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Preface 

This book begins with a sketch, in Chapters 1 and 2, of the study of alge
braic equations in ancient times (before the year 1600). After introducing 
symmetric polynomials in Chapter 3, we consider algebraic extensions of fi
nite degree contained in the field <C of complex numbers (to remain within 
a familiar framework) and develop the Galois theory for these fields in 
Chapters 4 to 8. The fundamental theorem of Galois theory, that is, the 
Galois correspondence between groups and field extensions, is contained in 
Chapter 8. In order to give a rounded aspect to this basic introduction of 
Galois theory, we also provide 

• a digression on constructions with ruler and compass (Chapter 5), 

• beautiful applications (Chapters 9 and 10), and 

• a criterion for solvability of equations by radicals (Chapters 11 and 
12). 

Many of the results presented here generalize easily to arbitrary fields (at 
least in characteristic 0), or they can be adapted to extensions of infinite 
degree. 

I could not write a book on Galois theory without some mention of the 
exceptional life of Evariste Galois (Chapter 13). The bibliography provides 
details on where to obtain further information about his life, as well as 
information on the moving story of Niels Abel. 

After these chapters, we introduce finite fields (Chapter 14) and separable 
extensions (Chapter 15). Chapter 16 presents two topics of current research: 



vi Preface 

firstly, the inverse Galois problem, which asks whether all finite groups 
occur as Galois groups of finite extensions of Q and which we treat explicitly 
in one very simple case, and secondly, a method for computing Galois 
groups that can be programmed on a computer. 

Most of the chapters contain exercises and problems. Some of the state
ments are for practice, or are taken from past examinations; others suggest 
interesting results beyond the scope of the text. Some solutions are given 
completely, others are sketchy, and certain solutions that would involve 
mathematics beyond the scope of the text are omitted completely. 

Finally, this book contains a brief sketch of the history of Galois theory. 
I would like to thank the municipal library in Rennes for having allowed 
me to reproduce some fragments of its numerous treasures. 

The entire book was written with its student readers in mind, and with 
constant, careful consideration of the question of what these students will 
remember of it several years from now. 

lowe tremendous thanks to Annette Houdebine-Paugam, who helped 
me many times, and to Bernard Le Stum and Masson, who read the later 
versions of the text and suggested many corrections and alterations. 

Jean-Pierre Escofier 

May 1997 
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1 
Historical Aspects of the Resolution of 
Algebraic Equations 

In this chapter, we briefly recall the many different aspects of the study 
of algebraic equations, and give a few of the main features of each aspect. 
One must always remember that notions and techniques which we take 
for granted often cost mathematicians of past centuries great efforts; to 
feel this, one must try to imagine oneself possessing only the knowledge 
and methods which they had at their disposal. The bibliography contains 
references to some very important ancient texts as well as some recent texts 
on the history of these subjects (see, in particular, the books by J.-P. Tignol 
and H. Edwards and the articles by C. Houzel). 

1.1 Approximating the Roots of an Equation 

Around the year 1600 B.C., the Babylonians are known to have been able 
to give extremely precise approximate values for square roots. For instance, 
they computed a value approximating v'2 with an error of just 10-6 . In 
sexagesimal notation, this number is written 1.24.51.10, which means 

24 51 10 
1 + 60 + 602 + 603 = 1,41421296 .... 

Later (around the year 200 A.D.), Heron of Alexandria sketched the well
known method of approximating square roots by using the sequence 



2 1. Historical Aspects of the Resolution of Algebraic Equations 

It is not possible to give here the full history of approximations as devel
oped by Chinese (who computed cube roots as far back as 50 B.C.) and Arab 
mathematicians. Note, however, that the linearization method developed 
by Isaac Newton using the sequence 

j(Un ) 
Un+! = Un - j'(un ) 

was already known to the Arab mathematician Sharaf ad Din at Thsi, born 
in 1201. 

In 1225, Leonard of Pisa gave the approximate value 1.22.7.42.33.40 (in 
base 60) for the positive root of the equation x 3 + 2X2 + lOx = 20. It is an 
excellent approximation, with an error on the order of just 10-1°; we do 
not know how he obtained it. 

1.2 Construction of Solutions by Intersections of 
Curves 

The Greeks were able to geometrically construct every positive solution of 
a quadratic equation, using intersections of lines and circles, but they did 
not formulate this problem in an algebraic manner. We will return to their 
procedures in Chapter 5. To solve cubic equations, they used conics, as did 
Omar Khayyam around 1100 (see §2.2.2); perhaps this method was already 
understood by Archimedes (287-212 B.C.). 

In his book Geometry, one of three treatises attached to his grand work 
Discours de la Methode, Rene Descartes related solutions of algebraic equa
tions to intersections of algebraic curves. This theme is one of the sources 
of algebraic geometry. 

1.3 Relations with Trigonometry 

The division of the circle into a certain number of equal parts, or cyclotomy 
(coming from a Greek word), was the object of a great deal of study. By 
studying the construction of the regular nine-sided polygon, which leads to 
a cubic equation, mathematicians of the Arab world revealed the relation, 
subsequently described also by Franc;ois Viete (1540-1603), between the 
trisection of an angle and the solution of a cubic equation (see Exercise 
2.5). Viete also gave formulas expressing sin nO and cos nO as functions of 
sin 0 and cos O. Laurent Wantzel showed in 1837 that the problem posed 
by the Greeks, of trisecting an arbitrary angle using only a ruler and a 
compass, was impossible (see §5.6). 

Probably inspired by work of Alexandre Vandermonde dating back to 
1770, Carl Friedrich Gauss showed how to given an algebraic solution for 
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the division of the circle into p equal parts whenever p is a Fermat prime 
(p = 17,257,65537); his results are presented in the seventh part of his 
Disquisitiones arithmeticae published in 1801, which prepared the way for 
Abel and Galois. 

1.4 Problems of Notation and Terminology 

Before the 17th century, mathematicians usually did not use any particular 
notation; it is easy to conceive of the difficulty of developing algebraic meth
ods under these conditions! Modern notation was more or less developed 
by Descartes, who used it in his book Geometry. 

Let us give an idea of the notation used by Viete. In his Zetetiques (1591, 
from the Greek c,"lrE:w, meaning "search"), the expression 

F·H+F·B 
D+F =E 

is written 

{ +;F +ll:nn B
H

F
} requabitur E. 

Viete's notation for powers of the unknown is very heavy: he writes "A 
quadratum" for A2, "A cubus" for A3 , "A quadrato-quadratum" for A4, 
etc., and "A potestas," "A gradum" for Am, An. To indicate the dimen
sion of the parameter F, he writes "F planum" for F of dimension 2, "F 
solidum" for F of dimension 3, etc. 

For example, for the general equation of the second degree in A, Viete, 
who always assumes homogeneity of dimension between the variables and 
the parameters B, D, Z, writes: 

B in A quadratum plus D plano in A requari Z solido, 

i.e. BA2 + DA = Z. 
This condition of homogeneity was definitively abandoned only around 

the time of Descartes (see §5.7). The great contribution of Viete was the 
creation of a system of computation with letters used to represent known or 
unknown quantities (logistice speciosa, as opposed to logistice numerosa). 
This idea produced a deep transformation in the methods and conception 
of algebra; instead of working only on numerical examples, one could con
sider the general case. The economy of thought produced by this approach, 
and the new understanding it gave rise to, made further progress possible. 
Certainly, letters had been used before Viete, but not in actual computa
tions; one letter would be used for a certain quantity, another for its square, 
and so forth. 
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Viete was known in his time as a counselor of Henri III, and that he was 
a counselor in the Parliament of Bretagne in Rennes from 1573 to 1580. 

Let us give some of the main turning points in the history of algebraic 
notation. 

Decimals were introduced by Al Uqlidisi, the Euclidean (around 950), 
as well as by Al Kashi (1427), Viete (1579), Simon Stevin (1585). The use 
of a point to separate the integer and fractional parts of a number was 
made popular by John Neper (in France, a comma is used instead of a 
point). But even long after the introduction of the point, people continued 
to write a number as an integer followed by its fractional part in the form 

. 224176 
of a fractIOn: 111 000 000 . 

The signs + and - were already in use around 1480 (+ was apparently 
a deformation of the symbol &), but by the beginning of the 17th cen
tury, they were used generally. Multiplication was written as M by Michael 
Stifel (1545), and as in by Viete (1591); our current notation dates back to 
William Oughtred (1637) for the symbol x, and to Wilhelm Leibniz (1698) 
for the dot. 

For powers of the unknown, 1,225 + 148 x 2 was written as 1,225 p1482 

by Nicolas Chuquet (1484), 3x2 was written as 32- by Raffaele Bombelli 
(1572), whereas Stevin wrote 3@+ 5@- 4Q)for 3x3 + 5x2 - 4x. The ex
ponential notation x 2 , x3 , etc., came with Descartes, whose formulas are 
actually written in a notation very close to our own. In the 18th century, 
one sees bb for b2 , but b3 , b4 , etc. 

Only after methods of explicit computation and exponential notation had 
been perfected did it become possible to think clearly about computing 
with polynomials. Descartes showed that a polynomial vanished at the 
value a if and only if it was divisible by X-a. The history of the manner 
of referring to the unknown is extremely complicated, and we will not 
describe it here. The symbol = used by Michel Recorde (1557) came to 
replace the symbol used by Descartes, an a written backward, toward the 
end of the 17th century, thanks to Leibniz. Albert Girard (1595-1632) 
introduced the notation ~, which he substituted for (i); he also introduced 
the abbreviations for sine and tangent, and used the symbols <, > like 
Harriot. Indices were introduced by Gabriel Cramer (1750) to write his 
famous formulas (the use of primes " ", III followed by iv, v etc. became 
widespread around the same time); indices of indices were introduced by 
Galois. The symbol E was introduced by Leonhard Euler (1707-1783). 
These notations passed into general usage only during the 20th century. 

1.5 The Problem of Localization of the Roots 

This problem concerns polynomials with real coefficients. The results of 
Descartes based on the number of sign changes in the sequence of coeffi-
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cients (see Exercise 3.7) were perfected in the 19th century by Jean-Baptiste 
Fourier and Franc;ois Budan, and then by Charles Sturm, who in 1830 gave 
an algorithm to determine the number of real roots in a given interval. 

1.6 The Problem of the Existence of Roots 

Al Khwarizmi appears to have been the first, around the year 830, to have 
pointed out the existence of quadratic equations having two strictly positive 
roots (see, however, §2.1.1). Negative roots were taken into consideration 
only around the end of the 16th century (see §2.1.4). 

Girard was the first to assert that an equation of degree (or denomi
nation, as he said) n has n roots (Figure 1.1). He did not give any proof 
and his ideas about the exact nature of the solutions seem rather vague; 
he thought of them as complex numbers or other similar numbers. This 
vagueness did not prevent him from innovating the use of computations 
with roots as though they were numbers (see §3.4). Every mathematician 
will appreciate his wonderful formulation 

"pour la certitude de la reigle generale" 

(for the certitude of the general rule). 

IT. Theomm. 
Toutes Its equatioDs d'algebre recoivent autant de [olutions! que Ia 

denomination de la plus haute quantite Ie dcmonftre, excepte Ies incom
riettes 

Expliclltion • 

Soit une equation .:ompIettc I (V efgale 4(D+70-34@ 
--:~: alorsIcdenominatl;urdcIapius bautequantit¢dl: (1), quill
gnlfic qu·il y a quatrc certaines folutions, & non plus ny moins, com
me 1,2,-3,4 

Done il [c faut refouvenir" d'obfcrvcr tousjours ccIa : on pourroit dire II 
quoy [ert ces [olutions qui font impoffihl.es,je.refpond pour trois chofes, 
pour la certitude de la reigle generale, & qU'il ny a point a'autre [dlu
tions , & pour fon utilite 

FIGURE 1.1. Excerpt from Girard's Invention nouvelle en l'algebre ... , 1629 

Descartes was less precise about the number of roots, simply bounding 
it by the degree of the equation: "Autant que la quantite inconnue a de 
dimensions, aut ant peut-il y avoir de diverses racines." ("As many as the di
mensions of the unknown quantity, as many there may be different roots.") 

The nature of the roots also escaped Leibniz, who did not see that J yCT 
is a complex number (1702). But the methods of integration of rational 
functions, which were developed by Leibniz and Jean Bernoulli around this 
time, led Leonhard Euler to the problem of showing that an algebraic equa
tion P(x) = 0, where P is a polynomial of degree n with real coefficients, 
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has n real or complex roots (1749: Researches on the imaginary roots of 
equations) . 

This theorem is usually known as the "fundamental theorem of algebra" . 
In France, it is known as d'Alembert's theorem, because Jean d'Alembert 
proposed an interesting but incomplete proof of it in 1746. In his course at 
the Ecole Normale in the year III of the French Revolution, Pierre Simon 
de Laplace gave an elegant proof, admitting only the existence of roots 
somewhere. Gauss gave an entirely satisfying proof of the theorem at least 
four times (in 1797-1799, twice in 1816, and in 1849), as did Jean Argand 
(1814) and Louis Augustin Cauchy (1820). The fundamental theorem of 
algebra can also be obtained as an immediate corollary of the theorem 
known as Liouville's theorem (actually due to Cauchy, 1844), which states 
that "every holomorphic function bounded on C is constant" . 

1. 7 The Problem of Algebraic Solutions of 
Equations 

This problem is the central subject of this book. Algebraically solving an 
algebraic equation (or solving it by radicals) means expressing its solutions 
by means of n-th roots, i.e. reducing its solution to the solution of equations 
of the form xn = a. 

Around 1700 B.C., the Babylonians were already in possession of a general 
method for solving quadratic equations whose coefficients were given num
bers. Solutions to cubic equations came only with Scipio del Ferro (1515), 
and quartic equations were solved by Lodovico Ferrari (1540). 

Ehrenfried Tschirnhaus (1683), followed by Michel Rolle (1699), Etienne 
Bezout, and Leonhard Euler (1762) attempted to go further, but Euler still 
believed that all algebraic equations were solvable by radicals " ... one will 
grant me that expressions for the roots do not contain any other operations 
than extraction of roots, apart from the four vulgar operations, and one 
could hardly support the position that transcendental operations meddle 
in the situation" (§77 of the 1749 article cited above). 

Around 1770, Joseph Louis Lagrange and Alexandre Vandermonde (as 
well as Edward Waring) independently discovered the role played by sym
metry properties in the solution of equations. We will detail their discoveries 
in Chapter 10. As for the contribution of Gauss, we mentioned it in §1.3 
above. 

These ideas were exploited by Paolo Ruffini (1802-1813) to prove the 
impossibility of solving the general equation of the fifth degree by radicals, 
and then by Niels Abel (1823-1826) to prove the impossibility of solving 
the general equation of degree 2': 5 by radicals (see Chapter 12). However, 
the analysis of their texts would occupy too much of this book; we refer the 
reader to the books and articles cited in the introduction to this chapter. 
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Finally, in 1830, Galois, who knew nothing of Abel's results, created the 
notions of a group (limited to permutation groups), a normal subgroup, 
and a solvable group, which allowed him - at least theoretically - to re
late the solvability of an equation by radicals to the properties of a group 
associated to the equation, opening new horizons that are far from having 
been completely explored even today. 

Toward Chapter 2 

Before giving a complete exposition of Galois theory in Chapter 4, we 
devote the following chapter to the history of the solution of algebraic 
equations through the year 1640. 



2 
History of the Resolution of 
Quadratic, Cubic, and Quartic 
Equations Before 1640 

In this chapter, we give only a brief sketch of the rich history of low
degree equations; in particular, we have omitted the Indian and Chinese 
contributions. Readers interested in the subject can find excellent sources in 
the bibliography (see, in particular, the books by Tignol, Van der Waerden, 
and Yushkevich). 

2.1 Second-Degree Equations 

2.1.1 The Babylonians 

The earliest form of writing was invented by the Sumerians in Mesopotamia 
around 3300 B.c., although some people believe that Egyptian writing was 
invented earlier. Archaeologists have excavated texts that were written on 
humid clay tablets later dried in the sun. The earliest known texts are very 
short and mostly concern accounting: sacks of grain, domestic animals, 
slaves. They use a numeral system in base 60, which is at the origin of 
our division - still in use after 5000 years! - of the hour into minutes and 
seconds and the circle into degrees. 

After various historical events, this extraordinary civilization gave way, 
during the period 1900 to 1600 B.C., to an empire whose capital was Baby
lon, on the Euphrates, just south of Baghdad today. Quantities of interest
ing information are preserved in the tablets of this period; in particular, 
they reveal that Babylonians possessed a well-developed algebra and mas
tered the solution of second-degree equations. 
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EXAMPLE. - "I added 7 times the side of my square and 11 times the 
surface: 6.15" (tablet nO 13901 from the British Museum). 

This problem discusses the quadratic equation 11x2 + 7x = 6.15; the 
notation 6.15 in base 60 is ambiguous because the Babylonians gave no 
indication of the scale: 6.15 could be 6 x (60)2 + 15 x 60 or 6 x 60 + 15, or 
6/60 + 15/602, or even 6/3600 + 15, etc. (A kind of zero, serving to denote 
the intermediate positions, was introduced by the Babylonians only around 
300 B.C. Before that, they sometimes left a space, but more usually it was 
just necessary to guess. Here, 6.15 = 6 + 15/60 = 6 + 1/4.) 

To follow the solution described in the tablet, set a = 11, b = 7, and c = 
-6i. The two left-hand columns of Table 2.1 are translated directly from 
the tablet. The table also shows the numbers written in base 10 and the 
corresponding literal computation. Note that in order to facilitate division, 
the Babylonians had established tables of inverses. But 1/11 was not in the 
tables, as it does not have a finite expansion in base 60. 

Base 60 Base 10 Computation of 

You will multiply 11 by 6.15 
3 

1.8.45 68+ - -ac 
4 

You will multiply 3.30 by 
1 b2 

12.15 12 +- -

3.30 4 4 

You will add it to 1.8.45 1.21 81 
b2 
--ac 
4 

It is the square of 9 9 J~ -ac 

You will subtract 3.30 5.30 
1 

5+ -
2 

-~ + Jb2 - ac 
2 4 

The inverse of 11 cannot be 
computed 

1 
_~+Jb2 -ac 

What, multiplied 2 4 by 11, 30 
2 gives 5.30? a 

The side of the square is 30. 

TABLE 2.1. Method for solving a quadratic equation 
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OTHER EXAMPLES. - Here are the equations corresponding to other prob
lems from the same tablet. The numbers in parentheses are the values to 
be given to the Babylonian numbers: 

x 2 +x = 45 
x 2 = x + 14.30 

x 2 - 20x2 + X = 4.46.40 

U) 
(870) 
(k and 286 + ~) . 

COMMENTARY. - In these problems, the solutions are always positive num
bers having simple finite expansions in base 60: the discriminant is the 
square of a simple number, and the division by a works. Apart from these 
restrictions, we see that the Babylonians mastered the algorithm for the 
algebraic solution of quadratic equations. Even the case of second-degree 
equations having two distinct positive roots seems to be considered in prob
lems in which the length and width of a rectangle appear, which makes it 
possible to distinguish numbers that cannot be distinguished algebraically 
by using an order relation. However, they only wrote on their tablets 
straightforward recipes to be followed; we have no idea how they actu
ally thought of them. The deductive method in mathematics was invented 
later, by the Greeks. 

2.1.2 The Greeks 

The irrationality of y'2 was proved around 430 B.C., probably by a geo
metric argument. (The discovery is attributed to Hippasos of Metapont, 
who supposedly was unable to endure the intellectual consequences of his 
discovery and drowned himself in the Aegean Sea. At the very least, this 
anecdote bears witness to the deep trouble provoked by the discovery.) 

In Euclid's Elements (dating from about 300 B.c.), the methods are ge
ometric; algebraic computations cannot be developed, because a product 
of two lengths is considered to be a surface. Later, in the 3rd century A.D., 
Diophantus discovered an algebraic approach. 

There is one important difference between the documentation at our 
disposal on Babylonian and on Greek mathematics: the tablets preserve 
the original state of Babylonian mathematics, whereas the work of the 
Greeks is known to us only through manuscripts written a good thousand 
years after the authors made their discoveries, which reworked the originals 
in all kinds of ways. Some works are known only from their translations 
into Arabic. 

2.1.3 The Arabs 

It is more correct to speak of mathematicians coming from the various 
provinces of the Arab world, from Spain to the Middle East, than it is to 
speak directly of "Arab mathematicians" . In the 8th century, these mathe-
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maticians began to procure Greek texts from Constantinople; they also re
ceived Indian books of computations that explained the use of zero. Around 
820 to 830, al Khwarizmi (from Uzbekistan; he later became known through 
Latin translations of his works, called Algorismus, origin of the word algo
rithm), a member of the scientific community around the caliph al Mamoun, 
described algebraic transformations in his treatise on algebra, which can 
be expressed as the following equations in our notation: 

6x2 - 6x + 4 = 4x2 - 2x + 8 

6x2 + 4 + 2x = 4x2 + 8 + 6x by al jabr 

3x2 + 2 + x = 2X2 + 4 + 3x by al hatt 

x 2 = 2x + 2 by al muqqabala. 

The word al jabr, which expressed completion or setting of a fracture, is at 
the origin of the appearance of the word "algebra" in the 14th century. 

al Khwarizmi distinguishes six types of equations of degree less than or 
equal to 2, because the coefficients a, b, and c of his equations are always 
positive: 

ax2 = bx, ax2 = b, ax = b, 

ax2 + bx = c, ax2 + c = bx, ax2 = bx + c. 

For the equation x 2 = 40x - 4x2, or x 2 = 8x, he gives only the root 8. 
However, for the equation x 2 + 21 = lOx, he gives the two solutions 3 and 
7 and asserts that the procedure is the same for all equations of the fifth 
type. Geometric justifications are given, but unlike the Greeks, the spirit 
of the method is algebraic. 

2.1.4 Use of Negative Numbers 

Negative numbers became widely used only around the end of the 16th cen
tury. However, they actually appeared 1,000 years earlier in Indian math
ematics and even earlier than that in Chinese mathematics. 

In 1629, following ideas developed by Stevin in 1585, Girard did not 
scruple to give examples of equations with negative roots: "The negative 
in geometry indicates a regression, and the positive an advancement" (nor 
was he bothered by complex non-real roots). 

However, one must not believe that negative roots were accepted by 
everyone: in 1768, Bezout still wrote that equations have negative roots 
only when they are "vicious", and Lazare Carnot, the famous "organizer 
of the victory" of the Republican armies, wrote in his treatise on geometry 
in the year XI of the Revolution: "To obtain an isolated negative quantity, 
one must remove an effective quantity from zero, but removing something 
from nothing is an impossible operation." 
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2.2 Cubic Equations 

2.2.1 The Greeks 

On the rare occasions in which they encountered cubic equations, the 
Greeks solved them by means of intersections of conics: ellipses, parabolas, 
and hyperbolas. The oldest such solution goes back to Menechme (375-325 
B.C.), who, to obtain an x such that x 3 = a2b, considered the intersection of 
x 2 = ay and xy = ab (others expressed the same problem as the search for 
numbers x and y such that a/x = x/y = y/b). The most famous solution, 
which led to numerous further developments, goes back to Archimedes. He 
sought to cut a sphere of radius R by a plane in such a way that the ratio 
of the volumes of the two pieces had a given value k: we easily see that the 
height h of one of the parts satisfies h3 + (4k/(k + 1))R3 = 3Rh2. 

But the Greeks did not solve the problem of the duplication of the cube 
with ruler and compass (equation x 3 = 2a3 ), nor the trisection of the angle; 
we will discuss these questions in Chapter 5. 

2.2.2 Omar Khayyam and Sham! ad Din at Tusi 

Omar Khayyam was a mathematician and an astronomer, but he was also 
a poet, the author of many famous verses. He lived in central Asia and in 
Iran (1048-1131). In his treatise on algebra (from around 1074), he studied 
cubic equations in detail. He only considered equations with strictly positive 
coefficients, and distinguished 25 different cases, some of which had already 
been studied by al Khwarizmi. For example, the equations with three terms 
not having zero as a root are of one of the following six forms (Omar 
Khayyam expresses them in words, without notation, with homogeneity 
conditions similar to those of §1.4): 

x 3 = ax + b, x 3 + b = ax, x 3 + ax = b. 

For x 3 + ax = b, he set a = e2, b = e2 h and obtained the solution as the 
intersection of the parabola y = x 2/e and the circle y2 = x(h - x). 

For x 3 + b = ax, he again set a = e2, b = e2 h and obtained the solution as 
the intersection of the parabola y = x 2/e and the hyperbola y2 = x(x - h). 

One hundred years later, in a treatise that has just been reedited (see 
the bibliography), Sharaf ad Din at Thsi classified equations, not according 
to the sign of the coefficients like Khayyam, but according to the existence 
of strictly positive roots. He solved the homogeneity problems in a manner 
that appears to foreshadow Descartes (see §5.7): every number x can be 
identified with a length or with a rectangular surface of sides 1 and x, or 
even with the volume of a parallelepiped with sides 1,1 and x. Finally, 
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he inaugurated the study of polynomials via analysis, introducing their 
derivative, seeking for their maxima, etc. 

The solutions given by Omar Khayyam are geometric, obtained by taking 
intersections of conics. As for algebraic solutions, he writes that "they are 
impossible for us and even for those who are experts in this science. Perhaps 
one of those who will come after us will find them." Similar remarks were 
made by Luca Pacioli in 1494 but times were changing, because ... 

2.2.3 Scipio del Ferro, Tartaglia, Cardan 

... the work of Italian mathematicians since Leonard of Pisa finally reached 
a conclusion in 1515. Scipio del Ferro, a professor in Bologna who died in 
1526, discovered the algebraic solutions of the equations 

q, 

px+q, 

px, 

(2.1) 

(2.2) 

(2.3) 

probably with p,q > 0, i.e. of type (2.1) only. The rest of the story is a 
novel in episodes which is impossible to reconstruct completely, as many 
of the details are known only because they were recounted by one of the 
protagonists, in a manner that may lack objectivity. 

In the year 1535, Fiore, a Venitian student of Scipio del Ferro, publicly 
challenged Niccola Tartaglia (roughly 1500-1559) to solve about 30 prob
lems, all based on equations of type (2.1). At that time, winning a challenge 
of this kind led to prestige and money, sometimes even allowing the winner 
to obtain a position as a professor. Tartaglia's childhood was very dramatic: 
a fatherless child, very poor, he was seriously wounded during the looting 
of Brescia by troops led by Gaston de Foix in 1512. He had already at
tempted to solve equations of this type some years earlier, and this time he 
succeeded, during the night of February 12 to 13, 1535 (just in time to win 
the challenge). But he kept his solution secret. He wrote it in a poem, in 
which he used the word "thing", like his contemporaries, for the unknown. 

Quando che'l cuba con le cose appresso 

Se agguaglia a qualche numero discreto ... , 

(When the cube with the things is equal to a number .... ) 
In 1539, Jerome Cardan, a doctor and mathematician, and a very com

plex personality whose tumultuous life also makes a highly interesting story, 
invited Tartaglia to his house in Milan to find out his secret. He flattered 
him so well that he succeeded - Tartaglia showed him his poem - but swore 
not to reveal it (March 25, 1539). Shortly after, Cardan succeeded in ex
tending Tartaglia's method to equations of types (2.2) and (2.3) (unless 
it was actually Tartaglia who succeeded), and one of his disciples, Ferrari 
(1522-1560), solved the quartic equation in 1540. 
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In 1545, Cardan published all of these solutions in his book Ars Magna 
(which literally means: Grand Work), taking care to thank Tartaglia three 
times. But Tartaglia was furious, denounced him for lying, and the follow
ing year published a text containing Cardan's promise, their conversations 
together, and his own research. Ferrari defended his professor, saying that 
he had been present at the meeting in 1539 and that there was never any 
question of a secret. He then took up a new challenge proposed by Tartaglia 
on August 10, 1548, which he appears to have won. And the story contin
ued. 

Cardan's Ars Magna is a very important book. In it, he gave the complete 
solution of the cubic equation, finally (see, however, §2.2.5), as well as the 
first computations using roots of negative numbers. 

2.2.4 Algebraic Solution of the Cubic Equation 

In 1545, Cardan explained on the basis of numerous numerical examples, 
which he considered as clearly illustrating the general case, how to find 
a root of the cubic equation. The problem of finding the three roots was 
solved by Euler, in a Latin article from 1732. 

Let us explain Cardan's method, using today's notation and without 
distinguishing the different cases due to signs of the coefficients, as Cardan 
did. We know that by translation, we can always reduce to the case of an 
equation of the form x 3 + px + q = o. 

Set x = u + v (for Cardan, this is either u + v or u - v according to the 
signs of p and q), and require the numbers u and v to satisfy the condition 
3uv = -po The equation can be written as 

(U+V)3 +p(u+v) +q = 0; or as 

so setting 3uv = -p, this gives 

Setting U = u3 and V = v3 , this then gives 

U+V= -q, 
p3 

UV=--
27' 

so that U and V are solutions of the quadratic equation X2 + qX - p3 /27 = 
o. The discriminant of this quadratic equation is given by 

If d is a number whose square is equal to this discriminant, then setting 
U = -(q/2) + d and V = -(q/2) - d gives a solution. 



16 2. Resolution of Quadratic, Cubic, and Quartic Equations 

Cardan concludes his procedure by giving the unique solution x = W + 
W,Le. 

x = 3 _ ~ + J q2 + p3 + 3 _ ~ _ J q2 + p3 
2 4 27 2 4 27· 

This formula requires the extraction of two cube roots (really just one since 
v = -p/3u). 

For us, this formula contains an ambiguity: each of the cube roots can 
be chosen in three different ways, and their sum could have nine different 
values. Let us now redo the method, considering the cube roots as Euler 
did. 

If u satisfies u3 = U, then the condition 3uv = -p implies that v = 
-p/3u, giving the solution 

x=u+v 

of the equation. The other cube roots of U are ju and j 2u, corresponding 
to -p/3ju = iv and -p/3iu = jv respectively; here j is a cube root of 
unity, i.e. j = exp(27r /3). This gives the other solutions of the equation 

iU+jv. 

If we reverse the choices of U and V, a cube root of -q/2 - d is one of the 
three numbers above v, jv, j 2v, and fortunately, we find the same three 
roots. 

2.2.5 First Computations with Complex Numbers 

The spark occurs near the end of the Ars Magna, in 1545 (Figure 2.1). The 
idea was undoubtedly suggested to Cardan by the problems he studied in 
dealing with cube roots as above. 

um eft minus,ideo imaginabens ~ m: I;, id eft differentia: AD, & 
quadrupli A B,quam addc & minuc ex A c,& habcbis qll~6rum,fcili" 
CCE;p:~V:2.;m: 4O,&;m :~v: 2.5 m: 'fO,fcu 5P: ~m:1 f, & 5 
m:~ m: I ; ,due 5 p: ~ m: I ; in 5 m: ~ m: I 5 , dimifsis inauciationi" 
bus,fiE 2. 5 m:m: I 5,quod cit p: I 5,igimr hoc produdum cit 4O,nam 
ra tame A D,non eft eadem cii namra 4o,nec A B, quia fupcr6cics cit 
remotainamranumcri,&linc;r,proximius I 5p:Rtm: I; 
tame ~uic quanritati,qu{: u~rc dlfophiruc~, 5 m:Rt m: I 5 
quoruam pc~ eam, non UEIR .puro m: DCC J~ 12.5 m:m: J; 9d.eft40 
alijs , operanones cxcrecre beet, nee ucnan 
qUid Uteft,llt addas quadrarum mcdictatis nu:ncri numcro produ.. 
a:ndo,& a ~ aggregati minuas ae addas dimidium diuidcndi. 

FIGURE 2.1. Excerpt from the book Ars Magna by Cardan, 1545 

This excerpt refers to the search for two numbers whose sum is 10 and 
whose product is 40, leading to the equation x 2 - lOx + 40 = O. Cardan 
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recognized that no two numbers could satisfy this equation, but proposed 
a sophisticated solution in which he imagined the number J -15; he then 
checked the validity of this number by computing 

(5 + J=15) (5 - J=15) = 25 - (-15) = 40, 

writing this operation as 

5p:Plm:15, 
5m: Rz m: 15, 

25m: m 15 qd. est 40, 

where p denotes +, m denotes -, and Rz denotes the square root. One 
passage provoked a great deal of commentary: dimissis incruciationibus, 
which means setting aside the products in crosses, or, according to certain 
translators who think Cardan is making a word play, setting aside the 
mental torture. 

In the case of the cubic equation, complex numbers enter in the case when 
q2 /4 + p3/27 < 0, known as the irreducible case, in which the three roots 
are real (see §3.6) and d is purely imaginary. Cardan did not understand 
this case well; he simply showed how to obtain all three roots if one of them 
is known (see Exercise 2.4). 

2.2.6 Raffaele Bombelli 

Born in 1530, Bombelli published a treatise on algebra in 1572 which im
proved understanding of computations with complex numbers by showing 
how Cardan's formulas can be applied in the irreducible case. He gave nu
merous examples; one of the simplest is that of the equation which we 
write as x 3 - 15x - 4 = 0, which has an obvious solution 4, knowing 
which Cardan's formulas produce the quantities {12 ± V-121. Now, this 
is the irreducible case since d2 = q2 /4 + p3/27 = 4 - 125 = -121 and 
u3 = U = -q/2 + d = 2 + V -121. 

Bombelli explained this difficulty by showing that {12 + V-121 can ac
tually be written in the form a + ib; identifying the real parts of (a + ib)3 
and 2 + 11i, he found a3 - 3ab2 = 2. The equality of the modules then gave 
(a2 +b2 )3 = (22+112) = 125, so a2 +b2 = 5. He then substituted b2 = 5-a2 

into the previous equation, obtaining a3 - 3a(5 - a2 ) = 4a3 -15a = 2 (this 
is the original equation with x = 2a). Bombelli noticed that a = 2 is a root, 
and deduced that b = 1, giving u = 2+i,v = 2-i, and u+v = 4 (with no
tation as in §2.2.5 above). Abraham de Moivre (1667-1754) later observed 
that this procedure requires having already solved the equation to sim
plify the expression of the roots. Nonetheless, Bombelli's work is extremely 
important: it opened the way to computations with complex numbers. 

Bombelli's notation is Rc L 2p dim 11 J: the cube root of the quantity 
between the signs L and J, which is the abbreviation of of "2 pi di meno 
11", where "pi di meno n" means +in. Bombelli gave rules such that: 
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pi di menD via pi di me no fa meno, 

pi di menD via menD di menD fa pi, etc. 

corresponding to (+i)( +i) = -1, (+i)( -i) = 1, etc. 

2.2. 7 Frant;ois Viete 

In a text published after his death, in 1615, Viete gave solutions of equations 
of degree 3 and 4. For the cubic equation 

A3 +3BA= 2Z, 

which we write here with our notation, but using his original letters, with 
A as the unknown, he introduced a new unknown E such that EB = 
E(A + E), which comes down to solving the equation x3 + px + q = 0 with 
the variable change x = (p/3y) - y, giving 

A3 + 3AE(A + E) = 2Z, 

a quadratic equation in E3. This makes it possible to compute E, then A, 
by means of a single extraction of a cube root; the method is essentially 
Cardan's. 

2.3 Quartic Equations 

Cardan gave a method for these equations in Chapter XXXIX of the Ars 
Magna; he says that it was discovered by his student Lodovico Ferrari. It 
consists in using a translation to bring the equation to the form 

x4 + px2 + qx + r = 0 

(Cardan, who rejected negative numbers, only gives a few cases of this). 
Set z = x 2 + y, obtaining 

z2 =x4+2x2y+y2 = -px2-qx-r+2x2y+y2 = (2y-p)x2_qx+y2-r. 

Choose y so that the right-hand term is of the form (Ax+B)2, by ensuring 
that its discriminant vanishes, i.e. 

q2 _ 4(y2 _ r)(2y - p) = o. 

This gives a cubic equation (which later carne to be called a resolvent); one 
of its roots can be found by the method of §2.2.4, giving 

x 2 = -t ± (Ax + B), 

and four values for x. 
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In the case where the right-hand term is not of degree 2, it is because 
y = p/2, and then (*) shows that q = 0; the equation is biquadratic, which 
we know how to solve. 

In his 1615 text, Franr,;ois Viete gave a clear exposition of Ferrari's 
method. 

Cardan detested introducing equations of degree higher than 3, because 
equations of degrees 1, 2, and 3 concerned segments, areas, and volumes 
and he asserted that "nature does not allow us to consider others" . 

Here is another method, using indeterminate coefficients, which dates 
back at least to Descartes (1637). If a, b, c, d are such that 

X4 + px2 + qx + r = (x2 + ax + b)(x2 + ex + d), 

we check (see Exercise 2.7) that a2 is the root of a cubic equation and that 
b, c, d depend rationally on a. 

Exercises for Chapter 2 

Exercise 2.1. Irrationality of roots of rational numbers 

Let k > 1 be an integer, and let a and b be positive relatively prime 
integers with no factors of the form d k for integers d > 1. Show that 
{If is not a rational number. 

Exercise 2.2. Cubic equations and Cardan's formulas 

1) Solve the equations x3 + 3x = 10, x 3 + 21x = 9x2 + 5, x3 = 7x + 7 by 
Cardan's method or Viete's method. 

2) Simplify the following expressions, where the roots are taken in JR., 
and compare them with Cardan's formulas. 

Exercise 2.3. Simplification of radicals in Cardan's formulas 

If a cubic equation has an integral root, it often happens that Car
dan's formula gives an expression with cube roots whose simplifica
tion is not at all obvious. Tartaglia already noticed this problem in 
1540, and we showed earlier how Bombelli worked on one example 
(see §2.6). Let us consider what happens in the case of equations 
with rational coefficients. 
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1) Show that if we have p, q, r, SEQ such that q, S > 0 and q is not a 
square in Q, then the equality p + ..;q = r + VB implies that p = r 
and q = s. 

2) Let a and b be rational numbers such that b > 0 is not a square in Q. 

Suppose there exist rational numbers y and z such that Va + Vb = 
Y + viz· 

a) Show that Va - Vb = y - viz. 
b) Show that c = {/a2 - b is rational. 

e) Show that the equation x 3 - 3cx - 2a = 0 has a unique rational 
root (use §3. 6. 4 below); compute y and z in terms of this root 
and c. 

3) Conversely, if the equation x3 -3cx-2a = 0, with rational coefficients, 
has a rational root and two non-real roots, show that there exist 

rationals y and z such that Va + Vb = Y + viz, where b = a2 - c3 > o. 
4) Does this result make it possible to simplify the expression given by 

Cardan's formulas for the roots of x 3 + px + q = 0 (with p and q 
rational), when one of the roots is rational and the others are non
real? 

5) Simplify the following expressions, using the above; all roots are taken 
in R: 

~1 ~ fi + 3V3' ~l-~vr· 
Exercise 2.4. Cubic equations, irreducible ease, Cardan's method 

This problem concerns the solution of the equation x 3 + px + q = 0 
in the case where p and q are real and the discriminant is ;::: o. The 
equation has three real roots but Cardan's formulas lead to roots of 
non-real numbers. 

1) Let a be a solution of the equation. Compute the other two solutions 
as functions of a and p. 

2) Check the following text by Cardan for the solution of x 3 + 60 = 46x: 

"A solution is 6. To find the others, raise 3, half of the first solution, 
to the square; this gives 9 which, multiplied by 3, gives 27. Subtract 
27 from 46, leaving 19. Subtract 3, half of the first solution, from the 
square root of this number: you obtain the second solution v'l9 - 3. 
By the same method, if you found v'l9 - 3 as a first solution, the 
other solution will be 6." 
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Exercise 2.5. Cubic equation, irreducible case, Viete's method 

This problem concerns the solution of the equation x 3 + px + q = 0 
in the case where p and q are real and the discriminant is :;::: O. 

1) Show that we can reduce to an equation of the form y3 - 3y = 2u, 
with u E lR. and lui ~ l. 

2) Solve this equation by setting v = arccosu. 

3) Solve X 3 - 6X - 4 = 0 by this method. 

COMMENTARY. - Viete's method shows the relation between the irreducible 
case and the trisection of the angle (there is an analogy with the method of 
Charles Hermite for equations of degrees 5 and 6, based on the division of 
elliptic functions). In the example in 3), Cardan's formulas lead to radicals 
of non-real numbers. 

Exercise 2.6. Seventh roots of unity 

Set ( = e2i7r /7 and a = 2 cos 27r . 
7 

1) Give a quadratic equation satisfied by ( over Q[a). 

2) Find an irreducible cubic polynomial in Q[X) which admits a as a 
root. 

Exercise 2.7. Quartic equation and Descartes' method 

By translation, we first reduce to the case of a quartic equation with 
no third-degree term 

X4 + px2 + qx + r = O. 

Then, if this equation has a linear term, we look for a factorization 
of the form 

X4 + px2 + qx + r = (x2 + ax + b)(x2 + ex + d). 

1) Show that a2 is a root of a cubic equation and that b, c, d are rational 
functions of a. 

2) Deduce the algebraic solution of the quartic equation from this. 

3) Solve 

X4 - 4x2 - 8x + 35 = 0, 

X4 - 17x2 - 20x - 6 O. 
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4) Show that if p, q, r are real, we can choose a, b, c, d real. 

COMMENTARY. - Let us quote Descartes: "Au reste, j'ai omis ici les 
demonstrations de la plupart de ce que j'ai dit, a cause qu'elles m'ont semble 
si faciles que, pourvu que vous preniez la peine d'examiner methodiquement 
si j'ai failli, elles se presenteront a vous d'elles-memes; et il sera plus utile 
de les apprendre en cette f~on qu'en les lisant." 1 

The examples in 3) are those of Descartes. Question 4) is a result of 
Euler (1749) in his work on the decomposition of polynomials in JR[X] into 
products of linear or quadratic factors. 

Solutions to Some of the Exercises 

Solution to Exercise 2.1. 

If there exist positive and relatively prime integers x and y such that 
x / y = Va / b, then we have bxk = ayk. As x is prime to y, it must divide 
a, so x = 1. Similarly, y = 1 and we are done. 

Solution to Exercise 2.2. 

1) To solve the equation x3 +px+q = 0, we know that we need to determine 
u and v such that u3 + v3 = -q and uv = -p/3, and then set x = u + v, 
ju + j 2v, j 2u + jv. 

For x 3 + 3x - 10 = 0, we obtain u = {l5 + J26, v = {l5 - J26 (the 
roots are taken in JR). 

For x3 + 21x = 9x2 + 5, we set y = x - 3, which leads to solving the 
equation y3 + 4 = 6y; we obtain the root y = 2 and then divide by y - 2, 
avoiding the extraction of cube roots. Like Cardan, we find three real roots, 
namely x = 5 and x = 2 ± v'3. 

For x3 -7x -7 = 0, we obtain 

u = {/7/2 + 7i/18v'3 and v = {/7/2 - 7i/18v'3, 

where the arguments of the cube roots are chosen with opposite signs, since 
we must have uv = 7/3. 

2) To find the equation having a as a root, we can compute a 3 and compare 
it with a. We can also compare the form of a with the general solution of 

1 Besides, I left out the proofs of most of what I said here, because they appeared so 
easy to me that if you just take the trouble to check methodically whether I erred, they 
will present themselves to you naturally, and it will be more useful to you to learn them 
this way than by reading them. 



Solutions to Some of the Exercises 23 

the cubic equation, which leads us to set q = - 20; then 108 = q2 /4 + p3/27 
gives p = 6. The equation x 3 + 6x - 20 = 0 has 2 as a root, so when we 
divide it by (x - 2), we obtain the other roots -1 ± 3i. The only real root 
is 2, so we find that 0: = 2. 

Similarly, we find f3 = 1. 

Solution to Exercise 2.4. 

1) We have x3 +px+q = (x -a)(x2 +ax+p+a2). The roots of the second 
factor are real; they are given by -~ ± J-3(~)2 - p. 

2) Cardan uses his formula on his example with the sign + for the root. To 
check the last sentence, we set a = V19 - 3 and note that -3(a/2)2 - p = 

(9 + V19)/2) 2. 

COMMENTARY. - Cardan gave no general method for this type of equation; 
he did not use his formula and could only guess at one root in order to find 
solutions for the remaining quadratic equation. 

Solution to Exercise 2.5. 

1) Setting x = o:y, we are led to take 0: = J -p/3, so that 2u = _q/0:3; 
we then check that lui -::; 1. 

2) The formula cos 30 = 4 cos3 0 - 3 cos 0 gives 

2cosv/3, 2 cos «v/3) + (271"/3)), 2 cos «v/3) + (471"/3)) 

as roots of the equation y3 - 3y = 2 cos v. 

3) We find 0: = V2, U = V2/2, v = 71"/4 and the roots are 

a = 2V2cos ~, V2 371" b=22cos"4=-2, 
In 1771" 

C = 2v2cos 12 . 

Since -2 is a root, we can also write x3 - 6x - 4 = (x + 2)(x2 - 2x - 2), 
which gives a = 1 + /3, c = 1 - /3. 

Solution to Exercise 2.6. 

1) ( is a root of the quadratic equation x2 - o:x + 1 = o. 
2) We have the equation 0:3 + 0:2 - 20: - 1 = 0, of which 1 and -1 are not 
roots. 
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Solution to Exercise 2.7. 

1) By identification, we successively find 

a+c 

ac+b+d 

ad+bc 

bd 

o 
p 

q 

r. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

We deduce that c = -a, b + d = p + a2 and a(d - b) = q. Thus a 1= 0 since 
q 1= 0, so we obtain b + d and b - d, which gives band d; plugging them 
into (2.7) gives 

(ap - q + a3 )(ap + q + a3 ) 

a6 + 2pa4 + (p2 _ 4r)a2 _ q2 o. 
(2.8) 

(2.9) 

The last equation is a cubic in a2 (it is a resolvent, corresponding to the 
choice of -u, -v, -w in §1O.8 below). We obtain six values of a, each of 
which gives a factorization. This is normal since a is the sum of two of the 
four roots of the equation and (~) = 6. 

2) Once the factorization is obtained, it remains only to solve quadratic 
equations. 

3) With a = 4, we have 

X4 - 4X2 - 8X + 35 

X4 - 17 X2 - 20X - 6 

the rest is easy. 

(X2 - 4X + 5)(X2 + 4X + 7), 

(X2 - 4X - 3)(X2 + 4X + 2); 

4) The resolvent must have a positive real root since the value of the left
hand side of (2.9) is < 0 for a = 0 and > 0 for a sufficiently large. 



3 
Symmetric Polynomials 

In this chapter, we first give the basics on symmetric polynomials, and then 
present the notions of resultant and discriminant. 

3.1 Symmetric Polynomials 

3.1.1 Background 

Let A be a commutative ring with unit. The A-algebra A[X1 , ••. ,Xnl of 
polynomials in n indeterminates and coefficients in A has the following 
universal property: for every A-algebra B given by a ring homomorphism 
f : A ---4 B and every map h : {I, ... , n} ---4 B, there exists a unique 
homomorphism of A-algebras rp : A[X1 , ... , Xnl ---4 B such that rp(Xi ) = 
h(i) for all i in {I, ... , n}, and rp(a) = f(a) for all a in A. In other words, 
the universal property asserts that in order to construct a homomorphism 
rp of A-algebras from A[X1 , ••• , Xnl to another A-algebra, it suffices to give 
the images of the indeterminates, and there is nothing further to check. 

In the case where n = 1 (we denote the indeterminate by X) and the 
map h is defined by h(l) = b, the homomorphism rp : A[Xl ---4 B is defined 
by 

For every element a of the group Sn of permutations of the set {I, ... ,n}, 
the above remarks prove that there exists a unique homomorphism of A
algebras rpu : A[Xl' ... ' Xnl ---4 A[Xl'· .. ' Xnl (often simply denoted by a) 
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making the diagram in Figure 3.1 commutative (the notation "can" means 
that the arrows are canonical). 

In other words, <Pa(Xi ) = Xa(i) for i = 1, ... , n, and more generally, 

If A is an integral domain with fraction field K, the homomorphism <Pa 
extends to the field K (X I, ... , Xn) of rational functions in X I, ... ,Xn with 
coefficients in K. Recall that an element of this field is represented by the 
quotient of two polynomials in A[X I, ... ,Xn], with denominator not equal 
to zero. 

can 

/ 1= 
A A[Xl' .... '~] {l, ..... ,n} 

can 

=1 / 
{ 1, ..... ,n} 

FIGURE 3.1. 

3.1.2 Definitions 

A polynomial in A[XI, . .. ,Xnl is said to be symmetric if for all u in Sn, 
we have <Pa(P) = P. 

If A is an integral domain with fraction field K, a rational function P IQ 
in the field K(XI, ... , X n), with P, Q E A[Xl, ... , Xn] and Q i- 0, is said 
to be symmetric if for all u in Sn, we have <Per (PIQ) = PIQ. 

EXAMPLES. - The following polynomials are symmetric in A [Xl, X 2 , X3]: 

Xl +X2 +X3, 

Xl X 2X 3 , 

XfX2 +X~X3 +xixl +X~Xl +xix2 +XrX3, 

but Xr X 2 + X~X3 + xix l is not. 

REMARKS. - The symmetric polynomials generate an A-subalgebra of the 
algebra A[XI,' .. ,Xnl· 

If a polynomial P in A[Xl , ... , Xnl is symmetric and if a(XI)kl ... (Xn)kn 

is a monomial in P, then for all u in Sn, a(Xa(l»)kl ... (Xa(n»)kn is a mono
mial of P. 
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3.2 Elementary Symmetric Polynomials 

3.2.1 Definition 

Let n be an integer 2: o. For every integer k ~ n, the elementary symmetric 
polynomial of degree k in A[XI, ... ,Xn], which we denote by Sk, is given 
by the formula 

Sk = L (II Xi). 
HC{l, ... ,n},IHI=k iEH 

In other words, H runs over the set of subsets of k elements of {I, ... , n} 
and Sk is the sum of the products of the Xi for i in H. For k > n, we set 
Sk = o. 
EXAMPLES. - For n = 0 : So = 1 and Sk = 0 for k 2: l. 
For n = 1 : So = 1, Sl = XI, Sk = 0 for k 2: 2. 
For n 2: 2: So = 1; Sl = LXi; S2 = L XiXj . Thus, S2 is just the 

l::;i::;n l::;i<j::;n 
sum of the products of pairs of Xi. More generally, Sk is the sum of the 
products of k of the Xi for k ~ n, and in particular, 

Sn = II Xi· 
l::;i::;n 

REMARKS. - In general, the integer n is implied by the context and we will 
not give it explicitly. 

The Sk are homogeneous polynomials, i.e. polynomials all of whose mono
mials are of the same degree, namely k. 

3.2.2 The Product of the X - Xi; Relations Between 
Coefficients and Roots 

PROPOSITION. -

1) For all n 2: 0, we have 

in the ring Z[XI, ... , Xn][X]. 

2) If P(X) = L akXk is a monic polynomial of degree n with roots 
0::; k::; n 

X1, ... ,Xn belonging to afield K, then an-k = (-l)k Sk (xI, ... ,xn ) 
forO ~ k ~ n. 
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PROOF. -

1) Let us show it by induction on n. The formula holds for n = 0, 1. 

Suppose it holds for an integer n; let Sk denote the elementary sym
metric polynomials in Z[Xb" ., Xn) and tk those in Z[Xb ... ,Xn+l ). 
We have 

IT 
l$;i$;n+l 

(X - Xi) = [ IT (X - Xi)] (X - X n+1) 
l$;i$;n 

[ L (-l)kskxn-k] (X - Xn+d 
O$;k$;n 

L (_l)k skX n- k+1 - L (-l)kskxn-kXn+1 
O$;k$;n O$;k$;n 

X n+1 + L (_l)k[sk + Sk_IXn+I]Xn+l- k 
l$;k$;n 

On the one hand, SnXn+1 = tn+1' On the other hand, for 1 ~ k ~ n, 
separating the parts with k elements of {I, ... , n + I} into those that 
contain n + 1 and those that do not, we see that Sk + Sk-IXn+1 = tk' 
This gives the desired result. 

2) By the universal property of Z[Xb ... , X n ), there exists a hom<r 
morphism <p : Z[X1, ... ,Xn][X) -+ K[X] such that <p(X) = X and 
<p(Xi ) = Xi for 1 ~ i ~ n. Since 

P(X) = <p ( IT (X - Xi)) , 
l$;i$;n 

EXAMPLES. - Let Xl, X2, X3 denote the roots of the polynomial X 3 + aX2 + 
bX + c. We have 

Xl + X2 + X3 -a, 

XIX2 + X2X3 + X3XI = b, 

XIX2X3 = -c. 

The analogous formulas for second-degree polynomials are well known. 
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3.3 Symmetric Polynomials and Elementary 
Symmetric Polynomials 

3.3.1 Theorem 

Let A be a commutative ring with unit (in particular, our result will hold for 
fields), and let P be a symmetric polynomial in A[XI, ... , Xnl. Then there 
exists a unique polynomial T of A[XI, ... , Xnl such that T(SI,"" sn) = P. 

EXAMPLES. -1) X; +X~ = (Xl +X2)2 -2XIX2 = T(sI,s2) in Z[XI,X2] 
with T(SI' S2) = si - 2s2. 

2) XrX2 + XIX~ = X IX2(X; + X~) = SIS2 - 2s~. 

COMMENTARY. - After the remarks of Girard and Newton (see §3.4), this 
result was used freely throughout the 18th century; Lagrange called it "ob
vious in itself". It appears to have been stated and proved independently 
by Waring and Vandermonde in 1770. This theorem can be considered as 
a small part of the results of §8.5. 

PROOF. -

1) We prove the existence of the polynomial T by giving an algorithm 
to compute it. 

To begin with, note that it suffices to show the result for symmetric 
polynomials SCM) defined by a monomial M = (XI)kl ... (Xn)kn, by 
setting 

SCM) = L U with A(M) = {CPu (M), a E Sn}, 
UEA(M) 

since every symmetric polynomial is a linear combination of such 
polynomials. 

So let P be a symmetric polynomial defined by a monomial 
as above. Choose a total ordering n on the set of indeterminates 
{XI, ... , Xn}, for example Xl > ... > X n , and order the set of 
monomials of P according to the lexicographical order on the n-tuples 
of powers, i.e. 

if there exists r < n such that for i :S r, ki = Ii and kr+l > lr+l' 

For example, (Xr)2(X2)2 X3 > (Xr)2 X 2 (X3 )2 > X IX2(X3)3 > 
(X3)5. 

For monomials M, M', N, N', we easily see that M ::::: M' for 
n implies that M N ::::: M' N, and this implies the following property: 
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if M ~ M' and N ~ N', then MN ~ M'N', since MN ~ M'N ~ 
M'N'. 

