem 4.4. lf a point z0 is the pole of an analytic function f (z}, 
then as z -)>- z0 the absolute value of the function f (z) increases without 
bound no matter how z approaches z0 • 

Proof. Represent the function f (z) about the point z0 as 

00 

f (z) = ( c_m )m + ... + ....:::L + "' C11 (z- Zo)n z--zu z-zu LJ 
n=O 

= (z- zo)-m {e-m+ C-m+i (z- Zo) + ... + c_l (z- z0)m-t} 
00 00 

+ ~ C11 (z-z0)n=(z-z0}-mq>(z}+ ~ C11 (Z-z0)n. (4-19) 
n=O n=O 

The function q>(z) is obviously a bounded analytic function about 
the point z0 • From the representation (4-19) it follows that, as 
z ___,. z0 , the absolute value of the function /(z) increases without 
bound irrespective of the approach path of z to z0 , which completes 
the proof. Note that if we redefine the function q>(z) at the point 
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z0, putting cp(z0) = C-m =fo 0, then formula ( 4-19) may be rewritten as 

( 1jl (z) 2 f z) = (z-zo)m (4- 0) 

where 'I' (z) is an analytic function and '\j) (z0) =fo 0; the number m 
is called the order of the pole. 

The converse of Theorem 4.4 is also valid. 
T he01•em 4.5. If a function f (z) which is analytic about its isolated 

singularity z0 increases indefinitely in absolute value for any approach 
path of z to z0 , then the point z0 is a pole of the function f (z). 

Proof. It is obvious that, by hypothesis, for any number A >0 
there is an e-neighbourhood of z0 such that in it I f (z) I >A. Con-

sider the function g (z) = f~z) . In the indicated e-neighbourhood 
of z0 this function is analytic and bounded and 1im g (z) = 0. 

z ~ zo 
Therefore, on the basis of Theorem 4.3, the point z0 is a removable 
singularity of the function g (z), and g (z), by virtue of formula (4-17), 
can be represented in the neighbourhood of z0 as g (z) = (z-z0)mcp(z), 
where cp (z) is analytic; cp (z0 ) =1= 0 and m > 0. Then for the original 

function f (z) we have the representation f (z) = -(1 ) = ( 1 )m X g z z-zo 

X <p~) in the neighbourhood of z0 • Because cp (z0) =I= 0, it can 

be rewritten in the form f (z) = ( ¢(z) )m which coincides with z -z0 
the representation (4-20), where '\j) (z) is an analytic function. Whence 
it follows that the point z0 is a pole of order m of the function I (z). 
The theorem is proved. 

Observe that the po nt z0 , which is a zero of order m of the analyt­
ic function g (z), is a pole of the same order m of the function 

f (z) = g~z) , and vice versa. This establishes a very simple rela­
tionship between the zeros and poles of analytic functions. 

(3) The Laurent series of the function f (z) has in the neighbour­
hood of its isolated singularity z0 an infinite number of terms involv-

oo 

ing negative powers of the difference (z-z0), i.e. f (z) = ~ cn(z-z0 )n. 
n=-oo 

In this case, the point z0 is called an essential singularity of the func­
tion f (z). The behaviour of an analytic function in the neighbour­
hood of its essential singularity is described by the following theo­
rem. 

Theorem4.6 (Theorem of Sokhotslcy and Weierstrass). 
No matter what e > 0, in any neighbourhood of an essential singularity 
z0 of the function f (z) there will' be at least one point z1 at which 
the value of the function f (z) differs from an arbitrarily specified 
complex number B by less than e. 
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Proof. Suppose that the theorem is not true; that is, for a given 
complex number B and a specified 8 > 0, there is an fJo > 0 such 
that at all points z of the fj 0-neighbourhood of the point z0 the value 
of the function j (z) differs from the given B by more than 8: 

If (z) - B I > 8, I z - z0 I< 'I'Jo (4-21) 

Consider an auxiliary function '¢ (z) = 1 (z/-B. By virtue of 
(4-21) the function '¢ (z) is defined and bounded in the fj 0-neigh­
bourhood of the point z0 • Hence, by Theorem 4.3, z0 is a removable 
singularity of the function '¢ (z). This implies that the expansion 
of the function '¢ (z) about the point z0 is of the form 

'¢ (z) = (z - z0)m (p (z), qJ (z0) =I= 0 

Then, by the definition of the function'¢ (z), the following expansion 
of f (z) is valid in the given neighbourhood of z0 : 

f (z) = (z - z0)-m <p (z) + B (4-22) 

where the analytic function c:p (z) = _1 is bounded in the fJ 0 -
cp (z) 

neighbourhood of z0• But the expansion (4-22) signifies that the 
point z0 is either a pole of order m, or, for m = 0, a regular point 
of the function f (z), and the Laurent-series expansion of the latter 
must have only a finite number of terms, which contradicts the 
statement of the theorem. This contradiction proves the theorem. 

Theorem 4.6 describes the behaviour of an analytic function in 
the neighbourhood I z - z0 I < fJo of an essential singularity as 
follows: at an essential singularity z0 there does not exist a finite 
or infinite limiting value of the analytic function. Depending on 
the choice of a sequence of points converging to the point z0 , we can 
obtain sequences of the values of the function that are convergent 
to different limits. It is always possible to choose a sequence that is 
convergent to any preassigned complex number, including oo. 

There is clearly no necessity to prove the converse of Theorem 4.6, 
since if, as z -. z0 , there does not exist either a finite or infinite 
limit of the function f (z), then by Theorems 4.2 and 4.4 the point 
z0 cannot be either removable or a pole. 

Also note that if the point z0 is an essential singularity of the 
function f (z) with f (z) =I= 0 in some neighbourhood of z0 , then z0 

is an essential singularity for the function g (z) = 1/f (z) as well. 
The three cases that we have examined exhaust the possible types 

of Laurent-series expansion of an analytic function in the neigh­
bourhood of its isolated singularity and are of decisive importance 
for investigating the general course of variation of an analytic func­
tion in the neighbourhood of its singular points. 
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From the foregoing it follows that there are two possible diffe­
rent viewpoints (each leading to the same results) concerning the 
classification of isolated singular points of a single-valued analytic 
function. We proceeded from the analytic point of view based on 
the nature of the Laurent-series expansion of the function and estab­
lished the behaviour of the function itself as it approached a singu­
lar point. A different, geometric, approach is possible in which the 
classification is based on the behav.iour of the function in the neigh­
bourhood of an isolated singularity. Here, if the function is bounded 
in the neighbourhood of a singularity, then this point is termed 
removable and, as follows from Theorem 4.3, the Laurent-series 
expansion of the given function in the neighbourhood of that singu­
lar point does not involve negative powers. If in the approach to 
a singularity the function has an infinite limit, then the point is 
a pole and the Laurent-series expansion has a finite number of 
negative powers. Finally, if the function, in its approach to a sin­
gular point, does not have a finite or an infinite limit, then we have 
an essential singularity and the Laurent-series expansion contains 
an infinite number of negative powers. 

To conclude this section, let us investigate the behaviour of an 
analytic function in the neighbourhood of the point at infinity. 
The point at infinity of a complex plane is an isolated singular point 
of a single-valued analytic function f (z) if a value of R is indicated 
such that outside the circle I z I > R the function f (z) does not have 
any singularities at a finite distance from the point z = 0. Since f (z) 
is an analytic function in the annulus R < I z I< oo, it may be 
expanded in the Laurent series 

00 

f(z)= ~ c,.zn, R<jzj<oo (4-23) 
n=-® 

convergent to f (z) in the given annulus. As in the case of the finite 
isolated singularity z0 , there are three possible cases: 

(1) The point z = oo is called a removable singularity of the 
function f (z) if the expansion (4-23) does not have terms involv-

oo 00 

ing positive powers of z, i.e. f (z) = ~ c_;: = c0 + ~ c-;: or if 
n=Oz n=1z 

as z -~>- oo there exists a finite limiting value of the function f (z) 
that is independent of the approach path to the limit. If c0 = c _1 = 
= ... = c -m+l = 0, c -m =I= 0, then the point at infmity is a zero 
of order m of the function f (z). 

(2) The point z = oo is a pole of order m of the function f (z) if 
the expansion (4-23) contains a finite number m of terms involving 

m 

positive powers of z, that is, f (z) = ~ c,.zn (m > 0) or if the func-
n=-oo 
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tion increases indefinitely in absolute value as z -~ oo irrespective 
of the kind of limit process. 

(3) The point z = oo is called an essential singularity of the func­
tion f (z) if the expansion (4-23) contains an infinite number of 

00 

terms involving positive powers of z, i.e. f (z) = ~ cnzn or if, 
n=-oo 

depending upon the choice of the sequence {zn} -+ oo, it is possible 
to obtain a sequence of values {f (z,,)} convergent to any prescribed 
limit. 

It is obvious that the equivalence of all the foregoing definitions 
of the nature of the isolated singularity z = oo may be proved in 
the same way as for the case of a finite isolated singularity. Be-

sides, as is readily seen, the transformation z = ~ carries the point oo 

of the z-plane to the point ~ = 0; the character of the singularity 
does not change in this transformation by virtue of the following 
general theorem. 

The or em 4. 'i. Let the point z0 be an isolated singular point of the 
function f (z) analytic in the domain @!. Let the analytic function 
~ = '¢ (z) establish a one-to-one correspondence between the dumain @I 
and the domain @!' of the complex ~-plane in which the inverse function 
z = cp ( ~) is defined. Then the point ~ 0 = '¢ (z0 ) is an isolated singular 
point of the analytic function F ( ~) = f f cp ( ~) 1, and the character of 
this singular point is the same as that of the point z0 • 

This theorem is an obvious consequence of the property of ana­
lytic functions that was established in Chapter 1, by virtue of which 
the analytic function of an analytic function is analytic, and also 
of the geometric properties of an analytic function in the neighbour­
hood of an isolated singular point. 

Example. Consider the function f (z) = V 1 . This multiple-
1 +z2 

valued function has two branch points z = ±i. The point z = oo 
is its regular point. Therefore, in the annulus 1 < I z I< oo are 
defined two branches of the function; they are single-valued analytic 
functions in the given annulus. Choose the branch which is a direct 

analytic continuation of the real function V 1 of the real 
1 +x2 

variable x > 1, and construct its Laurent-series expansion about 

the point z = oo. To do this, put ~=..!. and map the given annulus 
z 

onto a circle of unit radius in the ~-plane (then the point z= oo goes 

into the point ~ = 0) and expand the function cp ( ~) = V 1 
1 = 

1 + 1? 
= V ~ in a Taylor series in the neighbourhood of its regular 

1 + ~2 
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point ~ = 0. First note that the function cp ( ~) is a derivative of 
the function 'I' ( ~) = V 1 + ~2 • (Here our choice of the branch of 
the original function f (z) determines the choice of that branch of 
the function '\j) (~) for which '\j) (0) = +1.) To expand the function 
'ljl (~) in a Taylor series, put w = ~2 and consider the function 
'X (w) = V 1 + w. Computing the derivatives of the function 'X (w), 
we get 

1 
1 ( 1 ( 1 - -n l x<n>(w)IW=o=T 2-1) ... 2-n+1) (1+w}2 w=o 

=(-i)n-1 (2n-2)1 
22n 1 (n-1)1 

Then the expansion of the chosen branch of the function 'X (w) in the 
annulus I w I < 1 is of the form 

00 

(w)=-./1+w=1+ ~' (-1)n-1 (~n-2)1wn 
X J' ~ 22n 1 (n-1)1 nl 

n=t 

Whence, for the function "'m for I~ I< 1, we get 
00 

'\j) (~) = Y 1 + ~2 = 1 + "' ( -1t-1 (2n-2)1 ~2n 
~ 22n-t (n-1)1 nl 
n=1 

and for the function cp (~) 
00 

( ~) _ , (~) _ ~ _ "' ( i}n- t (2n-2)12n ~2n-t 
cp • - '\j) "' - Y1+~2 - ~ - 22n- 1 (n-1)1 nl"' 

n=1 

Finally, for the chosen branch of the function f (z}, in the annulus 
1 < I z I < oo we get the Laurent-series expansion 

(4-24) 



CHAPTER 5 

RESIDUES AND THEIR APPLICATIONS 

5.1. The Residue of an Analytic Function 
at an Isolated Singularity 

a. Definition of a residue. 
Formulas for evaluating residues 

We introduce the concept of the residue of a single-valued ana­
lytic function at an isolated singularity. It will be found to have 
extensive application. 

Let a point z0 be an isolated singularity of a single-valued analy­
tic function f (z). According to earlier investigations, in the neigh­
bourhood of this point, f (z) is capable of a unique expansion in a 
Lam·ent series: 

00 

/(z)= ~ Cn(Z-Zo)n (5-1) 
n=-oo 

where 

(5-2) 

and, in particular, 

c_l = 2~i J f (~) d~ (5-3) 
c 

The residue of an analytic function f (z) at an isolated singularity 

z0 is a complex number equal to the value of the integral 2~i J /(~) d~ 
'I 

taken in the positive direction around any closed contour y lying in the 
domain of analyticity of the function f (z) and containing a unique 
singularity z0 of the function f (z). For a residue we will use the desig­
nation Res I/ (z), z0]. It is clear that if the point z0 is a regular 
point or a removable singularity of the function f (z), the residue of 
f (z) at this point is zero. To evaluate the residue of the function 



126 Ch. 5. Residues and Their Applications 

I (z) at an isolated singularity, we can use formula (5-3): 

Res [f (z), Zo] = 2~i J t (~) d~ o= C_t (5-4) 
c 

However, in a number of cases, a simpler method of computing 
a residue is possible: it reduces to differentiating the function I (z) 
in the neighbourhood of the point z0 • Thus, the evaluation of the 
contour integral of an analytic function may be replaced by comput­
ing the derivatives of this function at certain points lying inside 
the contour of integration. This circymstance determines one of 
the basic applications of the calculus of residues. Let us examine 
such cases. 

(1) Let the point z0 be a fust-order pole of the function f (z). 
Then in the neighbourhood of this point we have the expansion 

f (z) = c_1 (z- z0)-1 + c0 + c1 (z- z0) +... (5-5) 

Multiplying both sides of (5-5) by (z - z0) and passing to the limit 
as z -+Z0 , we gd 

c_1 =lim (z- z0} f (z) (5-6) 
z~zo 

Note that in the given case the function f (z} may in the neighbour­
hood of z0 be represented in the form of a ratio of two analytic func­
tions: 

q> (z) 
f (z) = ¢ (z) (5-7) 

cp (z0 ) =fo 0 and the point z0 is a first-order zero of the function '¢ (z), 
that is, 

'¢ (z} = (z-z0} '¢' (z0} + ¢n ~Zo) (z- z0}2 + ... , '¢' (z0) =fo 0 (5-8) 

Then from (5-6) (5-8) we get the following formula. 
A formula for computing the residue at a first-order pole: 

R ) q> (zo) 
es [f (z , z0) = ¢' (zo) ( f(z)=q>(z)) 

¢ (z) 
(5-9) 

Example 1. Let f (z) = z" .:.._ 1 . The function f (z) has the singu-
.2nk 

lar points zk = V'T = e tn (k = 0, 1, ... , n- 1), and all these 
points are first-order poles. Let us find Res [f (z), zk]. According_ 
to formula (5-9), we get 

1 1 . 4nh 
Zk t-

Res(f(z), Zk)=--1 =--z:=-e n (z~=1) 
nz~- n n 

(5-10) 
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(2) Let the point z0 be a pole of order m of the function f (z). 
From the foregoing, in the neighbourhood of this point we have 
the expansion 

f (z) = c_m (z- z0)-m + ... + c_1 (z- z0)-1 + c0 

+ c1 (z - z0) + . . . (5-11) 

Multiplying both sides of (5-11) by (z - z0)m, we get 

(z - z0 )mf (z) = c -m + c -m+I (z- z0) + ... + c _1 (z- z0)m-1 + ... 
(5-12) 

Taking the derivative of order (m- 1) of both parts of this equality 
and passing to the limit as z _,.. z0 , we finally get the following 
formula. 

A formula for evaluating the residue at a pole of order m: 

1 dm-1 
Res [f (z)' Zo] == ( -1)! lim d m-t [ (z- Zo)m f (z)] (5-13) 

m Z-+lO z 

It is easy to see that formula (5-6) is a special case of this formula. 

Example 2. Let f (z) = (1:z2)n . This function has the singular 

points z1, 2 = +i; both of these points are poles of order n. Compute 
Res [f (z), il. According to (5-13) we have 

R [ 1 ·] 1 1. dn-1 [< .)11 1 l 
es (1+z2)n' l = (n-1)! z~ dzn-1 z-z (1+z2)11 

= 1 lim an-t 1_1_ J 
(n-1)1 z-+i dz11-1 [ (z+i)11 

= ( _ 1)11_1 n·(n+1) ... (2n-2) • 1 I 
(n -1)! (z+ i)2n-1 z=i 

_ 1 11-t (2n-2)! 1 . (2n-2)! 
-(- ) [(n-1)!)2. (2i)211 1 -z 2211 1[(n-1)!)2 (5-14) 

b. The residue theorem 

We now investigate the more important applications of the con­
cepts we have introduced. The following theorem is very essential 
in numerous theoretical investigations and practical applications. 

Theorem 5.1 (Residue theorem). Let the function f (z) be 
analytic everywhere in a closed domain @, except at a finite number of 
isolated singularities z,. (k = 1, ... , N) lying inside the domain @!. 

Then 
N 

) f (~) d~ = 2ni ~ Res[/ (z), z,.) (5-15) 
r+ l<=t 
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where r+ is the complete boundary of the domain @! traversed in the 
positive direction. 

Proof. Recall that if a function f (z) is analytic in a closed domain 
@!, then all points of the boundary r of that domain are regular 
points of f (z). Isolate each of the singularities z11 of the function 
f (z) by a closed contour y 11 not containing other singularities, except 

Fig. 5.1 

the point z11 • Consider a closed multiply connected domain bounded 
by the contour rand all the contours y11 (Fig. 5.1). The function f (z) 
is analytic everywhere inside this domain. Therefore, by Cauchy's 
second theorem, we have 

N 

) f (~) d~ + ~ J f (') d~ = 0 (5-16) 
r+ 11=1 Yk 

Transporting the second term in (5-16) to the right, we obtain by 
formula (5-4) the assertion of the theorem 

N 

J f (~) d~ = 2ni ~ Res{/ (z), z11 ] 
r+ 11=1 

The great practical value of this formula lies in the fact that 
in many cases it turns out to be much simpler to evaluate the resi­
dues of the function f (z) at singularities lying inside the domain 
of integration than to evaluate directly the integral in the left­
hand member of (5-15). Later on we will consider a number of im­
portant applications of this formula. Let us now introduce one 
more concept-the residue at the point at infinity. 

Let the point z = oo be an isolated singularity of the analytic 
function f (z). 
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The residue of the analytic function f (z) at the point z = oo is a comp­
lex number equal to the value of the integral 

2~i J t m d~ = - 2~i J t m d~ 
c- c+ 

where the contour C is an arbitrary closed contour, outside of which 
the function f (z) is analytic and does not have any singular points 
different from oo. Clearly, by the definition of the coefficients of 
a Laurent series, we have the formula 

Res(f(z), oo]= - 2~i J /(~)d~= -c_1 

c+ 

(5-17) 

From this it follows, in particular, that if the point z = oo is 
a removable singularity of I (z), then Res rt (z), oo] may prove to be 
nonzero, whereas the residue at a finite removable singularity is 
always equal to zero. · 

The formulas (5-15) and (5-17) permit proving the following 
theorem. 

T heO'J•em 5.2. Let the function f (z) be analytic in the extended 
complex plane, with the exception of a finite number of isolated singu­
lar points Zit (k = 1, 2, ... , N), including also z = oo (zN = oo). 
Then 

N 

~ Res(/ (z), z11 ] = 0 
11=1 

(5-18) 

Proof. Indeed, consider the closed contour C containing all (N - 1) 
singularities z11 located at a finite distance from the point z = 0. 
By Theorem 5.1 

N-t 

2~i J I m d~ = ~ Res[/ (z). Zl!] 

c+ 11=1 

But by virtue of (5-17), the integral on the left is equal to the 
residue (with sign reversed) of the function f (z) at the point z = oo. 
This asserts Theorem 5.2. 

This theorem occasionally permits simplifying the computation 
of the integral of a function of a complex variable around a closed 
contour. Let f (z) be a single-valued analytic function in the entire 
complex plane, except at a finite number of isolated singularities, 
and let it be required to compute the integral of f (z) around some 
closed contour r. If inside r there are many singularities of the 
function f (z), then application of formula (5-15) may involve arduous 
calculations. It may turn out that outside r the function f (z) has 
only a few singularities z11 (k = 1. 2, ... , m), the values of the 

!l-387H 
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residues at which, and also the residue at the point at infinity, are 
determined in a simple enough manner. Then in place of a straight­
forward evaluation of the desired integral by formula (5-15) it is 
more convenient to take ad vantage of the obvious consequence of 
formulas (5-15) and (5-18): 

m 

) f (~) d~ = - 2ni ~ Res [f (z), zk]- 2ni Res If (z), oo] (5-19) 
rt k=1 

The formula (5-19) permits readily obtaining a generalization of 
the Cauchy formula [see Section 1.6, formulas (1-59), (1-60)1 to 
the case of an unbounded domain. Let us consider a function I (z) 
that is analytic outside a closed contour r, which is the boundary 
of a bounded domain @.!. Let all the points of r be regular points 
of the function I (z) and let the point z = oo be its removable sin­
gularity. Denote lim I (z) =I (oo). Exterior to r we construct 

z .. ao 

the function <p (z) = __jj:)_' where z0 is an arbitrary point of the z- z0 

complex plane. Clearly, z = oo is a removable singularity of the 
function <p (z) as well, and Res [<p (z), oo) = -1 (oo). 

If the point z0 lies inside f, then the function qJ (z) does not have 
any other singular points. If the point Z 0 lies OUtside f, then Z = z0 

is a pole, not exceeding the first order, of the function <p (z), and 
Res [<p (z), z0) = I (z0). 

Let us consider the integral ) <p (~) d~ = ) { ~~ d~ in which the 
r+ r+ 

contour r is traversed so that the domain @I remains on the left­
hand side. By formula (5-19) we obtain 

1 i Jm _ { j (oo), Zo inside f 
2:Jti J ~-Sod~- j(oo)-f(zo), Zo Outside f r+ 

(5.20) 

The formula (5-20) is precisely the generalization of Cauchy's integ­
ral formula to the case of I (z) analytic in an unbounded domain. 

5.2. Evaluation of Definite Integrals by Means 
of Residues 

The theorems of Section 5.1 find numerous applications not only 
in evaluating the integrals of functions of a complex variable, but 
also in evaluating various definite integrals of functions of a real 
variable. Very often one is able to obtain an answer in cases where 
the use of other methods of analysis proves complicated. Let us 
consider a number of typical cases. 
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211 

a. Integrals of the form J R (cos e, sin e) de 
0 

We consider the integral 

211 

I= J R (cosO, sin e) dO 
0 

(5-21) 

where R is a rational function of its arguments. Type (5-21) integrals 
can easily he reduced to integrals of an analytic function of a comp­
lex variable over a closed contour. To do this, make the change of 
variable of integration, introducing the complex variable z, which 
is connected with the variable 0 by the relation z = e•e. It is obvious 
that 

dO=~~. cos0=-21 (ei9+e-iB) 
I S 

={ (z++), sinO= ii (z-+) 
As 0 varies between 0 and 2n, the complex variable z runs over the 
closed contour, the circle I z I = 1, in the positive direction. Thus, 
the integral (5-21) is transformed into an integral around the closed 
contour of a function of a complex variable: 

I=~ r R [z+.!... z-..!..J~ 
1 J z' z z 

JzJ=1 

(5-22) 

By virtue of the general properties of analytic functions, the inte­
grand in (5-22), which is obviously a rational function, 

(5-23) 

is a function analytic inside the circle I z I = 1 everywhere except 
at a finite number N ~ m of singular points z~~., which are the zeros 
of the denominator in (5-23). Therefore, by Theorem 5.1, 

N 

I= 2n ~ Res IR (z), z~~.] (5-24) 
k=1 

The points z" are poles of the function R (z). Let a" be the order of 
N 

the pole z~~. (clearly, ~ ak ~ m). Then on the basis of formula (5-13) 
k=t 
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we can rewrite (5-24) as 
N ~ -t 
~ 1 • d" ""-I= 2zt .LJ ( _ 1)1 hm 01 _ 1 [(z- zk) R (z)) 
k=f !XJ& Z-+Zk dz k 

Example 1. Evaluate the integral 
2n 

I= ) .,....1 +-=--~-co-s""""e • 
0 

Putting z = eiO, we get 
1r 1 d& 2r as 

I=i J 1+ a ( + 1) ·s-=T J a 2 +2c+a 
lzl=t 2 s z lz1=1 

(5-25) 

(5-26) 

(5-27) 

The zeros of the denominator z1, 2 = - ! ± Jl" :2 -1 are singularities 
of the integrand function. They are poles of order one. Since 
z1 • z2 = 1, only one of these points lies inside the circle I z I = 1. 

As is readily seen, this is the point z1 = - ! + V :2 -1. There­
fore, by Theorem 5.1, 

I=4ztRes[ 2+~+ , z1]=4zt ( 1 )J = y 2n (5-28) as a a C-Sz z-z1 1-aa 

... 
b. Integrals of the form J I (x) dx 

_.., 

We now consider applying the calculus of residues to evaluating 
00 

improper integrals of the first kind of the form J f (x) dx. We will 
_.., 

consider the case when the function f (x) is specified on the entire 
real axis and may be analytically continued into the upper half-plane 
so that its continuation satisfies certain supplementary conditions. 
These conditions will be formulated below in Theorem 5.3. 

For what follows we will need some auxiliary propositions. 
Lemma 1. Let the function f (z) be analytic everywhere in the upper 

half-plane Im z > 0, with the exception of a finite number of isolated 
singular points, and let there exist positive numbers R 0 , M and 6 such 
that for all points of the upper half-plane which satisfy the condition 
I z I >Ro we have the evaluation 

M 
lf(z)l< lsl1+6' lzl>Ro (5-29) 
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Then 

lim J f{t) dt =0 
.R ... oo , 

CR 

(5-30) 

where the contour of integration Ca is a semicircle I z I = R, Im z > 0 
in the upper half of the z-plane (Fig. 5.2). 

Indeed, by virtue of (f-41) and the conditions of the lemma, for 
R >R0 , 

I J f{t) cit I~ J I f(t) Ids<~~~= n; R-+-;: 0 
cil cil 

which proves the lemma. 
Note 1. If the conditions of the lemma are fulfilled in some sector 

q>1 < arg z < q>2 of the z-plane, then formula (5-30) is valid in 
integration along the arc Ca of a circle lying in the given sector. 

Note 2. The conditions of the lemma will obviously be fulfilled 
if the function f (z) is analytic in the neighbourhood of the point 

v 

X 

Fig. 5.2 

at infinity and the point z = oo is a zero of order not below second 
of the function f (z). Indeed, in this case, a Laurent-series expansion 
of f (z) in the neighbourhood of z = oo is of the form 

f (z) = t:;,.z + c;: + ... = ~!s) 

and I 'l' (z) I < M, whence we get the evaluation (5-29) for 6 = t. 
Lemma 1 finds broad application in computing a number of im-

• 
proper integrals of the form J f (z) dz. 

-ao 
ThetWem 5.3. Let it be possible for the function f (z) specified on 

the entire real axis -oo < z < oo to be analytically continued into 
the upper half-plane Im z ~ 0; its analytic continuation, the function 
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f (z), satisfies the conditions of Lemma 1 and does not have singularities 
on the real axis. Then the improper integral of' the first kind 

00 J f (x) dx exists and 
-oo 

oo N 

J f (x) dx = 2tti ~ Res [f (z), Z~t] (5-31) 
-00 k=1 

where Z~t are singularities of the function f (z} in the upper half-plane. 
Proof. By hypothesis, the function f (z} in the upper half-plane 

has a finite number of singularities zk, and they all satisfy the con­
dition I Z~t I< R 0• Consider in the upper half-plane a closed contour 
consisting of a segment of the real axis -R ~ x ~ R (R > R 0} 

and the semicircle Ca, I z I = R. By the residue theorem 

R N J I (x} dx + J f (z} dz = 2tti ~ Res[/ (z), Z~t) (5-32) 
-R Ca k=i 

Since the conditions of Lemma 1 are fulfilled, the limit of the second 
term on the left of (5-32} is zero as R -+ oo; the right side of (5-32) 
is independent of R for R > R 0 • Whence it follows that the limit 
of the first term exists and its value is defined by formula (5-31}. 
The theorem is proved. · 

Example 2. Compute the integral 

00 

I= J x'~1 (5-33) 
-oo 

Analytic continuation of the integrand function into the upper 

half-plane, the function f (z} = z' ~ 1 , obviously satisfies the condi­
tions of Theorem 5.3. Its singular points in the upper half-plane 

i~ 
are the points z0, 1 = e ~ (k = 0, 1}; both of these points 
are first-order poles. Therefore 

1 . :rt J [ 1 i an J } 
1=2tti {Res[1+z"' e'-r +Res 1+z4' e -r 

. {1 1 } n:¥2 
= 2tti 4z3 . :rt + 4z3 3:rt =-2-

,_ i-
z=e ~ z=11 ~ 

(5-34) 
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Note 1. If the function f(x) is even and satisfies the conditions 
of Theorem 5.3, then 

oo N 

J f (x) dx = ni ~ Res[/ (z), Zk] (5-35) 
0 1=1 

Indeed, if f (x) is an even function, then 

00 00 

J f(x)dx=+ Jt(x)dx 
0 -oo 

whence follows formula (5-35). 
Note 2. Obviously, a similar theorem holds true also in the case 

when the analytic continuation of the function f (x) into the lower 
half-plane satisfies conditions analogous to those of Lemma 1. 

00 

c. Integrals of the form J eiax f (x) dx. 
-oo 

Jordan's lemma 

Evaluation of the following important class of improper integrals 
by means of the calculus of residues is based on the use of the so­
called Jordan lemma, which we will now prove. 

Lemma 2 (Jordan's lemma). Let the function f (z) be analytic 
in the upper half-plane Im z > 0, with the exception of a finite number 
of isolated singularities, and let it tend uniformly to zero in arg z 
(0 ~ arg z ~ n) as I z 1-oo. Then for a >0 

lim J eiot f (~) d~ = 0 
R-+oo 

c8 
(5-36) 

where C8 is a semicircular arc I z I = R in the upper half of the z-plane. 
Proof. The condition of uniform approach off (z) to zero implies 

that for I z I = R we have the evaluation 

I I (z) I < JL R• I z I = R (5-37) 

where JLR -o as R - oo. Using the relation (5-37) we evaluate 
the desired integral. Make a change of variable, putting ~ = Rettp, 
and take advantage of the obvious relation 

• ......._2 
sm <p9-- <p 

n 
(5-38) 
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We then obtain 
n I J eiat /(~) d~ I~ ~R • R J j eiat 1 d<p 

ciz o 
n 1t/2 

= ~R. R J e-aR sin cp d<p = 2~R. R J e-aR slncp d<p 
0 0 

nt2 2aR 
<2~R·R r e-ncpd<p=~~a(1-e-aR)-+ 0 

J a R-oo 
0 

(5-39) 

which proves the lemma. 
Note 1. If a < 0 and the function I (z) satisfies the conditions 

of Jordan's lemma in the lower half-plane Im z ~ 0, then formu­
la (5-36) is valid in integration around the semicircular arc Ciz 

in the lower half of the z-plane. Similar 
Y assertions hold for a = ± ia (a > 0) 

as well when integrating, respectively, 
in the right (Re z ~ 0, Fig. 5.3) or left 
(Re z ~ 0) half of the z-plane. The 
proofs of these statements are carried 
out in an exactly similar manner, so we 

'R leave them to the reader. The following 
form of Jordan's lemma, which refers to 
integration in the right half-plane, will 

%=0 .r be needed in future applications: 

lim ) e-at/(~) d~ = 0, a> 0 (5-40) 
R .... oo , 

CR. 

where Ciz is the semicircular arc I z I = 
= R in the right half-plane Re z ~ 0. 
Formula (5-40) and a number of others 

Fig. 5.3 that follow will be extensively used in 
Chapter 8 for evaluating various integ­

rals that play an important role in operational calculus. 
Note 2. Jordan's lemma holds true for the case when the function 

f (z) satisfies the above-formulated conditions in the half-plane 
Im z ~ Yo (y0 is a fixed number which may be either positive or 
negative), and the integration is carried out along the semicircular 
arc I z - iy0 I = R in the half-plane Im z ~ Yo· The proof is simi­
lar to the previous proof. When evaluating the integral, make 
a change of the variable of integration: ~ = Reicp + iy0 • 

Note 9. Jordan's lemma holds true also for relaxed conditions 
imposed on the function I (z). Let the function I (z) in the upper half-
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plane Im z > y0 for I z I > R 0 tend to zero uniformly in the argu­
ment z - iy1 as I z I - oo in the sectors -cp0 ~ arg (z - ty1) ~ cp1 , 

n - cp2 ~ arg (z - iy1) ~ n + cp0 and let it be uniformly bounded 
in the sector cp1 ~ arg (z - iy1) ~ n - cp2 , where cp0 , cp1 and <p2 

are specified positive numbers 0 ~ cp0 , cp1 , cp2 ~ ; and y1 >Yo· 

Then the integral J eiatt ( s) d~ tends to zero along the arc c R 

CR 
of the circle I z - iy1 I = R, Im z ~ Yo for a > 0 and as R _.,.. oo. 

To prove this, split the integral into the sum I = I 1 + I 2 + 
+ I 3 + /4 + /5 of integrals along the arcs CW (y1 > Im z > y0 , 

arg (z- iy1) < 0), C}f1 (0 < arg (z - iy1) < cp1), C~' 
(cp1 < arg (z- iy1) < n - cp2), Cit' (n - cp2 < arg (z- iy1) < 
< n) and CW (y1 > Im z > y0 , arg (z- iy1) > n) and prove the 
convergence, to zero, of each integral separately. For the integral 
/1 we get I /1 I ~ J.lRe-O.IIoLiJ>, where LiP is the length of the curve 
CW. As R - oo the quantity Lit' remains bounded and tends to the 
value y1 - Yo· Therefore I I 1 I -0 as R - oo. Analogously, I 5 -0. 
The convergence to zero of the integrals I 2 and I 4 is established by 
a technique used in the proof of Jordan's lemma. For the integral I 3 

it is easy to obtain the estimate I II!- I< Ce-aRsincp• R (n- cp1-cp2), 

where If(~) I< C and cp* = min {cp1 , cp2}, from which it follows 
that / 3 -o as R-oo. 

Thus, the Jordan lemma holds under considerably weaker restric­
tions imposed on the function f (z) than in the case of Lemma 1. 
This is connected with the presence, in the integrand function, of 
an additional factor eiat, which, for a > 0, ensures a sufficiently 
rapid decrease of the integrand function in the sector 0 < cp1 ~ 
~ arg (z - iy1) ~ :rt - cp2 as I z I - oo. 

Jordan's lemma finds numerous applications in the calculation 
of a broad class of improper integrals. 

Theorem 5.4. Let it be possible for a function f (x) given on the 
entire real axis -oo < x < oo to be continued into the upper half­
plane Im z ~ 0, and let its analytic continuation f (z) in the upper 
half-plane satisfy the conditions of Jordan's lemma and have no sin-

oo 

gularities on the real axis. Then the integral J ei= f (x) dx, a > 0, 
-oo 

exists and is equal to 

oo n 

J eiaxf (x) dx = 2:rti ~ Res [eiazf (z), Z~t] (5-41) 
-oo k=t 

where Zk are singularities of the junction f (z) in the upper half of 
the z-plane. 
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Proof. By hypothesis, the singular points ZJt of the function f (z) 
in the upper half-plane satisfy the condition I ZJt I < R0• Consider, 
in the upper half of the z-plane, a closed contour consisting of a seg­
ment of the real axis - R ~ x ~ R, R >Ro and of the arc Ca 
of the semicircle I z I = R in the upper"half of the z-plane. By the 
residue theorem · 

R n J ei=j (x) dx + J eia~f (~) d~ = 2ni ~ Res [eiaz/ (z), Zit] (5-42) 
-R ch_ lt=t 

By Jordan's lemma, the limit of the second term on the left of (5-42) 
is zero as R.- oo. This asserts the theorem. 

Example 3. Evaluate the integral · 

00 

I r cosaxd 0 
= J x2+a2 x, a.> ' (5-43) 

-00 

In order to be able to take advantage of Jordan's lemma, note that 
by Euler's formula 

(5-44) 

The analytic continuation of the integrand of the integral Iu the 

function eiaz 12 ~ a• , satisfies the conditions of Theorem 5.4 and 
in the upper half-plane has a unique singularity z1 = ia, which 
is a first-order pole. Therefore, 

Whence 

. . [ eia;z . J . e-aa lt I 1 =2nlRes 2+ 2 , w =2m-2 . =-e-aa z a 1a a 

n I= Rei1 =- e-aa 
a 

(5-45) 

Note 1. If /(x) is an even function that satisfies the conditions 
of Theorem 5.4, then for a> 0 

oo n 

J f(x) cos ax dx = n Rei~ Res [eiazf (z), z") 
0 lt=i 

n 

=- n Im ~ Res [eiaz/ (z), z11 ] (5-46) 
.\=1 
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Note 2. If I (x) is an odd function that satisfies the conditions of 
Theorem 5.4, then for a >0 

oo n 

J f (x) sin ax dx = n Re ~ Res [eiazt (z), zk] (5-47) 
0 k=i 

We proved Lemma 1 and Lemma 2 on the assumption that the 
function f (x) has only a finite number of singularities in the upper 
half-plane. However, as will readily be seen, a slight change in the 
statements of these lemmas makes them hold true for the case of 
an infinite number of isolated singularities of the function I (z). 
Let us require that there be a sequence of numbers Rn increasing 
indefinitely as n -. oo, such that on the semicircular arcs Clin 
in the upper half-plane the conditions (5-29) or (5-37) are fulfilled. 
Then the assertions (5-30) or, respectively, (5-36) of Lemma 1. and 
Lemma 2 will hold true provided that the limit process in the integ­
rals under consideration occurs with respect to the sequence of 
arcs Clin as n-. oo. It is also clear that if the appropriate integrals 
exist we can extend the integration methods at hand to the case 
of functions with an infinite number of isolated singularities. The 
meromorphic functions constitute an important class of such functions. 

The function I (z) of a complex variable is meromorphic if it is defined 
on the entire complex plane and if in a finite portion of the plane it 
does not have singularities different from poles. It is easy to see that 
in any bounded domain of the complex plane, a meromorphic func­
tion has a finite number of singularities. Indeed, if the number of 
singularities in a bounded domain were infinite, then by Theo­
rem 1.2, in this domain there would be a limit point of the given 
set which would thus not be an isolated singular point. This contra­
dicts the condition. Examples of meromorphic functions are fraction­
al-rational functions, trigonometric functions tan z, sec z. 

In proving Theorems 5.3 and 5.4 we assumed that the function 
I (x) does not have singularities on the real axis. However, 
slight supplementary considerations enable one to use these theorems 
to evaluate improper integrals even when the function f (x) has 
several singuJarities on the real axis. 

Let us illustrate this by a simple example. 
E;xample 4. Evaluate the integral 

00 

I= j si: ax dx, a >0 (5-48) 
0 

Taking advantage of Euler's formula and the evenness property 
of the integrand function, perform the formal transformation 

00 • 

1 r e•O:x t 
l= 2 Im J -z-dx=2 Im/1 (5-49) 

-00 
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Note that the integral / 1 is meaningful only as the principal value 
of an improper integral of the second kind: 

l 1 =V.p. f e;=dx=lim{te;=dx+r e;=dx} (5-50) 
J X p-+0 J X J X 

-oo R-+oo -R p 

In the upper half-plane Im z ~ 0, consider a closed contour r 
consisting of segments of the real axis [-R, -p], [p, RJ and semi­
circular arcs C~, I z I = p, and C.R, I z I = R (Fig. 5.4). The func-

.!1 

Fig. 5.4 

tion eiaz' which is an analytic continuation into the upper half-s . 
plane Im z > 0 of the function ~ specified on the positive real 

X 

axis 0 < x < oo, does not have any singularities in the domain 
bounded by the contour r. Therefore, on the basis of Cauchy's theo­
rem 

-p . R . . t i t 
j /(~) d~= J e~= dx+ j e~= dx+ j e; d~+ J e; d~=O 
r -R o c~- cJt 

(5-51) 

By Jordan's lemma, the last term on the left of (5-51) approaches 
zero as R -+ oo. Consider the third term. Noting that in this integ­
ral the semicircle C~ is traversed in the negative sense (clockwise) 
and making the change of integration variable ~ = pei~P, we get 

iat 0 
13 = J T d~ = i J eiap (cos 4P+i sin cp) d([J 

c~- n 

(5-52) 
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The integrand in (5-52) is a continuous function of the para­
meter p and its limit is 1 as p- 0. Therefore, 

(5-53) 

Passing to the limit in (5-51) as p- 0 and R ~ oo, we get, 
according to (5-50) and (5-53), 

(5-54) 
-oo 

whence 
00 r sincud lt J -%- X=T, (5-55) 
0 

For a< 0 we have the formula 
00 

r sincu dx = -~ a< 0 (5-56) J X 2 ' 
0 

This becomes obvious if we change the sign of ex in (5-55). 

d. The case of multiple-valued functions 

In all the preceding considerations we proceeded from Cauchy's 
formula, which is valid for a single-valued analytic function. Hence, 
these methods are applicable only when the analytic continuation 
f (z) of the function f (x) from the real axis into a domain bounded 
by the contour of integration is a single-valued analytic function. 
In those cases when the complete analytic function F (z) is multi­
ple-valued in the extended complex z-plane, the contour of integra­
tion must be chosen so that there are no branch points of the func­
tion F (z) inside it, and we have to consider only the single-valued 
branch f (z) of the complete analytic function F (z), which is a direct 
analytic continuation of the function f (x) into the complex domain. 
This reasoning enables us to extend the foregoing methods to a num­
ber of improper integrals that are frequently encountered in appli­
cations. We consider a few typical cases. 

(1) Integrals of the form 
00 

1= J ;xa-tj(x)dx, 0<a<1 
0 

(5-57) 

Let it be possible for the function f (x) specified on the positive real 
axis to be analytically continued into the entire complex plane. 
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Let its analytic continuation I (z) be a single-valued analytic func­
tion, except for a finite number of isolated singularities zk (k = 
= 1, ....• n) not lying on the positive real axis, and let z = oo 
be a zero of order not lower than first of the function I (z), and let 
the point z = 0 be a removable singularity. The function 

cp (z) = za-l I (z) (5-58) 

in the domain @! [0 < arg z < 2n], which is the z-plane cut along 
the positive real axis, is obviously the analytic continuation of the 
integrand function~ which coincides with it on the upper lip of 

!I 

R 
r 

Fig. 5.5 

the cut (arg z = 0). The function cp (z) is a single-valued function 
in the domain @!, and its singular points coincide with the singu­
larities Zk of the function f (z). In the domain @l we consider a closed 
contour r composed of segments of the real axis [p, R] on the upper 
and lower lips of the cut, and of open circles C P• I z I = p, and 
C R• I z I = R (Fig. 5.5). By the residue theorem 

R p 

J cp(~)d~= J :x;a-tl(x)dx+ J ~a-t/(~}~+ J ~a-l/(~)d~ 
r P cfl R 

" 
+ ~ ~a-tl(~)d~=2ni ~ Res[za-t/(z), z11 ] (5-59) 

c;; k;=t 
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Let us consider each of the terms on the left-hand side of (5-59). 

II2 1=l i ~a- 1/(~)d~~~ MR:-t 2nR=2nMRa-t a-:;;:O (5-60) 
cfl 

since by hypothesis in the neighbourhood of the point z = oo we 

have for the function f (z) the evaluation If (z) I < I~/ . The third 
term in (5-59) is an integral over the lower lip of the cut, where 
argz=21t, that is, Z=X·ei2n (x>O) and za-t=xa-t.ei2n(a-1), 
Therefore, 

Finally, 

p R 

j ~a-t I(~) a~= _ ei2n<a-t> J xa- t 1 (x) ax 
R p 

I J ~a- 1 f (~) d~ J < Mtpa-i2np -;.;t 0 
cr; 

(5-61) 

(5-62) 

since in the neighbourhood of the point z = 0 we have the evalua­
tion If (z) < M~ and a >0. 

Taking the limit in (5-59) as p -. 0 and R -. oo, we finally get 
[on the basis of (5-60) to (5-62)1 

~ N 

J xd.-tj (x) dx= 1 ~~112:n:a ~ Res [za- 1/ (z), Z~t] 
0 k=1 

Example 5. Evaluate the integral 

~ a-t 
I= J :+x dx, 0<a<1 

0 

. (5-63) 

(5-64) 

The integrand function in (5-64) satisfies all the conditions 
enumerated above. Therefore 

2ni [ ,a-t -1 J - 2niein(a-1) - n 
I= i-ei2na Res t+z ' - f-ei2na - sinan 

(2) Integrals of the form • 
1 

J xa-1(1-x)-a~f(x)dx, 0<a<1 
0 

(5-65) 

(5-66) 

• It is readily seen that this integral can be reduced to an integral of the 

type (5-57) by the substitution y = -1 x . However, in a number of cases it 
-x 

Is simple to evaluate the integral (5-66) directly. That is what is done here. 



144 Ch. 5. Residues and Their Applicattons 

Let it be possible for the function I (x), sp~cified on the interval 
(0, 1) of the real axis, to be analytically continued over the entire 
complex plane. Let its analytic continuation be a single-valued 
analytic function, except for a finite number of isolated singularities 
zk (k = 1, 2, ... , N) not lying on the interval 0 ~ x ~ 1, and 
let the point z = oo be a removable singularity of the function I (z). 
Then the integral (5-66) can readily be evaluated by methods similar 
to those investigated above. Note that the analytic continuation 
of the integrand function d> (z) = za-1 (1 - z)-al (z) has two branch 
points: z = 0 and z = 1. The point z = oo is a removable singu­
larity of the function d> (z). Indeed, a complete circuit around a cir­
cle of sufficiently large radius containing both branch points z = 0 
and z = 1 does not change the value of the function <t> (z). We con­
sider the domain @1, which is the extended z-plane cut along the 
real-axis interval [0, 1]. The branch of the function <t> (z) that coin­
cides, on the upper lip of the cut, with the integrand function (5-66) 
of the real variable x is a single-valued analytic function in @1. 
In @I we choose a closed contour r consisting of both lips of the cut 
[0, 11, the circles that close them c~, 1 z 1 = p, and c~, 1 z- 1 1 = 
= p, of sufficiently small radius p, and the circle CR, I z I = R, 
containing the interval [0, 1] and all the singularities of the func­
tion f (z) (Fig. 5.6). By the residue theorem 

l-p 1 <t> (~) d~ = ) x<~-t (1-x)-a I (x) dx+ J (J> (~) d~ 
r ,. c~-

P 

+ J <I>(~) d~+ 1 <I>(~)~+ 1 <l> (~) d~ 
t-p c~- c'Ji 

N 

=2ni ~ Res[ZU.- 1 (1-z)-al(z), Zk] 
A-t 

(5-67) 

Consider each term in the left member of the equality (5-67). It is 
given that z = oo is a removable singularity of I (z), i.e. in the 
neighbourhood of z = oo we have the expansion 

I (z) = ao + 4; 1 + ... (5-68) 

where ao = lim I (z). 
%-+00 

Consider the function 

cp (z) = za-t (1- z)-CI=+ ( f~z r (5-69) 
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which is the above-indicated branch of the function <I> (z)// (z). 
The point z = oo is a regular point of the chosen branch of the 

g 

.r 

Fig. 5.6 

function <p (z); therefore, the function <p (z) in the neighbourhood 
of z = oo may be represented in the form 

ina 
<p(z)=7+11l~!~) (5-70) 

where 'IJ'1 (z) is a bounded analytic function in the neighbourhood 
of the point z = oo. Whence, for a Laurent-series expansion of the 
function <I> (z) about the point z = oo we get the expression 

einc 1jl (~) 
cD (z) = a0 -~-+Ji"" (5-71) 

where 'IJ' (z) is a bounded analytic function in the neighbourhood 
of the point z = oo. From (5-71) we find 

Res.[cD(z), oo)=-aoema (5-72) 

Therefore, by formula (5-17), 

J cD (~) dt = 2nia0emcz (5-73) 

~ 
Since, when we encircle the point z = 1 clockwise, the argument 
of the expression (1 - z) varies by -2n, the argument of the func­
tion «<> (z) is greater on the lower lip of the cut than the argument 

Ill :lH7H 
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on the upper lip of the cut by 2ncx. Therefore, 
p 1-p 

J <!>(~)~= -ei2na J <D(x)dx (5-74) 
1-p p 

As may readily be demonstrated with the aid of evaluations similar 
to (5-62), for 0 <a< 1 the integrals over the small circles C~ 
and C~ tend to zero as p -+ 0. Then, taking the limit in (5-67), 
as p -+ 0, we obtain 

N 
(1-ei2na) I+ 2nieinaa0 = 2ni ~ Res [.za-1 (1- z)-a I (z), Zk) 

11=1 

whence 
N 

1= .nao + 2~~na"" Res(.za-1 (1-z)-al(z), z11J (5-75) 
sm na. 1-e ~ 

11-=1 

where a0 = lim f (z). 
%-+ ... 