Let M = (X1)k1 ... (Xn)kn be the largest monomial of P for the 
ordering n. We have k1 ~ ... ~ kn, since otherwise the transposition 
exchanging two indices i and j such that i < j and k i < k j would 
transform M into another monomial of P larger than M. 

Consider a polynomial of the form (Sl )/1 ... (Sn)ln . In this product, 
according to the above property, the largest monomial for n is the 
product of the largest monomials of Sb"" Sn, raised to the powers 
h, ... , In, i.e. if we have 

(X )h(X X )/2 (X X )In - X/1+··+lnXI2+··+I" xl" 1 1 2 '" 1··· n - 1 2 ... n' 

This monomial will be equal to M if k1 = h +. ·+In, k2 = l2+' ·+In, 
etc., i.e. if 

In kn, 

In-1 = kn- 1 - kn, 

h = k1 - k2. 

Set P1 = P - (sd1 ... (sn)ln, where the li have the above values; 
P1 is a symmetric polynomial that is either zero or whose largest 
monomial for n is strictly less than M. 

If P1 is zero, we have written P in the desired form 

P(Xb'" ,Xn ) = T(Sb . .. , Sn), 

where T is defined by T(Xb ... ,Xn ) = (Xd1 ... (Xn)/". Otherwise, 
P1 is a linear combination of polynomials of the form S(M) and we 
start the same procedure for each of them, until we obtain the zero 
polynomial and the desired expression of P (see the example below). 

2) Let us now prove the uniqueness ofT. Suppose there exists a non-zero 
polynomial Tin E such that T(Sl, ... , Sn) = O. 

There exist two monomials in T, say 

M = a(Xd1 ... (Xn)ln and N = b(Xdm1 ... (Xn)m", 

such that the n-tuples (lih:5i:5n and (mih:5i:5n are different. 
Consider the polynomials M(Sb.'" sn) and N(Sl,"" sn). Their 

largest monomials in Xl"'" Xn are 

a(Xd1+··+/" ... (Xn)/n and b(x1)m1+···+mn ... (Xn)mn; 

they have n-tuples with different exponents. 
It follows that there exists a unique monomial M of T giving the 

largest monomial in X b ... , Xn of T(Sb"" sn), which contradicts 
the hypothesis T(Sb ... ,sn) = o. <> 
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EXAMPLE. - Let us express 

P(X, Y,Z) = y 3Z + YZ3 + Z 3X + ZX3 +X3y +Xy3 

in terms of the elementary symmetric polynomials of Z[X, Y, Z]. First, we 
have 

SI = X + Y + Z, S2 = Xy + y Z + ZX, S3 = XY Z. 

If we select the order X > Y > Z, then the largest monomial of Pis X 3Y, 
which leads to setting PI = P - si S2. After doing the computations, we 
obtain 

PI (X, Y, Z) = -5(X2yZ + Xy2Z + XYZ2) - 2(X2y2 + y 2Z2 + Z2 X2). 

The largest monomial of PI is X2Y2, which is indeed less than X 3y' Be
cause PI is a linear combination of two polynomials of the type defined 
above, we can work on each of them separately. The first part is clearly 
equal to -5S1S3 (which is given immediately by the algorithm); for the 
second part, we form X2Y2 + y2 Z2 + Z2 X2 - (S2)2, etc. After all compu
tations, we obtain 

The extension of Theorem 3.3.1 to rational symmetric functions is easy; 
it is the object of the following proposition. 

3.3.2 Proposition 

Let A be an integral domain, and let P, Q be polynomials in A[X 1, ... , X n], 
with Q i- 0, such that P/Q is a symmetric rational function. Then there 
exist polynomials Sand T in A[X 1, ... ,Xn] such that 

S(sr, ... ,sn) P 
T(SI, ... ,Sn) Q' 

PROOF. - If Q is symmetric, then P is symmetric and the proposition is a 
consequence of Theorem 3.3.1. If Q is not symmetric, form the set 

The product II q is a symmetric polynomial of which Q is a factor. Because 
we have qEE 

P II q 
P qEE-{Q} 

Q II q 
qEE 

and we are again in the case where both numerator and denominator are 
symmetric. <> 
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3.3.3 Proposition 

Let P be a symmetric polynomial in n variables. If S is a polynomial of 
degree n having roots ab ... , an, the numbers P(al, ... , an) belong to the 
ring generated by the coefficients of s. 

PROOF. - This is an immediate and important consequence of Theorem 
3.3.1 and Proposition 3.2.2. <> 

3.4 Newton's Formulas 

PROPOSITION. - For every integer d ~ 1, set 

in A[Xb . .. , X n ]. 

Pd = L (Xi)d 
I::;i::;n 

For d ~ 1, this gives 

Pd= L (-l)k-lSkPd_k+(-l)d-ldsd. 
I::;k::;d-l 

EXAMPLES. -

d = 1: PI = SI; 
d = 2 : P2 = SIPI - 2S2; for example X2 + y2 = (X + Y)(X + Y) - 2XY; 
d = 3 : P3 = SIP2 - S2Pl + 3S3; for example 

X 3 + y3 + Z3 = (X + Y + Z)(X2 + y2 + Z2) 

-(XY + YZ + ZX)(X + Y + Z) + 3XYZ. 

COMMENTARY. - This formula, which was stated by Newton around 1666 
and published in 1707, makes it possible to successively compute the poly
nomials Pd given by the sums of the d-th powers of the Xi. Recall that 
Sk = 0 for k > n, which truncates the formula when d > n. 

In 1629, Girard gave the expression of the Pd as a function of the Sk 
for d :::; 4 (Figure 3.2); in his charming terminology, the first "mesle" and 
second "meslt~" are 8b 82. In his example, X4 + 35X2 + 24 = lOX3 + 50X; 
the terms are placed on both sides of the equal sign in order to avoid 
negative signs. This is the first time that roots, including impossible ones, 
appear within formulas exactly like ordinary numbers. 
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FIGURE 3.2. Excerpt from the book Invention nouvelle ... by Girard, 1629 

Setting X = Xi in formula (3.1) from Proposition 3.2.2 gives 

X;- = L (_l)kskX;--k. 
l$k$n 

This gives the xt for d ?: n and the Pd by summation. It would remain to 
give a proof for d < n, which is possible. 

The following method gives a proof valid for all d ?: 0, in the 
framework of the A-algebra F = A[[X1 , .•. , Xnll of formal power series in 
n indeterminates with coefficients in A. 

PROOF. - Consider the map D : F -+ F defined on the homogeneous parts 
of degree k of F by D(u) = ku, and more generally, for a formal power 

series u = L Uk written as the sum of its homogeneous parts of degree k, 
k::::O 

by D(u) = L kUk. 
k::::O 

The operation D satisfies D(u+v) = D(u) +D(v) and D(uv) = D(u)v+ 
uD(v). This D is an example of what we call a derivation in a ring; here, 

Indeed, if u = L Uk and v = L vk are the expressions for u and v as 
k::::O k::::O 

sums of their homogeneous parts, we have 
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D(uv) = D[ (~Uk) (~Vk)] 

= D [~(fm UkVl)] 

Lm( L UkVl) 
m~O k+l=m 

L L (kUkVl + lUkVz) 
m~Ok+l=m 

m~Ok+l=m m~Ok+l=m 

D(u)v + uD(v). 

It follows that the derivation of the product of r formal power series 
Ul," ., U r is given by 

D(UI ... ur) = D(ud(U2'" ur ) + ... + (UI'" ur-dD(ur ); 

so for invertible power series, we have 

D(UI ... ur ) D(UI) D(ur) 
---..:-=---....:...:... = -- + ... + --. 

UI" 'Ur UI U r 

Let us apply this formula to the n power series Ui = 1 + Xi, 1 ::; i ::; n, 
noting that D(1 + Xi) = Xi' We obtain 

D( II (1 + Xi)) 
l$;i$;n Xl Xr 

-----.;;;':::=---- = --- + ... + --. II (1 + Xi) 1 + Xl 1 + Xr 

Recall that the inverse of 1 - X is the series L Xk. Thus, 
k~O 

~ = L(-I)kxk+1. 
1 +X k~O 

Setting X = -1, formula (3.1) gives IT (1 + Xi) = L Sk, and since 
l$;i$;n O$;k$;n 

Sk = 0 for k > n, this gives IT (1 + Xi) = L Sk· 
l$;i$;n O$;k 

As D (L Sk) = L kSk, we can now finish the proof: 
O$;k l$;k 

Lksk D( L Sk) =D[ II (1+Xi )] 

l$;k O$;k$;n l$;i$;n 
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[ L Sk] L( -l)k-lpk 
OS;kS;n ke::1 

L L (-l)l-lSkPI 
lS;d k+l=d 

L[(-l)d-lpd + L (-l)d-k-lSkPd_k] , 
lS;d lS;kS;d-l 

given that So = 1. We conclude by identifying the homogeneous components 
of this last equality. 0 

3.5 Resultant of Two Polynomials 

The resultant of two polynomials was introduced by Newton in certain 
special cases (1707), and then by Euler (1748, 1764) and by Bezout (1764). 

3.5.1 Definition 

Let K be a field contained in an algebraically closed field C (see §16.1). 
Let F and G be two polynomials in K[X], of degree m and n respectively. 
Write 

F(X) = a II (X - Xi) and G(X) = b II (X - Yi) 

inC[X]. 
The resultant of the two non-zero polynomials F and G is defined to be 

the product 

If F = 0 or G = 0, we set Res(F, G) = O. 

REMARK. - The result is independent of the choice of C, as we will see. We 
will write Resx(F, G) whenever it is necessary to distinguish the variable 
with respect to which the resultant is taken. 

3.5.2 Proposition 

1) The resultant of two polynomials in K[X] is zero if and only if the 
two polynomials have a common root in C. 
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2) The resultant of two polynomials in K[X) is zero if and only if the 
two polynomials have a greatest common divisor which is neither a 
constant nor zero in K[X). 

3) The resultant of two non-zero polynomials in K[X) is an element of 
K, and we have 

Formula (1): 

Formula (2): 

Formula (3): 

Res(F, G) = an II G(Xi), 
l::;i::;m 

Res(G, F) = (-l)mnRes(F, G), 

Res(F, G) = (_l)mnbm-deg(R) Res(G, R) 

if the Euclidean division of F by G gives F = GQ + R with deg(R) < 
deg(G). If R = 0, then Res(F, G) = 0. 

Formula (4): Res(F, b) = bm for a constant polynomial b. 

PROOF. -

1) If F and G are non-zero and if Res(F, G) = 0, then there exist i and 
j such that Xi = yj. The converse is obvious. 

2) Suppose that F and G are non-zero, as the result is obvious if one 
or both of them is zero. Because F and G have coefficients in K, we 
know that we can compute their greatest common divisor S in K[XJ, 
and that S is also the greatest common divisor of F and G in C. If 
F and G have a common root Xi in C, then X - Xi divides F and G, 
so it divides Sj this means that S is not a constant. Conversely, if S 
is not a constant, then every root of S in C'is a common root of F 
and G. Now part 1) suffices to conclude. 

3) Formula (1): 

Res(F, G) = an II [b II (Xi - Yj)] = an II G(Xi). 
l::;i::;m l::;j::;n l::;i::;m 

Formula (2): 

Formula (3): formulas (1) and (2) give 

Res(F, G) = (-l)mnRes(G,F) 

= (-l)mnRes(G,GQ+R) 
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(_l)mnbm II [G(Yi)Q(Yi) + R(Yi)] 
l:5i:5n 

(_l)mnbm-deg(R)ReS(G, R). 

Formula (4): this follows from formula (1). 
The process of Euclidean division produces only elements of K, 

so the resultant Res(F, G) lies in K by definition. 0 

REMARKS. - Formulas (1)-(4) give an algorithm for computing the resul
tant. 

Historically, the resultant was introduced as a determinant (see Exer
cise 3.3). This approach is very natural and actually renders the result of 
Proposition 3.5.2 c) more precise. Indeed, if 

O:5k:5m O:5k:5n 

then 
Res(F, G) E A[ao, ... , am, bo,···, bn). 

But to compute this determinant quickly, in general, one needs to revert 
to the method presented above. 

3.6 Discriminant of a Polynomial 

3.6.1 Definition 

Let K be a field contained in an algebraically closed field C. The discrim
inant D(P) of a non-zero polynomial P in K[X] of degree n, with leading 
coefficient a, is defined by 

(_1)n(n-l)/2Res(P P') 
D(P) = ' . 

a 

3.6.2 Proposition 

The discriminant D(P) of a non-constant polynomial P is an element of 
K, which is equal to zero if and only if P is a root of multiplicity greater 
than or equal to 2 in C. 

PROOF. - The fact that D(P) E K follows from Proposition 3.5.2 c). By 
Proposition 3.5.2 a), the discriminant of P, which is the resultant of P and 
P', is zero if and only if P has a common root with P' in C, Le. if P has 
a root of multiplicity greater than or equal to 2 in C. 0 
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3.6.3 Formulas 

1) D(aX2 + bX + c) = b2 - 4ac. 

2) D(X3 + pX + q) = _4p3 - 27q2. 

3) If F(X) = a II (X - Xi), then D(F) = a2n- 2 I11:$;i<j::;n(Xi - Xj)2. 
l::;i::;n 

PROOF. - The proofs are contained in Exercise 3.5. 

3.6.4 Polynomials with Real Coefficients: Real Roots and Sign 
of the Discriminant 

Second-degree polynomials 

Let a, b, c be real numbers. We have D(aX2 + bX + c) = b2 - 4ac = 
a2(xl - X2)2, where Xl and X2 denote the roots ofaX2 + bX + c in C. If 
Xl and X2 are distinct real numbers, we have b2 - 4ac > O. If they are not 
real, then they are conjugate in C, Xl - X2 is a purely imaginary number, 
and b2 - 4ac < O. 

Cubic polynomials 

Let p, q be real numbers, and let a, b, c denote the roots of the polynomial 
X 3+ pX + q in C. We have 

D(X3 + pX + q) = _4p3 - 27q2 = (a - b)2(a - c)2(b - c)2. 

If the three roots are distinct real numbers, then _4p3 - 27 q2 > 0; this is 
the irreducible case (see §2.2.6). The second case is when two of the roots, 
say a and b, are not real numbers, but complex conjugates in C; then a - b 
is purely imaginary and its square is negative: (a - C)2 and (b - c)2 are 
conjugate and their product is strictly positive, so _4p3 - 27 q2 < O. 

These results are summarized in Table 3.1. 

D>O D<O 

Degree 2 2 real roots 2 non-real conjugate roots 

Degree 3 3 real roots 1 real root, 
2 non-real conjugate roots 

TABLE 3.1. Real roots and sign of the discriminant 
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Exercises for Chapter 3 

Exercise 3.1. Elementary symmetric polynomials 

1) Write the following symmetric polynomials as polynomials in the el
ementary symmetric polynomials: 

a) X2y2 + y2 Z2 + Z2 X 2, 

b) X3Y +Xy3 +X3Z +XZ3 + y 3Z + YZ3. 

2) Use Newton's formulas to compute the sum of the fourth powers of 
the roots of the polynomial (X -l)(X -2)(X -3)(X -4); check your 
result directly. 

3) Compute the sum of the seventh powers of the roots of X 3 + pX + q. 

4) Supposing that q -=f. 0, determine the monic polynomial whose roots 
are the inverses of the squares of the roots of the polynomial X 3 + 
pX+q. 

5) Let (xr, ... , xn) and (Yr, ... , Yn) be two n-tuples in K n such that 
there exists no permutation u in Sn such that (Ya(l),"" Ya(n») = 

(Xl, ... , xn). Show that there exists an elementary symmetric polyno
mial Sk for some 1 ::; k ::; n such that Sk(Xl, . .. ,xn) -=f. Sk(Yr,· .. , Yn). 

Exercise 3.2. Tschirnhaus' method 

Consider the polynomials P(X) = X 3 + pX + q with pq -=f. 0 and 
Q(X) = X2 + alX + ao, where all coefficients lie in a subfield K of 
C. 

Suppose that P has a root X and set Y = Q(x). 
The reader who quails before the rather lengthy computations in

volved in this exercise may employ the following shortcut: plug the 
results given in the solution to this exercise back into the exercise 
and check that they work. 

1) Write the linear polynomial R which vanishes at X in terms of Y and 
the coefficients of P and Q. 

2) a) Compute Res(P, Q - y). 

b) Determine elements ao and al such that Y satisfies a relation of 
the form y3 = a3 . 

3) Using the above, find the roots of P. 
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COMMENTARY. - In 1683, Tschirnhaus proposed his method for solving an 
equation of degree n by using a change of variables of the form Y = Q(X), 
where Q is a polynomial of degree n -1, in order to reduce to an equation 
of the form yn = an whose solutions are known; it then remains to solve 
the equation Y = Q( X) which is of degree n -1. By induction, this method 
was supposed to give solutions of polynomial equations of all degrees. But 
it came to be understood lat~r that the determination of the coefficients of 
Q led to equations of degree > n unless n = 2 or 3, and that for n = 4, one 
obtains an equation of degree 6 which factors into two equations of degree 
3. 

Exercise 3.3. The resultant as a determinant 

Let A be an integral domain. Consider the polynomials 

G(X) 

in the ring A[X1 , ••• , X m, Y17 ••• , Ynl. Let us define an (m + n) x 
(m + n) matrix ll. = (djk) (here j and k denote the row and column 
indices respectively) with coefficients in A[X 17 ••• , X m, Y1 , ••• , Ynl, as 
in Figure 3.3. 

~ !>no . 

D= 'b. ~m bo 'b • n 

. 

. ito 'b 0 

FIGURE 3.3. The matrix ll. 

a) In the n first columns (i.e. 1 ~ k ~ n), we set djk = am-j+k for 
k ~ j ~ k + m, otherwise djk = O. 

b) In the m last columns (i.e. n+1 ~ k ~ m+n), we set dj,k = bk-j 
for k - n ~ j ~ k, otherwise djk = O. 

Define D to be the determinant of the matrix ll.. Our goal is to check 
that D = Res(F, G) by the following steps. 
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1) Let N be an integer, and let V(Tb ... , TN) denote the determi
nant (known as the Vandermonde determinant) of the square ma
trix M(Tl , ... , TN) of dimension n with coefficients in Z[Tb ... ' TN] 
whose k-th row is given by (Tk)N-l, ... ,(Tk)2,Tk,1. Recall how to 
compute the Vandermonde determinant V(Tl , .. . , TN). 

2) Set M = M(Yl , ... , Yn , Xb ... , Xm). By computing the determinant 
det(M.6.) in two different ways, show that D = Res(F, G). 

3) Show that Res(F,G) E A[ao, ... ,am,bo, ... ,bn ]. 

COMMENTARY. - In his memoir "A new way of eliminating unknown quan
tities from equations" , presented to the Berlin Academy of Sciences in 1764, 
Euler introduced the resultant by writing that if two polynomials 

F(X) = L akXk and G(X) = L bkXk 

have a common root x, then there exist polynomials 

H(X) = L XkXk and Gl(X) = L Yk Xk 

such that 

F(X) = (X - X)Fl(X) and G(X) = (X - x)Gl(X). 

Thus FG l = Fl G, and when this is expanded we obtain a system of linear 
equations in the Xi and Yj with m+n equations and m+n unknowns, whose 
determinant must be zero in order for there to exist a non-zero solution. 
This determinant is exactly the one which we introduced above; of course, 
Euler did not call it a determinant (this terminology was introduced by 
Sylvester in 1840), and he only wrote the explicit formula for polynomials 
of small degree. 

Exercise 3.4. Computing the resultant 

1) Let F, Gl and G2 be polynomials with coefficients in a field K. Check 
that Res(F, G l G2) = Res(F, GI)Res(F, G2). 

2) Compute Res ( aX2 + bX + c, dX + e) in three different ways: using the 
formula using the roots of one of the polynomials, using the method 
of Euclidean division, and computing a determinant. 

3) Show that 

Res ( aX2 + bX + c, a' X2 + b' X + c') 

(a'e - ae')2 - (ab' - a'b)(bc' - b'c) 

(ae' + a'e _ b~') 2 _ ~(b2 _ 4ae)(b,2 _ 4a'e'). 
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Exercise 3.5. The discriminant of a polynomial 

1) Compute D(aX2 + bX + c), D(X3 + pX + q). 

2) Show that if F(X) = a II (X - Xi); then its discriminant satisfies 
l:-:;i:-:;n 

D(F) = a2n- 2 II (Xi - Xj)2. 
l:-:;i<j:-:;n 

3) Show that D(F) is real if F has real coefficients. 

4) Let P be a polynomial with real coefficients and with roots that may 
or may not be real but which are pairwise distinct. What does the 
sign of D(P) imply about the number of real roots of the equation 
P(X) = O? 

5) Let us give an application of the notion of discriminant which is 
beyond the actual scope of this book. 

Equip the set E of polynomials of degree ~ n in qXl with the 
topology of Cn+! by identifying the element (ao, ... , an) E Cn+ 1 with 

the polynomial P = L akXk. 
O:-:;k:-:;n 

a) Show that the polynomials having only simple roots form an 
open set of E. 

b) Deduce from this that the n x n matrices with distinct eigen
values form an open set of the set Mn(C) of n x n matrices with 
entries in C. 

Exercise 3.6. Computating D(Xn- 1 + X n- 2 + ... + 1) for n ~ 2 

1) Compute D(xn - 1) for n ~ l. 

2) Compute D(X + 1), D(X2 + X + 1), D(X3 + X2 + X + 1). 

3) Show that if P(X) = (X - X1)P1(X), then D(P) = P1(xd 2 D(Pd· 

4) Compute D(Xn - 1 + X n - 2 + ... + 1) for n ~ 2. 

5) Obtain the result of part 4) by using the formulas 

(_1)n(n-1)/2Res(P PI) 
D(P) = ' 

a 
and Res(F, G) = an II G(Xi). 

1:-:; i:-:; m 
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Exercise 3.7. Descartes' Lemma 

Let n 2:: 1 be an integer, and let (xo, ... , Xn) be a family of real 
numbers. 

We say that the family has a sign change at index i for 1 ::; i ::; n 
if and only if there exists k E {O, ... ,i - I} such that XkXi < 0 and 
Xl = 0 for all l such that k < l < i. 

If P is a polynomial in lR[X], write c(P) for the number of sign 
changes in the sequences of coefficients of P, and let r(P) denote the 
number of strictly positive real roots of P. 

1) Show that r(P) ::; c(P) for every polynomial in lR[X]. To do this, 
reduce to the case where P(O) =I- 0 and use induction: if 

is a polynomial of degree n, set k = inf{ iii> 0 and ai =I- O} and 
study the variations of P. 

2) Give an upper bound for the number of strictly negatIve roots of P. 

3) Determine the number of strictly positive roots, strictly negative 
roots, and non-real roots of the polynomial X 8 + X4 + X - 1. 

4) Let us study another situation. Let 

P(X) = xn + L akXk 
k:$n-p-l 

with p 2:: 0 and an-p-l =I- 0, and write s(P) for the number of real 
roots of P. Show that 

a) if P is even, then s(P) ::; n - p; 

b) if P is odd and an-p-l > 0, then s(P) ::; n - p - 1; and 

c) if p is odd and an-p-l < 0, then s(P) ::; n - p + 1. 

COMMENTARY. - The subject of Exercise 3.7 is not directly related to 
the subject of this book; it was stated without proof by Descartes, and 
subsequently became the object of a great deal of discussion and many 
more or less incomplete proofs, until Gauss gave a complete proof in 1828. 
Any classical algebra text contains results of Sturm generalizing this lemma. 
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Solutions to Some of the Exercises 

Solution to Exercise 3.1. 

1) a) Set P(X, Y, Z) = X2y2 + y2 Z2 + Z2 X2. The polynomial P is sym
metric in Z[X, Y, Z); its largest term for the ordering X> Y > Z is X2y2. 
So we compute P - s~, i.e. 

-2(X2YZ +Xy2Z +XYZ2) = -2S1S3. 

This gives P = s~ - 2S1S3. 

b) See §3.3. 

2) We have 

(X - l)(X - 2)(X - 3)(X - 4) = X4 - lOX3 + 35X2 - 50X + 24, 

and the sum 14 + 24 + 34 + 44 = 1 + 16 + 81 + 256 = 354 confirms the 
computation 

PI SI = 10, 

P2 SIPl - 2S2 = 30, 

P3 = S1P2 - S2Pl + 3S3 = 100, 

P4 = S1P3 - S2P2 + S3Pl - 4S4 = 354. 

3) Let Xl,X2,X3 denote the roots of X 3 + pX + q in C. By Euclidean 
division, we obtain 

X7 = (X3 + pX + q)(X4 _ pX2 _ qX + p2) + 2pqX2 + (q2 _ p3)X _ p2q, 

which gives 

l~i9 

2pqP2 + (q2 - p3)SI _ 3p2q = _7p2q, 

taking into account the identities SI = 0 and P2 = SIPl - 2s2 = -2p. 
We can also successively compute the Pi: we find 0, -2 p, -3q, 2p2, 5pq, 
_2p3 + 3q2, -7p2q. 

4) Let a, b, c denote the roots of X 3 + pX + q and 8 1 , 82 , 83 the values of 
the elementary symmetric polynomials in 1/a2, 1/b2, 1/c2. Then 

1 1 1 a2b2 + b2c2 + c2a2 p2 
a2 + b2 + c2 = a2b2c2 = q2' 

1 1 1 a2 + b2 + c2 2p 
82 = a2b2 + b2c2 + c2a2 = a2b2c2 = - q2 ' 

1 
2". q 
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The desired polynomial is X 3 - (p2/q2)X2 - (2p/q2)X - (l/q2). 

5) The polynomials II (X - Xi) and II (X - Yi) are distinct since 
l<i<n l<i<n 

they do not have the s~e roots; thus their -coefficients are not all equal. 
The result follows from formula (3.1) in §3.2.2. 

Solution to Exercise 3.2. 

1) It suffices to divide P(X) by Q(X) - Y via Euclidean division. We find 
2 

the remainder R(X) = (p - ao + a 1 + y)X + q + aOal - alY· 

2) a) The computation was begun in 1). We find that Res(P, Q - y) is 
equal to 

_y3 + (3ao - 2p)y2 + (-3qal - p(al)2 - p2 - 3(ao)2 + 4pao)Y + C, 

with C = q2 + 3qaOal - pqal + p2ao - 2p(ao)2 + (ao)3 - q(aI)3 + pao(al)2. 

b) We see that ao = (2p/3); we can then choose al = (3/p)( -(q/2)+A) 
with A = J(q2/4) + (P3/27), so that y3 = (6A/p)3 (-(q/2) + A) . 

3) These choices give a polynomial R that is, up to a non-zero constant, of 
the form X - B + (p/3B) where B is a cube root of -(q/2) + A, so what 
we have here are Cardan's formulas. 

Solution to Exer.cise 3.3. 

1) First, subtract from each column the following column multiplied by T1, 

beginning with the first one. This gives 

V(TI, ... , TN) = II (Tl - Ti )V(T2 , ••• , TN)' 
2~i~N 

By induction, we obtain 

V(TI, ... ,TN)= II (Ti-Tj ). 

l$i<j~N 

2) Note that F(lj) = L ak(lj)k for 1 :5 j :5 n, F(Xj) = 0 for 1 :5 j :5 
O~k~m 

m, G(Xj) = L bk(Xj)k for 1 :5 j :5 m, and G(lj) = 0 for 1 :5 j :5 n. 
O~k~n 

Take the product M II and consider its determinant. For 1 :5 j :5 n, F(lj) 
is a factor throughout the j-th row; for n + 1 :5 j :5 n + m, G(Xj - n ) is a 
factor throughout the j-th row. Once we have factored out these quantities, 
we are left with a determinant which can be computed as a product of the 
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determinants of two blocks, each of which is a Vandermonde determinant. 
We find 

det(M.6.)= II F(lj) II G(Xi)V(Xl, ... ,Xm)V(Yl, ... ,Yn). 

Comparing this with the product det(M) det(.6.), we find 

We have 

Consequently, 

The result is then obtained by multiplying the two terms by an and sim
plifying by II F(lj). 

l::oj::on 

3) The computation of the determinant gives an element of the ring in the 
statement. 

REMARK. - Here, in computing the determinant, we can make zeros appear 
simultaneously in the places of the coefficients of the highest degree terms 
in the columns corresponding to the highest degree polynomial, and then 
continue to repeat this procedure: it is exactly the algorithm of Euclidean 
division. 

Solution to Exercise 3.4. 

1) Use the formulas from the text. 

2) a) The root of dX + e is equal to -ejd, so we have 

Res(dX + e,aX2 + bX + c) = d2 (a ~ - b~ + c) = cd2 - bde + ae2 . 

Furthermore, we have 

2 (a db - ae) cd2 - bde + ae2 
aX + bX + c = (dX + e) "d,X + d2 + d2 ' 
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hence 

Res( aX2 + bX + e, dX + e) d2Res ( dX + e, cd2 - b:2e + ae2 ) 

= cd2 - bde + ae2. 

adO 
The same result can be obtained by computing the determinant bed 

e 0 e 

3) We find 

Res ( aX2 + bX + e, a' X2 + b' X + e') 

Re (X2 bX ab' - a'b X ae' - a'e) 
= a s a + +e, + ---

a a 

= a [e ( ab ~ a'b) 2 _ b ( ab' : a'b) (ad: a' c) + a ( ae': a' c) 2] 

= (a'e - ae')2 - (ab' - a'b)(be' - b'e). 

The second formula is obtained by a simple computation. 

Solution to Exercise 3.5. 

1) It is possible to use several different formulas to compute the resultant. 
For example, if Xl and X2 are the roots ofaX2 + bX + e in C, we have 

D(aX2 + bX + c) = -(2axl + b)(2ax2 + b) 

= -4a2 (~) - 2ab ( -~) - b2 

b2 - 4ae. 

Similarly, because J( -p/3) , -J( -p/3) are the roots of 3X2 + p, we have 

D(X3 + pX + q) = -Res(X3 + pX + q, 3X2 + p) 

~-27[(/¥)' +p/¥+q] [-(/¥)' -p/¥+q] 

=-27 [2:/¥+q] [_2:J-: +q] =_4p3_27q2. 

Now, if a, b, e denote the roots of X 3 + pX + q in C, then using a formula 
from Exercise 3.1, we obtain 

D(X3 + pX + q) = -(3a2 + p)(3b2 + p)(3e2 + p) 
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-27a2b2e2 - 9p(a2b2 + b2e2 + 
e2a2) _ 3p(a2 + b2 + e2) _ p3 

-27q2 - 9p[(ab + be + ea)2 - (a + b + e)abe] 

-3p2[(a + b + e)2 - 2(ab + be + ea)] _ p3 

= -27q2 - 9p[P2] _ 3p2[-2p] _ p3 

_4p3 _ 27q2. 

These computations can also be done using the method of Euclidean divi
sion or by computing a determinant. 

2) Taking into account the (n2 - n)j2 sign changes to be made in the 
product, we have 

D(F) = 
(_1)n(n-l)/2Res(F, F') 

a 
(_1)n(n-l)/2an-l II F'(Xi) 

l<i<n 

a 

= (_1)n(n-l)/2an-2 II (a II (Xi - Xj)) 
l~i~n l~j~n,j-#i 

a2n- 2 II (Xi- Xj)2. 
l~i~j~n 

3) We know that the resultant belongs to the field generated by the coef
ficients of the polynomials. 

4) If P has only real roots, then of course we have D(P) > o. 
If P does not have only real roots, then it has an even number of non-real 

roots, say k pairs of complex conjugates. Let us reason by regrouping the 
factors occurring in the formula of part 2). 

For every non-real root X and every real root y, the terms x - y and x - y 
are conjugate, so (x - y)2 (x - y)2 > o. 

For every non-real root x and every non-real root y, the terms x - y and 
x - 'fl are conjugate, as are the terms x - y and x - 'fl, so we have 

For every non-real root x of P, we have (x - x)2 < o. 
Thus, D(P) has the same sign as (_l)k. The final conclusion is that if 

D(P) > 0, 2k = 0 mod 4 and if D(P) < 0, then 2k = 2 mod 4. 

5) a) The map which associates D(P) to P is continuous (take the de
terminant to be the expression of the discriminant), and the set of 
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polynomials having only simple roots corresponds to the complement 
of the inverse image of 0, so it is open. 

b) An n x n matrix has distinct eigenvalues if and only if its characteristic 
polynomial has no double roots. The rest follows immediately. 

Solution to Exercise 3.6. 

1) Applying the formulas for computing resultants, and using the fact that 
(_l)n(n-l) = 1, we find 

D(xn -1) (_1)n(n-I)/2Res(Xn _l,nXn- l ) 

(_1)n(n-I)/2Res(nXn-l,xn -1) 

(_1)n(n-I)/2nn( _l)n-l. 

Finally, D(xn - 1) = (_1)(n-I)(n+2)/2nn. In other words, we have 

D(xn - 1) = nn if n = 1,2 mod 4, 
D(xn -1) = _nn if n = 0,3 mod 4. 

2) Using the formula D(F) = a2n- 2 II (Xi - Xj)2, we find 
l$i<j$n 

D(X + 1) 

D(X2 +X + 1) 

D(X3 +X2 +X + 1) = 

1 (empty product), 
( . .2)2 - 3 ]-] --, 
[(i + 1)2i( -1 + i)]2 = -16. 

3) If P(X) = a II (X - Xi) = (X - xI) PI (X), we have 
l$i$n 

l$i<j$n 

a2 II (Xl - Xi)2a2n-4 II (Xi - Xj)2 
l<i$n 2$i<j$n 

PI (XI)2 D(PI). 

4) We have 

(_1)(n-l)(n+2)/2nn D(xn -1) 

= D[(X - l)(Xn- 1 + X n- 2 + ... + 1)] 

n2 D(Xn- 1 + X n- 2 + ... + 1), 
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which gives 

D(Xn- 1 + X n- 2 + ... + 1) = (_I)(n-l)(n+2)/2nn-2. 

5) Set P(X) = X n - 1 + X n - 2 + ... + 1. If (= e2i7r/ n , we have 

D(P) = (_I)n(n-l)/2Res(P,P') = (_I)n(n-l)/2 II p'«i). 
l::;i::;n-l 

As 

we have 

and because 

P(X) = xn -1 
X-I' 

r(n-l)i 
p'(ri) = _n",.:o,-. __ 

", (t -1 ' 

II «i -1) = (_I)n- 1p(l) = (_I)n- 1n, 
l::;i::;n-l 

we find the preceding result. 



4 
Field Extensions 

In this chapter, we come to the basic notions of Galois theory. Abel and 
Galois defined the elements of a generated extension, but they did not envi
sion these elements as forming a set. The concept of a field (and the word) 
did not appear until the work of Dedekind between 1857 and 1871. The 
abstract definition of a field was given about 20 years later by Weber and 
Moore. One hundred years ago, the language of linear algebra did not exist 
and results were formulated very differently from the way they are today, 
as can be seen, for example, in Weber's book, listed in the bibliography. 

4.1 Field Extensions 

4.1.1 Definition 

An extension of a field K is a field containing K as a subfield. If M is 
an extension of K, then an intermediate extension (between K and M) 
is an extension L of K contained in M. We will usually represent field 
extensions in one of the forms shown in Figure 4.1, where the upper field 
is an extension of the lower field. 

L L L' 

t 
or \/ 

K K 
FIGURE 4.1. 
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More generally, an extension of a field K is a pair (L, i) where L is a 
field and i : K --+ L a ring homomorphism between two fields; such a 
homomorphism is necessarily injective (if x =1= 0, then x has an inverse X-I 

and i(x)i(x- I ) = i(XX-I) = i(l) = 1 shows that i(x) =1= 0). 

4.1.2 Proposition 

An extension L of a field K is natumlly endowed with the structure of a 
K -vector space and even that of a K -algebm. 

PROOF. - The K-algebra structure is defined by the addition and multi
plication operations of L, and the K-action is simply the restriction of this 
multiplication to K x L. <:) 

4.1.3 The Degree of an Extension 

Let L be an extension of a field K. The dimension of L as a K-vector space 
is called the degree of the extension Lover K; it is written [L : K]. A field 
L is said to be a finite degree of K if [L : K] is finite. An extension of 
degree 2 is called a quadratic extension. 

COMMENTARY. - The rest of this book is devoted to the study of finite de
gree extensions, with just a few exceptions. The general study of extensions 
of infinite degree needs topology. 

EXAMPLES. -

1) The fields JR and C are not countable, so they are extensions of Ql of 
infinite degree. 

2) JR(X) is an extension of infinite degree of lit. 

3) C is a quadratic extension of JR, with basis {I, i} for example. 

4) Ql[V2] = {a + bV2; a, b E Ql} is a quadratic extension of Ql, with basis 

{ 1, v'2} for example. 

4·1.4 Towers of Fields 

In certain problems, for example the solvability by radicals considered in 
Chapter 12, one considers finite sequences of successive extensions K = 
Ko c ... C Kr; such a sequence is called a tower of fields. 
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4.2 The Tower Rule 

4.2.1 Proposition 

Let L be a finite-degree extension of a field K, and let M be a finite-degree 
extension of L. Then M is a finite-degree extension of K, and we have 

[M : K] = [M : L][L : K]. 

EXAMPLE. -

The fields in this example will be described more precisely after this chap
ter; they are algebraic extensions of Q. The formula gives the degree of 
Q[?'2,j] over Q, using the intermediate extension Q[?'2] and Proposition 
4.5.2 below; we can also use the intermediate extension Q[j]. 

REMARK. - The above formula is also useful in the form "[L : K] divides 
[M:K]." 

PROOF. - Set n = [L : K] and p = [M : LJ, and let {II, ... , In} denote a 
basis of Lover K and {mb ... , mp} a basis of Mover L. The np numbers 
limj for 1 ::; i ::; n, 1 ::; j ::; p, form a basis of Mover K. Indeed, 

1) They form a linearly independent system because if 

then 

L XijIimj = 0, 
1:5 i:5n, I:5j:5p 

L ( L xijli)mj = O. 
I:5j:5p I:5i:5n 

But the mj are linearly independent in the L-vector space M, so for 
j = 1, ... ,p, we must have 

L XijIi = O. 
I:5i:5n 

Thus all the Xij are zero because the Ii are linearly independent in 
the K-vector space L. 

2) They form a generating system because if x is in M, then there exist 
Xl, ... , xp in L such that 

X= L xjmj, 

I:5j:5p 
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and for each of the x j there exist Xlj, ... , Xnj in K such that 

so 

l~i~n,l~j~p 

COROLLARY. - Let M be a finite-degree extension of a field K and L an 
intermediate extension. Then L is a finite-degree extension of K and M is 
a finite-degree extension of L. 

PROOF. - If {lb ... , In} are elements of L that are linearly independent over 
K, and if {ml, ... , mp} are elements of M that are linearly independent 
over L, then by Proposition 4.2.1, the np numbers limj for 1 ~ i ~ n, 1 ~ 
j ~ p, are linearly independent over K. Thus np ~ [M : K], which bounds 
n~~ 0 

4.3 Generated Extensions 

4.3.1 Proposition 

Let L be an extension of a field K, and let A be a subset of L. 

1) There exists an extension of K, denoted by K(A), which contains A 
and has the property that it is minimal, i. e. it is contained in every 
extension of K contained in L and containing A. 

2) As a set, K(A) is equal to the set E of elements of L of the form 
S(ab .. . , ak)IT(ab· .. , ak), where k is an integer running through 
N, al, ... , ak are elements of A and SIT is a rational function in 
K(Xl , . .. , Xk) of rational functions, such that T(al, .. . , ak) f:. O. 

PROOF. -

1) Consider the family of extensions of K contained in L and containing 
A. This family is non-empty since L belongs to it, and the intersection 
of all fields in the family satisfies the defining property of K(A). 

2) It is easy to see that every element of E lies in every extension of K 
contained in L and containing A. Furthermore, E is obviously a field 
containing K and A, so we obtain E = K(A). 
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4.3.2 Definition 

The extension K(A) is called the extension of K generated by A. If A = 
{al, ... , an}, then the extension K(A) is usually written K(al, ... , an). 

4.3.3 Proposition 

Let L be an extension of a field K, and let A, B be two subsets of L. Then 

K(A u B) = K(A)(B). 

PROOF. - By Proposition 4.3.1 1), we know the following facts . 

• Because Au B c K(A) u B c K(A)(B), we have K(A U B) c 
K(A)(B) . 

• Because K(A) U Be K(A u B), we have K(A)(B) C K(A u B). ¢ 

4.4 Algebraic Elements 

4.4-1 Definition 

Let K be a field and L an arbitrary extension of K. An element a of L is 
said to be algebraic over K if there exists a non-zero polynomial in K[X] 
having a as a root. 

EXAMPLES. - h, .v2, and e2i7r / n are all complex numbers that are alge
braic over IQ. 

REMARK. - It is not obvious that the sum and product of two algebraic 
numbers over K is also algebraic; this is proved in §6.3. 

4.4.2 Transcendental Numbers 

A number that is not algebraic over K is called transcendental over K. A 
complex number transcendental over IQ (such a number is simply called a 
transcendental number) is thus a number that is not a root of any polyno
mial with coefficients in Z. 

Joseph Liouville was the first to prove, in 1844, that certain real num
bers are transcendental over IQ, for instance L lO-n! (see Exercise 4.1). 

n>O 
Hermite proved the transcendence of e in 1873 (see Exercise 4.2), and Carl 
Lindemann proved the transcendence of 1f in 1882, finally providing a neg
ative answer to the ancient problem of squaring the circle (i.e. using only 
ruler and compass to construct a square having area equal to that of a 
given circle). 
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Alexandre Gelfond and Theodor Schneider showed in 1934 that ab is 
transcendental whenever a is algebraic, a =1= 0 and a =1= 1, and b is an irra
tional algebraic number. For example, 2v2 is transcendental. Alan Baker, 
a 1970 Fields Medalist, extended these results considerably at the end of 
the 1960s. It is still not known if numbers such as e + 7r are transcendental 
or not. Transcendental number theory is at present a rapidly developing 
subject. 

4.4.3 Minimal Polynomial of an Algebraic Element 

PROPOSITION. - Let K be a field, L an extension of K and a an element 
of L which is algebmic over K. There exists a unique monic polynomial P 
in K[X] having a as a root and of minimal degree among all the non-zero 
polynomials in K[X] having a as a root. 

PROOF. - Let us first show that the ring K[X] is a principal ideal domain, 
i.e. every ideal of K[X] is generated by a single element. This is true for 
the ideal I = (0), and if I is a non-zero ideal of K[X], then it contains a 
polynomial P =1= 0 of minimal degree, such that every other polynomial S 
of I is a multiple of P. Indeed, the Euclidean division of S by P gives an 
equality S = PQ + R where the degree of R is strictly less than that of P, 
but R = S - PQ is an element of I, contradicting minimality of the degree 
of P unless R = O. 

Now, consider the set I of polynomials of K[X] which vanish at a. This 
forms a non-zero ideal of K[X], so there exists a polynomial T of K[X] 
such that I = (T). Dividing T by its leading coefficient, we obtain a monic 
polynomial P which generates I. 

The uniqueness of P isa consequence of the fact that if T is a monic 
polynomial in K[X] satisfying the same conditions as P, then P - T is an 
element of I which vanishes at a, so because its degree is < deg(P), it must 
be zero. <> 

4.4.4 Definition 

Let K be a field and L an extension of K; let a be an element of L algebraic 
over K. By the preceding section, there exists a unique monic polynomial 
of minimal degree in K[X] which vanishes at a; it is called the minimal 
polynomial of a over K. If deg(P) = n, then a is said to be algebraic of 
degree n over K; we also say that n is the degree of a over K. 

EXAMPLE. - X2 - 2 is the minimal polynomial of v'2 over Q; v'2 is of degree 
2 over Q. 

REMARKS. - The minimal polynomial of an element a of K is X-a. 
The minimal polynomial depends on the field K; thus VI2 has minimal 

polynomial X 6 - 2 over Q, but X 3 - v'2 over Q[v'2]. 
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4.4.5 Properties of the Minimal Polynomial 

PROPOSITION. - Let K be a field, L an extension of K and a an element 
of L which is algebraic over K of minimal polynomial Paver K. 

1) Every polynomial of K[X] which vanishes at a is divisible by P. 

2) P is irreducible over K, i. e. it is not the product of two non-constant 
polynomials in K[X]. 

3) Every root of P lying in L has minimal polynomial P. 

4) If L is a field of characteristic 0, in particular if L c C, a is a simple 
root of P (we will say that P is separable; for a counterexample in an 
infinite field of non-zero characteristic, see §15.2). 

PROOF. -

1) This is an immediate consequence of the preceding proof. 

2) If P = ST E K[X], the equality P(a) = 0 implies that S(a) = 0 or 
T(a) = O. If neither S nor T is a constant, then deg(S) < deg(P) and 
deg(T) < deg(P), which is impossible. 

3) Let b be a root of Pin L; thus b is an algebraic number over K and so 
it has a minimal polynomial S over K. As P(b) = 0, P is a multiple 
of S by part 1), but as P is irreducible, this means that P = S. 

4) Suppose that a is a root of order k > 1 of P, i.e. P(X) = (X _a)k S(X) 
in qX], with S(a) =I=- O. 

We have P'(X) = k(X -a)k-1S(X)+(X -a)kS'(X), so P'(a) = 0, 
which contradicts the definition of P as the minimal polynomial of a 
since deg(p') = deg(P) - 1 and P' is non-zero in K[X]. 

4.4.6 Proving the Irreducibility of a Polynomial in Z[X] 

An algorithm for factoring polynomials in Z[X] or in (ZjpZ)[X] into irre
ducible factors, developed by Berlekamp (1967), is now available as part of 
computer packages in formal computation. We discuss methods for factor
ing by hand. Let us first recall a classical result. 

PROPOSITION. - A polynomial in Z[X], whose content, which is the greatest 
common divisor of its coefficients, is equal to 1, is irreducible in Q[X] if 
and only if it is irreducible in Z[X]. 

Thus, the irreducibility of a given polynomial in Q[X] can always be 
expressed as the irreducibility of a polynomial in Z[X], and it is enough to 
consider methods over Z. 
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METHODS. - Let us now recall different practical methods for studying the 
irreducibility of a polynomial P(X) = L akXk in Z[X] by hand. 

O~k~n 

1) Eisenstein's criterion proves that a polynomial P in Q[X] is irre
ducible if it satisfies the following condition: there exists a prime 
number p which does not divide an but divides all the other coef
ficients of P, whereas p2 does not divide ao. Sometimes, when the 
Eisenstein criterion is not directly applicable to a polynomial P(X), 
it is applicable to P(X + a) for some value of a. 

This criterion remains valid if we replace Z by any factorial ring 
A and the field Q by the fraction field of A, and if we assume the 
existence of a prime (Le. irreducible) element p in A satisfying the 
above conditions. 

2) To see if P does not have a rational root, assume that pjq is a rational 
root of P, written as a totally reduced fraction. Then qn P(pjq) is an 
integer, but it is equal to zero, so it follows that q divides an and 
p divides ao, which makes it possible to obtain the set of rational 
candidates for roots of P. If this set does not have too many elements, 
we can test the candidates one by one. 

3) If P is of degree 3 and has no rational root, then it is irreducible. 

4) If P is of degree 4, has no rational root and is not decomposable as a 
product of two quadratic factors (to see this, one can use a method 
of indeterminate coefficients as in Exercise 2.7), then it is irreducible. 

5) It is often useful to consider the reduction of a polynomial in Z[X] 
to the ring (ZjpZ)[X]. 

Indeed, if there exists a prime number p such that the image of P in 
(ZjpZ)[X] is an irreducible polynomial of the same degree, then P is itself 
irreducible (assuming that its content is equal to 1). The converse is false; 
the classical example is the polynomial X4 + 1. We show later (in Exercise 
14.8) that this polynomial is reducible modulo p for all primes p, although 
it is clearly irreducible in Z[X]. 

If the image of Pin (ZjpZ)[X] is a polynomial of strictly smaller degree, 
we cannot conclude anything; for example, one can consider the polynomial 
(pX + 1)(X + 1). 

The irreducibility of Pin (ZjpZ)[X] can be proved, for example: 

1) for polynomials of degree 2 or 3, by systematically testing if the ele
ments of ZjpZ are roots of P; 

2) for polynomials of degree 4, by systematically testing if the elements 
of ZjpZ are roots of P and showing that a decomposition into a 
product of two quadratic polynomials is impossible; 
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3) for polynomials of degree n, by listing the irreducible polynomials of 
degree ::; n/2 and testing if they divide P. 

Note, finally, that it is sometimes interesting to compare the de
grees of the irreducible factors of the images of P in (Z/pZ)[X] and 
(Z/qZ) [X]. 

4.5 Algebraic Extensions 

4.5.1 Extensions Generated by an Algebraic Element 

Let L be an extension of a field K, and let a be an element of L which is 
algebraic over K. Let K[a] denote the smallest subring containing K and a, 
i.e. the image of the homomorphism f: K[X] ~ L defined by f(X) = a, 
where flK denotes the inclusion of K into L. 

Thus, the expressions K[a] and K(a) refer respectively to images of the 
ring of polynomials K[X] and of the field of rational functions K(X). If a 
is algebraic over K, these two images coincide. 

4.5.2 Properties of K[a] 

PROPOSITION. - Let L be an extension of a field K, and let a be an element 
of L which is algebraic of degree n over K, with minimal polynomial P over 
K. Then 

1) K[a] is an extension of K and K[a] = K(a), 

2) [K[a] : K] = n and the set {ak ; 0::; k ::; n - I} forms a basis of K[a] 
as a K -vector space, and 

3) The homomorphism f : K[X] ~ K[a] defined by f(X) = a and 
f(k) = k E K[a] for k E K induces a K -algebra isomorphism tp : 

K[X]/(P) ~ K[a] which leaves the elements of K invariant and 
makes the diagram in Figure 4.2 commute (rr denotes the canonical 
projection) . 

1t 

FIGURE 4.2. 
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PROOF. -

1) We have K[a] c K(a), so let us show the inverse inclusion. By Propo
sition 4.3.1, every element of K(a) is of the form S(a)jT(a) with S 
and T in K[X] and T(a) =1= 0; thus T is not divisible by P, and as 
P is irreducible over K, T is relatively prime to P. Bezout's the
orem ensures the existence of polynomials U and V of K[X] such 
that UT + VP = 1, which proves that S(a)jT(a) = S(a)U(a). Thus 
S(a)jT(a) belongs to K[a]. 

2) Let us first show that the family {a\ 0 :::; k :::; n - I} is free over K. If 
there exists a family {Ak; 0 :::; k :::; n - I} of elements of K such that 

L Akak = 0, the polynomial S(X) = L AkXk in K[X] 
O~k~n-l O~k~n-l 

vanishes at a. As deg(S) < deg(P), we have S = 0, which proves that 
Ak = 0 for 0 :::; k :::; n - l. 

The family {ak; 0:::; k :::; n - I} generates K[a], because if S is a 
polynomial of K[X] and if S = PQ + R by Euclidean division, we 
have S(a) = R(a). As deg(R) :::; n - 1, R(a) belongs to the K-space 
generated by {ak ; 0 :::; k :::; n - I} . 

3) The map f defined above has image K[a], and kernel the set of poly
nomials vanishing at a, i.e. the ideal (P). This gives the desired fac
torization. (; 

4.5.3 Definition 

An extension L of a field K is said to be algebraic if every element of L is 
algebraic over K. 

EXAMPLE. - C is an algebraic extension of JR., because any complex number 
a + ib with a and b real is a root of the polynomial X2 - 2aX + a2 + b2 = 0 
in JR.[X]. 

4.5.4 Extensions of Finite Degree 

PROPOSITION. - Let K be a field. Every extension L of K of finite degree 
n is algebraic over K, and every element of L is algebraic of degree:::; n 
over K. 

PROOF. - Let x E L. The family {xk; 0:::; k :::; n} has more than n ele
ments, so it is not linearly independent over K. This means that there 
exists a family {Ak; 0 :::; k S n} of elements of K, not all zero, such that 

L AkXk = O. In other words, the polynomial S(X) = L AkXk of 
O~k~n-l O~k~n 

K[X] vanishes at x. Because S =1= 0, x is algebraic of degree :::; n over K. (; 
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4.5.5 Corollary: Towers of Algebraic Extensions 

Let K be afield, and L an extension of K. Let r be an integer and (Ki)o:::;i:::;r 
a tower of extensions of K contained in L such that Ko = K and there 
exist elements at, .. . , ar of L such that for i = 1, ... , r, ai is algebraic of 
degree ni over K i - l and Ki = Ki-dai]. Then Kr is an algebraic extension 
of K of degree n = nl ... nr . 

PROOF. - By §4.5.2, Ki is of degree ni over K i - l ; the tower rule shows 
that Kn is an extension of finite degree n of K. Proposition 3.5.4 concludes 
the proof. <> 

4.6 Algebraic Extensions Generated by n Elements 

4. 6.1 Notation 

Let L be an extension of a field K, and let al, ... , an be elements of L 
which are algebraic over K. Write K[at, ... , an] for the image of the ho
momorphism f : K[XI' ... ' Xn] --+ L defined by f(P) = P(at, ... , an). It 
is the K-algebra generated by aI, ... , an. 

4.6.2 Proposition 

With notation as above, K[al' ... ' an] is an algebraic extension of finite 
degree of K, equal to K(al, ... , an). 

PROOF. - By induction, we will construct the tower of extensions (Ki)o<i<n 
of K contained in L such that Ko = K, and such that for each i = 1, ... , n, 
there exists an element ai, algebraic over K (so also over K i - l ), such that 
Ki = Ki-dai]. Corollary 4.5.5 shows that Kn is an algebraic extension of 
finite degree of K. 

Let us show by induction on i that Ki = K[at, ... , ail for i = 1, ... , n. 
The case n = 1 was considered in §4.5.2. Suppose that 

K i- l = K[al, ... , ai-I]. 

Because every polynomial P(Xt, ... ,Xi ) in K[Xt, ... ,Xi] can be written 

in the form LPk(Xt, ... ,Xi_I)(Xi)k, we have 
k 

P(at, ... , ail = L Pk(at, ... , ai-t}(ai)k, 
k 

so K[al, ... , ail = K[al, ... , ai-I] [ail = K i- l [ail = K i . As Ki is a field, we 
haveKi =K(at, ... ,ai)fori=l, ... ,n. <> 

REMARK. - The degree of K[at, ... ,an] over K is less than or equal to the 
product of the degrees of the ak over K. 
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4.6.3 Corollary 

Let L be an extension of a field K and let a, b be elements of L that are 
algebraic over K. Then a + b, ab, alb are all algebraic over K. 

PROOF. - These elements belong to K[a, b], which is an algebraic extension 
of finite degree of K by §4.6.2. <> 

COMMENTARY. - This corollary settles the point raised in §4.4.1: it proves 
for example that ?'2 + if7 is algebraic of degree :5 15 over Q. A more 
general statement is that the complex numbers which are algebraic over a 
subfield K of C form a field (called the algebraic closure of K in C). 

A polynomial having a + b, ab etc. as a root can be computed using 
resultants (see Exercise 4.8). 

4.7 Construction of an Extension by Adjoining a 
Root 

So far in this chapter, we have considered a very particular situation, 
namely, the case where K is a subfield of a field L, and we have defined 
what it means for an element of L to be algebraic over K. Fields that 
are subfields of C correspond to this situation; it is the situation which 
Dedekind considered in 1871, when he gave the first definition of a field. 
Almost all the exercises in Chapters 4-12 concern this situation. However, 
it is also possible to consider the following more general situation: K is an 
arbitrary field and P is a polynomial K[X] that has no roots in K. Then, 
even without knowing any extension of K beforehand (see, for example, 
Chapter 14), we can construct an extension L of K in which P has at least 
one root. This more general situation was studied by Leopold Kronecker 
and Henri Weber in the years 1880 to 1900. 

4.1.1 Definition 

Let K be a field, and let P be a polynomial in K[X]. An extension L of K 
is called a rupture field of P over K if there exists a root x of Pin L and 
if L = K[x]. 

EXAMPLE. - Q[?'2] and Q[j?'2] are rupture fields of X 3 - 2 over Q. 

4.1.2 Proposition 

Let P be an irreducible polynomial of degree n in K[X]. The quotient ring 
L = K[X]/(P) is a rupture field of P, i.e. an extension of degree n of K 
containing the class x of X as a root of P. Moreover, P is the minimal 
polynomial of x over K. 
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PROOF. - It suffices to show that the ideal (P) is maximal; we will prove 
this so as to give a method making it possible to compute the inverse of a 
non-zero element of the quotient. Let rr: K[X] -+ L denote the canonical 
projection. Every non-zero element of Lis of the form rr(S) with S in K[X] 
not a multiple of P. Consequently, because P is irreducible, P and S are 
relatively prime, and by Bezout's theorem, there exist U and V in K[X] 
such that US + VP = 1. Thus we have rr(U)rr(S) = 1 in L, which shows 
that rr(S) is invertible, so L is a field. 

Let i: K -+ L denote the composition of the injection K -+ K[X] and 
rr. Since i is a homomorphism of rings with unit, it is injective, so L is an 
extension of K. Set x = rr(X) and P = L akXk. The polynomial P 

O~k~n 

has coefficients in K, so we have P(x) = L akxk = rr(P) = 0. Thus, 
O~k~n 

X is algebraic over K. If a polynomial S in K[X] vanishes at x, we have 
S(x) = S(rr(X» = rr(S) = 0, so S is a multiple of Pin K[X]. Consequently, 
P is the minimal polynomial of x over K. <> 

By §4.5.3, every element of L can be written uniquely as L akxk 
O~k<n 

In other words, the set {I, x, ... , x n - 1 } forms a basis of L as a K -vector 
space. 

4.7.3 Corollary 

Let K be a field and P a non-constant polynomial of K[X]. Then there 
exists a rupture field L of P over K such that [L : K] ~ deg(P). 

PROOF. - Consider an irreducible factor p of P, and set L = K[X]/(p) , 
rr : K[X] -+ L, x = rr(X). We have p(x) = 0. The extension L of K 
contains a root of p, so it contains a root of P. <> 

4· 7.4 Universal Property of K[X]/(P) 

Let P be an irreducible polynomial of degree n of K[X]. The extension K -+ 

K[X]/(P) has a universal property which is an immediate consequence of 
the universal property of quotients. 

PROPOSITION. - For every extension M of K and every root a of P in 
M, there exists a unique field homomorphism cp: K[X]/(P) -+ M such 
that cp(x) = a and cplK = id (in Chapter 6, we will say that cp is a K
homomorphism). 

PROOF. - Consider the ring homomorphism f: K[X] -+ M defined by 
flK : K -+ M and f(X) = a. We have f(P) = P(a) = ° so fl(P) = 0, 
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which gives the factorization of f by K[X]/(P) by the universal property 
of quotients. <> 

EXAMPLES. - Set P = X2 - 2, K = Ql, M = lR. Because P has two roots 
in JR, there exist two Ql-homomorphisms 'P, 'P' ; K = Ql[Xl/(X2 - 2) -t JR; 
one sends x to v'2, and the other to -v'2. 

For P = X 3 - 2, K = Ql, M = JR, there exists a unique IQ-homomorphism 
'P ; Ql[X]/(X3 - 2) -t JR, which sends x to V2. However, if M = C, 
there exist three IQ-homomorphisms 'P ; Ql[Xl/(X3 - 2) -t C, defined by 
'P(x) = V2, jV2, j2 V2. 

Toward Chapters 5 and 6 

In order to prove the impossibility of certain geometric constructions that 
were sought for over 2000 years, it suffices to use just a part of the results of 
this chapter. These problems and the proofs of their impossibility form the 
subject of Chapter 5, which should be considered as a joyous digression. 
We will return to Galois theory proper in Chapter 6. 

Exercises for Chapter 4 

We found it natural, in a chapter concerning algebraic numbers, to present 
some of the famous and little taught examples of transcendental numbers. 
We follow the proofs given in Alan Baker's book listed in the bibliography. 

Exercise 4.1. An example of a transcendental number: L an lO-n! 

n>O 

1) Liouville's Theorem. Let a be a real number that is algebraic over 
Ql of degree n > 1, and let P be an irreducible polynomial of degree 
n in Z[X] having a as a root. Show that there exists a real number 
c> 0 such that for every rational number p/q (with q > 0) we have 
la - (P/q) I > (c/qn). We distinbuish the two cases la - (p/q)1 > 1 and 
la - (p/q) I :S 1; in the second case, apply the mean value theorem and 
give an upper bound for IP'I on the interval [a -1,a + 1]. 

2) Deduce the transcendence of a = L anl0-n! for every sequence (an) 
n>O 

of natural numbers between 1 and 9. 



Exercises for Chapter 4 65 

Exercise 4.2. The transcendence of e 

As in the previous exercise, we will assume that e is algebraic; we will 
obtain a double inequality (see 3) and 4) below) which can never be 
simultaneously satisfied. 

Suppose that e is algebraic over Q, a root of the irreducible poly
nomial L qkXk in Z[X]. 

O~k~n 

If P(X) = L akXk is a polynomial of Z[X], set 
O~k~N 

Pl(X) = L laklXk, 
O~k~N 

and for every real t, set 

J = L qkl(k). 
O~k~n 

1) Show that l(t) = et L p(k) (0) - L p(k)(t). 
O~k~N 

Show that Il(t)1 $ ItleltIPl(ltl). 

2) From now on, let P(X) = Xp-I(X - l)p ... (X - n)P, where p is a 
prime number > n. Show that 

p(k)(O) = ... = p(k)(n) = 0 for k < p - 1, 

p(p-I)(l) = ... = p(p-l)(n) = 0, 

p(k)(O), ... ,p(k)(n) are divisible by p! for k ~p. 

3) A lower bound for J: 

Show that J = -qo L p(k)(O) _ ... - qn L p(k) (n). 

O~k~N O~k~N 

Deduce that IJI ~ (p - I)! for p > qo, by checking that J = 0 mod 
(p - I)! and J =f:. 0 mod p!. 

4) An upper bound for J: 

a) Show that PI(k) < (2n)N for 0 $ k $ n. 

b) Deduce that IJI $ A· BP, where A and B are numbers not 
depending on p. 

5) Conclude that e is transcendental. 
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Exercise 4.3. Determination of the rational roots of a polynomial 
with integral coefficients 

1) Consider a polynomial P(X) = L akXk E Z[X]. Show that the 
O~k~n 

rational roots of P are of the form !!. such that p and q are relatively 
q 

prime, p divides ao and q divides an. 

2) Study the irreducibility of X 3 - 4X2 - ~X - ~ in Q[X]. 

3) Study the irreducibility of 30X3 + 277X2 - 31X - 28 in Q[X]. 

Exercise 4.4. Factorization of polynomials 

1) For a prime p, show the irreducibility over Q of the cyclotomic poly
nomial 

<pp(X) = L Xk 
O~k~p-l 

by applying Eisenstein's criterion to <pp(X + 1). 

2) Study the irreducibility of X 6 + 3 in the rings Q[X], Q[j][X], Q[i][X] 
(you will need at least a little background knowledge on factorial rings 
to solve the problem quickly over the third ring). 

3) Study the irreducibility of X4 + 1 in Q[X] (use the variable change 
Y = X + 1). 

Factorize X4 + 1 into a product of irreducible factors in Q[(][XJ, 
where ( is a root of this polynomial. 

4) Study the irreducibility of P(X) = X 5 - X + 1 in the ring Q[X] 
(show, for example, that P has no linear factor in Z[X], and then 
determine the quadratic polynomials S which could divide P in Z[X] 
by studying the values these candidates can take at -1, 0, 1). 

5) Study the irreducibility of P(X) = X4 -15X3 + 7 in the ring Q[X]. 

6) Let p be a prime number and n 2': 2 an integer. Show that P(X) = 
xn + pX + p2 is irreducible in Z[X]. 

7) Give an example of an irreducible quadratic polynomial P in Q[X] 
such that P(X2) is reducible in Q[X]. 

Exercise 4.5. The degree of an algebraic extension 

Determine the degrees of the following extensions by finding bases for 
them, and answer the questions. 
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1) Q[V2], Q[~] over Q. 

2) Q[~, V2] over Q[~], over Q[V2], over Q. 

3) Q[v'3, h] over Q[v'3], over Q[h], over Q. 

Compare Q[v'3, h] with Q[v'3 + V2]. Determine the minimal poly
nomial of v'3 + hover Q. 

4) Q[j] over Q. 

Does v'3 lie in Q[jJ? Does i lie in Q[j]? Does j lie in Q[i]? 

Q[v'3,j], Q[v'3, i,j], Q[v'3, iJ, Q[v'3 + i] over Q. 

2n 2n 2n 2n 
5) Q[cos 3"], Q[sin 3"], Q[cos S], Q[sin st] over Q. 

6) Q[h, v'3, v'5] over Q. 

Exercise 4.6. Computing in algebraic extensions 

Consider the polynomial P(X) = X 3 + 2X + 2 in Q[X]; let a denote 
one of its roots. 

1) Show that P is irreducible. 

2) Express the elements 1ja, 1j(a2 + a + 1) and u = a6 + 3a4 + 2a3 + 6a 
as functions of 1, a, a2 (for the quotients, use Euclid's algorithm and 
the method of indeterminate coefficients). 

3) Determine the minimal polynomial of u over Q. 

Exercise 4.7. Algebraic extensions 

1) Let L be an extension of finite degree n of a field K. 

a) What happens in the case n = I? What happens if L' is another 
extension of K, contained in L and of degree n over K? 

b) Show that if n is prime, there exists no field strictly containing 
K and strictly contained in L. 

2) Let K be a field, and let a be an algebraic element of degree nand 
of minimal polynomial P over K. Let b be an algebraic element over 
K whose degree m is relatively prime to n. 

Determine the degree of K[a, b] over K and show that P is 
irreducible over K[b]. What is the intersection K[a] n K[bJ? 
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3) Let x be an algebraic element of odd degree over a field K. Show that 
x2 is algebraic over K and that K[x] = K[X2]. 

4) Let K be a field, L an extension of K of finite degree n and a an 
element of L which is algebraic over K of minimal polynomial P over 
K. Show that deg(P) divides n. 

5) Show that every quadratic extension ofQ is of the form Q[v'a], where 
a is a squarefree relative integer. 

6) What are the algebraic extensions of C? Give an example of an infinite 
degree extension of C. 

7) Let K be a field contained in C, and let L be an algebraic (but not 
necessarily finite) extension of K. Let a be an element of C algebraic 
over L. Show that a is an algebraic element over K. 

8) Show that e and 7r are transcendental over every algebraic extension 
ofQ. 

Exercise 4.8. Elimination 

1) Let K be a field contained in C, and let a and b be two algebraic 
numbers over K, roots of two polynomials F and G respectively in 
K[X]. Set deg(G) = n, and assume that there exists an algebraically 
closed field containing K (Z). 

a) Show that R(Z) = Resx(F(X),G(Z - X» is a polynomial of 
K[Z] having a + b as a root. 

b) More generally, show that if T(X, Y) E A[X, Y], then 

R(Z) = Resx(F(X), Resy(Z - T(X, Y), G(Y))) 

is a polynomial in K[Z] having T(a, b) as a root. 

e) Show that R(Z) = Resx (F(X),XnG(Z/X» is a polynomial 
of K[Z] having ab as a root. 

d) If T(Y) E K[Y], give a non-zero polynomial which vanishes at 
T(a). 

2) Either directly or using results from the preceding problem, determine 
polynomials which are minimal polynomials over Q for the following 
numbers: (2/3) + V5/7, V2 + .if3, V2 + ~, a + V2 where a is a root 
of X 3 + X + 1, and b2 + b where b is a root of X 3 + 3X + 3. 
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Solutions to Some of the Exercises 

Solution to Exercise 4.3. 

1) If p/q is a root of P, we have qn P(p/q) = 0, i.e. L akpkqn-k = o. 

This produces the two inequalities 

p L akpk-lqn-k 

l::;k::;n 

q L akpkqn-k-l 

O::;k::;n-l 

which give the result. 

O::;k::;n 

2) The only possible rational roots of 2X3 - 8X2 - 9X - 5 are ±5, ±1, 
±(1/2), ±(5/2). We see that 5 is a root, divide by it and complete the 
factorization. 

3) This question needs more work than does the preceding one. First de
termine that -(28/3) is a root, and then check that the factorization is 
given by (3X + 28) (lOX2 - X-I). 

Solution to Exercise 4.4. 

1) By Eisenstein's criterion, the polynomial 

is irreducible, since the formula k!(P - k)!(~) = p! shows that the (~) 
are divisible by p for 1 ::; k ::; p - 1 and that (:) = 1, (~) = p. It follows 

that ~p is irreducible. This classical result is generalizable to all cyclotomic 
polynomials (see Chapter 9). 

2) Applying Eisenstein's criterion with the prime number p = 3, we see 
that the polynomial X 6 + 3 is irreducible in Q[X]. 

As X 6 + 3 = (X3 + iv3)(X3 - iv3) and iv3 = 2j + 1, the polynomial 
X 6 + 3 is not irreducible in Q[j][X]j we have X 6 + 3 = (X3 + 2j + 1)(X3-
2j -1). 

The polynomial X 6 + 3 has coefficients in the factorial ring Z[i], whose 
fraction field is Q[i]. 

Let us show that the prime p = 3 is irreducible in Z[i]. If we write 
3 = (a + ib)(c + id) with a, b, c, d E Z, then taking moduli, we find that 
9 = (a2 + b2 )(C2 + d2 ). It is impossible to realize a2 + b2 = 3 or c2 + d2 = 3 
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in Z, so a + ib or e + id has modulus 1, and it is invertible in Z[i]. As 3 is 
irreducible in the factorial ring Z[i], it is prime in Z[i]. 

Applying Eisenstein's criterion, we then see that the polynomial X 6 + 3 
is irreducible in Q[i][X]. 

Because we know the factorization of X 6 + 3 into linear factors in C, we 
can also show that X 6 + 3 has no factors of degree 1, 2, or 3 in Q[i][X], by 
trying to regroup two or three factors (and taking care not to forget any 
cases). 

3) Eisenstein's criterion applies to (X + 1)4 + 1. 
Solving X4 = -1 = ei7r leads to setting ( = ei7r/ 4 = (1 + i)jv'2. The 

roots of X4 + 1 are ei7r/ 4 , e3i7r / 4 = (3, e5i7r / 4 = (5, e7i7r/ 4 = C, so in the ring 
Q[(] [X] we have 

X4 + 1 = (X - ()(X - (3)(X - (5)(X - C). 

Every other choice of ( leads to the same result. 

4) The method we propose below is Kronecker's algorithm (1882); gener
ally, it is too long to be useful in practice. 

The only possible rational roots of the polynomial are ±1, which obvi
ously do not work. If X 5 - X + 1 is reducible in Q[X], it has a quadratic 
factor T(X) that we can choose in Z[X]. As T(O), T(l), and T( -1) respec
tively divide P(O), P(l), and P(-l), they are equal to ±1. The possible 
polynomials Tare ±(2X2 - 1), ±(X2 + X-I), ±(X2 - X-I), and we 
check that none of them divides P(X). 

5) If P is reducible in Q[X], it factors into a product of two non-constant 
monic polynomials in Z. Consider the situation mod 2. The image P1 of 
Pin (Zj2Z)[X] is equal to X4 + X 3 + 1. As P1 has no root in Zj2Z (the 
only possible roots, 0 and 1, do not work), P1 has no linear factor. Suppose 
that P1 (X) = (X2 + aX + b)(X2 + eX + d); the equality bd = 1 leads to 
b = d = 1, then to a + e = 1 and a + e = 0, which are contradictory. 

6) We denote the image of a polynomial in Z[X] in (ZjpZ)[X] by adding 
a subscript 1. 

If P = ST in Z[X], where Sand T are non-invertible monic polynomials 
in Z[X] of degrees sand t respectively, we have SlT1 = Xn so Sl (X) = X S , 

T1(X) = X t , S(X) = Xs + L pakXk, and T(X) = X t + L pbkXk. 
O~k<s O~k<t 

The value s = 1 (and similarly, t = 1) leads to a contradiction because 
the equality of the constant terms would give aobo = 1, so ao = ±1 and 
-pao = ±p would be a root of P, which is impossible. 

Finally, s, t > 1 is impossible, since the coefficient of X in the product is 
divisible by p2. 

7) If P(X) = X2 -7X + 1, we have P(X2) = (X2 +3X + 1)(X2 -3X +1). 
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Solution to Exercise 4.5. 

1) X2 - 2 and X 3 - 2 are irreducible over Q by Eisenstein's criterion with 
p=2. 

As the minimal polynomial of v'2 over Q is X2 - 2, we have 

[Q[v'2] : Q] = 2 

and a basis of Q[v'2] over Q is given by {I, v'2}. 
As the minimal polynomial of {/2 over Q is X 3 - 2, we have [Q[ {/2] : Q] = 

3, and a basis of Q[ {/2] over Q is given by {I, {/2, V4}. 

2) Q[{/2, v'2] is an extension of Q[{/2], of Q[v'2], and of Q (Figure 4.3). 
The tower rule gives 

[Q[{/2, v'2] : Q] [Q[{/2, v'2] : Q[v'2]] [Q[v'21 : Q] . 

[Q[{/2,v'2]: Q[{/2]] [Q[{/2],Q], 

which proves that [Q[ {/2, v'2] : Q] is a multiple of 2 and 3, so it is a multiple 

of 6. 
As {/2 is of degree $ 3 over every field containing Q, we have 

[Q[{/2,v'2] :Q] = [Q[{/2,v'2] :Q[v'2]] [Q[v'2,Q]] $6. 

Finally, [Q[{/2,v'2]: Q] = 6. Consequently, [Q[{/2,v'2]: Q[v'21] = 3 and 

[Q[ {/2, v'2] : Q[ {/2]] = 2. 

FIGURE 4.3. 

A basis of Q[ {/2, v'2] over Q can be obtained from the bases {I, .v2, ij4} 
of Q[ {/2] over Q and {I, v'2} of Q[ {/2, v'2] over Q[ {/2} We obtain 

{ 1, {/2' V4, v'2, 25/ 6 , 27/ 6 } • 

As 27 / 6 = 2 X 21/ 6 , a simpler basis is given by { 2k / 6 , 0 $ k $ 5} . This last 

remark leads to the equality Q[ {/2, v'2] = Q[ ~]. We could have proved 
this equality directly by showing two easy converse inclusions. 
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3) In this case, we cannot use the same kind ofreasoning as in the previous 

case, because the remark that [Q[v'3, Y2] : Q] is a multiple of [Q[v'3] : Q] 

and of [Q[Y2] : Q] only shows that [Q[v'3, Y2] : Q] is a multiple of 2. 

To see, for example, that [Q[ v'3, Y2], Q[ Y2]] = 2, one must check that 

v'3 is not in Q[Y2]. If v'3 = a+bY2, a and b in Q, 3 = a2 +2b2 +2abY2. As 

{ 1, Y2} is a basis of Q[Y2] over Q, ab = 0; if b = 0, 3 = a2 is impossible. 

If a = 0, then 3 = 2b2 is impossible (see Exercise 2.1). 
Finally, [Q[v'3, Y2] : Q] = 4. A basis of the extension is given by 

{I, Y2, v'3, v'6}. 

The inclusion Q[v'3 + Y2] C Q[v'3, Y2] is obvious. 
Conversely, v'3 and Y2 are in Q[ v'3 + Y2] because they are the half-sum 

and half-difference of a = v'3 + Y2 and its inverse v'3 - Y2. 
The minimal polynomial of v'3 + Y2 over Q (which by the above is a 

degree 4 polynomial) is obtained by setting a = v'3 + Y2, giving a2 = 
5 + 2v'6, a4 -IOa2 + 1 = o. The desired polynomial is X4 - IOX2 + 1. 

4) As j is not real, its degree over Q is ~ 2. We know that l + j + 1 = 0, 
so the minimal polynomial of j over Q is X2 + X + 1. A basis of Q[j] over 
Q is {I,j}. 

In what follows, note that two quadratic extensions Q[a] and Q[b] are 
equal whenever a E Q[b]. 

If v'3 E Q[j], we would have Q[j] = Q[v'3] C JR, which is false. Similarly, 
i E Q[j] and j E Q[i] are impossible, since 2j + 1 = iv'3 would imply that 
Q[i] = Q[j] = Q[v'3]. 

As j is not real, we are sure that it is of degree 2 over Q[ v'3] (of minimal 
polynomial X2 + X + lover Q[v'3]). Hence [Q[J3,j] : Q[J311 = 2, then 
[Q[v'3,j] : Q] = 4, and finally [Q[J3,j] : Q[j]] = 2, which means that v'3 
is of degree 2 over Q[j]. 

A basis of Q[J3,j] over Q is {I, J3,j,jJ3}. 
It is clear that Q[ v'3, j] c Q[ v'3, i, j]; furthermore, i = (2j + 1) / J3 shows 

that i E Q[v'3,j], so that Q[v'3,j] = Q[v'3,i,j]. 
We check similarly that Q[v'3,j] = Q[v'3,i] = Q[i,j]. 
Finally, if a = i + v'3, we have (a - i)2 = 3, (a - J3)2 = -1, which gives 

i and v'3 in terms of a, and Q[i + v'3] = Q[i, v'3] of degree 4 over Q. 
Two other bases of Q[ v'3, j] over Q are thus given by 



Solutions to Some of the Exercises 73 

5) We have 
27r 1 

Q[COS"3] = Q[-2"] = Q 

and 
. 27r In 

Q[Slll"3] =Q[v3]. 

Let ( = e2i1r /5. As ( is a root of the polynomial X4 + X 3 + X2 + X + 1, 
which is irreducible over Q, ( is of degree 4 over Q. 

Set a = 2cos(27r/5) = (+ (4. We have a2 = (2 + (3 + 2 = -a + 1; a 
is a root of X2 + X-I, so a = (-1 ± v'5)/2. As cos(27r/5) > 0, we see 
that cos(27r/5) = (-1+v'5)/4, so Q[cos(27r/5)] = Q[v'5]. As 2 cos(27r/5) = 
(+ (4, we have Q[cos(27r/5)] C Q[(] and [Q[(] : Q[cos(27r/5)]] = 2 (Figure 
4.4). 

It follows that sin(27r/5) = vII - cos2 (27r/5) = V(lD + 2v'5)/4, since 
sin(27r /5) is> O. It is not obvious that sin(27r /5) is of degree 4 over Q, but 
if we set b = 2 sin(27r /5), we have b2 = lD + 2v'5, so b4 - 5b2 + 5 = 0 and 
Eisenstein's criterion works with p = 5. As v'5 E Q[sin(27r /50], Q[sin(27r /5)] 
is a quadratic extension ofQ[cos(27r /5)]. Note that Q[(, i] = Q[(, sin(27r /5)]. 

Q[ S] (Q[sin(21t/5)] 

'z ) 
Q[cos(:bt/5)] = Q[V5] 

12 
CQ 

FIGURE 4.4. 

6) To show that Q[v2, v'3, v'5] is of degree 8 over Q, it suffices to show 
that v'5 is of degree 2 over Q[v2, v'3]. 

If v'5 = a + bv2 + ev'3 + dv6 for rational numbers a, b, e, d, squaring 
gives an equality in Q[v2, v'3] which, using the fact that 1, v2, v'3, v6 
forms a basis, implies that 

ba + 3cd 0, 

ca + 2bd 0, 

ad + be 0, 

a2 + 2b2 + 3e2 + 6d2 5. 

The first two equations give a linear system in a and d. Its determinant 
is 2b2 - 3e2 , which is zero only if b = e = O. In this case, a or d is zero 
by the third equation, and 5 = a2 + 6d2 is impossible. If 2b2 - 3c2 =I- 0, 
then a = d = 0, b or e is zero by the third equation, and 5 = 2b2 + 3c2 is 
impossible. 
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Later (Exercise 8.10), we will see a generalization of this result to the 
degree of an extension of Q by a finite set of square roots of distinct prime 
numbers. 

Solution to Exercise 4.6. 

1) Use Eisenstein's criterion or check that P has no rational root: the only 
possible roots would be ±1, ±2, and they do not work. 

2) The equality a3 + 2a + 2 = 0 immediately gives the inverse of a since it 
implies that a (_(a2 /2) - 1) = 1, so that (l/a) = -(a2/2) -l. 

The inverse of a2 + a + 1 can be found by the method of indeterminate 
coefficients or the method of successive Euclidean division (see §4.5.2): 

X 3 +2X +2 

X2 +X +1 

gives Bezout's identity 

(X2 + X + l)(X - 1) + 2X + 3, 
X 1 7 

(2X+3)(2"-4)+4' 

7 (X 1 ) 3 2 2X2 - 3X + 5 - = - - - - (X + 2X + 2) + (X + X + 1) . 
4 2 4 4 

It follows that 1/(a2 + a + 1) = (2a2 - 3a + 5)/7. 
This last computation can be done by Euclidean division: 

so u = -2a2 + 4a = 2a(2 - a). 
Alternatively, we can compute using a table of the an expressed in terms 

of basis vectors (Table 4.1 below), which is a good way of computing in an 
extension when one does not have a computer package for formal compu
tation at one's disposal. 

1 a a2 

1 1 

a 1 

a2 1 

a3 -2 -2 

a4 -2 -2 

a5 4 4 -2 

a6 4 8 4 

TABLE 4.1. 
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3) As u is not in Q, it is of degree 3 over Q, and we obtain its minimal 
polynomial over Q by computing the powers of u in the basis 1, a, a2 , using 
Table 4.2, and then looking for a linear combination of 1, u, u2 , u3 equal 
to zero: 

1 a a2 

1 1 

u 4 -2 

u2 32 24 8 

u3 32 192 64 

TABLE 4.2. 

We find 

0: + 32')' 32, 

4{3 + 24')' 192, 

-2{3 + 8')' 64. 

This gives 0: = -224, {3 = 0, ')' = 8, and the minimal polynomial of u is 
X 3 - 8X2 + 224. 

Solution to Exercise 4.7. 

1) The first exercise is trivial, but its results are useful. 

a) If n = 1, then L = K. If L' eLand [L' : K] = n, we have [L' : L] = 1 
so L' = L. 

b) If n = [L: K] is prime and K c L' c L, then [L' : K] divides n so it 
is equal to 1 or n, and either L' = K or L' = L by a). 

2) We have already seen some examples of this reasoning; both [K[a] : K] 
and [K[b] : K] divide [K[a, b] : K] which is thus a multiple of mn, and more
over, [K[a, b] : K[all :::; [K[b] : K] implies that [K[a, b] : K] :::; mn. Finally, 
[K[a, b] : K] = mn, so [K[a, b] : K[bll = m, and P is irreducible over K[b]. 

As [K[a] n K[b] : K] divides both [K[a] : K] and [K[b] : K], it is equal to 
1 and we have K[a] n K[b] = K. 

3) As x2 E K[x), x2 is algebraic over K and K[x2) C K[x). As x is a root of 
the polynomial X2 - x2 with coefficients in K[X2), x is algebraic of degree 
at most 2 over K[X2]. Moreover, [K[x] : K[x2J] divides [K[x] : K], which is 
odd, so it is equal to 1. Hence K[x] = K[x2). The minimal polynomial of x 
over K gives an expression for x in terms of x 2 by regrouping the terms of 
even order and the terms of odd order. 
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4) It suffices to note that deg(P) = [K[a] : K], so deg(P) divides n. 

5) A quadratic extension of Q is an extension by a number of the form 
(x ± vy)/2 with x, y rational; thus it is an extension of the form Q[vYl. If 
y = m/n with m and n rational, then Q[vYl = Q[vmn/n] = Q[y'mn]. 

If mn = d2a for a squarefree integer a, then 

Q[y'mn] = Q[dv'a] = Q[v'a]. 

6) By d'Alembert's theorem, C has no algebraic extensions of finite degree 
except for itself. The field C(X) of rational functions with complex coef
ficients is an example of an extension of C that is not algebraic, and has 
infinite degree. 

7) Let P(X) = L akXk be the minimal polynomial of a over L. In 
0::; k::; n 

fact, a lies in the extension K[ao, . .. , anlla] , which is an extension of finite 
degree of K since it is an extension of finite degree of K[ao, ... ,an] and 
K[ao, . .. ,an] is an extension of finite degree of K (Figure 4.5). This solves 
the problem. 

L[a] ____ 

finite / I K[ao,····,an][a] 

L 1 ... 
\ K[ao,····,an] ----K finite 

FIGURE 4.5. 

8) Otherwise, e and 7r would be of finite degree over Q, so they would be 
algebraic over Q. 

Solution to Exercise 4.8. 

COMMENTARY. - To find a non-zero polynomial which vanishes at an al
gebraic number given as a polynomial function of other algebraic numbers, 
we can use resultants, but thr polynomial we obtain may not be minimal. 

1) a) To compute Resx(F(X), G(Z -X)), we work with polynomials with 
coefficients in K[Z], so that the resultant lies in the same ring. To show 
that R(a + b) = 0, it suffices to check that F(X) and G(a + b - X) have a 
common root, but a itself is such a root. 

Note that even if F and G are the minimal polynomials of a and b, we 
do not necessarily find the minimal polynomial of a + b, as the degree of 
the resultant is the product of the degrees of a and b over K. 
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b) As Resy(Z - T(X, Y), G(Y)) lies in K[Z][X], R(Z) lies in K[Z]. 
For Z = T(a, b), F(X) and Resy(T(a, b) -T(X, Y), G(Y)) are two poly

nomials in X having a a as a common root, since the two polynomials 
T(a, b) - T(a, Y) and G(Y) in Y have b as a common root. 

c) ab is a root of R(Z) since a is a common root of the polynomials F(X) 
and XnG(ab/ X). 

d) We can take R(Z) = Resx(F(X), Z - T(X)) since F(X) and T(a)
T(X) have a as a common root. 

2) These numbers lie in extensions of IQ of degree n = 2,6,4,6,3, respec
tively. To find a polynomial that vanishes at these numbers, we can 

a) look for a relation of linear dependence between the k-th powers of 
the numbers for 0 :S k :S n, in a suitable extension of IQ; 

b) use resultants as described above; 

c) proceed more directly if the expression of the number allows this. 
As x = (2/3) + v'sfi satisfies (x - (2/3))2 = (5/7), x is a root of X2 -

(4/3)X - (17/63). As x is of degree 2 over IQ, because lQ[x] = IQ[ y1] = 
1Q[y'35], this polynomial is the minimal polynomial of x over IQ. 

If y = J2 + ~, (y - J2) 3 = 3, y3 + 6y - 3 = J2 (3y2 + 2) and squaring, 

we get y6 - 6y4 - 6y3 + 12y2 - 36y + 1 = O. We can also obtain this result 
by computing Resx(X3 - 3, (Z - X)2 - 2). 

The polynomial P(X) = X 6 - 6X4 - 6X3 + 12X2 - 36X + 1 is the 
minimal polynomial of y over IQ, which is of degree 6. There are several 
ways to prove that it is of degree 6. For example, note that y generates 
1Q[J2, ~] since J2 = (y3 + 6y - 3)/(3y2 + 2). 

If z = J2 + ~, we have (z - J2) 2 = J2, so that z4 - 4Z2 - 8z + 2 = o. 
The corresponding polynomial is the minimal polynomial of z over IQ, which 
is irreducible by Eisenstein's criterion. 

If t = a + J2, then (t - -12)3 + t - J2 + 1 = 0, so that if we separate the 
terms containing J2 and square, we obtain t 6 -4t4+2t3+13t2+14t-17 = O. 
This is the minimal polynomial of t over IQ, by a reasoning analogous to 
the one used for y. 

Ifu = b2+b, u 2 = -6-9b-2b2, u3 = 33+33b-9b2 and u3 = a+,8u+,u2 

leads to a linear system whose solution gives u3 + 6u2 + 21u + 3 = o. This 
is a minimal polynomial for u since b lies in a cubic extension of IQ and not 
in IQ (one can also use Eisenstein's criterion). 



5 
Constructions with Straightedge and 
Compass 

For the ancient Greeks, a geometric construction was a construction done 
using only straightedge and compass (a "straightedge" is a ruler not marked 
with any measurements). In this chapter, we consider planar problems, in 
the sense of elementary geometry. The verb "construct" means construct 
with straightedge and compass, according to the procedures described more 
precisely below. 

5.1 Constructible Points 

Let E be a set of points in the plane. Write DE for the set of lines in the 
plane passing through two distinct points of E, and let CE denote the set 
of circles in the plane whose center is a point of E and whose radius is a 
distance between two distinct points of E. 

DEFINITIONS. - A point of the plane is said to be constructible in one step 
from E if it is either 

1) an intersection of two lines in DE, 

2) an intersection of a line in DE and a circle in C E, or 

3) an intersection of two circles in C E . 

A point P in the plane is said to be constructible in n steps from E if there 
exists a finite sequence Pi, ... ,Pn of points in the plane such that Pn = P 
and for i = 1, ... , n, Pi is constructible in one step from E U {Pj;j < i}. 
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A point P in the plane is said to be constructible from E if there exists 
an integer n such that P is constructible in n steps from E. 

REMARK. - If E contains only one element, then no new points can be 
constructed from it. 

The number of steps depends on the construction procedure, though 
there exists a minimal such number. 

5.2 Examples of Classical Constructions 

5.2.1 Projection of a Point onto a Line 

Let (AB) be a line passing through two points A and B, and let M be a 
point not on (AB). We construct the projection H of M onto (AB) from 
{A, B, M} by the following steps: 

1) draw the circle of center A and radius AM, 

2) draw the circle of center B and radius BM that intersects the previous 
circle at N, and 

3) draw the line (MN), that intersects the line (AB) at H (Figure 5.1). 

B A 

FIGURE 5.1. Construction of a projection 

5.2.2 Construction of an Orthonormal Basis from Two 
Points 

Let 0 and A be two distinct points in the plane which we assume to be at a 
distance of 1 from each other. We construct an orthonormal basis (0, A, B) 
from {O, A} by the following steps: 

1) draw the circle C of center 0 and radius OA, which intersects (OA) 
at A'; 
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2) draw the circle of center A and radius AA'; 

3) draw the circle of center A' and radius AA', which intersects the 
previous circle at M and N; and 

4) draw the line MN which intersects the circle C at Band B' (Figure 
5.2). 

M 

A' A 

N 
FIGURE 5.2. Construction of an orthonormal basis 

REMARK. - Using the two above constructions together, we can construct 
the line perpendicular to a given line, passing through a given point which 
mayor may not lie on the line. 

5.2.3 Construction of a Line Parallel to a Given Line 
Passing Through a Point 

Let (AB) be a line and M a point not on it. We construct the line parallel to 
(AB) passing through M from the set of points {A, B, M} by the following 
steps: 

1) draw the circle of center A and radius R = AM, which intersects 
(AB) at C and C'; 

2) draw the circle of center C and radius R; and 

3) draw the circle of center M and radius R, which intersects the previ
ous circle at A and N (Figure 5.3). 

~N 
FIGURE 5.3. Construction of a line parallel to a given line 

The desired line is then (M N). 
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5.3 Lemma 

Let E be a set of points of the plane containing at least two elements 0 and 
A. Let B denote a point such that R = (O,A,B) is an orthonormal basis 
(which by §5.2.2 is constructible from 0 and A), and let K = Q(F) be the 
extension of Q genemted by the set F of the (real) abscissas and ordinates 
of the points of E in this basis. Then 

1) every line in V E has an equation in R of the form 

ax+by+c=O with a,b,c E K; 

2) every circle in C E has an equation in R of the form 

x 2 + y2 + ax + by + c = 0 with a, b, c E K. 

PROOF. - If a line in VE passes through two distinct points of E, with 
coordinates respectively given by (XI, Yl) and (X2' Y2) in the basis R, then 
its equation is given by 

which has the desired form. 
Moreover, if a circle of CE has center (xo, yo) in R and radius equal to 

the distance between two points of E with coordinates (XI, Yl) and (X2, Y2) 
in R, then its equation is given by 

which has the desired form. 

5.4 Coordinates of Points Constructible in One 
Step 

PROPOSITION. - Keep the notation of Lemma 5.3. If P is a point in the 
plane with coordinates (p, q) in R, constructible in one step from E, then 
K(p, q) is equal to K or to a quadmtic extension of K. 

PROOF. - If P is the intersection of two lines in V E given by equations 

ax+ by+c 0, 

a'x + b'y + c' 0, 

with a, a', b, b', c, c' in K, then ab' - a'b =J:. 0 since the two lines are not 
parallel; Cramer's rule then shows that p and q lie in K, so that K(p,q) = 
K. 
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If P is the intersection of a line in V E and a circle in C E given by 
equations 

ax+ by+c 0, 

x 2 + y2 + a'x + b'y + c' 0, 

with a, a', b, b', c, c' in K, we see that if a f. 0, p = -(bq + c)/a so p and 
q lie in the same extension of K. Then 

(bq + C)2 + q2 _ a,bq + c + b'q + c' = ° 
a a 

shows that q is a root of a quadratic polynomial P E K[X]. The element 
q lies in K or in a quadratic extension of K according to whether P is not 
or is irreducible over K. If a = 0, then b f. ° and a similar reasoning holds. 

If P is the intersection of two circles in C E given by equations 

x 2 + y2 + ax + by + c 0, 

x 2 + y2 + a' x + b' y + c' 0, 

with a, a', b, b', c, c' in K, we reduce to the preceding case by noting that 
P is the intersection of the first circle with the line given by the equation 

(a - a')x + (b - b')y + c - c' = 0. 

5.5 A Necessary Condition for Constructibility 

PROPOSITION. - Keep the notation of Lemma 5.3. For every point P = 
(p, q) constructible from E, 

1) there exists a finite sequence of fields (Ki)o<i<m, each of which is a 
quadratic extension of the preceding one, with Ko = K, Km C JR, and 
p,q E Km; and 

2) P and q are algebraic over K; their degrees over K are powers of 2. 

PROOF. -

1) We use induction on the number n of steps needed to construct P. 
If n = 0, the result is obvious. 
Suppose that for every point Q constructible in n steps from E, via 

the sequence of points (Qjh~j~n, there exists a finite increasing se
quence (Ks)o~s~r such that Ko = K, Kr C JR, each field is quadratic 
over the preceding one and the coordinates of the Q j, 1 ::; j ::; n, lie 
in K r . 
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If P is constructible in n + 1 steps from E, there exists a sequence 
of points (Pi h::;i::;n+1 such that Pn +1 = P, and for i = 0, ... ,n, PHI 
is constructible in one step from E U {Pj;j :::; i}. By the induction 
hypothesis, there exists a finite increasing sequence (Ks)o<s<r such 
that Ko = K, Kr C JR., each one is quadratic over the preceding one 
and the coordinates of the Pi, 1 :::; i :::; n, lie in Kr . As the point P is 
constructible in one step from E U {Pi; i :::; n}, Proposition 5.4 applies 
(we add a term to the sequence if and only if p and q do not lie in 
Kr). 

2) As [Ki : K i- I ] = 2 for i :::; m, the tower rule gives [Km : K] = 2m. 
This formula also shows that the degrees of p and q over K must 
divide 2m , SO they are powers of 2. <> 

5.6 Two Problems More Than Two Thousand 
Years Old 

The second part of Proposition 5.5 provides a negative answer to problems 
set by the Greeks over two thousand years ago. This was first proved by 
Wantzel, who published his result in 1837 (although Gauss may have known 
it as early as 1796). 

Pu M. L. WANTZEL, 
El~ve-lngenicl1r des Ponts-eL-Cbaussees. 

Supposons qU'UD probleme de Geometrie puisse etre resolu par des 
intersections de lignes droites et de circonffh'ences de cercle : si 1'011 

joint les points ainsi obtenus avec les centres des cercles et avec les 
point; qui determinent les droiles 00 formera un encbalnement de 
triangles rectilignes dont les elt~ments pourront etre calcuIes par les 
{ormules de la Trigonometrie; d'ailJeurs ces {ormules sont.des equa
tions algebriques qui ne renferment les cotes et les lignes trigoDome
triques des angles qu'au premier et au second degre; aiosi I'inconnue 
pciocipale dll probleme s'obtiendra par la resolution d'une serie d'e
qnations du ~nd degre dont les coefli'cients seront {onctions ration
neUes des donnees de la question et des racines des equations prece
dentes. D'apres eela, ponrreconnattre si la construction d'un probleme 
de Geometrie peni s'effectner avec la regie et Ie com pas, il f.lut cherchel· 
s'ilest possible de Caire dependre les racines de l'equation a laqneUe il 
conduit de celles d'nnsysteme d'equations du second degre composees 
COmme on vieDt de l'indiqller. Nous traiterons seulement ici Ie cas oil 
l'equation du probleme est algebrique. 

FIGURE 5.4. The beginning of Wantzel's proof 
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5.6.1 Duplication of the Cube 

A legend recounted by Eratosthene (around 276-196 B.C.) recounts that 
while the plague was raging in Delos, a small island of the Cyclades, 
Apollo's oracle declared that Apollo desired a cubic altar whose size was 
exactly the double of his former altar, and that he would stop the epidemic 
only when he determined that such a cubic altar had been built. Thus, the 
length of a side of the new altar was to be the length of a side of the old 
one multiplied by ~. 

It turns out to be impossible to construct a segment whose length is 
~ times a given length using only straightedge and compass. Indeed, this 
would be equivalent to constructing a point with coordinates (~, 0) in an 
orthogonal basis constructed from 0 and A. But ~ is of degree 3 over Q. 
Of course, 3 does not divide any power of 2, so Proposition 5.5 shows that 
such a construction is impossible. 

5.6.2 Trisection of the Angle 

The trisection of the angle is the problem of dividing an arbitrary angle 
into three equal parts using only straightedge and compass. The ancient 
Greeks actually possessed other methods for trisecting angles (see Exercise 
5.5). 

Constructing an angle () when its triple is known is equivalent to con
structing the point (cos (), sin ()) of the unit circle in the plane, with respect 
to a basis R = (O,A,B), when the point (cos3(),sin39) is known. The 
formula cos 3() = 4 cos3 () - 3 cos () (due to Viete) shows that cos () is a root 
of the polynomial 4X3 - 3X - cos 3(). 

In general, this polynomial is irreducible over Q[cos3()]; for example, 
when () = 40°, it is equivalent to 8X3 - 6X + 1, which is irreducible over 
Q because it has no rational roots. The same reasoning as in the preceding 
section then shows that the construction is impossible. It follows that angles 
of (120/n)0 for integers n ~ 1 are never ''trisect able" (otherwise, the 120° 
angle would be). 

5.7 A Sufficient Condition for Constructibility 

PROPOSITION. - Let us keep the notation of Lemma 5.3. 

1) Every point with coordinates in K = Q(F) is constructible from E. 

2) Every point whose coordinates lie in a quadratic extension of K is 
constructible from E. 

3) Consider a point P with coordinates (p, q) such that there exists a 
finite increasing sequence of fields (Ki)o<i<m, each one quadratic over 
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the preceding one, with Ko = K, Km C lR and p, q E Km. Then P is 
constructible from E. 

PROOF. -

1) Let p and q lie in K. To show that the point P = (p, q) is constructible 
from E, it suffices, by §5.2.2, to show that the points (p,O) and (0, q) 
are constructible from E. Let us show that (p, 0) is constructible. 
By §4.3.1, p is of the form S(al, ... , ak)IT(al, ... , ak), where k is an 
integer, Sand T are polynomials in IQ[Xl , ... , Xk], and all ... , ak are 
elements of F. We construct (p, 0) one step at a time by noting that if 
(x, 0) and (y, 0) are constructible from E, then (-x, 0) and (x + y, 0) 
are constructible from E (this is trivial), and also (l/x, 0) and (xy, 0) 
are constructible from E. Indeed, to construct (l/x, 0) , we construct 
the line that passes through the point B = (0,1) and is parallel to the 
line passing through A = (1,0) and (0, x), and to construct (xy, 0), 
we construct the line passing through (0, y) and parallel to the line 
passing through the points B and (x, 0) (Figure 5.5). 

B=(O,I) B=(O,I) 

(O,x) (O,y) 

o A=(l,O) " (llx,O) o (xy,O) (x, 0) 

FIGURE 5.5. Construction of (Ilx, 0) and (xy, 0) 

2) Let p be of degree 2 over K. Then p is a root of a quadratic polynomial 
T with coefficients in K. If T(X) = X2 + aX + b, then 

-a±v'a2 -4b 
p= 2 

if we set c = a2 - 4b, the construction of (p, 0) uses the construction 
of (1,y'c) knowing (c,O). 

We first construct the point C = (c + 1, 0), the midpoint M of 
OC; to do this, construct the mediatrix of ~C. Then we construct 
the intersection D of the circle of center M and radius MO with the 
line perpendicular to 0 A passing through A. Then D = (1, VC), so 
we conclude with the last step (Figure 5.6). 
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M 

o A=(l;O) C=(c+l,O) 
FIGURE 5.6. Constructions of (O,yIc) 

3) This result is easily proved by induction, using the two previous results. 
This concludes the proof. <> 

COMMENTARY. - The constructions described above are given in the first 
pages of Descartes' Geometry. They enabled him to consider the product of 
two lengths x and y as a length, rather than considering it as the rectangle 
with sides x and y, and this led him to suppress the homogeneity condi
tions that had made the work of his predecessors so heavy: " ... OU il est 
it remarquer que, par a2 , ou b3 , ou semblables, je ne con~ois ordinairement 
que des lignes toutes simples, encore que pour me servir des noms usites 
en l'algebre, je les nomme des carn~s ou des cubes, etc." C" ... it should be 
noted. that, by a2 , or b3 , or others, I do not ordinarily conceive anything 
but perfectly simple lines, although in order to employ the names usual in 
algebra, I call them squares, cubes, etc.") 

Exercises for Chapter 5 

Exercise 5.1. Roots of quadratic equations 

Let GAB denote an orthogonal basis of the plane. 

1) Given two strictly positive real numbers sand p, construct the roots 
of the equation X2 - sX + p = 0, starting by constructing a segment 
of length ..;p. Recover the usual algebraic condition geometrically. 

2) Construct a segment of length ~. 

Exercise 5.2. Construction of the regular pentagon 

1) Check the classical construction of the regular polygon with five sides, 
with one vertex labeled A, inscribed in a circle C of center G and 
radius GA . 

• Draw a diameter BB' perpendicular to GA. 



88 5. Constructions with Straightedge and Compass 

• Let I denote the midpoint of OB'; draw the circle of center I 
and radius IA which intersects OB at D. 

• The length of AD is equal to the length of the side of the regular 
pentagon to be constructed. 

2) Construct a regular polygon with 30 sides using straightedge and 
compass. 

COMMENTARY. - A different construction of the regular pentagon is given 
in book 4, proposition 11, of Euclid's Elements (around 300 B.C.). It is the 
climax of this part of the Elements; the propositions of books 2, 3, and 4 
build methodically toward this end. The solution is entirely geometric. 

Exercise 5.3. Constructible elements of degree 4 

1) Let x be a complex number of degree 4 over '01, and let P(X) = 
X4 + pX2 + qX + r be its minimal polynomial over 'O1. Show that 
there exists a quadratic extension L of '01, contained in '01[x], if and 
only if the polynomial R(X) = X 3 + 2pX2 + (p2 - 4r)X - q2 has a 
rational root. 

2) Show that a real root of the polynomial P(X) = X4 + 2X - 2 is not 
constructible. 

Exercise 5.4. al Biruni's third-degree equation for the 20° angle 

Let A and B denote two adjacent vertices of a regular I8-sided poly
gon inscribed in a circle of center 0, as in Figure 5.7. The 10th century 
mathematician al Biruni constructed the isosceles triangles ABC with 
Con OB and AB = AC, ACD with D on OA and AC = DC, CDE 
with Eon OA and CD = DE. 

A 

x~ 
B He E o 

FIGURE 5.7. al Biruni's figure 

1) Show that OE = AB. 

2) Set OA = 1 and AB = x. Show that x3 + 1 = 3x. 
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Exercise 5.5. Trisection of angles 

1) Archimedes' method (Figure 5.8): 

r 

c 

B 

FIGURE 5.8. Archimedes' method 

A 

Consider a circle of center 0 and radius r, and an angle AOB where 
A and B are two points on the circumference of the circle. Suppose 
we are in possession of a straightedge marked with two points at a 
distance r from each other, and that with this straightedge, we know 
how to construct a line passing through B, intersecting the extension 
of the segment [~Al toward 0 at C, and intersecting the circle at D 
in such a way that [CD] is of length r. 

Show that the angle DCO is one-third of the angle AOE. 

2) Pappus' method. 

A C 

o H 
FIGURE 5.9. Pappus' method 

Suppose we are given a right triangle AOH at H whose side [~Al 
is of length a. Draw the line D parallel to (OH) passing through 
A. Suppose that we are in possession of a straightedge marked with 
two points at a distance of 2a from each other, and that with this 
straightedge, we know how to construct a line passing through 0, 
intersecting the segment [AH] at B and the line D at C in such a 
way that the length of the segment [BC] is 2a (Figure 5.9). 

Show that the angle BOH is equal to one-third of the angle AOH. 
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3) Origami (the Japanese art of paper-folding, called kami in Japanese) . 

.-__ .r~ __________ ,C 

~~ ____ ~ ________ ~G 

L-----------------~D 

FIGURE 5.10. Trisection by origami 

All straightedge and compass constructions can by done by origami, 
and many others as well. The origami method for trisecting an angle is 
due to the Japanese Abe. Take a rectangular piece of paper ABCD 
and form the angle (j = DAE by folding along AE (Figure 5.10). 
By two successive foldings of an equal, arbitrary width, we obtain 
segments FG and HI parallel to AD such that AF = F H. Then fold 
in such a way as two simultaneously bring A to a point on FG and 
H to a a point of AE. 

Show that the angle between AB and the axis of this last fold is 
equal to (j /3. 

Solutions to Some of the Exercises 

Solution to Exercise 5.1. 

(0 ,Ifp) }-------,.I' 
c 

o a H b C=(s,O) 
FIGURE 5.11. Construction of the roots of a quadratic equation 

1) We first construct a segment oflength vP (see Proposition 5.7.2», and 
then a point C with coordinates (s,O) and a circle C of diameter ac. We 
construct a point D with ordinate vP of C, which projects to H on ac. 
The point H divides ac into segments of lengths a and b, which are the 
roots of the given equation. 
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The construction is possible on the one hand if p ~ 0, on the other 
hand if there exist points with ordinate yp on the circle C, i.e. yp ~ 8/2; 
we recover the condition 82 - 4p ~ O. 

2) We use the construction of Proposition 5.7 2) twice, first to construct a 
segment of length v'2, and then to construct a segment whose length is a 
square root of v'2. 

Solution to Exercise 5.2. 

1) Using Pythagorus' theorem, we easily compute AD; if OA = 1, it is 

VlO - 2v5/2 and we check that this is equal to 2sin(7r/5) by the identity 

27r -1 + v5 . 2 7r 
cos-= =1-2sm-
545 

(see part 5) of Exercise 4.5). 

2) Let D' denote an intersection of the circle of center A and radius AD 
with C. The equality 7r/15 = (27r/5) - (7r/3) shows that an arc of the circle 
of center A and radius OA cuts the circle C at a point E between A and 
D' such that D' and E are adjacent vertices of a regular 30-sided polygon. 

Solution to Exercise 5.3. 

1) In the special case of a biquadratic equation, q = 0, R(O) = 0, and the 
intermediate extension always exists. 

Assume the existence of L. The number x is of degree 2 over L; write 
X2 + aX + b, with a, b in L for its minimal polynomial over L. This polyno
mial divides P in L[X], so we have P(X) = (X2 + aX + b)(X2 + eX + d), 
with e and d in L. By Descartes' method, we know that a2 is a root of R. 
If a2 is not rational, Q[a2] = L so a2 is of degree 2 over Q, its minimal 
polynomial over Q divides R in Q[X], and thus R has a linear factor in 
Q[X], i.e. a rational root. 

Conversely, if R has a rational root, there exists a decomposition of P 
in Q[X] into a product of the form (X2+aX +b)(X2+eX +d), where a2 is a 
rational root of R. Set L = Q[a]. We know that L contains b, e, d, therefore 
x, a root of one of the two factors, is of degree ~ 2 over L. As [L : Q] ~ 2, 
we have [L[x] : Q] ~ 4, and as Q[x] C L[x], we have Q[x] = L[x]. We 
conclude that L gives the desired result. 

2) P is irreducible by Eisenstein's criterion, and it has a real root since 
P(O) = -2, P(l) = 1. The corresponding polynomial R, equal to X 3 + 
8X - 4, has no rational root, since the possible candidates ±1, ±2, ±4 fail. 
We conclude by using 1) and the constructibility theorem. 



6 
K -Homomorphisms 

In this chapter and the coming ones, we continue to restrict our attention to 
the situation of fields that can be realized as subfields of the field of complex 
numbers C. However, the definitions and results all generalize directly to 
arbitrary fields contained in an algebraically closed field C of characteristic 
o (for fields of characteristic p =I- 0, see Chapters 14 and 15). 