Example 6. Evaluate the integral* 
1 

1= J za-1(1-z)-adz, 0<cx<1 (5-76) 
0 

Since all the earlier formulated conditions are fulfilled and a0 = 1, 
it follows that 

(3) Integrals of the form 

1=-.-n­
sm na. 

... 
(5-77) 

1= J f(x)lnxdx (5-78) 
0 

Let I (x) be an even function which may be analytically contin­
ued onto the upper half-plane Im z > 0, and let its analytic contin­
uation satisfy the conditions of Lemma 1. Consider, in the upper 
half-plane, the closed contour r consisting of segments [-R, -pl, 
[p, R) of the real axis and the semicircles C~, I z I = p, and Cjz. 
I z I = R, connecting them. The function <1> (z), which is a branch 
of the complete analytic function and coincides with f (x) ln x on 
the positive real axis (x >0), on the negative real axis, for z = 
- 1 z 1 ein = xein = -x (x > 0), takes the value 

<1> (z) I z = xein = f (x) In (xei") = f (x) [In x + in] 

• Note that the integral at hand is a particular case of the B function: 
1 

B(p, q)+ J zp-1 (1-x)q-idz 

0 
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Therefore, 
R R 

J Cl> (b) db= J f (x) In x dx + J Cl> (b) db+ J f (x)(ln x +in) dx 
r P C'n P 

N 

· + J Cl> (~)db= 2ni ~ Res[/ (z) In z, zk] (5-79) 
c~- k=i 

Consider the second term on the left of (5-79): 
1t . 1t 

I J <D(b)db~~ R":ro J llnblds= R%o J llnR+iargb Ids 
C'i 0 0 

~ M: Vln2 R+n2 ~ 0 (5-80) 
E R-+oo 

By carrying out similar evaluations, it is easy to show that the last 
term in the left member of (5-79) also approaches zero as p -+ 0. 

00 

Finally, the improper integral J f (x) dx exists and, by (5-35), is 
0 

equal to 
oo N 

J f(x)dx=nt ~ Res[/(z), Zk] (5-81) 
0 k=1 

Therefore, taking the limit in (5-79) as p-+ 0 and R -+oo, we get 
oo N 

1= J f(x)lnxdx=ni ~ Res[f(z) (lnz- i;), zk] (5-82) 
0 k=1 

Example 7. Evaluate the integral 
00 

J lnz d 
I= (t+z2)2 X 

0 

According to the foregoing reasoning, 

l=niResLt~z2)2 (lnz- i; ), t]=-: 

5.3. Logarithmic Residue 

a. The concept of a logarithmic residue 

(5-83) 

(5-84) 

Let there be given in a domain @I a single-valued function f (z) 
analytic everywhere in @I except at a finite number of isolated 
singularities zk (k = 1, ... , p), all zk being poles. Assume that 

to• 
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on the boundary r of the domain @J there are no zeros and no singu­
larities of the function f (z); we consider the auxiliary function 

<p (z) = !' (s) (5-85) 
f (s) 

The function <p (z) is often called the logarithmic derivative of the 
function f (z), and the residues of the function <p (z) at its singula­
rities Zm (m = 1, ... , M) are called the logarithmic residues of the 
function f (z). Define the singularities of <p (z) in @J. By virtue of the 
general properties of analytic functions it is clear that the zeros 
z" (k = 1, ... , n) and the poles zk (k = 1, •.. , p) of the function 
f (z) will be the singu}arities of the function <p (z). Let us find the 
value of the residue of the function <p (z) at each of its singular 
points. Let the point z = ~ be a zero of order nk of the function 
f (z). Then the function f (z) in the neighbourhood of this point 
is of the form 

(5-86) 

and the point zit is a regular point of the function fi (z). Evaluating 
the function <p (z) in the neighbourhood of the point z = Z~t by 
formula (5-85), we obtain 

~ n f' (s) 
<p (z) =(In f (z))' =nit (In (z- Z~t))' +(In / 1)' =----!b. +-11 () 

z- zit 1 z 

Whence it follows that the point zk is a pole of order one of the 
function <p (z), and the residue of the function <p (z) at this point 
is equal to nk. Thus, at a zero of order nk of the function f (z), its 
)ogarithmic residue is equal to nk, that is, to the order of the zero: 

Res [ '; g~ , Z~t J = nk (5-87) 

Let the point Z~t be a pole of order P~t of the function f (z). Then 
in the neighbourhood of this point the function f (z) is of the form 

(5-88) 

and the point zk is a regular point of the function /1 (z). Therefore, 
for the logarithmic derivative of the function f (z) in the neighbour­
hood of the point z = Z~t we get the expression 

(z) __ __!!!_ + fi (s) 
<Jl - Z-Zk ft (z) 

From this it follows that the point zk is also a first-order pole of 
the function <p (z), and the residue at this point is -Pit· Thus, at 
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a pole of order Pk of the function f (z) the logarithmic residue of the 
function is equal to the order of the pole with a minus sign: 

[ I' (z) J Res 7Tzf• z" =- Pk 

b. Counting the number of zeros 
of an analytic function 

(5-89) 

The results obtained enable us to prove the following important 
theorem. 

Theorem 5.5. Let a function f (z) be analytic everywhere in a closed 
domain @j except at a finite number of isolated singularities z" in­
side @, which are all poles, and let f (z) be nonvanishing at any point 
of the boundary r of the domain @. Then the difference between the 
total number of zeros and the total number of poles of f (z) in the do­
main @ is determined by the ·expression 

N -P= -1 r r m d~ (5-90) 
2ni J I(~) -

r+ 
By the total number of zeros (poles) is meant the number of zeros N 

(poles P) counting multiplicities: 
n 'P 

N = ~ n", P= ~ P1t (5-91) 
k=i k=i 

Proof. To prove the theorem, note that the integral over r of the 

function <p (z) = j(~) may be evaluated by means of the residue 

theorem; and since all the singularities of the function <p (z) are 
zeros and poles of f (z), and the residues at these points are deter­
mined by the formulas (5-87) and (5-89), it follows that 

M 

J <p (~) d~ = 2:rti ~ Res ( cp (z), Zm] 
r+ m=i 

n 'P 

= 2:rti { ~ n"- ~ P1t } = 2:rti (N- P) 
k=i k=i 

which proves the theorem. 
To see the simple geometric meaning of this theorem, transform 

the integral on the right of (5-90): 

2~i J 1;(~! d~=~i j dlnf(~)= 2~i j d{lnl/(~)1 +iargf(~)} 
r+ r+ r+ 

= 2~i J dIn If (~) I+ 2~ J d arg f (~) (5-92) 
r+ r+ 
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The real function In I f ( ~) I is a single-valued function; therefore, 
its variation, as the point ~ traverses the closed contour r, is zero. 
Hence, the first term on the right of (5-92) is zero. The second term 
is the total variation of the argument of the function f ( ~), as the 
point ~ traverses the closed contour f, divided by 2n. Thus, 

1 
N -P = Zn Var [arg f (z)]r+ (5-93) 

Let us depict the values of the function w = f (z) using points 
in the complex w-plane. Since the function f (z) is continuous on the 
contour r' for a complete traversal of the contour r by z in the 
z-plane, the corresponding point in the w-plane describes a certain 
closed contour C. The point w = 0 may lie either inside or outside 
the domain bounded by the contour C. In the former case, the varia­
tion of the argument w in a complete traversal of C is obviously 
equal to zero. In the latter case, the variation of the argument w 
is determined by the number of total circuits about the point w = 0 
performed by w in its motion along the contour C. The point w can 
encircle the point w = 0 either counterclockwise (in a positive sense) 
or clockwise (in a negative sense). And so the difference between the 
total number of zeros and poles of the function f (z) in the domain @.! 
is determined by the number of circuits performed by the point 
w = f (z) about w = 0 as the point z traverses the contour r in 
a positive sense. This reasoning is often essential when counting 
the total number of zeros of an analytic function in a given domain. 
In many cases, the computations can be appreciably simplified by 
the following theorem. 

Theorem 5.6 (Bouche's theorem). Let the functions f (z) 
and <p (z) be analytic in a closed domain @.1, with the following in­
equality valid on the boundary r of @!: 

I f (z) lr > I <p (z) lr (5-94) 

Then the total number of zeros in @.! of the function F (z) = f (z) + 
+ <p (z) is equal to the total number of zeros of the function f (z). 

Proof. All the conditions of Theorem 5.5 are fulfilled for the 
functions f (z) and F (z) = f (z) + <p (z). Indeed, f (z) does not have 
singularities on r (it is analytic in @) and does not vanish on r 
by virtue of (5-94). These conditions are also fulfilled for the func­
tion F (z), since I F (z) lr = I f (z) + <p (z) I ~ I f (z) lr - I <p (z) lr > 
> 0. Therefore, by formula (5-93), we get • 

1 
N [f (z) + <p (z)} = Zn Var [arg (/+ <p)]r 

and 
1 . 

N [f (z)] = 2i1 Var [arg f (z)]r 
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Consider the difference 

N [f (z) + cp (z)]- N [f (z)] 

= ;n Var [arg (! + cp) -arg llr = 2~ Var[ arg ( 1 + f) Jr 

( arg (f+cp) -arg I= arg f~<p) 

We introduce the function w = 1 + ~g;. It will readily be seen 
that as the point z traverses the contour r the corresponding point w 
describes a closed curve C, which by virtue of the condition (5-94) 

u 

Fig. 5.7 

will lie entirely inside some circle I w - 1 I < Po < 1 (Fig. 5. 7). 
And so the point w = 0 lies outside the curve C. Consequently, 
Var [arg w1r = 0, which proves the theorem. 

Example. Find the total number of zeros of the function F (z) = 
= z8 - 5z6 - 2z + 1 inside the unit circle I z I < 1. Represent 
the function F (z) in the form F (z) = I (z) + cp (z) putting I (z) = 
= -5z6 + 1 and cp (z) = z8 - 2z. Then 

I I (z) hzl=1;;;::: 1-5r lrzr-1 -1 = 4 

I cp (z) lrzl=t ~I Z8llzl=1 + l2z lrzr=1 = 3 

whence I I (z) lr z I= 1 > I cp (z) lr z 1 = 1 > 0. Hence, the total number 
of zeros in the domain I z I < 1 of the function F (z) is equal to the 
total number of zeros of the function I (z), but the latter clearly has 
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exactly five zeros: 

VT i2nk 

Zk= Se !\ 

(k= 0, 1, ... , 4) 

An important fundamental corollary to Bouche's theorem is 
Theorem 5.7 (The fundamental theorem of algebra). 

Every polynomial of degree n in the complex plane has n zeros, count· 
ing multiplicities. 

Proof. Represent the polynomial F (z) = a0zn + fltZn-1 + ... 
. . . +an as F (z) = f (z) + <p (z), putting f (z) = a0zn, <p (z) = 
_ n-1 • <p(z) _ 4f 1 
- a1z + . . . +an· Form the ratio /(z) - ao ·-; + ... 
. . . +an. ~. It will then be seen that for any specified values 

a0 z 
of the coefficients a0 , flt, ... , an there will always be a value R 0 , 

such that for all the values I z I = R > R 0 the following inequality 
holds: 

0 < I j <~i I I:I=R < 1 (5-95) 

By Bouche's theorem, from (5-95) it follows that the total number 
of zeros of the function F (z) in the circle I z I = R is equal to the 
number of zeros in this circle of the function f (z) = a0zn. But the 
function f (z) = a0zn in the entire complex plane has a unique 
n-fold zero-the point z = 0. The assertion of the theorem follows 
by virtue of the arbitrariness of R ~ R 0 • 



CHAPTER 6 

CONFORMAL MAPPING 

A study of the geometric properties of conformal mappings carried 
out by analytic functions is of great importance both in constructing 
the general theory of functions of a complex variable and in its 
numerous applications. In Chapter 1 we introduced the concept 
of a conformal mapping under which angles are preserved and 
stretching is invariant. The fundamental task of the theory of 
conformal mappings is the following. Given two domains of 
a complex plane, it is required to find the function that accomplishes 
a one-to-one and conformal mapping of one domain onto another. 
There naturally arise questions of the conditions of existence and 
unique definition of such a function. 

In this chapter we will briefly discuss the basic concepts of the 
theory of conformal mapping. We will also consider some geometric 
properties of mappings carried out by a number of analytic functions 
in practical applications. 

6.f. General Properties 

a. Definition of a conformal mapping 

The concept of a conformal mapping was introduced in Chapter 1 
when we considered the geometric meaning of the modulus and 
argument of a derivative. It was shown that if a function w = f (z) 
is single-valued and analytic in the neighbourhood of some point z0 

and f' (z0) =I= 0, then the mapping accomplished ~y the given func­
tion preserves angles and invariance of stretching at the point z0 • 

That is, the angle between any two smooth curves intersecting at 
the point z0 is equal in magnitude and sense to the angle between 
their images in the w-plane at the point w0 = f (z0), and infinitesi­
mal line elements emanating from the point z0 are transformed 
in similar fashion. This means that in such mapping any infinitely 
small triangle with vertex at z0 is transformed into a similar infi­
nitely small triangle with vertex at the point w0 • Note that by virtue 
of the general properties of analytic functions* the analytic function 

* See Chapter 1, page 33. 
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z = q> (w) is defined in the neighbourhood of the point w0 • In this 
way, a one-to-one correspondence is set up between the neighbour­
hoods of the points z0 and w0 • We introduce the following fundamen­
tal definition. 

A one-to-one mapping of a domain @! of the complex z-plane onto 
a domain G of the complex w-plane is called conformal if at all points 
z E@! the mapping preserves angles and invariance of stretching. 
Let it be stressed that this definition tacitly implies continuity 
of the mapping. 

From the foregoing it is clear that in the conformal mapping of 
a domain @! into a domain G, infinitely small plane figures of the 
domain @! are transformed into similar infinitely small figures 
of the domain G. It is also evident that in a conformal mapping 
the property of mutual orthogonality of the system of curves in the 
plane is preserved. Indeed, let there be given two mutually orthog­
onal one-parameter families of curves q> (x, y) = c and 1p (x, y) = c 
in the domain @! of the z-plane (z = x + iy) and through any point 
of @! there passes one line of each family. Then, in a conformal 
mapping of the domain @J onto a domain G of the w-plane (w = 
= u + iv), the images of the given curves in the w-plane-the 
curves ci> (u, v) = c and '¥ (u, v) = c-will be mutually orthogonal 
on the basis of the property of preservation of angles. This means 
that if in @! we introduce some orthogonal curvilinear system of 
coordinates, then in a conformal mapping this system of coordinates 
transforms into an orthogonal system. 

Let us now see what properties a function of a complex variable 
must have so as to effect a conformal mapping. 

We have the following theorem. 
Theorem 6.L Let f (z) be a single-valued and univalent analytic 

function in the domain @! and f' (z) =I= 0 for z E @!. Then f (z) maps 
the domain@! conformally onto the domain G of the complex w-plane, 
which is the range of values of the function w = f (z) for z E @J. 

Proof. Indeed, by virtue of the condition f' z =I= 0, for z E @! the 
mapping, by the function f (z), possesses at all points of @! the 
properties of preservation of angles and invariance of stretching, 
which proves the theorem. 

To summarize, then, the conditions of analyticity and univalence, 
and the fact that the derivative of a function of a complex variable 
is nonzero are sufficient conditions for the function to map confor­
mally. The natural question to ask is whether these conditions 
are necessary. The following theorem gives the answer. 

Theorem. 6.2. Let the function f (z) map a domain @! of the comp­
lex z-plane conformally onto the domain G of the complex w-plane and 
let it be bounded in@!. Then the function f (z) is univalent and analytic 
in the domain @!, and f' (z) =/= 0 for z E @!. 
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Proof. Since the function f (z) maps conformally, the mapping 
is one-to-one, and at any point z0 E @:! the angles are preserved and 
stretching is invariant. Hence, for any points z1 and z2 belonging 
to the neighbourhood of the point z0 , the following relations hold 
to within infinitesimals: 

arg .1.w2 - arg .1.w1 = arg .1.z2 - arg .1.z1 (6-1) 
and 

(6-2) 

where .1.z1 = z1 - z0 and .1.z2 = z2 - z0 are infinitely small line 
elements emanating from the point z0 , and .1.w1 and .1.w2 are their 

Fig. 6.1 

images (Fig. 6.1). Note that by (6-1) the corresponding angles at the 
points z0 and w0 are not only equal in magnitude but in sense as well. 

Denoting arg ~w2 by a, we find from (6-1) that arg ~Wt =a 
uZ2 uZt 

as well. Indeed 

&W2 A A A A &Wt arg-,.-:-=arguw2-arg uz2 = arg uw1 -arg uz1 = arg~ =a (6-3) 
'-"'2 uZt 

From (6-2) and (6-3) we find that, to within infinitesimals, the 
relati(.n 

(6-4) 

holds true. Since the choice of points z1 and z2 in the neighbour­
hood of the point z0 is arbitrary, the relation (6-4) implies that 

there is a limit of the difference quotient ~~ as .1.z- 0. By defi­

nition, this limit is the derivative of the function f (z) at the 
point z0 • Since k =1= 0, this derivative is different from zero: 

lim ~w = /' (z0) =I= 0 
~z .... o z 

(6-5) 
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The point z0 is an arbitrary point of the domain @!; therefore, it 
follows from (6-5) that f (z) is an analytic function* in@! and f' (z) =1= 
=I= 0 for z E @!. The univalence of f (z) follows from the one-to-one 
nature of the mapping. The theorem is proved. 

Thus, a conformal mapping of a domain @'$ of the complex z-plane 
onto a domain G of the complex w-plane is effected only by univalent 
analytic functions of a complex variable with derivative different from 
zero at all points of the domain @'$. 

Note that the condition f' (z) =I= 0 everywhere in the domain @'$ 
is a necessary but not sufficient condition for the mapping of the 
domain @! onto the domain G performed by the function f (z) to be 
conformal. Clearly, if the function f (z) is analytic in the domain @! 
and f' (z) =I= 0 everywhere in @!, but the function f (z) is not univa­
lent in @J, then the mapping effected by this function will not be 
one-to-one, and thus will not be conformal. An elementary case 
is the function w = z4 specified in the semi-annular region 1 ~ 
~ I z I ~ 2, 0 -< arg z -< n. This function is analytic in the given 
domain, and w' = 4z3 =I= 0 everywhere in the given semi-annular 
region. However, this function maps the given semi-annular region 
onto the domain 1 -< I w I -< 16, 0 -< arg w ~ 4n, that is, a domain 
that twice covers the corresponding annulus in the w-plane; but 
this violates one-to-one correspondence. 

Thus, univalence of a single-valued analytic function in a do­
main @J is an extremely important condition for a conformal map­
ping. As will be shown later on (see Theorem 6.3-the principle 
of one-to-one correspondence), this condition is necessary and suf­
ficient for a mapping to be conformal. 

As has already been pointed out, the property of preserving angles 
means that not only the magnitude of the angles is preserved between 
curves intersecting at a point z0 and their images but the direction 
of the angles is preserved as well. A mapping in which the magni­
tudes of the angles between curves and their images are preserved but 
the sense of the angles is reversed is termed a conformal mapping 
of the second kind. The mapping considered above is called a conformal 
mapping of the first kind. 

It is easy to show that a conformal mapping of the second kind 
is accomplished by functions of a complex variable which are comp­
lex conjugate to analytic functions with nonzero derivatives. Indeed, 
let the function w = f (z) perform a conformal mapping of the 
second kind of some domain @! of the complex z-plane onto a domain 
G of the complex w-plane. Let us consider the function w1 = w 
which maps G onto G* of the complex w1-plane. Clearly, the geomet­
ric meaning of the latter mapping consists in a mirror reflection 
of G about the real u-axis of the w-plane. But in a mirror reflection 

• See footnote on page 32. 
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the angles preserve magnitude but the sense is reversed. This means 
that the mapping by the function 

<p (z) = w1 = w = f (z), z E @J (6-6) 

of the domain @3 onto the domain G* is a conformal mapping of the 
first kind. Thus, the function <p (z) must be analytic in the domain @J, 

and <p' (z) =1= 0, z E @J. But from (6-6) it follows that f (z) = <p (z). 
This proves the assertion. Up to now we have assumed that a bounded 
domain @J is mapped conformally onto a bounded domain G. In some 
cases, one has to consider the mapping of the neighbourhood of 
a point z0 onto the neighbourhood of the point w = oo (or vice 
versa). We will then call the mapping conformal if the neighbour­
hood of the point z0 is conformally mapped onto the neighbourhood 

of the point ~ = 0, where ~ =...!.. In similar fashion we define 
w 

the conformal mapping of the neighbourhood of the point z = oo 
onto the neighbourhood of the point w = oo. 

b. Elementary examples 

In the previous chapters we have already considered a number of 
geometric properties of mappings accomplished by a variety of 
elementary functions. Let us now see if these mappings are confor­
mal, and if they are, then in what domains. 

It is readily seen that the linear function w = f (z) = az + b 
(a =1= 0 and b are arbitrary complex constants) maps conformally 
the extended complex z-plane onto the extended w-plane, since 
this function is univalent and its derivative f' (z) = a is nonzero 
at all points of the z-plane. To be satisfied of the conformal nature 
of the mapping of the neighbourhood of the point z = oo onto the 
neighbourhood of the point w = oo, we put (in accord with the 

remark made above) t = _!_ and ~ = _!.._. The function w = az + b z w 

is transformed into the function ~ = a~bt , which maps the neigh-

bourhood of the point t = 0 conformally onto the neighbourhood 
of the point ~ = 0 (the point t = 0 is a regular point of this function, 

and ~, (t) lt=O = .!. =I= 0). a 
We saw above that the geometric meaning of a mapping accom­

plished by a linear function consists in a similarity stretching and a 
translation of the z-plane. This function can therefore be used for 
constructing conformal mappings of similar figures. 

Example 1. Construct a function to map conformally the circle 
I z - 1 - i I -< 2 onto the unit circle I w I -< 1. 
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Since the domains @I and G are similar figures, the problem may 
be solved by means of a linear function which accomplishes similar 
stretching of the z-plane and translation of the coordinate origin. 
It is easy to see that the desired function is of the form 

w =a (z- 1- i) 

1 
where I a I = 2 and the argument a of the complex number can 

have any value and determines the rotation of the w-plane about 
the point w = 0. 

We consider the power function w = f (z) = zn, where n > 1 
is an integer. It follows from the reasoning of Chapter 1 and Chap­
ter 3 that the function carries out a one-to-one mapping of the domain 

of its univalence-the sector 'ljl0 < arg z < 'ljl0 + 2n -onto the 
n 

extended w-plane cut along the ray arg w = n'¢0 • Its derivative 

!I 

%=0 t4z0 u 

Fig. 6.2 

f' (z) = nzn-t is nonzero and is bounded everywhere within the 
given sector and at points of its boundary, with the exception of 
z = 0 and z = oo. Therefore, the given function maps conformally 
onto the cut w-plane a domain within the indicated sector. Any 
infinitely small plane figure lying inside the· given sector is trans­
formed into a similar infinitely small figure in the w-plane; for 
instance the parallelogram ABCD, whose sides are the coordinate 
lines of the polar system of coordinates (Fig. 6.2), will be trans­
formed into a similar infinitely small parallelogram A' B'C'D' whose 
sides are also the coordinate lines of the polar system of coordinates 
in the w-plane. However, at the boundary point z = 0 the confor­
mality of the mapping is violated. Indeed, consider the curves y1 
and y 2 lying inside the given sector and intersecting at the point 
z = 0 at an angle (Jlo (Fig. 6.3). Clearly, the function w = zn trans­
forms these curves into the curves r 1 and r 2 which intersect at the 
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point w = 0 at an angle <1> 0 = n<p0 =I= <p0 • Thus, the given function 
will map an infinitely small triangle with vertex at the point z = 0 
onto a triangle which is no longer similar to the original one. We note 
that at the point z = 0 where conformality of mapping is violated, 
the derivative of the function I (z) = zn is zero. Continuing our 
investigation, we readily see that the function w = zn maps confor­
mally the domain of the complex z-plane, which is the extended 
z-plane, with the exception of the points z = 0 and z = oo, onto 
an n-valent Riemann surface of the inverse function z = ~ w. 
To the points z = 0 and z = oo, at which conformality of mapping 

y r 
J; r, 

~ 

u 

Fig. 6.3 

is violated, there correspond the points w = 0 and w = oo, which 
are branch points of the inverse function. 

In the general case, the power function w =I (z) = za., where 

a. > 0 is a given real number, maps the sector 2n k < arg z < a 

< 2n (k + 1) (k = 0, ±1, ... ) of its Riemann surface (which is a 
infinite-sheeted for irrational a., finite-sheeted for rational a., and 
the ordinary z-plane for integral a.) onto the extended w-plane (the 
ray arg z = 221 k is mapped onto the positive real axis). Its derivative 

a 
f' (z) = a..za-1 exists and is nonzero everywhere inside the given 
sector, except at the points z = 0 and z = oo. Thus, this function 
too maps the given sector conformally onto the cut w-plane. 

As in the case of the function w = zn, the conformality of the map­
ping is violated at the points z = 0 and z = oo. 

Example 2. Construct a function that maps the first quadrant 
of the z-plane (Re z > 0, Im z > 0) conformally onto the upper 
half of the w-plane (Im w > 0). 

It is easy to see that the function 

w = az2 + b 
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where a > 0 and b are arbitrary real constants, yields the solution 
to this problem. At the points z = 0 and z = oo conformality is 
violated. 

In Chapter 3 we examined a mapping by the exponential function 
w = f (z) = ez. It was shown that this function maps in one-to-one 
fashion any domain of univalence-the strip y0 < Im z < y0 + 2n 
of the z-plane-onto the extended w-plane cut along the ray arg w = 
= y0 • Since the derivative of the function at hand, f' (z) = ez, 
is nonzero everywhere inside the given strip, the mapping is confor­
mal. It is easy to see that in this mapping an orthogonal grid of 
Cartesian coordinates X = Cl, y = c2 inside the given strip is 
transformed into an orthogonal grid of polar coordinates I w I = f!Jt, 
arg w = C 2 in the w-plane. The complete analytic function· F (z) = 
= ez, whioo is an entire function in the z-plane, maps the extended 
z-plane conformally onto the infinite-sheeted Riemann surface of 
the inverse function* z = Ln w. Note that the conformal mapping 
breaks down in the neighbourhood of the points w = 0 and w = oo 
of the w-plane, which are branch points of the function Ln w, where 
the mapping is not one-to-one. 

Example 3. Construct a function that maps the strip 0 < Re z <a 
conformally onto the upper half-plane Im w > 0. 

The function z1 = _:: z maps the original strip onto the strip 
a 

0 < Re z1 < n. The function z2 = iz1 transforms the resulting 
strip into the strip 0 < Im z2 < n. Finally, the function w = ezz 
maps the given strip conformally onto the upper half-plane Im w > 
> 0. Therefore, the function which accomplishes the given confor­
mal mapping may be taken in the form 

c. Basic principles 

We considered a few elementary examples of functions that map 
conformally and, with their aid, we solved the basic problem of 
conformal mapping for a number of elementary domains. More comp­
licated examples require the use of general principles of conformal 
mapping. Let us investigate these principles. In a number of cases 
we will confine ourselves solely to a statement of the appropriate 
propositions without substantiating them rigorously, for this would 
take us beyond the limits of our course. 

(a) One-to-one correspondence. It has been pointed out that a con­
formal mapping of a domain @I of the complex z-plane onto a domain G 

• For construction of the Riemann surface of the function Ln w, see Chap­
ter 3, page 103. 
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of the w-plane, which is accomplished by a function f (z) analytic 
in @, sets up a one-to-one correspondence between these domains. 
Thus, the condition of univalence of the function f (z) in the domain 
@I is a necessary condition for the conformality of the mapping. 
It turns out that this condition is also sufficient. 

Theorem 6.8. Let f (z) be a single-valued analytic function in a 
domain @I which maps the domain @I one-to-one onto a domain G of the 
complex w-plane. This mapping is then conformal. 

Proof. To prove the theorem it is evidently sufficient to demonst­
rate that if the conditions of the theorem are fulfilled the derivative 
off (z) is nonzero everywhere in the domain @. Suppose this is not 
the case, i.e. that in the domain @J there exists a point z0 at which 
f' (z0 ) = 0. Since f (z) is analytic in @, then by virtue of the suppo­
sition its power-series expansion about the point z0 must be of the 
form 

f (z) = ao + ak (z - z0)k. + ak+1 (z- z0)k•t + . . . (6-7) 

and k ~ 2 and ak =I= 0. If /' (z) =¢; 0, then z0 cannot be a limit point 
of the zeros of the function/' (z). This means that there is a value 6' 
such that f' (z) =I= 0 at all points z =I= z0 inside the circle I z - z0 I < 
< 6'. Also, it is obviously possible to choose a value 6" such that 
we will have the inequality 

'¢ (z) = ak + aH1 (z - z0) + ... =I= 0 

for I z - z0 I < 6". 
Choosing 6 =min {6', 6"}, we have 

f' (z) =I= 0 for z =I= z0 } f I I .- ~ or z-z0 :::::::, u 
'¢ (z) = ak + ak+t (z- z0) + ... =1=0 

(6-8) 

From the latter relation, by virtue of the continuity of the func­
tion '¢ (z), it follows that 

min I (z-z0)k. '¢ (z) l1z-zo1-' = m > 0 

Choose some complex number a which satisfies the condition I a I < 
< m. By Rouche's theorem, the analytic function 

q> (z) = (z - z0)~ (z) - a == I (z) - a0 - a (6-9) 

has inside the circle I z - z0 I --< 6 just as many zeros as the func­
tion (z - z0)k.'ljl (z). The latter, by the condition (6-8), has in the 
given circle k zeros; the point z = z0 is its zero of order k. Then 
from (6-9) .it follows that the equation 

I (z)...., ao +a (6-10) 

II-387H 
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has k roots in the circle I z - z0 I .<: 6, and all these roots are simple, 
since the point z = z0 is not a root of the equation (6-10) and, by 
(6-8), f' (z) =I= 0 at the remaining points of the given circle. This 
means that at k distinct points of the circle I z - z0 I .<: 6 the 
function f (z) assumes the same value f (z) = a0 + ct. But this 
contradicts the condition of one-to-one mapping of the domain @J 
onto the domain G, which proves the theorem. 

It thus follows from the theorem that we have proved that the 
condition of univalence off (z) in the domain @J is a necessary and 
sufficient condition for a single-valued function f (z) analytic in the 
domain @J to map this domain conformally onto some domain G 
of the w-plane. 

(b) The principle of correspondence of boundaries. When solving 
concrete problems in the conformal mapping of a given domain @J 
onto a given domain G, the usual procedure is to see that the desired 
function f (z) maps the boundary y of the domain @J onto the 
boundary r of G, without specially considering the mapping of the 
interior points. This can be done by virtue of the so-called principle 
of boundary correspondence which we will prove below. First, note 
that if in a domain @J there is given a single-valued continuous 
function w = f (z), it is obvious that the function transforms any 
closed curve y lying entirely in @J into a closed curve r in thew-plane. 
We will say that in a mapping of the curve y, by the function 
f (z), the sense of the traversal is preserved if in continuous motion 
of the point in the positive direction along the curve y the correspond­
ing point goes around the curve r in the positive direction as well. 
Let us now examine the principle itself. 

'I' heorem 6.4. Let there be given, in a finite domain @J bounded by 
a contour y, a single-valued analytic function f (z) which is continuous 
in ~ and maps the contour y one-to-one onto some contour r of the 
complex w-plane. Then, if in such a mapping of contours the direction 
of traversal is preserved, the function f (z) maps the domain @J confor­
mally onto the interior domain G bounded by the contour r. 

Proof. It is evidently sufficient to show that the function f (z) 
sets up a one-to-one correspondence between the domains @J and G; 
that is, we have to show that the function f (z) associates with every 
value z E @J a certain point w E G and for every point w1 E G there 
will be OJle and only one point Zt E @J such that f (z1) = w1 • To do 
this, consider two arbitrary points w1 E G and w2 ~ G (Fig. 6.4) 
and construct in @J the auxiliary functions 

F1 (z) =I (z) - w1 , z E @J 
F 1 (z) = I (z) - W2, z E @J 

(6-11) 

Count the number of zeros of these functions in the domain @J using 
formula (5-93). Since it is given that a positive traversal of the 
contour r corresponds to a positive traversal of the contour y, we 



6.1. General Properties 163 

obtain 
1 N [Ft(z)] = 2n Var [arg (/ -w1)]y = 1 (6-12) 

and 

(6-13) 

Since the choice of the point w2 outside the domain G is arbitrary, 
it follows from (6-13) that all the values of the function I (z) for 
z E @J belong to G. From (6-12) it follows that for any point w1 E G 

"'2 

r 

Fig. 6.4 

in the domain @J there is one and only one point z1 for which I (z1) = 
= w1; this proves that the given mapping is one-to-one. The theorem 
is proved. 

Note. If the function f (z) is analytic in the domain @J, with the 
exception of a unique singular point z0 which is a first-order pole, 
and the direction of traversal is reversed in a mapping of the boun­
dary of @I (the contour y) onto the contour r of the w-plane, then 
the function I (z) maps the domain @I conformally onto the domain 
G'' which is exterior to the contour r' in the w-plane (the point Zo 

corresponds to the point w = oo ). 
This assertion is proved in a manner similar to that of the pre­

ceding theorem; in place of (6-12) and (6-13) we get the relations 

1 N[F1 (z)]-1==2n Var [arg(/-w1)1v==-1 (6-14) 

and 
1 N [F2 (z)1-1 =rn Var [arg (/-w2)]v= 0 (6-15) 

from which follows the validity of the assertion. 
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We give the assertion without proof; in a sense it is the converse 
of the theorem that has just been proved. 

Theorem 6.5. If a function/ (z) maps a domain @J of the complex 
z-plane conformally onto a bounded domain G of the w-plane, the 
boundary of which does not contain the point w = oo, then the func­
tion f (z) is continuous on the boundary of @S and generates a contin­
uous one-to-one correspondence between the boundaries '\' and r of the 
domains @J and G. 

(c) Symmetry principle. This principle finds numerous applica­
tions in the solution of problems of conformal mapping of domains 
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whose boundaries have straight-line segments. Let the boundary '\' 
of the domain @J have a straight-line segment y' (Fig. 6.5). The 
domain ~ obtained by means of a mirror reflection of the domain @J 
about the straight line on which the segment y' lies will be called 
a domain symmetric to the domain @J with respect to y'. The sym-
metry of points of the domains @S and ~ will be denoted by the 
symbol z- z. The symmetry principle may be stated in the form 
of a theorem. 

Theorem 6.6. Let there be given, in a closed domain @J, the boun­
dary '\' of which has a straight-line segment y', a continuous function 
f (z) which maps the domain @J conformally onto the domain G of the 
complex w-plane, the segment y' of the boundary '\' being transformed 
into a straight-line segment r• of the boundary r of the domain G. 
Then, in the domain @, which is symmetric to @J with respect to the 
segment y', it is possible to construct a function { (z) which is an analyt­
ic continuation of the function f (z) from @J into ~ and whtch maps 
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the domain @J conJormally onto the domain G of the complex w-plane, 
which (G) is symmetric to the domain G with respect to the seg­
ment f'. 

Note that the domain ~ = @J + @J thus obtained can have 
a segment @J12 belonging simultaneously to the domains @J and ~. 
Then the complete analytic function F (z) obtained by an analytic 
continuation of the function f (z) into the domain ~must be consid­
ered on an appropriate Riemann surface (the same refers to the 
domains G and G). 

Proof. We associate with each point z E @J a point i E @ sym­
metric to it with respect to the segment y'; and with the point wE G, 
a point wE G symmetric to it with respect to the segment f': 

(6-16) 

In @, define the function f (z) specifying its values for every z E ~ 
according to the scheme Z++Z; z ~ w = f (z); w ++ w; 1 (z) = w. 
It is readily seen that the constructed function J (z) is analytic in the 
domain @J. Indeed, by the correspondences of (6-16), from the exis-

tence of a limit of the difference quotient ~~ there follows the 

existence of a limit of the difference quotient ~ . The analytic 
llz 

functions f (z), z E @J and f (z), ~z E @J, coincide and are continuous 
on the common segment y' of the boundaries of the domains @J and 
@J. Therefore, by the principle of analytic continuation, the func­
tion f (z) is an analytic continuation of the function f (z) from the 
domain @J into the domain @!. The first part of the assertion of the 
theorem is proved. By (6-16), the mapping of the domain ~ onto 
the domain G by the function 1 (z) is one-to-one. Consequently, 
on the basis of Theorem 6.3, this mapping is conformal. The proof 
is complete. 

Note. This theorem remains valid also for the case when the 
straight-line segment -y' in the theorem is replaced by an arc of 
a circle. In that case, symmetry with respect to the arc of the circle 
is to be understood as a mirror reflection in the given circle carried 
out by an inversion transformation. It will be shown below that 
it is always possible to map a domain. @J conformally onto a new 
domain @J1 so that tl e segment -y' of the arc of a circle which is part 
of the boundary i' of the domain @J is transformed into a straight­
line segment -y;, which is part of the boundary y1 of the domain @J1• 

This proves the truth of the assertion. 
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d. Riemann • s theorem 

Up to now we have reasoned on the assumption that there exists 
a function f (z) that maps a given domain @J of the complex z-plane 
conformally onto a given domain G of the complex w-plane. We will 
now formulate conditions which will guarantee the existence and 
uniqueness of such a mapping. This theorem, which is a fundamental 
theorem of the theory of conformal mappings, was proved by Rie­
mann in 1851. Proof of the existence of a conformal mapping goes 
beyond the scope of this course and so we will confine ourselves 
to a statement of the theorem.* 

Theorem 6.1' (Riemann's theorem). Every singly connected 
domain @J of the complex z-plane whose boundary consists of more than 
one point may be conformally mapped onto the interior of the unit circle 
I w I < 1 of the w-plane. 

It obviously follows from this theorem that it is possible to map 
a given singly connected domain @J of the z-plane conformally 
onto a given singly connected domain G of the complex w-plane if 

Fig. 6.6 

the boundary of each of these domains consists of more than one 
point. Indeed, mapping the domains @! and G onto the auxiliary 
circle I ~ 1 < 1 (which is possible by Riemann's theorem), we get 
the desired mapping. 

The condition of single connectivity of the domains @.! and G 
is essential, for the supposition of the possibility of a conformal 
mapping of a multiply connected domain @.! onto a singly connected 
domain G leads to a contradiction. Indeed, let us take in @! a closed 
contour -y, inside of which lie the boundary points of the domain@!. 
The contour 'V is mapped onto some closed curve r lying completely 
in the singly connected domain G (Fig. 6.6). Make r shrink to some 
interior point w0 of the domain G; then by virtue of the continuity 
of the mapping, the contour 'V should also shrink to some interior 

• A detailed proof is given in (1]. 



6.1. General Properties 167 

point z0 of the domain @1, all the while remaining inside this domain; 
hut this is obviously impossible due to the multiple connectivity 
of the domain @I and to the indicated choice of the contour '\'· Thus, 
a conformal mapping of a multiply connected domain onto a singly 
connected domain is impossible. However, as will he shown below, 
it is possible in a number of cases to effect a conformal mapping 
of domains of equal connectivity. 

Let us now examine the conditions which uniquely define a func­
tion capable of carrying out a given conformal mapping. It is clear 
that such conditions are necessary, since, as is evident from earlier 
examples, the unit circle can be conformally mapped onto itself 
with the aid of the most elementary linear transformation, which 
consists in a rotation of the complex plane. Therefore, if the function 
f (z) maps conformally a given domain @I onto the unit circle, 
then any function obtained from f (z) by means of the indicated 
linear transformation will conformally map the domain @J onto 
the same unit circle. 

Theorem 6.8. A junction f (z) which maps conjormally a given 
singly connected domain @I (the boundary of which consists of more 
than one point) onto the unit circle I w I < 1 so that f (z0) = 0 and 
arg /' (z0) = a 0 (where z0 E @I and a 0 is a given real number) is defined 
uniquely. 

Proof. Suppose there are two different functions w1 = / 1 (z) and 
w2 = / 2 (z) in the domain @1, effecting the given conformal map­
ping, i.e., 

/ 1 (z0) = 0, arg 1; (z0) = a 0 , I /1 (z) lv = 1 

/ 2 (z0) = 0, arg /~ (z0) = a0 , I / 2 (z) lv = 1 

We note that by Theorem 6.5, the functions w1 = /1 (z) and w2 = 
= / 2 (z) set up a one-to-one and continuous correspondence between 
the boundary '\' of the domain @I and the circles I w1 I = 1 and 
I w2 I = 1, respectively. 

Since a one-to-one correspondence is established in a conformal 
mapping, this means that there is also established a one-to-one 
correspondence between the points of the unit circles I w1 I ~ 1 
and I w2 I ~ 1. Hence, the established correspondences define the 
analytic function w2 = q> (w1), which maps the unit circle I w1 I< 1 
conformally onto the unit circle ! w2 I< 1, and 

q> (0) = 0, I Q,i (WJ,) l!wtl=i = 1 

Note that, besides, by virtue of the one-to-one correspondence of 
the domains I w1 I < 1 and I w2 I < 1 we have the condition 

q> (ro1) -=1= 0 for w1 -=1= 0 
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Computing the value of the derivative :!:: by the rule for deter­
mining the derivative of a composite function, we get 

Aw2 
- ia 

dcp I = dw2 I = lim I:J.s = k2e 0 = !!!_ > O 
dwt wt=O dwt wt=O ll.z-+O I:J.Wt k1eiao kt 

/J.s 

Whence it follows that the derivative ;!:~ at the point w1 = 0 is 
a positive real number. Let us consider the auxiliary function de 
fined for I w1 I ~ 1 

(6-17) 

The function 'ljl (w1) is obviously a single-valued analytic function 
in the domain 0 < I w1 I < 1. The point w1 = 0 is a removable 
singular point of this function. We redefine 'ljl (w1) with respect to 
continuity for w1 = 0. Expand q> (w1) in a Taylor series about w1 = 0: 

Wz = q> (w1) = q> (0) +awdq> I W1 + ... = dwdq> I W1 + 
1 Wt=O 1 Wt""'O 

Taking the limit as w1 -+ 0, we have 

'ljl (0) =lim q> (wt) = ~~ = ~ > 0 (6-18) 
W!-+0 Wf dwt Wt=O kt 

The function 'ljl (w1) is continuous in the closed domain I w1 I~ 1, 
and in this domain 'ljl (w1) =fo 0 and 

I 'ljl ( w1Hwt1=1 = 1 (6-19) 

By the maximum- and minimum-modulus principle of an analytic 
function, there follows from (6-19) that 

I 'II' (wl) I == 1 for I W1 I ~ 1 

whence, by footnote on page 53 (Chapter 1) we find that 

'ljl (w1) = constant for I w1 I :::,; 1 (6-20) 

In order to find this constant, note that by (6-18) it is equal to ~ , 
i.e. it is a positive real number. According to (6-19), the absolute 
value of this number is unity, which implies that 'ljl (w1) = 1. Hence, 
w2 = q> (w1) = w1• This is proof that there do not exist two dif­
ferent functions accomplishing a specific conformal mapping of a 
given domain @I onto the interior of the unit circle. 

Note. The above-stated conditions for a unique definition of 
a function f (z) accomplishing a conformal mapping of a given singly 
connected domain @I onto the interior of the unit circle I w I < 1 
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may be replaced by the requirement that three boundary points 
of the boundary y of the domain @J correspond to three points of 
the circle I w I = 1. 

We confine ourselves to a statement of the assertion without giving 
its proof. 

We have examined a number of basic general properties of con­
formal mapping. However, these considerations do not yield general 
procedures for solving the basic problem of constructing a confor­
mal mapping of a given domain @J of the complex z-plane onto 
a given domain G of the w-plane. It is not possible to indicate any 
such procedure in the most general case. In solving concrete prob­
lems one has to resort to a variety of special methods. In this, a suf­
ficiently full grasp of the geometric properties of a number of func­
tions of a complex variable that are most often used in solving 
practical problems will be of great help. 

6.2. Linear-Fractional Function 

A linear-fractional function is the function of a complex variable 
of the form 

a+bz 
W=f(z)= c+dz (6-21) 

where a, b, c, d are given complex constants, which must obviously 
satisfy the condition 

; 9= : (6-22) 

since otherwise the function f (z) would be identically constant. 
Without loss of generality, it may be taken that b 9= 0 and d 9= 0, 
for otherwise w would be transformed into the already studied 

linear function and the function w = ~ . And so we can write (6-21) 
in the equivalent form 

/( 'I a.+z 'I b a c 
W= z)=,... ~+z, "'=a:· a=b, ~=7 , a*~ (6-23) 

The function (6-21), (6-23) is a single-valued analytic function 
in the extended complex z-plane having one singularity-a first-

order pole z0 = - ~ = -~. The inverse function 

A.a.-flw 
Z= -A.+w (6-24) 

is a linear-fractional function defined in the extended w-plane. Here, 

the point z0 = - ~ = -~ is transformed into the point w = oo 

and the point z = oo into the point w0 = ').. = ! . 
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Let us find the derivative of the function w = f (z) 

I I ( ~-c:.t 
z) =A. (~+s) 2 =F 0 (6-25) 

By the condition (6-22}, the derivative of a linear-fractional func­
tion is nonzero at all finite points of the z-plane. This means that 
a linear-fractional function maps the z-plane conformally onto the 
w-plane. The conformality of the mapping at points at infinity 
is readily verified by the above-mentioned method. 

The expression of the linear-fractional function includes three 
arbitrary parameters A., a, ~; there are thus an infinity of linear­
fractional functions that map the extended z-plane onto the extend­
ed w-plane conformally. It is natural to pose the question of the 
conditions that uniquely define a linear-fractional function. 

Theorem 6.9. A linear-fractional function is uniquely defined 
by specification of a correspondence between three different points of the 
z-plane and three different points of the w-plane. 