One surprising aspect of the theory is the very minor role played by 
polynomials, which appeared in previous chapters as the main subject of 
Galois theory. This is due to the efforts of Dedekind at the end of the 19th 
century, and Emil Artin in the 1920s and 1930s, to clarify the linear aspects 
of Galois theory - in particular, the notion of K-homomorphisms, which 
extends the original idea of permutations of roots of a polynomial. 

6.1 Conjugate Numbers 

DEFINITION. - Let K be a field, which as before we take to be an inter
mediate extension between Q and C. Let a be a complex number that is 
algebraic over K, with minimal polynomial P over K. Each root of Pin C 
is called a conjugate of a over K. Two roots of an irreducible polynomial 
of K[X] are said to be conjugate over K. 

EXAMPLES. -

1) The numbers i and -i are conjugate over Q and over R, but not over 
C. 
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2) The numbers J2 and -J2 are conjugate over Q, but not over Q[J2]. 

3) The numbers .v2, j.v2 and j2 .v2 are conjugate over Q. 

6.2 K -Homomorphisms 

6.2.1 Definitions 

Let K be a field, and let Land L' be two extensions of K contained in 
C. A K -homomorphism from L to L' is a homomorphism of rings with 
unit from L to L', which leaves the elements of K invariant (i.e. whose 
restriction to K is the identity on K). In other words, a K-homomorphism 
is a homomorphism from the K-algebra L to the K-algebra L'. 

We will often use the letter a to denote a K-homomorphism. We will 
use the term K-isomorphism, respectively K-automorphism when a is an 
isomorphism, respectively an automorphism. 

EXAMPLES. -

1) Complex conjugation, which sends a complex number a + ib, with a 
and b real, to a-ib, is an lR-automorphism of C; we will often consider 
its restriction to subfields. 

2) The map a : Q [J2] -+ C defined by a (a + bJ2) = a - bJ2 with a 

and b rational, is a Q-automorphism. 

3) If Land L' are two extensions of K, and if K is an extension of K', 
then every K-homomorphism a : L -+ L' is a K'-homomorphism, 
and in particular a Q-homomorphism. 

6.2.2 Properties 

Let a : L -+ L' be a K-homomorphism. It has the following properties: 

1) it is a K-linear map between L and L' considered as K-vector spaces; 

2) it is an injective map, like every ring homomorphism between two 
fields; 

3) its image is a field a(L) which is K-isomorphic to L; 

4) if L is of finite degree over K, a K-homomorphism a : L -+ L is a 
K-automorphism of L, because since a is a linear injective endomor
phism of a finite-dimensional K-vector space, it must be surjective; 

5) if L = K[aI, ... ,an], a K-homomorphism is defined over L by its 
values at the generators of L as an K-algebra, i.e. by its values at 

aI, ... ,an (which can be related; think of the case of Q [i, j, v'3] for 

example). If L = K[a], it suffices to specify a(a) in order to completely 
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determine u. For an element of the form pea) with P E K[X], we 
have u(P(a)) = P(u(a)). 

6.3 Algebraic Elements and K -Homomorphisms 

6.3.1 Proposition 

Let K be a field, and let a be an algebraic element of finite degree nand 
minimal polynomial P over K. 

1) If L is an extension of K, if a ELand if a : L --+ <C is a K
homomorphism, then a( a) is a conjugate of a over K. If L contains 
all the roots of a polynomial Sin K[X], then a induces a permutation 
of the set of roots of S. 

2) If b is a conjugate of a over K, there exists a unique K -isomorphism 
a: K[a] --+ K[b] such that a(a) = b. 

3) The number of distinct K -homomorphisms from K[a] to <C is equal 
to n. 

PROOF. -

1) Let P(X) = L akXk be the minimal polynomial of a over K. 
O:5k:5n 

Because a is a K-homomorphism and the coefficients of P lie in K, 
we have a(ak) = ak for k = 0, ... , n, so 

Thus a(a) is a conjugate of a over K. 

Because a is injective, the rest of the argument works by decom
posing S into a product of irreducible factors. 

2) Consider the diagram in Figure 6.1, where 7r denotes the canonical 
surjection, f and g are the homomorphisms defined by f(X) = a and 
g(X) = b, and 'P and t/J are their factorizations through 7r. 
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K[X] 

f 1 g 

K[X]/(P) 

7 ~ 
K[a] cr ~ K[b] 

FIGURE 6.1. 

Set a = '¢¢-1. Like cp and ,¢, it is a ring homomorphism (see §4.5.2); 
we have a f = ,¢cp-1 f = '¢7r = g, so 

a(a) = af(X) = g(X) = b. 

Thus, for every element x of K, we have a(x) = af(x) = g(x) = x; 
this gives the result. 

Let us show the uniqueness of a. If a' satisfies the same properties, 
then the restrictions of a f and a' f to K are the identity and a f(X) = 
b = a' f(X); these two conditions imply that a f = a' f. As f is 
surjective, it follows that a = a'. An element of K[a] of the form 

L akak has image L akbk . 
1$k$n 1$k$n 

3) Because P is irreducible of finite degree n, it has n distinct roots in C. 
By part 2), each of these roots gives rise to a unique K-isomorphism 
from K[a] to a subfield of C. Then part 1) implies that there are no 
others. <> 

6.3.2 Example 

The minimal polynomial X 3 - 2 of {12 over Q has roots {12, j {12, and j2 {12 
in Co Thus there exist three Q-homomorphisms from Q[ {12] to C defined 
by the possible images of {12 (Table 6.1). 

{12 

a1 ~ 

a2 j~ 

a3 j2~ 

TABLE 6.l. 
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The first one, aI, is the inclusion map; the other two, a2 and a3, can be 

expressed in the basis {I, {12, W} of Q [{12] over Q by 

a2 (a + b{12 + cW) a + bj{12 + cj2W, 

a3 (a + b{12+ cW) a+bj2{12+cjW, 

with a, b, c rational. 

6.4 Extensions of Embeddings into C 

6.4.1 Definition 

An embedding of a field L (contained in q into C is a homomorphism 
a : L ---+ C of rings with unit. 

If L is an extension of a field K, a K-homomorphism of L to C is an 
embedding. This generalization is useful for proving the corollary to Propo
sition 6.4.3 below. 

6.4.2 Proposition 

Let L be a field, and let a : L ---+ C be a field embedding. Let a be an algebraic 
number of finite degree n over L. Then there are exactly n embeddings of 
L[a] into C extending a. 

PROOF. - Let P denote the minimal polynomial of a over L. Consider the 
diagram in Figure 6.2, where 

• i and j are the canonical inclusions; 

• a' is the homomorphism defined by a'(X) = X and a'iL = a; 

• 7r and p are the canonical projections; 

• a" is defined by passing to the quotient of a'; 

• b is one of the n roots of a'(P) in C; 

• f and 9 are the homomorphisms defined by f(X) = a and g(X) = b; 
fi and gj are the canonical inclusions; 

• 'P and 'IjJ are the isomorphisms defined as in §4.5.2 (to see that 'IjJ 
is an isomorphism, note that if a'(P) is reducible over a(L), i.e. if 
a'(P) = ST with Sand T non-invertible, then P = a,-I(ST) = 
a,-l(S)a,-l(T), which shows that a,-I(S) or a'-I(T) is invertible 
and consequently S or T is also invertible, which is a contradiction); 
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L • cr(L) 

! 1 
L[X] • cr(L)[X] 

L~J~a(L)[~]I~\ 
L[a] • cr(L)[b] 

FIGURE 6.2. 

Firstly, r extends (1 because rfi = 1/J(1l1cp-l fi = 1/J(1I17ri = gj(1. If r' is a 
second extension of (1 to L[a] such that r' (a) = b, we have r' fi = gj(1 = r fi 
and r'f(X) = r'(a) = b = rf(X), which shows that r'f = rf, by the 
universal property of L[X]. Hence r' = r, since f is surjective. As r(a) is 
necessarily one of the n roots of (1'(P), since r(P(a)) = r(f(P)) = ... = 
(1'(P)(r(a)), the proposition is proved. <> 

The following formula can also be deduced from the proposition: 

6.4.3 Proposition 

Let L be a field, and let M c C be an extension of finite degree n of L. 
Let (1 : L --+ C be an embedding. The number of embeddings of Minto C 
extending (1 is equal to n. 

PROOF. - We use induction on n. If n = 1, M = L and the result follows. 
Assume n > 1. Figure 6.3 gives a diagram of the situation. 

M~ 
degreeSI ~ 

L[a] Or it C 

degreet~ 

FIGURE 6.3. 
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Suppose that the property holds for every extension of finite degree 
strictly less than n, and let M be an extension (contained in IC) of fi
nite degree n of L. Let a be an element of M - L; then a is algebraic over 
L of finite degree r > 1. The preceding proposition shows that there exist 
r extensions of a to L[aJ. If M = L[aJ, we obtain the desired result; other
wise, by the induction hypothesis, since s = [M : L[aJ] < n, we can assert 
that for each of the r extensions of a to L[a], there exist s extensions to 
M. The result then follows from the tower rule. <> 

COROLLARY. - Let K be a field, and let L c IC be an extension of finite 
degree n of K. There exist n K -homomorphisms from L to IC. 

PROOF. - It suffices to apply Proposition 6.4.3 to the embedding given by 
the inclusion of K into IC (Figure 6.4). <> 

degree n 

inclusion 
K 

FIGURE 6.4. 

6.5 The Primitive Element Theorem 

6.5.1 Theorem and Definition 

Let K be a field contained in IC, and let L be an extension of finite degree 
n of K. There exists an element a of L such that L = K[aJ. Every element 
generating L is called a primitive element for the extension L of K. 

COMMENTARY. - This result is due to Galois, who gave it without proof and 
deduced from it that the roots of a polynomial can be expressed rationally 
in terms of one particular element, using the following lemma: 

"Lemma II. Given an arbitrary equation, which has no equal roots, whose 
roots are a, b, c, ... , we can always form a function V of the roots, such 
that none of the values we obtain by permuting the roots in this function 
in every possible way are ever the same. 

For example, we can take: 

V = Aa + Bb + Cc + ... , 

where A, B, C, ... are suitably chosen integers." 
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A primitive element used to be called a Galois resolvent. The same term 
was also used for the minimal polynomial of such an element. 

We prove the result here for subfields of C; it generalizes not only to 
fields of characteristic 0 but even to all separable algebraic extensions of 
finite degree (defined in Chapter 15). 

PROOF. - By §6.4.4, there exist n distinct K-homomorphisms from L to 
C; let us denote them by O"I, ... ,O"n. By the above lemma applied to the 
hyperplanes ker( 0" i - 0" j ), 1 ~ i < j ~ n, there exists an element a in L 
whose images under the O"I, ... , O"n are all distinct. For i = 1, .. . , n, O"i(a) 
is a conjugate of a over K, a is of degree ?: n over K, so [K[a] : K] = n 
and L = K[a]. <> 

LEMMA. - Let V be a vector space over an infinite field k, and let HI, ... , Hr 
be a finite family of strict subspaces V. Then V =f: U Hi· 

1::;i::;r 

PROOF. - We use induction on r. 
If r = 1, the result is clear. If r > 1, suppose the result holds for every 

family of r - 1 strict subspaces of V. Suppose that V = U Hi; then by 
1<i<r 

the induction hypothesis, there exists an element x in V -~hich does not 
belong to U Hi· So x E Hr. On the other hand, let y be such that 

y ~ Hr, so y E U Hi. The set E = {x + AY; A E k} is infinite; thus 
1::;i::;r-1 

there exists an integer i such that 1 ~ i ~ r, and distinct elements A and 
p, in k, such that x + AY E Hi and x + P,Y E Hi. We successively obtain 
(A - p,)y E Hi, Y E Hi, X E Hi, which contradicts the choices of x and y. <> 

6.5.2 Example 

Consider the extension L = Q [v'2, v'3] of Q. It is an extension of degree 

4 of Q. By §6.4.4, there are exactly four Q-homomorphisms from L to C. 
To construct them, we need to first construct the two Q-homomorphisms 
71,72 : Q[v'2] ---> C like in §6.3.1 2), associating to v'2 one of its conjugates 

v'2 or -v'2, which leads to 71 ( v'2) = v'2,72 (v'2) = -v'2. Each of these 

two Q-homomorphisms extends in two different ways, still by §6.3.1 2), to a 

Q-homomorphism O"i : Q [v'2] [v'3] ---> C, 1 ~ i ~ 4, by associating to v'3 

one of its conjugates ±v'3. The primitive elements of L are the elements 
whose images under these Q-homomorphisms are all distinct; v'2 + v'3, 
v'2 + v'6, mv'2 + nv'3 with m and n non-zero rational numbers, etc., are 
examples of such elements (Table 6.2). 
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V2 J3 V2+J3 V2+V6 
al V2 J3 V2+J3 V2+V6 
a2 V2 -J3 V2-J3 V2-V6 
a3 -V2 J3 -V2+ J3 -V2 - V6 
a4 -V2 -J3 -V2 - J3 -V2 + V6 

TABLE 6.2. 

6.6 Linear Independence of K-Homomorphisms 

The goal of this section is to state Dedekind's theorem (see §6.6.3). This 
theorem is a direct consequence of a theorem on characters. 

6.6.1 Characters 

DEFINITION. - A character of a group G into an arbitrary field K is a group 
homomorphism from G to the multiplicative group K*. 

Let X : G ---. K* be a character. If e is the identity element of G, we have 
x(e) = 1; if 9 is of order n in G, then X(g)n = X(gn) = 1 shows that X(g) 
is an n-th root of unity in K. 

The characters of G are elements of the set F of set maps from G to 
K; we will say that characters are linearly independent if they are linearly 
independent in the K-vector space F. 

6.6.2 Emil Arlin's Theorem 

Distinct characters of a group G into a field K are linearly independent. 

PROOF. - Suppose there exist families of characters of G into K that 
are not linearly independent. Among all such families, choose a family 
Xl, ... ,Xn such that n is minimal. Because n is minimal, there exist ele
ments AI, ... , An of K such that L Ai Xi = 0 and such that none of the 

l<i<n 

Ai is zero. Of course, we have n > 1.-
Because Xl i- X2, there exists x in G such that Xl(X) - X2(X) i- o. The 

linear combination L AiXi is zero, so for all y of G, we have 
l:5i~n 

l~i~n 

L AiXi(XY) 
l~i~n 

0, 

L AiXi(X)xi(Y) = o. 
l~i~n 

(6.1) 

(6.2) 
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Multiplying (1) by Xl(X), we obtain 

L AiXl(X)xi(Y) = o. (6.3) 
l::;i::;n 

Subtracting (2) from (3), we have 

Because at least one of the coefficients is not zero, this equality contradicts 
the minimality of n. <> 

6.6.3 Corollary: Dedekind '8 Theorem 

Let K be a field and L c C an extension of K. The K-homomorphisms 
from L to C form a set of linearly independent vectors in the C-vector space 
of linear maps from L to C. 

PROOF. - The C-vector space structure of the set of linear maps from L 
to C is induced by that of the C-vector space of setwise maps from L to 
Co Every K-homomorphism 0" from L to C induces a character from the 
multiplicative group L* to C, since O"(xy) = O"(x)O"(Y); 0" is a K-linear map 
since O"(ax + by) = aO"(x) + bO"(y) for all x, y in L and all a, bin K. Thus, 
Theorem 6.2 applies. <> 

Exercises for Chapter 6 

Exercise 6.1. K-homomorphisms 

1) Determine Q-automorphisms of the rings Q[7 + 3i] and Q[a] where a 
is a root of X2 + 52. 

2) Determine all the subfields of C that are Q-isomorphic to Q[v'3]' 
Q[~], to Q[~], to Q[~]. 

3) a) Determine the Q-automorphisms of the rings Q[J2] , Q[{/2] and 
Q[~]. 

b) Show that U Q[21/n] is an extension of Q (of infinite degree). 
l::;n 

Determine its Q-automorphisms. 
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Exercise 6.2. Primitive elements 

1) Let K c <C be a field, and let a and b be two elements of K. Show that 
if s = Va + Vb (where Va and Vb denote elements of <C with squares 

a and b) is non-zero, then it is a primitive element of K [Va, Vb] over 

K. 

2) Show that jV5 is a primitive element of Q [j, v'5] . 

3) Show that ~+v'2 is a primitive element of the extension Q [ ~, v'2] 

of Q. Give other primitive elements for this extension. 

4) Determine a primitive element of Q[a, j], where a is a root of X 3 -

X+l. 

5) Let K be a field, and let a and b be algebraic elements over K. Show 
that there exists an integer r in Z such that a + rb is a primitive 
element of L = K[a, b] over K. Generalize. 

Exercise 6.3. K-endomorphisms of an algebraic extension 

Let L be an algebraic extension of a field K of finite or infinite degree, 
and let a : L -+ L be a K-homomorphism. Let a be an element of L, 
P its minimal polynomial over K, and A the set of roots of P in L. 

1) Show that a(A) = A. 

2) Deduce that a is a K-isomorphism. 

Solutions to Some of the Exercises 

Solution to Exercise 6.1. 

1) As Q[7 +3i] = Q[i], there are two Q-automorphisms ofQ[7 +3i], namely 
the identity and the one induced by complex conjugation. 

As Q[a] ~ Q[iv'I3], there are two Q-automorphisms of Q[a], defined 
by a(a) = ±iv'I3; namely the identity and the one induced by complex 
conjugation. 

2) The only field that is Q-isomorphic to Q[v'3] is itself, although v'3 has 
two conjugates over Q. 

Over Q, ifi5 is a conjugate of itself, of j ifi5, and of j2 ifi5. Thus the 
field Q[ifi5] is Q-isomorphic to Q[ifi5]' Q[jifi5], and Q[j2ifi5]. These 
three fields are distinct; the first one is contained in JR, unlike the other 
two, and if Q[j ifi5] = Q[j2 ifi5], then the element j, which is the quotient 
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of the two generators and is quadratic over Q, would belong to a cubic 
extension. 

Because the polynomial X 5 + 3 is irreducible over Q, ~ has five conju
gates over Q and Q[~] is Q.isomorphic to the five fields Q[~J, Q[(~J, 
Q[(2~J, Q[(3~], Q[(4~J, where ( = e2i7r/5 . These five fields are all 
distinct, since the equality of two of them would imply that one of the 
(k, 1 ~ k ~ 4, which are of degree 4 over Q, would belong to it, even 
though the extensions are of degree 5. 

As yt3 has six conjugates over Q: ±~, ±j~, ±j2~, the field Q[~] 
is Q.isomorphic to one of the three fields Q[~], Q[j~] or Q[j2~]. 

Let us show that these three fields are all distinct. The first one is con
tained in JR, and the other two are not. The two last ones are of degree 6 over 
Q. If they were equal, then j would belong to Q[j~], and consequently 
Q[j~] = Q[j, ~]. But the last field is of degree 12 over Q. 

3) a) The only Q.automorphisms of Q[V2], of Q[ ~J, and of Q[ ij2] are 
defined by a( V2) = ±V2, a(~) = ±~, a( ij2) = ±ij2. 

b) Let x and y lie in U1:5nQ[21/n]. There exist integers rand s such that 
x E Q[21/r] and y E Q[21/ S ]; we see that x and y lie in the field Q[21/rsJ, 
and we easily deduce that U1:5nQ[21/n] is a field. 

Let a be a Q.automorphism of U1:5nQ[21/n]. We have a(21/n) = ±21/n. 
As a(21/n) = a[(21/2n)2] > 0 for every integer n, we have a(21/n) = 21/n 
and a =id. This result does not tell us anything about the extension, but 
we are in the case of an extension from which the conjugates of ~, -v2, 
etc., are absent. 

Solution to Exercise 6.2. 

1) This follows from Va = (s/2)+(a-b)/(2s) and Vb = (s/2)-(a-b)/(2s). 

2) Set a = jV5. We have V5 = a3/5 and j = a4/25. The result follows. 

3) We know that [Q[{I2,v'2] : Q] = 6. An element of Q[{I2,v'2] is 
primitive if its images under the six Q.homomorphisms from Q [ {12, v'2] to 

C are distinct. The image of {12 under one of these six Q.homomorphisms 
is {12, j{l2, j2{12 and the image of v'2 is ±v'2. The element {12 + v'2 is 
thus primitive, as are the elements of the form x ~ + y.../2 for x and y non
zero rational numbers (two of the images are real and obviously distinct, 
and the other four are non-real with distinct real or imaginary parts. To 
visualize them, draw a regular hexagon, place each of the six numbers at a 
vertex and draw a line directly between two vertices if we have shown that 
they correspond to distinct numbers. To conclude, every pair of vertices 
must be connected by a line.) 

A simpler primitive element is 21/ 6 . 
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4) Set b = a + j. The condition (b - j)3 - b + j + 1 = 0 shows that 
Q[j] C Q[b], so Q[b] = Q[a,j]. 

5) Set n = [L : K]. There exist distinct n K-homomorphisms from L to 
C; we denote them by <TI, ... , <Tn. If there did not exist r E Z such that 
a+rb has distinct images under these n K-homomorphisms, then for every 
r there would exist distinct integers i and j with 1 ~ i, j ~ n such that 
<Ti(a + rb) = <Tj(a + rb). As r can take an infinity of values, and the pairs 
(i, j) only have a finite number of values, there would exist distinct integers 
rand s, and distinct integers i and j, such that <Ti(a+rb) = <Tj(a+rb) and 
<Ti(a + sb) = <Tj(a + sb). Taking the difference and simplifying by r - s, we 
obtain <Ti(b) = <Tj(b) then <Ti(a) = <Tj(a), which would imply that <Ti = <Tj, 
a contradiction. 

It follows that if L = K[aI, . .. , an], there exist integers rI, ... , rn such 

that L riai is a primitive element of Lover K. 
l~i~n 

Solution to Exercise 6.3. 

1) We know that <T is injective. As <T(A) C A and A is finite, we have 
<T(A) = A. 

2) By 1), a lies in the image of <T; consequently, <T is surjective, which 
gives the result. 



7 
Normal Extensions 

7.1 Splitting Fields 

7.1.1 Definition 

Let K be a sub field of C, and let P be a polynomial of degree n in K[XJ. 
Let Xl, ... ,Xn be the (not necessarily distinct) roots of P in C. The field 
K[Xb ... ,Xn ], which by §4.6.2 is an extension of K of finite degree, is called 
the splitting field of P over K. 

Let P be a polynomial. Note that the polynomial PI = P/gcd(P, PI) 
has the same roots as P, but all as simple roots. Thus, in characteristic 0, 
the splitting field of P is the same as that of PI, since the splitting field 
is obtained by adjoining the roots. Thus, we can restrict our attention to 
polynomials with distinct roots. 

REMARK. - We saw in §4.7 how to construct an extension of a field K 
containing a root of a polynomial P irreducible over K; we called such an 
extension a rupture field for P. 

EXAMPLE. - The splitting field of X 3 - 2 over Q is Q[j, -Y2J since the roots 
of X 3 - 2 are -Y2, j?f2, and j2?f2. It is an extension of degree 6 of Q. The 
rupture fields of X 3 - 2 over Q contained in Care Q[ -Y2], Q[j?f2], and 
Q[j2?f2J. 
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1.1.2 Splitting Field of a Cubic Polynomial 

PROPOSITION. - Let K be a field contained in <C and P(X) = X 3 + pX + q 
an irreducible cubic polynomial in K[X]. Let a, b, and c denote the roots 
of Pin <C and d = (a - b)(b - c)(c - a). 

The splitting field of P over K is K[a, d]. It is of degree 3 or 6 over K 
according to whether the discriminant D(P) = _4p3 - 27q2 of P is or is 
not a square in K. 

PROOF. - The splitting field of P over K is K[a, b, c], and the inclusion 
K[a, d] c K[a, b, c] is clear. 

Conversely, we know that d2 = D(P) =f:. 0 and a =f:. O. The equality 

(a - b)(c - a) = a(b + c) - a2 - bc = -2a2 + ~ 
a 

shows that b-c = dj ((a - b)(c - a)) lies in K[a,d]. As b+c = -a also lies 
in K[a, d], b, c both lie in K[a, d] and we have K[a, d] = K[a, b, c]. 

Now, K[a] and K[d] are intermediate extensions between K[a, d] and K, 
but [K[a] : K] = 3 and [K[d] : K] is equal to either 1 or 2 according to 
whether d E K or d tf. K; this suffices for the proof. 0 

REMARK. - If a cubic polynomial is not irreducible over K, its splitting 
field can be of degree 1 or 2 over K. 

7.2 Normal Extensions 

DEFINITION. - A normal extension of a field K (either contained in <C or 
not) is an algebraic extension N of K (of finite or infinite degree) such that 
every irreducible polynomial in K[X] having a root in N has all its roots 
in N. In other words, all conjugates of elements of N must lie in N. 

We will try as much as possible to reserve the letter K for the base field, 
the letters L, L', ... for arbitrary extensions of K, and N, N', ... for normal 
extensions K. 

EXAMPLES. -

a) By Proposition 7.4.1 below, a splitting field is a normal extension of 
finite degree. 

b) The intersection of normal extensions is normal. 

c) A normal extension N of a field K is also a normal extension of 
every intermediate extension L between K and N (see Proposition 
7.5 below). 

COMMENTARY. - In the case of infinite fields of non-zero characteristic, it is 
necessary to distinguish between "normal extensions" and Galois extensions 
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(see Chapter 15). In characteristic 0, the two notions are equivalent; we use 
the the expression "normal extension" . 

7.3 Normal Extensions and K -Homomorphisms 

PROPOSITION. - An algebraic extension N C C of finite degree of a field K 
is normal if and only if the image of every K -homomorphism a : N -+ C 
is contained in N. 

PROOF. - If N is a normal extension of K, then for every x in N and 
every K-homomorphism a : N -+ C, x is algebraic over K, and by §4.3.1, 
a(x) is a conjugate of x. Consequently, a(x) lies in N, so that a(N) C N. 
Moreover, a is a K-automorphism of N by §6.2.2. 

Conversely (Figure 7.1), if an element x of N has minimal polynomial 
P over K, and if y is a root of P in C, then by §6.3.1, there exists a 
K-homomorphism a: K[x] -+ C such that a(x) = y. By §6.4.3, this homo
morphism extends to a K-homomorphism a' : N -+ C. But as a'(N) eN 
and a'(x) = y, y is an element of N. 

N 

l~ 
K[x] a • <c 

l~ 
FIGURE 7.1. 

7.4 Splitting Fields and Normal Extensions 

In this section, we give the precise relation between a splitting field and a 
normal extension of finite degree. 

7.4.1 Proposition 
Let K C C be a field. Let P be a polynomial in K[X] of degree n, and let 
N be the splitting field of P over K. Then 

1) N is a normal extension of finite degree of K. 

2) [N: K] divides nL 
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PROOF. -

1) Let X!, . .. , Xn be the (not necessarily distinct) roots of P in C. We 
know that N = K[XI, ... ,xn] is an algebraic extension of K. 

Let 0' : N -+ C be a K-homomorphism. For i = 1, ... , n, we 
have 0 = O'(P(xi)) = P(O'(xi)), so O'(xi) E {x!, ... , xn} C N. As 
{x!, . .. , xn} generates N, we have O'(N) C N and Proposition 7.3 
concludes the proof. 

2) We use induction on n. For n = 1, the result is obvious. Suppose now 
that n > 1. If P is irreducible and X is a root of P in N, we have 
[K[x] : K] = n, and by the induction hypothesis, [N : K[xll divides 
(n -I)!, where N is the splitting field of PI(X - x) over K[x]. This 
gives the result. If P has an irreducible factor S of degree k, then 
n> k ~ 1, and if N' is the splitting field of S over K, then [N' : K] 
divides k! and [N : N'] divides (n - k)!, where N is the splitting field 
of PIS over N. Consequently, [N: K] divides k!(n-k)!, so it divides 
~. 0 

7.4.2 Converse 

Let N C C be a normal extension of finite degree of a field K. Then N is 
the splitting field over K of an irreducible polynomial Pin K[X] of degree 
[N:K]. 

PROOF. - Because N is an extension of finite degree of K, the Primitive 
Element Theorem (§6.5) shows that there exists an element x in N such 
that N = K[x]. The minimal polynomial P of x over K is of degree [N : K]. 
It is irreducible, so all of its roots are in N since N is a normal extension 
of K. The splitting field of P over K is thus N. 0 

7.5 Normal Extensions and Intermediate 
Extensions 

PROPOSITION. - Let N be a normal extension of finite degree of a field K. 
Then N is a normal extension of every intermediate extension L between 
K and N. 

PROOF. - As [N : K] is finite, [N : L] is finite. By §7.4.2, N is the splitting 
field over K of a polynomial P in K[X]. If Xl, ... , Xn are the roots of Pin 
C, we have N = K[XI, ... ,xn]; as K C LeN, we have N = L[Xl, ... ,xn], 
which shows that N is the splitting field of P over L, where P is considered 
as a polynomial in L[X]. By §7.4.1, this gives the result. 0 
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REMARK. - The above property can be recalled by the diagram in Figure 
7.2. The example of Figure 7.3 shows that conversely, L mayor may not 
be a normal extension of K. 

N N=Q[j~] 
\Doonal D7 ~ 

DOnnai L <12m Donna! Q[\I2] 

I D~ ~nnal 
K Q 

FIGURE 7.2. FIGURE 7.3. 

7.6 Normal Closure 

7.6.1 Definition 

Let K be a field, and let Lee be an algebraic extension of K. The normal 
closure of Lover K in C is the smallest normal extension N of K containing 
L. This extension always existsj it is the intersection of the set of normal 
extensions of K containing L, a set which is non-empty since C is a normal 
extension of all its subfields. 

7.6.2 Proposition 

Let K c C be a field. The normal closure in C of a finite degree extension 
Lee of K is a finite degree extension of K. It is the splitting field of the 
minimal polynomial of a primitive element of Lover K. 

PROOF. - By the Primitive Element Theorem, there exists an element a 
of L such that L = K[a]. Let P be the minimal polynomial of a over K 
and let N be the splitting field of P over K. N is a normal extension of 
finite degree of K, which contains Lj moreover, every normal extension of 
K containing L contains all the roots P, so it contains N. The normal 
closure of K in C is thus N. <> 

7.6.3 Proposition 

Let K C C be a field, and let L = K[al' ... ' an] C C be a finite degree 
extension of K. The normal closure N of Lover K inside C is the extension 
of K by the set of conjugates over K of the elements al, ... , an. 

PROOF. - Let A be the set of conjugates over K of the elements al, ... , an. 
Because N is a normal extension of K, we have N :J A, so N :J K[A]. 
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As K[A] is the splitting field of the product of the minimal polynomials of 
all' .. , an over K, it is a normal extension of K. Thus N = K[A]. (; 

7.7 Splitting Fields: General Case 

Let us now consider arbitrary fields instead of only subfields of Co Let K 
be an arbitrary field, and P an irreducible polynomial of degree n in K[X]. 
We know that P has no roots in K. In §4.7, we saw how to construct an 
extension of K containing a root of P. Let us now indicate how to construct 
an extension N of K which is a splitting field of P over K, i.e. a field which 
contains all the roots of P and is generated by them. 

PROPOSITION. (Kronecker) - Let K be an arbitrary field, and let P be a 
polynomial of degree n in K[X]. 

1) There exists an extension N of K which is a splitting field for P over 
K. 

2) [N: K] divides n!. 

3) Two splitting fields Nand N' of P over K are K-isomorphic. If the 
roots of P are simple in Nand N' (we say that P is separable), then 
the number of K-isomorphisms from N to N' is equal to [N: K]. 

PROOF. -

1) We use induction on n. If n ~ 1, then N = K works. 
If n > 1, factor P as a product of irreducible factors over K. If all 

these factors are of degree 1, then again N = K works. Otherwise, 
let S be an irreducible factor of degree> 1 of P. Set L = K[XJj(S) 
and let x denote the class of X in L. L is a field and in L[XJ, we 
can factor P in the form (X - x)T with T E L[X]. By the induction 
hypothesis, there exists a field N which is a splitting field of T over 
L. This field is a splitting field of P over K. 

2) See the proof of §7.4.1 2). 

3) LEMMA. Let a : K ---+ K' be a field isomorphism and N' a splitting 
field of a(P) over K'. We can extend a to a homomorphism T : N ---+ 

N'. If the roots of P are simple, the number of extensions is equal to 
[N:K]. 

To prove the lemma, we use induction on [N: K]. If [N : K] = 1, 
then P factors as a product of linear factors in K[X] and everything 
is clear. If [N : K] > 1, let S be an irreducible factor of degree> 1 
of P. Let x be a root of S in N, and set L = K[x]. Let x' be a 
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root of a(8) in N', and set L' = K'[x']. As in §6.4.2, we construct 
the isomorphisms L ~ K[X]j(8) ~ K'[X]j(a(8)) ~ L' which define 
the isomorphism a1 : L ---+ L' with a1 (x) = x'. By the induction 
hypothesis, this a1 extends to a homomorphism T : N ---+ N'. If the 
roots of P are simple, the number of such extensions a1 is equal to 
the number of roots of a(8) in N', i.e. to deg(a(8)) = [L : K]. The 
induction hypothesis then gives the desired number. 

To finish the proof, we use the lemma to extend id(K), obtaining 
a (necessarily injective) homomorphism T : N ---+ N', proving that 
[N: K] ~ [N' : K]. Inverting the roles of Nand N', we have [N' : 
K] ~ [N: K], so T is an isomorphism. <> 

Toward Chapter 8 
Chapters 4, 6, and 7 suffice to open the doors of the "paradise" created 
(discovered?) by Galois; Chapter 8 will describe the heart of his theory, the 
Galois correspondence. 

Exercises for Chapter 7 

Exercise 7.1. Splitting fields 

1) Determine the splitting field ofaX2 + bX + c with a -# 0 over K = 
Q(a, b,c). 

2) Determine the splitting fields of the following polynomials by deter
mining the degrees of the corresponding extensions of Q: 

a) X 3 -1; 

b) X 6 -1; 

c) X4 -7; 

d) X 3 - X2 - X - 2; 

e) X 6 -10X4 + 31X2 - 30; 

f) X 5 + X4 + X 3 + X2 + X + 1; 

g) X4 + 1. 

Exercise 7.2. Normal extensions 

1) Show that a quadratic extension of a field K is necessarily normal. 
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2) Does the fact that {12 is an element of Q[ {12] whereas j {12 and j2 {12 
are not imply that Q[ {12] is not a normal extension of itself? 

3) Let N be a normal extension of a field L. Is it a normal extension 
of every subfield K of L? Consider in particular the example Q C 
Q[v'2] C Q[ ~]; give the normal closure of the extension Q[~] of Q. 

4) Determine the normal extensions of Q generated by v'3 + v'2, v'3 + i, 
{12 + y'2, sin 2;, ( = e2i7r/ n for integers n. 

5) Let Nee be a normal extension of finite degree of a field K, and 
let L be an extension of K and N' C C the extension of K generated 
by L U N. Show that N' is a normal extension of L. 

Exercise 7.3. Cubic normal extensions 

1) Let K be a field contained in C, and let P be an irreducible cubic 
polynomial in K[X] of discriminant D = d2 , dE Co Let a be a root 
of P in Co Show that K[a] is a normal extension of K if and only if 
d lies in K. 

2) Let a, b, c be the roots of X 3 - 3X + 1 in Co 

a) Show that Q[a] is a normal extension of Q. 

b) Express band c in the basis {I, a, a2 } • 

Exercise 7.4. Proof of d' Alembert 's theorem (fundamental theo
rem of algebra) 

In this problem, we will show that every non-constant polynomial P 
in qX] has at least one root in C, following an idea due to Pierre 
Samuel (see the bibliography). 

1) Show that it is enough to consider polynomials with real coefficients 
(consider PP). 

Now assume that P has real coefficients; we will proceed by induc
tion on r = V2 (deg( P», where V2 (n) is the largest power of 2 dividing 
n. 

2) Show the result in the case r = 0, then in the case deg(P) = 2. 

3) Now suppose r ~ 1. Take a splitting field of P. Note that we can
not assume that this splitting field is contained in C (since that is 
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a consequence of the theorem we are now proving), so we need to 
construct the splitting field by successive quotients as in §7.7. For 
1 :::; i :::; n = deg(P), let ai denote the roots of P in this splitting 
field. 

For every real number c, set 

Qc(X) = II (X - ai - aj - Caiaj)' 
l:'5i<j:::;n 

a) Determine v2(deg(Qc)). 

b) Show that the coefficients of Q c are real. 

c) Finish the proof. 

Solutions to Some of the Exercises 

Solution to Exercise 7.1. 

1) According to whether the discriminant b2 - 4ac is or is not a square in 
K, the splitting field ofaX2 + bX + c is either K or the quadratic extension 
of K generated by a root of b2 - 4ac. 

2) a), b), d), and f). Q[j) is the splitting field in these four cases, since we 
have 

X 3 - 1 = (X - 1)(X2 + X + 1), 
X 6 - 1 = (X - 1)(X2 + X + 1)(X + 1)(X2 - X + 1), 
X 3 - X2 - X - 2 = (X - 2)(X2 + X + 1), 

X6 -1 
X5+X4+X3+X2+X+1 = X = (X2+X+1)(X+1)(X2_X+1). 

-1 

c) The polynomial X4 -7 is irreducible over Q by Eisenstein's criterion, 
and its splitting field is Q[±~, ±i~) = Q[i, ~). This is an extension of 
degree 8 over Q. 

e) The polynomial factors as (X2 - 2)(X2 - 3)(X2 - 5); its splitting field 
is Q[V2, v'3, vis), which is of degree 8 over Q by Exercise 4.5 6). 

g) Set ( = ei1r / 4 = (1 + i)/V2). The splitting field N of X4 + 1 over 
Q is Q[(, (3, (5, (7) = Q[(); it contains i = (2, so it contains V2, so that 
N = Q[i, V2J. 

Solution to Exercise 7.2. 

1) Let L be a quadratic extension of K. Then we must have L = K[x) 
for every x in L which is not in K, since they are all of degree 2 over K. 
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Let y be the second root of the minimal polynomial of x over K. Because 
x + y E K, we have L = K[x, y], so L is a splitting field. 

2) No: ~ is a root of the polynomial X - ~ of Q[ ~][X]. 

3) This result is false in general, since a field is always a normal extension 
of itself, but is not always a normal extension of its subfields. 

A false argument: let P be an irreducible polynomial of K[X] having a 
root in N. As a polynomial in L[X], it has a root in N, so all its roots must 
lie in N. Thus N is a normal extension of K. 

The error in this reasoning is that in fact, P may no longer be irreducible 
over L. For example, take K = Q c Q[ v'2] = L c Q[~] = N and 
P(X) = X4 - 2. Then P is irreducible over Q, but not over Q[v'2] since 
X4 - 2 = (X2 - v'2)(X2 + v'2) and the second factor has no roots in N. 
The normal closure of the extension Q[~] of Q is Q[i, ~]. 

4) We already saw that Q[v'3+ v'2] = Q[v'3, v'2], Q[v'3+i] = Q[v'3, i] and 
Q[ ~ + v'2] = Q[~, v'2] (Exercise 4.2). Thus Q[v'3 + v'2] and Q[v'3 + i] 
are normal extensions, since they are the splitting fields of (X2 -2)(X2 -3) 
and (X2 + 1)(X2 - 3), and ~ + v'2 generates the normal extension N = 
Q[~, j, v'2], which is the splitting field of (X2 - 2)(X3 - 2), of degree 12 
over Q. 

We saw in Exercise 4.5 that a = 4sin 2; = VlO + 2v5 and that the 
minimal polynomial of a over Q is X4 - 20X2 + 80. The conjugates of a over 
Q are thus ±VlO ± 2v5. Now, VlO - 2v5 = 4v5/ VlO + 2v5 belongs to 
Q[sin(27r/5)] since v's = (a2 - 10)/2 belongs to it. Thus, Q[sin(27r/5)] is a 
normal extension of Q. 

Finally, in the case ( = e2i1r / n for an integer n, Q[(] is the splitting field 
of Xn - 1 over Q, so it is a normal extension of Q. 

5) By the Primitive Element Theorem, we know that N is the splitting field 
of a polynomial P in K[X]; then N' is the splitting field of the polynomial 
P over L. 

Solution to Exercise 7.3. 

1) K[a] is a normal extension of K if and only if K[a] = K[a,d], since 
K[a, d] is the splitting field of P over K (§7.1.2); this condition is equivalent 
to d E K[a], so d E K, since d is of degree 1 or 2 over K. 

2) a) As X 3 - 3X + 1 has no rational root, it is an irreducible polynomial; 
its discriminant is 81, which is a square in Q. Thus [Q[a] : Q] = 3 and Q[a] 
is a normal extension of K. 
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b) We use the computations of §7.1.2. On the one hand, we have 

b+c= -a. 

On the other, we have 

d 
b - c = -;-( a------:-:-b )-;-( c---a-;"") 

d 
1 . 

-2a2 +
a 

Take d = 9 (the other possible choice, -9, simply ends up exchanging 
the roles of b and c). Using the techniques of Chapter 4 (the method of 
indeterminate coefficients or Bezout's identity), we find b - c = 4 - a - 2a2 , 

which gives b = 2 - a - a2 and c = a2 - 2. 



8 
Galois Groups 

In this chapter, we reach the very heart of Galois theory. To every poly
nomial with coefficients in a field K, with splitting field N over K, we 
associate a group G called its Galois group. We show that the subgroups 
of G are in bijective correspondence with the intermediate extensions be
tween Nand K. This correspondence makes it possible to solve problems 
about polynomials and their splitting fields algebraically, by computing 
groups. Over the following chapters, we sketch out this dictionary between 
the properties of an equation and the algebraic properties of its associated 
group. 

8.1 Galois Groups 

8.1.1 The Galois Group of an Extension 

DEFINITION. - Let K be a field, and let L be an extension of K. The set 
of K-automorphisms of L is equipped with a group structure whose group 
law is the composition of K -automorphisms. We will denote this group by 
Gal(LIK), and call it the Galois group of the extension Lover K. 

Throughout most of this text, we will consider Galois groups of normal 
extensions of finite degree; non-normal extensions L of K do not possess 
enough K -automorphisms to make the fundamental theorem of the Galois 
correspondence (see §8.5 below) work. 
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8.1.2 The Order of the Galois Group of a Normal Extension 
of Finite Degree 

PROPOSITION. -Let N be a normal extension of finite degree of a field K 
contained in C. Then the order of the group Gal(NIK) is equal to [N: K]. 

PROOF. - By §6.4.4, there exist [N : K] K-homomorphisrns from N to 
C. By §7.3, their image lies in N; thus these homomorphisms are actually 
K-automorphisms (§6.2.2). 0 

8.1.3 The Galois Group of a Polynomial 

Let K be a field, and let P be a polynomial of degree n in K[X] such 
that P has distinct roots. If K c C, recall that we can always replace P 
by a polynomial having the same roots as P, but as simple roots. More 
generally, if K is of characteristic 0, we can replace P by the greatest 
common divisor of P and its derivative P'; this method was first suggested 
by Johann Hudde in 1657 (see the book by J.-P. Tignol). Let E be the 
set of roots of P in C, and let N = K[E] be the splitting field of P over 
K. We know that N is a finite degree extension of K, which is normal 
by Proposition 7.4.1. The Galois group G = Gal(NIK) is also called the 
Galois group of the polynomial P over K. 

8.1.4 The Galois Group as a Subgroup of a Permutation 
Group 

In Exercise 8.1, we recall the definition and some properties of group actions 
on sets. 

PROPOSITION. - 1) With the notation of §8. 1. 3, G acts on E. This action 
makes it possible to identify G with a subgroup of the group BE of per
mutations of E, and with mutually conjugate subgroups of the group Bn of 
permutations of {1, ... ,n}. 

2) The order of G divides nL 
3) If P is irreducible, the action of G on E is transitive. 

PROOF. - 1) Let a E G. For every x E E, a(x) lies in E, since it is a 
conjugate of x (§6.3.1). As a is injective, a induces an injection of E into 
E, so a bijection of E; the map). : G ---t BE defined by ).(a) = alE is 
an injective homomorphism of groups since E generates N. This gives the 
identification of G with a subgroup )'(G) of BE. 

Let Xl, ... , xn be the roots of P; then we can define a bijection 'P : 
{1, ... ,n} ---t E with Xi = 'P( i). Such a bijection makes it possible to define 
an injective group homomorphism q, : G ---t Bn such that s = q,( a) is the 
permutation given by a(xi) = Xs(i). This construction makes it possible to 
identify G with a subgroup q,(G) of Bn. 
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{ 1, .... ,n] 
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<P { 1, .... ,n} 
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\jI-1 -I 

<P 
FIGURE 8.1. 

Let 'P, 'lj; : {1, ... ,n} ----+ E be two bijections. They define injective homo
morphisms <P, '11 : G ----+ Sn by <p(0") = '1'-1 A(o")'P and '11(0") = 'lj;-1 A(o")'lj; 
(Figure 8.1). Thus, we associate to G the groups <p(G) and w(G); these 
groups are mutually conjugate in Sn since 'lj;-1'P<P(G)'P-1'lj; = w(G). 

2) This is an immediate consequence of 1) and Lagrange's theorem. 
3) For every i and every j E {1, ... ,n}, there exists a K-homomorphism 

from K[XiJ to K[xjJ by §6.3.1. This extends to an embedding of N in <C 
which, as N is normal, induces an element 0" of G such that o"(Xi) = Xj. <:) 

8.1.5 A Shori History of Groups 

The first proof which actually uses the idea of a group is due to Lagrange 
(1770). 

In attempting to determine the degree of the equation (whose coefficients 
were rational functions in the elementary symmetric polynomials) satisfied 
by a rational function f = f(XlJ ... , X n ), he formed the product 

B(t) = II (t - f(Xa(1),· .. ,Xa(n)) 
aESn 

and tried to write it in the form B1(t)k. For every 0" in Sn, set 0" . f 
f(Xa(1), ... , Xa(n)), and take the natural action of the group Sn on E = 
{O" . f,O" E Sn}; then the product of the cardinal of the orbit O(J) by the 
cardinal k of the stabilizer S(J) is n!, and we have B(t) = B1 (tl. 

Obviously, this was not the language used by Lagrange; he reasoned on 
. 1 If f( I II III IV ) f (" III ,IV ) h a specIa case. x ,X ,X , x , . .. = X, x ,X, x , . .. ,t en every 

other value of f is also taken twice, as he showed by the example 

f( IV III I II ) f( '" I IV II ) X ,x ,x,x, ... = x ,X,X ,x, .... 

Then, he asserted, the same holds in the other cases. Who would dare 
to write this way nowadays? And yet, his argument is the basis of the 
argument used to prove that every equivalence class of elements in a group 
modulo a subgroup contains the same number of elements. 

Galois was the first to actually use the word "group", but he meant it as 
a subgroup of the permutation group of the set of roots of a polynomial, 
as in Proposition 8.1.4. Galois did not use the notation for permutations 
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that we use now; he wrote successive arrangements of the roots which he 
called permutations: 

abcde 
bcdea 
cdeab 

emphasizing the fundamental notion of what he calls substitution, which 
makes it possible to pass from one permutation to another. Galois did not 
use associativity, identity elements, or inverses, only the internal group law, 
writing: "Thus, if in such a group we have the substitutions Sand T, we 
are sure to have the substitution ST." Indeed, for a subset of Sn to be a 
subgroup, it is necessary and sufficient for it to be stable under composition. 

The abstract form of the definition of a group, which we use today, 
was built up slowly over the course of the 19th century, with suggested 
definitions by Cayley (1854), Kronecker (1870), Weber (1882), Burnside 
(1897), and Pierpont (1900). The axioms of associativity, identity element 
and inverses were first stated in their present form by Pierpont. 

8.2 Fields of Invariants 

8.2.1 Definition and Proposition 

Let K be a field, and let L be an extension of K and H a subgroup of 
Gal(LIK). The set I(H) of elements x E L invariant under H, i.e. such 
that for every a E H we have a(x) = x, is a subfield of L called the field 
of invariants of H (Figure 8.2). 

L cr "L 

\ / 
I(H) 

1 
<Q 

FIGURE 8.2. 

8.2.2 Emil Arlin's Theorem 

Let K be a field, and let Lee be an extension of K and H a finite 
subgroup of order r ofGal(LIK). Then L is a normal extension of I(H) of 
degree r, and Gal(LII(H» = H. 
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PROOF. - Let x E L, and let us show that x is of degree less than or equal 
to rover I(H), and that its minimal polynomial P over I(H) has all its 
roots in L. 

The set E = {hex), hE H} is finite, say of order t with (t :-::; r). For every 
i, 1:-::; i :-::; t, there exists hi in H such that {hi (x),l :-::; i :-::; t} = E. We set 

SeX) = II (X - hi(x)); it is a polynomial in L[X]. Let us show that the 
l-::;i-::;t 

coefficients of S lie in I (H). 
Let h E H. For every i with 1 :-::; i :-::; t, we have h(hi(x)) E E; as h is 

injective and E is finite, we have h(E) = E. 
Let h' : L[X] ~ L[X] be the algebra endomorphism defined by h'lL = h 

and h'(X) = X, i.e. by h' C~=akXk) = Lh(ak)Xk. By the above, we 

have 

h'(S)(X) 

SeX). 

The coefficients of S are thus invariant under the elements of H and belong 
to I(H). 

Furthermore, E contains x since the identity map of L belongs to H, 
so Sex) = 0; thus x is algebraic over I(H) and its minimal polynomial P 
divides S. It follows that x is of degree less than or equal to t = deg(S), so 
less than or equal to rover I(H). As S factors into linear factors in L, the 
same holds for P: all the roots of P lie in L. Thus L is a normal extension 
of I(H). 

Let us now show that L is an extension of finite degree r of I (H). As every 
element x E L is of degree :-::; rover I(H), we can set s to be the maximum 
of the degrees of the elements of L over I (H). Let y be an element of degree 
s. If I(H)[y] is strictly contained in L, then there exists z in L - I(H)[y]; 
z is algebraic over I(H), so it is algebraic over I(H)[y] and [I(H)[y][z] : 
I(H)] > [I(H)[y] : I(H)] = s. By the Primitive Element Theorem (§6.5), 
there exists an element w of L such that I(H)[y][z] = I(H)[w] (Figure 8.3). 
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L 

i 
I(H)[y][z] = I(H)[w] 

1 
I(H)[y] 

i 
I(H) 

FIGURE 8.3. 

We thus have [I(H)[w] : I(H)] > s, which contradicts the maximality 
of s. Hence L = I(H)[y], so L is an extension of finite degree of I(H) 

and [L : I(H)] = s ~ r. Finally, IGal(LII(H) I = [L : I(H)], by §8.1.2; 

as H c Gal(LII(H), we have r ~ [L : I(H)] so that r = [L : I(H)] and 
H = Gal(LII(H). 0 

8.3 The Example of Q [~, j]: First Part 

We know that the splitting field of x 3 - 2 over Q is the normal extension 

N = Q [~,j]. As [N : Q] = 6, the Galois group G = Gal(NIQ) has six 

elements; let us call them 0"1, ... ,0"6. For 1 ~ i ~ 6, O"i is determined by the 
images of j and ~, which are conjugates of these elements over Q. The 
image of j is j or l; the image of ~ is ~, j{l2, or l~. This gives the 
six possibilities listed in Table 8.1. 

0"1 0"2 0"3 0"4 0"5 0"6 

~ {12 {12 j{12 j{12 j2{12 j2{12 

j j j2 j j2 j j2 

TABLE 8.1. 

Note that 0"1 is the identity on N and the identity element of G, and that 
0"2 is induced by complex conjugation. 

To determine the structure of G, we note that it has three elements 
of order two: 0"2,0"4,0"6, and two elements of order 3: 0"3,0"5. Thus it is 
isomorphic to S3 (the only other group with six elements is the cyclic 
group (Z/6Z,+), which contains only one element of order two). We can 
also note that G is a group with six elements, and since it can be identified 
with a subgroup of S3, by §8.1.4, it must be isomorphic to S3. 
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If we number the three roots of X 3 - 2, for example if we number ~ 
as 1, j~ as 2 and j2~ as 3, we construct an isomorphism from G to 83 

(Table 8.2). 

0"1 0"2 0"3 0"4 0"5 0"6 

id (23) (123) (12) (132) (13) 

TABLE 8.2. 

Let us determine the field of invariants of a subgroup H of G. 
If H = {id} , it is clear that I(H) = N. 
Recall that every element x of N can be written uniquely in the form 

x = a + bj + c~ + dj ~ + e?'4 + fj?'4. 

If H = (0"3), then x belongs to I(H) if x = 0"3(X); i.e. 

x = a + bj + cj ~ + d( -1 - j) ~ + e( -1 - j)?'4 + 1?'4, 

which implies that c = -d, d = c - d, e = -e + I, 1 = -e, i.e. c = d = e = 
1=0. 

Thus I(H) = Q[j]. As shown by Artin's theorem, we indeed have 
[N : Q[j]] = 3 = IHI and Gal(NIQ[j]) = H. 

Similarly, we find 

I( (0"2}) = Q [~] , 

If H = G, all of the preceding conditions must be satisfied, so we find that 
I(H) = Q. 

The correspondence between the set of subgroups of 83 (or of G), ordered 
by inclusion, and the set of the intermediate extensions between Q and 
N, also ordered by inclusion, is just one example of the central tenet of 
Galois theory, the Galois correspondence, which we will study in §8.5. It is 
summarized in Figure 8.4. 

FIGURE 8.4. 
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8.4 Galois Groups and Intermediate Extensions 

PROPOSITION. - Let K be a field. Let N be a normal extension of finite 
degree of K and L an intermediate extension between K and N. We know 
(see §7.5) that N is a normal extension of L. We also assume that L is a 
normal extension of K (Figure 8.5). 

N .N 

~mw t 
normw L -----+- L 

j;/ 
FIGURE 8.5. 

1} The map cp : Gal(NIK) -+ Gal(LIK) obtained by taking the restriction 
to L of a K -automorphism of N is a surjective group homomorphism with 
kernel equal to Gal(NIL). 

2} The group Gal(NIL) is a normal subgroup of Gal(NIK), and 

Gal(NIK)jGal(NIL) ~ Gal(LIK). 

COMMENTARY. - We thus have the following exact sequence of (not nec
essarily abelian) groups: 

1 -+ Gal(NIL) -+ Gal(NIK) ~ Gal(LIK) -+ l. 

In other words, Gal(NIK) is a (group) extension of Gal(NIL) by Gal(LIK). 

PROOF. - 1) cp is a group homomorphism. By §6.4.3, it is surjective. More
over, if u E ker(cp), then ulL = id(L), so u E Gal(NIL) and ker(cp) c 
Gal(NIL). The converse is obvious. 

2) We know that the kernel of a group homomorphism is a normal subgroup; 
the isomorphism is a consequence of a classical theorem on quotients. <> 

8.5 The Galois Correspondence 

As promised at the beginning of this chapter, we now come to the very 
heart of Galois theory. 