Proof. We have to prove that the conditions 

(6-26) 

where z10 z2 , z3 and wt> w2 , w3-given complex numbers-uniquely 
define the values of the parameters A., a, ~· Form the expressions 

~ (It-Is) (~-c:.t) 6 
w1 -w3 =A (~+.zt)(~+sa) ( -27) 

~ (.zt-ss) (13-c:.t) 6 28 
w2 - Wa ="' (13+c2)(13+.zs) ( - ) 

Dividing (6-27) by (6-28), we get 
w1-w3 lt-Za l}+.z2 
Wt-Ws = Z2-z3 •l}+.zt 

For an arbitrary point z we can write a similar relation 
Wt-W It-S 13+.z2 
Wt-W = Zt-Z •l}+.zt 

(6-29) 

(6-30) 

Eliminating the parameter ~ from the relations (6-29) and (6-30), 
we fi.nally get 

(6-31) 

The relation (6-31) is an implicit expression of the desired linear­
fractional function. By solving (6-31) for w, we evidently get an 
explicit expression of the coefficients A., a, ~ of the linear-fractional 
function in terms of the given numbers z1 , z2 , z3 , w1 , w2 , w3 , which 
proves the theorem. 

Note that since a linear-fractional function effects a conformal 
mapping of the extended z-plane onto the extended w-plane, it 
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follows that one of the points z; and one of the points w1, the speci­
fication of which defines the linear-fractional function, may be 
points at infinity. 

Let us consider the geometric properties of a mapping by a linear­
fractional function. To do this, we slightly transform the expres­
sion (6-23) to 

and introduce the auxiliary functions 

1 
.Z1=~+z, z2=-, z3 =A.(a-~)z2 +A. 

ll:t 

(6-32) 

(6-33) 

From the relations (6-33) it follows that a mapping by a linear­
fractional function is a collection of elementary mappings by the 
linear functions z1 and z3 and by the function .!. considered in Chap-

s 
ter 1. Thus, the mapping at hand is made up of stretchings, rota­
tions and translations of the complex plane, and also of the inver­
sion transformation in a circle. This mapping has a number of im­
portant properties which we will investigate. 

Theorem 6.10 (Circular property of a linear-frac­
tional function). A linear-fractional function transforms circles 
in the z-plane into circles in the w-plane. We include straight lines 
in the family of circles, regarding them as circles of infinite radius. 

Proof. It is obviously sufficient to show that the inversion trans-

formation by the function w = .!.. possesses the circular property, 
2: 

since preservation of the circle in a linear transformation does not 
give rise to any doubt. Let us consider an arbitrary circle whose 
equation in the z-plane is 

A (x11 + y11) + Bx + Cy + D = 0 (6-34) 

where A, B, C, and Dare real numbers and A ;;;;:::: 0, B3 + C11 = 4AD. 
Clearly, for A = 0 we get a straight line; forD = 0 the circle (6-34) 
passes through the origin (point z = 0). In the transformation by 

the function w = u + iv =..!.., the coordinates x, y are connected 
ll 

with the coordinates u, v by the relations 
v (6-35) 

Therefore, the circle (6-34) in the new coordinates is of the form 

D (u2 + v11) + Bu - Cv + A = 0 (6-36) 
This proves the theorem. 
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Note that for D = 0 equation (6-36) is the equation of a straight 
line, i.e. the circle passing through the point z = 0 is mapped into 
a straight line by the function w =.!.. 

z 
The foregoing property of a linear-fractional function is widely 

employed in solving many concrete problems of conformal mapping 
associated with the mapping of domains with circular boundaries. 
Indeed, suppose we have to map conformally a domain @J bounded 
by the circle y (in the z-plane) onto the domain G bounded by the 
circle r in the w-plane. It is known that the position of a circle 
in a plane is completely defined by specification of three points. 

!I v 

Fig. 6.7 

On the other hand, by Theorem 6.9, by specifying the correspondence 
of three points Zk in the z-plane lying on the circle y to three points 
wk of the w-plane lying on the circle r we fully define a linear-frac­
tional function which maps the z-plane conformally onto the· w-plane. 
Then, according to Theorem 6.10, the circle y will be transformed 
into the circle r. If the correspondence of points Zk and Wk is chosen 
so as to preserve the direction of traversal, then by Theorem 6.4 
the given function maps the domain @J conformally onto the do­
main G. Note that the domain exterior to the circle '\> in the z-plane 
is conformally mapped onto the domain exterior to the circle r 
in the w-plane. If the correspondence of points Zk and wk is estab­
lished so that the traversals of the circles y and r are in opposite 
senses, then the domain @J is conformally mapped onto the domain 
exterior to the circle r in the w-plane. 

Example 1. Find the function that maps the unit circle I z I < 1 
conformally onto the upper half-plane Im w > 0. 

We start by establishing the following correspondence of the 
boundary points of the given domains (Fig. 6.7): 

(6-37') 
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z2 = i -w2 = 1 
z3 = -1 -w3 = oo 

i73 

(6-37") 
(6-37"') 

and find the coefficients A., a, P of the linear-fractional function 
which generates the desired mapping. From the conditions (6-37') 
and (6-37'") it is easy to see that the values of a and p are deter­
mined at once, and then the desired function takes the form 

_ A.z 1 
w- z+1 

The last coefficient A. is found from the condition (6-37"): 

1 ='-i 1 
i+1 

whence A. = -i. Thus, the function which carries out the desired 
mapping is of the form 

. 1-z 
W=l-­

i+z 
(6-38) 

Note that the function (6-38) maps the domain I z I > 1 confor­
mally onto the lower half-plane Im w < 0. 

It follows from this example that construction of the desired 
linear-fractional function is simplest when the given points of the 
w-plane are the points w = 0 and w = oo, for then the values of 
the coefficients a and p are determined at once. 

The next property of linear-fractional functions consists in pre­
servation of points symmetric about a circle. 

It will be recalled that the points P and P' are called symmetric 
with respect to a circle C if they lie on a common ray passing through 
the centre 0 of the circle C, and the product of their distances from 
the centre is equal to the square of the radius ofthe circle: OP·OP' = 
= R2• We have 

Theorem 6.11. In a mapping by a linear-fractional function, 
points symmetric with respect to any circle are transformed into points 
symmetric with respect to the image of the circle. 

Proof. We take advantage of the following auxiliary propositions 
of elementary geometry. 

Proposition 1. Every circle C' passing through the points P and 
P' is orthogonal to the circle C. 

Indeed, drawing a ray OP' and a radius OA to the point of inter­
section of the circles C and C' (Fig. 6.8), we get 

OP .op = (OA)2 = R 2 

by virtue of the symmetry of the points P and P' with respect to 
the circle C. But this, by a familiar theorem of elementary geomet-
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ry,* implies that OA is a tangent to the circle C' drawn from point 0, 
whence it follows that C' ..L C. 

Proposition 2. Two mutually intersecting circles C' and C" ortho­
gonal to one and the same circle C intersect at the points P and P', 
which are symmetric with respect to the circle C. 

c 

Fig. 6.8 

Through the point P of intersection of the circles C' and C", 
which lies inside C, draw a ray OP. Suppose that OP intersects C' 

c" 

Fig. 6.9 

and C" at different points, P* and P**, respectively (Fig. 6.9). 
Since the circles C' and C" are orthogonal to C, by the above-men­
tioned theorem of elementary geometry we have the relations 

OP.OP* -= R1 (6-39) 

OP·OP** == R1 (6-40) 
• The product of segments of a secant drawn from an exterior point of a 

circle is equal to the square of the segment of the tangent drawn from the same 
point. 
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But since the points P* and P** lie on one ray, the equalities (6-39) 
and (6-40) are only possible when the points P* and P** coincide, 
P* = P** = P'; this proves the proposition. 

Let us now prove the theorem. Let the points P and P' be symmet­
ric with respect to the circle C. Through these points draw two auxi­
liary circles C' and C". By Proposition 1, the circles C' and C" 
are orthogonal to C. In a conformal mapping accomplished by some 
linear-fractional function, the circles C, C' and C" will be trans­
formed respectively into the circles K, K' and K" and the circles 
K' and K" will be orthogonal to K. The points P and P' of inter­
section of the circles C' and C" will be transformed into the points Q 
and Q' of intersection of their images-the circles K' and K". But by 
Proposition 2, the points Q and Q' must be symmetric with respect 
to K, which proves the theorem. 

It is obvious that the theorem holds true in the case of circles of 
infinite radius (straight lines) as well. 

This theorem finds numerous applications in the solution of con­
crete problems of conformal mapping, and in the future we will 
repeatedly resort to it. Here, we confine ourselves to two examples. 

Example 2. Find a function that will map conformally the unit 
circle I z I < 1 onto itself so that a given interior point z0 is trans­
formed into the centre of the circle. 

The problem can obviously be solved by using a linear-fractional 
function. Then the point z0 and the point z1 , symmetric to it with 
respect to the circle I z I = 1, will be transformed into points sym­
metric with respect to the circle I w I = 1. But since a point sym­
metric to the centre of a circle is the point at infinity and the point 
z0 must be transformed into the point w = 0, it follows that the 
point z1 will have to transform into the point w = oo. Hence, the 
desired linear-fractional function has the form 

1 Since z1 =-=-, then (6-41) can be rewritten as 
zo 

- Z-Jo r.o = Azo --=--__::._ 
:~:Jo-t 

(6-41) 

(6-42) 

So that in the mapping (6-42) the circle I z I = 1 is also transformed 
into the circle I w I = 1 of unit radius, the following condition must 
hold: 
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This implies A.z6 = eicz, where a is an arbitrary real number, and 
the solution of our problem is obtained in the form 

w = eim ~-So (6-43) 
=o-1 

Note that we have obtained a solution defined to within one arbit­
rary parameter a, which obviously determines the rotation of the 
circle I w I = 1 about the centre. Specification of the value of the 
argument of the derivative of the function w at the point z = z0 
completely defines the function w. 

Example 3. Find a function that maps conformally an eccentric 
annulus onto a concentric annulus. 

Let it be required to construct a conformal mapping of a domain 
bounded by two circles with noncoinciding centres (Fig. 6.10) onto 

g 

.r 

Fig. 6.10 

some concentric annulus. Since we are dealing with doubly connect­
ed domains, Riemann's theorem on the existence of a conformal 
mapping does not hold here and, as we will see, one cannot arbit­
rarily specify a ratio of the radii of circles of a concentric annulus, 
onto which it is required to map conformally a given eccentric 
annulus. For future convenience, let us suppose that the centre of 
the larger circle C lies at the point z = 0, its radius is R, and the 
centre of the smaller circle C', of radius r, lies at the point z = a 
on the real axis. We find the points P 1 and P 2 , which are simulta­
neously symmetric with respect to both circles C and C'. These 
points clearly lie on the real axis (Fig. 6.10). Then their abscissas 
x1 and x1 must satisfy the relations 

(x1 - a) (z1 - a) = rl 
Xl•Xs = Rl 

(6-44) 

(6-45) 
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From (6-44) and (6-45) it follows that x1 and x2 are roots of the quad­
ratic equation 

(6-46) 

The discriminant of this equation (R1 - .,-2 + a1) 1 - 4a2R2 is 
positive since the obvious relation R - r >a holds. We construct 
the linear-fractional function 

(6-47) 

where x1 and x2 are the abscissas of the points P 1 and P 2 found from 
equation (6-46). The function (6-47) will map the circles C and C' 
onto some circles K and K' of the w-plane and it will map the point 
P 2 , which is exterior to the circles C and C', into the point w = oo. 
The point P 1 , which is symmetric to the point P 2 with respect 
to the circles C and C', must be transformed into a point that is 
symmetric to the point w = oo with respect to the circles K and K'. 
But a point that is symmetric to the point at infinity is the centre 
of the circle. Hence, in the mapping (6-47) the point P 1 will be 
transformed into the common centre of the circles K and K'. The 
desired mapping has been constructed. Note that in the expression 
(6-47) the definition of the parameter A. was arbitrary; however, any 
variation in the parameter only results in a similarity stretching of 
the w-plane, but this cannot change the ratio of the radii of the 
circles of the concentric annulus thus obtained. 

To conclude this section, let us examine the problem of applying 
a linear-fractional function in the construction of conformal map­
pings of Junes. A lune (two-sided polygon) is a plane figure formed 
by the intersection of the arcs of two circles of different radii, generally 
speaking (Fig. 6.11). It is clear that the angles at the vertices of the 
lune are equal. Let there be given a lune with vertices at the points 
A (z1) and B (z2) and angle a at the vertex, and let it be required 
to construct a conformal mapping of the interior domain of the 
given lune onto the upper half-plane Im w > 0. Consider the auxi­
liary function 

a;=£+ iT]) (6-48) 

The linear-fractional function (6-48) maps the extended z-plane 
conformally onto the extended ~-plane; the point z = z1 is trans­
formed to the point ~ = 0, and the point z = z2 into the point 
~ = oo. By virtue of the circular property of a linear-fractional 
function, the circles forming the lune in the mapping (6-48) are 
also transformed into circles. But the circle passing through the 
points ~ = 0 and ~ = oo has an infinitely large radius. This means 
that in the mapping (6-48) the sides of the lune will be transformed 

12-3878 
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into rays (/ and I I) emanating from the point ~ = 0, and the angle 
between these rays will be equal to the angle a at the vertex of the 
lune (Fig. 6.12). Thus, the function (6-48) performs a conformal 
mapping of the given lune in the z-plane onto a sector with central 

Fig. 6.11 Fig. 6.12 

angle a in the ~-plane, and the ray I forms with the positive ~-axis 
an angle a 0 whose value is determined by the position of the verti­
ces A and B of the lune. As we have seen (Chapter 6, page 160), 
the function 

(6-49) 

which is a direct analytic continuation of the real function 
" x a, x > 0, maps the domain inside the sector au< arg ~ < cx0 +a 

conformally onto the half-plane ao n<argw<~n+n. It now 
a. a. 

remains to transform the half-plane thus obtained to the half-plane 
Im w > 0. To do this, it is sufficient to rotate the entire plane as 

a whole through the angle - ao n. This may he done by multip-
a. 

-i~n 
lying the function (6-49) by the complex number e ~ . Finally, 
then, the desired function that will map conformally the lune AB 
onto the upper hall-plane Im w > 0 takes the form 

(6-50) 

Note that the eonformality of mapping is violated at the points z1 

and z2 • 
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Example 4. Construct a conformal mapping of the upper half of 
the circle I z I < 1, Im z > 0, onto the upper half-plane Im w > 0. 

Clearly, the given domain is a lune with vertices at the points 

z1 = -1 and z11 = 1, and angle a = ~ at the vertex. The auxiliary 

function 
~= 1+.z 

1-.z 
(6-51) 

maps this lune conformally onto the first quadrant of the ~-plane 
and the function 

w=( 1+.z)2 
1-.z 

yields the desired mapping. 

6.3. Zhukovsky's Function 

The function of the complex variable 

w = f (z) = ; { z + ! ) 

(6-52) 

(6-53) 

is called Zhukovsky's function. It was widely used by N. E. Zhu­
kovsky in the solution of numerous problems in hydro- and aero­
dynamics. 

The function (6-53) is clearly analytic in the entire complex plane, 
except at the point z = 0, which is a first-order pole of the given 
function. Computing the derivative of the function (6-53), we get 

f' (z) = ~ ( 1- : 2 ) (6-54) 

Whence it follows that the derivative of the Zhukovsky function is 
nonzero at all points of the z-plane except at the points ±1. Thus, 
a mapping by this function is conformal everywhere except at these 
two points. Let us find the domains of univalence of the Zhukovsky 
function. Suppose that two distinct points of the complex plane 
z1 + z11 are transformed by the function f (z) into one and the same 
point of the w-plane, i.e., 

1 1 z1 +-=z2 +-
'• '• 

or 

Since z1 =F z2 , from the relation (6-55) it follows that 

z1 ·z2 = 1 

(6-55) 

(6-56} 
12• 
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The relation obtained implies that the domains of univalence of 
Zhukovsky's function are, in particular, the domains inside ( 1 z 1<1) 
and outside (I z I > 1) of the unit circle. Both of these domains are 
mapped conformally by the function (6-53) onto one and the same 
domain of the w-plane. To determine this domain, consider the 
mapping of the circles I z I = r0 by the function (6-53). To do this, 
we take the exponential form of complex numbers: z = rei~~> and 
find the expression for the real and imaginary parts of the func­
tion (6-53): 

u (r, q>) = ! ( r+ ~ ) cos q>, v (r, q>) = i ( r-+) sin q> (6-57) 

'Putting r = r0 and eliminating the parameter q>, we obtain 
uz vz 

.!.(ro+-1 )2 + .!.(ro--1 )2 =1 (6-58) 
4 · ro 4 ro 

From the relation (6-58) it follows that the function (6-53) maps the 
concentric circles I z I = r0 conformally onto ellipses. It will readily 
be seen that the foci of all the ellipses (6-58) lie at the same points 
of the real u-axis: 

c = ±1 (6-59) 

Thus, the function (6-53) maps the family of concentric circles 
I z I = r0 of the z-plane onto the family of confocal ellipses of the 
w-plane. Here, if r1 < 1, then the positive direction of traversal 
around the circle I z I = r1 is associated with a negative direction 
of traversal about the ellipse (6-5.'-1); if r 2 =..!... > 1, then with the 

Tt 
positive direction about the circle I z I = r 2 we associate a positive 
direction of traversal about the Pllipse (6-58). As r1 --+ 1 the el­
lipse (6-58) degenerates into the segment [-1, 1] of the real u-axis 
traversed twice. As r1 --+ 0, the ellipse (6-58) is transformed into 
a circle of infinitely large radius. Thus, the function (6-58) maps the 
domain inside the unit circle I z I < 1 in the z-plane conformally onto 
thew-plane cut along the segment [-1, 1] of the real axis. The boun­
dary of the domain-the circle I z I = 1-is mapped onto this 
segment, the upper semicircle being mapped onto the lower lip, 
and the lower one onto the upper lip of the cut. Analogously, the 
domain I z I> 1 outside the unit circle in the z-plane is mapped 
onto the second sheet of the w-plane cut along the segment [-1, 1] 
of the real axis, the upper semicircle I z I = 1, Im z > 0 being 
mapped onto the upper lip, and the lower semicircle I z I = 1, 
Im z < 0, onto the lower lip of the cut. Thus, Zhukovsky's function 
(6-53) maps the extended z-plane conformally onto the Riemann 
surface of the inverse function 

z=q>(w)=w+ Vw-1 (6-60) 
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The Riemann surface of the function (6-60) is a two-sheeted surface 
made up of two sheets of the w-plane cut along the segment [-1, 1) 
of the real axis. The lower lip of the cut of one sheet is joined to 
the upper lip of the cut of the other sheet and conversely. The func­
tion (6-60) is a single-valued analytic function on its Riemann 
surface with two branch points w = ±1, upon going around each 
of which we move from one sheet of this Riemann surface to the 
other sheet. Note that in a simultaneous traversal of both branch 
points w = ±1 around a closed curve that does not intersect the 
segment [-1, 1), we are all the time on one and the same sheet. 

Thus, the functions (6-53) and (6-60) establish a one-to-one cor­
respondence between the extended z-plane and the given Riemann 
surface. The mapping defined by these functions is conformal every­
where except at the points z = ±1, at which the derivative of the 
function (6-53) is zero. Note that these points are associated with 
w = ±1, the branch points of the function (6-60), which is the 
inverse of the function (6-53). 

In conclusion, let us find the image of the rays arg z = q>0 in the 
mapping defined by the Zhukovsky function. To do this, eliminate 
from the relations (6-57) the parameter r and put q> = q>0• Then 

u2 v2 
-----=1 cos2 <po sin 2 <po 

(6-61) 

The relation (6-61) implies that in the mapping (6-53}, segments 
of the rays arg z = q>0 are transformed into branches of the hyper­
bola (6-61). Observe that for any value of q>0 the foci of this hyper­
bola lie in the points ± 1. Thus the Zhukovsky function defines 
a transformation of the orthogonal system of polar coordinates in 
the z-plane into an orthogonal curvilinear system of coordinates, 
whose coordinate lines are the confocal families of ellipses (6-58) 
and hyperbolas (6-61). 

It has already been pointed out that Zhukovsky's function finds 
extensive application in the solution of many concrete problems 
of conformal mapping, particularly those associated with the inves­
tigation of hydrodynamic problems. We will deal with these prob­
lems somewhat later; for the present we will consider one more 
function that finds numerous applications. 

6.4. Schwartz-Christoffel Integral. 
Transformation of Polygons 

In the complex w-plane let there be given an n-gon with vertices 
at the points A1 , A 2 , ••• , An and with interior angles at these 

n 
vertices c.t1n, c.t21t, ••• , ann, respectively. (Obviously, ~ a 1= 

i=1 == n - 2, n > 2.) Let it be required to construct a conformal map-
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ping of the upper half of the z-plane onto the interior of such a poly­
gon. This problem is solved by means of the so-called Schwartz­
Christoffel integral, some properties of which will be studied in 
this section. 

Consider a function of the complex variable z defined in the upper 
half of the z-plane with the aid of the expression 

z 

W=/(z)=C) (~-at)''a-t ... (~-aS:tn- 1 d~+C1 (6-62) 
zo 

Here, 0 , C, C1 are given complex constants; a1, ••• , an are real 
numbers arranged in increasing order; a 1, .•• , an are positive 
constants that satisfy the conditions 

n 

~ ai =n-2 
i=i 

0 < a 1 < 2 

(6-63) 

(6-64) 

In the integrand we chose those branches of the functions (~ - a1}"'i- 1 

which are a direct analytic continuation into the upper half-plane 
of the real functions (x- a 1}a,-t of the real variable x > a1• In 
that case, the function (6-62) is a single-valued analytic function 
in the upper half-plane Im z > 0. The points a1 lying on the real 
axis are singularities of this function. The function (6-62) is the 
Schwartz-Christoffel integral. For an appropriate choice of points a1, 

the function (6-62) defines a conformal mapping of the upper half­
plane Im z > 0 onto the domain inside some n-gon in the w-plane. 
To start with, we consider that all the numbers a1 are bounded. 
We will show that the function (6-62) then remains bounded every­
where for Im z ;;;:.: 0. By virtue of the condition (6-64), the integral 
(6-62) remains bounded in the neighbourhood of the singularities a1• 

We will satisfy ourselves that the integral (6-62) remains bounded 
when z-+ oo as well. Transform the integrand function by taking 
advantage of the condition (6-63): 

From this expression it follows that the integral is co11 ,·erg-ent as 
z-+ oo. Thus, the integral (6-62), which is a single-valued analytic 
function of z in the upper half-plane Im z > 0, defines a mapping 
of this half-plane onto some bounded domain @ of the w-plane. 
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Let us now see into what kind of curve the real axis of the z-plane 
goes. Consider the expression of the derivative of the function (6-62): 

I , ( c ( )O:t- 1 ( )Gt - 1 z)= z-al ... z-an n '(6-66) 

From this expression it follows that the derivative of the function 
f (z) is nonzero everywhere in the upper half-plane lm z ;;;;::= 0, with 
the exception of the singularities a1 at which it vanishes or becomes 
infinite. As z varies on every one of the intervals a., < x < ak+1 

{a) 

Fig. 6.13 

(k = 1, ... , n- 1) of the real axis, the argument of the deriva­
tive does not change. Indeed, by virtue of the above-indicated choice 
of branches of the functions (z - a 1)a,- 1 the argument of these 
functions, on the given intervals of the real axis, takes the values 

a.- 1 { :rt(a,-1), x<a1 
arg (x- a1) • = 0 (6-67) 

x>a1 

which proves the proposition. In view of the geometric meaning 
of the argument of the derivative,* this means that the segments 
a., < x < ak+1 of the real axis are also mapped by the function 
f (z) onto rectilinear segments of the w-plane. Points a., of the real 
axis are transformed by the function (6-62) into points A., of the 
w-plane-the ends of the corresponding straight-line segments A .,A k+l 
into which the function (6-62) maps segments [a.,, ak+1] of the real 
axis. Thus, the function (6-62) is continuous and single-valued on the 
real axis and maps the real axis of the z-plane onto some closed polygo­
nal line A 1A 2 ••• An, the elements of which are the straight-line 
segments A.,A.,+l (Fig. 6.13). When the point z traverses the entire 
real axis in the positive direction, the point w corresponding to it 

* The argument of the derivative of the function I (.z) at the point .z0 deter­
mines the size of the angle through which the tangent to a smooth curve y passing 
through .z0 has to be rotated in order to obtain the tangent to the image of this 
curve at the point w0 = I (.zo). 



184 Ch. 6. Conformal Mapping 

makes a complete circuit of the closed polygonal line A 1A 2 ••• An. 
Note that, generally speaking, the polygonal line A 1A 2 ••• An 
can have points of self-intersection (Fig. 6.13b). 

Now let us determine the size of the angles between adjacent 
:segments of the polygonal line obtained. To do this, consider the 
variation of the argument of the derivative (6-66) as z passes through 
the point a1• From (6-67) it follows that as the point z moves along 
the real axis in the positive direction, during which the singular 
point ai is taken round an arc of infinitesimal radius in the upper 
half-plane, the argument of the derivative changes its value by 
-n (a1 - 1). By the geometric meaning of the argument of the 
derivative, this means that the angle between the directions of the 

(b) rxt>l 

Fig. 6.14 
_____.,. ____,. 

vectors* A 1 _1A 1 and A 1At+l is equal to -n (a1 - 1). For a1 < 1, 
-----;. 

the transition from the direction of the vector A 1 _1A 1 to the direc-
____,. 

tion of the vector A 1A Hl occurs in the positive sense (Fig. 6.14a) 
and for a1 > 1 in the negative sense (Fig. 6.14b). As is easy to 
see, in both cases the size of the angle in the transition in the positive 

____,. 
direction from the direction of the vector A 1A Hl to the direction 

____,. 
of the vector A 1A 1 _1 is na1 (Fig. 6.14). If a closed polygonal line 
A 1A 1 ••• An does not have self-intersections, it bounds some n-gon. 
If, besides, the motion of a point z in the positive direction of the 
real axis is associated with a traversal of the polygonal line A 1A 2 ••• 

. . . An in the positive direction, then the interior angle of the given 
n-gon at the vertex A 1, into which the point a1 of the real axis of 
the z-plane is mapped, is equal to na1• By the condition (6-63), the 
sum of all the interior angles of the given n-gon will then be equal 
to (n - 2) n, as it should be. 

On the basis of the principle of correspondence of boundaries 
(Theorem 6.4), it may be asserted that if the polygonal line A 1A 2 ••• 

. . . An, onto which the function (6-62) maps the real axis of the 

* Here, by the angle between the directions of intersectin~ straight lines 
b1, b2 is meant the size of the angle of the shortest rotation bringing the straight 
line b1 to coincidence with the straight line b2• 
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z-plane, does not have points of self-intersection and the direction 
of traversal is preserved, then the function (6-62) maps the upper 
half-plane Im z > 0 conformally onto the interior of the n-gon 
bounded by the polygonal line A1A 2 ••• An. 

A thorough investigation shows that if an arbitrary n-gon is given 
in thew-plane (the position of its vertices A1 , A 2, ••• , An and the 
angles at these vertices are known), then it is always possible to 
specify the values of the constants c' cl and the points al, ... ' an 
of the real axis so that a properly constructed function (6-62) maps 
the upper half-plane Im z > 0 conformally onto the interior of the 
given n-gon. We will not go into the proof of this proposition* and 
will confine ourselves to a number of remarks and examples. 

Note 1. The formula (6-62) involves a number of constants. 
However, when constructing a conformal mapping of the upper 
half-plane Im z > 0 onto a given polygon A1 •.• An of thew-plane, 
it is only possible to specify three points ah ai, ak of the real x-axis 
that go into any three chosen v(lrtices of the polygon Ai, Ab Ak. 
The remaining constants in (6-62) are defined uniquely. Indeed, (6-62) 

z 

defines f (z) connected with the function f (z) = J ( s - aS~t-1 ••• 
Zo 

... (s- an}'11n-1 ds by a linear transformation that is a trans­
formation of a similarity stretching, of a rotation and of a pa­
rallel translation. Hence, if the function f (z) maps the upper 
half-plane Im z > 0 onto a given polygon of the w-plane, then the 
function f (z) maps this half-plane onto a polygon that is similar 
to the given one. For the given values of a 1, in order that ann-segment 
closed polygonal line into which the real axis is mapped by the 
function f (z) be a polygon similar to the given one, it is sufficient 
that n - 2 segments of this polygonal line be proportional to the 
corresponding sides of the polygon. (The two extreme segments are 
fully defined by specifying their directions.) We thus have n - 3 
equations in n constants a1• If three of these constants are arbitrarily 
specified, the remaining corresponding equations are defined uniquely. 
This is a corollary to the Riemann theorem on the unique definition 
of a function that carries out a conformal mapping of singly connect­
ed domains when a correspondence is specified of three points of 
the boundary of one domain to three points of the boundary of the 
other domain. Also note that the position of the given polygon 
(the lengths of the sides and the size of the angles at the vertices 
are given) in the plane is uniquely defined by the position of three 
vertices. 

Note 2. We assumed that all the numbers ai in formula (6-62) 
are positive. Then the integral (6-62) converges for all values of 

• See, for example, (13]. 
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Im z ~ 0. If some number ak is negative, then as z-+ ak the integ­
ral (6-62) diverges. This means that the corresponding vertex A k 

of the polygon A1 ••• An lies at the point at infinity w = oo. 
We then take the size of the angle at the vertex Ak to be equal to the 
size of the angle (with the minus sign) between the prolongation 
of the segments AkAk-1 and AkAk+1 at the finite point of their 
intersection. It is readily seen that for such a definition, the angle 
at the vertex Ak is equal to akn (ak < 0) and by virtue of the condi­
tion (6-63) the sum of the interior angles of the resulting n-gon 
with vertex Ak at the point at infinity remains equal to (n- 2) n. 
This remark holds true also for the case when several numbers ak 
are negative. 

Note 3. When we investigated formula (6-62) we assumed that 
all the points a1 are finite. It is easy to get rid of this condition. 
Introduce a new complex variable t connected with z by the relation 

(6-68) 

Then the point z = an will pass into the point t = oo. This trans­
formation means that in a mapping of the upper half-plane Im t > 0 
onto the interior of the polygon A1A 2 ••• An of the w-plane, the 
point at infinity t = oo is mapped into the vertex An. In the com­
plex t-plane, the function (6-62) has the form 

I 

W=C J (an-a1-!}a1-1 ··• (an-an-1- !)an-1-1 
to 

t 

X (-! fn- 1 ~! +C1 =A J (-c-a~t1- 1 ••. (-c-a~-ttn-1- 1 d-c+C1 
to 

(6-69) 
Here use is made of the relation (6-63) and the following notation 

has been introduced: · 

A C ( )at-1 ( )an_1-1 ( 1)an-1 = an -a1 ... an -an-i -

The relation (6-69) means that when in a conformal mapping of the 
upper half-plane onto the interior of the polygon A 1A 2 ••• An the 
point at infinity t = oo passes into one of the vertices (An), this 
mapping is effected by the Schwartz-Christoffel integral (6-69), 
in the integrand function of which the factor corresponding to the 
given vertex (An) has been omitted. This circumstance is frequently 
made use of since, as we noted above (Note 1), when solving problems 
on the construction of a conformal mapping of the upper half-plane 
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Im z > 0 onto a given polygon of the w-plane, one has to determine 
a large number of unknowns in the case of a large number of vertices 
of the polygon. 

We consider a few of the simplest examples. 
Example 1. Find a function that conformally maps the upper half­

plane Im z > 0 onto the sector 0 < arg w < an, 0 < a < 2. 
Since the given sector is a polygon with vertices A 1 (w = 0) and 

A 2 (w = oo), the Schwartz-Christoffel integral may be employed 
to solve the problem. We establish the following correspondence of 
points of the real z-axis to the vertices of the given polygon: 

a1 (z = 0) -. A1 (w = 0) 
a 2 (z = oo) -.A 2 (w = oo) 

(6-70) 

Then by (6-69) the mapping function takes the form 

z 

w=f(z)=C J ~-t d~+C1 
zo 

Putting z0 = 0 and using (6-70), we find that the constant C1 is zero. 
Whence 

z 

w=C J ~a-l d~= ; za (6-71) 
0 

The function (6-71) is defined to within the constant factor defining 
the similarity transformation. This arbitrariness is due to the fact 
that the conditions (6-70) contain the demand that only two boundary 
points correspond, but, as we have seen (see the note on page 168), 
the function which effects a conformal mapping is defined uniquely 
by specification of a correspondence of three boundary points. Now 
requiring, for example, that in addition to (6-70) there occurs a sup­
plementary correspondence of boundary points 

z=1-.w=1 

we determine the value of the arbitrary constant C =a that remains 
in (6-71). · 

And so, finally, the function 
w = za. (6-72) 

defines a conformal mapping of the upper half-plane Im z > 0 onto 
the given sector of the w-plane. And by virtue of the earlier indicated 
choice of branches in the integrand function of the Schwartz-Christof­
fel integral (6-62), that branch of the multiple-valued function (6-72) 
must be taken which is a direct analytic continuation of the real 
function xa of the real positive variable x. 



188 Ch. 6. Conformal Mapptng 

Example 2. Find a function which conformally maps the upper half­
plane Im z >0 onto the rectangle AIA 2A 3A, (Fig. 6.15). 

Let the vertices of the rectangle in the w-plane be located at the 
points AI (w = a), A 2 (w = a+ ib), A 3 (w = -a + ib}, A, (w = 
= -a). Let us suppose that with the aid of some function /I (z) we 
have executed a conformal mapping of the first quadrant of the z­
plane (Re z >0, Im z >0) onto the right half OAIAP' of the 

v 

fiJ=-a+ i6 o' 'W=a+ih 
A~ A2 

aJ a-, a, a2 

~,m W=-a liJ=G 
I I z=-x Z=-1 Z=0 Z•1 Z= 7[ A4 0 A, u 

Fig. 6.15 

rectangle (Fig. 6.15), in which mapping the right part of the imagi­
nary axis of the z-plane goes into the segment 00'. Then on the basis 
of the symmetry principle (see page 164) the function which is the 
analytic continuation of II (z) into the domain (Re z < 0, Im z > 0) 
maps conformally the given domain onto the left part of the original 
rectangle. Here, the symmetric points of the real z-axis go into the 
vertices AI and A,. The same occurs relative to the vertices A 2 and A 3 • 

Therefore, we can establish the following correspondence of points: 
ai (z = 1) ~AI (w = a) 

a, (z = -1) ~A, (w =-a) (6-73) 

Besides, it is obvious that there must also be the correspondence 

s = 0 ~ w = 0 (6-74) 
The relations (6-73) and (6-74) establish a correspondence of three 
boundary points. It is therefore impossible to specify arbitrarily 
on the real z-axis the point a2 that goes into the vertex A 2 of the 
rectangle. Let us suppose that the point a2 of the real z-axis with 

coordinate ! (the value of which will be defined later on) goes into 

the vertex A 2 • Clearly, 0 < k < 1. 
Thus, the function which defines, a conformal mapping of the 

upper half-plane onto a given rectangle may be represented in the 
form 

1 1 
z 1 --1 --1 t r --1 ( 1) 2 ( •) 2 --1 w=f(z)=C' J (~-1)2 ~-k ~+k (~+1)2 d~ 

•o 
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Putting z0 = 0 and using the relation (6-74), we get C1 = 0. Then 

(6-76) 

It remains to determine the constants C and k from the correspon­
dence of the points a1 and a2 of the real z-axis to the vertices A1 and A2• 

Note that the integral (6-76) is not expressible in terms of elemen­
tary functions. This is a so-called elliptic integral of the first kind, 
which is ordinarily denoted as 

z 

F(z k)- f ~ 
• - J v<t-~2)(1-k~~~l 

0 

(6-77) 

The conditions (6-73) yield 

(6-78) 

The integral on the right is the so-called complete elliptic integral 
of the first kind 

1 

K (k)- r d~ 
- J V<t-~2)(f-k2~2) 

0 

(6-79) 

and is a well-studied tabulated function. The correspondence of 

points a2 (z=i-) ~A2 (w=a+ib) permits us to write 

1 

a+ ib-c { r d~ + r ~ } 
- ~ V'<t-~2)(t-k2~2) ~ "V<t-~2)(t-k2~2) 

(6-80) 

whence, taking into account (6-78), we get 
1 

T 

b=CJ V(~2-t~~t-ks~z) cff(~,k) 
1 

(6-81) 

where the integral in (6-81) is denoted by F ( ! , k) • From (6-78) 

and (6-81), given specified values of a and b, we can solve the 
transcendental equation 

aF ( ~ , k) = bK (k) (6-82} 
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and determine the values of the constants k and C. Thus, the func­
tion (6-76) which maps the upper half-plane Im z > 0 conformally 
onto the given rectangle of the w-plane is completely defined. On 
the other hand, if the quantities k and C are given in formula (6-76), 
then this function defines a conformal mapping of the upper half­
plane Im z > 0 onto the rectangle of the w-plane, the ratio of the 

sides of which ( 2; ) is defined by formula (6-82), and the absolute 
value of the sides by the constant C. By varying the values of these 
constants at will, it is possible to obtain a conformal mapping of the 
upper half-plane Im z > 0 onto any rectangle of the w-plane. 



CHAPTER 7 

ANALYTIC FUNCTIONS 

IN THE SOLUTION 

OF BOUNDARY-VALUE PROBLEMS 

The methods of the theory of functions of a complex variable are 
extensively and effectively employed in the solution of a great variety 
of mathematical problems that arise in diverse fields of science. 
For example, the use of analytic functions in many cases yields suf­
ficiently simple methods of solving boundary-value problems for 
the Laplace equation, to which various problems of hydro- and 
aerodynamics, the theory of elasticity, electrostatics and so forth 
reduce. This is due to the close connection between analytic func­
tions of a complex vnrinble and the harmonic functions of two real 
variables. In this clw pIt> r we will examine certain general problems 
of the employment of nnalytic functions in the solution of boundary­
value problems for the Laplace equation and will give a number of 
examples of the solution of problems in physics and mechanics. 

7. t. Generalities 

a. The relationship of analytic 
and harmonic functions 

In a domain @I of the complex z-plane, let there be given an ana­
lytic function f (z) = u (x, y) + iv (x, y). Then throughout this 
domain the functions u and v are connected by the Cauchy-Riemann 
conditions: 

(7-1) 

Since an analytic function in the domain @J has derivatives of all 
orders, the real functions u (x, y) and v (x, y) have partial deriva­
tives of any order in the appropriate domain of the x, y-plane. This 
permits differentiation of the expressions (7-1) any number of times 
with respect to the variables x, y. Differentiating the first equality 
of (7-1) with respect to x and the second with respect to y and adding, 
we get 

(7-2) 
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Similarly, differentiating the first of the equalities in (7-1) with re­
spect to y and the second with respect to x and subtracting one from 
the other, we have 

iJ2v iJ2v -0 
iJx2 + iJy2 - ' x, y E @5 (7-3) 

whence it follows that the functions u (x, y) and v (x, y) are har­
monic in the given domain of the x, y-plane. And so the real and 
imaginary parts of the function f (z) analytic in the domain @5 are 
harmonic functions in the corresponding domain of the x, y-plane. 
Also, the given harmonic functions are connected by the conditions 
(7-1). Conversely, if in the domain @J of the x, y-plane there are 
given two harmonic functions u (x, y) and v (x, y) that satisfy in 
this domain the conditions (7-1), then thA function f (z) = u (x, y) + 
+ iv (x, y) of the complex variable z = x + iy is analytic in the 
appropriate domain of the z-plane. Thus, a necessary and sufficient 
condition for the analyticity of the function f (z) = u (x, y) + iv (x, y) 
in a domain @5 is the requirement that the functions u (x, y) and v (x, y) 
be harmonic and satisfy the conditions (7-1) in the appropriate domain 
of the x, y-plane. In Chapter 1 (see page 34) it was shown that when 
only the real (or only the imaginary) part of an analytic function of 
a complex variable is given, the function is defined to within an addi­
tive constant. Whence it follows that all analytic functions of a 
comp1ex variable for which a given harmonic function of two real 
variables is the real (or imaginary) part differ solely by an additive 
constant. 

This connection between analytic and harmonic functions permits 
utilizing the properties of analytic functions in the study of various 
properties ofharmonic functions. Thus, for example, from the for­
mula of the mean value of an analytic function (see Chapter 1, page 49) 
there follows in straightforward fashion the mean-value formula 
for a harmonic function 

u (x0 , Yo)= 2n1Ro J u (~, rJ) ds 
CRo 

(7-4) 

where the point x0 , y0 is the centre of the circle C80 of radius R 0 
lying wholly in the domain of harmonicity of the function u (x, y). 

b. Preservation of the Laplace operator 
in a conformal mapping 

Let there be given a harmonic function u (x, y) in a domain @I 
of the x, y-plane, i.e. 

(7-5) 
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With the aid of a nondegenerate transformation of independent va­
riables 

s=s(x y), f]=f)(X, Y) 

D (;, TJ) =I= 0 X y E@! 
D (x, y) ' ' 

(7-6) 

(7-7) 

map the domain @J of the x, y-plane onto the new domain @!' of 
the s. f)-plane. Note that specification of the two real functions (7-6) 
of two real variables x, y is equivalent to the specification in the 
domain @J of the complex z-plane of a single function~=/ (z)=s (x, 
y) + if) (x, y) of the complex variable z = x + iy. Here, the func­
tion f (z) maps the domain @J of the complex z-plane onto the domain 
@J' of the complex ~-plane. By the condition (7-7), the equations 
(7-6) are uniquely solvable for the old variables, and thus the func­
tion U (£, fJ) = u [x (s, fJ), y (£, f))l is defined in the domain @J' 
of the £, f)-plane. Let us find out under what conditions imposed on 
the transformation (7-6) the function U (s, fJ) will be a harmonic 
function of the variables£, fJ. Assuming that the functions (7-6) are 
twice continuously differentiable in the domain@!, we express second 
partial derivatives of the function u (x, y) with respect to the old 
variables in terms of the derivatives of the funGtion U (£, f)) with 
respect to the new variables: 
a2u _ a2u 2 a2u a2U 2 au au 
ax2- a1;2 (sx) +2 asa'l SxfJx+ a'l2 (fJx) +arsxx+aTj"fJxx 

iJ2u a2U 2 a2U a2U 2 dU aU 
iJy2 = a£2 (su) + 2 a1; a'l Sy f)y + a'l2 ( fJu) + ar Syu +aT! f)yy 

(7-8) 

Substituting these expressions into (7-5), we obtain tae following 
equation for the function ll (s, fJ): 
a2U I 2 a2U a2U 2 2 
a£2 (g + 6;) + 2 as aT) (SxfJx + SufJu) + ol'j2 (f)x + f)y} 

au au 
+ar(sxx+s,,) +81) (fJxx+fJ1111)=0 (7-9) 

For this to be Laplace's equation, the following relations must be 
fulfilled: 

and 

Sxx + Syy = 0, fJxx + f)yy = 0 
SxfJx + Syf)y = 0 

~+ s: = fJ:+ f): =I= 0 

(7-10) 
(7-11) 

(7-12) 

The relations (7-10) imply that the functions s (x, y) and fJ {x, y) 
must be harmonic in the domain @J. Rewrite (7-11) in the form 

.k=-~=J.L{x,y) (7-13) 
TJy TJx 
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where f.1. (x, y) is as yet some unknown function. Then the relation 
(7-12) yields 

~+~= .... 2 [~+ '1~1 = '1~+'1~=1= 0 

Whence f.1.2 (x, y) = 1 for x, y E @L Thus, . the unknown function 
f.1. (x, y) is defined: f.1. = ±1. For f.l. = 1, the relations (7-13) yield 

Sx = 'lu• Sy = -Ttx 

That is, the functions s and 11 which are harmonic in the domain @J 
must satisfy the Cauchy-Riemann conditions in this domain. This 
means that the function f (z) = 6 (x, y) + iTt (x, y) must be ana­
lytic in the domain @S of the complex z-plane. Note that from (7-7) 
and (7-12) it follows that the mapping of the domain @J onto @J' 
must be reciprocal one-to-one, and the derivative of the function 
I (z) must satisfy the condition/' (z) =1= 0 throughout the domain @J. 
This means that the mapping of the domain @J of the z-plane onto 
the domain @J' of the ~-plane, defined by the function f (z), must 
be conformal. 

For f.l. = -1, the relations (7-13) yield 

Sx = -Ttu• £u = 'lx 

As is easily seen, in this case the function /(z) = 6 (x, y) - i1] (x, y) 
must be analytic, and the mapping defined by the function f (z) = 
= 6 (x, y) + iTt (x, y) must be conformal of the second kind. 

We thus have the final answer to the question posed at the begin­
ning of this subsection. In a mapping of the domain @J of the z-plane 
onto the domain @J' of the ~-plane performed by the junction f (z) = 
= s (x, y) + iTt (x, y), Laplace's equation for the junction u (x, y) 
goes into Laplace's equation for the function U (6, Tt) = u [x' (6, 1]), 
y (6, 1])1 only if the given mapping is a conformal mapping of the first 
or second kind. Note that under these mappings the Laplace operator 

ll:xy goes into the operator I f' (z) P1 ll,'l = I cp' ~~) 12 ll''~' where z = 
= q> ( ~) is an inverse function defining the conformal mapping of 
the domain @J' onto the domain @J. Thus, even the simplest equation 
of elliptic type with constant coefficients flu + cu = 0, c = con­
stant =1= 0, will, generally speaking, in a conformal mapping go into 
an equation with the variable coefficient ll,'l u + c 1 cp' ( s) 12 u = 
= 0. 

c. Dirichlet's problem 

The results obtained in the preceding subsection permit employing 
the method of conformal transformations in the solution of boundary­
value problems for harmonic functions. Consider the basic idea of 
this method in an example of the solution of the Dirichlet problem. 
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It is required to find a function u (x, z) that satisfies the Laplace 
equation 

!J.u = 0 

in the domain @J, that is continuous in the closed domain @J = @J + r 
and that assumes specified values on the boundary r: 

u (P) lr = a (P) (7-14) 

where a (P) is a given continuous function of the point P on the 
contour r. As is known (see [17]), the solution of this problem by 
the method of separation of variables may be obtained only for 
a restricted class of domains @5 with a sufficiently simple boundary r. 

The method of conformal transformations yields a sufficiently uni­
versal algorithm for the solution of the Dirichlet problem for two­
dimensional domains. Let us begin with the solution of the Dirichlet 
problem for a circle of radius a. We introduce the polar system of 
coordinates r, q> with origin at the centre of the circle. Then the func­
tion a(P) will be a function only of the variable q>. Let us try to ex­
press the value of the unknown function u (r, q>) at an arbitrary inte­
rior point (r0 , q> 0) of the circle in terms of its boundary values a (q>). 
To do this, construct a conformal mapping of the given circle onto 
the unit circle I w I< 1 of the w-plane in which the point r 0 , q>0 

goes into the centre w = 0. The solution of this problem is readily 
obtained with the aid of the linear-fractional function considered 
in Chapter 6. The mapping fnnction is of the form 

icpQ 
W=/(z)=A z-s0 =As-roe 

az a2 . 
s -- s-- et«Po 

Zo . ro 

(7-15) 

where the constant A is selected from the condition that the boundary 
points z = aei'P of the given circle have gone into the boundary points 

I w I = 1 of the unit circle of the w-plane; here, I A I = ~, and 
ro 

arg A, which defines the rotation of the circle I w I ~ 1 about its 
centre w = 0, may be chosen at will. As a result of this transforma­
tion, the desired function u (r, q>) goes into the function U (p, '\j)) = 
= u [r (p, '\j)), q> (p, '\j))], where p, '\j) are polar coordinates in the w­
plane connected with the coordinates r, q> by the relation (7-15). 
The given boundary function a (q>) will go into the function A ('I') = 
= a [q> (1, '\j))J. Since the function U (p, 'I') is a harmonic function 
of its variables, its value at the centre of the circle may be found 
from the mean-value formula (7-4), whence 

2n 

u (ro, 'Po)= U lw=O = ~~ ) A ('I') '11 (7-16) 
0 

13* 
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From (7-16) we get an explicit expression of the solution of the Di­
richlet problem for the circle, if we express the function A ('ljl) in 
terms of the originally specified function a (q>). Note that for the 
correspondence of the boundary points of the circle I z I ~ a and 
the circle I w I ~ 1, the formula (7-15) yields 

(7-17) 

whence 

Therefore, if in the integral (7-16) we make a change of the variable 
of integration 'ljl = 'ljl (cp), where the relation of the variables 'ljl and 
cp is given by formula (7-17), we obtain 

(7-J8) 

Formula (7-18) then yields an explicit analytic expression for the 
solution of the Dirichlet problem for a circle of radius a in terms 
of the function of the boundary conditions a (cp). This formula, 
which is known as the Poisson integral, may be obtained in a num­
ber of other ways too, for example by the method of separation of 
variables or with the aid of a source function (see [17]). 

The results obtained allow us, in principle, to solve the Dirichlet 
problem for any domain @ which may be conformally mapped onto 
the unit circle I w I ~ 1 of the w-plane. Indeed, the Laplace equa­
tion is preserved in a conformal mapping, and the solution of the 
Dirichlet problem for the circle is obtained. Making a change of the 
variable of integration in the integral (7-18) or (7-16) and proceeding 
from the relation of the boundary points of the domain @ and the 
unit circle I w I = 1 for a given conformal mapping, we obtain 
the expression of the solution of the Dirichlet problem at interior 
points of the domain in terms of the boundary function (7-14). 

Example 1. The solution of the Dirichlet problem for a half-plane. 
Let it be required to determine the function u (x, y) bounded at 
infinity, harmonic in the upper half-plane y >0, continuous for 
y ~ 0 and assuming given values: 

u (x, 0) = a (x) for y = 0 (7-19) 

Map the upper half-plane Im z > 0 conformally onto the interior 
of the unit circle I w I< 1 so that the given point z0 = x0 + iy0 (Yo> 
> 0) goes into the centre w = 0 of the circle. It is easy to see that 
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the transformation is accomplished by the linear-fractional function 

w=f(z)= z-:o (7-20) 
Z-Zo 

Here, the boundary points are related by 

eill!= x-_:o (7 -21) 
x-z0 

and the boundary function a (x) goes into the function A ('I') = 
= a [x ('iJ)], where x ('i') is determined from the relation (7-21). 
Note that (7-21) yields 

d•" - 2Yo dx (7 22) .,- (x-xo)2+y~ -

The value of the desired function u (x, y) at the point x0 , Yo is deter­
mined by the integral (7-16). Making a change of the variable of 
integration in it by formulas (7-21) and (7-22), we get 

00 

u (xo, Yo)=+ J (7-23) 
-oo 

which yields the solution of the problem. Formula (7-23) which 
gives the solution of the Dirichlet problem for a half-plane is also 
called Poisson's integral. 

d. Constructing a source function 

The methods of conformal mapping permit constructing a source 
function of the first boundary-value problem for the Laplace equa­
tion in a two-dimensional domain @! which may be conformally 
mapped onto the unit circle I w I< 1 of the w-plane. The source 
function G (M0 , M) of the given problem is defined by the following 
conditions: 

(1) (7-24) 

(2) in the neighbourhood of the point M 0 

G(M0 , M)=-2
1 In - 1- +v(M0 , .M) 
n rMoM 

(7-25) 

where the function v (M0 , M) is a harmonic function of the point M 
throughout the domain @! 

(3) G (M0 , M)Mer = 0 (7-26) 

where r is the boundary of the domain @!. The following theorem 
holds. 
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Theorem 7.1. If a function w = f (z0 , z) defines a conformal 
mapping of a given domain @J of the z-plane onto the interior of the unit 
circle I w I < 1 so that point z0 E @J goes into the centre w = 0 of 
the circle, then the function 

1 t 
G (M0 , M) =2,1ln 1/(zo, z) I (7-27) 

is the source function of the first boundary-value problem for the Laplace 
equation in the domain @J. Here, the coordinates of the point M E @I 
are x, y and z = x + iy. 

Proof. To prove the theorem we see if the function defined by 
formula (7-27) satisfies the conditions (7-24) to (7-26). The function 
I (z, z0) that defines the given conformal mapping is an analytic 
function, and I (z, z0) =1= 0 for z =1= z0 • Whence it follows that the 
function 

In I (z, z0) = In I / (z, z0) I + i arg f (z, z0) 

is also analytic throughout the domain @1, with the exception of 
the point z0 • Since the real part of the analytic function is a harmonic 
function, the condition (7-24) is fulfilled. Since f' (z, z0)=!=0 through­
out the domain @I including the point z = z0 and I (z, z0) = 0, 
the point z0 is a first-order zero of the given function; that is, in the 
neighbourhood of this point we have the decomposition 

I (z, z0) = (z - z0) cp (z, z0) 

where cp (z, z0) is a function analytic in the neighbourhood of the 
point z0 , and cp (z, z0) =I= 0. Hence the condition (7-25) is fulfilled 
for the function (7-27). Finally, since II (z, z0) lr = 1, the func­
tion (7-27) satisfies the condition (7-26) as well. The proof is complete. 

The following is an application of this theorem. 
Example 2. Construct the source function of the first boundary­

value problem for the Laplace equation in the strip -oo < x < oo, 
0< y< n. 

According to the theorem that has just been proved, to solve the 
problem we have to construct a conformal mapping of the given 
strip of the z-plane onto the interior of the unit circle I w I < 1, in 
which mapping the given point z0 goes into the centre of the circle 
w = 0. Clearly, the function defining the required mapping is of 
the form 

Since we have the relation 

I ez- ezo I= {(ex cosy- e-zo cos y0) 2+ (ex sin y-ero sin y0)2} 112 

x+Xo 

(7-28) 

= e-2 - V2 {cosh (x-x0)- cos (y- y0)} 112 
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it follows that after elementary transformations we get the desired 
function in the form 

G (M M) 1 I 1 =-1-ln cosh (x-xo)-cos (Y+Yo) (7 29) 
O• =2n n l/(z0, z)l 4n cosh(x-xo)-cos(y-yo) -

7 .2. Applications to Problems 
in Mechanics and Physics 

a. Two-dimensional steady-state flow of a fluid 

We will consider the two-dimensional potential steady-state 
flow of an incompressible ideal fluid. It is known that in the case 
of potential motion in a domain free from sources, the velocity vector 
v (x, y) satisfies the equations (see [ 17]) 

curl v = 0 
div v · 0 

(7-30) 

(7-31) 

Since the motion is potential, there exists a scalar function u (x, y) 
called the velocity potential related to the velocity vector v by 

v = grad u (x, y) (7-32) 

that is, 
au au 

Vx =ax and vu =ay (7-33) 

Here, the velocity vector v at every point of flow is normal to the 
level line u (x, y) = constant of the velocity potential. Putting 
(7-32) into equation (7-31), we get 

a2u a2u O 
ax2 + ay2 = (7-34) 

The velocity potential is a harmonic function. 
Construct an analytic function of the complex variable f (z) = 

= u (x, y) + iv (x, y) for which the potential u (x, y) of the flow 
under consideration is the real part. As has been pointed out (see 
page 34), the function f (z) is then defined to within an additive 
constant. Earlier (see page 34) it was shown that the level lines 
u (x, y) = constant and v (x, y) = constant of the real and imagi­
nary parts of the analytic function are mutually orthogonal. There­
fore, the velocity vector v at every point of the flow is tangent to 
the level line v (x, y) = constant passing through the given point. 
The function v (x, y), which is the imaginary part of the thus con­
structed analytic function f (z), is called the stream function, and 
the function f (z) is the complex potential of the flow. 
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The region of flow bounded by two streamlines v (x, y) = C1 

and v (x, y) = C2 is called a stream tube. Since the velocity of the 
fluid at any point is tangent to the streamline the quantity of fluid 
flowing in unit time through any two cross sections sl and s2 of 
the stream tube remains constant due to the incompressibility of 
the fluid and the stationary character of motion. Thus, the diffe­
rence in the values of the constants cl and c2 defines the fluid output 
in a given stream tube. 

From the Cauchy-Riemann conditions and formulas (7-33) it fol­
lows that the components of the velocity may be expressed in terms 
of the partial derivatives of the stream function: 

ou ov au av 
Vx=a;-=ay• Vu=ay= -Tx (7-35) 

As was noted in Chapter 1, the complex number w = v x + iv u 
may be interpreted as a plane vector with components Vx and Vy· 

We have the obvious relation 

+ . ou + . ou au . ov f' ( ) W=Vx lVy=- l-=--t-= Z ax ay OX OX 
(7-36) 

which relates the velocity vector and the derivative of the complex 
potential of the flow. 

In hydrodynamics an essential role is played by the concepts of 
circulation and flux of the velocity vector. We express these quan­
tities in terms of the complex potential of flow. 

Consider a piecewise smooth plane curve C (closed or open) and 
introduce on it the vectors of the differentials of the arc ds and of 
the normal dn with the aid of the relations 

ds = i dx + i dy 
dn = i dy- j dx 

(7-37) 
(7-38) 

We have the obvious relation n ds = dn, where n is a unit normal 
to the curve C and ds is the differential of arc length of the curve. 

In a positive traversal of the closed curve C, formula (7-38) yields 
the direction of the exterior normal. 

The flux of the velocity vector v across the curve C (open or closed) 
is the line integral of the normal component of the velocity 

Nc = J (v n) ds (7-39) 
c 

This integral obviously defines the quantity of fluid flowing across 
the curve C in unit time. Write the integral (7-39) as 

N c = J v dn = J v x dy- vydx = J :~ dy- ~~ dx 
c c c 

= - x+- y I ovd oud 
ax OX (7-40) 

c 
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In determining the lifting force of the flow of a fluid acting on a 
body round which the fluid is streaming, an important role is played 
by the vorticity of the flow, which is characterized by the circulation. 
The circulation of the velocity vector along a curve C is the line 
integral of the tangential component of the velocity vector: 

r c = r v. ds ( 7-41) 
c 

Expressing the velocity v in terms of the complex potential, we ob­
tain 

r C = ~ V dS = r V X dx + V U dy = ) :~ dX + :; dy 
c c c 

= r ~dx-~dy J OX OX 
(7-42) 

c 

Let us consider in the complex plane the integral of the derivative 
of the complex potential along the curve C: 

r I' (z) dz = r !!!.__ dx- !:!.__ dy + i r !:!.__ dx + ~ dy 
j J ox ox J ox ox 
c c c 

(7-43) 

A comparison of (7-40), (7-42) and (7-43) leads to the formula 

J j' (z) dz =rc+ iNc 
c 

(7-44) 

This formula, which gives the expression of circulation and flux 
of the velocity vector in terms of the derivative of the complex po­
tential, finds numerous applications in hydrodynamics. Note that 
if the domain @J in which the motion is considered is a singly con­
nected one, then the integral (7-44) around any closed curve C 
lying entirely in @I is equal to zero by the Cauchy theorem. In the 
case of motion in a multiply connected domain @J, the integral 
around a closed curve C lying entirely in @I may be different from zero. 
This will occur inside the curve C when there is a domain @I' not 
belonging to @1, in which there are sources and vortex points of the 
flow. Clearly, the equations (7-30) and (7-31) are violated in this 
domain. In a particular case, the domain @I' may consist of separate 
points which are then isolated singularities of the analytic function 
f (z)-the complex potential of flow. 

Summarizing, any two-dimensional potential flow in a domain in 
which there are no sources or vortex points may be described with the 
aid of a complex potential that is an analytic function of a complex 
variable. Thus, the entire apparatus of the theory of analytic func­
tions may be used in the study of this class of flows. 
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Let us consider a number of examples of elementary flows de­
scribed by the elementary functions of a complex variable. 

(a) Let the complex potential of flow have the form 

I (z) = az (7-45) 

where a = a1 + ia2 is a specified complex number. Then 

u (x, y) = a1x - a2y, v (x, y) = a2x + a1y 

and the streamlines v (x, y) = C are straight lines, the slope of 

which to the x-axis is defined by the expression tan a = - a2 • 
at 

Formula (7 -36) yields 

W = Vx +iVy = f' (z) =a= al- ia2 (7-46) 

whence it follows that the rate of flow is constant and the direction 
of the velocity vector coincides with the straight lines v (x, y) = C. 
And so the function (7-45) defines a plane-parallel flow. 

(b) Let the complex potential of flow have the form 

I (z) = a In z (7-47) 

where a is a real number. In exponential notation, z = rei~, we get 
the expression of the potential and the flow function in polar coor­
dinates: 

u (r, cp) = a ln r, v (r, cp) = acp 

The streamlines are thus rays emanating from the origin, and the 
equipotential lines are circles centred at the origin. The absolute 
value of velocity is then 

lwl=lf'(z)i=M=M I z 1 r 
(7-48) 

and the velocity vector is directed along the ray cp = constant. 
From (7-48) it follows that at the origin the velocity becomes infi­
nite. The point z = 0, a singularity of the function I (z), is in this 
case the source of flow (positive source for a > 0, when the velocity 
is directed from the origin, and negative source, or sink, for a< 0, 
when the velocity is directed to the coordinate origin). Taking an 
arbitrary closed contour C containing the point z = 0, we get, by 
formula (7-44), 

~ f' (z) dz = ~ f dz =i2na = fc+ iNc 
c c 

Whence N c = 2na. Thus, in the case at hand, the flow of fluid 
across any closed contour containing the source is constant and equal 
to 2na. This quantity is called the strength of the source. 
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(c) Let the complex potential have the form 

f (z) = ia In z 

203 

(7-49) 

where a is a real number. In this case the streamlines are concentric 
circles centred at the coordinate origin. From formula (7-44}, as 
in the preceding case, we get N c = 0, f c = -2na. The point 
z = 0 is here called the vortex point of the flow. 

(d) Let the complex potential of flow be of the form 

f (z) = a ln (z +h) - a ln (z - h) (7-50) 

where a is a positive real number and h is some complex constant. 
According to the foregoing, this potential defines a flow with a posi­
tive source at the point z = -h and a sink at the point z = +h, 
the strength of the source and sink is the same and is equal to 2na. 
Rewrite (7-50) as 

f(z)=a2h lnfz+h);_ln(z-h) 

and pass to the limit as h-+ 0 assuming that the strength of the 
source and sink then increases so that the quantity m = a2h re­
mains constant. We then get 

/ 0 (z} =.!!!_ (7-51) z 

The function (7-51) is the complex potential of a dipole of strength m 
located at the origin of coordinates. The streamlines of the dipole 
are obviously defined by the equation 

or 

C (x2 +y2)+my =0 (7-52) 

that is to say, they are circles centred on the y-axis and tangent to 
the x-axis at the origin of coordinates. Here, the absolute value of 
the velocity, which is 

(7-53) 

tends to zero at infinity. 
(e) Let us consider a flow whose complex potential has the form 

f (z) = Vooz+~ z (7-54) 

where Vao and m are positive real numbers. It is obvious that this 
flow is a superposition of a plane-parallel flow with velocity parallel 
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to the x-axis and equal to Voo and a flow generated by a dipole of 
strength m located at the origin. The streamlines of this flow are 
given by the equation 

(7-55) 

The value C = 0 is associated with the streamline whose equation is 

Y ( V oo - x 2 ~ y 2 ) = 0 

It breaks up into a straight line y = 0 and a circle x2 + y2 = a2 , 

where a2 = ~ . Since 
Voo 

(7-56) 

at infinity the flow velocity is Voo and is directed along the x-axis. 
At points of the circle x2 + y2 = a2 , which is a streamline, the ve­
locity is directed tangentially to this circle. For the absolute value of 
the velocity at points of the circle z = aeiQ>, we get, from formu­
las (7-36) and (7-56), 

(7-57) 

In the examples considered above we determined the hydrody­
namic characteristics of flow on the basis of a given complex poten­
tial. Let us examine the converse problem, that of determining the 
complex potential of a flow from its hydrodynamic characteristics. 
Note that since the physical velocity of flow is expressed in terms 
of the derivative of the complex potential [see formula (7-36)], 
the complex potential is not uniquely defined for a given flow. How­
ever, its derivative is a single-valued analytic function. This means 
that in the neighbourhood of any regular point of flow we have the 
expansion 

00 

f'(z)= ~ an(z-z0)n (7-58) 
n=1 

and in the neighbourhood of an isolated singular point, the expansion 
00 

(7-59) 
n=-oo 

From (7-59) we obtain the following expansion for the complex po­
tential in the neighbourhood of the singular point z0 : 

00 

f(z) =b-1 ln (z-z0) + ~ cn (z-z0)n (7-60) 
n==-ao 
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In particular, if the point at infinity Zoo belongs to the domain of 
flow and the complex velocity 

WfiO = (v .x)oo + i (vy)ao 
of flow at this point is bounded, then the expansion of the complex 
potential about Zoo is of the form 

00 

I (z) = WooZ + b_1 ln z + ~ LJ z•• 
Cn (7-61) 

n=O 

From this we have 

J f' (z) dz =2nib_1 (7-62) 
CR 

where C R is a circle I z I = R of sufficiently large radius R, out­
side which there are no singularities of the function f (z), except the 
point Zoo. On the other hand, by virtue of formula (7-44), the integ­
ral (7-62) defines a flux and a circulation of the velocity vector 
across the curve C R· Since the velocity at Zoo is bounded, this point 
is not a source, and so the flux of the velocity vector across the 
curve C R is zero, and formula (7-62) yields 

2nib -1 = r 00 

Let us write down the final expansion of the complex potential in 
the neighbourhood of the point at infinity, which is a regular point 
of flow: 

00 

I (z) = WooZ + in~ ln z + ~ ~~ (7-63) 
n=O 

Let us now consider the problem of a plane-parallel flux streaming 
around a closed contour. Let the flux, which at infinity has a given 
velocity Woo and circulation r ""' stream around a body S bounded 
by a closed contour C. It is required to determine the velocity. at 
any point of the flux from the given hydrodynamic characteristics 
at infinity, provided that at points of the contour C the flow velocity 
is directed tangentially to the contour C. This latter condition im­
plies that the curve C is a streamline of the flow under consideration; 
that is, the imaginary part of the complex potential describing the 
given flow must preserve a constant value on the curve C 

v (x, y) lc = constant (7-64) 

The problem reduces to determining the analytic function I (z) 
in the complex plane outside the contour C, in the expansion (7-63) 
of which function are given the values Woo and roo, and the condition 
(7-64) is fulfilled on the contour C. Since the complex potential is 
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defined to within an additive constant, the value of the constant in 
the condition (7-64) may be put equal to zero. 

Let us begin with the problem of streaming around a circular cylin­
der of radius R centred at the coordinate origin. Let the flow veloc­
ity at infinity be v oo and directed parallel to the x-axis, and let the 
circulation be absent, roo = 0. We have to find the complex poten­
tial whose expansion about the point at infinity is of the form 

00 

l(z)=vooz+ ~ ~~ (7-65) 
11=0 

and the imaginary part of which vanishes for I z I = R. We studied 
a complex potential of this type in Example (e) on page 203. There­
fore, the solution of this problem is of the form 

l(z)=voo(z+ ~2 ) (7-66) 

The velocity at points lying on the cylinder undergoing streaming 
is determined by the formula (7-57), whence it follows that it van­
ishes at two critical points: at z = -R, at which the streamline 
y = 0 branches into two streamlines coinciding with the upper and 
lower semicircles I z I = R, and at the point z = R, at which these 
streamlines converge again into the straight line y = 0. These points 
are, respectively, called the branch point and the convergence point. 
Note that if the velocity of flow at infinity is not parallel to the 
x-axis and has the form Woo = ·vooeicp., then with the aid of the trans­
formation ~ = ze-icp. we arrive at a problem in the ~-plane that has 
already been considered. Then we get the following expression for 
the solution of the original problem 

- w R 2 
I (z) =Wooz+-00

- z 
(7-67) 

Now let the circulation roo be nonzero. As we have already seen 
[see Example (c) on page 203], the streamlines of a flow with the 
complex potential ia In z (a is a real number) are concentric circles 
centred at the origin of coordinates. Therefore, the complex poten­
tial of a flow streaming around a circular cylinder of radius R with 
a given velocity at infinity V00 and a given circulation f 00 has the 
form 

( R2 ) roo I (z) = Voo z+-z- + 2ni In~ (7-68) 

Let us find the critical points of the flow at which the flow velocity 
vanishes. According to formula (7-36) we have 

- ( R2 ) r W=/'(z)=voo1--2 +-2 ":"=0 z nzz 
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Whence 

z2+~z-R2 =0 2mvoo (7-69) 

and 

(7-70) 

For R~~ 4~;oo \ the radicand in (7-70) is positive. Therefore, 

that is to say, both critical points lie on the circle I z I = R of the 
cylinder, and for r"" > 0 (voo > 0) both points lie in the upper semi­
circle, and for r"" < 0 (voo > 0) in the lower semicircle. Thus, the 

Fig. 7.1 

presence of cuculation brings closer together the branch point and 

the convergence point of the streamlines (Fig. 7.1). For 14!;'"" I= 
= R, both critical points coincide (with the point z = iR for r"" > 
> 0 or with the point z = -iR for r"" < 0). Finally, for ~ 4~;J > 
> R, in the domain I z I > R there is only one critical point lying 
on the imaginary y-axis. (As follows from equation (7-69), the prod..: 
uct of the roots of this equation is equal to -R2 , and so the second 
critical point lies inside the circle I z I = R.) Through this point 
passes the streamline separating the closed streamlines of flow from 
the open streamlines (Fig. 7.2). 

The results obtained permit, in principle, the problem of stream­
ing around an arbitrary closed contour C to be solved. Indeed, let 
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the function ~ = <p (z) define a conformal mapping of the domain @J 
(of the complex z-plane) exterior to the contour C onto the domain @J' 
of the ~-plane, which domain is exterior to the unit circle I ~ I = 
= 1, so that <p (oo) = oo. Then, obviously, the problem at hand is 
equivalent to the problem of streaming around a circular cylinder 
of unit radius. Here, the flux velocity at infinity, which generally 

Fig. 7.2 

speaking will vary, may be readily determined. The complex poten­
tial I (z) of the initial flow goes into the function F ( ~) = I [z ( ~)] 
in the given conformal mapping. And so by formula (7-36) we find 

- ·dF I df I dz I - dz I 
Woo= d[ C=oo = dz z=oo df b-oo= Woo df C=oo 

and 

Woo =Woo dz I 
d~ t-oo 

By formulas (7-67) and (7-68), the solution of the transformed 
problem is of the form 

F (~) = Woo~+ ~"" + ;: In ~ 
"Whence, for the solution of the original problem, we get the expres­
sion 

dzl 
f (z) = F [~ (z)] =Woo :~ 'b=oo <p (z) +Woo !) t-=oo + ;: In <p (z) (7-71) 
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By way of illustration let us consider noncirculatory flow of a 
two-dimensional fluid around an infinite plate. Let the x, y-plane 
intersect the plate along the segment -a .:::;;;: x.:::;;;: a, and let the 
velocity vector of the flow lie in the x, y-plane and at infinity have 
a given value Woo. As follows from a consideration of the properties 
of the Zhukovsky function (see Chapter 6, page 179), the function 

(7-72) 

defines a conformal mapping of the exterior of the unit circle of the 
~-plane onto the z-plane cut along the segment -a .:::;;;: x .:::;;;: a. Then, 

'IJl ( oo) = oo and :~~~=co = i. For this reason, the problem is equi­
valent to that of a noncirculatory flow around a circular cylinder 
of unit. radius in the ~-plane, which at infinity has the complex veloc-

ity W co= ; Woo. The complex potential of the latter problem has 

the form 
a (- w ) F (~} =2 Woo~+ ; 

Substitute in place of ~ and ~ the following quantities from (7-72): 

~ =-= .:+ v~ 1 z- yiC/ii 
a ' T= a 

Here, V z2 - a2 > 0 for z = x > a. Partition Woo into a real part 
and an imaginary part: 

Woo= (vx}oo+i (v11}oo 

Then for the complex potential of the original problem we get the 
final expression 

(7-73) 

J n conclusion we find the force with which the flow acts on the 
body. The force of pressure acting on an element ds of arc of the 
contour C is proportional to the hydrodynamic pressure p at the 
given point of flux and is directed along the inner normal -dn = 
= -i dy + j dx. We therefore get the following expressions for 
the components of force acting on the contour C: 

Rx=- .\ pdy, R 11 = ~ pdx 
c c 

Determining the hydrodynamic pressure p from Bernoulli's integral 
pv2 

p=A--2-

14-387i< 
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where A is constant and p is the density of the fluid, and introduc­
ing the complex quantity R = R, + iRx, we obtain 

R=- ~ J v2 (dx-idy) =- ~ f v2 dz (7-74) 
c c 

(The integral of the constant A around the closed contour C is clearly 
zero.) We transform the integral (7-74). Since at points of the con­
tour C the velocity is directed tangentially to the contour, the com­
plex velocity of flow w is connected with the magnitude of the phys­
ical velocity v by the relation w = veiq>, where q> is the angle be­
tween the x-axis and the tangent to the contour. Then formula (7-36) 
yields ve-iq> = f' (z). On the other hand, dz = ds e-iq>. Therefore 
v2 dz = v2e-i2q> ds e;q~ = f' 2 dz and formula (7-74) takes the form 

R =- ~ J /'2 (z) dz (7-75) 
c 

This is Chaplygin's formula, which expresses the force exerted by 
a flow on the body round which it is streaming. It expresses it in 
terms of the derivative of the complex potential. From the expres­
sion (7-63), for the complex potential outside the body, we get 

Hence, 

00 , 

, - r 00 1 "' en f (z) =woo+-.·-+ 7,-2m z .L..J zn 
n=2 

- 00 

/ , 2 (z) = w"': • r"" + ~ + " ~ 
ltl z 00 ..:::...lzn 

n=2 

r /'2 (z) dz = 2woor 00 

c 
Substituting this expression into formula (7-75) and 
real and imaginary parts, we find 

Whence 
Rx = p (v,)coroo, Ry = -p (v:c)ooroo 

I R I = p I Voo 1·1 r 00 I 

separating the 

(7-76) 

(7-77) 

Formula (7-77) is Zhukovsky's theorem on a lifting force: the force 
of pressure of an irrotational flow having velocity v"" at infinity and 
flowing round a contour c with circulation r is expressed by the for­
mula I R I = p I Voo I· I rl. The direction of this force is obtained 
by rotating the vector v"" through a right angle in the direction oppo­
site that of the circulation. 

The apparatus of analytic functions of a complex variable enab­
led Zhukovsky and Chaplygin to develop methods for solving hydro-
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and aerodynamics problems which served as the theoretical founda­
tion for practical aircraft construction. In this way, the methods 
of complex-variable theory played a great role in the development 
of modern aviation. 

b. A two-dimensional electrostatic field 

The methods of complex-variable theory used in the preceding 
subsection in the study of the two-dimensional potential flow of 
an ideal fluid may be just as successfully employed in the study of 
any two-dimensional vector field of a different physical nature. 
Let us consider the use of these methods in solving problems of 
electrostatics. 

Problems of electrostatics consist in determining the stationary 
electric field generated in a medium by a given distribution of charges. 
Depending on the statement of a specific physical problem, 
we are given either the density of distribution of charges as a func­
tion of the coordinates or the total charge distributed over the sur­
face of an ideal conductor. In the latter case, the principal aim of the 
investigation is to determine the density of the distribution of 
charges on the surface of a conductor. 

In order to obtain the basic equations for the intensity vector of 
an electrostatic field, we will proceed from the general system of 
Maxwell's equations (see [16]} in an isotropic medium: 

18D 4n. 18B 
curl H=--+-tt curl E= ---

c 8t c ' c 8t 

div D= -4np, div B=O 

D=eE, B=f.LH 

In the case of a stationary electromagnetic field, Maxwell's equa­
tions for the intensity vector E of an electric field in a homogeneous 
medium take the form 

curl E=O, d. E 4n 
IV =-p 

8 (7-78) 

where _e is the dielectric constant of the medium and pis the density 
of static charges generating the given field. We will take e == 1 and 
~ill consider the ~wo-dimensional problem, when charges generat­
mg the field are distributed in space so that their distribution den­
sity _is not de:pendent on one of the coordinates (say the z-coordinate), 
but IS a functiOn solely of the two other coordinates, i.e. p = p (x, y). 
Clearly, the vector E then has only two nonzero components which 
ate also functions of the coordinates x, y alone: ' 

E (x, y) = iEx (x, y) + jEy (x, y) (7-79) 

14* 
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By virtue of the first of the equations (7-78), the field E is a poten­
tial field: 

E(x,y)=-gradv(x,y), Ex=-!!!_, Eu=-!!!_ (7-80) 
OX oy 

on the basis of the second of the equations (7-78) the function v (x, y) 
satisfies the equation 

Llv = -4np (x, y) (7-81) 

From (7-81) it follows that in a domain free of charges, the poten­
tial function v (x, y) is harmonic. It is therefore possible in this 
domain to construct an analytic function of a complex variable: 

f (z) = u (x, y) + iv (x, y) (7-82) 

for which the potential function v (x, y) of the given electrostatic 
field is the imaginary part. 

The function (7-82) is the complex potential of the electrostatic 
field. The level lines v (x, y) = C are the equipotential lines of the 
given field. From formulas (7-80) it follows that at every point of 
the equipotential line v (x, y) = C the intensity vector E is normal 
to this line. Since the lines v (x, y) = C and u (x, y) = C are mu­
tually orthogonal, the direction of the vector E coincides with the 
tangent to the line u (x, y) = C at each point of the curve. The lines 
u (x, y) = C are therefore force lines of the given field. 

We associate with the vector E a complex number w =Ex + 
+ iEy. Then by (7-80) and from the Cauchy-Riemann conditions 
we get 

w = E + iE = - .!!!.._- i !}!__ = - ~- i !!!:__ 
x Y ox oy iJx ox 

. ( iJu . ov ) .1-,--( ) =-t --a;--L--a;- =-t Z (7-83) 

Whence 
I E I = I !' (z) I (7-84) 

Formulas (7-83) and (7-84) yield the expression of the components 
of the intensity vector of an electrostatic field in a domain free of 
charges in terms of the derivative of the complex potential. 

Let the charges generating the given electrostatic field be con­
centrated in some domain bounded by the closed curve C0."' Then the 
integral, around any closed contour C containing C0 , of the normal 

"' This means that in space the charges are distributed inside an infinite 
cylinder, the contour of the cross section of which is the curve C0 ; the distribu­
tion density of the charges does not depend on the coordinate z along the gene:­
ratrix of the cylinder, but is only a function of the coordinates x, y in the cross 
section. 
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component of intensity of the electric field is, by the Gauss theorem. 
(see [16)) equal to the total charge (referred to unit length of the cylin­
der in which the charges are distributed in space): 

~ En ds = 4ne (7-85) 
c 

On the basis of formulas (7-80), (7-37) and (7-38), and taking into 
account the Cauchy-Riemann relations, we obtain 

i Ends= i ~dx-!!_dy J J iJx iJx 
c c 

Since the electrostatic field is everywhere potential, the circulation 
of the field around any closed contour is zero, i.e. 

~ E,ds=- ~ : dx+ :: dy=O 
c c 

Consider the integral of the derivative of the complex potential 
around the closed contour C: 

~ I' (z) dz = r !!:_dx-!!_ dy+ i i !!!__ dx+!!:_ dy J ax iJx J iJx iJx 
c c 

(7-86) 

A comparison of the foregoing formulas yields 

J /' (z) dz = J Ends= 4ne (7-87) 
c c 

that is, a charge contained in a domain bounded by the contour C is 
defined by the integral, along this contour, of the derivative of the com­
plex potential of the electrostatic field generated by the given charge dis­
tribution. If C0 is the contour of the cross section of an ideally con­
ducting cylinder, then the entire charge is concentrated on its sur­
face with surface density cr (s), and 

1 CJ (s) ds = e (7-88) 

The following relation is known to hold (see (12]): 

CJ (s) = -41 En I = --41 (grad v)n I 
:rt Co :rt Co 

(7-89) 

On the other hand, from (7-83) and (7-89) we get 

CJ (s) = ± 4~ I/' (z) leo (7-90) 
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The sign in (7-90) is determined by the sign of the overall charge e, 
distributed over the surface of the given ideally conducting con­
ductor. Formula (7-90) finds extensive application in the solution 
of a diversity of problems in electrostatics. 

Note, finally, that as in the problems of hydrodynamics, the deri­
vative f' (z) of the complex potential is, by (7-83), a single-valued 
analytic function of z. If the intensity of the given electrostatic 
field is bounded at infinity, then the expansion of f' (z) about the 
point z == oo is of the form 

00 

/' (z) =Woo+ ~ :: 
n=1 

Whence for the complex potential itself we get the expansion 
00 

f(z)=wooz+c0 +b1 1nz+ S ~: (7-91) 
n=1 

Since 

bl = 2~i r I' {zl dz 
CR 

where the contour C R contains all the charges generating the given 
field, from (7-87) we get the final expansion of the complex potential 
about the point z = oo in the form 

00 

/(z) =Wooz-i2elnz+ ~ ~~ (7-92) 
n=O 

We thus see that the complex potential of an electrostatic field 
has very much in common with the complex hydrodynamic poten­
tial.* Therefore, the investigation of a two-dimensional electrostatic 
field with the aid of the complex potential may be carried out by 
the very same methods as the solution of the corresponding hydro­
dynamic problems. Thus, all the examples of flows examined on 
pages 202-203 admit a simple electrostatic interpretation. 

For example, consider the electrostatic field described by the 
complex potential 

f (z) = -i2e In z, e > 0 (7-93) 

• It is quite obvious that the fact that the potential function in electrostat­
ics is the imaginary part of the complex potential and in hydrodynamic~ the 
potential of velocity is the real part of the complex potential is an unessential 
difference that may be eliminated by introducing an additional factor equal to 
-i. However, we hold to the established terminology in which the indicated 
difference exists. 
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Introducing the polar coordinates r, <p and taking into account that 
z = rei'P, we get 

1 
v(r, <p)=-2elnjzj=2eln 7 , u(r, <p)=2eargz=2e<p 

This implies that the equipotential surfaces of the given field are 
concentric circles centred at the origin, and the force lines are the 
rays <p = constant. The vector E is at every point z =I= 0 directed 
along a ray <p = constant and, by formula (7-84), is in absolute value 
equal to 

IE I= If' (z) l = ; 

Since the integral of the normal component of intensity of the given 
field around any circle I z I = r has a constant value equal to 4:rte, 
it is obvious that the field is generated by a point charge of magnitude 
e situated at the origin (in space, the charges generating a given field 
are distributed with constant density e along a straight line perpen­
dicular to the x, y-plane and passing through the origin of coordi­
nates). 

Let us consider some typical problems in electrostatics that may 
be solved with the aid of a complex potential. 

(a) Determining the distribution density of a charge on an ideally 
conducting conductor. Let the lateral surface of such a conductor be 
an infinite cylinder whose cross section is bounded by the contour C. 
Suppose that the distribution density of the charge is constant along 
the generatrices of the cylinder and there is charge e per unit length 
of the cylinder. It is required to determine the surface density of 
charge u (s) on the contour C of the cross section .. The solution of 
the problem is obviously given by formula (7-90) for the normali­
zation condition (7-88). The problem thus reduces to constructing 
the complex potential f (z), which is an analytic function outside 
the contour C, provided that the imaginary part of f (z) is constant 
on C and the expansion of f (z) in the neighbourhood of the point 
z = oo is given by (7-92), where W;x, = 0 and the coefficient e is 
equal to the charge per unit length of conductor. 

Start with the simplest case when the conductor is a circular cyl­
inder of unit radius. It was shown above (see page 214) that the 
equipotential lines of the complex potential (7-93) are concentric 
circles centred at the coordinate origin. Therefore, to satisfy the 
condition on the boundary of the conductor, it is natural to seek 
the potential of the given field in the form 

f (z) = -iC ln z 

where C is a constant that needs defining. From the condition at 
infinity (7-92) we get C = 2e. Then formula (7-90) yields the obvi-
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ous result 

a(s)= ;n 

If the contour of the cross section of the conductor is an arbitrary 
closed curve C, then by mapping, by means of the function s = 
= q> (z), the field exterior to the contour C conformally onto the 
exterior of the unit circle I s I > 1 in such a manner as to satisfy 
the condition q> (oo) = oo, we reduce the problem to that which 
has just been solved. Then the complex potential will have the form 

f (z) = -i2e In q> (z) (7-94) 

and for the density of surface charges we get the following expres­
sion in accordance with (7-90): 

a (s) = 4~ I!' (z) lc = 2~ I <p ~~) • ~ lc 

e,d~~ e,dz,-1 =rn dz c=rn df 1~1=1 (7-95) 

By way of illustration, let us consider the problem of determin­
ing the charge density in a strip of width 2a. Let this strip inter­
sect the x, y-plane along the segment -a < x < a. The function 

z=; (s+f) 
defines a conformal mapping of the exterior of the unit circle of the 
~-plane onto the z-plane cut along the segment -a < x < a of the 
real axis. Therefore, formula (7-95) yields 

(7-96) 

Since 

s=z+ yii=ai 
a 

and 

sz-t = ;2 (z2-a2+zVz_2 __ -a-2)= 2 v::-az (z+ -v-zz-_-a-2) 

formula (7-96) yields 
ea 1 

a (x) = -2n-. -V--::-=az=_=z2=-
1 e 1 

lx+iVa2 -x2 l-a<x<a =2n• Va2 -x2 

(7-97) 

Note that the charge density increases without bound as the edge 
of the plate is approached. This fact has a simple physical interpre­
tation. The edge of the plate has an infinite curvature, and so an 
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infinite charge has to be placen on it in order to charge it to some 
potential. 

(b) Determining the field of an infinite two-dimensional capacitor. 
Let it be required to find the electrostatic field between two ideally 
conducting nonintersecting cylindrical surfaces charged to a certain 
potential, the generatrices of which surfaces are parallel and the 
directrices pass through the point at infinity of the z-plane (Fig. 7 .3). 

c, 

Fig. 7.3 

Here the problem consists in determining, in a curvilinear strip @J, 
the complex potential f (z), which is an analytic function the imag­
inary part of which assumes the constant values v1 and v2 on the 
curves C1 and C 2• Clearly, the analytic function w = f (z) defines 

V=/ AJ 

A, h A2 
v=O 

Z=0 X 

Fig. 7.4 

a conformal mapping of the given curvilinear strip !>f the z-plane 
onto a strip of thew-plane bounded by the straight lines Jm w = v1 , 

Im w = v2 • Thus, to solve the problem it suffices to construct the 
indicated conformal mapping. 

To illustrate, let us find the field of the capacitor shown in Fig. 7.4 
if the values of the potential on the curves C1 and C2 are. 0 and 1, 
respectively. First find the function z = cp (~) that defines the con­
formal mapping of the upper half of the ~-plane, Im ~ > 0, onto 
the given curvilinear strip @J of the z-plane. Since the domain is 
the triangle* A 1A~ 3 , the desired mapping may be obtained by 

• Note that the vertices A 1 and A 2 lie at infi.ni ty. 
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means of the Schwartz-Christoffel integral (see Section 5.4). We estab­
lish the following correspondence of points of the real axis of the ~­
plane and the vertices of the triangle: 

AI-~= 0 
A 2 -+ ~ = oo 

As_.~= -1 

Since the angles at the vertices of the triangle are equal, respec­
tively, to na1 = 0, na2 = -na and na3 = n (1 +a), the desired 
integral must be of the form 

t; 

z=C J ~- 1 (1+s)ads+C1 (7-98) 
!;o 

From the correspondence of the points A 3 (z = ih) and s = -1 
it follows that for so = -1, we get 

t; a 

z=c J < 1 ~~> ds+ ih <7-99) 
-1 

In order to determine the constant C, note that to the counterclock­
wise traversal of the point s = 0 in the upper half-plane around the 
semicircular arc of infinitely small radius p there corresponds a tran­
sition from the side A 2A1 to the side A 1A 3• Here, the increment 
of z is 

~z = ih 

On the other hand, from (7-99), putting ~ = peicp and taking 
the limit as p _. 0, we get 

:t 

~z = iC lim J ( 1 + peicpt diJl = inC 
p-+0 0 

h Whence C =-and the final expression for the integral (7-99) is n 
of the form 

h 
Z=­

n 

t; a J (i~~) d~ + ih 
-1 

The function ~ = enw defines a conformal mapping of the strip 
0 < Im w < 1 of the w-plane onto the upper half of the s-plane. 
Therefore, the function 

e:tw 

Z= ~ J (i1~)et d~~ih (7-100) 
-1 
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defines a conformal mapping of the strip 0 < Im w < 1 of the w­
plane onto the given curvilinear strip @J of the z-plane. In the process, 
the straight line Im w = 0 goes into the lower plate of the capaci­
tor A1A 2 ; and the straight line Im w = 1 into the upper plate, which 
is the polygonal line A 2A 3A 1 • From (7 -100) for v = Im w = con­
stant we get the parametric equations of the potential curves of the 

V= I 

------------A-------
1 ---------

v=O z=O Xmax 

Fig. 7.5 

given electrostatic field. For example, in the particular case of 
ex = 1 the integral (7-100) may be evaluated in terms of elementary 
functions: 

h z =- (1 + nw+enw) n 

Then the parametric equations of the equipotential curve v = v0 = 
= constant (0-<: v0 -<: 1) assume the form 

h 
x =- (1 + nu +cos nV0·enu) n 

In particular, the equation of the mean equipotential line 

{ v0 =+) has the for~ 
h h ~ x-1 

y=-+-eh 
2 n 

Equipotential lines corresponding to various values of v are given 

in Fig. 7.5. For v0 > ~ it is easy to determine the value of Xmax 
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from the formula 

x =-h ln(--1-) max :n: cos :n:vo 

The results obtained make it easy to determine the distance from 
the edge of the capacitor, shown in Fig. 7.5, on which the field of 
the capacitor may, to within a specified degree of accuracy, be con­
sidered two-dimensional. 

Generally speaking, conformal-mapping methods are widely em­
ployed in designing two-dimensional electrostatic and magnetostatic 
lenses used for focussing electronic beams, which find extensive 
application in numerous physical devices. 



CHAPTER 8 

FUNDAMENTALS OF OPERATIONAL CALCULUS 

The methods of operational calculus represent a peculiar approach 
to the solution of various mathematical problems, mainly differen­
tial equations. Underlying these methods is the idea of integral 
transformations. Here we associate with the solution of the original 
problem [a function f (t) of a real variable] some function F (p) of 
a complex variable so that the ordinary differential equation for the 
function f (t) is transformed into an algebraic equation for F (p). 
In a similar manner, an ordinary differential equation may be asso­
ciated with a partial differential equation for a function of two real 
variables, and so forth. This simplifies computational techniques. 
In operational calculus, the fundamental entity is the Laplace trans­
formation, to the study of which we now turn. 

8.1. Basic Properties of the Laplace Transformation 

a. Definition 

The Laplace transformation associates a function F (p) of the 
complex variable p with a function f (t) of a real variable t by means 
of the relation 

00 

F (p) = J e-Ptj (t) dt 
0 

Naturally, this integral is not meaningful for every function f (t). 
We therefore begin with a definition of the class of functions f (t) 
for which the given transformation can definitely be realized. Con­
sider the function f (t) defined for all values of the real variable 
-oo < t < oo and satisfying the following conditions: 

1. For t < 0 f (t) = 0. 
2. For t;;;;:,: 0, the function f (t) has on every finite interval of the 

t-axis at most a finite number of discontinuities of the first kind. 
3. The function f ( t) has a bounded order of growth at t-+ oo, 

i.e. for every function of the class under consideration there exist 
positive constants M and a, such that for all 't > 0 

I f (t) I -< Meat (8-i) 
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The greatest lower bound of those values of a for which inequality 
(8-1) holds is called the index of the order of growth of the function 
f (t). It is easy to see, in particular, that the index of the order 
of growth of the power function f (t) = tn is zero. 

Note that f (t) may be a complex function of the real variable t: 
f (t) = f1 (t) + if2 (t), where f.~- (t) and f 2 (t) are real functions. 

We introduce the basic definition: 
The Laplace transformation of a given function f (t) of the real va'­

riable t is a transformation which associates with a function f (t) a 
function F (p} of the complex variable p defined by the integral 

00 

F (p) = ) e-Ptf (t) dt 
0 

(8-2) 

Note that the integral (8-2) is an improper integral dependent 
on the variable p as a parameter. Generally speaking, the integral 
(8-2) does not converge for all values of the parameter p. Indeed, 
if the function f (t) approaches a nonzero limit as t-oo, andRe p < 
< 0, then the integral definitely diverges. It is therefore natural 
to pose the problem of the domain of convergence of the integral (8-2), 
and hence also that of the domain of definition of the function F (p). 

T hem•em 8.1. The integral (8-2) converges in the domain Rep > a, 
where a is the index of the order of growth of the function f (t), and 
in the domain Re p ~ x 0 > a the integral converges uniformly. 

Proof. For any p = x + iy for x >a, we can specify* an 8 > 0, 
such that x > a1 = a + 8, and If (t) I< Mea,t. Then, taking 
advantage of the comparison test for the convergence of improper 
integrals, we get 

00 00 

jF(p)l = J ~ e-Ptf(t)dtJ~M j e-xtea,tdt= x~a1 , x>a1 (8-3) 
0 0 

which is grounds for concluding that the integral (8-2) converges for 
x > a. If x ~ x0 > a, then an analogous evaluation yields 

00 

IF (p) I~ r e-<x.-a,)t dt = M (8-4) -....::: J zo-at 
0 

which, by the Weierstrass test, proves the uniform convergence· of 
the integral (8-2) with respect to the parameter p in the domain 
Re p ~ x0 >a. 

The foregoing proof rested substantially upon the conditions (2) 
and (3) of the definition of this class of functions f (t) of the real 

• This permits considering the unbounded functions with zero index of the 
order of growth. 
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variable t. However, it is possible to extend the class of functions 
f (t) which admit the Laplace transformation. First we prove the 
following lemma. 

Lemma. Let the function f (t) of the real variable t be defined for 
all t ~ 0 and let there exist a complex number p0 such that the integral 

00 

J e-Potf (t} dt < M (8-5) 
0 

converges. Then for all p satisfying the condition Re p > Re Po the 
integral 

converges. 

CIO 

J e-Ptf (t) dt 
0 

(8-6) 

Proof. Denote cp (t) = e-p.t f (t) and introduce an auxiliary func-
oo 

tion F (t) = - J cp ('t) dt. Note that F' (t) = cp (t). Besides, by 
t 

virtue of the convergence of the integral (8-5) it is obvious that for 
a given e' > 0 it is possible to indicate a T 0 such that I F (t) I < 
< e' for t ~ T 0 • 

T2 

Now consider the integral J e-P1f (t) dt, where T1 and T 2 are 
Tt 

arbitrary real numbers satisfying the condition T2 > T1 , and 
represent it in the form 

Ts T2 T2 

J e-Ptj (t) dt = J e-<P-Poltcp (t) dt = J e-<P-Polt F' (t) dt 
n n n 

Evaluating the last integral by parts, we obtain 
Ts J e-<p-p,)t F' (t) dt 
T! 

T1 

= e-I.P-P,lT•F (T 2)- e-<P-PolT•F (T1 ) + (p- p0) J e-<P-Po>t F (t) dt 
Tt 

From this, for T1 , T 2 > T0 and Re (p- p0) > 0 we get 
Ts I J e-Ptj (t) dt I~ (e-Re(p-p0 )T. + e-Re(p-J>0)T1 ) e' 

Tt 
+ e' I p- Po I (e-Re(p-p0 )T, _ e-Re(p-p0 )T•)< e' [2 + IP -Po I J 

·~-~ ·~-~ X e-Re(p-po)To 
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Obviously, it is always possible to choose the value of T0 so that 
the expression obtained is less than any prescribed e > 0. This, on 
the basis of the Cauchy test, proves the convergence of the integral 
(8-6). 