FUNDAMENTAL THEOREM OF GALOIS THEORY. - Let K be a field, and 
let N be a normal extension of finite degree of K. Let £ be the set of 
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intermediate extensions between K and N, and let g be the set of subgroups 
of Gal(NIK). 

Let I : g -t £ denote the map which associates to a subgroup H of 
Gal(NIK) the field of invariants I(H), and let G : £ -t g be the map 
which associates to an extension L of £ the group Gal(NIL). 

1) I and G define inverse bijections which are decreasing for the inclusion 
relation. 

2) By restriction, I and G define inverse bijections of the set £' of nor
mal extensions of K contained in N to the set g' of normal subgroups of 
Gal(NIK). 

3) If Land L' are intermediate extensions between K and N, then L' is 
a normal extension of L if and only if Gal(NIL') is a normal subgroup of 
Gal(NIL), in which case Gal(L'IL) = Gal(NIL)/Gal(NIL'). 

4) If Land L' are intermediate extensions between K and N with L' ::) L, 
then 

[L' : L] = IGal(NIL)1 / IGal(NIL')I. 

COMMENTS. -

1) I and G define a trellis isomorphism. Let us explain this. 
Recall that the expression z = sup(x, y) in an ordered set means that z 

is the smallest element satisfying z 2:: x and z 2:: y, i.e. for every t such that 
t 2:: x, t 2:: y, we have t 2:: z. The definition of z = inf(x, y) is analogous. A 
trellis is an ordered set in which the sup and the inf of any two elements 
exists. 

£ is a trellis for inclusion, since inf(L, L') = L n L' and sup(L, L') = 
K(L U L'). 

g is a trellis for inclusion: indeed, if H and H' are subgroups of Gal( N IK), 
then inf(H, H') = H n H' and sup(H, H') is the subgroup generated by H 
and H'. 

2) This theorem asserts in particular that an element of N lies in K if it 
is invariant under all of the elements of Gal(NIK), a result that is often 
useful. 

PROOF. - 1) The fact that I and G are decreasing is clear. 
Let us show that 10 G = id(£). Let L E £ and L' = I(G(L». N is a 

normal extension of L and L'. We have L' ::) L since every 0' E G(L) = 
Gal(NIL) satisfies aiL = id(L). As G is decreasing, we have G(L') C G(L)j 
moreover, if 0' E G(L), we have aiL' = id(L') by definition of L'. Thus, 0' E 

G(L'}, so that G(L) = G(L'). As IG(L)I = [N : L] and IG(L')I = [N : L'], 
we have [L' : L] = 1, so L' = L. 
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The equality Go I = id(g) was the object of Artin's theorem (Theorem 
8.2.2). 

2) Proposition 8.4 shows that if L lies in £', then G(L) is a normal 
subgroup of Gal(NIK). Conversely, if H lies in g', let us show that I(H) lies 
in £' by using §7.3. Let 0' : I(H) -+ LeN be a K-homomorphism. As N is 
a normal extension of finite degree of I(H), there exists a K-automorphism 
r of N such that rII(H) = 0'. For every p of Gal(NII(H)) = G(I(H)) = H, 
we have r-lpr E H since H lies in g'. Consequently, for every x in I(H), 
we have r-lpr(x) = x, so that rex) = p(r(x)), which shows that O'(x) = 
rex) E I(H) by 1); I(H) is indeed a normal extension of K. 

3) It suffices to apply 2), replacing K By L, and Proposition 8.4. 
4) Indeed, we have 

IGal(NIL)1 / IGal(NIL')1 = [NIL]j[NIL'] = [L' : L]. <> 

8.6 The Example of Q [~, j]: Second Part 

In this example, A3 = (123)} is the only non-trivial normal subgroup of 
83 , and the normal extension Q[j] of Q corresponds to it. 

Let us give the computation of Proposition 8.4 in detail. Gal(NIQ) has 
six elements which we denoted by 0'1. ••• ,0'6. Gal(NIQ[j]) is the subgroup 
consisting of the elements 0'1,0'3,0'5. We have 

Gal(Q[j]IQ) ~ Gal(NIQ)/Gal(NIQ[j]) ~ 7../27..; 

the elements of Gal(Q[j]IQ) are the restrictions of the elements of Gal(NIQ) 
to Q[j]. Restricted to Q[j], 0'1. 0'3, 0'5 act like the identity and 0'2,0'4,0'6 act 
like complex conjugation. 

8.7 The Example X4 + 2 

In the following chapters, we will see classes of polynomials for which one 
can actually compute the Galois group. We refer to Chapter 16 for a sketch 
of algorithmic methods used for polynomials of small degree; in this section, 
we give one rather long, complete example. We need to begin by recalling 
dihedral groups. 

8.7.1 Dihedral Groups 

The group dihedral Dn is the group of isometries of a regular polygon with 
n ~ 3 sides. As an isometry preserves barycenters, it preserves the center 
o of the polygon, the isobarycenter of the set of vertices, and induces a 
permutation of the vertices of the polygon. 

Let Ao, AI, ... , An - l be the n vertices of the polygon. An isometry I is 
determined by the images of Ao and AI. If I(Ao) = Ak , I(Al ) is A k - l or 
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Ak+1 (we consider the indices modulo n) since f conserve the distances. 
If f(Ad = A k+1, then f is the rotation of center 0 and angle 2k7r/n. If 
f(Al) = A k- 1, f is the symmetry with respect to line D passing through 
o such that (OAo,D) = k7r/n. 

Let r denote the rotation of angle 271" In and s the symmetry with respect 
to ~Ao. Thus, the dihedral group Dn has 2n elements: 

1) the rotations of angles 2k7l" I n, equal to rk for 0 ::; k ::; n - 1; and 

2) the symmetries with respect to the lines D passing through 0 such 
that (OAo,D) = bin, with 0 ::; k ::; n -1; they are equal to rks 
since rks(Ao) = Ak and rks(Al) = A k- 1· 

The group Dn is thus generated by rand s, and in order to perform 
all computations in the group Dn, it suffices to use the three relations: 
rn = id, S2 = id, sr = r-1 s. The two first relations are obvious, and the 
third is a consequence of the fact that sr(Ao) = A n- 1 = r-1s(Ao) and 
sr(Al) = An-2 = r-1s(A1). It follows that srk = r-ks. We prove that if a 
group is generated by two elements satisfying these three properties, it is 
a quotient of Dn, and these relations characterize Dn among all groups of 
order 2n. 

8.7.2 The Special Case of D4 

We will see in §8.7.3 below that the structure of the Galois group of the 
polynomial X4 + 2 over Q is that of the group D4 • Let us recall some 
properties of this group, its subgroups, and its embeddings in 84, so as to 
highlight the Galois correspondence. 

The group D4 is the group of isometries of a square ABeD. Let .6. and 
.6.' denote the mediatrices of (AB) and (Be) (Figure 8.6). 

B 

c A 

D 

FIGURE 8.6. 
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The group D4 contains eight elements: the identity, two elements of order 
4, r = rot(O,7r/2) and r3 = rot(O, -7r/2) = r-l, and five elements of order 
2, r2 = rot(O,7r) = -id = sym/O, s = sym/(GA), rs = sym/tJ. = sr3, 
r2s = sym/(BD) = sr2, and r3s = sym/tJ.' = sr. 

The subgroups of D4 have 1, 2, 4, or 8 elements. The subgroup with 
one element is {id}; the subgroups with two elements are (r2) = {id, r2}, 
(s), (rs), (r2s), (r3 s ); the subgroups with four elements are (r), (s,r2s) = 
{id, s, r2s, r2}, (rs, r3 s ) = {id, rs, r3s, r2}; the subgroup with eight elements 
is D4 itself. The notation (Xl, ... , Xn) means the subgroup generated by 
the elements XI, • .• ,Xn . One of the subgroups with four elements is cyclic 
of order 4, and the other two are generated by symmetries defined by two 
orthogonal lines: (AG) and (BD) or tJ. and tJ.'; showing that these are the 
only subgroups is a simple matter of patience. 

Every bijection {A,B,G,D} --+ {1,2,3,4} defines an embedding of D4 
into 84, but there are only three distinct subgroups of 84 isomorphic to D4 
(a quick proof is given by the Sylow theorems; see Exercise 8.2). 

8.7.3 The Galois Group of x4 + 2 

The polynomial X4 + 2 is irreducible over Q. Its roots in Care ±( 0 and 
±i(0, where (= ei7r/ 4 = (1 + i)/V2. The splitting field of X4 + 2 is thus 
N = Q[(0,i(0). As N c Q[0,i) and (0 -i(0 = 2 x TI/4, ~ lies 
in N, so N = Q[0,i). 

We see that [N : Q) = 8 since 0 is of degree 4 over Q and i is of degree 
2 over Q[0). Thus, the Galois group G of X4 + 2 is of order 8. We also 
know that it is a subgroup of 84 • Using the Sylow theorems, we can assert 
that G ~ D 4 without even giving an explicit isomorphism. 

This is not sufficient for our purposes, because we want to use the group 
D 4 as a model group, in the sense that we know how to determine its 
subgroups, normal subgroups, etc., and can transport this information into 
G by explicit isomorphism. 

To define the elements of G, it suffices to give their value at 0 and i, 
as we saw in Chapter 6. Defining p and a by p( 0) = i0, p(i) = i and 
a( 0) = 0, a( i) = -i, we can check that p is of order 4 and a of order 
2, and that p and a generate G and the eight elements of G are defined as 
in Table 8.3. 

In this table, we added columns giving the images of the remarkable 
elements V2 and (, although these can of course be deduced from the 
other columns. An isomorphism cp : D4 --+ G is strongly suggested by the 
notation, namely the one defined by cp(r) = p, cp(s) = a, etc. 

8.7.4 The Galois Correspondence 

Using the isomorphism cp : D4 --+ G defined in §7.3, we obtain the subgroups 
of G as the images of those of D4. They are given by {id} , (p2), (a), (pa), 
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~ i V2 ( 

id ~ i V2 ( 

p i~ i -V2 -( 

p2 -~ i V2 ( 

p3 -i~ i -V2 -( 

a ~ -i V2 -i( 

pa i~ -i -V2 i( 

p2 a -~ -i V2 -i( 

p3 a -i~ -i -V2 i( 

TABLE 8.3. 

(p2a), (p3a ) , (a, p2a), (pa, p3a ), (p), and G itself. We can then proceed to 
completely determine the trellis of intermediate extensions between Q and 
N, and its Galois correspondence with the trellis of subgroups of G (Figure 
8.7). 

FIGURE 8.7. Trellis of subgroups and the corresponding intermediate extensions 
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Do not forget that some intermediate extensions are obvious once we 
know that N = Q[~,i] : Q[~],Q[i],Q[v'2], etc. Using the table of val
ues of p and a and the degrees of these extensions, we see to which sub
groups they correspond. For example, Q[iv'2] is of degree 2 over Q, so 
it corresponds to a subgroup with 8/2 = 4 elements. As pa(iv'2) = iv'2 
and p2(iv'2) = iv'2, this subgroup is necessarily given by (pa,p3a ). Thus, 
Q[iv'2] = I( (pa, p3a )). 

To identify I( (pa)), in the absence of a better idea, we need to have 
recourse to linear algebra. A basis of N over Q is given by 1, ~, v'2, ~, 
i, i~, iv'2, and i~. For 

x = a+b~ +cv'2 +d~+ ei + ji~ + giv'2 + hi~, 

with coefficients in Q, the equality x = pa(x) implies that b = j, c = 

e = 0, h = -d; we are tempted to set a = (1 + i) ~ and note that 
x = a + ba + g' a 2 + d' a3 with coefficients in Q, giving I( (pa)) = Q[a]. Note 
that Q[a] = Q[(3~]. Similarly, we find that I«p3a )) = Q[(~]. 

Looking for normal extensions in the trellis of extensions between Q and 
N is equivalent to looking for normal subgroups in the trellis of subgroups 
between {id} and G. The trivial normal subgroups G and {id} correspond 
to Q and N. The subgroups of index 2 are all normal, and the corresponding 
extensions of degree 2 are obviously normal. The only non-trivial case is 
that of the subgroup (p2), corresponding to the normal subgroup (r2) of 
D 4 ; it corresponds to the normal extension Q[i, v'2] ofQ. Even if we already 
knew, before reading this chapter, that these extensions of Q are normal, 
we can now assert that they are the only normal ones in the trellis of 
extensions between Q and N. 

8.7.5 Search for Minimal Polynomials 

Knowing the Galois group gives a new way of finding the minimal polyno
mial of an element of a normal extension. 

For example, to find the minimal polynomial P of a = i + ( over Q, we 
look for the set of conjugates of a over Q; this is the set of images of a 
under the elements of G, and we note that this set contains exactly four 
elements: a, i - ( = pea), -i - i( = a(a), -i + i( = pa(a). After some 
longish computations, we obtain 

P(X) = (X - i - ()(X - i + ()(X + i + i()(X + i - i() 

X4 + 2X2 + 4X + 2. 
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Toward Chapters 9, 10, and 12 

It is now possible to give some important applications of Galois theory: to 
roots of unity, first of all, then to extensions with cyclic Galois group, and 
finally to the problem of solvability by radicals. 

Exercises for Chapter 8 

In the two first exercises, we collect the basic facts about group actions on 
sets, and the Sylow theorems necessary to understand some parts of the 
main text. The solutions are contained in all classic algebra books. 

Exercise 8.1. Groups acting on sets 

We say that a group G acts on a set E if there exists a group ho
momorphism <p : G --+ SE where SE is the permutation group of E, 
i.e. the set of bijections of E to itself. For every 9 E G and every 
x E E, the action of 9 on x gives an element which we denote by 
g. x = <p(g)(x). In this exercise, we show the following properties: 

1) e· x = x for every x E E, where e is the identity element of G; 

2) (gh)· x = g. (h· x) for every x E E and every g, hE G. 

Some frequently encountered examples are the action of a subgroup 
of Sn acting on the set {I, ... , n}, the actions of geometric groups 
on a set of points in the plane (rotations of the points on a circle, 
etc.), the action of a group on itself or on one of its quotients by left 
translation, the action of a group acting on the set of its subgroups 
by conjugation, and the action of the Galois group of a polynomial 
acting on its roots. 

We define the orbit of a point x E E under the action of G 
by OG(x) = {g. x, 9 E G}, and the stabilizer SG(x) by SG(x) = 
{g E G,g' x = x}. We simply write O(x) and S(x) when there is no 
danger of confusion. 

We say that G acts transitively if the whole set forms a single orbit, 
i.e. if for every x, y E E, there exists 9 in G such that y = 9 . x. A 
transitive subgroup of Sn is a subgroup of Sn which acts transitively 
on{l, ... ,n}. 

In what follows, we assume that G and E are finite. 

1) Show that S(x) is a subgroup of G and that IS(x)IIO(x)1 = IGI. 

2) a) Let x and y be two elements belonging to the same orbit, so that 
y = "I'X for some "I E G. Show that S(x) and S(y) are conjugate 
subgroups; more precisely, show that S(y) = "IS(xh-l. 
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b) If G acts transitively on E, show that the stabilizers of the 
elements of E all have the same number of elements. 

3) Let p be a prime. We say that a group is a p-group if its order is a 
power of p. 

a) Burnside's theorem: Show that a non-trivial p-group has a non
trivial normal subgroup, namely its center, by letting G act 
on the set of its conjugacy classes (the conjugacy class of an 
element x EGis the set {gxg-l,g E G}), and counting the 
elements modulo p. 

b) Show that a group of order p2 is necessarily commutative. 

Exercise 8.2. The Sylow theorems 

The Norwegian mathematician Ludwig Sylow (1832-1918) was ex
tremely interested in the work of Abel and Galois; he even wrote 
their biographies. His results on finite groups, published in 1872, are 
extremely useful. 

If a prime number p divides the order of a finite group G, we define 
a p-subgroup of G to be any subgroup of G whose order is a power of 
p, and a Sylow p-subgroup of G to be any p-subgroup of G whose order 
is the maximal power of p dividing IGI. Let mp denote the number of 
Sylow p-subgroups. The Sylow theorems assert that 

1) every p-subgroup of G is contained in a Sylow p-subgroup of G; 

2) mp = 1 mod p (so mp =I- 0; one easy consequence of this result 
is Cauchy's theorem proving the existence of elements of order 
p in G); 

3) the group G acts transitively by conjugation on the set of its Sy
low p-subgroups, which implies that any two Sylow p-subgroups 
of G are conjugate, so that in particular mp divides IGI and that 
if mp = 1, the unique Sylow p-subgroup of G is normal in G. 

The Sylow theorems are particularly interesting for groups whose 
order is not a prime power. Using the relations mp = 1 mod p and 
the fact that mp divides IGI, we can list the possible values of mp for 
a given group G; if IGI is small, there are not many possibilities. 

Exercise 8.3. Non-normal extensions 

Set L = Q[.v2, W]. Determine G = Gal(LIQ). Does the Galois cor
respondence hold here? 
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Exercise 8.4. Computation of Galois groups 

For each of the following polynomials P of degree n, determine: 

• the Galois group G of the splitting field N of P over Q; 

• the correspondence between subgroups of G and subextensions of N; 

• the factorization of P over each of its intermediate extensions; 

• a subgroup of Sn isomorphic to G, by numbering the roots. 

1) X2 - 2; 

3) X 3 -1; 

5) X4 + 1; 

2) (X2 - 2)(X2 - 3); 

4) X 3 + 2; 
6) X4_1. 

Exercise 8.5. Galois groups 

1) Let N be a normal extension of finite degree of a field K. Let H be a 
subgroup of Gal(NIK), and let I(H) be the field of invariants under 
H. Show that [I(H) : K] = IGal(NIK)/HI. 

2) Let L C C be an extension of finite degree of a field K, and let G be 
the Galois group of Lover K. Show that if IGI = [L : KJ, then L is 
a normal extension of K. 

3) For every even integer n ;:::: 2, find a polynomial of degree n with 
distinct non-rational roots, whose Galois group over Q is Z/2Z. 

4) Let C(X) be the field of rational functions in one indeterminate, and 
let G be the group of C-automorphisms of qX) consisting of the set 
of maps (T a defined for every a E C by 

( P(X») P(X + a) 
(Ta Q(X) = Q(X + a)" 

Show that I (G) = C. 

Exercise 8.6. Galois groups that are direct products 

1) Let K be a field, and let N be a normal extension of K. Let L' and 
L" be extensions of K contained in N, and set G = Gal(NIK), G' = 
Gal(NIL') and G" = Gal(NIL"). Show that if L' and L" are normal 
extensions of K such that L'uL" generates Nand L'nL" = K, then 
G is the direct product of its subgroups G' and G", i.e. G ~ G' x G". 

2) Show the converse: if K is a field and N a normal extension of K, if 
G = Gal(NIK) is a direct product G ~ G' x G", and if L' = I(G') 
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and L" = I(G"), then L'UL" generates Nand L'nL" = K. (Recall 
that G is a direct product of two of its subgroups H and K if 

a) H and K are normal subgroups of G; 

b) HnK={e}; 

c) HK = {hk,h E H,k E K} = G.) 

3) Show that, under the conditions of 1), we have 

Gal(NIK) ~ Gal(L'IK) x Gal(L"IK). 

Exercise 8.7. Cubic equations 

Consider the polynomial P(X) = X 3 + pX + q. Write a, b, c for its 
roots and D for its discriminant, and let d be a complex number such 
that d2 = D, K = Q(P,q), G = Gal(K[a,b,c]IK). 

1) Assume that P is reducible over K. What are the possible structures 
of G? Give them in terms of d. 

2) Assume that P is irreducible over K. What are the possible group 
structures on G? (Distinguish between the case d E K and the case 
d f/. K.) Give the intermediate extensions between K and K[a, b, c] in 
each case. 

3) Determine the Galois groups of 

a) X 3 - 2X - lover Q and over Q[v5]; 

b) X 3 - 3X + lover Q; 

c) X 3 - 4X + lover Q; 

d) X 3 - 2X + 2 over Q and over Q[iv'i9]; 

e) X 3 - 5 over Q, over Q[.v5] and over Q[iv3]; 

f) X 5 + X2 - 9X + 3 over Q. 

Exercise 8.8. Biquadratic extensions 

The fields we consider here are all intermediate extensions between 
Q and C. 

A biquadratic extension of a field K is an algebraic extension L of 
degree 4 of K such that there exist a and bE K with L = K[Va, v'b]. 
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1) a) Show that every biquadratic extension N of a field K is normal; 
give its Galois group G and the Galois correspondence between 
subgroups of G and intermediate extensions between K and N. 

b) Let N be a normal extension of degree 4 of a field K such 
that Gal(NIK) ~ 7l/271 x 7l/271. Show that N is a biquadratic 
extension of K. 

2) Set a = )6 + yTI, (3 = )6 - yTI, and N = Q[a]. 

a) Determine the minimal polynomial P of a over Q. 

b) Compare Q[VU] and N. Show that (3 lies in N, and give its 
expression in the basis {I, a, a 2 , a 3 } . 

c) Show that N is a normal extension of degree 4 of Q. 

d) Set G = Gal(NIQ). What is the structure of G? 

e) What are the degrees of a + (3 and a - (3 over Q? Deduce that 
a and (3 can be written in the form va ± Vb for elements a and 
b E Q; compute a and b. 

f) Give the trellis of intermediate extensions between Q and N. 

Exercise 8.9. The normal closure of Q [{II + J2] 

Set P(X) = X 3 + 3X - 2, u = {h + J2 and v = ,II - J2, where 
the cube roots lie in R Let D be the discriminant of P, and let d be 
the number, with positive imaginary part, such that d2 = D and N 
is the normal closure of Q(u) over Q. 

1) Determine the number of real roots of P. 

Now, let c, a, and b denote the roots of P with negative, zero, or 
positive imaginary parts respectively, and let f be the Galois group 
Gal(Q[a, b, c]IQ). 

2) Determine a, b, c and the structure of f. 

3) What is the degree of u over Q? 

4) Show that N = Q[u,j]. 

5) Give examples of distinct non-trivial intermediate extensions between 
Q and N. 
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Now, let G be the Galois group Gal(NIQ). 

6) Determine the order of G. 

For what follows, one can proceed by constructing a table giving 
the values g(x) for 9 in G and certain x in N. 

7) Let a,p : N --+ N denote the elements of G such that a(u) = u, 
a(j) = j2, p(u) = jv, and p(j) = j2. What are the orders of a and 
p? Show that p and a generate G. Compute p(V2),a(d), and p(d). 

8) What is the structure of G? 

9) Which subgroup of Gleaves Q[u] invariant? Is it a normal subgroup 
ofG? 

10) Determine the extensions invariant under the groups (a, p2), (pa, p2), 
(p). 

11) Give the precise Galois correspondence between subgroups of G and 
intermediate extensions between Q and N. 

Exercise 8.10. Linear independence of ..jPk for prime numbers Pk 

Set K = Q[V2, v'3]. 

1) Show that v'5 is of degree 2 over K, by comparing Q[v'5] to the 
intermediate extensions between Q and K. 

Set L = Q[V2, v'3, v'5]. 

2) Show that L is a normal extension of Q. 

3) Determine the structure of the Galois group G' = Gal(LIQ) (recall 
that a group all of whose non-trivial elements are of order 2 is isomor
phic to a product of groups isomorphic to Zj2Zj this result follows if 
one considers the group as a Zj2Z-vector space). 

4) Let us admit the fact that G' has seven subgroups of index 2 (they 
are hyperplanes for the Zj2Z-vector space structure, and there are 
as many of them as there are independent non-zero vectors in the 
dual of this vector space). Find the set of quadratic extensions of Q 
contained in L. 

5) Generalize the above to extensions of Q by {JPj pEE}, where E is 
a finite subset of the set of prime numbers. 
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COMMENTARY. - By results of Besicovitch and J. Richard (see the book by 
Gaal), this result can be generalized to a finite set of n-th roots of distinct 
prime numbers. 

Solutions to Some of the Exercises 

Solution to Exercise 8.3. G = {id} since the Q-algebra L is generated 
by .v2 and W, and a Q-automorphism of L leaves them fixed since their 
other conjugates are not real, so do not lie in L. The Galois correspondence 
does not hold in this situation since L has non-trivial sub extensions, namely 
Q[ .v2], Q[ W], whereas G has no non-trivial subgroups. 

Solution to Exercise 8.4. 

1) X2 - 2 has splitting field Q[.J2] over Q. As this extension is of degree 2 
over Q, the group Gal(Q[J2]IQ) has two elements, the identity on Q[.J2] 
and the element a : Q[.J2] -+ Q[.J2] defined by a(.J2) = -.J2. This group 
is thus isomorphic to 7l..J27l.. and has only trivial subgroups. Thus, there 
is no intermediate extension between Q and Q[.J2], which we could have 
noted directly by considering degrees. So we obtain G ~ S2. 

2) (X2 - 2)(X2 - 3) has splitting field Q[.J2, J3] over Q. As this extension 
is of degree 4 over Q, we find that G = Gal(Q[.J2, J3]IQ) has four elements; 
thus it is isomorphic to either 7l../47l.. or 7l../27l.. x 7l../27l... To decide which of 
these is the right group, we need to study G; its elements ai, a2, a3, a4 
are extensions of Q-automorphisms of Q[ .J2]. They are are defined by the 
images of .J2 and J3' and these images are conjugates, so they must be 
equal to ±.J2 and ±J3 (Table 8.4). 

.J2 J3 
al .J2 J3 
a2 -.J2 J3 
a3 .J2 -J3 
a4 -.J2 -J3 

TABLE 8.4. 

We see that the element al is of course the identity element, and a2, a3, 
a4 are of order two. Thus G is isomorphic to 7l../27l.. x 7l../27l..; its subgroups 
are {ad, (a2), (a3), (a4), and G. The corresponding fields of invariants are 
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Q[J2, h], Q[h], Q[V2], Q[V6] and Q. We can guess these intermediate 
extensions easily and check that they work: for example, Q[h] is invariant 
under (172) and its degree is equal to the index of (172) in C. Without this 
intuition, we would need to work with a basis of Q[J2, h] over Q, for 
example 1, J2, .J3, V6, and solve the equations x = 17i(X), i = 2,3,4, with 
x = a + bJ2 + ch + dV6. 

The factorizations of (X2 - 2)(X2 - 3) are given by 
(X - J2)(X + J2)(X2 - 3) over Q[J2]; 
(X - h)(X + h)(X2 - 2) over Q[h]; 
(X2 - 2)(X2 - 3) over Q[V6]. 

Choosing the correspondence defined in Table 8.5, we obtain the elements 
of the subgroup of S4 isomorphic to C (Table 8.6). 

TABLE 8.5. 

171 172 173 174 

id (1 2) (3 4) (1 2)(3 4) 

TABLE 8.6. 

3) X 3 - 1 has splitting field Q[j] over Q, and we can reason exactly I'.S in 
part 1). 

4) X 3 + 2 has the same splitting field over Q as X 3 - 2, since its roots are 
the negatives of the roots of X 3 - 2. So we can reason as in §8.3 and §8.6. 

5) We saw (Exercise 7.1) that the splitting field of X4 + 1 over Q is N = 
Q[(] = Q[i, J2] with ( = ei7f / 4 = (1 + i)jJ2. We find the intermediate 
extensions Q[i], Q[J2] and Q[iJ2] by the same procedure as in 2), and the 
elements of the Galois group are defined by Table 8.7. 

i J2 ( (3 (5 (7 

171 i J2 ( (3 (5 C 
172 -i J2 C (5 (3 ( 

173 i -J2 (5 C ( (3 

174 -i -J2 (3 ( C (5 

TABLE 8.7. 
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The factorizations of X4 + lover an intermediate extension L are ob
tained by regrouping the roots of X4 + 1,which are conjugates over L. To 
compute the action of G on these roots, it is useful to add columns giv
ing their images to Table 8.7; for example, the conjugate of ( over Q[i] is 
0"3 «() = (5, etc. The factorizations of X4 + 1 follow from this: 

• over Q[i] : 

• over Q[V2] : 

• over Q[iV2] : 

6) X4 - 1 has splitting field Q[i] over Q; the solution works exactly as in 
1). By numbering the numbers 1, -1, i, -i as 1, 2, 3, 4, we identify the 
group G with the subgroup of 84 given by id and (34). 

Solution to Exercise 8.5. 

1) The quotient Gal(NIK)1 H is not necessarily a group, but it is a coset 
space of order IGal(NIK)I/IHI = [N : K]/[N : I(H)] = [I(H) : K]. 

2) The number of K-homomorphisms from L to C is equal to [L : KJ, so 
the number of K-automorphisms of Lis :-:; [L : K]. If we have equality, this 
means that O"(L) C L for every K-homomorphism 0" of L in C, which in 
turn means that L is a normal extension of K. 

3) The different factors do not bring any more information than does the 
first. Examples: II (X2 + k2) whose splitting field is Q[i], II (X2_ 

l~k~n l~k~n 

2k2) whose splitting field is Q[V2], etc. 

4) Assume that P and Q are relatively prime. If P(X + a)/Q(X + a) = 
P(X)/Q(X), we have 

P(X + a)Q(X) = P(X)Q(X + a). 

P(X), which is relatively prime to Q(X), divides P(X + a), so that we 
have P(X +a) = AP(X). Comparing the highest degree terms implies that 
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A = 1; if deg(P) = n 2: 1, then comparing the terms of degree n - 1 gives 
a contradiction for a -I- O. 

Solution to Exercise 8.6. 

1) If L' U L" generates N, sup( L', L") = N in the trellis of extensions, so 
inf( G', G") = {id} , i.e. G' n G" = {id} . 

If L' n L" = K, then inf(L', L") = K in the trellis of extensions, so 
sup(G',G") = G, i.e. G' and G" generate G. 

If Land L' are normal extensions of K, then G' and G" are normal 
subgroups of G. 

These three conditions imply that G ~ G' x G". 

2) The converse is shown simply by running the argument backward. 

3) The first question asserts that Gal(NIK) ~ Gal(NIL') x Gal(NIL"). 
Proposition 8.4 shows that we have both Gal(NIK)/Gal(NIL') ~ Gal(L'IK) 
and Gal(NIK)/Gal(NIL") ~ Gal(L"IK). It follows that Gal(NIL') 
Gal(L"IK) and Gal(NIL") ~ Gal(L'IK), which gives the result. 

Solution to Exercise 8.7. 

1) If a, b, c lie in K, then G = {id} and dE K. If a and b are of degree 2 
and conjugate over K, then c lies in K, d ~ K and G ~ 7L/27L. 

2) a) If d E K, [K[a, b, c] : K] = [K[a, d] : K] = 3 so G ~ 7L/37L, and there 
is no non-trivial intermediate extension. 

If d is of degree 2 over K, then [K[d] : K] = 2 and [K[a] : K] = 3, so that 
[K[a, b, c] : K] = 6. Thus G is of order 6. As G is isomorphic to a Sl!bglOUp 
of 8 3 , it must be isomorphic to 83 , There are four intermediate extensions 
corresponding to the four non-trivial subgroups of 8 3 . The one of degree 2 
is K[d]. The ones of degree 3 are K[a], K[b] and K[c]. The elements of G 
are given in Table 8.8. 

a b c d 

0'1 a b c d 

0'2 b c a d 

0'3 C a b d 

0'4 a c b -d 

0'5 c b a -d 

0'6 b a c -d 

TABLE 8.8. 
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3) a) As X 3 -2X -1 = (X + 1)(X2 -X -1), we see that the splitting field 
of X3 - 2X - 1 is Q[vIs]; its Galois group over Q is isomorphic to Zj2Z, 
and its Galois group over Q[vIs] is trivial. 

b) As X3 - 3X + 1 is irreducible over Q (the possible rational roots, 
namely ±1, do not work), and moreover D = 92 , we find that G -:,; Zj3Z. 

c) Similarly, X 3 - 4X + 1 is irreducible over Q and, as D = 229 is not a 
square in Q, we have G -:,; S3. 

d) X 3 - 2X + 2 is irreducible over Q (use Eisenstein's criterion); con
sequently, it is also irreducible over = QQ[iV19]. As D = -76, its Galois 
group over Q is isomorphic to S3, and its Galois group over Q[iV19] is 
isomorphic to Zj3Z. 

e) X3 - 5 is irreducible over Q and Q[iylg]; as its discriminant is D = 

-3 X 152 , its Galois group over Q is isomorphic to S3 and its Galois group 
over Q[iylg] is isomorphic to Zj3Z. Over Q[~], X 3 - 5 is reducible and 
its Galois group is isomorphic to Zj2Z. 

f) The polynomial factors as (X2+3)(X3 -3X + 1). The splitting fields of 
the two factors are of degrees 2 and 3 over Q, and their Galois groups over Q 
are isomorphic to Zj2Z and Zj3Z respectively. By Exercise 8.6, the Galois 
group of X 5 + X 2 - 9X + 3 over Q is isomorphic to Zj2Z x Zj3Z -:,; Zj6Z. 
A generator of this group is the Q-automorphism defined by O"(a) = band 
O"(iylg) = -iylg, where a and b are two distinct roots of X3 - 3X + 1. 

Solution to Exercise 8.8. 

1) a) If N = K[ya, Jb], then N is the splitting field of the polynomial 
(X2 - a) (X2 - b) over K, so it is a normal extension of K. The Galois group 
has four elements, namely the elements 0"1 = id, 0"2, 0"3 and 0"4 defined in 
Table 8.9. 

0"1 0"2 0"3 0"4 

Va Va Va -Va -Va 
Jb Vb -Vb Vb -Vb 

TABLE 8.9. 

Clearly, G has three elements of order two, so it is isomorphic to Zj2Z x 
Zj2Z. The subgroups of order two of G are generated by these three ele
ments. They correspond to three intermediate extensions: 

b) Let HI and H2 be two distinct subgroups of order two of Gal(NIK). 
The fields I(Hd and I(H2) are distinct quadratic extensions of K, so they 
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generate N; there exist a and bE K such that I(H1 ) = K[Va] and I(H2 ) = 
K[Vb] (see Exercise 4.7). Hence N = K[Jii, Vb]. 

2) a) Clearly a is a root of the polynomial P(X) = X4 - 12X2 + 25. 
We have P(X + 1) = X4 + 4X3 - 6X2 - 20X + 14. Applying Eisenstein's 

criterion with p = 2 shows that P(X + 1) is irreducible over Q, so P(X) 
is also irreducible. We can also try to factor P in Z[X] using Descartes' 
method, but this turns out to be impossible. 

b) As v'li = a 2 - 6, we have Q[VIT] C Q[a]. The inclusion is strict 
because Q[a] is an extension of degree 4 of Q by a). Furthermore, a/3 = 5 
shows that /3 = 5/a; thus /3 lies in Q[a]. As a(a3 - 12a) = -25, we have 
/3 = (12/5)a - (1/5)a3. 

c) The roots of Pare ±a and ±/3. As /3 E Q[a] by b), Q[a] is a normal 
extension of Q. 

d) When a is in G, O'(a) is a conjugate of a, so O'(a) equals ±a or ±/3. 
The group G contains the four elements 0'1 = id, 0'2, 0'3 and 0'4 defined by 
Table 8.10. 

0'1 0'2 0'3 0'4 

a a -a /3 -/3 

/3 /3 -/3 a -a 

TABLE 8.10. 

Since we know that 

and 

0'4 (0'4 (a» = 0'4(-/3) = 0'4 (-~) = % = a, 

we see that G contains three elements of order 2, so it is isomorphic to 
Z/2Z x Z/r2Z. 

e) The conjugates of a + /3 are a + /3 and 0'2(a + /3) = -a - /3. The 
conjugates of a - /3 are a - /3 and 0'2(a - /3) = /3 - a. Thus a + /3 and 
a - /3 are of degree 2 over Q. We find that (a + /3)2 = 12 + 10 = 22, 
(a - /3)2 = 12 -10 = 2. But a + /3 and a - /3 are > 0, so a + /3 = v'22 and 
a - /3 = -/2. Finally, we have a = Vll/2 +.Jl72 and /3 = Vll/2 - V1/2. 

f) The intermediate extensions of degree 2 over Q are given by 
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Solution to Exercise 8.9. 

1) We have D = -4p3 - 27q2 = -216 and d = 6iv'6. Now, P is a cubic 
polynomial with real coefficients and negative discriminant, so it has one 
real root and two complex conjugate roots. 

2) Cardan's formulas give a = u + v, b = ju + j 2v, c = j 2u + jv (the 
inequalities u > 0 and v < 0 make it possible to see which of j 2u + jv and 
ju + j 2v has positive imaginary part). 

We check that P is irreducible over Ql by making sure that none of the 
possible candidates for rational roots works: ±I and ±2 are not roots of P. 
As -216 is not a square in Ql, r is isomorphic to 8 3 . 

3) As u3 -1 = V2, u is algebraic over Ql[V2], so it is algebraic over Ql. As 
a = u + v and v = -Iju, we see that a E Ql[u]. Thus Ql[u], which contains 
the extensions Ql[V2] and Ql[a], of degrees 2 and 3 over Ql, is of degree a 
multiple of 6 over Ql. The equality (u3 - 1)2 = 2 shows that u is of degree 
~ 6. We conclude that the degree of u over Ql is equal to 6 and that its 
minimal polynomial over Ql is given by X 6 - 2X3 - 1. 

4) The conjugates of u over Ql are the solutions of (x3 - 1)2 = 2; we find 
u, ju, j 2u, v, jv, j 2v. We check that N c Ql[u,j] because v = -Iju, and 
that Ql[u,j] eN because j = juju. This gives N = Ql[u,j]. 

5) We first mention Ql[a], Ql[b], Ql[c], of degree 3 over Ql, Ql[d] = Ql[iv'6], 
of degree 2 over Ql, and Ql[a, b, c], of degree 6 over Ql. Other intermediate 
extensions are easy to see: Ql[u], of degree 6 over Ql. We can also mention 
Ql[j, V2], of degree 4 over Ql, Ql[ju] = Ql[j2v], Ql[j2U] = Ql[jv], of degree 6 
over Ql. 

6) As u is real and j is not, j is of degree 2 over Ql[u] and [N : Ql] = 12. As 
N is a normal extension of Ql, we have IGI = [N : Ql] = 12. 

7) We see that a2 = id so a is of order 2. As uv = -1, p(uv) = -1, 
p( v) = -1 j p( u) = -1 j jv = /u. We can then fill out the first three columns 
of Table 8.11. We see that p is of order 6 and that the 12 elements of G 
can be written pk and pka with 0 ~ k ~ 5. As V2 = u3 - 1, p(..;2) = 
(jv)3 - 1 = -..;2. Finally, we have 

a(d) = 6a(iV3)a(V2) = 6(-iV3)(V2) = -d, 

p(d) = p(6iv'6) = 6p(iV3)p(V2) = 6(-iV3)(-V2) = d. 

8) Table 8.11 shows that the Q-automorphisms pk and pka for 0 ~ k ~ 
5 are all different, so that we have indeed found all the elements of G. 
Consequently, p and a generate G. 

Moreover, ap = p5a, as it is easy to check on u and j. With the relations 
p6 = a 2 = id, this shows that G is isomorphic to the dihedral group D6 . 
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9) As [Q[u] : Q] = 6, Gal(NIQ[u]) has two elements. Table 8.11 shows that 
these are exactly id and CT. As Q[u] is not a normal extension of Q, this 
subgroup is not normal in G. 

10) (CT, p2) has six elements: id, p2, p4, CT, p2CT and p4CT, so we are looking 
for a quadratic extension of Q. Table 8.11 shows that it is given by Q[/2]. 

(pCT, p2) has six elements: id, p2, p4, pCT, p3CT and p5CT, so we are looking 
for a quadratic extension of Q. Table 8.11 shows that it is given by Q[j]. 

(p) has six elements, so we are looking for a quadratic extension of Q. 
Table 8.11 shows that it is Q[d]. 

u j v /2 d a,b,c 

id u j v /2 d a,b,c 

p jv l j 2u -/2 d c,a,b 
p2 ju j j 2v /2 d b,c,a 
p3 v j2 u -/2 d a,b,c 
p4 j 2u j jv /2 d c,a,b 
p5 lv j2 ju -/2 d b,c,a 

CT u j2 V /2 -d a,c,b 

pCT jv j j 2u -/2 -d c,b,a 

p2CT ju l j 2v /2 -d b,a,c 

lCT v j u -/2 -d a,c,b 

p4CT j 2u j2 jv v'2 -d c,b,a 
p5CT lv j ju -/2 -d b,a,c 

TABLE 8.11. 

11) An isomorphism of G with D6 is given by associating to p the rotation 
r of angle 1T/3 and center 0, and to pkCT the symmetry rks with respect to 
the line making an angle of k1T/6 with (OA). 

This isomorphism gives the list of subgroups of G by making the list of 
subgroups of D6 , which is easier thanks to geometric considerations. 

Subgroups with two elements 
These subgroups are generated by elements of order 2 and correspond 

to the symmetries with respect to 0 or with respect to lines. We find: 
Hl = (p3), Hk+2 = (pkCT) with 0 :::::; k :::::; 5. 

Subgroups with four elements 
As there is no element of order 4, these subgroups all correspond to the 

subgroups of D6 generated by symmetries with respect to two perpendic
ular axes (which thus commute). 
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They are given by Hs = ((j, p3(j) , Hg = (P(j, p4(j) , HlO = (p2(j, pS(j); they 
all contain p3. 

Subgroups with three elements 
The only such subgroup is given by H 11 = (p2) , because the only elements 

of order 3 in D6 are p2 and p4. 

Subgroups with six elements 
As p and pS are the only elements of order 6, Hl2 = (p) is a cyclic 

subgroup of order 6. If there are other subgroups with six elements, they 
are isomorphic to 8 3 , which is isomorphic to D3 , the dihedral group of 
isometries of an equilateral triangle. There are two ways of placing an 
equilateral triangle with center 0 with respect to the hexagon: a vertex at 
A or the rotation of this by 1r /6. Thus we find two other subgroups of G of 
order 6: 

Let Li denote the extension corresponding to the subgroup Hi, 1 :::; i :::; 14. 
To find Li, we will look for an extension L invariant under Hi (so L eLi) 
of suitable degree: [Li : Q) = [N : Q)/[N : L i ) = IGI/IHil. 

Among the subgroups of G, only HI, H11 , H12 , H13 , and Hl4 are normal; 
the corresponding extensions are thus normal extensions of Q. It is useful 
to add a column to Table 8.11 to describe the action of the elements of G 
on the roots a, b, c of P. We find that 

LI = Q[a, d) = Q[a,b,c), 

L3 = Q[b,j), 

Ls = Q[a,j], 

L7 = Q[c,j], 
Lg = Q[b], 

L11 = Q[j,d] = Q[j,vi2], 

Ll3 = Q[vi2]' 

Solution to Exercise 8.10. 

L2 = Q[u] = Q[v] = Q[a, vi2], 

L4 = Q[j2u] = Q[c, vi2], 

L6 = Q[ju) = Q[b, vi2]' 
Ls = Q[a], 

LlO = Q[c], 

Ll2 = Q[d] = Q[iv'6), 

Ll4 = Q[j] = Q[iV3]. 

1) If v'5 E K, then Q[ V5] is one of the three intermediate extensions Q[ v'2], 
Q[V3], Q[v'6], but it is easily seen that this is impossible. 

2) L is the splitting field of (X2 - 2)(X2 - 3)(X2 - 5) over Q. 

3) As [L: QJ = 8, the order of G' is 8, so G' ~ (Z/27Ll. 

4) The complete list is easy to establish: Q[v'2], Q[V3]' Q[V5) , Q[v'6] , 
Q[ViO), Q[v'15]' Q[J30). 
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5) We use induction on the cardinal n of E, and show that Q[{ yIp;p E E}l 
is an extension of Q of degree 2n and Galois group (7L/27Lt, in which 
{ yip; pEE} is a free system over Q. The result is obvious if n = 1. As
sume it holds for some integer n ::::: 1, and let E have cardinal n + 1. If 
PI E E, then we apply the induction hypothesis to E - {pd. The field 
Q [{ yIP, pEE, p =I- PI}] has 2n - 1 quadratic subextensions, given by the 

Q [ II yip] for non-empty subsets F of E - {pd , and none of these exten-
pEF 

sions is equal to Q[v'Pi1. This concludes the proof. 



9 
Roots of Unity 

In this chapter, we give the first example of a family of extensions whose 
Galois group is actually computable: this is the family of extensions of a 
field by roots of unity. The earliest work on this subject is due to Vander
monde (1770). It was followed by work of Gauss, in particular his beautiful 
discovery, on March 30, 1796, at the age of 19, of the construction of the 
regular polygon with 17 sides with ruler and compass (see Exercise 9.7) 
and its consequences. 

9.1 The Group U(n) of Units of the Ring ZjnZ 

9.1.1 Definition and Background 

The invertible elements of a ring A are often called units; they form a group 
under the multiplication law of A. 

Let n be an integer> 1. The group of units of the ring 'Lln'L is written 
U(n). The map associating the order of the group U(n) to the integer n 
is written 'P and called the Euler function. Euler introduced it in 1760, 
to generalize results of Fermat, and proved the statements 2) and 4) of 
Proposition 9.1.2 below. In our notation, we make no distinction between 
an integer and its class modulo n. 

Recall that k is invertible in U (n) if and only if k is relatively prime to 
n. Indeed, if k is prime to n, Bezout's identity gives integers u and v such 
that uk + vn = 1, so that uk = 1 in U(n), and if k is not prime to n, 
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there exist d, u, v -:f. 0 mod n such that k = ud, n = vd. Because kv = 0 in 
U(n), k is not invertible in U(n). 

EXAMPLES. -

1) The underlying set of the group U(8) is {I, 3, 5, 7}, and we have 
cp(8) = 4. Its elements are all of order 2, so we have U(8) ~ (Zj2Z)2. 

2) The underlying set of the group U(15) is {I, 2, 4, 7, 8,11,13, 14}, so 
cp(15) = 8. Its elements are of order 2 or 4, which is the case for 
exactly one of the three abelian groups of order 8, so we know that 
U(8) ~ Zj2Z x Zj4Z. 

Fortunately, there exists a general theorem giving the structure of the 
group U(n). 

9.1.2 The Structure of U(n) 

PROPOSITION. - The group U(n) is abelian. Moreover: 

1) If n = r s where rand s are relatively prime, we have U (n) ~ U (r) x 
U(s) and cp(n) = cp(r)cp(s). 

2) If n = pk, where p is a prime greater than 2, then U (n) is cyclic of 
order cp(pk) = pk _ pk-l. 

3) For k 2: 2, we have U(2k) ~ Zj2Z x Zj2k- 2Z; for k = 1, we have 
U(2) ~ {O}. 

4) If {Pi; i E I} is the set of distinct prime factors of n, we have cp( n) = 
1 

n 11(1- -). 
iEI Pi 

PROOF. - The proof is entirely given in the exercises (see Exercise 9.8).0 

EXAMPLE. - We have 2,800 = 16 x 25 x 7, so 

U(2, 800) ~ U(16) x U(25) x U(7) ~ Zj2Z x Zj4Z x Zj20Z x Zj6Z, 

cp(2,800) 2,800(1-~) (1-~) (1-~) =960. 



9.2 The Mobius Function 151 

9.2 The Mobius Function 

Let D(n) denote the set of divisors of n. 

9.2.1 Multiplicative Functions 

DEFINITION. - A function f : N* ---> Z (or JR.) is called multiplicative if for 
every pair (m, n) of relatively prime numbers, we have f(mn) = f(m)f(n). 

EXAMPLE. - The Euler function is a multiplicative function by §9.1.2. 

9.2.2 The Mobius Function 

Let J.l : N ---> Z denote the function, known as the Mobius junction, defined 
by 

J.l(I) 1, 

J.l(n) 0 if n has a square factor, 

J.l( n) ( -1 r if n is a product of r distinct primes. 

9.2.3 Proposition 

The Mobius function is a multiplicative junction, and for all n > 1, we 
have 

2:= J.l(d) = o. 
dED(n) 

PROOF. - If m and n are relatively prime integers, then either one of 
them has a square factor or neither one does. In both cases, we check that 
J.l(mn) = J.l(m)J.l(n). 

If 

n = II (Pi)ki 

iE{l, ... ,r} 

is the decomposition of n into a product of distinct primes, and if m = 

II Pi, we have 
iE{ l, ... ,r} 

2:= J.l(d) = 2:= J.l(d) = 2:= (~)( -1)\ 
dED(n) dED(m) O:$k:$r 

which is the expansion of (1 - 1 r = O. 
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9.2.4 The Mobius Inversion Formula 

PROPOSITION. - Let G be an abelian group written additively. Let 9 : N* -> 

G be a map, and let f : N* -> G be the map defined by f(n) = L g(d). 
dED(n) 

Then 

g(n) = L JL(d)f (~) = L JL (~) f(d). 
dED(n) dED(n) 

REMARK. - If the group law of G is written multiplicatively, then f is 
defined by f(n) = II g(d) and the inversion formula is written as 

dED(n) 

( n)/L(d) 
g(n) = II f d = II f(d)/L(nJd). 

dED(n) dED(n) 

PROOF. - Let us give a direct proof. We have 

L JL(d)f (~) 
dED(n) 

L (JL(d) L g(e)) 
dED(n) eED(nJd) 

L (g(e) L JL(d)). 
eED(n) dED(n),eED(nJd) 

For every e E D(n), we have 

{ d; d E D( n) and e E D (~) } = {d; d E D( n) and d E D (~) } = D (~) , 

so we have 

L JL(d)f (~) = L (g(e) L JL(d)) = g(n) 
dED(n) eED(n) dED(nJe) 

since L JL(d) = 0 for e < n by the formula of Proposition 9.2.3. <> 
dED(nJe) 

COMMENTARY. - August Mobius is better known for his band, or for the 
invention of barycenters. He introduced his function in 1832, using it for 
an inversion formula that was generalized independently by Dedekind and 
by Liouville in 1857. 
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9.3 Roots of Unity 

9.3.1 n-th Roots of Unity 

DEFINITION. - Let n > 1 be an integer. An n-th root of unity in C is a 
complex number ( such that (n = 1. Any such ( is of the form ( = e2ik7r/ n 

for some integer k with 0 :S k < n. 

9.3.2 Proposition 

The set of n-th roots of unity in C forms a cyclic group Iln isomorphic to 
('Lln'L, +). 

PROOF. - Consider the group homomorphism f : ('L, +) --+ C* defined by 
f(k) = e2ik1r/n. The kernel of this homomorphism is exactly n'L, and its 
image is Iln, which gives the result. <> 

9.3.3 Primitive Roots 

DEFINITION. - Let n > 1 be an integer. A primitive n-th root of unity in 
C is a generator of the cyclic group Iln. 

9.3·4 Properties of Primitive Roots 

Using the isomorphism defined by f above, we see that the primitive n-th 
roots of unity are of the form e2ik7r/ n with 1 :S k < nand k prime to n, 
since the generators of ('Lln'L, +) are the classes of integers relatively prime 
to n. Thus, there exist ",(n) primitive n-th roots of unity in C. 

If ( and (' are two primitive n-th roots of unity, there exists u prime to 
n such that (' = (u. 

9.4 Cyclotomic Polynomials 

9.4.1 Definition 

The n-th cyclotomic polynomial is the polynomial q>n defined by the fol
lowing expression: 

II (X - (). 
<;EtJ.n, <; primitive 

9·4.2 Properties of the Cyclotomic Polynomial 

We will show how to compute q>n, and prove that q>n is the minimal poly
nomial of every primitive n-th root of unity in C. 
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The fact that <I>n is irreducible over Q whenever n is prime was proved 
by Gauss in No. 341 of his Recherches arithmetiques, after the definition 
of the cyclotomic polynomial in No. 339 (Figure 9.1). His proof is not as 
rapid as the proof using Eisenstein's criterion. 

SSg. Ve§quation:&' - I = 0 (en supposant. comme il taut tou
jours Ie faire par.la suite, que nest unnombre premier impair), 
De renferme qu'uue seule racine reeUe :z; == 1 ; -les. n - 1 annes, 
'lui $Ont donnes par i'equation 

Z-~:-;:I- + r.=s. + etc. + Z + I = 0, ••...• (X) 
sont toutes imaginaires ; 

541. TUBOB.EJIB. Si la fonction X (71! ~) u, divisible par 
une fonclion d'un deere inftrielJr 

P =1" + Ar.A'-l + Bx1o.-A +etc.+Kx+L~· 
/es col[//iciens..A, 11, .. oiL ne peuvtml patl etre to'" enliers iii 
raiionnels. 

FIGURE 9.1. Articles 339 and 341 of Recherches arithmetiques 

The irreducibility of <I>n over Q for non-prime n was proven by Gauss 
somewhat later, in 1808. This problem was studied more deeply by several 
19th-century mathematicians: Eisenstein, Dedekind, Kronecker, etc. 

PROPOSITION. - For every n 2: 1, we have 

1) Xn - 1 = IT <I>d(X) 
dED(n) 

2) <I>n(X) = IT (Xd _1)IL(n/d), and when p is a prime, we have 
dED(n) 

<I>p(X) = L Xk 
D:'Ok:'Op-l 

3) <I>n(X) E Z[X] 

4) <I>n (X) is irreducible over Q. 

PROOF. -

1) We compute 

xn - 1 = IT (X - () = IT IT 
dED(n) (EILn, ( of order d 

(X - () 
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II II (X - () = II <Pd(X). 
dED(n) <:EJLd, <: primitive dED(n) 

2) Consider the multiplicative group G = qX)* of non-zero rational 
functions in one indeterminate with complex coefficients. Let f, 9 : 
N* -t G be the maps defined by f(n) = Xn - 1 and g(n) = <pn(X). 
By 1), f(n) = II g(d) and the multiplicative form of the Mobius 

dED(n) 

inversion formula gives the result. 

3) In the preceding formula, the exponents of the polynomials belong to 
{O, 1, -I} ; thus <pn(X) is a polynomial which is the quotient of two 
monic polynomials in Z[XJ, which means that it lies in Z[X]. 

4) Let w be a primitive n-th root of unity, and let P be its minimal 
polynomial over Q. Let E be the set of roots of Pin C, and let F be 
the set of primitive n-th roots of unity. Let us show that E = F. 

Because <pn(w) = 0, we see that P divides <Pn , so E c F. 

To prove the converse inclusion, we first show that E is stable 
under raising to p-th powers whenever p is a prime not dividing n. 