It is also possible to prove the uniform convergence, in the para­
meter p, of the integral (8-6) in the domain Rep;;;:::: Re p1 > Re p 0 • 

On the basis of the lemma that has been proved, we can regard 
the functions satisfying the condition (8-5) as the basic class of 
functions f (t) of the real variable t for which the Laplace transfor­
mation (8-2) is constructed. Functions satisfying the given condi­
tion will be called functions belonging to the class A (p0 ). 

Thus, with the aid of the transformation (8-2), the function F (p) 
of the complex variable p is defined in the half-plane of the complex 
p-plane to the right of the straight line Ro p = a, parallel to the 
imaginary axis. -

Observe that from formula (8-3) it follows that I F (p) I -+ 0 as 
Re p-+ oo. 

The function F (p), defined in terms of the function f (t) with 
the aid of the transformation (8-2) is called the Laplace transform 
of f (t). The function f (t) is the original function of F (p). We will 
denote the relationship of the functions f (t) and F (p) by the sym­
bols* 

I (t) . · F (p) or F (p) . · I (t) (8-7) 

It should be noted that in practical applications frequent use is 
also made of the so-called Heaviside transformation: 

00 

F (p) = p J e-Ptj (t) dt (8-8) 
0 

which differs froni. the Laplace transformation by the additional 
factor p. It is clear that the domain of definition of the function 
F (p) is the same as that of the function F (p). We will only consider 
the Laplace transformation (8-2). The properties of the Heaviside 
transformation (8-8) are readily obtained from the properties of the 
Laplace transformation that will now be examined. 

As we have seen, analytic functions form the most important 
class of functions of a complex variable. Let us find out whether 
the function F (p) is analytic. 

Theorem 8.2. The Laplace transform (8-2) of the function f (t) is 
an analytic function of the complex variable p in the domain Re p > a, 
where a is the index of the order of growth off (t). 

• Other notations are: F (p)- I (t), 

F (p) ;+I (t), 
F (p) II I (t), etc. 
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Proof. By Theorem 8.1, the improper integral (8-2) converges in 
the domain Rep> a. Let us partition the integration interval 
into subintervals ltt, ti+1] of arbitrary finite length; also t0 = 0 
and tn-+ oo as n-+ oo. Then the function F (p), for Re p >a, is 
the sum of the convergent series 

oo tn+• oo 

F (p) = ~ ) e-Ptf (t) dt = ~ Un (p) (8-9) 
n=Otn n=O 

Note that since the nth remainder of the series (8-9) is 
00 

equal to ) e-Ptf (t) dt, by Theorem 8.1 the series (8-9)converges 
tn., 

uniformly in the domain Re p ~ z0 > a. Each of the functions 

tn+t 

Un (p) • J e-Ptf (t) dt 
tn 

is defined as an integral, dependent on the parameter p, over a sub­
interval of finite length in the complex t-plane. On the basis of 
the general properties of integrals of functions of two complex variab­
les dependent on a parameter,* the functions Un (p) are entire func­
tions of p. From the foregoing reasoning, it follows that the series 
(8-9) in the domain Rep> a satisfies all the conditions of the Weier­
strass theorem** and, hence, the function F (p) is analytic in the 
domain Re p > a and its derivatives may be computed by diffe­
rentiating the integrand function in (8-2) with respect to the para­
meter p. 

b. Transforms of elementary functions 

Taking advantage of the definition (8-2), we find the transforms 
of a number of elementary functions of a real variable. 

(a) H eaviside unit function. Let 

{ 0, t< 0 
f (t) =Go(t) = i, t~O 

Then 
00 

f (t) ~ F (p)= ) e-vt dt = ~ 
0 

• See Chapter 1, page 53. 
• • See Chapter 2, page 63. 

15-3878 

(8-10) 
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and the function F (p) is obviously defined in the domain Rep> 0. 
Hence 

{ 0, t < 0 . 1 
<ro(t)= 1 , t~O • -p• Rep>O (8-11) 

Observe that if in place of the Laplace transformation (8-2) we use 
the Heaviside transformation (8-8), then the function F (p) == 1 
will be the transform of the unit function cr0 (t). This explains the 
relative popularity of the Heaviside transformation. However, in 
the case of the Heaviside transformation (8-8) a number of other 
formulas, including the formula of the inverse transformation and 
the formula of the transform of a convolution (see page 232 below), 
become more complicated. 

Let us agree from now on (unless otherwise specified) to regard 
the function f (t) as the product f (t) · cr0 (t}, that is, as a function 
identically zero for t < 0, without specially indicating this in the 
appropriate formulas. 

(b) Exponential function: 

f (t) =eat 

Computing the integral (8-2), we get 

00 r 1 F (p) = J e-PterJ.t dt = p-a. , Rep> Rea. 
0 

eat • - 1- Rep> Rea. • p-a.. 

(c) Power function: 

t (t) = t'Y, v > -1 

In this case, the integral (8-2) is of the form 
00 00 

F (p) = J e-Ptj (t) dt = J e-Pttv dt, Rep> 0 
0 0 

(8-12) 

(8-13) 

(8-14) 

(8-15) 

Note that for v < 0, the function (8-14) no longer satisfies Condi­
tion 2 on page 221 (the point t = 0 is a discontinuity of the second 
kind of this function) and thus does not belong to this basic class 
of functions of a real variable, for which the Laplace transform exists. 
However, as is readily seen, for v > -1 this function belongs to an 
extended class introduced on page 223 [the integral (8-15) converges 
for Rep > 0 and v > -1]. For this reason, in the case -1 < v < 0 
as well the Laplace transform of the function (8-14) in the domain 
Rep> 0 exists and is defined by formula (8-15). : 
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Let us evaluate the integral (8-15). We begin with the case when 
the variable p assumes a real value p = x > 0. Making the change 
of variable xt = sin the integral (8-15), we get 

00 00 

F(x}= r e-XIfYdt=-1- r e-•svds= r(v+i) J .zv+i J .zv+i 
0 0 

(8-16) 

where f (v + 1) is Euler's gamma-function. Since the function F (p) 
defined by formula (8-15) is analytic in the domain Re p > 0, which 
on the positive real axis x > 0 has the value (8-16}, it follows that 
by virtue of the uniqueness of analytic continuation for the function 
F (p) in the domain Re p > 0 we get the expression 

00 

F(p)= r e-PitVdt= r(v+1) J pv+i 
0 

(8-17) 

Here, in the case of fractional v one should choose the branch of the 

multiple-valued function Pv~i which is a direct analytic continua-

tion into the domain Rep> 0 of the real function .,~ 1 of the real 
.z 

variable x > 0. Thus, 

• r(v+i) R 0 fY. pv+t , v>-1, ep> (8-18) 

For integral v = n, we get from formula (8-18) 

tn • r(n+1) =-nl_ Re p>O (8-19) 
• pn+t pn+t • 

Computing the integral (8-2}, we can get the transforms of some more 
functions of a real variable; however, in many cases it turns out to 
be more convenient, when computing the transforms of a given func­
tion, to take advantage of the general properties of the Laplace 
transform, which we will now investigate. 

c. Properties of a transform 

(a) Linearity. By virtue of familiar properties of definite integrals 
we have: 

Property 1. If Fi (p) : ft (t), Rep> ai (i = 1, ... , n}, then 
n n 

F (p) = ~ a.tFt (p) • • ~ a.dt (t), Rep> max at (8-20) 
i=i i=i 

where a.1 are specified constants (real or complex) and a1 are indices 
of the order of growth of the functions f1 (t). 

15* 
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This property enables one, on the basis of the transforms of the 
functions (8-13), (8-18) and (8-19) that we have found, to find the 
transforms of a polynomial, and of trigonometric and hyperbolic 
functions. For example, with the aid of (8-13), we get 

cos rot=_!_ (eiwt + e-i(l)t) • _!_ ( _1 ___ + _1__ ) = P 
2 • 2 p- 100 p + ui> p 2 + w2 • 

Rep> I Im ro I (8-21) 
Similarly, 

sin rot • • 2 ~ 2 , Re p > lim ro I p (I) 

(b) Property 2. Let F (p) • • f (t), Rep> a, then 

~ F ( ~ ) • • f(a.t), a.> 0, Rep> a 

Indeed, 
00 00 p 

) e-Ptj(a.t)dt= ~ J e-aTf(-r:)d-r:= ~ F( ~) 
0 0 

(8-22) 

(8-23) 

(c) Property 3 (Time-delay theorem). Let F (p). • f (t), 
and let the following function be given: 

Rep> a 

{ 0, t<-r:, -r:>O 
f-dt)= f(t--r:), t~t: (8-24) 

Then 
(8-25) 

Indeed, 
CXI CXI 

F.c(p)= J e-Ptj,;(t)dt= J e-Ptf(t--r:)dt 
0 T 

In the last integral make a change of variable putting t-,; = t'. 
Then, 

CXI 

F" (p) = J e-P<t'+">f (t') dt' = e-P"F (p) 
0 

which proves Property 3. 
As a first example, consider the transform of the step function 

f (t) = {
0, t<'f 

nf0 , n,;~t< (n+1)-r:, n= 1, 2, ••• 

Represent / 0 (t) by means of Heaviside's unit function cr0: 

f (t) = /o (cro (t --c)+ O'o (t- 2-r:) + ... ] 

(8-26) 



8.1. Baste Properties of the Laplace Transformation 229 

Using the linearity property and the time-delay theorem, we get 

(8-27) 

Similarly, it is easy to show that the transform of the periodic func­
tion 

{ lo. 2n'f~t<(2n+1)'t 
l(t)= -lo. (2n+1)'t~ t<(2n+2)'t n=O, 1• 2• (8-28) 

is the function 

l(t). · F(p)=; tanh ~-r: (8-29) 

The time-delay theorem permits obtaining a rather general for-. 
mula for the transform of a periodic function. First consider the case 
when the function I (t) of the real variable t is of the form 

_ { cp (t), O~t<" 
I (t)- o "~t (8-30) 

Denote the transforms of the functions cp (t) ~ (!) (p) and cp (t + 
+ 't) ~ <D-e (p). Rewrite (8-30) in the form 

{ 0, O~t<'f 
l(t)=cp(t)+ -cp (t+'t-'t), t~'t 

Taking advantage of the linearity of the transform and using the 
time-delay theorem, we obtain 

I (t) • • F (p) = <D (p)- e-P'f<D" (p) (8-31) 

Now let the function cp (t) be a periodic function of t with period 't, 
that is, 

cp (t + 't) = cp (t) (8-32) 

Then <D" (p) = <D (p) and formula (8-31) will permit expressing the 
transform <D (p) of the periodic function cp (t) in terms of the trans­
form F (p) of the function I (t), which is equal to the function cp (t) 
in the first period 0 ~ t ~ 't and to zero outside it for t ~ 't: 

<D(p)= F(P_! 
1-e Jl'( 

(8-33) 

By way of illustration, let us find the transform of the function 

cp (t) == I sin (l)t I, (I) > a (8-34) 
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This function is periodic for t > 0 with a period ~ . First find the 
(I) 

transform of the function 

{ 
sin (J)t, 

I (t) = 
0 

n 
O~t~-w (8-35) 

By means of formulas (8.31) and (8.22) and the equality sin(J) X 

X ( t + :) =-sin wt we obtain 

n n 

I (t) ~ F (p) - 00 + e -p m 00 - 00 ( 1 + e- -;; P) 
.- - p 2 +w2 p2+w•- p 2 +cu2 

Whence, by formula (8.33) we get 
n 

--p 

I . t I • w 1+e ro 
sm (J) . P" + w• • n 

- -p 
1-e 00 

w pn 
p• + w• • coth 2cu (8-36) 

(d) The transform of a derivative. We now proceed to prove one 
of the basic properties of a transform which enables us to replace 
differentiation of the original function by multiplication of the 
transform by an independent variable. 

Property 4. If a function f' (t) satisfies the existence conditions of 
the transform and f (t) ~ F (p), Re p > a, then 

f' (t) • 0 pF (p)- I (0), Rep >a (8-37) 

Indeed, integrating by parts, we obtain 
~ ~ 

f' (t) 0 ° ) e-Ptf' (t) dt = e-Ptf (t) 1: + p 5 e-Ptf (t) dt = pF (p)- f (0) 
0 0 

which proves the property. 
Similarly, we can prove the following property o 

Property 4' .If a function tn> (t) satisfies the existence conditions of 
the transform and f (t) ~ F (p), Re p > a, then 

f<n> (t) ...,:. pn { F (P) _ f (0) _ I' (0) _ _ J<n-l) (0) } 
• p pi • • • pn • Rep>a 

(8-38) 

t (0) = !' (0) = Formula (8-38) is particularly simplified when 
= . . . = r-l) <o> = o: 

r> (t) ~ pnF (p) (8-39) 
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The result obtained finds numerous applications. 
By way of illustration let us consider the solution of the following 

Cauchy problem for an ordinary linear differential equation with 
constant coefficients: 

a0y<n> + a1y <n-1> + ... +any (t) = f (t) 

Y (0) = y' (0) = • • • = y<R-1) (0) = 0 

(8-40) 

(8-41) 

where f (t) is a function of t specified for t ~ 0. Putting f (t) === 0 
for t < 0, we can, iff (t) satisfies the existence conditions of a trans­
form, construct the transform F (p) of the function f (t). Suppose that 
a function y (t), which is the solution of the problem (8-40), (8-41), 
and all its derivatives up to order n satisfy the existence conditions 
of a transform. Then, multiplying both sides of (8-40) by e-P' and 
integrating with respect to t from 0 to oo, we get, by virtue of the 
linearity of the transform and the initial conditions (8-40), 

Y(p){aoPn+a1pn-l+ ••• +an}=F(p) 

where the transform of the desired solution of the problem (8-40), 
00 

(8-41) is denoted in terms of Y (p) = J e-P' y (t) dt. Denoting Pn (p)= 
0 

= a0pn + a1pn-t + ... +an, we get 

Y(p)= F(p) 
Pn(p) 

(8-42) 

Formula (8-42) gives a sufficiently simple expression of the trans­
form of the desired solution y (t) in terms of known functions-the 
polynomial Pn (p), the coefficients of which are defined by the equa­
tion (8-40), and the transform F (p) of the given right side of the 
equation. Thus, if we can determine the unknown original function 
y (t) from its known transform Y (p), then the problem (8-40), (8-41) 
will be solved. Below we will consider various methods of determi­
ning the original function from a given transform. For the present 
let us continue examining a number of general properties of trans­
forms. 

(e) The transform of an integral. 
Property 5. Let f (t) • · F (p), Rep >a. Then 

t 

<p(t)= J f(,;)d,;~ ~ F(p), Re p>a (8-43) 
0 

Indeed, it is easy to verify that the function <p (t) satisfies all the 
existence conditions of a transform, and <p (t) has the same index of 
the order of growth as f (t). Computing the transform of the func-
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tion q> (t) from formula (8-2), we get 
t 00 t 

J f(-r:) d-r: ~ J e-Pt dt J f (-r:) dT: 
0 0 0 

Changing the order of integration in the last integral, we get 

t 00 00 00 

J f (-r:) d-r:~ J f (-r:) d-r: J e-Pt dt == ~ J e-1"tj (-r:) d-r: = ! F (p) 
0 0 'f 0 

and this proves formula (8-43). 
In similar fashion we can prove the following property. 
Property 5'. Let f (t) -F F (p), Rep > a; then 

t t, tn-• I dt1 J dt2 • • • J f(tn) dt.,. • • ;n F (p), Rep> a (8-44) 
0 0 0 

Properties 5 and 5' find numerous applications in the computation 
of transforms of various functions. 

For example, find the transform of the saw-tooth function f (t), 
which is a periodically repeating isosceles triangle with base 2-r: 
and altitude / 0-r:. As is readily evident, this function is an integral 
from 0 to t of the function (8-28), the transform of which is given by 
the formula (8-29). Therefore 

f (t) .;=:. ~ tanh ~ (8-45) 

(f) The transform of a convolution. The convolution of the functions 
/ 1 (t) and fs (t) is the function q> (t) defined by the relation 

t t 

q> (t) = J f!(-r:) /2 (t -'t) dT: = J fdt -'t) /s (-r:) dT: (8-46) 
0 0 

The validity of this equality becomes evident if we make a change 
of the integration variable t - 't = t' in the first integral. The fol­
lowing property holds true. 

Property 6. If /1 (t) ~ F1 (p), Re p > ~. f 2 (t) ==!= F 2 (p), Re p > a1 , 

then 
t 

q> (t) = J f!('t) / 2 (t--r:) d-r:~FI(p) F2 (p), Rep >max {a1 , a2} (8-47) 
0 

The convolution of the functions /1 (t) and fs (t) with bounded 
order of growth is also a function with bounded order of growth. 
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Indeed, 
t t IJ /I{'t)/1 (t-T)dT ~~M1M1 J f!J•Tf!Jo(t-T)dT 
0 0 

MtMs {'"" t a'}- MtMIII _, = .,-• -e • ~ c-, 
at-all lat-allll 

The order of growth of the convolution is obviously equal to the 
greatest order of growth of the functions /1 (t) and / 2 (t). Clearly 
q> (t) also satisfies the other conditions of the existence of a trans­
form. To evaluate the transform of a convolution, use formula (8-2) 
and change the order of integration: 

~ t ~ ~ 

J e-Ptdt J /I{T)/2(t-T)dT= J f ('t)d't Je-Plf2 (t-T)dt 
0 0 0 't 

Making the change of variables t - T = t' in the inner integral, 
we finally get 
t ... ... J h (T) f,.(t-'t) dT~ J e-fl't/1 (T)dT J e-P1'/2 (t') dt' =Ft(p) F2 (p) 
0 0 0 

This proves Property 6. 
In applications, formula (8-47) is frequently used to determine 

the original function from a given transform, when . the specified 
transform can be partitioned into factors for which the original func­
tions are known. 

For example, let it be required to find the original of the function 

F (p) = (p'~w2)2 
Earlier, we found [see formulas (8-21) and (8-22)] that 

p • t 
2+ 2 ~ cosw • p (I) 

(I) • • t 
. p2 + w' -;== sm w 

Therefore, 
t 

F(p). • J sinWT·Cosw(t-T)dT=Tsinwt 
0 

Let us consider some more general properties of transforms. 
(g) D it}erentiatton of a transform. 
Property 7. Let F (p) ~ f (t), Re p > a, then 

F' (p) ~ -tf (t), Re p > a (8-48) 
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Indeed, above we pointed out that the derivative of an analytic 
function F (p) in the domain of its definition Rep> a may be 
computed by differentiating the, integrand function in the i_mproper 
integral (8-2) with respect to a parameter. Doing this, we get 

00 

F' (p) = - J e-Pt tj (t) dt-;d- tf(t) 
0 

This proves Property 7. Noting that multiplication of the function 
f (t) by any power function t11 does not change its order of growth, 
we get 

Property 7'. If F (p) . · f (t), Re p > a, then 

(8-49) 

Formulas (8-48) and (8-49) may be used to evaluate the transform 
of the product of t11 by a function f (t) for which the transform is 
known. Later we will derive a general formula expressing the trans­
form of a product in terms of the transforms of the factors. Let us 
now consider yet another property of transforms. 

(h) Integration of a transform. 

Property 8. If a function 1 ~t) satisfies the existence conditions 

of a transform and f (t) ~ F (p), Rep >a, then 

Denote 

00 00 

f ~t) ~ J e-Pt I t(t) dt = J F (q) dq (8-50) 
0 p 

00 

I (p) = J e-ptf ~t) dt 
0 

(8-51) 

By Theorem 8.2, the function I (p) is analytic in the domain 
Rep >a, and by virtue of the remark on page 224, I ( oo) = 0. We 
find the derivative of the function I (p) by differentiating the in­
tegral (8-51) with respect to a parameter: 

00 

I' (p) = - J e-Ptj (t) dt = - F (p) 
0 

From this, taking into account the condition I (oo) = 0, we obtain 
p 00 

I(p)=I(oo)- J F(q)dq= J F(q)dq 
00 p 

This proves Property 8. 
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As an illustration, let us find the transform of the function 

+sin rot. Since sin rot ~ p2~ wZ , it follows that 

00 

1 · t ·J 00 d n ta P -stnro = p=--arc n-t • p2+oo2 2 oo (8-52) 
p 

With the aid of Property 5 we get, from expression (8-52), 

t 

S. t r sin 't' d • 1 ( n t ) 1 = J 7 'f'FJj 2 -arc anp (8-53) 
0 

The function Si t is called the sine integral. 
(i) The last property of transforms that we consider in this sec­

tion is called the shift theorem. 
Property 9. If f (t) . · F (p), Rep >a, then for any complex 

number A. 
F(p+A.). 'e-'Mf(t), Rep>a-ReA. (8-54) 

Indeed, the function IP (t) = e-'A.t f (t) obviously satisfies the con­
ditions of existence of a transform, which, by formula (8-2), is de­
fined in the domain Re p >a - Re A., but 

00 00 

j e-Pte-'A.tf (t) dt = j e-<P+'A.)t f (t) dt = F (p +A.) 
0 0 

This proves the shift theorem. 
Formula (8-54) may be used to determine the transform of the 

product of the function e-'A.t by the function f (t) for which the trans­
form is known. Thus, with the aid of this formula and the trans­
forms already obtained we can find 

teat. • (p~a)2' 
tneat • n! 

;= (p-a)n+i• 

-a.t • t • (J) 

e smro ":"'"' (p+a)2+oo2' 

and so forth. 

Rep>Rea 

Rep> Rea 

Rep> 1 Im ro 1-Rea 

(8-55) 

(8-56) 

(8-57) 

We conclude this section with a table of the properties of trans­
forms we have considered and a table of the transforms of a number 
of elementary and most frequently used special functions. 
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d. Table of properties of transfoT11UJ 

Let f (t) • · F (p). Then 

" n 
(1) ~ a.dt (t)~ ~ a.1F1 (p), rLt=constant 

i=1 i=t 

(2) f (a.t) -F ! F ( ~ ) , a.= constant, a.> 0 

{ 0, T>t 
(3) f.dt)= /(t-T), 't~t, f.c(t)-Fe-P'fF(p) 

(4) J<n> (t) ~ pn { F (p) _ f ~0) _ ••• _ fn-P~ (0) } 

' (5) l! ('t) dT-.F ! F (P) 
0 
t t 

(6) j /t(T) fdt-T) dT= J ft'(t-T)jz(T) dT~Ft(p) F2 (p) 
0 0 

-(8) j F (p) dp • • I !t> 
p 

(9) F (p +A.) • • e-'Mj (t) 

e. Table of transforms 

( 1) 1-F ..!._, Be p > 0 
p 

(2) t" ~ r (v+i) >-1 
• v-j-1 ' 'Y ' p 

Rep>O 

(3) tn~ P:!1, n an integer, Be p > 0 

(4) eU-'~-1 -· , Rep>Rea. p-a. . 

(5) sinrot~ P2~ 002 , Rep>llmrol 

(6) cos rot~ 2~ 2 , p (I) 

(7) sinh At • • 1 1.. ).2 , p-

(8) cosh A.t~ ;./:_).2 , 

Be p > llmro I 

Rep> IReA.J 

Be P>IReA.I 
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Rep> Rea 

Re p > 1 Im w 1 

Re p > pm w I 

(12) eAtsinrot~(P-~2+ 002 , Rep>(ReA.+IImroj) 

(13) e1t cos rot~ (p_!;:p~w~, Rep> (ReA.+ I Im w I) 

4 sin rot • " p R I I I (1) -t-o;=2 -arctanc;, ep> moo 

{ 1, 2k-t::::;;t<(2k+1) 't} . 1 P" 

<15) -1, (2k+1) -r::;;;;t< (2k+2),; • -;tanh 2• 

k=O, 1, 2, ••• 

16) I · t I • 00 h pn R I I I ( sm w 'F p•+ro• cot 200 , e p > m w 

(17) e-"1 t1 • • ~n e!: ( 1-11> ( J" ) ) 
-!It 1 

(18) :,- ~"""""' .. r= 
r nt y P+" 

e-211 Vt • 1 as ( ( a ) ) 
(19) Y:tt o;=YPeP 1-11> Jfj) 

(20) J 0 (at)~ y 1 
a•+ps 

t 

(21) J 0 (2 Yt). · _..!._ e --p 
p 

(22) J (t) • (Jfpq:t"-p)n 
n • VP2 +1 

(23) Si t~ ! { ~ -arctan p) 

(24) II> (vat) ~ va 
PYP+" 

(25) 1-ll> (~) ~_.!._ e-a Vii 
2 v'"t • P 

Rep>O 

For real values of the parameters in the function f (t) in formu­
las (17) to (25), the transforms of the corresponding functions are 
definitely defined in the domain Re p > 0. 
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8.2. Determining the Original Function from 
the Transform 

In this secfion we consider methods for determining the original 
function from a given transform, and we also give certain sufficient 
conditions under which a given function F (p) of the complex va­
riable p is a transform of the function f (t) of the real variable t. 

First, note that there are various tables of transforms of the most 
frequently occurring functions, so that when solving practical prob­
lems it is often possible to find, in reference works, the expression of 
the original function for the transform obtained. 

Second, the properties of transforms (1) to (9) that were given 
in the preceding section enable one, in many cases, to solve the in­
verse problem of constructing the original function from a given 
transform. This applies above all to the shift theorem, integration 
and differentiation of transforms and to the transform of a convolu­
tion of functions. A number of examples were already considered in 
Section 8.1, others will be added later on. 

However, all these methods are actually trial and error methods. 
The basic aim of this section is to give a general method for const­
ructing the original function from the transform. 

a. Mellin's formula 

We begin with the case when it is known that the given func­
tion F (p) of the complex variable p is the transform of a piecewise 
smooth function f (t) with bounded order of growth If (t) I< Me01 ; 

the value of the constant a is given. It is required, from the given 
function F (p) to construct the desired function f (t). This problem 
is solved with the aid of the following theorem. 

Theorem 8.3. Let it be known that the given function F (p) in the 
domain Re p >a is the transform of a piecewise smooth function f (t) 
of a real variable t and possesses an order of growth a. 

Then 
x+ioo 

f (t) = 2~i ) eP'F (p) dp, x >a (8-58) 
x-ioo 

Proof. By hypothesis, the function f (t) exists and we know its 
order of growth. Consider the auxiliary function q> (t) = e-xt f (t), 
x >a. This is a piecewise smooth function which on any bounded 
interval of the t-axis has a finite number of discontinuities of the 
first kind and exponentially tends to zero as t -+ oo. It can be repre­
sented with the aid of the Fourier integral 

00 00 

q> (t) = 2
1n ) ~ ) q> (TJ) eiW-n> drj (8-59) 

-oo -oo 
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Putting into (8-59) the expression of the function <p (t) in terms of 
the sought-for function f (t), we get 

00 00 

e-xtj (t) = 2111 J as J e-XTJj (fJ) eiW-11> dfJ 
-co -co 

00 00 

= 2~ J ei~t as J e-<x+is) 11f (fJ) dfJ (8-60) 
-oo 0 

since f (fJ) = 0 for fJ < 0. 
Denote p = x + is and note that the inner integral in (8-60) 

is the given transform F (p) of the sought-for function f (t). Then 
the expression (8-60) becomes 

oo x+ioo 

f (t) = 2~ J e<x+it>t F (p) as= 2~t J ePtF (p) dp 
-oo x-ioo 

This proves the theorem. Observe that in formula (8-58) the inte­
gration is performed in the complex p-plane along a straight line 
parallel to the imaginary axis and passing to the right of the straight 
line Re p = a. The value of the integral (8-58) is independent of x, 
provided that the straight line of integration lies to the right of the 
straight line Rep = a. 

Formula (8-58) is often called Mellin's formula. In a sense, it 
is the inverse of the Laplace transformation [formula (8-2)1 since 
it expresses the original function in terms of a given transform. 
Note that since, in deriving the Mellin formula, we went from the 
unknown function f (t) itself to its Fourier integral, which converges 
to f (t) only at the points of continuity of this function, it also fol­
lows that formula (8-58) defines the function f (t) only at its points 
of continuity. 

To illustrate the application of this theorem, let us considE:'r the 
question of determining the transform of a product from the known 
transforms of the factors. 

Theorem 8.4. Letft (t). · F1 (p), Rep >a1 and/2 (t). · F2 (p), 
Re p > a2 • Then 

x+ioo 

j (t) =/, (t) /2 (t). 'F (p) = 2~i J F1 (q) F 2 (p-q) dq 
x-ioo 

x+ioo 

= 2~i J Ft(p-q)Fz(q)dq (8-61) 
x-ioo 

and the junction F (p) is defined and analytic in the domain Re p > 
> a1 + a2 , and integration is performed along any straight line paral-
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lel to the imaginary axis lying to the right of the straight lines Re p = a1 

and Be p = a2 • 

Proof. Since the function f (t) satisfies all the existence conditions 
of a transform, the following Laplace transformation holds: 

00 

I (t) • • F (p) = J e-Pt ft (t) / 2 (t) dt (8-62) 
0 

If in (8-62) we represent the function /1 (t) in the form of its Mellin 
integral (8-58) and change the order of integration, which is pos­
sible due to the uniform convergence of the given improper integ­
rals dependent on a parameter, we get 

oo x+ioo 

F (p) = 2~i J e-Ptf2 (t) dt J &t F 1 (q) dq 
0 :a:-ioo 

x+ioo oo 

= 2~t J Ft (q) dq J e-<p-q>'f2 (t) dt 
:a:-ioo 0 

x+ioo 

= 2~t J Fs(q)F2 (p-q)dq (8-63) 
x-ioo 

Note that in (8-63) Re q = x > a1 , and the function F 2 (p - q) 
is defined for Re (p - q) > a2 , whence Re p > a1 + a2 • If in (8-62) 
we replace the function / 2 (t) according to the inversion formula, 
we can get the second equality in (8-61). The theorem is proved. 
It will be seen that this theorem is, in a sense, the converse of Prop­
erty 6. 

Example 1. Let f 1 ( t) = cos rot, f 2 ( t) = t. Find the transform of 
the function f (t) = t cos rot. 

Since cos rot~ 2 ~ 2 , t . · ~, it follows that p (l) p 

(8-64) 

where Re p > I Im ro I and the integration is performed along any 
straight line parallel to the imaginary axis and lying to the right 
of the straight line Re q = I Im ro 1. For such a straight line of 
integration we choose the straight line passing to the left of the 
point q = p, and consider (in the complex q-plane) the closed con­
tour r, which consists of the segment [x- iR, x + iR] of the given 
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straight line and the arc of the semicircle I q - x I = R completing 
it in the right halfr.plane. Within the given contour, the integrand 
function of (8-64) is everywhere analytic except at the point q = p, 
which is a second-order pole of the given function. The point q = oo 
is a third-order zero of this function. Therefore, by virtue of Lem­
ma 1, Chapter 5, the value of the integral (8-64) is determined by 
the residue at a singular point of the integrand function. Noting that 
the contour r is traversed in the negative direction, we find 

And so 

(8-65) 

b. Existence conditions of the original function 

Here we will consider certain sufficient conditions under which 
a given function F (p) of the complex variable p is the transform 
of some function f (t) of the real variable t, and will show how the 
latter may be found. 

T hem•em 8.5. Let a function F (p) of the complex variable p = 
= x + iy satisfy the following conditions: 

(a) F (p) is an analytic function in the domain Re p >a; 
(b) in the domain Rep >a, the function F (p) tends to zero as I p I -+ 

-+ oo uniformly in arg p; 
(c) for all Re p = x >a the following integral* converges: 

x+ioo 

J I F (p) I dy < M, x > a (8-66) 
x-ioo 

Then F (p), for Re p >a, is the transform of the function f (t) o/ 
the real variable t, which is defined by the expression 

x+ioo 

f(t)= 2~i J ePtF(p)dp, x>a (8-67) 
x-ioo 

Proof. And so we have to prove that the integral (8-67) is the orig­
inal of the function F (p). First, the question arises as to the exist-

• The integral (8-66) is an improper integral of the first kind of the real 
function I F (p) I along the straight line Rep = z. 

16-3878 
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ence of this improper integral.* Clearly 

x+ioo x+ioo 

j 2~i J eP1F(p)dp~~ 2~ J leP1F(p)J•Idpl 
x-ioo z-ioo 

(8-68) 

whence follows the convergence of the integral (8-67) for any x >a. 
We note, for the sequel, that from the evaluation (8-68) there fol­
lows the uniform convergence of the integral (8-67) with respect to 
the parameter t on any finite interval 0 ~ t ~ T. 

In order to prove that the integral (8-67) is the original of the 
given function F (p), we have to establish that: 

(1) the integral (8-67) is independent of x and defines the func­
tion I (t) of the variable t alone; and this function has a bounded order 
of growth; 

(2) for t < 0 I (t) == 0: 
(3) the given function F (p) is the Laplace transform of the func­

tion f (t). 
We now prove each of these propositions. 
(1) In the domain Re p >a, consider a closed contour r con­

sisting of segments of straight lines [x1 - iA, x1 + iA] and [x2 -

- iA, x2 + iA] parallel to the imaginary axis, and of the straight 
lines connecting them [x1 - iA, x2 - iA], [x1 + iA, x2 + iA], 
which are parallel to the real axis (Fig. 8.1). Here, A >0, x1 , x2 

are arbitrary numbers greater than a. Since the function F (p) is 
analytic in the domain Re p >a, then by the Cauchy theorem the 
integral of the function eP1F (p) around the contour r is zero. Let A 
tend to infinity and let x1 and x2 remain fixed. Then by condition 
(b) of the theorem, the integrals over the horizontal segments of the 
integration path will in the limit yield zero whereas the integrals 
over the vertical straight lines will pass into the integral (8-67). 
This yields 

xt+ieo> xz+i.., 

J ePtF (p) dp = J ePtF (p) dp 
Xt-ioo xz-ioo 

• The improper integral (8-67) is calculated along the straight line Rep == 1% 

and is to he taken in the sense of the principal value, i.e. 

x+i.., x+iA 

J ePIF (p} dp= lim l ePtF (p) dp 
A-+oo J 

x-foo x-iA 
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which, since x1 and x 2 are arbitrary, proves proposition (1). Thus, 
the integral (8-67) is a function of only the single variable t. It will 

.Y .r.+iA .r. +iA 1 2 

p=O .r-a 
.r 

.r,- LA .r2 -iA 

Fig. 8.1 

be noted that from the evaluation (8-68) it immediately follows that 
the integral (8-67) is a function of bounded order of growth with 
respect to t, and the index of the order of growth of this function is a • 

!I .r+iR 

p=O x=a 

x-i/1 

Fig. 8.2 

(2) Consider the value of the integral (8-67) for t < 0. To do this, 
consider, in the domain Re p >a, a. closed contour C consisting of 
the straight-line segment [x- iR, x + iR], x >a, and of the are 
Ciz of the semicircle I p - x I = R completing it (Fig. 8.2). By the 

16• 
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Cauchy theorem, the integral of the function eP'F (p) over the given 
contour is zero. By the remark concerning the Jordan lemma (see 
Chapter 5, page 135) the integral over the arc Cjz tends to zero for 
t < 0 as R -+ oo. Therefore 

x+ioo 

f(t)= 2~i J eP1F(p)dp=a0, t,<O, Rep>a {8-69) 
x-ioo 

and the assertion (2) is proved. 
(3) Construct the Laplace transform of the function (8-67) and 

consider its value for some arbitrary p0 , where Re Po >a: 

oo oo x+ioo 

J e-Pott (t) dt = 2~i J e-Pot dt J ePtF (p) dp (8-70) 
0 0 x-ioo 

The inner integral in (8-70) is independent of x. Choose a value of x 
that satisfies the condition a< x < Re Po and change the order of 
integration. This· is possible by virtue of the uniform convergence of 
the corresponding integrals. We get 

oo x+ioo ao 

J e-Potf (t) dt = 2!i J F (p) dp J e-Cpo-Pl t dt 
0 x-ioo 0 

x+ioo 

--1 lF()~ 
-2:rti J p Po-P 

(8-71) 
x-ioo 

The integral (8-71) can be computed with the aid of residues, since 
by condition (b) of the theorem, the integrand function, as I p I -+ oo, 

tends to zero faster than the function .i. . Therefore, taking into account 
p 

that the only singularity of the integrand function-a first order 
pole-is the point p = Po and, upon completion of (8-71) in the 
right half-plane, the integration is performed in the negative direc­
tion, we obtain 

00 

f (t) ~ J e-Potf (t)dt = F (Po) 
0 

(8-72) 

Since p0 is an arbitrary point in ·the domain Re p >a, the theorem 
is proved. The integral (8-67) naturally coincides with Mellin's 
formula (8-58) which was derived on the assumption of the existence 
of an original function. We have thus established certain sufficient 
conditions under which a given function F (p) of the complex vari­
able p is a transform. 
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c. Computing the Mellin integral 

In many cases of practical importance, the integral (8-58), (8-67), 
which yields an expression of the original function in terms of the 
given function F (p) of a complex variable, may be computed with 
the aid of earlier considered (see Chapter 5) methods of computing 
contour integrals of functions of a complex variable. Let F (p), 
originally specified in the domain Re p >a, be analytically extended 
to the entire p-plane. Let its analytic continuation satisfy, for 
Re p < a, the conditions of Jordan's lemma. Then for t > 0 

) ePtF (p) dp-+ 0, R-+ oo (8-73) 
c·R 

where Ciz is the arc of the semicircle I p - x I = R in the left­
hand half-plane. In this case, the integral (8-67) may be computed 
with the aid of the calculus of residues. Let us consider some exam­
ples. 

(I) 

Example 2. Find the original function of F (p) = P2 +co2 , 

Rep> 0, ro2 > 0. Since the conditions of Theorem 8.5 are fulfilled, 

x+ioo 

F (p) •• f(t)=2~i ) ePt p2~ro2 dp, x>O 
x-ioo 

The analytic continuation of the function F (p) into the left half­

plane Re p < 0, the function P2~ro2 , satisfies the conditions of the 
Jordan lemma and has two singularities-poles of the first order for 
p1, 2 = ±iw. Therefore, for t ~ 0, 

2 . t ) 0 

[ ro J roe'ro ooe-twt f (t) = ~ Res ePt P2+ 002 , Pk = """""2i00- 2100 =sin rot, 
1&=1 

The conditions of Theorem 8.5, in particular (c), are sufficient 
conditions for the existence of the original function of the func­
tion F (p), analytic in the domain Re p >a. It is easy to indicate 
examples which show that if this condition does not hold, ·then the 
function F (p) can still be the transform of some function of a real 
variable. 

Example3. Find the original function of the function F (p) = Pa.~t, 
-1 < a < 0, Re p > 0. This function is multiple-valued in the 
domain under consideration. For the function F (p) we will take 
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that branch of the given multipl~-valued function which is a direct 
analytic continuation into the domain Re p > 0 of the real func-

tion :+t of the real variablex >O. Then we will obviously have to take 
z 

arg p = 0 for p = x, x > 0. 'rhe function F (p) does not satisfy the 
condition (c) of Theorem 8.5. However, we will show that the func­
tion 

x+ioo 
t r t f (t) = 2ni J eP1 ~ dp, x > 0 

x-ioo p 
(8-74) 

is the original function of the given function F (p). 
The analytic continuation of F (p) into the left half-plane 

Rep < 0 is a multiple-valued function having as branch points the 

!I 

-R C' I" 'P Rep=x 

x-ER' 

Fig. 8.3 

points p = 0 and p = oo. In the domain @J, which is the complex 
p-plane cut along the negative real axis, we will consider that 

branch of the multiple-valued function a.~t , which is the immediate 
p 
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analytic continuation of the function F (p) originally specified in 
the right half-plane Re p > 0. In the domain ~ we consider a closed 
contour r consisting of a straight-line segment [x - iR', x + iR'], 
x > 0, of the segments -R < x < -p on the lips of the cut and 
of the arcs of the circle C~, I p I = p which complete them, and of 
the arcs of the circle CR, I p - x I = R', connecting the lips of the 
cut with the vertical segment [x- iR', x + iR'] (Fig. 8.3). Since 

the function eP' a.~t does not have any singularities in the do-
P 

main ~. by the Cauchy theorem the integral of this function around 
the contour r is zero. Let R' go to infinity, and p to zero. By virtue 
of the Jordan lemma, the integrals along the curves Cjl. will yield 
zero in the limit. Evaluate the integral around the circle C~, put­
ting p = peicp; 

" l_f_ r ePt__3!_ ~~-f- r etpcoscp dcp 
2nt J pa.+t 2npa. J 

c' -n p 

Since -1 <a; < 0, the integral aroood C~ will also tend to zero 
as p - 0. This leaves only the integrals along the straight-line 
segments of the contour of integration. Note that on the lower lip 
of the cut arg p = -n, on the upper lip, arg p = n. We thus get 

=+ioo 
I (t)·= ~ r ePt....2L 

2m J. pa.+t 
X-\00 

00 00 

= 2~i { e-ina. J e-=tx-a.-1 dx- ema J e-ll:tx-a.-1 dx} 
0 0 

00 

sin (-na;) r = n J e-=t.z-a.- t dx (8-75) 
0 

Making the change of variable of integration xt = s in the integ­
ral {8-75), we get 

I (t) = ta. sin < -na;) r (-ex) 
n 

Taking advantage of the equality 

r (-ex) r (1 +ex) n 
sin ( -na;) 
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we finally obtain the formula 

_1_ ~ I (t) - ta. 
pa.+i -;- - r (1 +a) 

(8-76) 

which is the inverse of the formula (8-18). This proves our assertion. 

Example 4. Find the original function of F (p) =.!. e--a.VP, a > 0, 
p 

Re p > 0. As in the preceding example, we consider that branch 
of the multiple-valued function VP which is a direct analytic contin­
uation into the domain Re p > 0 of the real function Yx of the 
real variable x > 0. It will be recalled that in this case we have to 
put arg p = 0 for p = x > 0. The analytic continuation of the 
function F (p) into the left half-plane Rep< 0 again has for branch 
points the points p = 0 and p = oo. We consider the domain @! -
the p-plane cut along the negative real axis. In this domain is 

defined the single-valued analytic function.!. e-aVii which is a direct 
p 

analytic continuation of the function F (p). We note that the func­
tion F (p), for Re p > 0, satisfies the conditions of Theorem 8.5, 
and its analytic continuation in the domain @! in the left half-plane 
Re p < 0 satisfies for t > 0 the conditions of the Jordan lemma. 
For this reason, if we choose the same contour of integration r as 
in the previous example and note that on the upper lip of the 

.n 
cut, argp=~. which yields p=£ein= -£, VP= V~e'2=iV~ 
and on the lower lip of the cut, arg p = - ~. which yields 

:r 

P=~e-in= -£, V:P=V~e-i 2 = -i"V~(~>O), we get 

x+iao _ 11 VP 

F (p) ~ j(t) = 2~, ) eP' ' P dp 
x-i.., 

Since 
.cp 

n ,,- •-
1 J icpe-a.ype2 lim- ePte ipeicp dq> = 1 

p-+O 2ni pe;cp 
-n 

it follows that 
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Change the variable in this integral, putting Y~ = x, taking into 
account that 

"" sinax i R dR -x-= J cost'x 1-' 

0 

and change the order of integration. We get 

"" a "" r e-~t sin~v~~=2) d~) e-tx2 cospxdx 
0 0 0 

It is easy to compute the inner integral in (8-77)*. It is 

Whence 
a fiB 

f(t)=1- .}- "Vr- I e-Tt dp 
v 1t 0 

Putting ,! = T], we finally get 
" 4t 

(8-77) 

F(p)=-1 e-a;Vii-..:t-<D ( a ), a>O, Re p>O (8-78) 
P • 2 "Vt 

where the function 
z 

<D (z} = ~ ~ e-112 d1) v 1t 0 

is the so-called error function. •• 

d. The case of a function regular at infinity 

(8-79) 

Let us examine one more special case when it is particularly easy 
to determine the original function for a given function F (p) of a 
complex variable. Let the analytic continuation of a function F (p), 
originally specified in the domain Re p >a, be a single-valued func­
tion in the extended plane of the complex variable p, and let the 
point p = oo be a regular point of F (p). This means that a Lau­
rent-series expansion of the function F (p) about the point p = oo 

• For example by differentiating with respect to a parameter. 
•• For a definition and the properties of the function (!) {z) see [17). 
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is of the form 
00 

F(p)= ~ ;~ (8-80) 
n=O 

When considering the properties of a transform, we noted that 
IF (p) 1-+ 0 as Re p -+ +oo. Therefore, in the expansion (8-80) 
the coefficient c0 is zero and 

00 

F(p)= ~ ~~ (8-81) 
n=i 

It is easy to find the function f (t) of the real variable t for which 
the function (8-81) is the transform. 

Theorem 8.6. If the point p = oo is a regular point of the func­
tion F (p) and F (oo) = 0, then F (p) is the Laplace transform of the 
junction of the real variable 

{ 
0, t<O 

j(t) = ~ tn 
Ll Cn+l Til, t >0 
n=O 

(8-82) 

where Cn are the coefficients of the Laurent-series expansion (8-81) of 
the junction F (p) about the point p = oo. 

Proof. Earlier (see page 116) it was shown that the coefficients of 
the expansion (8-81) are given by the formula 

Cn = 2~i J F (p) pn-i dp 
CR 

where C R is the circle I p I = R, exterior to which there are no sin­
gularities of the function F (p). Since the point p = oo is a zero of 

F (p), it follows that I F (p) I<~ or I z I > R. Therefore, the 
formula for rn yields 

lcni<MRn-1 

From this evaluation there follows the convergence of the series (8-82). 
Indeed, 

- - 00 I ""' tn I ~ Rn It In LJ Cn+l Til ~ ~ I Cn+tl nl < M ~ nl = M eRitl 
n-0 n==O n==O 

From this it follows that in a circle of any finite radius, the series 
(8-82) converges uniformly, thus defining some entire function of the 
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complex variable t: 
00 

f (t) = ~ Cn+l ~ 
n=O 

Note that we can regard the function f (t) defined by the formula (8-82) 
as the product of the function 7 (t) by the Heaviside unit function 
O'o (t). 

Multiplying f (t) by e-Pt and integrating term-by-term with re­
spect to t the uniformly convergent series (8-82), we get, on the basis 

of t" . • P:~~ (see 8-19), the relation 

~ 00 00 

~ Cn+l :~ :-- ~ Cn+l p~+t = ~ Cn•P-n = F (p) 
n-O n=O n'=l 

This proves the theorem 
Example 5. Let 

(8-83) 

F (p) = V P!+ 1 (8-84) 

This function has two singularities p1, 2 = ±i and is a single-valued 
analytic function about the point p =oo; as was shown above (see 
example on page 123), in the neighbourhood of this point the func­
tion F (p) may be expanded in a Laurent series: 

00 

F(p)= ~ (-1)1t 
(2k) 1 

221l (kJ)2 • plll+t 
lt=O 

And so formula (8-83) yields 

(8-85) 

The series on the right of (8-85) is the expansion of an extremely im­
portant special function called the Bessel function* of zero order: 

And so 

(8-86) 

• For definition and properties of the Bessel function see [17]. 
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Observe that by representing 

1 1 1 
p2+1 = yp2+1 

and taking advantage of the transform of the function sin t [see 
formula (8-22)], we get 

t 

J 1 0 (T) 1 0 (t-'t") d-r= sin t 
0 

on the basis of the convolution theorem. 
Example 6. Let 

1 _..!_ 
F(p)=---pe P 

This function evidently satisfies the conditions of Theorem 8.6, and 
00 

n=l 

Then 

( 2 ,rt) 21t 
1 00 00 v 

1 -- ~ tn ~ It -2- ,;--
p e P • • Ll ( -1 t Tnf)2 = Ll ( -1) (kl)2 = J 0 (2 r t) 

n=O lt=O 

8.3. Solving Problems for Linear Differential 
Equations by the Operational Method 

(8-87) 

In this section we consider the application of the methods of ope­
rational calculus to the solution of a number of problems for linear 
differential equations. 

a. Ordinary differential equations 

In Section 8.1 we saw how operational methods could be used to 
reduce the Cauchy problem with zero initial conditions for a linear 
differential equation to a simple algebraic problem involving the 
transform. Let us consider the more general Cauchy problem: 

a0y<nl (t) + a1y<n-h (t) + ... +any (t) = f (t) (8-88) 

Y (0) = Yoo y' (0) = Yt• • • ·, y<n-il (0) = Yn-l (8-89) 

where a0 , a1 , •• • , an, y0 , y1 , .•• , Yn-t are specified constants, 
f (t) is the given function of an independent variable t, which is 
assumed to satisfy all the existence conditions of a transform. (See 
page 221 on the existence conditions of a transform.) Since the prob-
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lem (8-88), (8-89) is linear, we can consider separately the solution of 
\he homogeneous equation with initial conditions (8-89) and the 
solution of the nonhomogeneous equation (8-88) with zero initial 
conditions. 

We begin with the first problem. It suffices to construct a funda­
mental system of solutions of the homogeneous equation (8-88). 
For this system we choose the solutions of the homogeneous equation 

a0'1j>j.n>(t)+a1'\j>~n-t)(t)+ ... +an'l!>h(t)=0, k=O, 1, ... ,n-1 
(8-90) 

which satisfy the initial conditions 
(i) k=O, 1, ... ,n-1 

'i'~t (0) =.Ski j = 0, 1' ... ' n -1 (8-91) 

where 

{ 1, k=j 
6/tJ = 0, k=l= j 

The functions 'l!>~t (t) clearly form a fundamental system, since their 
Wronskian determinant, for t = 0, is definitely nonzero. The solu­
tion of the problem (8-88), (8-89) for f (t) ==a 0 is expressed in the 
most elementary manner in terms of these functions: 

n-1 

Y (t) = 21 Y~t'l!>!t (t) 
k=O 

We apply the operational method to determine the functkns'lj>k (t). 
Bearing in mind that the function 'l!>~t (t) and all its derivatives up 
to order n satisfy the existence conditions of a transform,* we, by 
(8-91) and (8-38), get 

( • ur ( (i) ( • i [ 8kJ J 'l!>k t);-rk p), 'l!>~t t) ;-p 'l'~t(p)- pk+t , j=1,2, .•. ,n 

where 

- { 0, j::;:;;,k 
Bkj- 1, j>k 

Multiplying both sides of the equation (8-90) by e-Pt and integrat­
ing with respect to t, we obtain 

'l'k (p) ·Pn (p) = Pk (p) (8-92) 

where the polynomials Pn (p) and Pk (p) are equal, respectively, to 

Pn (p) = aoPn+alpn-1 + ... +an 

• .Indeed, the functions 'IJll (t), as solutions of the equation (8-90), are smooth 
funct10ns which at infinity do not grow faster than an exponential function with 
linear exponent. 



254 

and 

Ch. 8. Fundamentals of Operational CalcullU 

Pk (p) = aopn-<k+i) + alpn-tk+2> + ... + an-<k+l) 

From (8-92) 

'I' ( ) pk (p) 
k p = Pn (p) ' k=O, 1, ... ,n-1 

and, in particular, 
'I' ( ) Pn-1 (p) ao 

n-l p = Pn (p) = Pn (p) 

(8-93) 

(8-94) 

(8-95) 

Formula (8-95) will be used in the sequel. The originals of the func­
tions 'l'k (p) may be found by Mellin's formula: 

:t+ioo 

'f (p) __: ol, (t) = _1_ f ePt pk (p) dp X> a 
k • 'l'k 2nt J Pn (p) ' (8-96) 

:.:- ioo 

where the straight line x = a passes to the right of all singularities 
of the integrand function of (8-96). Since the function (8-94) is a 
ratio of two polynomials, only the zeros of the denominator Pn (p) 
(all of them are poles) can be its singular points. Besides, fort >0, 
the integrand of (8-96) obviously satisfies the conditions of the Jordan 
lemma in the left half-plane Re p < a. Therefore, 

n 

'ilk (t) = ~ Res [ eP' :: ~;~ , Pt J (8-97) 
i=1 

where the p 1 are zeros of the polynomial Pn (p). 
If all the zeros. p 1 of the polynomial Pn (P) are simple, then 

n 

by representing it in the form of a product Pn (p) =a0 II (p- PJ) 
i=t 

we get, from formula (8-97), 

where 

n 
'¢k (t) = ~ ak,eP1t 

t-1 

aki = 1-n 

ao IJ (p,- PJ) 
j=f( 

(8-98) 

(8-99) 

If the zeros p 1 of the polynomial Pn (p) are multiple, then 
the expansion of the polynomial is of the form Pn (p) = 

'm 
= a0 II (p- p 1)a.', where c:x1 is the multiplicity of the approp-

i=t 
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m 
riate zero and ~ a 1 = n. In this case, utilizing the rule for eva­

i=1 
luating the residue at a pole of order k > 1 and computing the 
derivative of the product by the Leibniz formula, we get 

m 

'IJlA (t) = ~ qAt (t) ePt' 
i=1 

(8-100) 

where the polynomials qAt (t) have the form 

qAt (t) = bo. Atta.l- 1 + bl, Ait.r;t - 2 + · • • + ba.1-1, Ai (8-101) 

and the coefficients bm, A, 1 are computed from the formula 

bm, A, t = ml (at_!m-1) :p: [ 1 ;:A (p) a: -L (8-102) 
ao fJ (P-PJ) J 

_ Ni - i 

Note that the zeros p 1 of the polynomial Pn (p) coincide with 
the zeros of the characteristic polynomial for the equation (8-90). 
Therefore, formulas (8-98) and (8-100) yield a representation of each 
of the particular solutions of equation (8-90), satisfying the initial 
conditions (8-91), in terms of the particular solutions of equation 
(8-90) which are obtained with the aid of the characteristic equation. 

Example 1. Solve the Cauchy problem 

y<IV) + 2y" + y = 0, y (0) = y' (0) = y" (0) = 0, y"' (0) = 1 

The obvious solution is the function 'iJ 3 (t), which can be found 
from formula (8-96): 

(8-103) 

The integrand function in (8-103) has two singularities P1. 2 = ±i, 
which are second-order poles. Therefore 

(t) _,..!_ [ pt 1 ] + d [ pt 1 ] 
Y - dp e <P+1)1 p=i dP e (P-1)1 P--i 

= ~ (sin t- t cost) (8-104) 

Let us now tackle the Cauchy problem with zero initial conditions 
for the nonhomogeneous equation (8-88): 

L [y (t)1 = I (t) 
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By virtue of the zero initial conditions, when we pass to the trans­
forms* Y (p) ~ y (t), F (p) ~ f (t) we obtain 

whence 
Y (p) Pn (p) = F (p) 

y (p) = F (p) 
Pn (p) 

(8-105) 

Since the function Y (p) is a transform, its original, by Theorem 8.3, 
may be found with the aid of the Mellin integral. However, in the 
given case we can dispense with computing this integral. Indeed, 

by (8-95) the function P~p) is the transform of the function 'li'n _1 (t)­
the solution of the Cauchy problem for the homogeneous equation 
(8-90) with initial conditions of a special kind: 

{i) 
'li'n-dO)=Bn-l.J• i=O, 1, ... ,n-1 

And so by the convolution theorem from (8-105) we get 
t 

Y(p) "y(t)=-1 f 'li'n-1 (t-T)/(T)d't • ao J 
0 

The function 'li'n _1 (t) is often called the unit point-source func­
tion for the equation (8-90) and is denoted by g (t). Using this nota­
tion, rewrite the solution of the Cauchy problem with zero initial 
conditions for the equation (8-88) as 

t 

Y <t> = - 1 r g <t- 't) t (t:) dt: ao J 
0 

Formula (8-106) is called Duhamel's integral.** 
Example 2. Solve the Cauchy problem 

y" + y =sin t, y (0) = y' (0) = 0 

(8-106) 

• Note that for the existence of the transform F (p) of the right side of 
equation (8-88)-of the function f (t)-the behaviour of this function as t-+ oo 
is in many cases inessential. Indeed, we are often interested in the solution of 
(8-88) only over a hounded interval of time 0 ~ t ~ T, which solution is fully 
determined by specifying the function f (t) on this interval and is independent 
of the behaviour of the function f (t) for t > T. We can therefore vary the val­
ues of the function f (t) any way we please for t > T, provided the conditions 
for the existence of the transform F (p) of the function f (t) are fulfilled. For 
example, we can put f (t) = 0 for t > T. (We stress the fact that for the de­
termination of the transform F (p), the function f (t) must he specified over the 
entire infinite interval 0 ~ t < oo.) We then, of course, obtain different trans­
forms, hut their original functions naturally coincide for t ~ T. One should 
bear in mind that this situation refers not only to the case of equation (8-88), 
but also to many other physical problems in which. the solution is sought in a 
restricted interval of time variation. 

** On the use of Duhamel's integral in problems of mathematical physics, 
see [17]. 
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Find the function g (t): 

,.+g=O, g(O)=O, g'(0)=1 

By formula (8-95), for its transform G (p) we get 

1 
G(p)= p2+1 

257 

Whence by the table of transforms we find G (p) . · sin t and thus 

' 
y (t) = J sin (t-:-'t') sin 't d't'=--}- (sin t- t cost) 

0 

b. Heat-conduction equation 

Let us consider the operational method in the solution of boundary­
value problems for the heat-conduction equation in the case of the 
propagation of the boundary conditions over a semi-infinite rod. 

Let it be required to find the temperature distribution in a semi­
infinite rod 0 < x < oo if from an instant t = 0 onwards a speci­
fied temperature regime is maintained on the left end x = 0. The 
rod is at an initial temperature of zero. Mathematically, the prob­
lem consists in determining the solution u (x, t), bounded for 0 ~ 
~ x < oo, t ~ 0, of the equation 

Ut = a11Uzz• X >0, t >0 

with the supplementary conditions 

u (x~ 0) = 0, u (0, t) = q (t) 

(8-107) 

(8-108) 

where q (t) is a given function of time, which we will assume satisfies 
the existence conditions of the Laplace transformation. Suppose that 
the desired solution u (x, t) and also its derivatives that enter into 
equation (8-107) satisfy the existence conditions for the Laplace trans­
formation with respect to t; and the conditions of bounded order of 
growth, with respect to t, of the function 11- (x, t) and its derivatives 
are independent of x. We then have 

u (x, t) ~ U (x, p) 

Ut (x, t) ~ pU (x, p) 

Uzz (x, t) ~ Uz:r. (x, p) 

(8-109) 

·The second of the formulas (8-109) is obtained with account taken 
of the zero initial condition (8-108). The last of the formulas (8-109) 
is valid due to the fact that the assumptions are sufficient for com-
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puting the derivatives of the improper integrals dependent on a para­
meter by differentiation of the integrand functions with respect to 
the parameter. 

Now passing to transforms, for the function u (x, t) we get the 
boundary-value problem for the transform U (x, p) in place of the 
problem (8-107), (8-108): 

Uxx(x, p)-4-U(x, p)=O a 

U(O, p)=Q(p), IU(x, P)I<M 

(8-110) 

(8-111) 

This is a boundary-value problem for an ordinary differential equa­
tion; in this problem the variable p plays the role of a parameter. 
It is easy to see that the solution of the problem (8-110), (8-111) 
has the form 

- vP% 
U ( x, p) = Q (p) e a (8-112) 

The solution u (x, t) of the original problem may be found from its 
transform (8-112) with the aid of the Mellin formula; however, in 
the case of the arbitrary function Q (p), computation of the appro­
priate integral can involve considerable difficulties. It is therefore 
natural to attempt to avoid direct evaluation of the Mellin integral 
in determining the original of the function (8-112). Note that above 
we found the original function for the function (see Example 4, p. 248) 

00 

- 1 e-a:Vv '1-<D(~)=~ I e·112 dTJ (8-113) 
p • 2 Yt y TC J 

a: 

zvt 
{- V1ix) 1 

Therefore, representing U (x, p) = Q (p) · p · e a P and taking 

into account that by (8-113) 

VP 
_1 e--a x '1-<D( x -)=G(x t) 
P ' 2a 1ft ' 

(8-114) 

on the basis of the theorems of the transform of a derivative and a 
convolution, we get 

t 

U (x, p). · u(x, t)= J :t G (x, t-T) q (T) dT 
0 

Substituting the explicit expression (8-114) of the function G (x, t) 
and differentiating, we get an expression of the solution of the prob-
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lem* (8-107), (8-108) in the form 

z Jt - x2 q (T) u (x, t) = _ e 4al(t-'t) d1: 
2a V 1t (t-T)3/2 

0 

c. The boundary-value problem for a partial 
differential equation 
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(8-115) 

The method described in Subsection 8.3.b may be formally extend­
ed to the solution of the boundary-value problem for a partial 
differential equation of a more general type. 

Consider the equation 

Pn [u (x, t)] - L 2 [u (x, t)] = f (x, t) (8-116) 

where Pn [u] is a linear differential operator with constant coeffi­
cients of the type 

o11 u an-lu au 
Pn [u] = ao atn + al atn-t + ... + an-1 8t 

L 2 (u) is a linear differential operator of the second order** of the 
type 

the coefficients bi (x) of which are functions of only one independent 
variable x; f (x, t) is a given function of the variables x and t, which 
is sufficiently smooth in the domain of solution of the problem. We 
will seek the solution u (x, t) of the equation (8-116) in the domain*** 
t > 0, a< x < b, which solution satisfies the initial conditions 

au an-lu 
u(x, 0)=<p0 (x), Tt(x, O)=<pt(x), ... , atn-t (x, O)=<rn-dx) 

and the boundary conditions 

a 1 ~~ (a, t) + ~1u (a, t) = 'iJdt), a2 : (b, t) + ~2u (b, t) = 'IJ2 (t) 

• Observe that this expression is obtained on the assumption that a solution 
exists; thus, the foregoing reasoning amounts to a uniqueness proof of the solu­
tion of the given problem in the class of functions under consideration. If the 
existence of a solution of the problem is not known beforehand, then it is neces­
sary to demonstrate that the formally obtained expression (8-115) is indeed a 
solution of the problem at hand. 

•• The method at hand does not depend on the order of the differential ope­
rator L (like P); however, because of its special importance and for vividness 
of exposition we confine ourselves to the case of the second-order operator L. 

u• This method can also be applied when a= - oo or b =+ oo or, simul­
taneously, a = - oo, b = + oo. 
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We assume that the initial and boundary conditions of the problem 
and also the function I (x, t) are such that there exist Laplace trans­
forms, with respect to t, of the function u (x, t) and of all its deriva­
tives that enter into the equation (8-116): 

00 

u (x, t). · U (x, p) = J e-Ptu (x, t) dt 
0 

00 

2.!::_ _:_ f e-Pt !!::._ (X t) dt 
iJz • J iJz ' 

0 

(8-117) 

and so forth; and let us suppose that the conditions involving bound­
ed order of growth, with respect to t, of the function u (x, t) and 
its derivatives are independent of x. Then, since the integral (8-117) 
is uniformly convergent in the parameter x, we get 

ou • iJU iJ2u • iJ2U 
iJz (x, t);-h(x, p), a7(x, t) :- iJz2 (x, p) 

and 

::~ (x, t). • F''U (x, p)- p''-1cp0 (x)- p"-2cpi(x)- .•. - cpk-dx) 

Besides, we assume that there exist transforms, with respect to t, of 
the functions I (x, t), 'lj>1 (t) and '1)>2 (t): 

I (x, t) • • F (x, p), '1)>1 (t) • · '1'1 (p), '1)> 2 (t) • • '1'2 (p) 

Then, taking transforms in equation (8-116), we get for the function 
U (x, p) an ordinary differential equation with respect to the inde­
pendent variable x: 

-Pn (p) U (p) + L 2 [U (x, p)] = -F (x, p)- F 0 (x, p) (8-118) 

where 
n-1 

Fo (x, p) = ~ Pk (p) cpn-k-1 (x) 
k=O 

and the polynomials P., (p) are defined by formula (8-93). 
Equation (8-118) has to be solved with the boundary conditions 

a 1 Ux (a, p) + ~1U (a, p) = '1'1 (p) 

a 2 Ux (b, p) +~:aU (b, p) = '1'2 (p) 
(8-119) 

The boundary-value problem (8-118), (8-119), in which p plays the 
role of a parameter, is solved by the usual methods of solving boun­
dary-value problems for ordinary differential equations. The inverse 
transformation from transform U (x, p) to the solution of the origi­
nal problem may be performed with the aid of the inversion formu­
la (8-67). 
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SADDLE-POINT METHOD 

The saddle-point method is widely used for constructing asymp­
totic expansions* of certain contour** integrals of functions of a 
complex variable. We consider integrals of the type 

F (A.)= ) <p (z) e"-f(z) dz (1-1) 
c 

where q> (z) and f (z) are functions of the complex variable z analytic 
in some domain @J containing the curve C, which may be unbound­
ed; A. is a large positive number. We assume that integral (1-1) 
exists and our aim will be to obtain an asymptotic expansion of the 
function F (A.) in inverse powers of the parameter A.. Integrals of type 
(1-1) are frequently encountered in studies of the integral represen­
tations of a number of special functions and also in the solution 
of many problems of mathematical physics and other divisions of 
mathematics. 

I.t. Introductory Remarks 

Let us begin with suggestive remarks. We consider the integral 
defining Euler's gamma function 

00 

f (p+ 1) = 1 XPe-X dX (1-2) 
0 

and we shall try to find an approximate expression for it for large 
positive values of p. Note that by putting xP = ePin~ we reduce 
integral (1-2) to integral (1-1). The integrand in (1-2) tends to zero 
as x - 0 and x - oo. Therefore the magnitude of the integral is 
mainly determined by the value of the integrand function ·in the 

• Recall that an asymptotic expansion of the function 1 (z) in the neigh-
N 

bourhood of a point z0 is a representation of the form I (z)= 11~ a11cp11 (z) + 
+ o (cpN(z)), where a11 are constant coefficients and the functions cp1 (z) as 
z- z0 satisfy the condition cp11+1 (z) = o (cp1 (z)). 

• • Following established practice, the contour of integration need not here 
be understood only as a closed curve. 
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neighbourhood of its maximum. Let us transform the integrand to 

(I-3) 

The function I (x) attains a maximum value at x = p, and 

I (p) =PIn p- p, /' (x) lx=p = 0, /" (x) lx=p = - ! (I-4) 

Expanding the function I (x) in a Taylor series in the 6-neighbour­
hood of the point x = p and taking only the first terms of the expan­
sion, we get 

P+~ 1 P+6 (x-p)l r pIn p-p- n=:-(x-p)2 r ---r (p + 1) ~ J e 2p dx = pP e-P J e 2p dx 
p-~ p-~ 

oo (x-p)2 

~ pPe-P J e --z:p- dx (I-5) 
-00 

The approximate equalities occur because the integrand is small for 
I x- p I > 6 and rapidly tends to zero. In (I-5) make a change of 

the integration variable, putting V 2~ (x- p) = y. Then 

00 

r (P+ 1) ~ V2p pPe-P J e-1/a dy = Y2np ( = r (I-6) 
-oo 

Formula (I-6) yields an approximate expression of integral (I-2) for 
large values of p. As will be shown later on, it is the first term of 
the asymptotic expansion of the integral (I-2). It is often called 
Stirling's formula. 

In deriving this formula we did not evaluate the accuracy of the 
approximations and so our considerations are only illustrative. 
Later on, we will estimate the accuracy of formula (I-6). For the 
present we offer some more remarks aimed at facilitating a grasp of 
the basic idea of the saddle-point method. Formula (I-6) expresses 
an approximate value of integral (I-2) in terms of the value of the 
integrand at the point of its maximum (pPe-P) and a certain addi­
tional factor corresponding to the length of the interval of integra­
tion on which the value of the integrand is sufficiently close to 
maximum. 

Let us examine integral (I-1), in which the integrand is analytic 
in the domain @! of the complex z-plane. This integral can also be 
approximately evaluated in terms of the maximum value of the 
modulus of the integrand function with account taken of the speed 
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of its decrease on the contour of integration. If the path of integration 
connecting the points z1 and z2 is such that on a small section of it 
the absolute value of the integrand reaches its maximum and then 
rapidly decreases, it is natural to suppose that the quantity thus 
found yields a good approximation. Since the function f (z) is ana­
lytic in the domain @J, then by virtue of the Cauchy theorem the 
value of integral (I-1) is determined solely by specification of the 
initial point z1 and the terminal point z2 of the path of integration 
and not by the type of curve C. It then follows that for a given integ­
ral (I-1) the possibility of its approximate evaluation with the aid 
of the methods under study is associated with the possibility of 
choosing a contour of integration that will satisfy the requirements 
indicated above. We are interested in the values of integral (I-1) 
for large positive values of the parameter '}., in the exponent of the 
exponential factor. It is therefore natural to expect that the major 
contribution to the value of the integral will come from those por­
tions of the path of integration on which the function u (x, y)­
the real part of the function f (z) = u (x, y) + iv (x, y)-attains the 
greatest values. We must also bear in mind here that the function 
u (x, y), which is harmonic in the domain @J, cannot attain an abso­
lute maximum at interior points of the domain; i.e. inside the do­
main @J there are no points at which the function u (x, y) can in­
crease or decrease in all directions. The surface of the function u (x, y) 
can only have saddle points. 

Let the point z0 = x0 + iy0 be the sole saddle point of the surface 
u (x, y) in the domain @J. Let us consider lines of constant value 
u (x, y) = u (x0 , y0 ) = constant of the function u (x, y) which pass 
through this point. By virtue of the maximum principle for harmon­
ic functions (see [17]), these lines cannot form closed curves (we do 
not consider the trivial case f = constant in @J); that is, they either 
end at the boundary of the domain @J or recede to infinity in the case 
of an unbounded domain. The curves u (x, y) = u (x0 , y0) partition 
the domain @J into sectors within which the values of the function 
u (x, y) are, respectively, either less or greater than u (x0 , y0). We 
call the former sectors negative, the latter, positive. 

If the end points z1 and z2 of the integration curve lie in one sector 
and the function u (x, y) at these points takes on different values, 
then it is obviously possible to deform the contour so that the func­
tion u (x, y) will vary monotonically on it. Here, the dominant 
contribution to the value of the integral is made by the neighbour­
hood of that end point at which the'value of the function u (x, y) is 
greatest. The same occurs when z1 lies in!J the positive sector and z2 

lies in the negative sector or vice versa. The saddle-point method 
is employed when the points z1 and z2 lie in different negative sectors, 
which fact enables one to choose a contour of integration passing 
through the saddle point x0 , y0 on which the function u (x. y) is 
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maximum at the point x0 , y0 and rapidly decreases in the direction 
of the end points. In this case, clearly, the dominant contribution to 
the value of integral (1-1) will be made by a small section in the 
neighbourhood of the saddle point, which section may be chosen the 
smaller the faster the values of the function u (x, y) decrease along 
the integration curve. The saddle-point method is also sometimes 
called the method of steepest descent. This "mountaineering" terminol­
ogy has to do, most likely, with the topography of the surface of 
the function u (x, y) in the neighbourhood of the saddle point. Let us 
now estimate the accuracy of the method by means of which the 
asymptotic formula (1-6) was obtained. We will also establish anum­
ber of propositions underlying the saddle-point method. 

1.2. Laplace's Method 

We prove a number of auxiliary propositions underlying the so­
called Laplace method of asymptotic representation of integrals of 
functions of a real variable. 

Lemma 1. For p >0 and as A - oo we have the asymptotic for­
mula* 

f xP-te-:c dx = r (p) + 0 ( e- ~ ) 
0 

(1-7) 

Proof. We evaluate, for p > 1, the integral •• 

~ ~ A 

J e-xxp-t dx = e-A J e-ll (y + A)P-1 dy < e-A { ) (2A)P-t e-ll dy 
A 0 0 

~ 

+ J (2y)P-te-lldy} =e-A{(2A)P-i(1-e-A)+2P-tr(p)} (J-8) 
0 

Whence (1-7) follows for AP < eA/2. 

• The symbol 0 (tl), or more generally, 0 (tn) in an expansion of the form 
n-1 

q>(t) = ~ c1/ll. + 0 (tn) implies that for 1 t I ~ ~ we have the uniform evalua­
k=O 

n-1 
tion I q>(t) - ~ c11 tll 1 < C I t In, where C is a constant. 

k=O 
~ ~ 

** For 0 < p,;;;;; 1 J e-xzp-1 dx ,;;;;; J e-x dx= e-A. 
A A 
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In what follows a prominent role will be played by integrals 
of the form 

a 

<I> (A.)= J q> (t) e-~t2 dt, 0 <a< oo 
-a 

The following lemma is valid. 
Lemma 2. Let the function q> (t) for I t I ~ 6 be representable in 

the form 
q> (t) =c0 +c1t+O (t2) 

and for some A.0 > 0 let the integral 
a 

. j I q> (t) I e-~ot'dt< M 
-a 

converge. Then for A.> A.o the asymptotic formula 

(1-9) 

(1-10) 

a -

<l> (A.)= J q> (t) e-UII dt =Co -v ~ +0 (A. -S/2) (1-11) 
-a 

holds true. 
Proof. The principal term of formula (1-11) is readily obtainable 

from the following suggestive reasoning. If the function q> (t) is bo­
unded for I t I >a, then it is natural to expect that the value of 
integral (1-11) will change but slightly if the limits of integration are 
changed: -a to -oo and a to oo. Then the first term in the expan­
sion (1-9) yields the principal term of formula (1-11), the integral 
of the second term is zero due to the oddness of the integrand, and 
it remains to evaluate the remainder term. It is this evaluation and 
the possibility of the indicated change of limits of integration that 
comprise the basic content of the lemma. We now begin a rigorous 
proof. 

Split up the integral <I> (A.) into three terms: 
-II II a 

<I> (A.)= J q> (t) e-~t2 dt+ j q> (t) e-'-t1 dt+ J q> (t) e-Mil dt (1-12) 
-a -0 0 

where 6 > 0 is some fixed number. Evaluate the last term: 
a a I J q>(t)e-~t2 dtl~e-<~-'-o>01 J lq>(t)le-'-of'dt 
0 II . 

~Me~61 ·e-M11 =0(e-M1) (1-13) 

Here we took advantage of the condition (1-10) and the obvious ine­
quality 

J..t2 =J.62+A. (t2-62) > J.62+ Ao (t2-62) = (A.-A.o) fJ2+A.ot2 
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that occurs for '}.. > f.. 0 , t > l>. Analogously, we evaluate the first 
term in (1-12). It then follows that for sufficiently large '}.. the prin­
cipal contribution to the value of the integral <D (A.) is made by the 
second term, whereas the extreme terms in (1-12) tend to zero expo­
nentially as '}.. -+- oo. 

Let us examine the principal term in (1-12). Putting in place of 
q> (t) its expansion (1-9), we get 

ll 

<D2 (f..) = ) q> (t) e-"-12 dt 
-ll 

ll 6 ll 

= c0 J e-M2 dt + c1 J e-M2t dt + J 0 (t2) e-~12 ilt 
-ll -6 -ll 

(1-14) 

Due to the oddness of the integrand, the second integral in (1-14) 
is zero. To evaluate the first integral, make a change of variable, 
putting A,t2 = 't. We get 

6 ll 1..1\2 1 

J e-"-12 dt = 2 ) e-"-12 dt = 1 ~ J 't -Te-'" dt: 
-6 0 v 0 

(1-15) 

But by virtue of Lemma 1, as f..-+- oo, we have the asymptotic 
formula r ,- :._, d<~ r(!) +O(e- '!') ~ Vii+O(e- ':') (1-16) 

1../)2 

Since for any fixed 6 the function e --2- tends to zero faster than 
}., -S/2 as '}..- oo, we can write 

(1-17) 

It remains to evaluate the last term in (1-14): 
ll ll ll 

J 0 (t2) e-M' dt < C J t2e-"-11 dt = 2C J t;2e-"-12 dt (1-18) 
-ll -ll 0 

In integral (1-18) again make the change of variable A.t2= 't. Then 
we have 

(1-19) 
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Integral (I-19) also satisfies the conditions of Lemma 1. Therefore we 
finally obtain 

! O(t2 )e-112 dt=C r~~) +O(e-~2 )=0().-:) (I-20) 
-0 

Formulas (I-13), (I-17) and (I-20), after their substitution into (1-12), 
prove the lemma. 

A number of remarks are in order regarding this lemma. 
Note 1. Repeating the earlier arguments, it is possible to prove 

that if the function q> (t) for I t 1 :::;;;: 6 is expandable in the Taylor 
series 

n-1 

q> (t) = ~ Ckf!' + 0 (tn), Ck = cp<~l (O) 

k=O 

then we have the asymptotic expansion 

(I-21) 

( n+t) + 0 ). --2- (I-22) 

where the symbol [ n-;1 J denotes the greatest integer less than 
n-1 

or equal to - 2-. 

In particular, for n = 1, when the expansion of the function 
q> (t) is of the form q> (t) = c0 + 0 (t), the remainder term in for­
mula (I-22) is of the order A. -I, since in the evaluation of the remain­
der the main role is played by the integral 

0 0 6 

J 0 (t) e-"-'2 dt < C J 1 t 1 e-).t2 dt = 2C J te-).tz dt 
-0 -0 0 

Note 2. The lemma holds true also for the case wh!'ln the integra­
tion is performed over the interval [a1 , a2 ], where a1 < 0, a2 > 0 
and -a1 =/= a2 • The next remark is so essential for what follows that 
we state it in the form of a separate lemma. 

Lemma 3. On the interval I t 1:::;:;:60 let the functions q> (t) and 1.1. (t) 
be representable in the form 

q> (t) = c0 + c1t + 0 (t2) 

f.l. (t) = C3t3 + 0 (t4) 

(1-9) 

(I-23) 
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and as A. -+ oo let the function 6 (A.) ~ 60 satisfy the conditions* 

A.l)2 {A.) ... oo, J.63 (A.)- 0 {1-24) 

Then as A.-+ oo we have the tzsymptotic formula 

~~ -
I {A.)= j q> {t) e"l-tl+ll(t)] dt =Co V ~ +0 (A - 312) {l-25) 

-"<"> 
Proof. It is easy to see that if the conditions (1-9), (1-23) and (1-24) 

are fulfilled on the interval I t I ~ 6 (A.), the following equality 
holds: 

q> {t) e"ll<t> =Co+ c1t + c0c~A.t3 + 0 (t2) +0 {A2t8) + 0 (A.t') (1-26) 

Then, repeating the argument given in the proof of Lemma 2, we 
find that upon substitution of the expansion (1-26) into formula (1-25) 
the first term, by condition (1-24), yields the principal term of the 
right side of (1-25); the second and third terms of the resulting expres­
sion vanish due to the oddness of the integrands; the last three terms 
are infinitesimals of the same order 0 (A. -311). The lemma is proved. 

These lemmas enable us to prove the following theorem which 
underlies the Laplace method of the asymptotic expansion of inte­
grals of functions of a real variable. 

Theorem :I .1. Let a function f ( t) given on the interval [a, b 1 attain 
its absolute maximum at some interior point t0 , f" (t0) < 0, and let 
there be a 60 > 0 such that for I t - t0 I < 60 the following represen­
tation holds: 

I (t) =I (to)+ r ~to> (t- tol2+ f.L (t) (1-27) 

Then, if the functions q> (t) and f.L (t) for I t - t0 I ~ 60 satisfy the 
conditions of Lemma 3, i.e. 

q> (t) = c0 + c1 (t - t 0) + 0 [(t - t0) 1 ] 

f.L (t) = c3 (t - t 0) 3 + 0 [(t - t0)'1 
(1-9) 

(1-23) 

the asymptotic formula 
b 

'I' (A.) = ~ q> (t) e"f<t> dt = e"f(to> { V- 1)7to) q> (t0) + 0 (A- 312) } 
a 

(1-28) 

holds if the following supplementary conditions are fulfilled: 

• As is readily seen, the function 6 (~) = ~ - 21" for example satisfies the 
conditions (1-24). 
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(a) for a given 60 the following relations are fulfilled simultaneously: 

for lt-tol~llo l!1(t)1<- rlto) (t-to) 2 

for jt-t0 1>60 f(t0)-f(t)~h>0 

(b) for some Ao > 0 the integral 

b 

) liP (t) I e'Aof(t) dt~M 
a 

converges. 

(I-29) 

(J-30) 

Proof. Let us split the integral in (1-28) into a sum of the 
following terms: 

b to-Oo to-0(1 .. ) 

'I' (A.) = J IP (t) e'M<t> dt = J cp {t) e'J..f<t> dt + ~- cp (t) e'A.f<t> dt 
a a to-Oo 

to+O<M to+6o b 

+ J cp(t)e'Af(t>dt+ J qJ(t)e'At<t>dt+ J qJ(t)eMt>dt (1-31) 
to-0(1) to+O('J..) to+Oo 

where the function ll (A.) satisfies the conditions (1-24) of Lemma 3. 
The extreme integrals in (1-31) are evaluated as in Lemma 2. Indeed, 
using the obvious inequality 

A.lf (to)- I (t)) =(A.- Ao) [/(to)- f (t) 1 + Ao [/(to)- I (t)) 
~h (A.- A.o) + A.0/ (t0)- "-of (t) (1-32) 

which holds for a~t~t0 -ll0 and A.>A.0 , we obtain 

to-Oo I to-Oo J (jJ (t) e'J..f(t) dt ~e'J..f<to) J 1 (jJ (t) 1 e-'1..[/(to)- f(t)] dt 
a a 

to-Oo 

< e(1-'J..o)f(to)-h('J..-1o) J 1 (jJ (t) 1 e'J..of(t) dt 
a 

< M e'J..!(toH-'J..o[h-f(to>le-'-h = e'Af(to>O (e-'Ah) (1-33) 

In the same way we evaluate the integral over the interval [t0 + 
+ 60 , b). To evaluate the second integral, take advantage of the 
conditions (1-27), (1-29), by virtue of which, for t 0 - 60 ~ t ~ 
~ t 0 - ll (A.), we have the inequality 

.f{to)-f{t)>- rito) (t-to)2~- f"~to) li2 (A.) (1-34) 
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Therefore, repeating the computations carried out in deriving for­
mula (1-33), we obtain 

to-15<'-> J r:p (t) e'-f<t> dt == e'-f<to>O (e-CM2<1>), C > 0 
to-15o 

(1-35) 

But by condition (1-24), the quantity on the right side of (1-35) is 
also of an exponential order of smallness.* The fourth integral is 
evaluated in similar fashion. 

We now examine the principal integral of the formula (1-31): 
to+15().) 

'¥ 3 (A.) = J r:p (t) eif<t> dt (1-36) 
fo-15()..) 

By virtue of condition (1-27), this integral may be rewritten as 

to+l5<'-> ), [ !"(to) (t- fo)2+11(t)} 

'1'3 (A.) = e'-f(to> J r:p (t) e 2 dt (1-37) 
to-15()..) 

Reduce (1-37) to the form (1-25) by the change of variable- r~o) X 

X (t - t0r' = T 2• It is clearly seen that the resulting integral satis­
fies all the conditions of Lemma 3. And so we finally get 

'I' a (A.)= e'i.f(to) { V- ,)7to) ffJ (to)+ 0 (A. -3/2)} (1-38) 

Since '¥ 3 (A.) differs from the integral being evaluated by an expo­
nentially small term, formula (1-38) proves the theorem. 

Note 1. The theorem holds true for the case when one or both of 
the limits of integration are infinite, since the evaluation of in­
tegral (1-33) holds true for a = -oo as well. 

Note 2. We obtained only the first term in the asymptotic expan­
sion of integral (1-28). It is possible, in similar fashion, to obtain an 
expression for the succeeding terms of the asymptotic expansion, 
but we will not dwell on this point. 

Note 3. The proof given here may be extended also to the case 
wheq the maximum value of the function f (t) is attained at one of 
the boundary points of the interval [a, b]. Then a supplementary 

factor ~ appears in formula (1-28). 
Note 4. When the function f (t) inside the interval [a, b] has seve­

ral maxima of equal magnitude, the asymptotic expansion of integ­
ral (1-28) in terms of inverse powers of the large parameter A. may 

• For 6 (},.) = A -2/6 we get 0 (e- 0111\ 
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be obtained by evaluating integrals of the type (1-36) about the 
~-neighbourhood of each of the maximum points and summing the 
results. 

We give an example of the application of this theorem. 
Example 1. Obtain the asymptotic expansion of Euler's gamma 

function 
"" r (p + 1)::::) xPe-s dx (J-2) 
0 

Represent the integrand in the form xPe-" = eJiln s-s and make 
the change of variable x =pt. Then integral (1-2) is transformed to 

DO 

r(p+1)=pP+1) eP(lnt-t>dt 
0 

(I-39) 

This is an integral of type (1-28) with q> (t) = 1 and f (t) = In t - t. 
The function I (t) attains its maximum for t0 = 1, and 

I (1) = -1, I' (t) lt=l = o, I" (t) lt=l = -1 (1-40) 

Therefore, by formula (1-28) we get 

r (p + 1) = e-P { v ~n + 0 (p-3/2)} pP+1 

= V2np ( ~ r { 1 + o ( ~ ) } (l-41) 

We have thus obtained an asymptotic evaluation of the accuracy of 
formula (1-6) that was earlier obtained from suggestive reasoning. 
As has been pointed out, these methods permit obtaining the subse­
quent terms of the asymptotic expansion as well. We give without 
derivation the first few terms of Stirling's formula: 

r (p+1)=V2np ( ~ Y { 1 + 1~p + 28~p2- s1~~p3 + ···} 
(1-42) 

1.3. The Saddle-Point Method 

We now examine the saddle-point method proper for obtaining 
asymptotic expansions of integrals of type (1-1): 

F (A.) = ) q> (z) e'M<z> dz 
c 

By the suggestive arguments of Section 1.1, it is natural to suppose 
that if the contour C is such that on any small section of it the values 
of the real part u (x, y) of the function I (z) = u (x, y) + iv (x, y) attain 
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a maximum and then decay rapidly, while the imaginary part 
v (x, y) remains constant (in order to guarantee the absence of unde­
sirable rapid oscillations of the integrand function), then the major 
contribution to the magnitude of integral (1-1) is made by integra­
tion over the given section of the contour C. It is therefore advisable 
in an approximate calculation of integral (1-1) to deform the con­
tour C so that the integrand possesses the indicated properties. In 
this process, as was established by our earlier reasoning, the neces­
sary deformation of the contour C is determined primarily by the 
topography of the level surface of the function u (x, y). In particular, 
the contour of integration has to pass through the saddle point of 
the surface of the function u (x, y) in the direction of fastest varia­
tion of this function. 

Let us examine in more detail the topography of the surface of the 
harmonic function u (x, y) in the neighbourhood of the saddle point 
M 0 (x0 , y0). We determine the directions of fastest variation of this 
function passing through the point M 0 • These directions are known 
to be deftned by the direction of the vector grad u. Let grad u =fo 0. 
Since for the analytic function Vu · Vv = 0 (see page 34), the direction 
of the vector grad u deftnes the curve v (x, y) = constant. Thus, if on 
the curve v (x, y) = constant, grad u =fo 0, then the function u (x, y) 
varies along this curve with greatest rapidity. However, at the sad­
dle point itself M 0 (x0 , y0 ) of the surface of the function u (x, y) 
the vector grad u (M0) = 0. Let us examine in more detail the beha­
viour of the functions u (x, y) and v (x, y) in the neighbourhood of 
this point. Obviously, at the point M 0 the derivatives of the func­
tions u (x, y) and v (x, y) are zero with respect to the direction l 
of the tangent to the curve v (x, y) = constant passing through M 0 : 

8u 8v 
Tl (xo, Yo) =0, ar(xo, Yo) =0 (I-43) 

Since the derivative of an analytic function is independent of di­
rection, it follows that 

I' (z0) = 0 (1-44) 

Consequently, the expansion of the function I (z) in the neighbour­
hood of the point z0 is of the form 

I (z) = I (z0) -1- (z - z0)P {c0 + c1 (z - z0) -1- ... } (I-45) 

where p ~ 2 andc0 =fo 0. Puttingcn=rnei6n, n = 0, 1, ... , z- z0 = 
= peicp, we get 

I (z)- I (z0) = pP {r0ei <N+Bo> -1- pr1ei[(p+t)cp+Oll -1- ••• } (I-46) 

With the aid of the introduced notation let us write down the equa­
tions of the curves u (x, y) = constant and v (x, y) = constant pas-
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sing through the point z0• We have 

U (p, cp) = r 0 cos (pep + S0) + pr1 cos [(p + 1) 1P + S1)] + 
... = 0 (I-47) 

V (p, q>) = r 0 sin (pq> + S0) + pr1 sin [(p + 1) q> + S1] + ... 

Here, 
u (x, y)- u (x0 , y0) = pPU (p, q>) 

v (x, y) - v (x0 , y0) = pPV (p, <p) 

= 0 (1-48) 

Since, when <p varies from 0 to 2n the function cos (p<p + S0) changes 
sign 2p times, it follows from formula (I-47) that the neighbourhood 
of the point z0 is broken up into 2p curvilinear sectors, inside which 
the function U (p, <p) does not change sign. The boundaries of these 
sectors are defined from the solution of equation (1-47). The sectors 
in which U (p, <p) < 0 will as before be called negative and the sec­
tors in which U (p, <p) > 0, positive. The directions of steepest de­
scent of the function u (x, y) obviously lie in the negative sectors and 
are determined by those values of the angle <p for which, in the neigh­
bourhood of the point (x0 , y0), V (p, <p) = 0 and U (p, <p) < 0, i.e. 
cos (p<p + S0) = -1. These values are equal to 

So 2m+1 O <Jlm= --+ n, m= , 1, ... , p-1 p p 
(J-49) 

Note that the directions of steepest descent coincide with the bisectors 
of the negative sectors. 

In future we will only consider the case p = 2 when /" (z0) =r= 0. 
Here, c0 = ~ /" (z0) and S0 = arg f" (z0). In this case, there are only 

two negative sectors inside which passes the line of steepest descent 
of the function u (x, y). The direction of the tangent to this line at 
the point z0 is, according to formula (I-49), determined by the angles 

-Oo+n d -8o+3n 
<Jlo = 2 an <Jlt = 2 <po+ n (I-50) 

Evidently, the choice of angle <p0 or <p1 is determined by specification 
of the direction of integration along the line of steepest descent. 

Now let us take up the proof of the basic theorem of the saddle­
point method. 

T hem•e m I.2. Let the functions <p (z) and f (z) = u (x, y) + 
+ iv (x, y) be analytic in the domain @J and satisfy the following con­
ditions: 

(1) The surface of the function u (x, y) has inside @J a unique saddle 
point z0 = x0 + iy0 ; /" (z0) =I= 0. 

(2) There is a 6 > 0 such that on the line L of constant value of the 
function v (x, y) = v (x0 , y0 ) passing through the point z0 , in both 

18-387H 
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negative sectors of this point the function u (x, y) outside the 6-neighbour­
hood of z0 satisfies the condition 

u (x0 , Yo) - u (x, y) ~ h > 0 (I-51) 

(3) For some value 1..0 > 0 the following line integral converges: 

J I <p (z) I e"-ou(x, Y) ds< M (1-52) 
c 

where the curve C lies entirely in the domain @J, and its initial point 
(z1) and terminal point (z2 ) lie in d(t]erent negative sectors of the point 
z0 so that they may be joined with the curve L by curves y1 and y 2 of 
finite length, on which the function u (x, y) satisfies the condition (I-51). 

Then for all A. ~ 1..0 the following asymptotic formula holds: 

F (A.) = I <p (z) eM<z> dz = e'Af<•o> { 1/ 2n <p (z0) e1'~'m + 0 (A.- 312 )} J . V 1.. I r (zo) I 
c 

(I-53) 

n-6o 0 where <flm = 2 + m:n: ( m ~~ , 1) and 90 =- arg f" (z0). The choice 

of value of <flm determines the sign in formula (1-53) and, 
naturally, depends on the direction of integration along the 
contour C. 

Proof. Integral (1-53) does not change value if the integration 
curve C is deformed into the curve r = L + y1 + y2 • By condition 
(1-51), for integrals along the curves y1 and y2 we have the evalu­
ation 

J <p (z) e'A/(z) dz = e"-f<zo>O (e-'Ah) 

Ys. 2 

Consider the integral 

F1 (A.) =~ J <p (z) e'A/(z) dz 
r, 

(1-54) 

(I-55) 

On the curve L we introduce the natural parameter s and consider 
that the value s = 0 corresponds to the point z0 • Write the equation 
of the curve L in the form z = z (s). Making the change of variable 
z = z (s) in (1-55), we obtain 

where 
-a 

(!) (s) = <p [z (s) ], U (s) = u [x (s), y (s)J 

0 <a< oo, 0 < b < oo 

(I-56) 
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The integral (1-56) satisfies all the conditions of Theorem 1; the 

function U (s) attains its maximum at the point s= 0 and dd2~ I < 
S s=O 

<0. 
Then, according to (1-28) 

F1 (A.) = e).f(zo\ { y- 'J...;;~(O) <D (0) z' (0) + 0 (A.- :i/2)} (I-57) 

and it remains to express the quantities entering into (1-57) in terms 
of the values of the functions cp (z) and f (z) at the point z0 • Clearly, 

<D (0) = cp (z0). Since !:~ / L = 0, it follows that 

d2~ I = d2f(~(s}]l =f" (z) (.!!:._)2 +f' (z) d2z 
ds2 L ds 2 L ds ds2 

(I-58) 

Whence, by ll-44), we obtain 

a;,~ l.=o =!" (zo) [ (: ).=oY (I-59) 

Since in the neighbourhood of the point z0 we have the relation 
z - z0 = sei'P to within higher-order infinitesimals, it follows that 

ddz I = ei'P and it remains to determine the direction of the tan-
s •=0 

gent to the curve L at the point z0 • However, by the very mode of 
construction of the curve L, the tangent to this curve at the point z0 

coincides with the direction of the fastest variation of the function 
u (x, y). Then, from (1-50), for the angle cpm we get the formula 

n:-Oo 
<pm=-2-+mn, m=O, 1 (1-60) 

where 90 = arg f" (Zo) and the value of m is determined by the 

direction of integration. Note that dds2~ j_ < 0 and I dsdz 1- = 1. 
·--0 •-0 

Then formula (1-59) may be written as 

(I-61) 

We then finally get 

F (A.)= e"lo./(zo) {, / 2n: cp (z0) ei'Pm + 0 (A.- 312 )} (1-62) V A I r (zo>l 

where the value of the angle cpm is given by formula (1-60). The sign 
of the principal term on the right side of (1-62) is determined by the 
choice of value of m and is dependent on the direction of integration 
along the curve C. 

Some remarks are in order concerning this theorem. 
18* 
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Note 1. From this theorem it follows that if both end points z1 

and z2 of the integration curve C lie in the same negative sector of 
the saddle point z0 , then the evaluation (I-54) is valid for integral 
(1-1). 

Note 2. In applications, one is particularly often involved with 
type (1-1) integrals in an unbounded domain with integration curve C 
receding to infinity. From the foregoing arguments it is clear that 
in this case it is necessary for the convergence of integral (I-1) that 
the integration curve recede to infinity in the negative sectors of the 

z=O 

Fig. 1.1 

saddle point z0 • Here, Theorem 2 
and formula (1-53) remain valid. 

Note 3. Theorem 2 was proved on 
the assumption that the point z0 is 
a unique saddle point of the surface 
of the function u (x, y) in the do­
main @I and r (zo) =I= 0. If these 
assumptions are not fulfilled, similar 
reasoning may be carried out leading 
to asymptotic expansions of integral 
(1-1) similar to formula (I-53).How­
ever, when there are several saddle 
points in the domain@!, the choice of 
the integration contour requires a 
special investigation. If the contour 
of integration passes through seve­
ral saddle points, the asymptotic 

expansion of integral (1-1) may contain several terms, having the 
same order, like the first term in (l-53), and this is capable of 
altering substantially the final result. 