To show this, suppose it is not the case, so there exists an element 
a E E and a prime p not dividing n such that a P f/ E. Let 8 be the 
polynomial such that Xn - 1 = P(X)8(X). As aP f/ E, P(aP) =/:- 0, 
so 8(aP) = 0, which shows that a is a root of 8(XP). As P is the 
minimal polynomial of a, it divides 8(XP). Set 8(XP) = P(X)T(X). 
The polynomials 8 and T lie in Z[X], since P is monic. We now 
consider the situation in (ZjpZ)[X], adding a subscript 1 to denote 
the images of polynomials of Z[X] in (ZjpZ)[X]. We have 81 (XP) = 
(81 (X))P = P1(X)T1(X) (to see why, consult §14.4.2). As (ZjpZ)[X] 
is a factorial ring, every irreducible factor U1 of PI divides 8 1 ; the 
equality xn - 1 = P1(X)81(X) shows that (Ul)2 divides xn -1; it 
follows that U1 divides the derivative nXn- 1 of Xn -1 in (ZjpZ)[X]. 
As p is prime to n, these two polynomials are relatively prime in 
(ZjpZ)[X], which is a contradiction. 

Now, we can finish the proof that FeE. Let ( E F; there exists 
a number u prime to n such that ( = wU • Let u = II (Pi)k, be 

l<i<r 
the decomposition of u as a product of prime factors. The fact that 
E is stable under raising to p-th powers whenever p is a prime not 
dividing n shows that a = W U = ( ... (wP1 ) .•• )Pr lies in E. Thus, we 
have E = F, so <Pn = P, and <Pn is irreducible over Q. <> 
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EXAMPLE. -

~28()() = 

= 

~ ()(d _ 1)~(28/d) 

dED(28) 

()(28 _1)~(1)()(14 _1)~(2)()(7 _1)~(4)()(4 _1)~(7) 

.()(2 _1)~(14)()( _1)~(28) 

()(28 _1)()(14 _1)-1()(7 _ 1)0()(4 _1)-1()(2 -1)()( _1)0 

()(28 _ 1)()(2 - 1) 

()(14 - 1)()(4 - 1) 

()(14 + 1) 
()(2 + 1) 

)(12 _)(10 +)(8 _)(6 +)(4 _)(2 + 1. 

A quicker way of computing the cyclotomic polynomials is given in Exercise 
9.4. 

9.5 The Galois Group over Q of an Extension of Q 
by a Root of Unity 

PROPOSITION. - Let n ~ 2 be an integer and ( a primitive n-th root of 
unity in C. Then 

1) Q[(] is a normal extension of (; 

2) [Q[(] : Q] = cp(n); 

3) Gal(Q[(]IQ) ~ U(n); in particular, this group is abelian. 

PROOF. -

1) Indeed, Q[(] is the splitting field of )(n - 1, or of ~n' over Q. 

2) The minimal polynomial of ( over Q is ~n' which is of degree cp(n). 

3) Set G = Gal(Q[(lIQ) and let a E G; then a is determined bya«() 
which is a conjugate of ( and therefore a primitive n-th root of unity. 
Thus, it is of the form (k for some k prime to n. We use this k to 
construct a map 'IjJ : G --+ U(n), defining it by 'IjJ(a) = k. 

If a'«() = (k', we have (aoa')«() = a«(k') = (kk', so that 'IjJ(aoa') = 
'IjJ( a) . 'IjJ( a'), which proves that 'IjJ is a group homomorphism. 

Now, 'IjJ is injective, because if 'IjJ(a) = 1 then a = id. Furthermore, 
we have 

IGI = [Q[(] : Q] = cp(n) = IU(n)l, 

so 'IjJ is an isomorphism. 
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COMMENTARY. - One of the most beautiful theorems of Galois theory, 
the Kronecker-Weber theorem, states that every normal extension N of 
finite degree of Q whose Galois group is abelian (such extensions are called 
abelian extensions, cf. §10.1), is contained in a cyclotomic extension, i.e. 
an extension generated by a root of unity (. In Exercise 9.9, we study a 
particular case of this theorem, namely, the case of quadratic extensions. 
The reader can find a proof of the general theorem in the last chapters of 
the book by Paulo Ribenboim listed in the bibliography. The study of the 
abelian extensions of Q is the object of what is known as class field theory. 

Exercises for Chapter 9 

Exercise 9.1. Roots of unity 

1) Complex numbers: are the following numbers roots of unity in C? 

a) 3v'6 + 7iv'5 
17 

7 +4iv'2 
b) 

9 

2) Let n be an integer, and let ( be a primitive n-th root of unity. Let 
K be an intermediate field between Q and Q[(l. Show that K is a 
normal extension of Q. 

3) Let m and n be two relatively prime integers. Let ( be a primitive 
m-th root of unity and TJ a primitive n-th root of unity. Show that 
Q[(l n Q[TJl = Q. 

4) Let K be a field contained in C, n 2:: 2 an integer and ( a primitive 
n-th root of unity in C. Show that Gal(K[(lIK) is isomorphic to a 
subgroup of U(n). 

Exercise 9.2. Algebraic numbers of modulus 1 that are not roots 
of unity 

Set P(X) = (X2 + X + 1)2 - 2X2, and let t and u denote the real 
roots of P, and v and w the non-real roots of P. 

1) Show that P is irreducible over Q. 
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2) Show that v and ware algebraic over Q and of modulus 1, whereas t 
and u are algebraic over Q but not of modulus 1. 

3) Deduce that v and ware not roots of unity. 

Exercise 9.3. The Mobius function 

1) Check, by computing the terms, that L J.L(d) = o. 
dED(360) 

2) a) Show that n = L <p(d). 
dED(n) 

b) Deduce that <pen) = L dJ.L (J). 
dED(n) 

Exercise 9.4. Computation of cyclotomic polynomials 

1) For each n :::; 12, decompose the polynomial Xn - 1 as a product of 
irreducible factors in Z[X] and in Q[X]. 

2) Using the formula of Proposition 9.4.2 2), determine the cyclotomic 
polynomials q)n(X) for n = 30, n = 81. 

3) In this question, we propose a rapid way of computing q)n(X) for 
n>1. 

a) Show that q)n(X) = xcp(n)q)n(1/ X). Deduce that the coeffi
cients of q)n satisfy acp(n)-k = ak for 0 :::; k :::; <pen). 

b) Show that q)n (X) is determined by its value modulo x[cp(n)/21+1 , 
where the square brackets indicate the integral part, and that 
this computation can be done in the ring A = Z[X]/(x[cp(n)/21+1). 

4) Prove the formulas: 

q)n(X) = q)m(xn/m) whenever m is the product of the distinct 
prime factors dividing n; 

q)pn(X) = q)n(XP)/q)n(X) whenever p is a prime not dividing n; 

q)2n(X) = q)n( -X) whenever n is an odd integer> 1. 

5) Now, use these results to compute the polynomials q)n(X) for n = 30, 
81,105. 



Exercise 9.5. Fifth roots of unity 

Set (= e2i7r/ 5 • 
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1) Solve the equation X4 + x 3 + x 2 + X + 1 = 0 by using the change of 
variables y = x+ (Ilx). Deduce algebraic expressions for (k, 1 :S k :S 
4. 

2) Without using the results of Chapter 9, define an isomorphism of the 
group G = Gal(Q[(]IQ) onto a well-known group. Show that G has a 
non-trivial subgroup H of order 2 and index 2. 

3) Find an element generating the field J(H), which (we recall) is the 
set of elements in Q[(] invariant under H. 

Exercise 9.6. Fifteenth roots of unity 

Set ( = e2i7r /15 and rJ = e2i7r /5, j = e2i7r /3. Recall that 

27r -1 + v'5 
cos - = ---,--

5 4 

1) What is the degree of Q[(] over Q? 

Compute the minimal polynomial <I> of ( over Q. 

Give the decomposition of X 15 -1 as a product of irreducible factors 
in Q[X]. 

Set G = Gal(Q[(]IQ), and let (Jk denote the element of the group G 
such that (Jk(() = (k with 1 :S k :S 14. 

2) What are the possible values for k? 

3) a) Show that the Galois group G is isomorphic to a product P of 
two cyclic groups, and construct this isomorphism. 

b) What are the orders of the elements of P? 

4) a) Show that Q[v'5] C Q[rJ]. 

b) Show that Q[(] is an extension of degree 2 of Q [cos(27r/I5)]. 

5) a) Show that QU], Q[rJ], Q [v'5] , Q [j, v'5] are extensions of Q 

contained in Q[(]. 

b) For each of the four fields K listed above, determine the sub
group Gal(Q[(]IK) of G (give the elements (Jk of each of these 
groups). 
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6) a) Determine the field of invariants of the subgroup of G generated 
by 0"14. 

b) Solve the same problem for the subgroup of G generated by 0"2 

(show first that the desired field is a subfield of IQ [j, vis]). 

7) Give the trellis of subgroups of P and the trellis of extensions of IQ 
contained in IQ[(], by making the Galois correspondence completely 
explicit. 

8) Compute an algebraic expression for cos(27r /15) by using the group 

9) Using the problems above, decide if the regular polygon with 15 sides 
(and radius 1) is constructible with ruler and compass. 

Exercise 9.7. Seventeenth roots of unity 

Set (= e2i7r/17 and G = Gal(IQ[(]IIQ). Let O"i be the IQ-automorphism 
of IQ[(] defined by O"k() = (k for k = 1, ... ,16. Note that in this 
exercise, as in the preceding one, the procedure we use is not entirely 
algebraic: it is necessary to consider orders of elements to distinguish 
the roots. 

1) Find the smallest integer n such that the class of n modulo 17 gener
ates (71/1771) * . Use this to determine an isomorphism from G to the 
group (71/1671, +) , and then the trellis of subgroups of G. 

2) For every intermediate extension K between IQ[(] and IQ, give an 
element O"k of G such that K = J( (O"k)), the set of elements invariant 
under (O"k). 

3) In terms of (, determine an x such that lQ[x] is a quadratic extension 
of degree 2 of IQ contained in 1Q[(j. Find the minimal polynomial of 
x over IQ. Deduce the value of x. 

4) In terms of (, determine y such that lQ[x, y] is an extension of degree 
2 of lQ[x] contained in IQ[(]. Find the minimal polynomial of y over 
lQ[x], and use it to deduce the value of y. 

5) In terms of (, determine z such that lQ[x, y, z] is a quadratic extension 
of lQ[x, y] contained in IQ[(]. Find the minimal polynomial of z over 
lQ[x, y], and use it to deduce the value of z and of cos(27r /17). 



Exercises for Chapter 9 161 

6) Deduce the value ( from the previous computations. 

7) Is the regular polygon of radius 1 with 17 sides constructible with 
ruler and compass? 

Exercise 9.8. The structure of U(n) 

Let n be an integer > 1. 

1) a) Suppose that p is a prime. What is the structure of U(p)? 

b) Suppose n = rs with rand s relatively prime. Show that we 
have U(n) ~ U(r) x U(s) and <p(n) = <p(r)<p(s). 

c) Determine the structure of U(n) for n = 2,4, 6, 8, 9, 12, 15. 

2) Assume that n is of the form pk, where p is an odd prime and k is an 
integer> 1. 

a) Let a be an integer whose class modulo p generates (7l./p7l.)* . 

Set b = apk -
1

• Show that the class of b modulo pk is of order 
p - 1 in U(n). 

b) Show that for every r 2: 0, we have (l+p)pr = l+pr+l mod pr+2. 

c) Deduce that 1 +p is of order pk-l in U(n), and then that U(n) 
is cyclic. 

d) Determine a generator of U(25), and a generator of U(125). 

3) Assume that n is of the form 2k. 

a) Show that for every r 2: 0, we have 52r = 1 + 2r+2 mod 2r+3. 

b) Deduce that the class of 5 is of order 2k - 2 in U(n). 

c) Show that, for k 2: 2, a power of 5 is never equal to -1 modulo 
n. 

d) Deduce that for every k 2: 2, U(n) is isomorphic to 7l./2k- 27l. x 
7l./27l.. 

e) Determine the order of 3 in U (n). 

4) a) What is the structure of U(200)? 

b) Show that the group U (n) is cyclic if and only if n is of the form 
pk or 2pk, where p is an odd prime (decompose n as a product 
of prime factors). 
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Exercise 9.9. Quadratic and cyclotomic extensions 

For every integer n ~ 2, set (n = e2i7r/ n . We propose to prove the 
following proposition: for every prime pin N, there exists n in N such 
that v'P E Q[(n]. 

1) Show the result for p = 2 (take n = 8). 

From now on, we assume that p > 2. Set P(X) 
S(X) = P(X)/(X - 1), and ( = (p. 

XP -1, 

2) Show that the discriminant D(S) is the square of an element d of 
Q[(], and that D(S) is rational. 

3) a) Show that S'(x) = (pxp-1)/(x - 1) for every root x of S. 

b) Deduce that D(S) = (_1)(p-l)/2pp-2. 

4) a) Deduce from the two preceding questions that v'P/d or v'P/id 
is rational, by arguing according to the values of p modulo 4. 

b) Show that Q[i, (n] = Q[(4n] for every odd integer n. 

c) Prove the proposition. 

5) Show that for every N E :E, there exists an integer n such that yIN E 
Q[(n]. 

Exercise 9.10. Factorization of <I>p over a quadratic extension of 
Q 

This exercise uses the results of Exercise 9.9. 

Let p be an odd prime. Set ( = e2i7r/ p , N = Q[(], and G = Gal(NIQ) ~ 
U(p). Let <I>p(X) denote the minimal polynomial of ( over Q, and let 
Uk be the element of G defined by Uk (() = (k. Let a be a generator 
of U(p). 

Let L denote either the field Q [v'PJ if p = 1 mod 4 or the field Q [iv'PJ 
if P = 3 mod 4. 

Recall that for every divisor d of n, a cyclic group of order n has a 
unique subgroup of order d. 

1) Show that LeN. 

2) What is the set of quadratic extensions of Q contained in N? 

3) What is the order of G' = Gal(NIL)7 What are its elements, in terms 
of a7 
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4) Using 3), show that q>p factors as a product of two irreducible poly
nomials over L[X]. Denote them by Sand T; give their roots in N 
and their constant terms. 

5) Compute the expression of Sand T in L[X] by using the preceding 
questions: 

a) for p = 7, 

b) for p = 13. 

Solutions to Some of the Exercises 

Solution to Exercise 9.1. 

1) a) The modulus is not 1. 

b) The modulus is 1, but the minimal polynomial over Q is X2 -
(14j9)X + 1. As it does not have integral coefficients, the number we are 
considering cannot be a root of unity in C, since the minimal polynomials 
of roots of unity are the cyclotomic polynomials, and we know that they 
have integral coefficients. 

c) The square of the number is ei7r /6, and its real part is strictly positive, 
so it must be ei7r/ 12• 

2) Q[(] is a normal extension of Q with Galois group U(n). K is the field 
of invariants of a subgroup H of U(n). As U(n) is abelian, H is a normal 
subgroup of it, so K is a normal extension of Q. 

3) Let w be a primitive mn-th root of unity. The degree of Q[w] over Q 
is cp(mn) = cp(m)cp(n) (this equality holds because m and n are relatively 
prime). 

As Q[(] is of degree cp(m) over Q, and Q[1]] is of degree cp(n) over Q, 
the tower rule shows that Q[w] is of degree cp(m) over Q[1]] and cp(n) over 
Q[(]. Set L = Q[(] nQ[1]], r = [Q[(] : L]. As L is an intermediate extension 
between Q and Q[(], we have r ~ cp(m) (Figure 9.2). Furthermore, the 
degree of ( over L is greater than or equal to the degree of ( over Q[1]]; as 
Q[w] = Q[1]][(J, we have r :::: cp(m) and thus the result. 
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~Q[ro]~(m) 

Q[~] <Q[11 ] 

S\1~ 
/K[~\ 

Q[~] K 
""Q/ Q 

FIGURE 9.2. FIGURE 9.3. 

We can also use the isomorphism U(mn) ~ U(m) x U(n); the intermedi
ate extensions Q[(] and Q[17] corresponding to the subgroups U(m) x {id} 
and {id} x U(n) of U(m) x U(n) have intersection equal to Q (see Exercise 
8.6). 

4) Because K[(] is the splitting field of xn - lover K (Figure 9.3), it is a 
normal extension of K. As K[(] ~ Q[(] and Q[(] is a normal extension of Q, 
every element of Gal(K[(]IK) induces an element of Gal(Q[(lIQ) ~ U(n) 
by restriction. This restriction is a group homorphism, which is injective 
because if 0' E Gal(K[(]IK) induces the identiy on Q[(], then O'() = (, so 
0' = id. 

Solution to Exercise 9.2. 

1) In the field Q [V2] [X], we have 

P(X) = (X2 + (1- V2)X + 1)(X2 + (1 + V2)X + 1). 

The roots of P are given by 

t,u 

v,W = 

-1 - J2 ± V2J2 - 1 

2 
J2 - 1 ± i y'r-2J2-="2 -+-1 

2 

Note first that P has no linear factor in Q[X]. Next, note that a decom
position into two quadratic factors is impossible in Q[X], since one of the 
factors must be X2 + (1 + V2)X + 1. 

2) The computations are not difficult. 

3) The conjugates of roots of unity over Q are also roots of unity; as t and 
U do not have modulus 1, their conjugates v and w over Q are not roots of 
unity. 
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Solution to Exercise 9.3. 

1) J.L(d) is not zero when d is squarefree, so we have 

L J.L(d) = J.L(1) + J.L(2) + J.L(3) + J.L(5) + J.L(6) + J.L(10) + J.L(15) + J.L(30) 
dED(360) 

= 1 - 1 - 1 - 1 + 1 + 1 + 1 - 1 = O. 

2) a) In 'Lln'L, we know that the order of every element divides n. For 
a divisor d of n, let Ed denote the set of elements of order d. The family 
(Ed)dED(n) is a partition of'Lln'L, and we know that Ed has 'P(d) elements. 
This gives the result. 

b) To obtain the results, it suffices to apply the Mobius inversion formula 
with f = id and 9 = 'P. 

Solution to Exercise 9.4. 

1) We can use the formula xn -1 = II <Pd(X), or simply make a direct 
dED(n) 

computation. Up to invertible factors, the decompositions are the same in 
'L[X] and in Q[X]: 

X2-1 (X - l)(X + 1), 

X 3 -1 (X -1)(X2 + X + 1), 
X4 -1 (X - l)(X + 1)(X2 + 1), 

X 5 -1 (X - 1)<P5(X), 

X 6 -1 (X - 1)(X2 + X + l)(X + 1)(X2 - X + 1), 
X7-1 (X - 1)<p7(X), 

X 8 -1 (X - l)(X + 1)(X2 + 1)(X4 + 1), 

X 9 -1 (X3 - 1)(X6 + X 3 + 1), 
X lO -1 (X - 1)<p5(X)(X + 1)<P5( -X), 
XU -1 (X -l)<Pu(X), 
X12 -1 (X6 - 1)(X2 + 1)(X4 - X2 + 1), 

(X -1)(X2 + X + l)(X + 1) . 
(X2 - X + 1)(X2 + 1)(X4 - X2 + 1) 

2) We have 

[t]<P30(X) 
(X30 - 1)(X5 - 1)(X3 - 1)(X2 - 1) 
(X15 - l)(XIO - 1)(X6 - l)(X - 1) 

(X15 + l)(X + 1) 
(X5 + 1)(X3 + 1) 
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X lO - X5 + 1 
X2 -X + 1 

X 8 + X7 - X 5 - X4 - X 3 + X + 1, 

X 81 -1 
X27 -1 

X 54 + X27 + 1. 

3) a) Set S = L f.l(n/d). We know that S = 0 for n > 1. Furthermore, 
dED(n) 

by the preceding exercise, <p(n) = L df.l(n/d). Consequently, we have 
dED(n) 

X<p(n) II (X-d - l)J.L(n/d) 

dED(n) 

(_1)8 II (Xd _1)J.L(n/d) 

dED(n) 

<I>n(X). 

If <I>n(X) = L akXk , the preceding equality shows that ak = a<p(n)-k· 
O:Sk:S<p(n) 

b) It suffices to compute the terms of <I>n(X) of degree :S <p~n). The 

polynomials of the form 1 - X k are invertible in A, since the Xk are nilpo
tent. 

4) We have 

II (Xn/d - l)J.L(d) 

dED(n) 

II ((xn/m)m/d - l)J.L(d) 

dED(m) 

<I>m(xn/m) , 

II (Xpn/d - l)J.L(d) II (Xpn/d - l)J.L(d) 

dED(n) dED(pn)-D(n) 

II ((xp)n/d _l)J.L(d) II ((Xn/d - l)-J.L(d) 

dED(n) dED(n) 

<I>n(XP) 
<I>n(X) , 

<I>n(X2) 

<I>n(X) 
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II (X 2n/d - l)J.L(d) (Xn/d - 1)-J.L(d) 

dED(n) 

II (Xn/d + l)J.L(d) 
dED(n) 

(-1) L J1(d) II (Xn/d - 1)J.L(d) 
dED(n) dED(n) 

<I>n( -X), 

since njd is odd and L J1(d) = 0 for n > 1. 
dED(n) 

5) To compute <I>30, we can reason modulo X 5 , since rp(30) = 8. Modulo 
X 5 , we have 

(X30 _ 1)(X5 - 1)(X3 - 1)(X2 - 1) 
(X15 - 1)(XI0 - 1)(X6 - 1)(X - 1) 

(-1)(-1)(X3 -1)(X2 -1) 
(-1)(-1)(-1)(X -1) 

_(X3 - l)(X + 1) 

_X4_X3+X+1, 

which gives the result. 

To compute <I>81, we can write <I>81(X) = <I> 3 (X27). Because rp(81)j2 = 

27, we can compute modulo X 28 : <I>81(X) = (X81_1)j(X27 -1) = X27 +1, 
etc. 

To compute <I> 105 , we compute modulo X 25 since rp(105) = 48. Modulo 
X 25, we have 

<I> 105 (X) 

so 

(X 105 _ 1)(X5 - 1)(X3 - 1)(X7 - 1) 
(X15 - 1)(X21 - 1)(X35 - 1)(X - 1) 

(X5 - 1)(X2 + X + 1)(X7 - 1)(1 + X I5 )(1 + X21) 
_X24 _ X22 _ X 20 + X17 + X 16 + X 15 + X14 + X 13 + 

Xl2 _ X 9 _ X 8 _ 2X7 - X 6 - X 5 + X2 + X + 1, 

X 48 + X47 + X 46 _ X 45 _ X44 _ 2X43 _ X42 _ X41 + 

X 38 + X 37 + X 36 + X 35 + X 34 + X 33 _ X 30 _ 
X 28 _ X 26 _ X24 _ X22 _ X 20 + X17 + X 16 + 

X 15 + X14 + X 13 + X12 _ X 9 _ X 8 _ 2X7 _ 

_ X6 _ X 5 + X2 + X + 1. 
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It so happens that the coefficients of <I>n with n < 105 all lie in the set 
{-1,0,1}; however, this result shows that this is not always the case. 

Solution to Exercise 9.5. 

1) The equation becomes y2 + Y -1, so we have y = (-1 ± -15)/2. 
For the two values y, the equations x 2 - xy + 1 = 0 give 

-1 + vis . \110 + 2v1s 
x= ±t----

4 4 
or 

-1 - vis . JlO - 2v1s 
4 ±t 4 . 

We need an additional argument, using the ordering on JR, to be able to 
deduce the values of the (k for 1 ~ k ~ 4 from these four numbers. 

For this, we consider the values of the real parts 2 cos(27r /5) = (-1 + 
-15)/2 and 2cos(47r/5) (-1 - -15)/2 and the values of the imaginary 
parts. We find that 

( 
-1 + vis . JlO + 2v1s 

4 + t 4 ' 

(2 -1 - vis . JlO - 2v1s 
4 +t 4 ' 

(3 -1- vis . JlO - 2v1s -t 
4 4 

(4 -1 + vis . JlO + 2v1s -t 
4 4 

2) As [Q[(] : Q] = 4, G has four elements. They are determined by the 
image of (. Let a denote the Q-homorphism defined by a«() = (2. As 
a 2 «() = (4, a 3 «() = (3, and a 4 «() = (, we have a4 = id, a is of order 4 in 
G, and G is isomorphic to 71,/471,. This last group has only one non-trivial 
subgroup, generated by the class of 2, which corresponds to the subgroup 
H of G generated by a 2 • 

3) As -15 = 2«( + (4) + 1, we see that Q[-I5] must be the extension 
corresponding to H. 

Solution to Exercise 9.6. 

1) We know that [Q[(] : Q] = '11(15), where rp denotes the Euler function. 
As '11(15) = rp(3)rp(5) = 8, Q[(] is an extension of degree 8 of Q. 
The minimal polynomial <I> of ( over Q is the cyclotomic polynomial 

<I>15(X). The formulas of Proposition 9.4.2 give 

(X 15 - l)(X - 1) 
(X5 - 1)(X3 - 1) 
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X S _X7 +X5 _X4 +X3 -X + 1, 

CP15 (X)CP5 (X)CP3 ( X)CP1 (X) 
(Xs _ X7 + X 5 - X4 + X 3 - X + 1) . 

(X4 +X3 +X2 + X + 1)(X2 +X + I)(X -1). 

2) The image (k of ( under ak is a primitive 15th root of unity, so k is 
prime to 15 ; thus, the possible values of k are the eight numbers 1, 2, 4, 
7, 8, 11, 13, and 14. 

3) a) We know that G is isomorphic to the group U(15) of invertible 
elements of the ring Z/15Z. This last group is isomorphic to U(3) x U(5), 
so to P = Z/2Z x Z/4Z. The isomorphism is thus the composition 

G ~ U(15) = (Z/15Z)* ~ (Z/3Z)* x (Z/5Z)* -t Z/2Z x z/a, 
where cp(a) = k such that a«) = (k, X(k) = (k mod 3, k mod 5) and 'ljJ is 
the isomorphism defined by choosing the classes of 2 modulo 3 and modulo 
5 as generators of (Z/3Z)* and (Z/5Z)* . This is made explicit in Table 9.1. 

a 0'1 0'2 0'4 0'7 as au 0'13 0'14 

cp(a) 1 2 4 7 8 11 13 14 

x(cp(a)) (1,1) (2,2) (1,4) (1,2) (2,3) (2,1) (1,3) (2,4) 

'ljJ(x(cp(a))) (0,0) (1,1) (0,2) (0,1) (1,3) (1,0) (0,3) (1,2) 

TABLE 9.1. 

b) Here, we let 2 and 4 denote the classes modulo 2 and 4; P has three 
elements of order two, namely (0,2), (1,0), (1,2), and four elements of 
order 4, namely (0,1), (1,1), (0,3) (1,3). 

4) a) As COS(271-j5) = (-1 + v'5)/4 = (TJ + TJ-1)/2, we have Q[v'5] C Q[TJ]. 
b) As 2 cos(27r/15) = (+ C 1, we see that Q[cos(27r/15)] C Q[(]. This 

inclusion is strict since ( is not real; as (2 - 2( cos(27r /15) + 1 = 0, Q[(] is 
a quadratic extension of Q[cos(27r /15)]. 

5) a) As j = (5 and TJ = (3, Q[j] and Q[TJ] are extensions of Q contained 
in Q[(]. We know that Q[cos(27r/5)] C Q[TJ], which shows that Q[v'5] is 
contained in Q[(]. The preceding inclusions show that Q[j, v'5] C Q[(]. 

b) K = Q[j]. We have ak E Gal(Q[(]IQ[j]) if and only if ak(j) = j; as 
j = (5, this means that 5k = 5 mod 15 or k = 1 mod 3, so k = 1, 4,7, 13. 
The Galois group is cyclic, generated by 0'7. 

K = Q[TJ]. We have ak E Gal(Q[(]IQ[TJ]) if and only if ak(TJ) = TJ. As 
TJ = (3, this means that 3k = 3 mod 15 or k = 1 mod 5, so k = 1,11. 
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K = Q[/5]. As Q[/5] = Q[7] + 7]-1], (1k E Gal (Q[(]IQ[v'5]) if and only 
if (1k(7] + 7]-1) = 7] + 7]-1. This means that 

27r 27r 
cosk- =cos-

5 5' 
i.e. k = ±I mod 5, 

so k = 1, 4, 11, 14. The Galois group is not cyclic; it has three elements of 
order 2. 

K = Q[j, /5]. As Gal (Q[(]IQ[j, /5]) is the intersection of the two 

groups Gal(Q[(]IQ[j]) and Gal(Q[(]IQ[v'5], it contains (1k for k = 1,4. 

At this stage of the problem, we can begin to construct the trellises. 

6) a) Set K = 1( ((114)). As (114 is of order 2, Q[(] is a quadratic extension 
of K. We see that cos(27r/I5) = «( + C 1)/2 is invariant under (114, so we 
have Q[cos(27r/I5)] C K. Then, by 4 b) of this exercise, we can conclude 
that K = Q[cos(27r /15)]. 

b) Set L = 1( ((12)). As (12 is of order 4, Q[(] is an extension of degree 4 
of L, so L is an extension of degree 2 of Q. As «(12)2 = (14, L is a subfield 
of 1«((14)) = Q[j, /5]. Note that /5 does not lie in L, since (12 is not 
in the group Gal(Q[(]IQ[/5]). Thus, by the preceding question, we have 
(12(/5) = -/5; furthermore, (12(j) = j2 = -1 - j. It follows that those 
elements a + bj + c/5 + dj/5 of Q[j, /5] which are invariant under (12 are 
of the form a + c/5(I + 2j), i.e. a + civ'15. This gives L = Q[iv'15]. 

7) The trellis of subgroups of P contains three subgroups with two ele
ments, generated by the elements of order 2 of P, and three subgroups with 
four elements: two generated by elements of order 4 of P (each containing 
two elements of order 4 and the element (0,2)) and the last one containing 
the three elements of order 2 of P, isomorphic to Z/2Z x Z/2Z. 

Questions 5 and 6 contained several hints for the construction of the 
trellis corresponding to the extensions of Q contained in Q[(] (Figure 9.4). 
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«0,0» 

/~~ 
«0,2» <(1,0» <(1,2» 

/~~ / 
<(1,1» «0,1» <(1,0),(0,2» 

~~/ 
p Q[~] "

,/! " 
Q[j,'f5] Q [11] Q[cos 2n: 114] 

/!~~ 
Qi,\[f5] Q[j] Q [1/5] 

~~/ 
Q 

FIGURE 9.4. The Galois correspondence 

8) The Galois group Gal (Q[cos(211"/15)lI Q[v'5]) is of order 2, generated 
by the restriction of 0"4. Thus, cos (211" /15) is a root of the polynomial 

whose coefficients lie in Q [v'5] . 
Because <I>15«() = 0 implies that (4 - (3 + (1 -1 + C 1 - C 3 + C 4 , we 

have 

211" (211") 
cos 15 + 0"4 cos 15 

( + (-1 + (4 + (-4 

2 
(3 + 1 +(-3 

2 
211" 1 1 + v'5 

= cos 5 + 2 = 4 ' 

«( + (-1)«(4 + (-4) 

4 

(3 + (-3 + (5 + (-5 

4 

.!. (cos 211" + cos 211") = -3 + v'5. 
253 8 
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It follows that cos (271" /15) = (1+V5+J 30 - 6V5)/8, since cos (271" /15) > o. 
Thus, 

( 271") _ (4 + (-4 _ 871" _ 1 + V5 - V30 - 6V5 
0"4 cos 15 - 2 - cos 15 - 8 . 

We could find the same result more rapidly by using 

cos(271"/15) = cos ((71"/3) - (71"/5)) ... 

but that method does not employ the beautiful results of Chapter 9! 

9) The regular polygon with 15 sides and radius 1 is constructible with 
ruler and compass. As in the preceding problem, we can note that the 
regular polygons with 6 and 10 sides are constructible, and that (271"/15) = 
(71"/3) - (71"/5). We can also use Proposition 5.7, and then the preceding 
problems show that lQ[cos(271" /15)J has an increasing sequence of subfields 
IQ 1Q[V5J, lQ[cos(271" /15)J, each of degree 2 over the preceding one (this is 
exactly what is expressed by the formula for cos (271" /15), which only uses 
extractions of square roots). 

Solution to Exercise 9.7. 

Recall that IQ[(J is an extension of degree <p(17) = 16 of IQ, which has basis 
(kh<k<16 as a IQ-vector space. 

1) We find 28 = 1 mod 17; 3 is of order 16 and works. The isomorphism 
of (Z/16Z, +) onto G is the composition 

Z/16Z ~ U(17) .t G, 

with <per) = 3T and 'lj;(k) = O"k. It is given in Table 9.2. 

0 1 2 3 4 5 6 7 

id 0"3 0"9 0"10 0"13 0"5 0"15 O"u 

8 9 10 11 12 13 14 15 

0"16 0"14 O"s 0"7 0"4 0"12 0"2 0"6 

TABLE 9.2. 

Since the trellis of subgroups of (Z/16Z, +) is given by 

{O} C (8) = (8Z/16Z, +) C (4) = (4Z/16Z, +) 
C (2) = (2ZjI6Z, +) C (Z/16Z, +) , 
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and we have O"g = (0"3)2, 0"13 = (0"3)4, 0"16 = (0"3)8, we find that the trellis 
of subgroups of G is given by 

{id} C (0"16) C (0"13) C (O"g) C (0"3) = G 

(we can also note that (O"g) = (0"2)' (0"13) = (0"4)). 

2) By the Galois correspondence, we can give the trellis of extensions of Q 
contained in Q[(] : 

3) As (O"g) is a subgroup of index 2 of (0"3) = G, J( (O"g)) is a quadratic 
extension of Q. The elements of J( (O"g)) are the U E Q[(] such that O"g(u) = 
u. As u is of the form L ak(k, O"g(u) = u implies that the coefficients 

1:5k96 
ak of index 1, 9, 13, 15, 16, 8, 4, 2 are equal, as well as the coefficients ak 
of index 3, 10, 5, 11, 14, 7, 12, 6. 

Set x = ( + (g + (13 + (15 + (16 + (8 + (4 + (2 (we could have set 
x = (3 + (10 + (5 + (11 + (14 + C + (12 + (6). We have x E J«O"g)) and 
x 1- Q since Q = J«0"3)) and 0"3(X) i- x. Thus, x is of degree 2 over Q 
and J( (O"g)) = Q[x]. As Gal(Q[x]IQ) = (0"3) / (O"g) is a group of order 2, the 
conjugate of x over Q is 0"3(X) since 0"3 1- (O"g). The minimal polynomial 
of x over Q is X2 - (x + 0"3(X))X + X0"3(X). We see that x + 0"3(X) = 
L (k = -1, since L (k = 0. The computation of X0"3(X) is longer: 

1:5k:516 0:5k:516 
the expansion of the product has 64 terms. After regrouping them, using the 

equality L (k = 0, we find X0"3(X) = -4; x is a root of the polynomial 
0:5k96 

X2 + X - 4, so x = (-1 ± 07)/2. Note that Q[x] = Q[vT7]. 
We now need to use an order argument to tell which of these two val

ues is actually x. As x = 2cos(21r/17) + 2cos(41r/17) + 2cos(81r/17) + 
2cos(161r/17), we have x > (0,5 + 0,5 -1) > 0, so x = (-1 + 07)/2, 
0"3(X) = (-1 - 07)/2. 

4) We use the same procedure as in the preceding question. 
The extension J ( (0"13)) is a quadratic extension of degree 2 of J ( (O"g)) = 

Q[x] since (0"13) is a subgroup of index 2 of (O"g). It is generated by any 
element y E J( (0"13)) not in Q[x]. 

The search for u = L ak(k satisfying 0"13(U) = u leads to setting 
1:5k:516 

y = (+ (4 + e 4 + e 1 , for example. 
We have y E J«0"13)) and y 1- Q[x] since O"g(y) i- y. Thus, y is of degree 

2 over Q[x] and J«0"13)) = Q[x,y]. As Gal(Q[x,y]IQ[xj) = (0"9)/(0"13), the 
conjugate of y over Q[x] is O"g(x) since O"g 1- (0"13). The minimal polynomial 
of y over Q[x] is X 2 - (y + O"g(y))X + yO"g(y). 
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We see that y + 0"9(Y) = x and Y0"9(Y) = -1, so Y is a root of the 
polynomial X2 - xX - 1. Thus, Y = (x ± .../x2 + 4)/2. We have Ql[x, y] = 
Ql[vTI, V34 - 2vTI] since x 2 + 4 = 8 - x = (34 - 2Ji7)/4. 

As y = ( + (4 + (13 + (16 = 2 cos(21r /17) + 2 cos(81r /17) > 0, we have 

y = (x + .../x2 + 4)/2 and 0"9(Y)Y = (x - vx2 + 4)/2. 

5) Still using the same procedure, we determine the extension I( (0"16)). 
The search for the u = L ak(k satisfying 0"16(U) = u leads to setting 

1~k$16 

z = ( + C 1, for example, checking that z rt Ql[x, y] since 0"13(Z) #- z. The 
minimal polynomial of z over Ql[x, yJ is X 2-(Z+0"13(Z))X +Z0"13(Z). We see 
that Z+0"13(Z) = y. Furthermore, Z0"13(Z) = (3+(5+(12+(14 is an element 
of Ql[x,y], which we need to express in the basis (l,x,y,xy). Computing 
xy in terms of (, we find xy = 3+(2 +(8 +(9 +(15 +2«(3 +(5 +(12 +(14), 
so Z0"13(Z) = (xy - x + y - 3)/2. Denote this quantity by a; then Z is a 
root of the polynomial X2 - yX + a, so Z = (y ± V y2 - 4a) /2 = (y ± 
.../2x - 2y - xy + 7)/2. 

As Z = 2cos(21r/17) > 0"13(Z) = 2cos(81r/17), we have 

y + .../2x - 2y - xy + 7 
Z = 2 ' 

y - .../2x - 2y - xy + 7 
0"13(Z) = 2 . 

After completing the computations, we obtain 

21r Z 
cos 17 ="2= 

-1 + vTI + V34 - 2vTI + )68 + 12vTI - 4V34 - 2vTI - SV34 + 2y'17 

16. 

This expression can be found, in varying forms, in the literature. The cosine 
of the other multiples of 21r /17 are obtained with analogous computations. 
The formulas that develop are analogues of the preceding ones, up to some 
sign changes. 

6) Finally, ( = cos(21r /17) + i sin(21r /17) = (z + iV 4 - z2)/2. 

All of these results are due to Gauss (Figure 9.5). 
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p . .. . 
~~:;:::;.-:~+-*V17+-hV'~:-AV11) .... t.V{(lf+S\lI'11""V@+-.V'1) 

-sVtJ4+,.v.'7)} ; 
lescosiDua ties .. nakip.... de eet augle C)Jlt -aue forme _ttlable. 
les siaus oat U1l radical • plus. n y a certainemetlt bien liell 

-de S!~.er 11- Ia. div,isibilitl .tu G81'Qle _ .. e. 5 pa1'ties ayaat 
Ite connue des 1e tempe d'Zucll48, OR .'ait rim ajoatl 1 eel 

decouvertes dUI U1l interva1ie de deux.mille., et-'1\1e-tousIes 
g~metres aient lDDonce CO~e certain, qu'exC8)d on diYisioDl 

et een. qui S'eIl deduisent (la divisiODS en 21'-, IS, '5.2~. 5.2/4 I 

15.21'- pal'ties), on De ~1lYait en dFeetuef aucune par des 
collltrJu:tbms . ,~lDIStriqQa. 

FIG URE 9.5. Gauss: Recherches arithmetiques (value of cos i; ) 

Solution to Exercise 9.9. 

1) AB (s = ei1r / 4 = (1 + i)/h, we have h = (1 + (~)/(s so hE Q[(sj. 

2) The roots of S are of the form (i with 1 :::; i :::; p - 1, so D(S) = 
II ((i - (j)2 is the square of d = II ((i - (j), which is ob-

l~i<j~p-l l~i<j~p-l 

viously an element of Q[(j. We know that the discriminant of S lies in the 
ring generated by its coefficients; thus it is an integer. 

3) a) Every root x of S is a root of P different from 1. We have PI(X) = 
pXp-l and P'(X) = S'(X)(X - 1) + SeX), so S'(x) = PI(x)/(x - 1) = 
pxP-1/(x - 1). 

b) D(S) = (_I)<p-l)(p-2)/2 II S'((i), by §3.6. On the one hand, 
l~i~p-l 

(_I)(p-l)(p-2)/2 = (( _I)p-2)(p-l)/2 = (_I)(p-l)/2 

since p - 2 is odd and (p - 1)/2 is an integer. 
On the other hand, II S'((i) = II p(i(p-l) /((i-l). In the nu-

l~i~p-l l~i~p-l 

merator of this expression, we have ( II (i)P-\ the exponent of ( in 
l~i~p-l 

the part between parentheses is L i = (p(p - 1»/2. As (P = 1, the 

numerator is thus pp-l . 
The denominator is given by 

II ((i -1) = (_I)p-l II (1- (i) = SCI) = p. 
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Thus d2 = D(S) = (_1)(P-l)/2pp-2. 

4) a) If p = 4k + 1, then d2 = pp-2, so p/d2 = l/PP-l = (1/p2k)2 and 
y'P/d = ±(1/p2k) is rational. 

Ifp = 4k+3, then d2 = _pp-2, sop/~ = _(l/PP-l) = _(1/p2k+l)2 
and y'P/id = ±(1/p2k+1) is rational. 

b) First, i = ((4n)n and (n = ((4n)4 show that Q[i, (nj C Q[(4nj. Then, 
as 4 and n are relatively prime, we see that i is of order 4 and (n is of order 
n in C*, and i(n is of order lcm (4, n) = 4n in C*, which proves that i(n is 
a primitive 4n-th root of unity, so we have shown the converse inclusion. 
Finally, Q[i, (nj = Q[(4nj. 

c) If p = 1 mod 4, then part a) shows that y'P/d E Q. As d E Q[(j, we 
have Jp E Q[(j = Q[(pj. 

If p = 3 mod 4, then part a) shows that Jp/id E Q. As d E Q[(pj, we 
have Jp E Q[i, (p[= Q[(4pj. 

5) If N > 0, the decomposition of N as a product of primes shows that 
VN is a product of roots of primes. Because each of these roots lies in a 
cyclotomic field, their product also lies in a cyclotomic field (indeed, given 
cyclotomic fields generated by m-th roots of unity mi with 1 ~ i ~ r, the cy
clotomic field generated by the m-th root of unity m = lcm {mi; 1 ~ i ~ r} 
will contain them all. This extends easily to negative integers N. 

Solution to Exercise 9.10. 

1) The inclusion is a consequence of Exercice 9.9. 

2) L is a quadratic extension of Q contained in N; it is the only OHe since 
there is only one subgroup of index 2 in the cyclic group C. 

3) c' is the subgroup of index 2 of C. It has (p - 1)/2 elements, namely 
the CTk for k = a2r , 1 ~ r ~ (p -1)/2. 

4) The roots of S are the CTk(() for CTk tJ. C'; those of T are the CTk(() for 
uk tJ. C'. We note that T = CTa(S). The irreducibility of Sand T over L is 
a consequence of the fact that (is of degree (p-1)/2 over L. The constant 
term of Sis (_1)(p-l}/2(N with N = L a2r = ° mod p; thus it is 

l:=:;r:=:;(p-l}/2 
1 if p = 1 mod 4 and -1 if P = 3 mod 4. 

5) a) If p = 7, then 3 is a generator of (Z/7Z)* and its successive powers 
are 3, 2, 6, 4, 5, 1. We have S(X) = (X _(2)(X _(4)(X -() = X3_{3X2-
({3 + l)X - 1. We compute {3 = ( + (2 + (4 by noting that the conjugate of 
(3 over Q[Y7j is CTa({3) = (3 + (5 + (6. As (3 + CTa({3) = -1 and (3CTa({3) = 2, 
we see that {32 + {3 + 2 = 0, which gives {3 = (-1 + iY7)/2, taking into 
account that 1m {3 > O. 
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We can determine T in the same way, and with (3' = (-1 - iV7)/2, we 
find 

<P7(X) = (X3 - (3X2 - ((3 + l)X -1)(X3 - (3'X2 - ((3' + l)X - 1). 

b) If p = 13, then 2 is a generator of (Z/13Z)*, and we have 

SeX) = (X - (4)(X - (3)(X - (12)(X _ (9)(X _ (lO)(X _ () 

= x 6 - "IX5 + 2X4 - (1 + "I)X3 + 2X2 - "IX + 1. 

The computation of "I = (2 + (5 + (6 + C + (8 + (11 is done as above: we 
see that "12 + "I - 3 = 0, which gives "I = (-1 + v'13) /2, taking into account 
that "I > O. 

We can determine T similarly, and now, with "I' = (-1- M)/2, we find 

SeX) x 6 - "IX5 + 2X4 - (1 + "I)X3 + 2X2 - "IX + 1, 

T(X) = x6 - "I' x5 + 2X4 - (1 + "I')X3 + 2X2 - "I' X + 1. 
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Cyclic Extensions 

After having studied extensions by roots of unity in Chapter 9, we now 
proceed to study extensions by roots of arbitrary elements of the base 
field, and consider in particular when such extensions have cyclic Galois 
group. 

10.1 Cyclic and Abelian Extensions 

DEFINITION. - A normal extension N of a field K contained in C is said to 
be cyclic if the Galois group Gal(NIK) is cyclic, and abelian if Gal(NIK) 
is abelian. 

EXAMPLE. - The extension of a subfield K of C by a root of unity is abelian 
(see §9.5). 

COMMENTARY. - Generally, we will use the term cyclic (resp. abelian) 
extension of a field K for a Galois extension N of K whose Galois group 
Gal(NIK) is cyclic (resp. abelian); for more details, see §15.6. 

10.2 Extensions by a Root and Cyclic Extensions 

PROPOSITION. - Let n 2': 1 be an integer, ( a primitive n-th root of unity 
in C, K a subfield of C containing (, and a an element of K. Let b be a 
root of xn - a in C. 
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1) K[b] is a cyclic extension of K of degree a divisord ofn, and bd E K. 

2) In particular, if xn - a is irreducible over K, then Gal(K[b]lK) is 
cyclic of order n. 

PROOF. -

1) The roots of Xn - a in C are the n numbers b(k, 0 :::; k :::; n - 1. As 
they are all elements of K[b], K[b] is a normal extension of K. Set 
G = Gal(K[b]lK). For every a of G, a(b) is a conjugate of b over K, 
which can be written uniquely as b(k avec 0 :::; k :::; n - 1. The map 
"p: G ~ ZjnZ defined by "p(a) = k is a group homomorphism, since 
if a(b) = b(k and a'(b) = b(k', then (a oa')(b) = a(b(k') = b(k+k'. It 
is injective, since if "p(a) = 0, then a(b) = b, so a = id. It follows that 
because G is isomorphic to a subgroup of the cyclic group ZjnZ, it 
is itself cyclic of order a divisor d of n. 

Let a be a generator of G and set a(b) = b(k. As a is of order d, 
k is of order d in ZjnZ, so a(bd) = (b(k)d = bd(kd = bd. Because the 
element bd is invariant under a, it is invariant under every element 
Gi thus it lies in K. 

2) If xn - a is irreducible over K, [K[b] : K] = n so IGI = n. 0 

EXAMPLE. - Consider the example ofthe field K = Q[j, V2], which contains 
the sixth roots of unity. The polynomial X 3 - V2 is the minimal polynomial 
of b = V'2 over K since [K[b] : K] . [K : Q[V2] = [K[b] : Q[bll.[Q[b] : 
Q[V2] = 6 shows that b is of degree 3 over K. The group Gal(K[b]IK) is 
thus isomorphic to Zj3Zi its elements send b to b, jb, j 2b. 

10.3 Irreducibility of XP - a 

PROPOSITION. - Let P be a prime such that p ? 2, K a subfield of C, ( a 
primitive p-th root of unity, and a an element of K. 

1) If K contains <:, the polynomial XP - a 

• either is irreducible in K[X] 

• or factors as a product of linear factors in K[X]. 

2) If K does not contain (, the polynomial XP - a 

• is either irreducible in K[X] 

• or admits at least one root in K. 
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PROOF. -

1) Proposition 2 shows that if b is a root of XP - a in C, then K[b] is a 
cyclic extension of K of degree a divisor d of p. If d = p, then XP - a 
is irreducible in K[X]; if d = 1, then XP - a factors as a product 
of linear factors in K[X] (which are pairwise distinct since XP - a is 
prime to its derivative in K[X] , given that K has characteristic zero). 

2) If XP -a is not irreducible in K[X], then XP -a = P(X)S(X), where 
P and S are non-constant polynomials of K[X]. 

If b is a root of XP - a in C, we have XP - a = II (X - b(k) in 
O$;k$;p-l 

qX]. The constant term of P(X) is equal (up to sign) to a product 
c of terms of the form b(k; thus c E K and c = br(S, with 1 :::; r < p. 
We have cP = brp(SP = ar . By Bezout's identity, there exist integers 
u and v such that ur+vp = 1; hence a = a"r+vp = c"Pavp = (c"aV)P. 
As c"av E K, we see that XP - a has a root in K. <> 

10.4 Hilbert's Theorem 90 

10.4.1 The Norm 

DEFINITION. - Let K be a field, and let L be a normal extension contained 
in C, of finite degree over K. Let G = Gal(LIK). For every a E L, we 

define the norm of a over K to be the product NL/K(a) = II o-(a). When 
trEG 

there is no risk of confusion, we simply write N for the norm. As N(a) is 
invariant under every K-automorphism of L, we have N(a) E K. If L is 
the normal closure of K[a], N(a) is the product of the conjugates of a over 
K. Finally, it is clear that N(ab) = N(a)N(b). 

The norm depends on the extension L: if L' is a normal extension of 
finite degree of K containing L, then NL'/K(a) = (NL/K(a))[L':LJ for every 
a E L. 

The norm can be considered as a determinant (see Exercise 10.4). 

EXAMPLES. - If K = Q, then a, b E Q, and we have: 

1) if L = Q[i), N(a + ib) = (a + ib)(a - ib) = a2 + b2 ; 

2) if L = Q[j], N(a + jb) = (a + jb)(a + j 2b) = a2 - ab + b2 • 

3) if L = Q [V2] , N ( a + bV2) = (a + bV2) (a - bh) = a 2 - 2b2 • 
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10.4.2 Hilbert's Theorem 90 

THEOREM. - Let K be a field, and let Lee be a cyclic extension of degree 
n of K. Let G = Gal(LIK), and let a be a K-automorphism of L that 
generates G. For every x of L, we have the equivalence 

N(x) = 1 Y 
:ly =1= 0 such that x = a(y). 

PROOF. - We have G = {a\O::; k::; n -I}, so if x = ary)' then 

k y an-1(y) IT a (x) = -( ) . . . () = 1 a y an y 
O:'O;k:'O;n-l 

N(x) = 

because an(y) = y. 
Conversely, suppose that N(x) = 1. The linear combination 

id + xa + ... + [xa(x) ... a n- 2 (x)] an- 1 

of K-automorphisms is not identically zero (Dedekind's theorem; see §6.6.3). 
Let z be an element of L where it does not vanish; let y be its value at z. 
As y = z + xa(z) + ... + xa(x) ... a n- 2 (x)an- 1(z) =1= 0, we have 

xa(y) = xa(z) + ... + xa(x) ... an-1(x)an(z) = y - z + N(x)z = y, 

which gives the result. 

COMMENTARY. - This theorem appears in a text by Hilbert entitled Die 
Theorie der algebraischen Zahlkorper, which first appeared in 1897, and 
whose French translation appeared in 1909 under the title Theorie des 
corps de nombres algebriques. The whole of the theory is remodeled and 
restructured there, in 200 pages and 169 numbered theorems. 

10.5 Extensions by a Root and Cyclic Extensions: 
Converse 

Let us now prove a converse of Proposition 10.2. 

PROPOSITION. - Let n 2:: 1 be an integer, ( a primitive n-th root of unity, 
K a field containing (, and Lee a cyclic extension of K of degree nand 
Galois group G with generator a. Under these conditions, there exist a E K 
and bEL such that bn = a and L = K[b]. In particular, G is the Galois 
group of xn - a over K. 

PROOF. - Let us consider the norm map N : L ---7 K. We have 
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Hilbert's Theorem 90 implies that there exists bEL such that C 1 = 
bja(b), so that a(b) = b(. We have ak(b) = b(k for 0 :::; k :::; n - 1, 
and the elements b(k are pairwise distinct conjugates of b. Consequently, 
[K[bJ : KJ = n, hence L = K[bJ. Moreover, a(bn) = (b()n = bn shows that 
bn is invariant under a, so it is invariant under every element of G, which 
proves that bn E K, by §8.5. <> 

REMARK - We can give a proof of this result that does not use Hilbert 
90, but the eigenvalues of a as a K-linear map from L to L (see Exercise 
10.3). Here, also, the result remains true for an arbitrary field of arbitrary 
characteristic. 

10.6 Lagrange Resolvents 

10.6.1 Definition 

Let n be an integer, n 2:: 1, K a field containing the n-th roots of unity, 
and Lee a cyclic extension of K of Galois group G with generator a. For 
every root of unity e and every element x of L, the sum 

is called a Lagrange resolvent. 

COMMENTARY. - The history of the resolvents used by Lagrange in 1770, 
in particular in the study of third-degree equations, lies at the heart of the 
algebraic resolution of equations. Resolvents can be found, in varying forms, 
in the work of Euler (1750), Bezout (1765), Vandermonde (1770), and Gauss 
(around 1800). In the proof above, the application of Hilbert's Theorem 90 
to (-1 leads to the linear combination id + (-la + ... + [(-IJn-lan-l and 
thus to a Lagrange resolvent. 

10.6.2 Properties 

With the notation of §6.1, we have: 

1) a((e, X)) = e-1(e,X)j 

2) (l,x) E Kj 

3) (c,x)n E Kj 

4) (e,X)(e-1,x) E Kj 

5) L c-r(c, x) = nar(x) for 0:::; r:::; n-l. 
gEP-n 
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PROOF. -

1) We have 

a«c, x» a(x) + ... + cn-Ian(x) 

Cl[ca(x) + ... + cn-Ian-l(x) + x] 

c-l(c,x). 

2) As a(l,x) = (l,x), by 1), (l,x) is invariant under 0', and so under 
every element of C. Thus, §8.5 gives the result. 

3) a«c,x)n) = [a«c,x»]n = [c-l(c,x)]n = (c,xt, by 1), which gives 
the result exactly as in 2). 

4) We have 

a«c, x)(c-l, x» a«c, x»a«c-l, x» = c-l(c,x)c(c-l,x) 

(c,x)(c-l,x) 

by 1), which again gives the result just as in 2). 

5) Set Sr = L c-r(c,x). 
e:EJ1.n 

We have Sr = L c- r L ckak(x) = L ak(x) L ck- r . 

e:EJ1.n O:$k:$n-l O:$k:$n-l e:EJ1.n 

Now, L ck - r = n if k = rand L ck - r = 0 if k #- r, since if w is 
e:EJ1.n e:EJ1.n 

a primitive n-th root of unity, then 

" k-r L C = 
e:EJ1.n 

This gives the result. 