We consider a number of examples involving the results obtained. 
Example 2. An asymptotic formula for the Hankel function. 
A Hankel function (see [ 17]) of the first kind H~0 (x) may be repre­

sented with the aid of the integral 

H~ll (x) = ! J ei" Bin z-ivz dz (1-63) 
c 

where the contour of integration C in the complex z-plane goes from 

the half-strip - ~ < Re z < ~, Im z >0 to the half-strip ~ < 
< Re z < ~ n, Im z < 0 through the point z0 = ~ (Fig. 1.1). This 
is a saddle point of the function f (z) = i sin z in the strip 0 < 
< Re z < n since f' ( -i) = 0, f" ( ~ ) = -i=l= 0. The above-indicat­
ed half-strips are negative sectors of this saddle point, which, for 
one thing, ensures convergence of the given improper integral. Let 
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us find the asymptotic value of this integral for large positive values 
of x ~ I vI· The given integral, where f (z) = i sin z, cp (z) = e-ivz, 
obviously satisfies the conditions of Theorem 2. Therefore, the sad­
dle-point method can be used to evaluate it. Since f' (z) = i cos z, 
there is only one saddle point z0 = ~ in the strip - ~ < Re z < 
< ~ n. Here, f (z0} = i, !' (z0} = 0, If" (z0} I = 1, eo = 3; . 
Taking into account the direction of integration, we get, from (1-50), 
q>0 = - ~ . Note that this direction coincides with the bisector of 

the negative sector of the saddle point z0 = ~ Finally, on the basis 
of formula (1-53} we get 

H~1 ) (x} = ~ eb: { y :11 e -iv 2n-i ~ + 0 (x-312)} 

YT { i(x-~-.!!..) ( 1)} = - e 2 2 +0-
l'tX X 

(1-64) 

Formula (1-64} finds extensive application in the solution of various 
problems that involve asymptotic representation of cylindrical 
functions 

Example 3. An asymptotic formula for Legendre polynomials.* 
We will proceed from the integral representation (see [91) of the 

Legendre polynomials 

a i (n+ ~) q~ 
Pn(cose)=-1-_ \ e dcp, O<e<n (1-65) 

n V2 }a V cos cp-cose 

It is readily seen that the integrand function has an integrable sin­
gularity for cp = ±e. Our aim is to obtain an asymptotic expression 
for the function Pn (cos e) for large values of the index n. We con­
sider the analytic continuation of the integrand into the complex 
plane z = x + iy: 

i (n-t-i-) z 
w (z} = e (1-66) 

vcoss-cose 

The function w is analytic in the upper half-plane lm z > 0. There­
fore, the integral of this function along any closed contour lying 
entirely in the upper half-plane is zero. We choose the closed con­
tour•• r consisting of the segment (y=O, -e ~X~ e) of the real 

• For a definition of Legendre polynomials and their basic properties, 
see [17]. 

• • Here we traverse the sin~larities z = ± 6 along arcs of circles of infi­
nitely small radius; the radius IS then allowed to tend to zero. 
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axis, the vertical segments (x = -8, 0 ~ y ~ H), (x = e. 0 ~ 
~ y ~ H) parallel to the imaginary axis, and a closing horizontal 

!I 

-B+iH .-----+----. 8+ iH 

-8 z=O 8 r 

Fig. 1.2 

segment (y = H, -e ~ x ~ S) (Fig. 1.2). It is easy to see that on 
the last segment the modulus 

-(n+-}) H 

lwl= I Vc~(x-f-iH)-cos9/ (l-67) 

tends to zero exponentially as H-+ oo. For this reason, passing 
to the limit as H-+ oo, we obtain 

where 

and 

0 ( 1 oo - ( n+ ~ ) 11 

I _ . -• n+y) a J e d 
~-~ y 

0 
V cos (9-iy)-cos 9 

0 ( 1) oo -(n+..!._)u 
I __ 0 

• n+2 8 J e 2 dy 
2 -- -le V cos(9+iy)-cos9 

0 

(1-68) 

(1-69) 

(1-70) 

The saddle-point method is applicable for an approximate compu­
tation of integrals I 1 and I 2 for large values of n. Consider integral 
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/ 1 (/2 is computed in similar fashion). Put y = t 2 and denote n + 
1 + 2 = A.. Then from (1-69) we have 

~00 ->..t2 t dt 
ljf ( i..) = - ieiMI I 1 == 2 -::r==.<=e ==::;;::::====;< y cos (8- it2) -cos 8 

0 

(1-71) 

Clearly, integral (1-71) satisfies all the conditions of Theorem 1, 
and f (t) = -t2 and the point t 0 = 0, at which the function f (t) 
attains its maximum f (0) = 0, coincides with the end point of the 
interval of integration. Then f" (0) = -2 and 

.n 
t -1~ 

<p (t0 ) '"'lim = _e-=-== 
t-+0 y cos (8- it2)- cos 8 y sin 8 

(1-72) 

Therefore, by formula (1-28), into which we have to introduce a 

supplementary factor ~ , since the point t 0 coincides with the end 

point of the interval of integration, we get 

(1-73) 

(1-74) 

( 1-75) 

1 Then, after simplifications, taking into account that 

V n+! 
ry . . 

differs from v n by a quantity of the order of 0 (n-312)' we 

finally get the asymptotic formula for Legendre polynomials which 
holds for n ~ 1 and 0 < 9 < n: 



APPENDIX II 

THE WIENER-HOPF METHOD 

The Wiener-Hopf method finds extensive application when solv­
ing certain integral equations and various boundary-value prob­
lems of mathematical physics by means of the integral transfor­
mations of Laplace, Fourier, and others. This method was first em­
ployed, in a joint study by N. Wiener and E. Hopf (1931), in the 
solution of integral equations with a kernel depending on the differ­
ence of arguments in the case of a semi-infinite interval: 

00 

u (x) =A. J v (x-s) u (s) d.s+ f (x) 
0 

Subsequently, equations of this kind were considered by 
V. A. Fock in [5] who made a substantial contribution to the develop­
ment of general methods of their solution. 

The general method of solving functional equjltions which became 
known as the Wiener-Hopf method or the factorization method, has 
been successfully employed in the solution of many problems of 
diffraction and the theory of elasticity, of boundary-value problems 
involving the heat-conduction equation, of integral equations in the 
theory of radiative transport (known as Milne's problem), and many 
other problems of mathematical physics.* Our aim is not to give 
a rigorous mathematical substantiation of the Wiener-Hopf method, 
but only to illustrate the basic idea in a series of examples involving 
the solution of a number of important problems. 

11.1. Introductory Remarks 

Let us begin with suggestive arguments illustrating the applica­
tion of methods of integral transformations in the solution of integ­
ral equations. Let us consider an integral equation of the type 

00 

u(x)=A. J v(x-s)u(s)ds+f(x) (11-1) 
-oo 

• Numerous examples involving the Wiener-Hopf technique are given in 
[12] which contains an extensive bibliography. 
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with kernel v (x- s) depending on the difference of the arguments. 
We will not investigate the solvability conditions of this equation 
or substantiate the methods of its solution, but only point out that 
for real values of f.., upon fulfilment of the conditions 

00 00 

)1f(x)l2 dx<A, ')..) lv(t)!dt<1 (II-2) 
-oo -oo 

where A is an arbitrary fixed number, equation (II-1) has a unique 
solution* u (x) that is auadratically integrable in the infinite interval 

(II-3) 
-00 

We take it that there exist Fourier transforms of all functions 
involved in equation (II-1): 

00 

U (k) = V~n ) u (x) e1k:x dx 
-oo 

00 

V (k) = / 2n ) v (t) eihl dt 
-oo 
00 

F (k) = V~n ) f (x) e1Ax dx 
-oo 

(II-4) 

(II-5) 

(11-6) 

Then, multiplying (II-1) by ___!__eihx and integrating over the 
V2n 

infinite 'interval, we obtain 
00 00 

U (k) =F (k) + V~n ) eihx dx ) v (x-s) u (s) ds=F (k) +I (k) 
-oo -oo 

(II-7) 
Inverting the order of integration in the last term, we represent this 
integral in the form 

00 00 

I (k) = V~n J u (s) ds J e""v (x-s) dx (11-8) 
-co -oo 

Making the change of variable x-s =t, we have, by (11-4) 
and (11-5), 

00 00 

I (k) = V~n J u (s) ei"• ds J v (t) eiht dt = ').. Y2n U (k) V (k) {11-9) 
-oo -oo 

• This question is discussed in detail by E. C. Titchmarsh in (f8]. 
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Actually, formula (11-9) implies that the formula for the transfor­
mation of a convolution which we obtained for the one-sided Lapla­
ce transformation (see page 232) is also valid in the case of the Fou­
rier transformation. 

Formula (ll-7) may now be rewl"itten in the form 

U (k) = F (k) + A.V2nU (k) v (k) (11-10) 

Thus, with the aid of the Fourier transformation we have succeeded 
in reducing the solution of the original integral equation (11-1) to 
the solution of the algebraic equation (11-10) for the Fourier trans­
formation of the desired solution. It is easy to solve the last equa-
tion: 

U (k) - F (k) 
- 1-A Y2:t v (k) 

(11-11) 

Thus, the Fourier transformation (11-11) of the solution of 
the original integral equation proved to be expressed in terms of 
the Fourier transformation of the given functions-the kernel and 
the right-hand side of the equation. The solution itself can readily 
be expressed in terms of its Fourier transformation with the aid of the 
familiar formula of inverse transformation: 

~ ~ 

u (x) = ___!____ \ U (k) e-ilu: dk = ___!____ f F (k) e-iltx dk (11-12) 
Y2:t J Y2:t J 1-AY2:tV(k) 

-00 -00 

Formula (11-12) actually solves the problem, but it is not always 
convenient since it requires the computation of the Fourier trans­
formation F (k) for every right-hand side of f (x). In many cases it is 
more convenient to represent the solution of the nonhomogeneous 
integral equation in terms of the resolvent kernel for the original 
equation: 

~ 

u(x)=/(x)+A. J g(x-s)f(s)ds (11-13) 
-~ 

In order to obtain the required representation, note that for­
mula (11-10) may be transformed to the form 

U(k)-F(k)=A. V2nF(k)G(k) (11-14) 
where 

G (k)- I' (k) 
- 1-A Y2:t v (k) 

(11-15) 

From relation (11-14), with the aid of the formula of inverse trans­
formation (11-12) and noting that by virtue of formula (11-9) the 
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original of the function V 2nF (k) G (k) is the function 
00 

J g(x-s)l(s)ds 
-00 

where 
00 

g (t) = . .)2n J G (k) e-iht dk 
-oo 

(11-16) 

we get 
00 

u(x)=l(x)+A. J g(x-s)l(s)ds (11-13) 
-oo 

Thus, to determine the solution of the original integral equation 
(11-1) it is sufficient to find the function g (t) defmed by formula 
(11-16). 

The function g (t) is a solution of equation (11-1) for the special 
type of function I (x). Indeed, from formulas (11-11) and (11-15) 
it follows that for U (k) = G (k) the function F (k) is equal to V (k). 
This means that the solution of equation (11-1) for I (x) == v (x) is 
the function u (x) = g (x), that is, the resolvent kernel for equation 
(11-1) satisfies the integral equation 

00 

g(x)= J v(x-s)g(s)ds+v(x) (11-17) 
-00 

Example 1. Solve the integral equation 

00 

u(x)c~A. J v(x-s)u(s)ds+l(x) (11-18) 
-00 

where 
(11-19) 

Let us find the function g (t). To do this, calculate 

(11-20) 

Then by formula (Il-15) 

G (k) = V (k) =-1- 2a 
t-A.V2nV(kl y~n k2+a2 -2cU. 

(11-21) 
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whence 
00 00 

1 r -ikt 1 r cu-ikt 
g(t)= V2n J G(k)e dk=-;: J k2+a2-2aA. dk 

-® -oo 

(11-22) 

Assume A< ~ . Then the integral (II-22) is meaningful and may 
readily be computed with the aid of the calculus of residues by 
applying Jordan's lemma. Simple manipulations yield 

(11-23) 

and, finally 
00 

u (x) = 1 (x) + aA. r e-lx-sJVa2 -2a1..1 (s) ds (11-24) 
V a 2 -2aA. J 

-oo 

Thus, the use of this method, which reduces the solution of the 
original integral equation (II-1) to the solution of an algebraic equa­
tion, was associated with the possibility of applying the Fourier 
transformation to the functions in this equation and of using the 
convolution formula. Our immediate aim is to transfer these methods 
to the solution of integral equation!'! with a difference kernel in the 
case of a semi-infinite interval 

00 

u (x) =A J v (x-s) u (s) ds+ I (x) (11-25) 
0 

But for this we need some analytic properties of the Fourier trans­
formation, in particular, the definition of the domains of analyticity 
of the Fourier transformation of functions of a real variable, func­
tions which both decrease and increase at infinity. 

11.2. Analytic Properties 
of the Fourier Transformation 

Let the function I (x) be defined for all values -oo < x < oo. We 
consider the Fourier transformation of this function 

00 

F (k) = V~n J I (x) eikx dx 
-oo 

(11-26) 

We assume here that the parameter k of the transformation (II-26) 
can, generally speaking, take on complex values as well. We pose 
the question of the properties of the function F (k), which is regarded 
as a function of the complex variable k. To do this, represent I (x) as 

I (x) = I+ (x) +I_ (x) (II-27) 
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where the functions f _ (x) apd f + (x) are, respectively, 

x<O, 
x>O, 

{0, x<O 
f+(x)= f(x), x>O 

The Fourier transform F (k) of the function f (x) is then obviously 
equal to the sum of the Fourier transforms F + (k), F _ (k) of the func­
tions f+ (x) and f _ (x). We find the analytic properties of F (k) 
by establishing the ana]ytic properties of the functions F + (k) and 
F _ (k). Thus, consider the function 

x<O {0, 
f+(x) = f (x), x> 0 

Its Fourier transform is the function 
00 

F + (k} = l./Zn ) f+ (x} eill.x dx 
0 

(11-28) 

(11-29) 

Repeating the arguments of Theorems 8.1 and 8.2, it is easy to show 
that if the function f+ (x) satisfies the condition 

I I+ (x) I< Me"-x as x-+- oo (II-30) 

then the function F + (k) defined by formula (II-29) is an analytic 
function of the complex variable k = a + iT in the domain 
Im k > T_, and in this domain F+ (k)- 0 as I k 1-+- oo. With the 
aid of reasoning similar to that in Theorem 8.5, it may be shown 
that the functions f+ (x) and F+ (k) are connected by the inverse 
relation 

oo+i't 

f+ (x) = V~n ) F + (k) e-ill.x dk 
-oo+i't 

(II-31) 

where the integration is performed over any straight line Im k = 
= T > -r _ parallel to the real axis in the complex k-plane. 

For -r _ < 0 [i.e. for the functions f (x) decreasing at infinity] the 
domain of analyticity of the function F + (k) contains the real axis 
and in formula (II-31) the integration may be performed along the 
real axis. If -r _ > 0 [i.e. the function f+ (x) increases at infinity, but 
not faster than an exponential function with linear exponent] then 
the domain of analyticity of the function F + (k) lies above the rea] 
axis of the complex k-plane [here the integral (II-29) may diverge 
on the real k-axis1. Similarly, if the function 

-{f(x), x<O 
f-(x)- 0 0 

' x> 
(II-32) 
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satisfies the condition 

1-(x)<Me't+x as x--oo 

then its Fourier transform, the" function 

0 

F_(k)=- "V~n J 1-(x)eill.xdx 
-00 

(11-33) 

(11-34) 

is an analytic function of the complex variable k in the domain 
Im k < 't+· The function I_ (x) is expressed in terms of the func­
tion F_(x) with the aid of the relation 

oo-j-i't 

I_ (x) = Y1
2n J F _ (k) e-ill.x dk 

-oo-1-i't 

(11-35) 

where Im k = T < T+· 

lf 't+ > 0, then the domain of analyticity of the function F_ (k) 
contains the real axis. 

Clearly, for L < 't+ the function F (k) defmed by formula (11-26) 
is an analytic function of the complex variable k in the strip 't _ < 
< Im k < 't+· Then the functions I (x) and F (k) are related by the 
in verse Fourier transformation: 

oo-1-i't 

I (x) = __!__ f F (k) e-ill.x dk 
Y2n J 

-oo-1-i't 

(11-36) 

where the integration is performed along any straight line, parallel 
to the real axis of. the complex k-plane, lying in the strip T _ < 
< Im k = T < 't+· In particular, for T _ < 0 and 't+ > 0, the 
function F (k) is analytic in the strip containing the real axis of 
the complex k-plane. 

Thus, the function V (x) = e-a I xI for a > 0 has the Fourier 
transform 

(Il-37) 

which is an analytic function of the complex variable k in the strip 
-a < Im k < a containing the real axis. 

Let us now examine the basic idea of the Wiener-Hop£ method. 
We will first demonstrate it in solving a special type of integral 
equation. 



/1.3. Integral Equations wit~ a Difference Kernel 287 

11.3. Integral Equations with a Difference Kernel 

Let us begin with a homogeneous integral equation of the form 
00 

u (x) =A. J v (x- s) u (s) ds (11-38) 
0 

whose kernel, the function v (x - s), depends on the difference x -
- s = £ and is defined for all values of its argument -oo < £ < 
< oo. The solution of this equation is obviously found to within an 
arbitrary factor; it may be found from the supplementary conditions 
of the problem, for instance the normalization conditions. We as­
sume that equation (11-38) defines the function u (x) for all values of 
the variable x, whether positive or negative. We introduce the 
functions u _ and u+: 

{ u(x), x<O, 
u_ (x) = 0 x > 0, {0, x<O 

u+(x)= u(x), x>O (11-39) 

Clearly, u (x) = u+ (x) + u_ (x), and equation (11-38) may be re-
written in the form 

Loo 

u+(x)"" A. J v(x-s)u+(s)ds, x>O 
0 

00 

(11-40) 

u_(x)=i.. 5 v(x-s)u+(s)ds, x<O (11-41) 
() 

That is, the function u+ (x) is determined from the solution of the 
integral equation (II-40), and the function u_ (x) is expressed in 
terms of u+ (x) and v (x) with the aid of the quadrature formula 
(11-41). Here, the relation 

00 

u+(x)+u-(x)=l.. 5 v(x-s)u+(s)ds 
0 

which is equivalent to the original equation (11-38), holds. 

and 

Let the function v m satisfy the conditions 

I v (6) I < M eT-'f. as £-+ oo 

I v (£)I< Me"+"i as s-+- 00 

where "L < 0, T+ > 0. Then the function 
00 

V (k) = t J v (£) eik~ dS 
V2n 

-00 

is analytic in the strip T _ < Im k < T+· 

(II-42) 

(11-43) 

(11-44) 
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We seek a solution of equation (11-38) that satisfies the condition* 

I u+ (x) I < M 1e1Lx as x-+ oo (11-45) 
where t.t. < 'T+· And, as can easily be verified, the integrals on the 
right sides of relations (11-40) and (11-41) are convergent, for the 
function u_ (x) we have the evaluation 

I u_ (x) I< M2e~+x as x-+- oo (11-46) 

From the conditions (11-45) and (11-46) it follows that the Fourier 
transforms U+ (k) and U _ (k) of the functions u+ (x) and u_ (x) are 

l4(1i), L+{li) 

,. 

Imk==,a 
V(/i) 

Im k== z:. 

) (!_ {R), LJ/i 

Fig. 11.1 

analytic functions of the complex variable k for Im k > f.1. and 
Im k < 'T+ respectively (for the sake of definiteness, we put t.t. > 't _ 
in Fig. II.1). . 

Let us now solve the integral equation (II-38), or the equivalent 
equation (II-42). We take advantage of the Fourier transform. Using 
formula (II-9) of the convolution transformation, the truth of which 
in the given case of a semi-infinite interval is evident almost imme­
diately, we get, from (II-42), 

or 

where 

u+ (k) + u_ (k) = V2n A.V (k) u+ (k) 

L (k) u+ (k) + u _ (k) = o 

L (k) = 1 - V2n A.V (k) 

(11-47) 

(II-48) 

Thus, with the aid of the Fourier transform we have again passed 
from the original integral equation to an algebraic equation for 
transforms. However, equation (II-47) now has two unknown func-

• We do not dwell on the proof of the existence of a solution of equation 
(11-40) having this property. For details, see for example [5]. 



//.3. Integral Equations wtth a Difference Kernel 289 

tions. Generally speaking, two unknown functions cannot be deter­
mined uniquely from one algebraic equation. The Wiener-Hopf 
method permits solving this problem for a definite class of functions. 
It is primarily associated with a study of the domains of analyticity 
of the functions entering into the equation and with a special repre­
sentation of this equation. The basic idea of the Wiener-Hop£ tech­
nique consists in the following. 

Suppose it has been possible to represent equation (II-47) in the 
form 

L+ (k) U+ (k) = -L_ (k) U _ (k) (11-49) 

where the left-hand side is analytic in the upper half-plane Im k > 
> f.L, and the right-hand side is analytic in the lower half-plane 
Im k < -r+; note that f.L < 't+ so that there is a common strip of 
analyticity of these functions f.L < Im k < 't+· Then, by virtue of 
the uniqueness of analytic continuation it may be asserted that there 
exists a unique entire function of the complex variable which coin­
cides with the left-hand side of (II-49) in the upper half-plane and 
with the right-hand side of (11-49) in the lower half-plane, respec­
tively. If it is also known that the functions entering into (II-49) do 
not increase at infinity faster than a finite power kn, then by Liou­
ville's theorem the given entire function is determined to within 
multiplicative constants. In particular, in the case of a function 
bounded at infinity we get 

L+ (k) U+ (k) = -L_ (k) U _ (k) = constant (II-50) 

Whence the functions U+ (k) and U _ (k) are determined uniquely. 
Let us now apply the given scheme to solving equation (II-47). 

From the reasoning given above it follows that the domains of anal-
yticity of U+ (k), U _ (k) and L (k) = 1 - V2n A.V (k) are, re­
spectively, the upper half-plane Im k > f.L, thtJ lower half-plane 
Im k < 't+ and the strip -r _ < Im k < -r+. This equation thus holds 
true in the strip* f.L < Im k < -r+, which is the common domain of 
analyticity of all the functions entering into the equation. In order 
to transform equation (II-47) to the form (11-49), assume that the 
following decomposition of the function L (k) is possible: 

L (k) = L+ (k) (II-51) 
L_ (k) 

where the functions L+ (k) and L _ (k) are analytic for Im k > 1-L 
and Im k < -r+, respectively. Besides, suppose that in the domains 
of their analyticity these functions do not increase at infinity faster 
than kn, where n is some positive integer. The splitting (11-51) of 

* For definiteness, put 1.1. > 'L, otherwise the strip 't- < Im k < 't+ will 
be the common domain of analyticity. 

l9-387i' 
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the analytic function L (k) is ordinarily called factorization. The 
possibility of factorization of a given analytic function of a complex 
variable will be substantiated below (see Lemma 1 and Lemma 2 
on pages 293-294). 

Thus, as a result of factorization the original equation is reduced 
to the form 

L+ (k) U+ (k) = -L_ (k) U _ (k) (Il-49) 
From earlier arguments it follows that this equation defines some 

entire function of the complex variable k. 
Since U± (k)-+ 0 as I k 1-+ oo, and L± (k) increase at infinity as 

a finite power kn, the given entire function may only be a polyno­
mial P n _1 (k) of degree no higher than n - 1. 

If the functions L± (k) increase at infinity only as the first power 
of the variable k, then from the relations (II-50), by Liouville's 
theorem, it follows that the corresponding entire function is the 
constant C. We then get the following expressions for the unknowns 
u+ (k) and u- (k): 

c c 
U+ (k) = L+ (k) , U_(k) =- L_ (k) (II-52) 

which define the Fourier transforms of the desired solution to within 
a constant factor; this factor may be found from the normalization 
conditions. In the general case, the expressions 

Pn (k) Pn (k) 
U + (k) = L+ (k) , U- (k) = - L_ (k) (II-53) 

define Fourier transforms of the sought-for solution of the integral 
equation (11-38) to within undetermined constants that may be found 
from the supplementary conditions of the problem. The solution 
itself is determined with the help of the inverse Fourier transform 
(II-31) and (II-35). 

Let us illustrate the use of this method with an example. 
Example 2. Consider the equation 

00 

u (x) =.).) e-lx-slu (s) ds 
0 

the kernel of which is of the form v (6) = e-1 ~I. 
We find the Fourier transform of the function v (6): 

00 

1 J 2 V k =-- v eik~ = 
( ) Y2n (s) d6 Y2n(k2 +1) 

-oo 

(11-54) 

(11-55) 

The function V (k) of (11-55) is an analytic function of the complex 
variable k in the strip -1 < Im k < 1. Represent the expression 

.. !"- k2-(2>..-1) 
L (k) = 1- y 2n A.V (k} = k2+ 1 (II-56) 
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in the form of (11-51), where 

L (k) = k2- (2A.- 1) 
+ k+i ' 

L_(k)=k-i (II-57) 

The function L+ (!.:) in (II-57) is an analytic function of k and is 
different from zero in the domain Im k > Im V 21.. - 1. For 0 < 
< A. < f, this domain is determined by the condition Im k > 
> V 1- 21.., and V 1- 21.. <:;:: ~ < 1. For A.> ~ the function L+ (k) 
is analytic and nonzero in the domain Im k > 0. The function L _ (k) 
is obviously a nonzero analytic function in the domain Im k < 1. 
Therefore, for 0 <A.< ~ both functions satisfy the required condi­

tions in the strip ~ < lm k < 1. 
For ~ <A., the strip 0 < Im k < 1 is the common domain of 

analyticity of the functions L+ (k) and L _ (k). Thus, the necessary 
factoring of the function (II-56) has been performed. 

Consider the expressions U ± (k) L± (k). Since U ± (k)-+ 0 as 
I k 1-+ oo, and L± (k), according to (II-57), increase at infinity as a 
first power of k, the entire function Pn (k), which coincides with 
U+ (k) L+ (k) for Im k > ~ and with U _ (k) L_ (k) for Im k < 1, 
can only be a polynomial of degree zero. Therefore, 

u+ (k) L+ (k) = c (II-58) 
Whence 

(11-59) 

and, by (11-31), 
oc+i't 

U+ (X) = vc r k+ i e-ikx dk J k2 -(21.. -1) 2n . 
-oc+t't 

(II-60) 

where ~<-r< 1. 
The integral (11-60) may be evaluated by the methods of Chapter 5. 

Closing the contour of integration for x > 0 by a semi-circular arc 
in the lower half-plane and evaluating the integral along this arc 
with the aid of the Jordan lemma, we get, after elementary compu­
tations, 

( ) D { V-2~ 1 +sin y2r=T x} 
U+ X = COS 11.- X ,/' 

" 21..-1 
(11-61) 

where D is a new constant. For 0 <A.< ; this solution grows expo-

nentially with the growth of x; for ; <A. < oo, the solution is bo­
unded at infinity. 
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Thus, the example of solving the homogeneous integral equation 
(II-38) has already demonstrated the basic idea of the Wiener-Hopf 
method, which consists in representing (by factoring) the original 
functional equation (II-47) in the form of the entire function (II-49). 
Let us now justify the factoring process of an analytic function of a 
complex variable. We will proceed from a somewhat more general 
functional equation than (II-47). 

11.4. General Scheme of the Wiener-Hopf Method 

In the general case, a problem solvable by the Wiener-Hopf 
technique reduces to the following. 

It is required to determine the functions '¥ + (k) and '¥ _ (k) of a 
complex variable k, which are analytic respectively in the half-plane 
Im k >,;_and Im k < T+ (,;_ < T+) and tend to zero as I k I-+ oo 
in both domains of analyticity and satisfy in the strip -r _ < Im k < 
< T+ the functional equation 

A (k) '¥ + (k) + B (k) '¥ _ (k) + C (k) = 0 (II-62) 

Here, A (k), B (k), C (k) are the given functions of the complex 
variable k, analytic in the strip T _ < Im k < T+; A (k) and B (k) 
are nonzero in this strip. 

The main idea for the solution of this problem is based on the 
possibility of factoring the expression A (k)IB (k), i.e. the possibility 
of representing it in the form 

A (k) L+ (k) 
B (k) = L_ (k) (II-63) 

where the functions L+ (k) and L _ (k) are analytic and different from 
zero, respectively, in the half-planes Im k > < and Im k < -r;, the 
strips -r_ < Im k < T+ and < < Im k < < having a common 
portion. Then, using (11-63), equation (11-62) may be rewritten as 

c (k) 0 L+(k) 'l'+(k)+L-(k) 'l'_(k)+L-(k) B(k) = 

If the last term in (11-64) may be rewritten as 

c (k) k) L_(k) B(k) =D+( +D-(k) 

(11-64) 

(11-65) 

where the functions D+ (k) and D _ (k) are analytic in the half-planes 
Im k > -r: and Im k < -r;, respectively, and all three strips L < 
< Im k < -r+, -r~ < Im k < < and 1:: < Im k < 1:: have a com­
mon portion-the strip 1:~ < Im k < 1:!-then in this strip the follow­
ing functional equation holds true: 

L+ (k) '¥ + (k) + D+ (k) = -L _ (k) '¥ _ (k) - D _ (k) (11-66) 
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The left-hand side of (11-:66) is a function analytic in the half-plane 
-r~ < Im k, the right-hand side is a function analytic in the domain 
Im k < T~. From the equality of these functions in the strip 't~ < 
< Im k < 't~ it follows that there exists a unique entire function 
P (k) coinciding, respectively, with tl:J.e left and right sides of (11-66) 
in the domains of their analyticity. If all functions entering into 
the right sides of (11-63) and (11-65) increase at infinity in their do­
mains of analyticity no faster than kn+l, then from the condition 
lf ± (k)--+ 0 as I k I-+ oo it follows that P (k) is a polynomial Pn (k) 
of degree not higher than n. In this way, the equalities 

lf+ (k) = Pn (k)-D+ (k) (11-67) 
L+ (k) ·· 

and 
'I' (k) = -Pn (k) -D_ (k) 

- L_ (k) 
(11-68) 

deftne the desired functions to within constants. The constants may be 
found from the supplementary conditions of the problem. 

Thus, the use of the Wiener-Hopf method is based on the repre­
sentations (11-63) and (11-65). The possibility of these representations 
is guaranteed by the following lemmas. 

Lemma1. Let a function F (k) be analytic in the strip -r_< Im k< 
< 't+ and let F (k), in this strip, tend uniformly to zero as I k I-+ oo. 
Then the following representation is 'possible in the given strip: 

F (k) = F + (k) + F _ (k) (11-69) 

where the function F + (k) is analytic in the half-plane Im k > -r _ and 
the function F _ (k) is analytic in the half-plane 'Im k < 't+· 

Proof. Consider an arbitrary point k0 lying in the given strip and 
construct a rectangle abed containing the point k0 and bounded by 
the straight-line segments Im k'= -r~, Im k = -r;, Re k = -A,' 
Re k =A, where -r_ < -r: < -r; < 't+ (Fig. 11.2). By the Cauchy 
formula 

A+i"t,: A+i"t~ 

F (k0) = - 1-. i 2:.i.Q_ d~ + -1-. i F (\;) dt. 
2m J 6-ko 2m J 6-ko -

-.t\:th: A+i"t:_ 

-A+i"t+ -A+i"t,: 

+-1- i ..!:..ill_d~+-1- i ~d~ (11-70} 
2nt J 6-k0 2:rti J 6-k0 

A+i"t~ -A+i"t~ 

In (11-70) proceed to the limit as A--+ oo. Sin~e it is given that F (k) 
tends upiformly to zero as I k I-+ oo, the limit of the second and 
fourth terms on the right of (11-70) is zero, and we obtain 

(11-71) 
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where 
oo+i'f.:_ 

F+(ko)= 2~1 r ~d~ .. J ~-ko • 
-oo+i'f.:_ 

(11-72) 

oo+h+ 
F_(ko)= --21 . r ~d~ 

m J ~-ko 
(11-73) 

-oo+i'f: 

A13 integrals dependent on a parameter,* the integrals (11-72) and 
(11-73) define analytic functions of the complex variable k0 , pro­
vided that the point k 0 does not lie on the contour of integration. 

In particular, F + (k0) is an analytic function in the half-plane 
Im k0 > '(, and F _ (k0) is an analytic function in the half-plane 

1:+ 

d 1:.: c 

-A k=O 
o ko 

A 

a .:. 6 

1:_ 

Fig. 11.2 

Im k0 < <· By virtue of the arbitrariness of choice of point k0 and 
the straight lines T: and <. the relations (11-71) to (11-73) prove the 
lemma. 

Note 1. Note that from the convergence of the integrals (11-72) 
and (11-73) it follows that the functions F+ (k) and F _ (k) thus con­
structed are bounded in the given strip as I k 1- oo. 

Lemma 2. Let a function <l> (k) be analytic and nonzero in a strip 
't _ < Im k < T+, and let <l> (k) tend uniformly to unity in this strip 
as I k I - oo. Then in the given strip we will have the representation 

<l> (k) = <l>+ (k)·<l>_ (k) (11-74) 

where the functions <l>+ (k) and <l> _ (k) are analytic and different from 
zero in the half-planes Im k > T _and Im k < T+ respectively. 

• See page 53. 
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Proof. Consider the function F (k) = In <l> (k) which clearly 
satisfi.es all the conditions of Lemma 1. Thus, for the function F (k) 
we can have the representation (11-71)-(11-73). Putting 

<D+ (k) = exp {F + (k)}, <I>_ (k) = exp {F _ (k)} (II-75) 

where the functions F+ (k) and F _ (k) are defi.ned by formulas (11-72), 
(11-73), we get 

In <l>+ (k) = F + (k), In <l> _ (k) = F _ (k) 

Then formula (II-71) yields 
In <l> (k) = In <l>+ (k) + In <l> _ (k) 

(11-76) 

(11-77) 

whence follows relation (II-74). Since, by Lemma 1 the functions 
F + (k) and F _ (k) are analytic in the half-planes Im k > -r _ and 
Im k < -r+, respectively, so also the functions <l>+ (k) and <l>_ (k) 
defi.ned by formulas (II-75) will have the required properties. That 
proves the lemma. 

Note 2. The possibility of factoring (II-74) holds true when the 
function <l> (k) has a fi.nite number of zeros ki in the strip -r _ < 
< Im k < -r+· 

To prove Lemma 2, in this case it suffi.ces to introduce the auxili­
ary function 

(II-78) 

where ai are the multiplicities of the zeros k1; N is the total number 
of zeros counting multiplicities; the positive constant b > I -r _ 1, 
I -r+ I is chosen from the condition that the function under the sign 
of the logarithm should not have additional zeros in the strip -r _ < 
< Im k < -r+. This function clearly tends to unity at infi.nity. The 
function F (k) thus constructed continues to satisfy all the conditions 
of Lemma 1. 

The lemmas just proved determine the possibility of the represen­
tations (II-63), (II-65), which form the basis of. the Wiener-Hop£ 
method. 

We considered the Wiener-Hop£ method used for solvingthefunc­
tional equation (II-62). It is easy to see that the following nonhomo­
geneous integral equation with a difference kernel on a semi-infi.nite 
interval reduces to this equation: 

00 

u (x) =A. J v (x-s) u (s) ds+ f (x) (II-79) 
0 

We assume that the kernel of (11-79) and the function f (x) satisfy 
the conditions ( II-43) and we will seek a solution of (11-79) that 
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satisfies the condition* 

I u+ (x) I < M 1e!J.% as x - oo 

(J.L < 'f+) 

(II-80) 

Then with arguments similar to those involved in the derivation 
of the functional equation (II-47) for a homogeneous integral equa­
tion, we find that in the case of (II-79) the following functional 
equation should be satisfied in the strip 1-L < Im k < -r+: 

or 

where 

u+ (k) +U- (k) =A. V2n v (k) u+ (k) + F+ (k) +F- (k) (II-81) 

L (k) U+ (k) + U _ (k) - F (k) = 0 

L (k) = 1-V2n A.V (k) 

(II-82) 

(II-83) 
Equation (II-82) is a special case of equation (II-62). In the strip 

-r _ < Im k < 'f+ the function L (k) is analytic and uniformly tends 
to unity as I k 1- oo, since I V (k) 1- 0 as I k 1- oo. If, besides, 
the function V (k) has a finite number of zeros in this strip, then all 
the conditions of Lemma 2 are fulfilled and the function L (k) may 
be represented in the form 

L (k) = L+ (k) (11-84) 
L_ (k) 

where L+ (k) is an analytic function in the upper half-plane Im k > 
> -r _, and L_ (k) is an analytic function in the lower half-plane 
Im k < 'f+· Then equation (II-82) takes the form 

L+ (k) U + (k) + L _ (k) U _ (k) - L _ (k) F _ (k) 

- F+ (k) L_ (k) = 0 (II-85) 

To reduce this equation to the form of (II-66), it is sufficient to snlit 
up the last term: 

F+ (k) L_ (k) = D+ (k) + D _ (k) (II-86) 
into the sum of the functions D+ (k) and D _ (k) which are analytic in 
the half-planes Im k > 1-L and Im k < -r+, respectively. 

To justify the possibility of such a representation, note that by 
condition (II-43) the function F+ (k) is analytic in the upper half­
plane Im k > -r _ and tends uniformly to zero as I k 1- oo. The 
function L _ (k) is analytic in the lower half-plane Im k < 'f+ and, 
by the mode of its construction, by virtue of Lemma 2 and the note 
referring to Lemma 1, it is possible to factor (II-84) in such a manner 
that L_ (k) will remain bounded in the strip -r_ < Im k < 'f+ as 
I k 1- oo. Whence it follows that all the conditions of Lemma 1 

• Again, we dispense with justifying the existence of a solution of equation 
(II-79) that satisfies the condition (11-80). 



l/.5. Problems 297 

are fulfilled for the function F + (k) L _ (k) in the strip 't _ < Im k < 
< 't+, which is sufficient to substantiate the representation (11-86). 

The foregoing considerations enable one, given the supplementary 
conditions that the functions L± (k) do not increase at infinity faster 
than kn, to represent the Fouri&r transforms of the solution of the 
nonhomogeneous integral equation (11-79) in the form 

U (k)= Pn(k)+D+(k) 
+ L+ (k) ' 

U (k)= -Pn(k)+L-(k)F_(k)+D-(k) 
- L_ (k) . 

(11-87) 

The solution itself may be obtained from (11-87) by means of for­
mulas (11-31) and (11-35) of the inverse Fourier transform. 

11.5. Problems Which Reduce to Integral Equations 
with a Difference Kernel 

a. Derivation of Milne's equation 

A large number of physical problems reduce to integral equations 
with a difference kernel. As a first instance, we take the classical 
Milne problem which describes the process of neutron (or radiative) 
diffusion (transport) through a substance. 

Let there be a flux of neutrons in the half-space x > 0 filled with 
a homogeneous substance whose density is defined by the number n0 

of particles per unit volume. We consider the particles to be heavy 
atoms that scatter neutrons so that the absolute magnitude of neu­
tron velocity remains constant and only the direction varies. We 
consider a steady-state process and assume that all neutrons have 
the same absolute magnitude of velocity v0 = 1 and their distribu­
tion density depends solely on the coordinate x. We introduce a 
function f (x, JL) that characterizes the neutron density in the cross 
section x, the velocity of neutrons forming with the positive direc­
tion of the x-axis an angle e where JL = cos e.* The number of 
neutrons in unit volume in a given cross section, the direction of 
velocity of which lies within the limits (JL, JL + dJL), is determined 
by the quantity f (x, JL) dJL. 

The total neutron density p (x) in a given section is 
1 

p (x) = J f (x, JL) dJL (11-88} 
-1 

Our immediate aim is to derive an equation for the distribution 
function f (x, JL). To do this, form the relation of the total balance 

• It is obvious that for 0 ~ e ~ n we have -1 ~ J.L ~ 1. 
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of the number of neutrons having direction of velocity in the inter­
val (~-t, ll +a,_..) and lying in the layer between the sections x and 
x +ax. Due to the steady-state nature of the process, the flux of 
neutrons emerging from the given layer 

1-'f (x + dx, !1) a,... - Ill (x, !1) a,... (II-89) 

is determined by the difference between the number of neutrons that 
have acquired velocity in the given direction (!l, ll +a,_..) as a re­
sult of scattering on particles of the substance in the given layer and 
the number of neutrons that had velocity in the given direction and 
changed this direction after scattering. We take it that the scattering 
of neutrons on particles of substance is isotropic (equally probable 
in all directions) and the probability of the scattering of a neutron 
on one particle is described by the effective scattering cross section 
Q. Then it is clear that the number of neutrons that had a given 
direction of velocity (~-t, ll +a,_..) and were scattered in a given layer 
is equal to 

(II-90) 

while the number of neutrons that acquired velocity in the required 
direction as a result of scattering is 

1 

~ a,...Q·n0 ax J f (x, ~-t') a,_..' (II-91) 
-1 

On the basis of (II-89), (II-90) and (II-91), the equilibrium equa­
tion is then written in the form 

1 

= -Q·n0f(x, ~-t)a,_..ax+ Q;o a,_.. ax J /(x, ~-t')a~-t' (II-92) 
-1 

Divide both sides by a,_.. ax and proceed to the limit as ax-+ 0. 
Taking into account (II-88), we get an equation for the function of 
neutron distribution in the form 

~ Q Q~ 1-ta;=- n0j(x, ~-t)+-2-p(x} (11-93) 

This equation is frequently called the transport equation. It holds 
true not only in the case of the above-considered specific physical 
problem, but also for many other physical processes associated with 
the transport of matter or radiation.* 

For what follows it will be more convenient to rewrite equation 
(II-93) in a somewhat different form, introducing a dimensionless 

• For a detailed derivation of the transport equation for more general cases 
see, for example, [11]. 
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spatial coordinate £ connected with x by the relation x = A.~, where 
A. = _!_0 is the mean free path. Then the transport equation takes 

n. 0 
the form• 

(11-94) 

The function f (£, ~) must be subject to the boundary conditions 
that follow from the physical statement of the problem. We will 
assume that the flux of neutrons from the exterior half-space s < 0 
is zero and as £-+ oo there is a constant neutron flux of unit inten­
sity in the negative direction of the s-axis (i.e. as ~- 00 there are 
no neutrons whose direction of velocity forms an acute nonzero 
angle with the negative ~-axis). Then the boundary conditions for 
the function I(£, ~) will be written in the form 

f (0, fA.} = 0, fA. ~ 0 
I (oo, fA.) = 0, -1 < ~ < 0 (II-95) 

Let us establish important consequences of equation (II-94) and 
conditions (II-95). To do this, first integrate (11-94) with respect to ~: 

1 t 1 

:S J 1 <s. ~ > ~a~ = - ) t <s. ~ > a~+ ~ P <£> I a~ 
-1 -1 -1 

= -P<s>+P<s>=o (11-96) 
1 

Since the integral j (s) = I f (£, ~) ~ d~ is equal to the neutron 
-1 

flux through a given cross section, equation (11-96) yields 

·;~ = 0 or j (s) ==constant (II-97) 

Due to the normalization conditions (as ~-+ oo) we get f (~) = 
= -1 (unit flux as ~-+ + oo is in the negative direction of the 
6-axis). 

Now multiply (II-94) by ~ and again integrate from -1 to 1. 
1 

Introducing the notation K (s) = J f (£, ~) ~2 dfA. we have 
-1 

~: = 1 or K (s) = K (0) + 6 
where, by (11-95), 

0 

K (0) = J 1 (0, ~) ~2 dfA. 
-1 

• For the function f (s, !l) we retained the old designation. 

(11-98) 

(11-99) 
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Equation (11-94) is an integro-differential equation, since the 
unknown functions p (6) and I (6, !J.) are connected by the "integral 
relation (11-88). However, it is easy to get an integral equation for 
the function p(~). Solving the ordinary differential equation (11-94) 
for the function I (s, tJ.), we get, by (11-95), 

!; Tl-1; J e-"-P (TJ) dlJ, fJ. > 0 

6 1 0 I( 'f.t) = 2p. 00 ,_, 

- J e-"-P (TJ) dT), tJ.< 0 

(11-100) 

' Integrating (11-100) with respect to fJ. from -1 to 1, we get an in­
tegral equation for the function p (6): 

1 i· 00\ ,,_,, d 
p (6) = - 1 p ( TJ) e- -ll- dl) _r_ 

2 ~ • p. 
(11-101) 

0 0 

Changing the order of integration in (11-101), we get the final equa­
tion for the neutron density in the cross section 6: 

00 

P <s> = J v <s- TJ> P <TJ> dT) (11-102) 
0 

This will be seen to be an integral equation with a difference kernel 
in a 'semi-infinite interval: 

1 ,,_,, 1J --dp. v (s - TJ) = - e ll -
2 p. 

0 

(11-103) 

Equation (11-102) "is ordinarily called Milne's equation, after 
E. Milne who first derived it in studies of the processes of radiative 
transport in stellar atmospheres. 

Observe that in many cases it is convenient to give a somewhat 
different representation of the kernel that results from the change of 

1 It I 
integration variable f.t =.!. in the integral X (t) = \ e- ""iL ~. Then 

v J p. 
0 00 

X (t) = J e-ltl "~v 
1 

(11-104) 

The integral (11-1~4) is often called the Hopf function. Integra­
tion by parts readily yields its asymptotic expansion for large posi­
tive values of t: · 

e-t { 1 21 31 } X(t)=-t- 1-T+-;z-es+ ... (11-105) 
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b. Investigating the solution of Milne's equation 

Equation (II-102) belongs to the type of equations considered in 
Section II.3 and it can be solved by the general algorithm of the 
Wiener-Hop£ method. We will not go into the detailed solution of 
this equation and an investigation of its physical meaning,* but will 
confine ourselves to a few remarks. 

In many problems of a practical nature the main interest lies 
only in determining the distribution function of neutrons emanating 
from a given medium, i.e. the function f (0, f.t) for f.t < 0. According 
to (11-100), this function is defined by the expression 

00 Tt 00 -Tt . 
1 r - 1 r -

f(O,f.t)=- 21l J e~'p{tJ)dtJ=2Ti!T J eiJAI p(tJ)dtJ, ~-t<O (11-106) 
0 0 

As is readily evident, by virtue of (11-29), the last integral is nothing 
other than a one-sided Fourier transform of the function p(tJ) for 
k i • =TilT, I.e. 

(11-107) 

Thus, in such problems it is enough to find the Fourier transform 
of the solution, not the solution itself, of the integral equation (11-102). 

According to the general scheme of the Wiener-Hop£ method, to 
solve this problem, one has to find the Fourier transform of the ker­
nel of the integral equation, and then perform the factorization 
(11-51) of the function L (k) = 1 - V21t A.V (k). In our case, A. = 1 
and 

00 { 0 1 1 • 1 -=-a V (k) =---= I eikxv (x) dx = I eikx dx I e" ....f. 
¥2" J 2 ¥2" J J ll 

-oo -oo 0 

1 d)J. 1 arctan k 

k2+_1_ ·Jii'"= V2". k 
)J.2 

1 1 1+ik 
= V 21t • 2ik ln 1- ik (11-108) 

Therefore 
L (k) = 1-V2n A.V (k) = k-artan k {11-109) 

The function L (k) is clearly analytic in the strip -1 < Im k < 1 
tending to zero in this strip as I k I - oo. The point k = 0 is a 
second-order zero of thh: function. This latter circumstance some­
what complicates factoring the function L (k). 

• For a detailed discussion, see [7]. 
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In accordance with Note 2 (page 295), construct the auxiliary 
function k2 J 1 L (k) to satisfy all the conditions of Lemma 2, and 

consider the function 

Cl> (k) =In lk20 1 L (k) J = ln [ k201 ( 1- arc~n k) J (II-110) 

which can be readily represented in the form Cl> (k) = <D _ (k) + 
+ <D+ (k), where the functions <D _ (k) and <D+ (k) are analytic in the 
lower Im k < 't+ < 1 and upper Im k > 't _ > - 1 half-planes 
respectively. Then · 

(II-110') 

and the function L+ (k), which is the numerator in the factorization 
formula (II-51) of the function L (k): 

can be chosen in the form 

L (k) = L+ (k) 
L_ (k) 

k2 
L+ (k) = k+ t e<I>+<k> (II-111) 

The function L+ (k) is analytic in the upper half-plane Im k > 't _ 

and, as I k I -+ oo, increases as the first power of k, since, due to the 
convergence of integral (II-110'), <D+ (k) is bounded as I k I -+ oo. 
Therefore, the function R+ (k) is determined from formula (II-52): 

(II-112) 

From this it follows that when determining the distribution function 
of neutrons emanating from the half-space x > 0, it is necessary to 
find <D+ (k). This can be done with the aid of formula (II-110'). To 
compute this integral, put 't _ = 0 and reduce it to the following 
form: 

-co 

(II-113) 

Taking advantage of the evenness of the function <D (~) and chang­
ing the integration variable ~, = - ~ in the first integral, we final-
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ly get 
00 

(J)+ (k) = :i J (J) (~) ~2~k2 (II-114) 
0 

The last integral can easily be tabulated, and this enables us to 
find f (0, f.l) for f.l < 0 to within the constant factor A. To determine 
A, take advantage of the normalization condition (11-97) and the 
following reasoning. Multiply equation (11-94), which holds for 

~ > 0, by ,) eik' and integrate it with respect to ~ from 0 to oo. 
11 2n 

Let k be a complex quantity with small positive imaginary part. 
Then, using the formula of integration by parts 

(II-115) 

we get 

-ikf.lF+(k, f.l)- V2n f(O, f.l) = -F+(k, f.l)+ ~ R+(k) (II-116) 

or 

(II-117) 

The integration of (1~-117) from -1 to 1 with respect to f.l due 
1 

to the obvious relation R+ (k) = J F + (k, f.l) df.l and to condition 
-1 

(11-95), yields 
1 0 

R(k)=(1-.!.f d~ )-t_1_ff(O,~) d 
+ 2 J 1-ik~-t V2n J i-ik~ ll f..L 

-1 -1 

(II-118) 

Since 
1 

21 r d~ = _f_ ln 1 + ik = arctan k 
J 1-ik~ 2ik 1 - ik k 

(II-119) 
-1 

we finally get 
0 

R+ (k) = 1 ( 1 _ arctan k )-1 f I (0, Jl) f.l df.l (II-120) 
V2n k J 1-ik~ 

-1 
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Expand the right-hand side of (120) in a Laurent series in the neigh­
bourhood of the point k = 0. Taking advantage of the equality* 

0 f 

~ I (0, Jl) Jl dJl = ~ I (0, ~L) Jl dJl = j (0) = -1 
-1 -1 

and the earlier introduced notation (II-99), we obtain 

R+ (k) =- l}Zn : 2 {1 + iK (0) ·k+ . .. } 

(11-121) 

(11-122) 

On the other hand, it is possible to find the first terms of the Lau­
rent-series expansion, about the point k = 0, of the function on the 
right side of formula (11-112). 

First compute <D+ (0). Take formula (11-110') and choose for the 
path of integration the real axis with traversal of the point ~ = 0 
along a semicircular arc in the lower half-plane. Allowing the radius 
of this semicircle to approach zero and taking into account that by 
virtue of the oddness of the integrand function the integral over por­
tions of the real axis is zero, we obtain 

<D+(O)=.!limln[~2 -t" 1 (t- arctan~ )]=In~ (II-123) 
2 t ..... o ~ ~ Y3 

Utilizing (11-123) we find that the expansion of the function R+ (k) 
about the point k = 0 is of the form 

(11-124) 

Comparing (11-122) and (11-124) we determine the value of the con­
stant A: 

(IJ-125) 

Putting the results obtained into the formulas (11-107), (11-112), 
(11-114), we finally get, for Jl < 0 

00 

f (0, Jl) = ~3 (1 +I Jll> exp ~ ) ln [ ~2~1 ( 1- arc~an ~)] !!2~~~+1 
0 

(11-126) 

This yields the function of angular distribution of neutrons ema­
nating from the half-space x > 0. 

* Equality (11-121) is valid by virtue of (11-95) and the normalization con­
dition (11-97). 
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c. Diffraction on a flat screen 

The integral equations considered so far are Fredholm equations 
of the second kind. However, a number of physical problems natu­
rally lead to integral equations of the first kind with a difference 
kernel in a semi-infinite interval. As an example, let us consider 
the problem of diffraction of electromagnetic waves on a flat screen. 
Let there be placed in a homogeneous space a flat, perfectly conduct­
ing screen coinciding with the half-plane x > 0, y = 0, -oo < 
< z < oo. Outside this screen let there be located local sources of 
an electromagnetic field that generate periodic electromagnetic oscil­
lations of frequency w polarized so that the vector of electric-field 
intensity E is parallel to the z-axis and is independent of the coor­
dinate z. Then for the amplitude u (x, y) of the vector E we get the 
scalar problem 

11u + k2u = -1 (x, y) 
u (x, 0) = 0, x > 0 (II-127) 

Besides, the function u (x, y) must satisfy the conditions of radiation 
at infinity; these conditions determine the absence of waves arriv-

ing from infinity.* Here, k=.!!!_ is the wave number (cis the veloc-
c 

ity of light in the medium exterior to the screen), I (x, y) is a given 
function defining the density of the sources. We will seek a solution 
of the problem (II-127) in the form u (x, y) = u0 (x, y) + v (x, y), 
where the function u0 (x, y) is the field generated by the given sources 
in the absence of a screen; this field is expressed in terms of the 
function I (x, y) in the farm of the wave potential** 

u0 (x, y) = 1) J H~u (kr) I(£, 11) ~ dfl (11-128) 
s 

where H~n (z) is Hankel's function of the first kind, r = [(x - £)2 + 
+ (y - f1 2 )1/ 2 and the integration is carried out over the entire 
domain S in which the sources are located. For the function v (x, y) 
we get the problem 

11v + k2v = 0 (11-129) 

v (x, 0) = -u0 (x, 0) x > 0 
Besides, v (x, y) must satisfy the radiation conditions at infinity. 
We seek the solution of the problem (II-129) in the form of the wave 
potential of a simple layer 

00 

v (x, y) = J H~n (kr') ~ (£) ~ 
0 

* For details on the statement of diffraction problems see [17]. 
** Ibid., for the definition and properties of wave potentials. 

:.10-3878 

m-130) 
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where r' = [(x - ~)2 + y 2)1/2 and !-1 (~) is the unknown density, for 
the determination of which, using the boundary condition x > 0 
for y = 0, we get an integral equation of the first kind: 

00 

j H~11 (klx-sl>~t(s)~=-u0 (x,O), x>O (11-131) 
0 

Again we have a nonhomogeneous integral equation with a differ­
ence kernel in a semi-infinite interval. However, unlike (11-79), this 
is now an equation of the first kind. This equation can also be solved 
by means of the Wiener-Hop£ method, but we will not go into the 
details of this investigation. 

11.6. Solving Boundary-Value Problems for Partial 
Difterential Equations by the Wiener-Hopf Method 

The Wiener-Hop£ method may be used effectively not only for 
solving integral equations but also for solving boundary-value prob­
lems for partial differential equations. The specific form of employ­
ing this method may differ somewhat from the foregoing, although 
the general idea involved in factoring expressions of the type (11-63), 
(11-65) always forms the basis of the method. A typical example is 
the following boundary-value problem for the Laplace equation. 

Example 3. In the upper half-plane y > 0, find a harmonic func­
tion that satisfies, for y = 0, the mixed boundary conditions 

u (x, 0) = e-ax, a >0, x >0 
iJu 0 ay (x, 0) = , X< 0 

and tends to zero as y -+ oo. 

(11-132) 
(11-133) 

To solve this problem we employ a device that is frequently used 
in mathematical physics. First we solve the boundary-value problem 
(11-132), (11-133) for the equation 

Au- x2u = 0 (11-134) 

where x2 = iv0 , v0 >0, and then we proceed to the limit, as x -+0, 
in the formulas obtained. Using the method of separation of vari­
ables (see [17]) it is easy to obtain the integral representation of 
the general solution of equation (11-134), which solution decreases as 
y -+ oo, in the form 

OD 

u (x, y) = J f (k) e-~11eikx dk (11-135) 
-oo 

where f (k) is an arbitrary function of the parameter k, and Jl = 
= Vk2 + x1 is that branch of the root being taken which is an imme-
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diate analytic continuation of the arithmetic value of the root 1.1 = 
= I k I for x = 0. Note that then Re 1.1 > 0 for -oo < k < oo 
and this ensures the decay of the function (II-135) as y _,... + oo. 
The function (II-135) will satisfy the boundary conditions (II-132), 
(11-133) if the function I (k) satisfies the functional equations 

00 

) I (k) eiltx dk = e-ax, x > 0 (11-136) 
-00 

00 

5 l(k)L(k)e11lxdkc=0, x<O (11-137) 
-00 

where the notation L (k) = 1.1 (k) = Yk2 + x2 is introduced. The 
solution of the problem (II-136), (11-137) can readily be constructed 
if the function L (k) is an analytic function of the complex variable 
kin the strip -r_ < Im k < 't+ (-r_ < 0, 't+ > 0) and if in that strip 
it may be represented in the form 

L (k) = (k2 + a2) L+ (k) .£_ (k) (II-138) 

where L+ (k) is a function different from zero and analytic in the 
upper half-plane Im k > 't_; for I k I -+ oo L+ (k) tends to zero more 
slowly than k-2 , and the function L _ (k) is analytic in the lower half­
plane Im k < T+ and uniformly tends to zero at infinity. 

If these conditions are fulfilled, it is easy to see by direct verifica­
tion that the equations (II-136), (11-137) are satisfied by the func­
tion 

C CL_ (k) 
I (k) = (k2+a2) Ldk) = L (k) 

where the constant C is determined from the condition 

C =~L+ (ia) n 

(II-139) 

(11-140) 

Indeed, substituting into integral (II-136) the first of the equalities 
(11-139), closing the contour of integration by a semicircular arc of 
infinitely large radius in the upper half-plane, the integral around 
which, by virtue of the Jordan lemma is zero, we find, on the basis 
of (11-140), that the integral (11-136) is equal to e-a:r. for x > 0. 
Similarly, using the Jordan lemma applied to the integral around 
the semicircular arc of infinitely large radius in the lower half­
plane, it is easy to establish, for x < 0, the truth of (11-137) for the 
function I (k) defined by the second formula in (11-139). And so the 
solution of the given problem is connected with the possibility of 
the representation (11-138). In this case, due to the above-indicated 
choice of branch of the root, the function L (k) = y kz + xz is a 
single-valued analytic function different from zero in the strip 

20* 
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Im (ix) < Im k < -Im (ix) (Im (ix) < 0). Let 
function 

us consider the 

(II-141-) 

For a >-1m (ix) this function is also analytic and nonzero in 
the given strip; l (k) -1 as I k I -lo- oo, For this reason, by virtue 
of Lemma 2 the required factorization of the function l (k), and 
hence, L (k), is possible. It is easy to see that the functions 

L (k) = V~ , L_ (k) = ~ (11-142) 
+ k+Ja k-1a 

satisfy all the indicated requirements. Then, on the basis of formu­
las (11-135), (11-139), (11-142) we get the integral representation of 
the solution of equation (11-134), which satis'fies the conditions 
(11-132) and (11-133) and decreases•as y _. + oo, in the form 

00 

U (x, y). r C e-IJ.Yeikx dk (11-143) 
J Vk+ix(k-ia) 

-oo . 
where the constant C, on the basis of (11-140), (11-142), is equal to 

c = viii+"iX <II-144> 
2ni 

Proceeding to the limit in (11-143), (11-144) as x _.o, we get the 
integral representation of the solution of the original problem 

- n ao ya -i- J e-lkiY 
u(x,y)=--e 4 eikxdk 

2n Vk (k-ia) 
-oo 

,;- { _ · ~ Jo · k'y+ill'x 
= _! ~ e • 4 e dk' 

2n V- k'(k '-ia) 
-oo 

+e -i: r e-ky+ikx dk} 
J Vk (k-ia) 
0 

(11-145) 

In the first integral (II-145) make a change of the integration 
variable k' = - k. Since 

Jo ek'y+i.l!!x Joo e-ky-ikx 
--===--- dk' = - dk 
-v-~~-~ · vk~+~ -oo 0 

00 -ky-iltx 
= ein r e dk (11-146) 

.J Vk (k+ia) 
0 
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it follows that (II-145) assumes the form 

vii { i..:!. F' e-ky-ikx . -i ~ r e-kt~+ikx } 

u (x, y) =2n e 4 J Vk (k+ ta) dk+ e 4 J Vk (k-ta) dk 
0 0 

Vii { -i~ j'!' e-ky+ikx } 
=- Re e ' dk (II 147) 

n Vk (k-ia) -
0 

To compute the integral (11-147), consider the integral 

r -aa 
J(a,~)=J vi<~+~>~ 

0 

(11-148) 

By the change of the variable of integration~+~ =1), this integral 
may be reduced to the form 

J (a,~) =eaf>J (a,~) (II-149) 

where 
00 

I (a, ~) = ) ;.-art . d1) (11-150) 
p 1'J 1')-~ • 

The integral (11-150) may be evaluated by differentiating with res­
pect to the parameter: 

00 -
f)[ r e-a1J ... / n 
oc;:=-J VTJ-~d1J=-e-aPV Ci (II-151) 

p 
Since 

"" 
/(0, ~)= j :TJ = ,~-. 

p fJ TJ-~ I' ~ 

it follows that by integrating (11-151) we get 

n -v- r e-a;f> n ("1-) /(a,~)=v;r- n~ Vada=v;r[1-<I> .,a~l 

z 

where <I> (z) = :'"ii J e-x2 dx is the error function. 
0 

eaf> ("1-J(a, ~)=n Vif [1-<I> r a~)] 

Returning to (11-147), we obtain 

u(x, y)=Re{e-az[1-<I>(V- az)l} 
where z =x+iy. 

Whence 

(11-152) 

(11-153) 

(11-154) 

(11-155) 



APPENDIX III 

FUNCTIONS OF MANY COMPLEX VARIABLES 

The theory of functions of many complex variables, which is a 
natural development of the theory of functions of one complex 
variable, has come to the fore due to effective applications of the meth­
ods of this theory in a variety of sciences, and in particular in 
quantum field theory. In this appendix we give a brief survey of the 
fundamentals of the theory of functions of many complex variables. 

III. f. Basic Definitions 

We consider an N-dimensional complex space CN the points 
z = (z1, ... , zN) of which constitute an ordered collection of com­
plex variables z11 = x 11 + iy11 • The complex space CN may be inter­
preted as an ordinary Euclidean space of the real variables 
x1 , Y1 , ••• , x N• y N of dimension "2N. For this reason, the notions of 
an open and a closed region, an interior, an exterior, and a boundary 
point, a IS-neighbourhood, and so on are introduced just as they are 
in the theory of functions of many real variables. For example, the 
IS-neighbourhood of a point z0 will be regarded as a set C (6, zO) of 
points z E CN that satisfy the condition 

I zk - z~ I < l>k k = 1, 2, ••. , N 

The symbol l> = ( IS1, ... , l> N) stands for an ordered collection of 
real numbers IS11 > 0. The set of points z E CN that satisfy the 
condition I Zk - z~ I < r 11 (rk > 0) is called a polycircle K (r, z0) 

of radius r = (ru ... , rN) centred at the point z0 = (z~ •... , zM. 
A function w = f (z) = f (z1, ••• , zN) of many complex variables 

z = (zlt ... , zN) specified on a set E c CN is defined by a law that 
associates with every value z E E a definite complex number w E C1. 

Since the complex number w consists of a pair of real numbers u 
and v (w = u + iv), specification of the function f (z) on the set 
.If c CN is tantamount to a specification, on an appropriate set of 
a 2N-dimensional Euclidean space, of the two real functions 
u (x1 , y1 , ••• , xN, YN), and v (x1 , y1 , ••• , xN, YN) of 2N real 
variables x1, YI> •.• , xN, YN: 

(111-1) 

The functions u (xh ... , YN) and v (x1, ... , YN) are called the 
real and the imaginary part, respectively, of the function f (z). 
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It is clear that a number of the concepts and properties of functions 
of many real variables can be carried over to functions of many com­
plex variables. For example, the function f (z) specifted on the set 
E c: CN is continuous, at a point z0 E E, with respect to the collec­
tion of variables z1 , ••• , zN if for any e > 0 a 6 = (617 ••• , 6N) 
can be found such that for all z E C (6, z0) the following inequality 
holds: 

I f (z) - f (z0) I < e (111-2) 

From now on we will use the term continuous function for the funct­
ion f (z) that is continuous with respect to the set of variables z1 , ••• 

• .. , Z.v. 
If the function f (z) is continuous at every point z E E, then it 

is said to be continuous on the set E. The following theorem holds 
true. 

Theorem III.l. A necessary and sufficient condition for the con­
tinuity of the function f (z) = u (x1 , ••• , YN) + iv (x1 , ••• , YN) on 
a set E c: CN is the continuity with respect to the collection of va­
riables of the real functions u (x1 , ••• , y,v) and v (x1 , ••• , YN) of 
2N real variables on the corresponding set of a 2N -dimensional Eucli­
dean space. 

The properties of continuous functions of a single complex varia­
ble carry over directly to the case of many complex variables. A 
series of continuous functions of many complex variables that is 
uniformly convergent in a domain G converges to a continuous func­
tion. 

111.2. The Concept of an Analytic Function 
of Many Complex Variables 

As in the case of a single complex variable, one of the basic con­
cepts in the theory of functions of many complex variables is that 
of an analytic function. 

Given in a domain G c: CN a function w = f (z) of many complex 
variables. Fixing the values of the variables z~, ... , z~_1 , z~+l• 
•.. , zfj., we obtain the function 

of a single complex variable z1 specifted in some domain G1 of the 
complex plane z1• Suppose for arbitrary ftxed values z~, ... , zf_1 , 

z~+l• ... , zfj. each function f1 (z1) (i = 1, 2, ... , N) is an analytic 
function of the complex variable z1 E G1• In this case we say that 
the function f (z) is an analytic function in each variable in the do­
main G. The derivatives fi (z1) of the function / 1 (z1) with respect to 
the variable z1 will be called the partial derivatives off (z) and will 
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be denoted as :~ . Clearly, 

.!!_ = lim f(z., ... , z;_., z;+&zi, Zi+t• ... , ZN)-f(z., .•• , ZN) (III-3) 
Ozi Az .-+0 &zt 

' 
The partial derivatives ::. can be expressed in terms of the partial 

I 

derivatives of the functions u (x1, ••• , YN) and v (x1 , ••• , YN): 

(111-4) 

For them the Cauchy-Riemann conditions hold: 

iJu iJv iJu iJv (lll-5) 
iJxi = iJyi ' iJy; = - iJ.xi 

We now introduce a basic definition: 
A function f (z) of many complex variables z = (z1, ... , zN) is said 

to be analytic* in a domain G if in that domain the function f (z) is 

analytic in each variable z1 and all its partial derivatives ::. are con-
I 

tinuous. 
Analytic functions of many complex variables have a number of 

remarkable properties similar to those of an analytic function of 
one complex variable. Below we give a brief survey of these prop­
erties. For the sake of simplicity we consider the case of two inde­
pendent variables, since the reasoning holds true for a larger number 
of variables. 

111.3. Cauchy's Formula 

Suppose f (z1 , z2 ) is an analytic function in the domain G = G1 X 
X G.,, the domains G1 · and G2 being simply connected. In G1 and G2 

take arbitrary closed contours cl and c2, respectively, and consider 
the iterated integral 

I= r d~1 r f (~., ~~) d~2 (111-6) 
J J (Zt- ~~) (lg- ~2) 

Ct C2 

where z1 and z2 are arbitrary points lying inside the contours C1 
and C 2 , respectively. 

The integrand in (111-6) is continuous with respect to the set of va­
riables, which fact is a sufficient condition for the possibility of 

• As in the case of a single complex variable, to simplify later proofs we 
included in the definition of an analytic function of many complex variables the 
extra condition of continuity of the partial derivatives, which, however, does 
not restrict the class of functions under consideration; this follows from the 
so-called Hartogs theorem (see, for example, [20]). 
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changing the order of integration in the iterated integral. Hence 

I = i d~2 \ I (~tt ~2) d~l J ) (zt- ~t) (z2-~2) 
C2 Ct 

(III-6') 

Since the function I (~1 , ~2) is analytic in each variable, the inner 
integral in (111-6) is, by virtue of the Cauchy formula (1-59), equal to 

i t (~tt ~2) d~2 = 2.ni /(~{t ~2) ( 111-7) 
J (zt- ~t) (z2- ~2) (zt- ~~~ 

Ct 

Taking advantage once again of the Cauchy formula, we finally get 

(111-8) 

which can be rewritten as 

I (zt, z2) = - 4:2 i d~l i I <~ft ~2> d~2 .. J J (zt- ~t) (z2- ~2) 
(111-9) 

C! C2 

Similarly, for the case of N variables we have the formula 

(111-10) 

where the points Zk lie inside the closed contours Ck that belong to 
the simply connected domains Gk, and the function I (z) is analytic 
in the domain G = G1 X ... X G N· Formulas (111-9) and (111-10) 
are generalizations of the Cauchy formula (1-59) to the case of many 
complex variables. 

From these formulas we can obtain some important properties of an 
analytic function of many complex variables. In particular, as in 
the case of one complex variable, using formula (111-9) we can show 
that an analytic function of two complex variables has partial deriv­
atives of all orders for which the following expressions hold true: 

an+m I (z~o z2) _ n! m! i d~ i I (~t. ~2) d~2 
iJz~iJz'r -- 4:n:2 J t J (:Zt-~t)n+t (z2-~2)m+1 

Ct Cs 

(IIl-11) 

The maximum modulus principle and other properties can similarly 
be established. 

The appropriate results are obtained from formula (111-10) for an 
analytic function of many complex variables. 
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111.4. Power Series 

In the case of two independent variables, the following expression 
is called a power series: 

00 00 

~ ~ Cn. m (zl-at)n (zz-a2)m (111-12) 
n=O m=O 

where Cn. m• a 1 , a 2 are specified complex numbers. An assertion si­
milar to the Abel theorem (Theorem 2.5) holds true. 

Theorem III.2. If the series (111-12) converges absolutely at the 
point z0 = (z~ =I= a1o z~ =I= a 2), then it is absolutely convergent inside the 
polycircle K (r0, a) of radius r0= (I z~- a1 1. I z~- a2 1), and in any 
polycircle of smaller radius * centred at the point a the series is uni­
formly convergent. 

Proof. By virtue of the absolute convergence of the series (111-12) 
at the point z0 , all terms of the series are uniformly bounded at this 
point. We therefore have the following estimate for the coefficients 
of series (111-12): 

ICn.ml~ jzY-atln~z~-a2 lm (111-13) 

with the common constant Af for all coefficients. Take an arbitrary 
point z = (z1 , z2 ) inside the polycircle K (rO, a) and set 

I zl - a1 I = ql I z~ - al 1. I z2 - a2 I = q2 I z~ - a2 I 
where 0 < q1 < 1, 0 < q2 < 1. Then, using the estimate (13), we 
get, for t?e chosen point z, 

00 00 00 00 

I~~ Cn,m(Zt-Ot)n(z2 -a2)mi~M ~ ~ q~q:' 
n=O m=O n=O m=O 

M 
- ""(1;---q.-:-) ..,..,(1,..---q2..,...) (111-14) 

which completes the proof of the convergence of the series (111-12) at 
the point z. 

Since z is an arbitrary point of the polycircle K (,.0, a), the abso­
lute convergence of the series (111-12) inside K (,.0, a) follows. The 
uniform convergence of the series (111-12) in any polycircle K (r< 11 , a) 
of smaller radius can be demonstrated with the aid of (111-14), just 
as in the case of one complex variable (Theorem 2.5). 

The theorem just proved enables one to establish that the domain 
of convergence of the power series is the polycircle K (R, a) of ra­
dius R = (R1 , R 2). Inside K (R, a) the series (111-12) is absolutely 

• We will say that the radius r<1> of the polycircle K (r<1>, a) is less than the 
radius r<il of the polycircle K (r<2 >, a) if rp 1 < r{ 21 , ••• , rW < rw. 
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·convergent, outside it the series diverges; the series (111-12) is uni­
formly convergent in any closed subdomain of K (R, a). Note that 
the radii R 1 and R 2 are defined jointly and cannot, generally, be 
defined separately. 

To illustrate let us consider the power series 
00 00 

I() -~ ~ (n+m)!?!! m 
z- LJ LJ nlm! ,zl 

n=O m=O 

(111-15) 

the coefficients of which are binomial coefficients. Since the series 
is absolutely convergent within its polycircle of convergence, the 
series with positive terms 

oo ao 

~ ~ (n+m)l I In I lm 
LJ LJ nl ml Zt • z2 

n=O m=O 

(111-16) 

is convergent in the polycircle of convergence of the series (111-15). 
Collecting terms in (III-16) with the sum of the powers n + m = 
= s, we get 

00 

~ (I Ztl +I z21)' (111-16') 
1=0 

whence it follows that the radii R 1 and R 2 of the polycircle of con­
vergence of the series (111-15) are determined from the condition 
R 1 + R 2 = 1, i.e., when R 1 decreases, the value of R 2 increases and 
vice versa. 

Consider the series (111-12) within its polycircle of convergence 
K (R, a). Taking advantage of the absolute convergence of the series, 
collect those terms whose sum of the powers m + n = s: 

00 

I (z) =I (zs, z2) = ~ Us (zs. z2) 
•=0 

(111-17) 

The expression (111-17) is a representation of the original series in 
~he form of a _:;eries of homogeneous polynomials in the variables 

(111-18) 

Since the functions u (z1 , z2 ) are analytic in each variable and the 
series converges uniformly within the polycircle K (R, a), it follows 
by the Weierstrass theorem (Theorem 2.3) that the function f (z) is 
also analytic in each variable within K (R, a), and its partial deriv­
atives may be computed by means of termwise differentiation of 
the series (111-17). As can be readily seen, the radius of convergence 
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of the resulting series is then equal to the radius of convergence of 
the series (111-12), and the partial derivatives aiJf and 8

81 are con-
z1 z2 

tinuous inside K (R, a). From this it follows that within the poly­
circle of convergence the power series (111-12) converges to an analytic 
function of many complex variables. 

As in the case of one complex variable, it is easy to establish that 
the coefficients of the power series (111-12) are expressed in terms of 
the values of the partial derivatives of its sum in the centre of the 
polycircle of convergence-at the point a = (a1 , a2)-via the for­
mulas 

c = _1_ an+m z -
n. m n! mt az~ azr I ( ) lz-a (111-19) 

111.5. Taylor's Series 

We now show that with a function analy..tic in some polycircle 
K (R, a) there can be associated a power series that converges to the 
given function within K (R, a). The following theorem holds. 

T hem• em TII.3. A function f (z) that is analytlc inside a polycircle 
K (R, a) is uniquely represented within K (R, a) in the form of the 
sum of an absolutely convergent power series: 

00 00 

f (z) = }J }J C n. m (zl- ai)n (z2- a2)m 
n=O m=O 

Proof. Take an arbitrary point z E K (R, a). By the formula (111-9) 
we have 

(111-20) 

where c; and c; are circles with centres at the points al and a2 and 
with radii R; and R; that satisfy the conditions I z1 - a1 I < 
< R; < R 1 and I z2 - a2 I< R; < R 2 • From earlier reasoning it 

follows that the rational fraction (~ )~~ ) may be expanded 
j-Zj 2-Z2 

into an absolutely and uniformly convergent series with respect to 
t1 and t2: 

00 00 

(111-21) 

Substituting the expansion (111-21) into (111-20) and again perform­
ing term-by-term integration of the corresponding uniformly con-
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vergent series, we obtain 
00 00 

(III-22) 

(111-23) 

By (III-11) this can be rewritten as 

c = _·_1_ an+mj (z) I 
n. m n! m! iJz~ azr z=a (111-24) 

Since z is an arbitrary point of K (R, a), from (111-22) follows 
the expandability of the function, which is analytic in the polycircle 
K (R, a), into a convergent power series. 

From a comparison of formulas (111-24) and (111-19) we conclude 
that the expansion is unique, and this completes the proof of the 
theorem. 

By analogy with the results obtained for a function of a single 
complex variable (see Theorem 2.6), it is natural to call the expan­
sion (111-22) the Taylor series of the function f (z). 

To conclude, note that the radius R 0 of convergence of the series 
(111-22) may turn out to be greater than the radius R of the polycircle 
K (R, a). In that case the sum of that series will be a function that 
is analytic in the polycircle K (R0 , a) and is coincident with the 
original analytic function f (z) in a polycircle K (R, a) of smaller 
radius. 

The foregoing reasoning is readily carried over to the case of many 
complex variables. 

111.6. Analytic Continuation 

As in the case of a single complex variable, representing an analyt­
ic fuqction of many complex variables with the aid of a power series 
permits illuminating the question of the uniqueness of definition of 
an analytic function (see Theorem 2.8). For instance, if we have two 
analytic functions / 1 (z1 , z2) and f 2 (z1 , z2) in a domain G that coin­
cide in the subdomain G' of G, then it can readily be demonstrated 
that ft (z1 , z2 ) =:; / 2 (z1 , z2) for z= (z1 , z2) E G. On this basis we can 
introduce the principle of analytic continuation in the following 
form. 

The principle of analyt,ic continuation. Given, in domains 
G<1 l and G<2, which have a common subdomain G<1 • .,, , the analytic func­
tions / 1 (z) and / 2 (z) that are coincident in G11 • t) • These functions 
are then an analytic continuation of each other, which is to say that 
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in the domain G = G11 > + G12> there is a unique analytic function 
f (z) that coincides with / 1 (z) in G11 > and with f 2 (z) in G12>. 

As in the case of one complex variable, it is possible to construct 
an analytic continuation of an analytic function f1 (z), originally 
specified in some domain G11 >, along all possible chains of domains 
emanating from G111 and having pairwise common portions. 

For example, such an analytic continuation can be obtained by 
expanding the fu~ction f (z) in the Taylor power series (111-22) about 
various points z1'> E G11 >. If the radius of the polycircle of conver­
gence of any one of these. expansions turns out to be greater than the 
distance of the point z1'> to the boundary of the domain G11 >, then 
we obtain an analytic continuation off (z) into the greater domain G 
that contains G!1>. 

In this manner we arrive at the concept of the total analytic func­
tion F (z) and its natural domain of existence G or, as it is common 
to say, the region of analyticity (also sometimes called the region of 
holomorphy). Generally, an analytic continuation can also lead to a 
multivalued function whose region of analyticity is a certain multi­
sheeted manifold that results from the introduction of so-called 
domains of superposition.* 

An essential point in applications of thetheoryoffunctionsofmany 
complex variables, in particular in the quantum field theory, is 
whether or not a given domain G is a region of analyticity. In other 
words, whether there is a function f (z) analytic in G for which the 
domain G is the natural domain of existence. If G is not a region of 
analyticity, then any function f (z) analytic in G can be continued 
analytically into a greater domain G* containing G. 

As we have seen (Example 4, Sec. 3.2), in the case of one complex 
variable the unit circle I z I< 1 is a region of analyticity. Making 
use of Riemann's theorem on the possibility of a conformal map­
ping of an arbitrary domain into the unit circle, it is easy to show 
that in the case of one complex variable any domain is a region of ana­
lyticity. 

This assertion does not hold true in the case of many complex va­
riables. 

To prove this we will show that even in C2 the domain 

G: {z = (zh z2): 1 <I z I= (j z112 +I z2 j2)112 < 5} 

is not a region of analyticity.** To do this it suffices to demonstrate 
that any function analytic in G can be continued analytically into 
a greater domain G* that contains G, for instance, into the sphere 
lz I <5. 

• This is discussed in detail in (20). 
•• This example is a slight modification of the example considered .in (2]. 

See also (20]. 
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Now suppose f (z) is an arbitrary function analytic in G. Consider 
the function 

cp (z) = <p (z1, z2) = 2~i ) 1 ~:~ ::> d~1 (III-25) 
lttl=4 

The function <p (z) is an integral dependent on the variables z1 and 
z2 as parameters. The subdomain {I ~1 I = 4, I z2 I < 3} belongs to 

Fig. 111.1 

G (see Fig. III .1). Therefore the function cp (z) is analytic in each va­
riable z1 and z2 in the polycircle K: {I z1 I< 4, I z2 I < 3}. It is easy 
to see that the partial derivatives of the function <p (z) are then con­
tinuous. From this it follows that in the polycircle K: {I z1 I< 4, 
I z2 I < 3} the function is an analytic function of two complex va­
riables z1 and z2. In particular, <p (z) is also analytic in the closed 
domain G': {I z1 I -< 4, 1 -< I z2 I -< 3} that simultaneously belongs 
to the polycircle K and to the original domain G. By Cauchy's for­
mula (1-59), we have, in G', 

1 r f (~{. z2) d'" = f (z z ) 
2nt J ~~-zl 'ol 1• 2 

Itt 1=4 

(111-26) 

whence it follows that the analytic functions f (z) and cp (z) coincide 
in G'. Hence, in the extended domain G* (in the sphere I z I < 5) 
that contains the original domain G, there is defined an analytic 
function F (z), equal to f (z) in G and cp (z) in K, which is an ana­
lytic continua\ion of f (z) in G*. The proof is complete. 

To summarize, then, in the case of many complex variables not every 
region is a region of analyticity. This fact markedly distinguishes the 
theory of functions of many complex variables from the theory of 
functions of one complex variable. 



APPENDIX IV 

WATSON'S METHOD 

The Watson method is used chiefly in the summation and asymp­
totic analysis of series. This method was originally proposed by 
G. N. Watson in 1919 in a study of the problem of the diffraction of 
radio waves on a sphere. The method of separation of variables read­
ily enables one to obtain an analytic representation of the solution 
of this problem in the form of a series in terms of eigenfunctions. 
However, when the length of the incident wave is much less than 
the radius of the sphere, which occurs for instance in problems of 
the diffraction of radio waves on the earth's surface, the resulting 
series converges very slowly. Watson was able to develop a method 
that permitted transforming this slowly convergent series into anoth­
er series that converges quite rapidly. This method came to be 
known as Watson's method. 

The principal idea behind Watson's method is unusually simple and 
is based on the fact that when computing the integral with respect to 
a complex variable with the aid of· residue calculus, one can, by 
closing the contour of integration in various ways, obtain a repre­
sentation of the original integral in the form of various series. How­
ever, despite the simplicity of the basic idea of the Watson method, 
its realiz-ation in many specific cases requires a great deal of skill. 

We illustrate the basic propositions of the Watson method in a 
few simple instances.* Let it be required to sum the series 

00 

S= ~ 
1 

(IV-1) 
n=-oo 

where a is a positive number. 
Note that when a ~ 1 the numerical summation of the series 

(IV-1) to a high degree of accuracy is not exactly a trivial problem. 
Consider the auxiliary integral 

(IV-2) 

• The examples given below in the use of the Watson method were suggested 
by S. Ya. Sekerzh-Zenkovich to whom the authors are indebted. 
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where the integration is performed on the complex v-plane along 
the straight lines Z+ and Z- parallel to the real axis and at a dis­
tance d from it in the upper and lower half-planes with d < a 
(Fig. IV.1). The integration along the line z+ is from right to left, 

A: .:t+ 

'iN-1 J)_N 

AN 
'J .z-

lmJ/ 

id 

_,2 -J? 0 Y, 

la 

Fig. IV.t 

~ 

c' "N 

A: 
JIN )IN+ I 

AZ 

along the line z-, in the reverse direction. The improper integral 
(IV-2) is absolutely convergent. Indeed, we have the obvious esti­
mate 

ls:~:VIIImv-d= lt-e-2.,!,1/lmV=d ~ e2~-1 (IV-3) 

We have a similar estimate also for Im v = -d. Thus the second 
factor in the integrand of (IV-2) is bounded, while the first tends to 
zero as 1/1 v 12, and this ensures the absolute convergence of the 
integral (IV-2). 

We will show that the integral (IV-2) is equal to the sum of the 
original series (IV-1). Construct the auxiliary integral 

1 J 1 einv IN=- ·--dv 
21 v•+a• sin nv 

rN 
(IY·4) 

around the closed contour r N which is made up of the segments Z N 
and Z!v of the straight lines z+ and Z- between the points 

A~= ( N + ~ , d) , A~== ( - N- ! , d) , A~= ( - N- ~ , -d) , 
Af == ( N + ~ , -d) 

respectively, and the vertical segments "iN (A!" A f) and YN (ArA~) 
connecting them (Fig. IV.1). Within the domain bounded by the 
21387H 
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contour r N• the integrand in (IV-4) has poles of the first order at 
the points vk = k (k = 0, ±1, ... , ±N). Therefore, when com­
puting the integral (IV-4) by the calculus of residues, we get 

N . N 
2ni ~ [ 1 etrrv J 1 IN=- Res --·-- k = "' (IV-5) 2i .. v2+a2 sinnv' LJ k2+a2 

k=-N k=-N 
whence it follows that the sum S of the series (IV-1) is equal to 
lim IN· 
N~oo 

On the other hand, the limit of the integral IN as N _. oo is equal 
to the integral (IV-2). Indeed, by virtue of the absolute convergence 
of the improper integral (IV-2) we have 

1 J 1 eirrv 
lim 2T v2+k2 ·sinnvdv=I 
N-oo 

Z1V+ZN 
(IV-6) 

and the integrals along the straight lines y N and r N tend to zero as 
N _. oo, which fact can readily be established on the basis of the 
estimate 

I ei:nv II e-:n Imv I e-:nimv I 
-- - - ~e:nd 
sin nv 'YN- I sin 11 (Rev+ tIm v) I 'YN- cosh (11 Im v) yN-....:::: (IV-7) 

Thus 
00 

(IV-8) 

and the original problem of summing the series (IV-1) reduces to 
computing the integral (IV-2). This problem can again be solved 
with the aid of residue calculus. Note that besides the singularities 
on the real axis the integrand in (IV-2) has two poles at the points 
v = ±ia. To compute the integral along the straight line :£+, we 
consider, in the upper half-plane, a closed contour eN consisting of 
the segment Z1V and the closing arc eN of the semicircle. It is easy 
to see that for Im v ~ d we have an estimate similar to (IV-3): 

(IV-9) 

whence it follows that the integral around the arc eN tends to 
zero as N _. oo. Therefore, when computing the integral along the 
line :£+ by means of residue calculus, we obtain 

- · -- dv = --Res · -- la 
1 J 1 eirrv 2ni [ 1 ei:nv . J 
2t v2 + .a2 sin nv 2i v2 + a2 sin nv ' 

:£+ 

1 e-:no 11 e-:na 
= - n 2ta sin tna = 2a · sinh na (IV-10) 
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Similarly 
1 j 1 einv :n; ena 

- •--dv=-•-:-,-----
2t v 2+ a2 sin :n;v 2a sinh :n:a 

(IV-11) 
z-

From this we have 

1 ) 1 einv :n; 
l=-2 . 1+ 2 ·-.--dv=-cothna ' v a sm :n:v a 

(IV-12) 
z++z-

which completes the solution of the original problem of summing the 
series (IV-1). 

Despite the simplicity of the foregoing example it contains all the 
basic elements of the Watson method. This method of an asymptotic 
analysis of series consists of several stages. In the first stage, it is 

·necessary to construct an integral with respect to a complex variable 
that is equal to the sum of the original series. The integrand of this 
integral must contain, as a factor, the analytic continuation of the 
general term of the series into the complex plane of its number. The 
next stage consists of an independent calculation of the integral 
thus constructed. In many cases one is able to obtain an expression 
of the desired integral in terms of the sum of the residues of the inte­
grand function at the singular points of the analytic continuation of 
the general term of the series. If the number of such singular points 
is finite, then we get an explicit expression for the sum of the origi­
nal series; if the number of these singular points is infinite, then we 
transform the original series into a new series that may prove to be 
simpler for an asymptotic investigation. 

For the next exa.mple we consider the problem of computing the 
series 

... 
F(e)="' (- 1t cosn8 

Ll coshan (IV-13) 
n=1 

where 0 -< 6 < n and ct is a specified positive number that satisfies 
the condition ct ~ 1. The series (IV-13) is typical of many problems 
in mathematical physics, the solution of which is handled by the 
method of separation of variables. As is readily seen, by virtue of 
the condition ct ~ 1 a large number of the initial terms of the series 
are of the same order (for instance, when ct = 10-4 and e = 0 the 
first 1000 terms of the series vary in absolute value from 1 to 0.995). 
For this reason it is extremely difficult to perform a direct numerical 
summation of the series (IV-13) for ct ~ 1. But if we apply the Wat­
son method, it is possible to transform the series (IV-13) into a new 
series for which it is easy to find an asymptotic representation when 
ct<(;:1. 

21* 
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Let us consider the auxiliary integral 
/f) = _1_ s cos va dv 

2i cosh cxv sin vn (IV-14) 
II 

where the contour of integration II on the complex v-plane is an 
infinite loop enclosing the positive portion of the real axis (Fig. IV.2) 

ImJf 

.,+/ 

ReJ1 

Fig. IV.2 

and cutting the real axis at the point v = 1/2. Integration along the 
contour II is carried out in the positive direction so that the real 
axis remains to the left of the direction of motion. It is easy to see 
that the integral (IV-14) is equal to the original series (IV-13). In­
deed, consider the integral 

I (0) =-1 J cosvO dv (IV 15) 
n 2i cosh cxv sin vn -

lin 

around the closed contour lin which consists of a finite portion of the 
loop II and the vertical section A 1A 2 that closes it and cuts the real 

axis at the point v = n + ~. The integrand f(v) in (IV-15) is an ana­

lytic function of the complex variable v inside the contour of inte­
gration, with the exception of a finite number of isolated singular 
points v1 = i (i = 1, 2, ... , n) which are poles of the first order 
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Therefore, applying the residue theorem we obtain 
n 

I (8) = ~ ( -1)" cos kS (IV-16) 
n LJ coshak 

k=l 

Let us estimate the value of the function I (v) in (IV-15) on the 

section A1A 2• Since here Re v = n+ ~, by taking advantage of 

the relation 

sin vn IReV=n+t/2 =sin (2n + 1) ~ cosh (n Im v) 

+ i sinh (n Im v) cos (2n+ 1) ~ = ( -1t cosh (n Im v) 

we obtain 
I sin vn /A1A2 =cosh ( n Im v) 

We have the obvious estimate 

l cos ve IAtA2 ~ e9 1 Im v 'lA tAt 

whence 

(IV-17) 

(IV-18) 

(IV-19) 

I cos 'YO I ~ e91 Im" 1 I < 2e-llm vI (n-9) I[ < 2 (IV 20) 
sin vn AtAt-...::: cosh (n Im v) AtAa AtAa -

On the other hand, it is clear that 

I cosh av IAtAz = ~ ea:<n+tJZ) 11 + e- Zav /A1A2 

> ~ 11-:- e-a<2n+t> I ea:<n+t/2> (IV-21) 

By virtue of (IV-20) and (IV-21) the integrand in (IV-15) decreases 
exponentially on A1A2 as n-+ oo. Therefore, by passing to the limit 
in (IV-15) as n-+oo, we get 

00 

I (8) = ~ ( -1)" c~~~: = F (8) (IV-22) 
k=t 

which completes the proof that the original series (IV-13) is equal 
to the integral (IV-14). 

Now let us evaluate the integral (IV-14). To do this, we analyti­
cally continue the integrand· of (IV-14) into the entire complex v­
plane and determine the singularities of the function I (v) = 

- hcos ~ outside the loop II. These are obviously the· points 
cos a v sm vn 

"" = n (n= 0, -1, -2, ... ), "" = i ! (2k+1) ~ (k = 0, ±1, 
±2, ... ). All of these points are poles of the first order. A1so note 
that the integrand I (v) is an odd function of the complex variable v. 
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On the complex v-plane we construct a closed contour r n m 

oonsisting of a finite portion IIn of the loop II between the points 
A1 and A2 (see Fig. IV.2), the rectilinear segments A2A3 , { A3 = 

=(n+~, (m~i)n)}; AaAh {A,=(-n-~, (m~i)n)}; A1A1 , 

{ A7 = ( n +{, - (m~i) n)}, and the contour A4A5A6A7 , which cons­
ists ofthe straight-line segment A4A7 with the circuit around the point 
v = 0 along an arc of a semicircle of sufficiently small radius p. 

Consider the integral 

In, m (9) = 2~ J coshc~~ :~n vn dv (IV -23) 
r;,m 

where the integration is performed in the negative direction. Clearly 
m 

In, m (9) = - n {Res [I (v), 0] + ~ Res [f (v), vk]} (IV -24) 
k=O. 

On the other hand (see Fig. IV.2), 
A7 Ae 

In, m (9) = ;i { J f (v) dv + J I (v) dv+ J I (v) dv 
lln At A7 

Ac As As 

+ J l(v)dv+ J l(v)dv+ J l(v)dv+ ~ f(v)dv} (IV-25) 
Cp A& Ac Aa 

Since the function I (v) is odd, 
Ae Ac 

J f(v)dv+ J l(v)dv=O (IV-26) 
A7 Aa 

Besides, it is clear that 

1. J cos ve d . liD . V= -l 
p-+O cosh av sm vn 

cp 
(IV-27) 

Let us estimate the remaining integrals. By virtue of the estimates 
given above [see formulas (IV-20), (IV-21)1 the function f (v) tends 
exponentially to zero as n-+ oo on the line segments A1A7 and A 3A 2 • 

To estimate the function f (v) on the line segment A 3A4 , note that, 
like (IV-17), 

I cosh a.v lrm v=rM/a =cosh (a. Rev);;;;;, 1 
It is also clear that 

~a 
I cos v9 ITm v=m.<t/a. ~ e a 

(IV-28) 

(IV-29) 
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and 
1 1 I sin vn lim V=TM/a > 211 - e- 21M2 fa/ e=21a > 4' e=2ta (IV -30) 

From (IV-29) and (IV-30) we get 
1M I cos ve I --(n-8) -.-- <4e a 

sm vn 1m V=nm/a 
(IV-31) 

By (IV-28) and. (IV-31) we conclude that the function f (v) tends ex­
ponentially to zero on the line segment A 3A 4 as m -+ oo and 9 < n. 

Passing to the limit in (IV-25) as n, m-+ oo and p-+ 0 and taking 
into account (IV-24) and (IV-15), we obtain, by virtue of the fore­
going estimates, 

"" 
I (8)-; = -n {Res(/ (v), 0) + ~ Res[/ (v), vkJ} (IV-32) 

k=O 

Since 

R [ cosve es . cosh av sm vn , o]=! (IV-33) 

and 

R r cos ve I i ~ (2k + 1) n2 J es . cosh av sin v:rr ~ 

(IV-34) 

we finally g\lt 

"" co~h [~ (2k + 1)] 
I (9) = F (9) =- ; + : ~ ( -1)" ----=-2----:,n~:-------=:.. 

k=O sinh [ 2a (2k + 1) J (IV-35) 

It is obvious that the terms of the series (IV-35) are of the 
- !!..(H1)<n-8) 

asymptotic order e a 2 as a-+0, and this ensures the 
rapid convergence of the series (IV -35) for 8 < n. If a is sufficiently 
small, one can confine himself, in practical calculations, to only 
a few of the terms of the series. 

It must be stressed that the specific applications of Watson's meth­
od in each separate case may differ because there are different ways 
of constructing the integral equivalent to the original series, and 
there are different ways of evaluating it. The most effective realiza­
tion of the method in each concrete case depends on the specific na­
ture of the series being investigated. 
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