10.7 Resolution of the Cubic Equation 

. In this section, we will show how the results of the preceding sections and 
of Chapter 8 guide the resolution of cubic equations. 

A cubic equation can always be brought (by translation) to the form 
x 3 + px + q = 0, with p, q E C. Set K = Q(P, q, j); we need to adjoin the 
cube roots of unity because we will encounter a cyclic cubic extension. 

Let a, b, c be the roots of the equation in C. Recall (see VII.l and III.6) 
that K[a,b,c] = K[a,dj with d = (a-b)(b-c)(c-a) and d2 = -4p3_27q2. 
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We know that the Galois group of X 3 +pX +q is, in general, S3, identified 
with the group of permutations of {a, b, c}; in what follows, we fix this 
identification once and for all. Let L = J(A3) be the field of invariants of 
the alternating group A3 , i.e. the group of even permutations of {a, b, c}. 
This group contains three elements: the identity, the 3-cycle a = (a b c) 
and its square a 2 = (a c b). As A3 is a subgroup of index 2 of S3, L is 
a quadratic extension of K and there exists an element z E L such that 
Z2 E K and L = K[z]. 

Furthermore, K[a, b, c] is a cyclic extension of L, since K[a, b, c] is a nor
mal extension of K, so it is a normal extension of L, and the alternating 
group A3 = Gal(K[a, b, c]IL) is a cyclic group of order three. By Propo
sition 10.5, there exists an element z' E K[a, b, c] such that z,3 ELand 
K[a, b, c] = L[z']. The trellis of subgroups of the equation thus shows the 
existence of an intermediate extension which we will use to compute a, b, c 
in steps (Figure 10.1). To determine elements like z and z', we will use 
Lagrange resolvents and results from §10.6. 

K[a,b,c ]=L[z'] 

I 
L=K[z] 

K 

FIGURE 10.1. 

To determine z, we use the discriminant d; the even permutations of 
{a,b,c}, namely id, a, a 2, leave d invariant, and an odd permutation like 
(a b) transforms d into its conjugate -d i= d. This shows that dEL and 
d rt K, so L = K[d]. 

To determine z', we follow the ideas of §1O.4 and §1O.5. We choose a cube 
root of unity, for example j. The linear combination of K-automorphisms 
f = id + ja + j 2a2 is non-zero by Dedekind's theorem. It does not vanish 
at a, otherwise we would have feb) = j2 f(a) = 0, f(c) = jf(a) = 0, but as 
f(l) = 0, f would be zero. Consider (j, a) = a + jb + j 2c = f(a). We have 
(j,a) rt L, since a(j,a) = j2(j,a) i= (j,a) and (j,a)3 E L, by Property 
10.6.2 c); thus, (j, a) is a primitive element of the extension K[a, b, c] of 
K[d]. 

It remains to apply the techniques of Chapter 3 to compute the equation 
satisfied by (j, a)3 = (a + jb + ic)3. As 
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we find 

We obtain three values of (j, a), corresponding to the three possible values 
of a. Similarly, we find (i,a)3 = -(27qj2) + (3iV3j2)d. 

We need to determine the roots of the equation. By Property 10.6.2. 4), 
(j,a)(j2,a) E L: 

(a + jb + j 2e) (a + ib + je) = a2 + b2 + e2 - ab - be - ea 
-3p. 

Thus, we obtain three values of (j2, a) corresponding to the three values of 
(j, a). Now, because (1, a) = a + b + e = 0, the formulas of 10.6.2 5) yield 

3a = (j,a) + (j2,a), 

3b i(j,a) + j(j2,a), 

3e = j(j,a)+j2(i,a). 

We recover Cardan's formulas this way, since 

( j,a))3 =_~±Jq2 +p3 
3 2 4 27' 

etc. 

10.8 Solution of the Quartic Equation 

A quartic equation with complex coefficients can always be brought (by 
translation) to an equation of the form x4 +px2+qx+r = 0 with p, q, r E C. 
Set K = Q(p, q, r, j); again, we need to adjoin the cube roots of unity 
because we will encounter a cyclic extension of degree 3. Let a, b, c, d denote 
the roots of the equation in C. We know that the Galois group of the 
equation is, in general, the group 84 identified with the permutations of 
{ a, b, e, d}; again, we fix such an identification once and for all. Let us show 
how knowing the Galois .group guides the resolution of the fourth-degree 
equation. 
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~T~ 
H=«ab)(cd» H'=«ac)(bd» H"=«ad)(bc» 

~t~ 
I 

A4 
~ le[a'I'C,d~ 

I T=M[a+b] T'=M[a+b] T" =M [a+b] 

S4 I~ 
M=L[u] 

I 
L=1e[B] 

I 
Ie 

FIGURE 10.2. 

Let A4 be the alternating subgroup, and V the normal subgroup of order 
4 generated by products of two disjoint transpositions (these are called 
double transpositions). Let H, H', H" denote the three subgroups of V 
having two elements, and let L, M, T, T', T" be the corresponding subfields 
of invariants. Figure 10.2 gives the Galois correspondence for the subgroups 
of 8 4 just described, and their corresponding subfields. 

As in §1O.7, L is a quadratic extension of K and L = K[8l, where 8 is a 
square root of the discriminant of the equation 

8 = (a - b)(a - c) (a - d)(b - e)(b - d)(e - d). 

M is a cyclic extension of degree 3 of L, since V is a normal subgroup of 
index 3 of A4 • Lagrange's method for finding an element generating Mover 
L is to consider 

u = (a + b)(e + d), v = (a+e)(b+d), w=(a+d)(b+e) 

(we can also work with the resolvents (i,a), (-l,a), (-i,a) or with ab+ 
cd, ae + bd, ad + be). The actions of V and A4 over u, v, ware the desired 
ones: they are invariant under V but not under A4 (recall that the elements 
of A4 are 3-cycles or double transpositions), so they generate M. Moreover, 
considering the action of the 3-cycle (a b c), we see that they are conjugates 
over L, so they are the roots of a cubic equation over L, which we can 
determine by computing u + v + w = 2( ab + ac + ad + be + bd + cd) = 2p. 
Similarly, 

UV + vw + wu = p2 - 4r, 

uvw _q2. 
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The equation y3 - 2P'!l + (p2 - 4r)y + q2 = 0 is called the resolvent equation 
of the original equation. As it is cubic, we know how to solve it (see §1O.7). 

Note that [M : L] = 3 and not 6; we can check by an easy computation 
that (u - V)2 (v - W)2 (w - U)2 = 82 , so the discriminant of the resolvent lies 
in L. 

Let us continue: a + b 'I. M since the element (a c)(b d) of V modifies 
it; we do, of course, have a + b E J(H). Thus, a + b is of degree 2 over 
M and T = M[a + b]; its conjugate is c + d, the image of a + b under the 
permutation (a c)(b d). As a + b + c + d = 0 and (a + b)(c + d) = u, we 
set a + b = v-=u and c + d = - v-=u. 

Similarly, a + c = 0 and b + d = -0, a + d = v' -wand b + c = 
-v'-w. 

The numbers V-=U, 0, v' -w should not be selected independently. 
The (easily checked) equality (a+b)(a+c)(a+d) = -q shows that we have 
the choice between two of the roots. 

We finally obtain 

2a a+ b+a +c+a+ d = v-=u + 0 + v'-w, 

2b Fu - 0 - v'-w, 

2c -v-=u + 0 - v' -w, 

2d -V-=U-0+v'-w. 

10.9 Historical Commentary 

Lagrange was not the first to make the attempt to unify the methods for 
solving equations of degrees 2, 3, and 4. Tschirnhaus also tried; however, 
his ideas did not extend to equations of degree ~ 5 (see Exercise 3.2). 

Lagrange also wrote: "We can be assured that even if we succeeded in 
giving a general solution of the fifth degree equation and the following ones, 
we would have only algebraic formulas, precious in themselves, but not very 
useful for effective resolution .... " 

For further information on the methods of Lagrange, see for example the 
book by J.-P. Tignol (pp. 163-201) listed in the bibliography. 

Exercises for Chapter 10 

Exercise 10.1. Cyclic and abelian extensions 

1) a) Show that a quadratic extension is cyclic. 

b) Determine the set of elements x of Q[j] such that Q[x] = Q[j] 
and x 2 E Q. 
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2) Let N be an abelian extension of a field K. Show that every interme
diate extension L is an abelian extension of K. 

3) Give an example of a non-cyclic abelian extension of Q. 

4) Let a = ~, b = a + ia, and let N be the normal closure of Q[b) over 
Q. 

a) Is N a cyclic extension of Q? 

b) Give a strict subfield K of N such that Gal(NIK) is cyclic of 
. order 4. 

5) Determine the splitting field N of the polynomial X 6 - 2 over Q[j). 
Describe the elements of the Galois group G = Gal(NIQ[j]), and 
determine the structure of G. 

Exercise 10.2. The splitting field of (XP - 2)(Xq - 2) 

1) Let K = Q[j), set P(X) = (X2 - 2)(X3 - 2), and let N be the 
splitting field of P over K. 

a) Show that N = K[a) , where a is a suitable (non-integral) power 
of 2; determine [N : K), and show that N is a cyclic extension 
ofK. 

b) Give the trellis of intermediate extensions between K and N; 
are they all normal extensions of K? 

2) Now let p and q be two distinct primes n = pq, (a primitive n-th root 
of unity, K = Q[(j, P(X) = (XP - 2)(XQ - 2), and N the splitting 
field of P over K. Show that N is a cyclic extension of K. 

Exercise 10.3. Cyclic extensions without Hilbert's Theorem 90 

Let K be a field contained in <C. A polynomial P of K[X) is said to 
split if it is a product of linear factors in K[X). Recall that if f is 
an endomorphism of a K-vector space such that there exists a split 
polynomial P in K[X) with simple roots such that P(f) = 0, then f 
is diagonalisable. 

1) Let n ~ 1 be an integer, ( a primitive n-th root of unity, and K a 
field containing (. Let L be a cyclic extension of K of degree n, with 
Galois group G generated by (j. Consider (j as an endomorphism of 
the K-vector space L. 
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a) Show that the eignvalues of 0' are n-th roots of unity, and that 
1 is an eigenvalue of 0'. 

b) Show that 0' is diagonalisable. 

c) Deduce that 1 cannot be the only eigenvalue of 0'. 

d) Show that the eigenvalues of 0' form a cyclic group isomorphic 
to the group JLn of n-th roots of unity. 

e) Show that there exists a E K, bEL such that bn = a and 
L=K[b]. 

2) Let P(X) = X 3 + pX + q be a polynomial with coefficients in <C, 
irreducible over K = Q(p, q). Let a, b, c denote its roots in <C, and let 
d be a square root of its discriminant. Set L = K[j, d], N = L[a, b, c]. 

a) Show that (l,a,b) is a basis of N over L. 

b) Show that G = Gal(N\L) is cyclic. 

c) Let 0' be a generator of G. Determine the eigenvalues and eigen
vectors of 0'. 

d) Check that we obtain Lagrange resolvents. 

Exercise 10.4. The norm as determinant 

Let L c <C be a normal extension of a field K and a an element of L. 
Let P(X) = LO<k<n akXk be the minimal polynomial of a over K, 
and L' the norm~ ~losure of K[a] in L. We write m : L -+ L for the 
map defined by m(x) = ax, and set m' = miL'. 

1) Check that m is K-linear. 

2) a) Express N L' / K (a) in terms of the coefficients of P. 

b) Show that NL'/K(a) = det(m'). 

3) Deduce that NL/K(a) = det(m). 

Solutions to Some of the Exercises 

Solution to Exercise 10.1. 

1) a) We know that such an extension is normal and has Galois group 
isomorphic to 7../27... 
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b) Q[j] is a cyclic extension of Q, since it is a normal extension and its 
Galois group over Q is 'll/2'll. Thus, there exists x such that Q[x] = Q[j] 
and x 2 E Q. Writing x = a + bj, we see that x 2 = a2 + 2abj + b2( -1 - j) 
is real if 2ab - b2 = O. As b must be non-zero, it is necessary and sufficient 
that b = 2a. We find x = a + 2aj = aiV3 with a =J o. Thus, we have 
x2 = -3a2 E Q. 

2) Gal(NIK) is an abelian group, and Gal(NIL) is a normal subgroup of 
it; thus L is a normal extension of K. Moreover, Gal(LIK) is a quotient of 
Gal(NIK), so it must be abelian, which gives the result. 

3) Take the field Q [V3, v'2] ; its Galois group over Q is 'll/2'll x 'll/2'll. 

4) a) The minimal polynomial of b over Q is X4 + 20, whose roots are 

±b and ±ib. Thus we have N = Q [i, ~l We see that [N: Q] = 8 and 

Gal(NIQ) contains the elements a and r defined by a(i) = i, a(a) = ia, 
rei) = -i, rea) = a. 

We note that ar =J ra, since area) = ia and ra(a) = -ia. The group 
Gal(LIQ) is thus neither commutative nor cyclic. 

b) Set K = Q[i]; then K contains the fourth roots of unity. Thus, N is 
a cyclic extension of K, by §10.2, with Galois group isomorphic to 'll/4'll 
since [N : Q[ilJ = 4. 

5) As -l = e~7r/3 is a sixth root of unity, the splitting field is N = 

Q [±~,±j~,±j2~] = Q [~,j] , so we have [N : Q] = 12, [N : 

Q[j]] = 6. A direct application of §10.2 shows that N is a cyclic extension 
Q[j], with Galois group isomorphic to 'll/6'll. The elements of Gal(NIQ[j]) 
are defined by a(~) = (_j2)k~, 0:5 k :5 5. 

Solution to Exercise 10.2. 

1) a) We already saw, in part 2) of Exercise 4.5, that a = 21/ 6 is a primitive 

element of Q [v'2, ~]. As [N : Q] = [Q[a,j] : Q[a]][Q[a] : Q] = 12, it is 

clear that [N : K] = 6 and a is of degree 6 over K. As j is a sixth root of 
unity, Proposition 10.2 shows that N is a cyclic extension of K. 

b) The only non-trivial subgroups of'll/6'll are {O, 2,4} and {O, 3}; by the 
Galois correspondence, they correspond to extensions K [v'2] and K[~], 
which are thus the only non-trivial intermediate extensions between K and 
N; note that they are all normal since 'll16'll is abelian. 

2) We have N = K[21/ p , 21/ q ]. Set a = 21/n. As aq = 21/ p and aP = 21/ q , 

we have N C K[a]. As there exist integers u and v such that up+vq = 1 by 
Bezout's identity, we have 2v / P2u / q = a, which gives the converse inclusion 
and N=K[a]. 
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Solution to Exercise 10.3. 

1) a) If >. is an eigenvalue of a, there exists a non-zero x E L such that 
a(x) = >.x. Thus ak(x) = >.kx for every integer k 2: 0; for k = n, we obtain 
>.n = 1. Moreover, we have a(l) = 1. 

b) As an - I = 0, we have pea) = 0 in K[X], with P(X) = xn - 1. 
As P is split over K because K contains the n-th roots of unity, the fact 
recalled above implies that a is diagonalisable. 

c) Because it is diagonalisable, a cannot have 1 as its only eigenvalue, 
unless it is the identity, which is false. 

d) If >. and J.L are eigenvalues of a and if x and y are the associated non
zero eigenvectors, we have xy =I- 0 and a(xy) = >'J.Lxy, a(x- l ) = >.-lX- l . 

The eigenvalues of a thus form a subgroup H of J.Ln. 
If H is strictly contained in J.Ln, it is a cyclic group of order d dividing n, 

and thus contains only d-th roots of unity. As a is diagonalisable, we have 
ad =id, which is false. 

e) By d), H contains (. Let b be a non-zero eigenvector of a associated 
to (. We have a(b) = (b, so a(bn) = (nbn = bn; as a = bn is invariant under 
a, it is invariant under all the elements of G, so it lies in K. 

The conjugates of b are the ak(b), 0 ~ k < n, i.e. the (kb for 0 ~ k < n. 
They are all distinct, so b is of degree n over K and L = K[b]. 

2) a) If b lies in the L-vector space generated by 1 and a, we see that c E L 
since c = -a - b. Thus [N : L] ~ 2, which is false. 

b) By a), G is cyclic of order 3. 
c) As a induces a permutation of the roots of P, we have a(a) = b or c. 

Consider the first case. The matrix of a in the preceding basis is given by 

(~ ~ -~). 
o 1 -1 

The characteristic polynomial is 1 - X 3 , the eigenvalues are 1, j and j2, 
and the corresponding eigenvectors are (1,0,0), (0,1, -j) and (0,1, _j2), 
i.e. a - jb and a - j 2b. 

d) As (1 - j)(a - jb) = a + j 2b - ja - jb = a + j 2b + jc and similarly, 
(1 - j2)(a - j 2b) = a + jb + j 2c, we find Lagrange resolvents up to the 
coefficients 1 - j and 1 _ j2. 

Solution to Exercise 10.4. 

1) This is obvious. 

2) a) NL'/K(a) = II 
uEGal(L'IK) 
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b) It is enough to compute the determinant of the matrix of m' in the 
basis (ak)o<k<n. 

3) The determinant of m can be computed in a basis of the form 

where (bl)O<I<r is a basis of Lover L'. We check that it is equal to 
(det(m')r, ;'hlch gives the result since NL/K(a) = (Nu/K(a))[L:L'l. 



11 
Solvable Groups 

This chapter and the next one are devoted to the problem of resolving 
algebraic equations by radicals. Given a polynomial with coefficients in a 
field K, together with its splitting field N over K, the solvability of the 
equation P(x) = 0 by radicals can be expressed in terms of the existence 
of a particular sequence of intermediate extensions between K and N (see 
Chapter 12). By the Galois correspondence, this translates to a property 
of Galois group Gal(NIK). In this chapter, we introduce the groups having 
this special property, called solvability. 

11.1 First Definition 

A finite group G is solvable if it has a finite decreasing sequence (Gi )O:5i:5r 
of subgroups such that 

1) Go = G -::J ••• -::J Gr = {e}; 

2) Gi+l is a normal subgroup of Gi for 0 ::; i ::; r - 1; 

3) Gi/GH1 is commutative for 0 ::; i ::; r - 1. 

EXAMPLES. -

1) An abelian group G is always solvable: it is enough to take Go = G 
and G1 = {e}. 
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2) 8 3 is solvable: take Go = 83 , G I = A3 and G2 = {e}. 

3) 8 4 is solvable: take Go = 8 4 , G I = A4 , G2 = V, and G3 = {e} 
where V is the subgroup consisting of the three double transpositions 
(products of two disjoint transpositions) and the identity. 

4) An and 8n are not solvable for n ~ 5 (see §11.6). 

5) Any p-group, and any group of order pq for distinct primes p and q, 
is solvable (see Exercise 11.3). 

6) Any group whose order has only two prime divisors is solvable (Burn
side's theorem, 1904). 

11.2 Derived or Commutator Subgroup 

Recall that a commutator in a group G is an element of the form [a, b] = 
a-Ib-Iab, for any a, bEG. The set of commutators of G generates a 
subgroup of G called the commutator subgroup of G, or the derived subgroup 
of G. We denote it by D(G). 

If f : G --+ G' is a group homomorphism, we have 

f(D(G» = D(f(G» C D(G') because f[x, y] = [I(x), fey)]· 

Recall that D(G) is a normal subgroup of G, and even a characteristic 
subgroup of G, i.e. a subgroup stable under every automorphism of G (not 
only inner automorphisms). 

Finally, let us recall a property that will be quite useful later on: for 
every normal subgroup H of G, H ::) D(G) is abelian if and only if G/H 
is abelian. 

11.3 Second Definition of Solvability 

PROPOSITION. - A finite group G is solvable if the sequence Di (G) defined 
inductively by DO(G) = G and for i ~ 0, Di+l(G) = D(Di(G», eventually 
stabilizes at {e} , i. e. if there exists an integer s such that D S (G) = {e} (so 
that Di(G) = {e} for all i ~ s). 

PROOF. - Assume that G is solvable (as defined in §11.1). Then, by in
duction, we have Di(G) C Gi. Indeed, this is clear for i = 0, and if we 
assume that for some integer i, Gi/GHI is abelian, then we obtain GHI ::) 

D(Gi) ::) D(Di(G» = DHI(G). As Gr = {e}, we have Dr (G) = {e}. 
Conversely, the sequence Di(G) is a sequence satisfying the conditions of 

the first definition, since conditions 1) and 2) are obvious, and also because 
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the fact that Di+l(G) = D(Di(G» is normal in Gi shows that the quotient 
Di(G)jDi+l(G) is commutative for every i. <> 

11.4 Examples of Solvable Groups 

PROPOSITION. - The following groups are solvable: 

1) a subgroup of a solvable group; 

2) a quotient of a solvable group by a normal subgroup; 

3) an extension of a solvable group by a solvable group; 

4) a finite product of solvable groups. 

PROOF. -

1) Let H be a subgroup of a solvable group G. We have Di(H) c Di(G) 
for every i 2:: o. Ai> G is solvable, there exists an integer r such that 
DT(G) = {e}, so DT(H) = {e}, which gives the result. 

2) Let K be a normal subgroup of a solvable group G, and let p : 
G --+ GjK be the canonical homomorphism. We have p(D(G» = 
D(P(G» = D (GjK) , so by induction, wehavep(Di(G» = Di (GjK) 
since p(G) = GjK. If DT(G) = {e}, then DT(GjK) = {e}, which 
gives the result. 

3) Let {e} --+ K ~ G ~ H --+ {e} be an exact sequence of groups, with 
K and H solvable (we say that G is an extension of K by H, or an 
extension of H by K; it depends on who is writing). There exists r 
such that DT(H) = {e}, so p(DT(G» = {e}; hence DT(G) c i(K). 
There exists s such that D S (K) = {e} so DT+S (G) c i(DS (K» = {e}, 
which gives the result. 

4) It suffices to note that the product of two solvable groups Hand K is 
solvable since H x K is an extension of H by K. Indeed, the sequence 
{e} --+ K ~ H x K ~ H --+ {e} is exact with i(k) = (e,k) and 
p(h, k) = h. <> 

11.5 Third Definition 

PROPOSITION. - A finite group G is solvable if and only if there exists a 
finite decreasing sequence (Hj)O~j~T of subgroups ofG such that 

1) Ho=G:J···:JHT={e}; 
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2) Hj+l is a normal subgroup of H j for 0::::: j ::::: r - 1; 

3) Hj f Hj+l is cyclic of prime order for 0 ::::: j ::::: r - 1. 

PROOF. - A group satisfying the above properties is solvable; this is clear 
using the first definition of solvability. Let us show the converse. Take a 
sequence (Gi)O:S;i:S;r of subgroups of G satisfying the conditions of the first 
definition. For every i, 0 ::::: i ::::: r - I, construct by induction a sequence 
(Kj ) of intermediate groups between Gi and GH1 : Ko = Gi , and Kj+l 
is a maximal normal subgroup of K j containing Gi+l. The sequence (Kj ) 
is decreasing, and finite because G is finite. Because the normal subgroups 
of K j f Kj+l are in bijection with the normal subgroups of K j containing 
Kj+l' Kjf K j+1 is a group that has no proper normal subgroup, i.e. a 
simple group. Moreover, KjfKj+l is a subgroup of Gi fGH1 . Thus, it is 
abelian, and consequently, it is cyclic of prime order. Putting together the 
sequences (Kj ) obtained for each i, we obtain the result. <) 

11.6 The Group An Is Simple for n > 5 

11.6.1 Theorem 

For n 2: 5, the alternating group An is simple (i. e. it has no normal sub
groups except for itself and the identity) and non-solvable; the group Sn is 
also non-solvable. 

COMMENTARY. - This fundamental theorem is due to Galois. One can show 
directly that An is not a solvable group (see §11.6.2). 

PROOF. - Let n 2: 5. Recall (see Exercise 11.1) that An is generated by 
the set of 3-cycles or by the set of double transpositions. Let us show that 
two 3-cycles (7 = (a b c) and (7' = (a' b' c') are conjugate in An. There 
exists a in Sn such that a(a) = a', a(b) = b', a(c) = c'. If a belongs to 
An, the equality a(7a- 1 = (7' shows that the two 3-cycles are conjugate in 
An; we obtain the same result if a does not belong to An, by changing a 
to (3 = a 0 (d e) where d and e lie in the complement of {a, b, c} . Similarly, 
we see that two double transpositions (a b)( c d) and (a' b')( c' d') are 
conjugate in An, by taking any permutation a E Sn such that a(a) = a', 
a(b) = b', a(c) = c', a(d) = d'. If a does not belong to An, set (3 = ao(a b). 

Let H be a normal non-trivial subgroup of An. Let us show that H 
always contains a 3-cycle or a double transposition. By the above, it will 
contain all of them, and therefore be equal to An. 

Let (7 be an element of H different from the identity element e, and let 
(71 ... (7k be its decomposition into a product of disjoint cycles, indexed so 
that the sequence of lengths 1((7i) of these cycles is decreasing. 
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1) Assume that leal) = r > 3. Set 

al = (al ... ar ) and a' = (al a2 a3)a(al a2 a3)-l. 

We have 

a-la = (al ... ar)-l(al a2 a3)(al ... ar)(al a2 a3)-l 

(ar al a2)(al a3 a2) 

(al a3 ar ). 

Then a' lies in H, because H is normal in An, SO a-la' = (al a3 ar ) 
lies in H; H contains a 3-cycle, so H = An. 

2) Assume that leal) = 3 and l(ai) = 2 for i > 1. Then H contains the 
3-cycle a 2 , so H = An. 

3) Assume that leal) = l(a2) = 3. Set al = (a be), a2 = (x y z), 
and a' = (b c x)a(b c X)-l. Because a-la' lies in H and a-la' = 
(a b x c z), we can conclude using part a). 

4) Assume that l(ai) = 2 for i = 1, ... ,k. Set al = (a b), a2 = (c d), 
and a' = (b c d)a(b c d)-l. Because a-la' lies in H and a-la' = 
(a d)(b c), H contains a double transposition, so H = An. 

In every case, H = An; thus An is a simple group. As it is not 
commutative, it is not solvable, and by Proposition 11.4, Sn is also 
non-solvable. <> 

11.6.2 An Is Not Solvable for n 2:: 5, Direct Proof 

PROPOSITION. - An is not solvable for n ;::: 5. 

PROOF. - The proof consists in showing that the normal subgroup D(An) 
is equal to An. Because An is generated by the 3-cycles (see Exercise 11.1), 
it suffices to show that every 3-cycle (a b c) belongs to D(An). Let d and 
e be two elements of {I, ... , n}, different from a, b, c; then 

[(a cd), (b c e)] = (a d c)(b e c)(a c d)(b c e) = (a b c). <> 

11.7 Recent Results 

The classification of all finite simple groups was completed in 1981. Galois 
discovered the first examples of these, namely, the alternating groups An for 
n ;::: 5. Emile Mathieu discovered others in 1861. Beginning with a lecture by 
Richard Brauer at the International Congress of Mathematicians in 1954, 
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together with seminal work of Claude Chevalley from the same period, the 
proof that the list of known finite simple groups was actually a complete list 
represents an enormous effort on the part of the mathematical community. 
Counted all together, the different parts of the proof fill nearly 10,000 pages; 
it is the longest proof on record. Given that even the best mathematicians 
make errors every 50 pages or so ..... 

Certain simple groups fall naturally into some infinite series, whereas 
others, called sporadic, seem to be the only ones of their kind. Among 
the sporadic simple groups, the most famous and largest one is known as 
the monster (or sometimes, the friendly giant). It possesses spectacularly 
beautiful properties; its order is equal to 246 X 320 X 59 X l' X 112 X 133 x 
17 x 19 x 23 x 29 x 31 x 41 x 47 x 59 x 71, which is roughly 1054. 

The proofs of theorems concerning solvable groups are also sometimes 
extremely long. In 1963, Walter Feit and John Thompson published a fa
mous 255 page proof of the theorem "All finite groups of odd order are 
solvable." 

Exercises for Chapter 11 

The first exercises recall basic properties of permutation groups. 

Exercise 11.1. The permutation groups Sn and An 

1) The conjugate of a cycle. 

Let n be an integer, a a permutation of {I, ... ,n}, and (Xl, ... ,Xk) 

a k-cycle of Sn, i.e. the permutation associating Xi+! to Xi for i = 
1, ... ,k - 1, Xl to Xk and leaving the other elements of {I, ... ,n} 
fixed. Show that a(xl, .. . , xk)a- l = (a(xI)' ... ,a(xk)). 

2) Let n ~ 3 be an integer. Knowing that Sn is generated by the set 
of transpositions of {I, ... , n}, show that Sn is generated by the 
following sets of permutations: 

a) the set of transpositions (1 2), ... , (1 n); 

b) the set of transpositions (1 2), (2 3), ... , (n -1 n); 

c) the set of two permutations (1 2) and (2 3 ... n); 

d) the set of two permutations (1 2) and (1 ... n); 

e) the set consisting of an arbitrary transposition and an arbitrary 
p-cycle a. 

3) Let n ~ 3 be an integer. 
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a) Show that the product of two distinct transpositions of 8n is 
either a 3-cycle or a product of two 2-cycles. Deduce that An is 
generated by the set of 3-cycles of 8n . 

b) Show that for n ~ 3, An is generated by the set {(I 2 3), ... , 
(1 2 n)}. 

c) Show that for n ~ 5, An is generated by the set of permutations 
known as double transpositions, i.e. permutations of the form 
(a b) (c d) with a, b, c, d pairwise distinct. Show that this result 
is false for n = 3, 4. 

d) Show that, for every n ~ 1 and every odd integer k with k ~ n, 
An is generated by the k-cycles, by showing that every 3-cycle 
is a product of two k-cycles. 

4) Take an action of 8n on a set E. Let p be the largest prime number 
less than or equal to n. Show that the orbits for this action have 
cardinal equal to 1, 2, or a number greater than or equal to p. 

Exercise 11.2. The groups A4 and 84 

1) Let G be a subgroup of A4 containing two 3-cycles defined over dis
tinct subsets of E = {I, 2, 3, 4}. Show that G = A4 . 

2) a) Show that the elements of A4 different from the identity element 
are eight 3-cycles and three double transpositions. 

b) Show that A4 has a unique normal subgroup, describe it, and 
show that it is normal in 8 4 . 

3) Show that A4 is the only subgroup of order 12 in 8 4 . 

4) Find the transitive subgroups of A4 and 8 4 . 

Exercise 11.3. Examples of solvable groups 

1) Show that a Jrgroup is solvable. 

2) Show that a group G of order pq for distinct primes p and q is solvable. 

3) Show that a group G of order pqr for distinct primes p, q, and r is 
solvable. 

4) Show that a group G of order p2q for distinct primes p, q is solvable. 



202 11. Solvable Groups 

Exercise 11.4. Thansitive and solvable subgroups of Sp 

Let p be a prime. We know that (Z/pZ, +,.) is a finite field with p 
elements. Let E = {O, ... ,p - I} denote the set of its elements, and 
(for this exercise) consider Sp as the group of permutations of E. 

Let GA(p) denote the group of bijective affine maps from Z/pZ to 
itself, i.e. the maps fa,b : Z/pZ ---. Z/pZ defined by fa,b(X) = ax + b, 
with a =1= 0, a, b E Z/pZ. Set t = hI and ma = fa,o. We will show 
that a subgroup G of Sp having the following properties: 

1) the action of G on E is transitive, 

2) G is solvable, 

is conjugate to a subgroup H of GA(p) , i.e. of the form (JH(J-l for a 
permutation (J of Sp; we will also prove the converse. 

1) The group GA(p) 

a) Show that mat = tama. 

b) Show that every element of GA(p) can be written uniquely in 
the form tbma, with 1 :s; a :s; p - 1, ° :s; b :s; p - 1. 

Deduce that JGA(p)J = p(p - 1). 

c) Show that (t) is a normal subgroup of GA(p). 

d) Show that GA(p) is transitive and solvable. 

2) Let G be a transitive subgroup of Sp. Show that a normal subgroup 
Hi=- {id} of G acts transitively on E. 

3) a) Let G be a solvable subgroup of Sp acting transitively on E. 
Thus, we assume that there exists a finite decreasing sequence 
(Hj)o.<;'j5,r of subgroups of G, satisfying the conditions of defi
nition 11.5. 

Show that H r - I is conjugate to the group (t). 

b) Deduce that G is conjugate to a subgroup of Sp containing t. 

4) Let (J E Sp be such that (Jt(J-I E GA(p). Show that (J E GA(p). 

5) Show that a group having properties 1) and 2) is ofthe stated form. 

6) Let G be a transitive subgroup of Sp. 

a) Show that if G is solvable, the only permutation of G having at 
least two fixed points is the identity. 
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b) Now let us prove the converse. By counting the elements of G 
that have a fixed point, show that there exists an element T E G 
that has no fixed point. Show that T is a p-cycle. Conclude. 

COMMENTARY. - These results are due to Galois. Later (see Exercise 12.3), 
we will prove the main result on equations that he deduced from them. 

Solutions to Some of the Exercises 

Partial solution to Exercise 11.1. 

1) Set Q = o-(XI, ... ,Xk)o--l and f3 = (o-(Xl), ... ,o-(Xk». We see that 
Q(Y) = f3(y) in each of the two cases y ¢ {o-(Xl), ... , o-(Xk)} and y E 

{o-(Xl)' ... , o-(Xk)}. 

2) d) Using the equalities 

(l. .. n)k(l 2)(1. .. n)-k=(k+1 k+2) for k=1, ... ,n-2, 

we find ourselves in the situation of b). 
e) Let (i j) denote the transposition; there exists an integer k such 

that o-k (i) = j. If we set T = o-k, then via the bijection cp defined by 
cp(l) = i,cp(2) = j,cp(r + 1) = TT(i) for 2 :::; r :::; n -1, we return to the 
previous situation. 

3) d) The k-cycles are even permutations when k is odd, and they generate 
the set of 3-cycles, via the formula 

4) The result is clear if p = 2, so let p be an odd prime, and take x E E. 
For every p-cycle 0-, the orbit of x under the action of (o-) has either one 
or p elements. If for every p-cycle 0-, the orbit of x under the action of (o-) 
has only one element, then the orbit x under the action of An has only one 
element by 3) d), so the orbit of x under the action of 8n has at most two 
elements. 

Partial solution to Exercise 11.2. 

4) The order of a transitive subgroup G of A4 is a multiple of 4, which is 
the order of the unique orbit, and it divides 12, so it is equal to 4 or 12. If 
it is 12, then G = A4 • If it is 4, then G is the subgroup generated by the 
double transpositions. 

Similarly, a transitive subgroup G of 8 4 has order a multiple of 4 and a 
divisor of 24, so it is equal to 4, 8, 12 or 24. If it is 24, then G = 8 4 , and if 
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it is 12, then G = A4 . If it is 4, then G can be the subgroup generated by 
the double transpositions, but also one of the three subgroups generated 
by a 4-cycle. If it is 8, then G is a Sylow 2-subgroup of 84 , Le. one of the 
three subgroups isomorphic to the dihedral group described in §8.7.2. 

Solution to Exercise 11.3. 

1) If G is a p-group, we know that its order is of the form pn. Let us use 
induction on n. If n = 1, then G ~ (ZlpZ, +), and the result is clear. 
Suppose the result holds for every p-group of order pk with k < n, and let 
G be a p-group of order pn. The center Z(G) of G is a non-trivial abelian 
subgroup of G, so it is solvable. As Z(G) is normal in G, the quotient 
GIZ(G) is a p-group, solvable by the induction hypothesis. We conclude 
that G is solvable by Proposition 11.4 3). 

2) Suppose that p > q. The number mp of Sylow p-subgroups of G divides 
pq and is equal to 1 mod p. Thus, mp = 1 and G has a unique Sylow p
subgroup H. We know that H is solvable and normal in G, and that the 
quotient G I H is solvable, so we conclude that G is solvable by Proposition 
11.43). 

3) Suppose that p > q > r and G does not have any normal subgroups. 
Then by the Sylow theorems, we find: 

a) mp = 1 mod p, mp > 1 and mplpqr, so mp = qr; 
b) mq = 1 mod q, mq > 1 and mqlpqr, so mq ~ p; 
c) mr = 1 mod r, mr > 1 and mrlpqr, so mr ~ q. 

Now, Sylow l-subgroups for distinct primes l = p, q, r have trivial inter
section, so we find that 

IGI ~ qr(p - 1) + p(q - 1) + r(q - 1) + 1 > pqr. 

This contradiction shows that G must have a normal subgroup of prime 
order, so it must be solvable. Denote it by H. The group GIH is solvable 
by 2), and we can thus again use Proposition 11.4 3) to conclude. 

4) If p > q, we see that mp = 1, G has a normal subgroup H of order p2, 
so solvable, by 1), and the quotient G I H is of order q and is also solvable. 
Again, we can conclude using §9.4 3). 

Let p < q, and assume that G has no normal subgroups. The Sylow 
theorems give mp = 1 mod p, mp > 1, and m plp2q, so m~ = q. But they 
also give mq = 1 mod q, mq > 1, and m qlp2q, so mq = p . As two Sylow 
I-subgroups for distinct primes l = p, q have trivial intersection, we find 

IGI ~ q(p2 _ 1) + p2(q _ 1) + 1 > p2q. 

This contradiction shows that G must have a normal subgroup H of order 
p2 or q. Because H is solvable, the group GIH is also solvable, and once 
again we conclude using §9.4 3). 
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Solution to Exercise 11.4. 

1) a) This follows from the fact that a(x + 1) = ax + a. Note that t is the 
p-cycle (01. .. p - 1). 

b) As fa,b = tbma, it suffices to check that if ax + b = a'x + b' for every 
x E IF P' then a = a' and b = b', which is easy. 

c) Part a) shows that matm;;l = ta , which suffices since the ma and t 
generate GA(p). 

d) The quotient GA(p)j(t) is commutative since the representatives of 
the classes are ma's, which commute with each other. Thus, it is solvable. 
The same holds for GA(p) and its subgroups, by Proposition 11.4. 

2) Let x and Y E E. As G is transitive, there exists f E G such that 
f(x) = Yj for every h E H, we have f-1hf E H, so f-1(OH(Y» C OH(X). 
Consequently, IOH(X)1 = IOH(y)l. Under the action of H, E is thus the 
union of r disjoint orbits having the same number of elements s. As s > 1 
(because H =f. {id}), P = rs, so that we must have s = p and r = 1. This 
proves the result. 

3) a) By the preceding question, the groups Hi for i = 0, ... , r - 1 act 
transitively on E. The only possibility for H r - 1 is a cyclic group generated 
by ap-cycle c. If c = (xo ... xp-d, and if we define rp: E --+ E by rp(Xi) = i, 
then rpcrp-l = t. 

b) rpGrp -1 answers the question. 

4) If ata-1 = tbma, we see, by an easy computation, that atka-1 = tnmak 

for k ~ 1, with n = L aib. If k = p - 1 and a =f. 1, we find that 
O:5i~k-l 

n = 0 mod pj hence, atp-1a- 1 = id. It follows that t p- 1 =id, which is 
absurd. Thus, we have a = 1 and ata- 1 = tb, i.e. at = tba. For every 
i E E, we thus have a(i + 1) = a(i) + b, hence a = to"(O)mb which indeed 
lies in GA(p). 

5) Let G have the two properties. By 3), there exists rp such that rpGrp-l 
contains t. As rpHr_1rp-l = (t) is a normal subgroup of rpHr_2rp-l, part 4) 
shows that rpHr_2rp-l C GA(p). For the same reasons, rpHirp-l C GA(p) 
for 0 ~ i ~ r - 1, which gives the result. 

6) a) If G is solvable, it is conjugate to a subgroup r of GA(p). As the 
only element of GA(p) having at least two fixed points is the identity, the 
same holds for G. 

b) For every i E {O, ... ,p - I}, let O(i) denote the orbit of i under 
G, and SCi) the stabilizer of ij set q = IS(O)I. Because G is transitive, 
O(i) = {O, ... ,p - I} and IGI = IO(i)IIS(i)1 show that IS(i)1 = q for every 
i. By the hypotheses, G is the disjoint union of the SCi) - {id} , together 
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with the set A of elements having no fixed points, and {id}. Thus IAI 
pq - p(q - 1) - 1 = P - 1, which proves the existence of 7. 

Let n be the order of 7. For every k < n, 7 k E A since if 7 k fixes i, it 
also fixes 7(i), which is impossible. Thus, the orbits under the action of (7) 
have the same cardinal n. As {O, ... ,p - I} is the disjoint union of these 
orbits, we see that n divides p. Consequently, n = p, 7 is a p-cycle and 
Au {id} = (7). 

Up to conjugation, we can assume that 7 = t. If a E G, ata- 1 has no 
fixed points (otherwise t would), so ata- 1 E (t) and by 4), we show that 
G C GA(p). Thus, G is solvable. 



12 
Solvability of Equations by Radicals 

Using the correspondence constructed in the preceding chapters, together 
with group-theoretic results, Galois obtained his famous criterion of solv
ability by radicals. "This material is so entirely new that new names and 
new characters are necessary to express it," he wrote, adding later that the 
true value of his criterion is essentially theoretical, as it is often impossible 
to compute the Galois group of a given polynomial: "In a word, the compu
tations are not practicable." However, he adds, the applications generally 
lead to "equations all of whose properties are known beforehand," so that 
the computations are possible, as in Chapters 9 and 10. 

12.1 Radical Extensions and Polynomials Solvable 
by Radicals 

12.1.1 Radical Extensions 

DEFINITION. - A field L C <C is said to be a radical extension of a field K 
if there exists a tower (Ki)O~i~r, called a radical tower, of extensions of K 
such that for each i = 0, ... ,r - 1, Ki+l is an extension of Ki by a root of 
an element of K i . In other words, we have 

hence, for each i = 1, ... ,r, there exists an ni such that (ai)ni E K i- 1• 
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EXAMPLE. - '1 {/I + H + yC5 belongs to a radical extension of Q 
(this formula actually defines 360 distinct complex numbers!) 

12.1.2 Polynomials Solvable by Radicals 

DEFINITION. - A polynomial P(X) E K[X] is said to be solvable by radicals 
over K if there exists a radical extension L of K containing the splitting 
field N of P. 

COMMENTARY. - All of the elements of L can be written using radicals, 
but L can contain N strictly. We require that all of the roots of P lie in 
L; in the case of a polynomial irreducible over K, we can show that it is 
equivalent to require that one root of P lie in L (see, for example, the book 
by J.-P. Tignol, p. 345 and following). 

OUTLINE OF THIS CHAPTER. - We will show in §I2.2 that if P(X) is a 
polynomial of K[X] which is solvable by radicals over K, with splitting field 
N over K, then Gal(NIK) is a solvable group. For this, we first need to 
construct a suitable radical extension of K (following §I2.I). We will then 
show the converse of this fundamental result, in §I2.4. 

12.1.3 First Construction 

Let us start from a radical extension L of K, containing N, defined by a 
radical tower T = (Ki)o<i<r with notation as in §I2.1.1. Let us define the 
tower T' = (KDo:$i:$r+; by Ko = K, K~ = K[(] where ( is a primitive 
n-th root of unity, and n = lcm{ni; 1:$ i:$ r}, K~+l = K[(,ab ... ,ail for 
1 :$ i :$ r. 

In this situation, KI+I is, by §1O.2, a normal extension of K: for i = 
0, ... , r, but we do not know if L' = K;+1 is a normal extension of K. For 
example, the radical tower Q C Q[vI2] C Q[ {l2] is not in this case. Let us 
show that we can define a tower T" that also satisfies this last property. 

12.1.4 Second Construction 

Let Pi be the minimal polynomial of ai over K for i = 1, ... , r, and let Ai be 
the set of conjugates in C of ai over K. The extension L" = K[(, AI,· . . , Ar] 
is a normal extension of K, since it is the splitting field of (xn -1) IT Pi. 

l:$i:$r 

Let us show that it is a radical extension of K of the same form as T'. It 
suffices to show that for every i with 1 :$ i :$ r, and every a E Ai, we have 

ani E K[(, Uj<iAj]. 

Because a is conjugate to ai over K, there exists a K-homomorphism a: 
K[aiJ ---t C such that a(ai) = a and we can extend a to a K-homomorphism 
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a' : K[(, Uj~iAj] -+ C such that a'(ai) = a. Since K[(, Uj<iAj] is a 

normal extension of K (because it is the splitting field of (xn - 1) II Pj ) 

I~j<i 

and (ai)ni belongs to it, the same holds for ani which is conjugate to it, 
since ani = (a'(ai))ni = a'«ai)ni ). 

Note that we can refine the tower (K [( , Uj<iAj]) in such a way 
- I<i<r 

that the successive extensions are abelian (this is the caSe for K[(] over K, 
by §9.5) or cyclic (this is the case for extensions by each conjugate of ai, 
by §10.2). 

12.2 If a Polynomial Is Solvable by Radicals, Its 
Galois Group Is Solvable 

THEOREM. - Let K be a field contained in C, and let P be a polynomial in 
K[X] with splitting field N. If P is solvable by radicals, then Gal(NIK) is 
a solvable group. 

PROOF. - We just saw that there exists a radical extension L of K con
taining N, defined by a tower (Ki)o<i<s such that Ko = K, KI = K[(] 
is an abelian extension of K, and K~;;' = Ki[Xi] is a cyclic extension of 
Ki for 1 ::; i ::; s - 1, with (Xi)n i E Ki, ( a primitive n-th root of unity, 
n = lcm{ni; 1::; i::; s -I} and L = Ks a normal extension of K. 

Set Gi = Gal(LIKi). The sequence (Gi)O~i~s satisfies the properties of 
§11.1. Indeed, condition 1) is clear; by §8.5 3), Gi+1 is a normal subgroup 
of G i , and as Gi/Gi+1 ~ Gal(Ki+IIKi) is abelian, conditions 2) and 3) of 
§11.1 are satisfied. Gal(LIK) is thus a solvable group. By §11.4, the same 
holds for the group Gal(NIK), which is a quotient of Gal(LIK) by §8.4. <> 

12.3 Example of a Polynomial Not Solvable by 
Radicals 

PROPOSITION. - The polynomial P(X) = X 5 - lOX + 5 E Z[X] is not 
solvable by radicals. 

PROOF. - By the preceding theorem, it suffices to determine its Galois 
group and show that it is not a solvable group. Let N denote the splitting 
field of P in C, and set G = Gal(NIQ). P is an irreducible polynomial by 
Eisenstein's criterion. It has three real roots and two complex conjugate 
roots, which we call a and b; this can easily be determined by studying the 
sign of the derivative of P. 
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Complex conjugation on C induces an element of G that exchanges a 
and b and fixes the three other roots of P. Because IGI = [N: Q] = [N: 
Q[a]][Q[a] : Q], the group G has order a multiple of 5, which by Cauchy's 
theorem (see Exercise 8.2) implies the existence of an element a of order 5 
in G. The group G is then identified with a subgroup of 85 that contains 
a 5-cycle and a transposition. Thus, we have G ~ 85 (see Exercise 11.1.2) 
e)). As we know that 85 is not solvable by Theorem 11.6.1, we can apply 
Theorem 12.2. 0 

12.4 The Converse of the Fundamental Criterion 

PROPOSITION. - Let K c C be a field, and let P be a polynomial in K[X] 
with splitting field N over K and Galois group G = Gal(NIK). Assume 
that K contains a primitive n-th root of unity ( with n = [N : K] = IGI· If 
G is a solvable group, then P is solvable by radicals. 

PROOF. - By §1l.5, there exists a finite decreasing sequence (Gi)O<i<r of 
subgroups of G such that 

1) Go = G ~ ... ~ Gr = {e}; 

2) Gi+l is a normal subgroup of G i for 0 :::; i :::; r - 1; 

3) GdGHl is cyclic of prime order Pi for 0 :::; i :::; r - 1. 

Set Ki = I(Gi ) for 0:::; i :::; r; we have Ko = K, and by §8.4, we also have 
Gal(KHIIKi) ~ Gal(NIKi)/Gal(NIKi+l) ~ GdGHl for 0 :::; i :::; r - 1. 
Thus, Gal(Ki+lIKi)) is cyclic of prime order, and by §1O.5, there exists an 
element ai E Ki+l such that (ai)Pi E Ki and KHI = Kdai]' This concludes 
the proof. 0 

12.5 The General Equation of Degree n 

12.5.1 Algebraically Independent Elements 

DEFINITION. - Let K be a field, and let L be an extension of K. Let 
Xl! ... ,Xn E L; these elements are said to be algebraically independent over 
K ifthe following homomorphism is injective: we define f : K[Xl! ... ,Xn] -+ 

L by taking flK to be the inclusion of K into L, and setting f(Xi) = Xi 
for i = 1, ... , n. In other words, Xl! ... , Xn are algebraically indepen
dent if there exists no non-zero polynomial P E K[X 1, ... ,Xn] such that 
P(Xl! .. ' ,xn ) = O. 
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12.5.2 Existence of Algebraically Independent Elements 

PROPOSITION. - For every integern, there exist n algebraically independent 
complex numbers over Q. 

PROOF. - Let us start with Q, the field of rational numbers. It forms a 
countable set; its algebraic closure (see §14.1) C(Q) inside C is also count
able (check this); so its complement is non-empty. Choose an element Xl 

in the complement. The extension of C(Q) by Xl is again countable; its 
algebraic closure C(C(Q)(Xl)) inside C is again countable, so again its 
complement is non-empty; choose an element X2 in this complement. Con
tinuing in this way, we obtain any number of algebraically independent 
elements. We can even choose the Xi to be real. <> 

12.5.3 The General Equation of Degree n 

Let Xl, ... ,Xn be algebraically independent elements over Q, and let N = 
Q(Xl,"" xn) be the field generated by these elements over Q. Let P be 
the monic polynomial defined by 

P(X) = II (X - Xi). 

l$i$n 

The equation P(X) = 0 is called the general equation of degree n over 
Q. Set 

P(X) = Xn + L akXk and K = Q(ao, ... ,an-d. 
O$k$n-l 

12.5·4 The Galois Group of the General Equation of Degree n 

PROPOSITION. - 1) The Galois group Gal(NIK) of the general equation of 
degree n is isomorphic to Sn. 

2) The general equation of degree n is not solvable by radicals for n ~ 5. 

PROOF. - 1) Every permutation s E {I, ... , n} induces a Q-automorphism 
a of N defined by a(xi) = xs(i) for 1 ~ i ~ n; thus, we can consider Sn as 
a group of Q-automorphisms of N. Set L = J(Sn). Emil Artin's theorem 
shows that [N : L] = n!. Furthermore, as ak E L for 0 ~ k ~ n, by §3.2.2, 
we see that K c L. Finally, as N is the splitting field of P over K, we have 
[N: KJ ~ n!. 

We obtain L = K, so 

Gal(NIK) = Gal(NIL) ~ Sn. 

2) It suffices to apply Theorem 12.2. 
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COMMENTARY. - Figure 12.1 shows the beginning, written in an astonish
ingly modern style, of Abel's first memoir on the impossibility of resolving 
the general equation of degree five. He quickly extended this result to the 
general equation of arbitrary degree greater than or equal to five (in 1826). 
These results correspond to part 2) of Proposition 12.5.4. This impossibility 
had actually already been proved, in 1799, by Ruffini, but his enormously 
long proof had not convinced his colleagues, even after several modifications 
and simplifications. 

MEMOIRE SUR LES EQUATIONS ALGEBRIQUES, OU L'ON DEMONTRE 
L'lMPOSSIBILlTE DE LA REsoLUTION DE L'EQUATION GENERALE 

DU CINQm:EME DEGRE. 

Les geometres se sont beaucoup oceuph! de la resolution generale des 
equations algeoriques, et plusieurs d'entre eux ont eberche A en prouver 
l'impossibilitl!j mais si je ne me trompe pas, on n'y a pas reussi jusqu'A 
present. J'ose done esperer que les geometres recevront avec bienveillance 
ce memoire qui a pour but de remplir eette laeune dans la theorie des 
equations aIgebriques. 

Soit 
y'- ay'+Oy" - cy'+dy- e=O 

l'equation g8nerale du einquieme de¢, et supposons qn'elle soit resalnble 
aIgebriquement, e'est-A-dire qu'on puisse exprimer y par nne fouction des 
quantit6! a, b, c, d et e, formee par de.~ radicaux. 

FIGURE 12.1. The beginning of Abel's first memoir 

Exercises for Chapter 12 

Exercise 12.1. Examples of polynomials not solvable by radicals 
over Q 

1) Show that the following polynomials are not solvable by radicals over 
Q. 

a) X5 - 14X + 7; 

b) X5-7X2+7; 

c) X7 - lOX5 + 15X + 5. 

2) Let P be an irreducible polynomial of Q[X] of prime degree p ::; 5. 
Assume that P has exactly two non-real roots. Show that P is not 
solvable by radicals. 
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Exercise 12.2. Cubic radical extensions 

1) Let K be a field contained in C, and let P(X) = X 3 + pX + q be 
an irreducible polynomial in K[X]. Let x be a root of P, and let 
D = d2 = _4p3 - 27 q2 be the discriminant of P. Take an element 
u = a + bx + cx2 of K[x] with not lying in K, of minimal polynomial 
X 3 + a'X2 + b'X + c' over K. 

a) Determine a' and b' in terms of a,b,c,p,q. 

b) Show that K[x] is a radical extension of K if and only if -3D 
is a square in K. 

c) Extend the condition of part b) to the case where x is a root of 
an arbitrary irreducible polynomial P(X) = X 3 + aX2 + bX + 
cEK[X]. 

2) Is the extension Q[cos(27r/7)] of Q radical? 

3) Let Xl, X 2 , X3 be indeterminates, and let 81, 82, 83 be the elementary 
symmetric polynomials in these indeterminates. 

a) Show that Q(Xl' X 2 , X 3 ) is not a radical extension of Q(8l' 82,83), 

b) Show that Q[j](Xl' X 2 , X 3 ) is a radical extension ofQ(8l, 82, 83)' 

Exercise 12.3. A result of Galois 

In this problem, we will make use of the results on transitive and 
solvable subgroups of Sp given in Exercise 11.4. 

1) Let K be a field contained in C, P an irreducible polynomial of prime 
degree p ~ 5 in K [X], E the set of roots of P in C, and N the splitting 
field of P over K. 

a) Assume that P is solvable by radicals. Show that N = K[x, y] 
for every pair of distinct elements x and y E E. 

b) Show the converse. 

2) Let K c R Deduce from the above that a polynomial in K[X], of 
prime degree greater than or equal to five and having exactly two real 
roots, is not solvable by radicals. 
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Exercise 12.4. Irreducible cubic equations: the necessity for non
reals 

Consider the polynomial P(X) = X 3 + pX + q with p and q real. 
Set K = Q(p, q), let a, b, and c denote the roots of P, and let D = 
_4p3 - 27 q2 be its discriminant. Assume that P is irreducible over 
K and that D > 0, and let d be a real number such that d2 = D. 

In this case, the equation P(x) = 0 has three real roots; however, 
Cardan's formulas involve a square root of a negative number, i.e. a 
non-real number (see Exercise 2.4). Let us show that this cannot be 
otherwise. In order to show it, we first assume the contrary. 

Suppose there exists a radical tower defined by a sequence 
UI, ... , Un of strictly positive real numbers and a sequence PI,··· ,Pn 

of prime numbers such that for 1 ::; i ::; n, (Ui)Pi E K[ pvIul, ... , Pi-t"Ui-l] 
and a E L = K[ pvIul,···, PVUn]. 

1) Show that K[a, b, c] C L[d]. 

Define the sequence of fields Ko = K, KI = K[d], ... , Ki+1 = 

K[d, pvIul, ... , p-1Uil for 1 ::; i ::; n, and let r be the smallest in
dex i such that i such that a E Ki+I. 

2) Show that r > O. 

3) Show that K[a, b, c] C K r +1 and that P is irreducible over K r . 

4) Show that Pr = 3, and then that K r+1 is a normal extension of K r . 

5) Deduce a contradiction. 

COMMENTARY. - Otto Holder was the first to clarify the problem posed 
by Cardan's formulas in 1891. 

Solutions to Some of the Exercises 

Solution to Exercise 12.1. 

1) Use the arguments of §12.3 in the three cases. 

2) The Galois group G of P contains the Q-homomorphism induced by 
complex conjugation, and because P is irreducible, IGI is a multiple of p. 
Identifying G with a subgroup r of Sp, we see that r contains a transpo
sition and an element of order p, i.e. a p-cycle. Consequently, r = Sp (see 
part 2) of Exercise 11.1) and G ~ Sp- Now we can conclude, using §12.2 
and §11.6. 
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Solution to Exercise 12.2. 

1) a) As u does not lie in K, it is of degree 3 over K. If x, y, z denote 
the roots of X 3 + pX + q in C, then the conjugates of u over K are u, 
v = a + by + cy2, W = a + bz + cz2, and the coefficients of the polynomial 
(X - u)(X - v)(X - w) lie in K. 

Using computations on symmetric polynomials, we find 

a' -(u + v + w) = -3a + 2pc, 

b' uv + vw + wu = 3a2 + pb2 - 4pac + p2c2 + 3qbc. 

b) In order for K[x] to be a radical extension of K, it is necessary and 
sufficient that there exist an element u = a + bx + cx2 E K[x] such that 
K[x] = K[u], u3 E K, i.e. such that b or c I- 0 and a' = b' = o. As a' = 0 if 
and only if a = 2pc/3, these conditions are equivalent to _(p2c2/3) + b2p+ 
3bcq = o. This equation has a non-zero solution (b, c) in K2 if and only if 
the discriminant of pX2 + 3qX - (p2/3) is a square in K, which gives the 
result. Note that u is not unique. 

c) By a variable change of the form Y = X + 0:, we transform P into a 
polynomial of the form X 3 + pX + q with the same discriminant D as P; 
we then recover the preceding conditions. 

2) The minimal polynomial of 2 cos( 27r /7) is given by X 3 + X2 - 2X - 1 
(see Exercise 2.6), which becomes y3 - (7/3)Y - (7/27) after setting Y = 
X + 1/3. Its discriminant is D = 49. We deduce that lQ[cos(27r/7)] is a 
non-radical extension of IQ. 

3) a) Set d = (Xl - X 2)(X2 - X 3 )(X3 - Xd and D = d2. We know 
that the Galois group Gal(IQ(X1, X 2 , X 3)11Q(81, 82, 83)) is isomorphic to 53, 
so the intermediate extensions are 1Q(81' 82, 83)[d] and 1Q(81' 82, 83) [Xi] for 
i = 1,2,3. As the quadratic extensions are radical, we still need to ex
amine the case of extensions of degree 3. The extension IQ(XI ,X2,X3) of 
1Q(81' 82, 83)[d] is not radical since -3D is not a square in 1Q(81' 82, 83)[d] 
(indeed, D = d2 is a square and -3 is not a square). Let us now show 
that the extension 1Q(81' 82, 83) [Xi] of 1Q(81' 82, 83) is not radical either. If 
it were, -3D would be a square in 1Q(81' 82, 83), so D would be a square in 
C(81' 82, 83), and we would have 

which is false. 

b) In this case, -3 is a square, which gives the conclusion. 
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Solution to Exercise 12.3. 

The proof of course uses the Galois correspondence. We need to trans
late the property in the text into a condition on the Galois group G = 
Gal(NIK), or rather on the isomorphic subgroup of Sp obtained start
ing from an indexation of the roots as in §8.1.4. If we take a bijection 
cp : {I, ... ,p} -+ E with Xi = cp(i), we obtain an injective group homo
morphism IJ> : G -+ Sp such that s = lJ>(a) is the permutation given by 
a(xi) = Xs(i)' 

1) a) If P is solvable by radicals, we know that IJ>(G) is conjugate to a 
subgroup H of GA(p). Now, an element of GA(p) that has two fixed points 
is the identity. Consequently, an element of G which fixes two roots is the 
identity; in other words, Gal(NIK[x, yJ) = {id} for every pair of distinct 
elements x and y E E. Thus N = K[x,y]. 

b) We know that IJ>(G) is transitive and the fact that N = K[x, y] for 
every pair of distinct elements x and y E E is equivalent to the condition 
in IJ>(G) that a permutation that fixes two elements of {I, ... ,p} is the 
identity, hence the result (see Exercise 11.4). 

2) If a and b denote the two real roots of P, then we cannot have N = K[a, b] 
(with notation as above), since K[a, b] c lR and N ct R The result then 
follows from the first question. 

COMMENTARY. - The result of this exercise is due to Galois, who stated it 
as follows: "For an equation of prime degree, which has no commensurable 
divisors, to be solvable by radicals, it is NECESSARY and SUFFICIENT 
that all the roots be rational functions of any two of them." 

Solution to Exercise 12.4. 

1) We know that K[a,d] = K[a,b,c]. As K eLand a E L, we have 
K[a, d] c L[d], hence K[a, b, c] C L[d]. 

2) r = 0 means that a E Kl = K[d]; this is impossible since a is of degree 
3 over K and d is of degree 2 over K. 

3) As a and d lie in K r+1 , we have K[a, b, c] C Kr+l by 1). 
Because Kr contains d, if it contains a root of P, then by 1), it must 

contain them all. But this contradicts the definition of r. Thus, P has no 
roots in Kr; as it is of degree 3, this suffices to show that it is irreducible 
over K r . 

4) As Kr+l J Kr[a, b, c] and Kr[a, b, c] is of degree 3 over K r, we have 
Pr = 3 and Kr+l = Kr[a, b, c]. Kr+l is a normal extension of K r. 
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5) Set U = U r . Because Kr+l is a normal extension of K r, and it contains 
one root of X 3 - U, it must contain the other roots, namely j?'U and j2 ?'U. 
But this contradicts Kr+l c R 
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The Life of Evariste Galois 

The life of Evariste Galois is the most famous, fascinating, and commented 
life of any mathematician. It has even become something of a myth, like 
the lives of the immortal poets Rimbaud, Byron, or Keats. 

Our knowledge of Galois' life contains enough gaps to allow imagination 
(and historians of science) to flourish. The books by Bourgne and Azra 
listed in the bibliography denounce some dangerous hypotheses and out
right errors; see also their edition of Galois' complete works, containing 
portraits, reproductions of his writing, and all of his extant articles. 

Evariste Galois was born on October 25,1811, in Bourg-la-Reine, a town 
(renamed Bourg-l'Egalite during the Revolution!) located about 10 km 
south of Paris. His father, Nicolas Gabriel Galois, was a political liberal 
and the mayor of the commune during the Hundred Days; his strong per
sonality assured him re-election under the Restoration. Apart from acting 
as mayor, he was also the director of a school. Galois' mother, Adelaide 
Marie Demante, was the daughter of a magistrate. She appears to have 
played an important role in the education of her young son, particularly in 
the domain of Latin culture. 

At the age of 12, Evariste entered the royal school of Louis-Ie-Grand. 
He was a brilliant student, but his teachers also commented that he had 
"somewhat bizarre manners" and was ''rebellious'' ... (is this really extraor
dinary?) In October 1826, he entered the advanced rhetoric class, but at 
the beginning of the second trimester, he was demoted to the previous year 
because of his mediocre performance. At that time, all study was heavily 
based on classical culture, and sciences were studied only as extra work; 
this actually represented a regression with respect to the Napoleonic and 
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Revolutionary periods, during which mathematics teaching played a fun
damental role in education. 

Galois discovered mathematics thanks to his demotion, because he was 
allowed to take the extra courses. Alone, he read the whole of Legendre's 
Elements of geometry and Lagrange's texts on the resolution of equations, 
as well as works by Euler, Gauss, and Jacobi. In 1827, he obtained first 
prize in a national mathematics competition (the Concours General, which 
still exists today); the following year, he obtained an accessit (awarded 
to the best papers after the first, second, and third prizes) in the same 
competition, as well as two successive accessits in Greek. 

In 1828, he attempted the entrance examination for the Ecole Polytech
nique, but failed, and remained at Louis-Ie-Grand, in the advanced math
ematics class. His teacher, Monsieur Richard, was 33 years old; he soon 
came to deeply admire the genius he perceived in his student. He kept 
all of Galois' homework, and later gave them to another student of his, 
Charles Hermite. He encouraged Galois to publish his first research results; 
an article appeared on April 1, 1829, in the Annales de mathematiques, the 
journal founded by Joseph Gergonne. 

It was at this point that difficulties and dramatic events began to accu
mulate around Galois. An article he sent to the Academy of Sciences was 
delivered to Cauchy and lost (Cauchy had already lost an article by Abel). 

On July 2, Galois' father Nicolas committed suicide, unable to endure 
the attacks of the cure of Bourg-la-Reine, who among other things wrote 
a series of anonymous letters that he attributed to no other than Nicolas 
Galois! His funeral was the scene of a small riot. 

A few days later, Galois once again attempted the entrance examination 
for the Ecole Polytechnique. It was catastrophic; to the stupefaction of his 
professor, Galois failed. One of the examiners, either Dinet or Lefebure de 
Fourcy (probably Dinet), asked a question about logarithms which Galois 
found too simple or even stupid; it is said that he flung the blackboard 
eraser in the examiner's face. The mathematician Joseph Bertrand (born 
in 1822) denies this incident, but mentions the "crazy laughter of the gentle
men of the jury examining the candidates to the Ecole Polytechnique (who 
do not, to my surprise, each occupy a chair at the Academy of Sciences, 
because their place is certainly not in posterity)." 

Following the advice of his professor, Galois entered the Ecole Normale. 
At that time, this school was known as the Ecole Preparatoire, and was 
considered to be on a much lower level than the Ecole Polytechnique. While 
there, he wrote the results of his research and presented them for the Grand 
Prize in Mathematics of the Academy of Sciences. Fourier (the Fourier of 
Fourier series, the theory of heat, the expedition to Egypt, etc.) took Galois' 
manuscript home with him, but died shortly afterward. The manuscript is 
now lost, but part of the results contained in it appeared in the Bulletin 
des sciences mathematiques published by the Baron de Ferussac, in April 
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and June 1830. In the end, the Grand Prize was awarded to Abel (who had 
died the previous year) and Jacobi. 

Galois' political opinions appear to have evolved very rapidly, and from 
that point on, he began to live a political life as intense as his mathematical 
one. During the famous days of July 27,28, and 29, 1830, he and the other 
students were locked into their school to prevent them from participating 
in the action outside, while the students at the Ecole Polytechnique battled 
on the barricades and made history. By October 1830, at the beginning of 
the academic year, Galois had turned into an active, ardent, and intrepid 
Republican, ready to defend the "rights of the masses", according to one 
member of his family. He joined the Society of Friends of the People on 
November 10 and openly criticized the opportunism of the director of the 
Ecole Normale and the philosopher Victor Cousin, who from faithful fol
lowers of Charles X had become faithful followers of Louis-Philippe. He 
mingled criticism of their teaching with his political criticism and found 
himself indefinitely suspended. 

The last mathematical article published in Galois' lifetime appeared on 
December 1. On December 5, he apparently authored a long letter published 
in the Gazette des Ecoles, signed "a student at the Ecole Normale", in 
which the director is derided in the following terms: "Everything in him 
announces the narrowest ideas and the most absolute routine." In early 
January, Galois was expelled by an exceptional decision of the board. 

On January 2, 1831, a letter appeared (once again in the Gazette des 
Ecoles), entitled On the teaching of the sciences, subtitled Professors. Books. 
Examiners. In the letter, Galois denounced the mediocrity of the teaching 
available to students: "When will students be given time to meditate on 
the mass of acquired knowledge .... Why do the examiners ask questions in 
a twisted way? It would seem that they are afraid to be understood by 
those who are being examined ..... Do they fear that science is too easy?" 

With no income, Galois opened a public course on higher algebra, on Jan
uary 13, at the Caillot bookstore, 5 rue de la Sorbonne. The course probably 
did not last long. The advertisement, which appeared in the Gazette des 
Ecoles, ran as follows: "This course will take place every Thursday at 1:15; 
it is aimed at young people who, feeling the incompleteness of algebra as 
taught in the colleges, wish to study the subject more deeply. The course 
will consist of theories, some of which are new, and none of which has ever 
been lectured on in public. We mention here a new theory of imaginaries, 
the theory of equations solvable by radicals, the theory of numbers and 
elliptic functions treated by pure algebra." Thirty people attended the first 
lecture. 

The academician Denis Poisson advised Galois to write a new version 
of the memoir that had been presented a year earlier to Fourier and lost. 
On January 17, the Academy gave Poisson the task of reading the new 
manuscript, together with Sylvestre Lacroix. On March 16, Galois wrote 
to the academicians, pressing them to read his manuscript. Meanwhile, 
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political tensions ran high, as Louis-Philippe had managed to maneuver 
the Republicans out of power (in December 1830, he dissolved the National 
Guard, of which Galois was a member). 

On May 9, 1831, after the acquittal of some young Republicans on trial, 
Galosi attended a banquet in the salon of the restaurant Aux Vendanges 
de Bourgogne; Alexandre Dumas and Franc;ois-Vincent Raspail were also 
present. During the banquet, Galois proposed an unplanned toast. "To 
Louis-Philippe!" he said, raising his glass in one hand - "the fumes of the 
wine had removed my reason," he later explained - and a knife in the 
other. Those who did not see the knife protested, and during the following 
moments of effervescence, Alexandre Dumas became frightened and fled. 
The next day, Galois was arrested at his mother's home, and sent to the 
Sainte-Pelagie prison (near the Jardin des Plantes), to be judged on June 
15. 

The full text of the trial still exists. Galois' testimony reads: "Here are 
the facts. I had a knife which I had been using to cut food during the meal. 
I raised the knife, while saying To Louis-Philippe, if he betrays. The last 
words were heard only by my nearest neighbors, because of the whistles 
excited by the first part of my toast." The jury was indulgent, and Galois 
was acquitted. 

An anonymous article published in the journal Le Globe mentions Galois' 
mathematical genius. On July 4, Poisson and Lacroix finally published their 
report on Galois' memoir, writing "We have made every effort to under
stand Galois' proof. His reasoning is neither sufficiently clear nor sufficiently 
developed to allow us to judge of its correctness ... We can wait until the 
author has published his entire work in order to form a definitive opinion." 
They conclude that, for the moment, "we cannot propose approval of this 
memoir." 

Galois was disappointed. But Poisson and Lacroix were not entirely mis
taken; the text is extremely difficult to understand, and the author could 
certainly have provided additional explanations. 

On July 14, Galois was arrested on the Pont-Neuf, at the head of a large 
group of demonstrators. He was again sent to Sainte-Pelagie, and this time 
condemned, on October 23, to six months of prison because he was not a 
first offender. His friend Ernest Duchatelet, who was arrested together with 
him, was condemned to just three months. 

Galois continued to work in prison, where he also socialized with people 
like Nerval and Raspail. 

In December, he submitted a new effort for pUblication. But the pref
ace he wrote for his article was so polemical that the complete text ended 
up being published only in 1948, by Rene Taton. Bitter over the loss of 
his manuscripts and Poisson's lack of understanding, he violently attacked 
politicians and scientists, placing them on the same level: "If I had to ad
dress some words to the great men ofthis world or the great men of science ... 
I swear that it would not be thanks." In the second part, he analyzes the 
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procedures he used to construct his theory, emphasizing that computations, 
even very elegant ones, have their limits, as do algebraic transformations 
to such a point that in order to do them, they must have been foreseen. He 
adds: "Jumping into the computations, grouping the operations, classifying 
them according to their difficulties and not according to their form: this, 
according to me, is the mission of future geometers [mathematicians]; this 
is the road I have followed in this article." To conclude, he emphasizes what 
he was unable to understand, and dreams of a time in which egoism will 
no longer reign in the sciences, and "people will study together, instead of 
sending sealed letters to the Academy; people will hasten to publish even 
their smallest observations, if they are new, and will not hesitate to add 'I 
do not know the rest.' " 

Because of the cholera epidemic of early 1832, Galois was transferred on 
March 16 to a pension or sanatorium run by a certain Faultrier, near the 
Place d'Italie, along the BiElVre River, not far from the Croulebarbe Mill. 
At the time, this was located in the commune of Gentilly; later, it became 
part of the 13th arrondissement of Paris. In theory, Galois was scheduled to 
be set free on June 1, but it seems certain that he left prison earlier. In May 
1832, he had a brief love affair with a young woman, Stephanie D., whose 
true identity is still under discussion. He broke it off on May 14, and this 
appears to have been the cause of the duel he fought a few days later. The 
night before the duel, on May 29, Evariste assembled his latest discoveries 
in a splendid letter, addressed to a faithful friend, Auguste Chevalier. It is a 
dramatic scene to imagine. Foreseeing his death, pressed by time, he wrote 
this letter containing a summary of his mathematical work, in desperate 
urgency. 

Paris, May 29, 1832 

My dear friend, 

I have done several new things in analysis. 
Some of these things concern the theory of equations, others concern 

integral functions. 
In the theory of equations, I looked for conditions for the equations 

to be solvable by radicals .... 

He recalls the set of results that he obtained, concluding seven pages later 
with an obscure sketch of some notions later created by Riemann (many
sheeted Riemann surfaces are referred to as ''the theory of ambiguity"). 

My main meditations for some time now have been directed towards 
the application of the theory of ambiguity to transcendental analysis ... 
But I do not have time now and my ideas on this immense terrain are 
not yet well developed ... 

You will publicly request Jacobi or Gauss to give their opinions, not 
on the truth but on the importance of these theorems. 
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After that, I hope there will be people who find profit in attempting 
to decipher this mess. 

Rereading or wishing to modify one statement, he wrote in the margin: 
"There is something to be completed in this proof. I have no time." 

He wrote other short letters, for example: "I am dying, the victim of an 
infamous coquette, and two fools of this coquette. My life is extinguished 
in a miserable cancan. Oh ! why die for so little .... Adieu! I had a lot of 
life for the public good." 

The exact circumstances of the whole adventure are not known, nor is 
the name of his adversary. In the morning of the May 30, Galois, grievously 
wounded and abandoned after the duel, was picked up by a peasant and 
carried to the Cochin hospital where he died of peritonitis on May 31, in the 
arms of his young brother Alfred, saying "Don't cry, I need all my courage 
to die at twenty." He was buried in the mass grave of the Montparnasse 
cemetery. 

Accounts of his death appeared in a few newspapers, but they gave con
tradictory details. His friends organized a demonstration, which they post
poned on hearing of the death of General Lamarque; it took place on June 
5 and led to the massacre of the Saint-Merri cloister. Victor Hugo recounts 
the event in the chapter The epic of the rue Saint-Denis of his book Les 
Misembles. 

Thanks to the devotion of Auguste Chevalier and his brother, the papers 
of Evariste Galois were collected, and his letter-testament was published in 
September 1832. It did not, however, attract any attention, even though 
it was published by Auguste Chevalier together with a presentation of the 
life of his friend ("A second condemnation threw him behind bars for six 
more months. Death awaited him at the exit"), to which Nerval added, in 
1841: "He was killed in a duel the day after he was given his freedom." The 
romantic myth surrounding Galois was born from these lovely writings. 

In 1835, Lacroix mentioned, in a note near the end of the sixth edition 
of his Complements of elements of algebm Galois' memoir, which he had 
read together with Poisson, saying: 

In 1828, Abel wrote to Legendre: "I have been happy enough to find 
a sure rule for recognizing if a given equation is by radicals or not. A 
corollary of my theory shows that generally, it is impossible to resolve 
equations superior to the fourth degree." (Journal de Grelle, year 1830, 
1st cahier, p. 73.) This discovery was announced by Legendre to the 
Academy of Sciences on February 23, 1829; but Abel did not publish 
anything on the subject, and nothing to do with it was found in his 
papers .... 

In 1831, a young Frenchman, Evariste Gallois (sic), who died the 
following year, announced, in a memoir presented to the Academy of 
Sciences, that 'for an irreducible equation of prime degree to be solv
able by radicals, it is necessary and sufficient that given any two of its 
roots, the others can be deduced from them rationally', but his memoir 
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appeared practically unintelligible to the commissaries who examined 
it. 

On September 4, 1843, Liouville announced to the Academy of Sciences 
that he just discovered, in the papers of Galois, a solution "as precise 
as it is deep" of the problem of the solvability of equations by radicals 
(Comptes rendus hebdomadaires des seances de l'Academie des sciences, 
vol. 17, pp. 448-449). Wishing, undoubtedly, to understand it better, he 
waited until October 1846 before publishing the texts by Galois, in his 
Journal de mathematiques pures and appliquees, with no commentary at 
all. 

The truncated version of Galois' life presented by Liouville (who defended 
the institutions attacked by Galois, condemned his political activities, etc.) 
was the accepted version for 50 years, until a more precise version, based 
on forgotten and rediscovered documents, was published by Paul Dupuy in 
the Annales de l'Ecole Normale Superieure. 

In the 1850s, the texts of Galois' memoirs finally became accessible to 
mathematicians. They initiated a great deal of work by Serret, Betti, Kro
necker, Dedekind (who taught from them in Gottingen, in the winter of 
1857-1858), Cayley, Hermite, Jordan (see his Traite des substitutions from 
1870), etc. Their importance in the development of 20th century mathe
matics is immense. 

Figure 13.1 is a reproduction of the portrait of Evariste Galois, drawn 
long after his death, from memory, by his brother Alfred, and published in 
Le magasin pittoresque in 1848. 

FIGURE 13.1. Portrait of Evariste Galois by his brother Alfred, 1848 



14 
Finite Fields 

In this chapter, we drop the assumption that the fields we consider are 
subfields of Co We will make use of analogues of some of the definitions 
and results of previous chapters, which adapt to the case of finite fields; 
we do not always give the new proofs for these results. Note, however, that 
Theorem 14.1.3 proves the existence of an algebraic closure for each of the 
fields we will study; it plays a role analogous to that of C in the previous 
chapters. Fields of characteristic 2 are a particularly exciting subject of 
current research. 

14.1 Algebraically Closed Fields 

In this section, we consider arbitrary finite or infinite commutative fields 
of arbitrary characteristic (see §14.3). 

14.1.1 Definition 

A field C is said to be algebraically closed if every polynomial of degree 
greater than or equal to 1 in C[X] factors into a product of linear factors 
or, equivalently, if every polynomial of degree greater than or equal to 1 in 
C[X] has at least one root in C. 

EXAMPLE. - The field C of complex numbers is an algebraically closed 
field, by d'Alembert's theorem (see Exercise 7.4). 
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14.1.2 Algebraic Closures 

DEFINITION. - Let K be a field. An algebraic extension e of K which is 
algebraically closed is called an algebraic closure of K. 

EXAMPLES. - 1) C is an algebraic closure of R 
2) Q has an algebraic closure that is a subfield of C, namely the union 

of all algebraic extensions of finite degree of Q contained in C. 

14.1. 3 Theorem (Steinitz, 1910) 

Let K be a field. 

1) There exists an algebraic closure e of K. It is unique up to a non
unique K -isomorphism. 

2) Let L be an algebraic extension of K, not necessarily contained in 
e, and let (I : K -> e be a homomorphism. Then there exists an 
extension of (I to L. 

REMARK. - Note that a finite field K cannot be algebraically closed since 
the polynomial 1 + II (X - a) has no roots in K. 

aEK 

PROOF. - Let us sketch a proof (see the book by A. and R. Douady listed 
in the bibliography for more details). 

1) Let E be a set containing K, with sufficiently large cardinal. The 
algebraic extensions of K whose elements are in E form an ordered set, 
by extension, which is inductive. By Zorn's lemma, this set contains a 
maximal element e. Assuming that e is not algebraically closed leads to 
a contradiction. If K is finite, we can even avoid having recourse to Zorn's 
lemma, replacing it by a direct construction. 

The isomorphism of two algebraic closures e and G' of K is a conse
quence of part 2), with L equal to e or e', noting that a K-homomorphism 
of an algebraic extension L (whether of finite or infinite degree) of a field 
K is an automorphism. This isomorphism is not unique. 

2) Consider the set of pairs (L', (I'), where K c L' eLand (I' : L' -> e 
is an extension of (Ij put an order on it by the extension relation. It is 
inductive, so we can use Zorn's lemma, which asserts that it has a maximal 
element (L1' (II). We prove that L1 = L by assuming the contrary and 
obtaining a contradiction. <> 

COMMENTARY. - This theorem can be found in an article by Steinitz dating 
from 1910, which Bourbaki refers to as "having given birth to the current 
conception of algebra" . 
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14.2 Examples of Finite Fields 

1) The set 2/p2, equipped with the natural addition and multiplication, 
is a finite field for every prime number p. From now on, we will denote 
this field by lFp. 

2) Let K be a finite field with q elements, and let P be an irreducible 
polynomial of degree n in K[X] (such polynomials exist). Recall from 
§4.7 the construction of the extension K[X]/(P) of K. A basis ofthis 
new field as a K-vector space is given by the set of classes of the 
powers Xk for 0 ::; k ::; n - 1; thus, it is finite-dimensional and has 
qn elements. 

For example, if K = 2/22 and P(X) = X2+X +1, then K[X]/(P) 
has four elements, namely the classes of 0, 1, X, X + 1; let us denote 
them by 0, 1, x, x + 1. The multiplication law in K gives 

x 2 = -x - 1 = x + 1, 
x3 = x(x + 1) = x2 + X = 1, 

(x+I)(x+I)=x2 +1 =X, x 4 =x, etc. 

In §I4.5.I, we will show the existence and uniqueness, up to isomor
phism, of a finite field with pr elements for every prime number p ~ 2 
and every integer r ~ 1. 

14.3 The Characteristic of a Field 

14.3.1 Definition 

Let K be a field, and let f : 2 -> K be the ring homomorphism defined by 
f(I) = 1. Then the image of f is a subring of K that is an integral domain, 
so its kernel is a prime ideal of 2. The non-negative integer generating this 
ideal is called the characteristic of K, and written char(K). 

EXAMPLES. - 1) Q, JR., <C are all fields of characteristic O. 
2) An example of a field having characteristic equal to a given prime 

number p is the field IF p, a quotient of IF p[X] by an irreducible polynomial, 
or the (infinite) field of rational functions lFp(X). 

14.3.2 Properties 

A field of characteristic 0 contains a ring isomorphic to Z, so it has a 
sub field isomorphic to Q, whereas if ker(f) = (p) for some p > 0, then 
p must be prime and K contains a subfield isomorphic to IF po Thus, a 
field of characteristic 0 is infinite, and every finite field has non-zero prime 
characteristic. Every extension of a given field K has the same characteristic 
as K. 
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14.4 Properties of Finite Fields 

14.4.1 Proposition 

Let K be a finite field of characteristic p > 0 having q elements. 
1) K is a finite-dimensionallFp-vector space. If r 2: 1 is its dimension, 

then q = pro 
2) The additive group of K is isomorphic to the group (7Ljp7L,+r. 
3) K* is cyclic of order q - 1 = pr - 1. 
4) Every element x E K* satisfies 

x q - 1 = 1, 

and every element x E K satisfies 

COMMENTARY. - Part 3) gives the Primitive Element Theorem for finite 
fields; if L is a finite field extension of K, there exists an element x which 
generates the multiplicative group L *, so L = K[x]. 

PROOF. - 1) Because K is of characteristic p, K contains a subfield K' 
isomorphic to IFp. We can then equip K with the structure of a finite
dimensional K'-vector space. If this dimension is r, the cardinal of K is 
pro 

2) This follows from the vector space structure mentioned above. 
3) Let us follow Gauss' original proof (pp. 53-54 of the Recherches 

arithmetiques). Let a be an element of maximal order s E K*. If s = q -1, 
then a generates K*, which is thus cyclic. Suppose s < q - 1. The set 
E = {ak; 0 ::; k ::; s - 1} has s elements, all roots of XS - 1. Now, since 
a polynomial of degree s over a field has at most s roots, every element 
b E K* not in E is not a root of XS - 1. Thus, the order t of b does not 
divide s, and lcm(s, t) > s. Let us write the decompositions of sand t as 
products of prime factors Pi, for 1 ::; i ::; r, raised to positive or zero powers 
s = II p:i and t = II p~i, and suppose the Pi are ordered in such a 

l$i$r l$i$r 
way that ki < Ii for 1 ::; i ::; j and ki 2: Ii otherwise. Set 

, s 
u =-, 

u 
v = II p~i, and 

l$i$j 

, t 
v =

v 

As u' and v have no common prime factor, they are relatively prime. We 
see that aU is of order u' and bV ' is of order v. The element aUbv ' is of order 
u'v = lcm(s, t) > s, which leads to a contradiction. 

Unfortunately, there exists no algorithm for rapidly computing a gener
ator of K*, even in the case K = IF p. 
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4) We know that in a finite group, the order of an element divides the 
order of the group. As K* is of order q - 1, we have x q- 1 = 1 for every 
x E K*. Thus, for every x E K*, we have x q = x; this property also holds 
for x = o. Fermat's well-known "little theorem" is a special case of this 
statement. <> 

14.4.2 The Frobenius Homomorphism 

PROPOSITION, DEFINITION. - 1) Let K be a (finite or infinite) field of 
characteristic p > o. The map Fp : K -> K defined by Fp(x) = x P is a 
(necessarily injective) field homomorphism, called the Frobenius homomor
phism of the field. Thus, for every x and y E K, we have 

(x + y)P = x P + yp. 

2) If L is an extension of a finite field K with q elements, the map Fq : 
L -> L defined by Fq(x) = x q is a K-homomorphism called the Frobenius 
homomorphism of the extension. 
3) If L is a finite extension of a finite field K with q elements, the Frobenius 
homomorphism Fq is a K -automorphism. 

PROOF. - 1) Let k be such that 1 ::; k ::; p - 1. As p! = k!(p - k)! (1), 
and furthermore the prime number p does not divide k!(p - k)!, it must 
divide (1). The binomial formula then shows that (x + y)p = xP + yP, so 
Fp(x + y) = Fp(x) + Fp(Y). The equality Fp(xy) = Fp(x)Fp(Y) is obvious. 

2) If char(K) = p, then Fq is a power of Fp and x q = x for x in K. 
3) It suffices to note that Fq is a K-linear injective map between vector 

spaces of equal (finite) dimension. <> 

REMARK. - If K is a field of characteristic p > 0, the Frobenius homo
morphism of K is the Frobenius homomorphism of the extension of lFp by 
K. 

14.5 Existence and Uniqueness of a Finite Field 
with pr Elements 

14.5.1 Proposition 

Let p ~ 2 be a prime and r ~ 1 an integer. 
1) Let C be an algebraic closure of lFp (such a C exists by Steinitz' 

theorem 14.1.3). Then there exists a unique sub field K of C such that 
IKI =q=pr. 

2) K is the splitting field of the polynomials X q - X and X q- 1 - 1. 
3) Every field with pr elements is isomorphic to K. 
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NOTATION. - We write IFq for the field with q elements. 

PROOF. - 1) If such a field exists, its elements are roots of the polyno
mial xq - X in C. Let K be the set of these roots. K is stable un
der multiplication and taking inverses; it is also stable under addition, 
since if F = Fp denotes the Frobenius homomorphism of C, we have 
(x+y)q = (x+y)pr = Fr(x+y) = Fr(x) + Fr(y) = xq +yq = x+y. Thus, 
K is a subfield of C. 

K has q elements because P(X) decomposes into linear factors in C, and 
because it is prime to its derivative P'(X) = -1, it has only simple roots. 

2) This follows from the construction of K. 
3) Proposition 14.4.1 3) ensures the existence of a generator x of the 

multiplicative group K*. Let rp : IF p[X] --+ K be the surjective homomor
phism defined by rp(X) = x, P the minimal polynomial of x over IFp, and 
't/J : IFp[Xl/(P) --+ K the factorization of rp by the canonical projection 
7r : IFp[X] --+ IFp[Xl/(P). Then't/J is an isomorphism (Figure 14.1). As x is 
of order q -1, x is a root of the polynomial Xq-l -1, so P divides Xq-l -1. 
Set Xq-l - 1 = P(X)S(X). 

f'[X] <p .. K 

Pj ~ Iv 
<p' f'p[X]/(P) 

K'~ V' 
FIGURE 14.1. 

Let K' be a field with pr elements. The q - 1 elements of K'* are roots 
of Xq-l - 1. As P is not a constant, there exists at least one element 
y E K'* which is a root of P. Let rp' : IFp[X] --+ K' be the homomorphism 
defined by rp'(X) = y. As rp'(P) = 0, there exists 't/J' : IFp[Xl/(P) --+ K' 
such that rp' = 't/J' 7r. The map 't/J' is an injective field homomorphism, so it 
is an isomorphism since IFp[X]/(P) and K' both have q elements. 't/J''t/J-l is 
then an isomorphism of K onto K'. <> 

14.5.2 Corollary 

For every irreducible polynomial Pin IFp[X] of degree r ~ 1, K = IFp[Xl/(P) 
is a field with q = pr elements, isomorphic to the subfield of the roots of 
xq - X in the algebraic closure C of IF p. 

PROOF. - The first assertion is proved using the arguments of §4.5.2, and 
the second follows from §14.5.1. <> 
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14.6 Extensions of Finite Fields 

PROPOSITION. - Let K and L be two finite fields of characteristic p, and 
set IKI = q = pr, r ?: l. 

1) If L is an extension of K, there exists s ?: 1 such that ILl = psr = qS. 
Every element of L is algebraic over K, of degree less than or equal to s. 

2) If there exists s ?: 1 such that ILl = psr = qS, then there exists a 
unique subfield of L isomorphic to K. 

PROOF. - 1) ILl = qS is an immediate consequence of the finite-dimensional 
K -space structure s of L. If x E L, then the family {xk; 0 ::; k ::; n} is not 
independent, which shows (as in §4.5.4) that x is algebraic over L. 

2) Let C be an algebraic closure of L, and let K' be the subfield of C 
generated by the roots of xq - X, as in §14.5.1. For every x E K', we 
have x q = x, so we have x qS = x, which shows that x E L. Thus, K' is 
isomorphic to K, by §14.5.1. 0 

EXAMPLE. - Thus, a field of order p4 cannot lie inside a field of order p6. 
However, each of these two fields contains a unique subfield of order p2, 
and these two subfields are isomorphic. 

14.7 Normality of a Finite Extension of Finite 
Fields 

PROPOSITION. - Let K be a finite field and L an extension of finite degree 
s Es K with qS ele"fl'ents. Then L is a splitting field of one of the polynomials 
X q - X and xq -1 - lover K, and thus it is a normal extension of K. 

PROOF. - If an irreducible polynomial in K[X] has a root x in L, then 
it divides xqs - X, so it factors into linear factors in L[X]; moreover, its 
roots are simple. Thus, the conjugates of x over K lie in L. 0 

14.8 The Galois Group of a Finite Extension of a 
Finite Field 

14.8.1 Proposition 

Let K and L be two finite fields of characteristic p such that K c L. 
Suppose that IKI = q = pr and ILl = qS for integers rand s ?: 1. Then the 
Galois group G = Gal(LIK) is cyclic of order s, generated by F = Fq . 
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PROOF. - F is a K-automorphism of L, by Proposition 14.4.2 3). The 
powers of F are also K-automorphisms of L, so they are elements of G. 
Let us consider whether or not they are distinct. 

We have Fk(x) = xqk for every x E L. In particular, F S = id(L). For 
1 ::; k ::; s - 1, we have Fk i= id (L ), otherwise every x E L * is of order 
less than or equal to qk - 1. Now, because L* is a cyclic group, it has an 
element of order qS - 1. 

Thus, G has at least s elements, namely the K-automorphisms Fk for ° ::; k ::; s - 1. So if x generates L, then its s images under the powers 
of F are distinct; these are the conjugates of x over K. As [L : K] = s, x 
cannot have any other conjugates, so G cannot have any other elements. 
Thus IGI = s, which gives the result. <> 

14.8.2 The Galois Correspondence 

Let us keep the notation of the preceding proposition. The subgroups of 
the group G are all cyclic, generated by elements of the form Fk, where 
k divides s. The subfield of L invariant under Fk consists of the elements 

k 

x E L such that x q = x. For every k dividing s, L has a unique such subfield 
(cf. §14.5.1), so the Galois correspondence that we learned in Chapter 8 for 
subfields of C continues to hold for finite fields. 

14.8.3 Example 

Proposition 14.8.1 proves that Gal(IF212IIF2) c:::: Z/12Z. 
For example, we have I((F2») c:::: IF4 , I((F6 ») c:::: IF64 , etc. The roots of 

unity different from 1 in IF 2"2 are the n-th roots for n dividing 4,095 = 

5 x 7 x 9 x 13, i.e. n = 5,7,9,13,35,45,63,65, ... ,4,095. 

IF =IF 
212 4096 

/ '\ 
{OJ 

/ '\. 
IF 6= IF 
2 64 

6ZI1ZZ 4ZI122 

I ~ I 
3ZI122 2Z/122 

~ / 
ZI12Z 

FIGURE 14.2. Galois correspondence for the extension IF 12 of IF 2 
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Exercises for Chapter 14 

Exercise 14.1. The algebraic closure 

1) Show that the algebraic closure of Q in C is the union of the algebraic 
extensions of finite degree of Q contained in C. Show that this closure 
is a countable set. 

2) Let K be a field, L an algebraic extension of K, and C an algebraic 
closure of L. Show that C is an algebraic closure of K. 

3) Let C be an algebraically closed field. What is the algebraic closure 
of C? What are the algebraic extensions of C? Give an example of 
an algebraically closed field C and a field L strictly containing C. 

Exercise 14.2. Finite fields 

1) Let K be a field and L a subfield of K. Show that K and L have the 
same characteristic. 

2) Let K be a field. What is the intersection of the subfields of K? 

3) Does there exist a field containing exactly 51 (resp. 129, 243, 1,024, 
65,536, 65,537) elements? 

4) Consider the polynomial P(X) = X(X - l)P in lFp[X]. What is the 
multiplicity of 1 as a root of P? What about as a root of Pi? 

5) Set K = lF2(X). Show that the Frobenius homomorphism F of K is 
not an isomorphism of K. 

Exercise 14.3. x generator, electronic transmission 

Let p be a prime and r 2': 1 an integer. 

1) Show that there exists an irreducible polynomial P of degree r in 
lFp[X] such that the multiplicative group K* of the field K defined 
by K = lFp[X]j(P) is generated by the class x E X in K. 

2) Assume that pr - 1 is prime. 

a) What are the possible values of p? 

b) Show that for every irreducible polynomial P of degree r in 
lFp[X], the class x E X generates the multiplicative group K* 
of the field K = lFp[X]j(P). 
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3) Show that the class x E X in K = 1F2[Xl!(X4 + X 3 + X2 + X + 1) 
does not generate K*. 

4) The goal of this question is to give a glimpse into the use of the field 
K = 1F2[Xl!(X7 + X 3 + 1), isomorphic to 1F128 , in the transmission 
of electronic messages. We follow an article by Pierre Arnoux pub
lished in the March 1988 issue of the magazine POUT la Science. The 
transmission is based on cyclic codes conceived in 1959-1960. A mes
sage to be transmitted is a sequence of O's and 1 's, and statistics show 
that transmission errors, i.e. reception of a 0 instead of a 1 or vice 
versa, are not very frequent; messages are cut into sections of 120 
elements each. 

a) Check that K is a field and that the class x E X in K generates 
K*. 

If we wish to transmit a sequence a = (ak)o~k919 of elements 
of {O, I}, we transmit the sequence cp(a) = (ak)o~k926, where 

the last terms are defined by x 7 L akxk = L a12o+kxk . 
O~k~1l9 O~k~6 

b) Show that if cp( a) is transmitted with an error, the message can 
nevertheless be reconstituted. 

c) Show that if two messages are distinct, the sequences trans
mitted differ for at least three indices. What is the minimum 
number of errors that must be made to transmit a message 
incorrectly? 

Exercise 14.4. o:x2 + f3y2 = -1 

Let K be a finite field of characteristic p with q elements, and let 
f: K -7 K be the map defined by f(x) = x 2 • 

1) a) Show that f is surjective if p = 2. 

b) Show that the cardinal of the image of f is (q + 1) /2 if P > 2. 

2) We want to show that given two non-zero elements 0: and f3 of a finite 
field K, there exist elements x and y E K such that o:x2 + f3y2 = -1. 

a) Show that such elements x and y exist if p = 2. 

b) Assume p > 2. Determine the number of elements in the sets 
{I + o:x2; x E K} and {-f3x2; x E K}. Deduce the existence of 
x and y. 
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Exercise 14.5. Zech's logarithm 

1) Show that K = lF2[Xl!(X3 + X + 1) is a field. 

2) Let x denote the class of X in K. Show that x generates K*, and 
construct the table of powers of x in the basis {I, x, x 2 } • 

3) Define the function Z : {I, ... , 6} --> {I, ... , 6} by 1 +Xi = XZ(i). The 
function Z is called Zech '8 logarithm. 

a) Give the table of values of Z. 

b) Show that using Z, we can compute sums in K. 

c) Show that Z(Z(i)) = i. 

COMMENTARY. - Zech's logarithm is an economical way to program the 
computation of addition in the field IF q' but unfortunately, the place needed 
to stock the tables limits this procedure to small values of q. 

Exercise 14.6. The field with 343 elements 

1) Let a be an element of lF7 • For which values of a is the polynomial 
X 3 - a irreducible in lF7[Xj? Deduce that K = lF7 [Xl!(X3 - 2) is a 
field. 

2) What are the possible orders of an element of the multiplicative group 
K*? What is the order of the class x E X in K*? 

3) Find an element y of order 19 in K*, of the form a + bx, with a and 
bin lF7 . 

4) Use the above to find a generator u of the multiplicative group K*. 
Determine the minimal polynomial of u over K. 

Exercise 14.7. Sums of two squares 

Let K be a finite field of characteristic p. In this problem, we propose 
to show that every element of K is a sum of the squares of two 
elements of K. 

1) Prove a more precise result in the case p = 2. 

Now we assume p > 2. 

2) Give an explicit formula in the case where -1 is a square in K. 
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3) Assume that -1 is not a square in K, and set L = K[i] with i 2 = -l. 
Let N : L --+ K denote the norm map (whose value at x is equal to the 
product of the conjugates of x), and F the Frobenius homomorphism 
of L. 

a) Determine the relation among N(x), F(x), and x; deduce an 
expression for N(x) in terms of x. 

b) Show that N induces a homomorphism from L * to K*. Deter
mine its kernel. Conclude. 

4) Express each of the elements of IF q as a sum of two squares for q = 
7,13,19. 

COMMENTARY. - The method we propose here is different from the one 
used in Exercise 14.4. 

Exercise 14.8. Cyclotomic polynomials and finite fields 

Let ILk denote the group of k-th roots of unity in K. 

Let K be a finite field of cardinal q, of characteristic p, and let 
C be an algebraic closure of K. Let n 2: 1 be an integer which is not 
a multiple of p (see part 1 of this problem for the case where n is 
a multiple of p). Let <I> = <I>n be the n-th cyclotomic polynomial in 
Z[Xl, and let f : Z[X] --+ K[X] be the homomorphism defined by 
f(l) = 1 and f(X) = X. Let IL = ILn, L = K[lLl, S = [L : Kl, and 
F the K-automorphism of L defined by F(x) = x q . Finally, let G be 
the Galois group Gal(LIK). 

1) In this question, we assume that n is a multiple of p, and we set 
n = mpr with (m,p) = 1 and r > O. Show that IL = ILm. 

2) a) What is the cardinal of IL? What is the number of primitive 
roots in IL? 

Set <I>d,K(X) = II (X - () for d dividing n. 
(EJ.Ld,( primitive 

b) Show that f(Xn -1) = II <I>d,K(X) in K[X]. 
dED(n) 

c) Deduce, using induction on n, that f(<I>n(X)) = <I>n,K(X). 

From now on, let <I>n denote the polynomial <I>n,K if no confusion 
is possible. 
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3) a) Show that s is the order of q in U(n), by considering the pk«), 
where ( is a generator of fl. 

b) Deduce that the cyclotomic polynomial ~n factors into a prod
uct of irreducible polynomials of degree s in K[X). 

4) Assume n = 8, and set ~ = ~B' so ~(X) = X4 + 1. 

a) What happens to ~ if p = 2? Assume now that p # 2. 

b) Show that ~ is reducible over IF'q whatever the value of q. Note, 
however, that X4 + 1 is irreducible in Z[X). 

c) Determine L when q = 5,7,17, and factor ~ in K[X) and in 
L[X) as a product of irreducible factors. 

5) Show that ~12 is reducible in every finite field. 

6) a) Give a necessary condition on n for ~n to be irreducible in IF'q. 

b) Under what conditions on q is the polynomial ~n irreducible in 
IF'q for n = 3,5, 14? 

Exercise 14.9. The field with 16 elements 

1) What are the irreducible polynomials of degree 4 in IF'2[X)? 

2) For each of the preceding polynomials P, let x denote the class of 
X in IF'2[X)/(P), Construct the table of values of powers of x with 
respect to the basis {1,x,x2 ,x3 }. Detail the case where x generates 
IF't6' 

From now on, we set P(X) = X4 + X + 1 and we define IF'16 as 
IF'2[X]/(P), Recall (Exercise 9.6) that ~15(X) = XB_X7 +X5 _X4+ 
X 3 - X + 1 in Z[X). We continue to write ~15 for the polynomials 
in IF'2[X) or IF'16[X) obtained by reducing the coefficients modulo 2 or 
modulo 16. 

3) a) Give a generator of the Galois group Gal(lF'161lF'2)' 

b) Determine the factorization of ~15 into a product of irreducible 
factors in IF'2[X] (use the preceding exercise). 

c) Give the roots of these factors in IF'16[X) in terms of x. 
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Exercise 14.10. Roots of unity and "cosine" 

1) Let p be a prime, IF q a field of characteristic p, C an algebraic closure 
of IFq, k an integer prime to p, p the group of k-th roots of unity in 
C, and ( a generator of p. Show that c = (+ C 1 E IFq if and only if 
q = ± 1 mod k (we distinguish the cases ( E IF q and ( rf. IF q). 

2) Take q = 16 and k = 17. 

a) Determine the polynomial in IF 2 [X] whose roots are the distinct 
non-zero values w + w- 1 as w runs through p. 

b) Determine the possible values of c in terms of x for the field 
IF2 [X]/(X4 + X + 1) of exercise 14.9. 

NOTE. - See the article by Minac and Reis listed in the bibliography for 
further developments on this subject. 

Exercise 14.11. Irreducibility of XP - X + a 

Let p be a prime, K a finite field of characteristic p, a an element of 
K, and P(X) = XP - X + a. Let C be an algebraic closure of K. 

1) Let x be a root of Pin C. Determine the other roots of Pin C. 

2) Deduce that either the polynomial XP - X + a has all its roots in K, 
or it is irreducible in K[X]. 

3) a) Let a of. 0 in IF p. Show that the splitting field of the polynomial 
XP - X + a over IFp is an extension of degree p of IFp. 

b) Let n be an integer. Show that the polynomial XP - X + n is 
irreducible in Q[X] for an infinite number of values of n. 

Exercise 14.12. Irreducible polynomials over a finite field 

Let nand r be integers, and let p be a prime; set q = pr. Let Iq (n) 
denote the number of polynomials irreducible of degree n over IFq. 

1) Show that Iq(n) ~ 1, by considering a generator of an extension of 
degree n of IF q. 

2) Show that qn = L dlq(d). 
dED(n) 

3) Deduce a formula giving Iq(n). 



Exercises for Chapter 14 241 

4) Show that xqn - X = II II P, where A(d) denotes the set of 
dED(n) PEA(d) 

irreducible polynomials over IF q of degree d. 

5) a) Show that Iq(n) ~ qn In in the neighborhood of +00. 

b) Compute Iq(n) in the cases q = 2,1::; n ::; 9, q = 3, 1 ::; n::; 5, 
q = 5, 1 ::; n ::; 3, q = 7, n = 1 or 2. 

Exercise 14.13. The quadratic reciprocity law 

In this exercise, we assume that p is a prime number different from 2. 
We will use the same notation for an integer and for its class modulo 
p. 

1) Let f : U (P) -+ U (p) be the homomorphism defined by f (x) = x 2 , 

and set A = ~(f). 

a) Let g be a generator of U(p). Show that x E A if and only if x 
is an even power of g. 

b) Deduce that x E A if and only if X(p-l)/2 = 1, and that x (j. A 
if and only if X(p-l)/2 = -1. 

c) Considering {-I, I} as a multiplicative group, check that set
ting cp(x) = X(p-l)(2 gives a group homomorphism cp : U(p) -+ 

{-I,I}. 

From now on, we set cp(x) = (~) j (~) is called the Legendre symbol 

of x. The Legendre symbol extends to every integer x =I- 0 mod p. 

2) Show that, for x and y in U(P), we have 

(~) = (~) (~) 

(~) = 1 

(~1) = (_I)(p-l)/2 

3) Computation of (~)= 

(~) = 1 

(X~l) = (~) 
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Let C be an algebraic closure of IFp, and let ( be a primitive 
eighth root of unity in C. Set a = ( + C 1 . 

a) Compute a2 • 

b) Deduce the values of (~) according to the values of p mod 8. 

4) Main formula: 

Let p and q be distinct primes: then (~) (~) = ( -1) ( zs.!. )( ~ ) . 
Let p and q be distinct odd primes, and let C be an algebraic 
closure of IFp and ( a primitive q-th root of unity in C. Set 

a = L (~) (k; in this expression, k simultaneously denotes 
kEU(q) q 

an element of U(q) and the corresponding integer between 1 and 
q -l. 

a) Show that 

a2 =(_1)(q-l)/2 L (m L (1-mk- 1
) 

O:S;m:S;q-l kEU(q),k¥m q 

b) Show that 

L (1-mk- 1
) --1 

kEU(q),k¥m q 
for 0 < m :::; q - 1, 

""" (1 -mk-1 ) ~ -q-1 
kEU(q),k¥m q 

for m = O. 

c) Deduce that a2 = (_1)(q-l)/2q. 

d) Show that aP- 1 = (~) (compute aP ). 

e) Conclude. 

5) Show that 30 is a square in 1F65,537 (note that 65,537 = 224 + 1 is a 
prime number). 

COMMENTARY. - Special cases of the quadratic reciprocity law were indi

cated by Fermat, namely the values of (~2) and of (~3). They were 



Solutions to Some of the Exercises 243 

proved by Lagrange (1775) and Euler (1760) respectively. The general law 
was conjectured by Legendre (1785), who gave an incomplete proof of it; 
Gauss gave several proofs, the first one in 180l. 

The quadratic reciprocity law relates the properties: "p is a quadratic 
residue modulo q " and " q is a quadratic residue modulo p " , which pro
vides a rapid method for computing the Legendre symbol. The proof given 
above uses what are known as "Gauss sums". The ninth of Hilbert's famous 
23 problems proposed in 1900 concerns generalizations of the quadratic reci
procity law for cubic residues, etc., which are currently objects of research. 

Solutions to Some of the Exercises 

Solution to Exercise 14.2. 

1) The conditions n . 1 = 0 in K and n . 1 = 0 in L are equivalent. 

2) The intersection of the subfields of K is the smallest subfield of K; it is 
Q if char(K) = 0, 'lllp'll if char(K) = p. 

3) As the numbers 51 and 129 are not prime powers, there is no field with 
51 or 129 elements. 

To see that there exist fields of cardinal 243 = 35 , 343 = 73 , 1,024 = 210, 

as well as 65,536 which is prime (65,536 = 216 and 65,537 is the Fermat 
number F4 ), it suffices to note that they are all prime powers. 

4) The multiplicity is the same in the two cases, namely p. 

5) We know that F is injective. It is not surjective: for example, X is 
not in the image of F. Indeed, if X = (PIQ)2, we would have XQ2 = p2, 
which is impossible since the first term is of odd degree and the second of 
even degree. 

Solution to Exercise 14.3. 

1) Let L be a field with pr elements, y a generator of L *, and P the 
minimal polynomial of y over lFp. As L = lFp[Y] is of degree rover lFp, Pis 
of degree r. Let ?r : lFp[X] --+ K = lFp[X]/(P) be the canonical projection. 
The ring homomorphism I : lFp[X] --+ L defined by I(X) = y induces an 
isomorphism cp : K --+ L and x = ?reX) = cp-1(y) is a generator of K of 
minimal polynomial P over IF po 

2) a) The primes of the form 2r - 1 are the Mersenne numbers, which 
are prime, for example, for r = 2,3,5,7 but not for 11; the largest known 
Mersenne primes are for r = 132,049 (1983), r = 216,091 (1985), r = 
1,398,269 (1996), etc. If p i= 2, the condition that pr - 1 is prime is equiv-
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alent to p = 3 and r = 1, otherwise pr - 1 is an even number greater than 
2, so it cannot be prime. 

b) Because the order of K* is prime, it is generated by its non-trivial 
elements. 

3) We have x5 -1 = 0 and IK*I = 15. 

4) a) The polynomial X7 + X 3 + 1 is irreducible: to see this, it suffices 
to check that it is not divisible by an irreducible polynomial of degree less 
than or equal to 3. Furthermore, x generates K* since 127 is prime. 

b) Let b = (bk)0<k<126 be the sequence received. On reception, of the 
message, one computes the numbers Ck, 0 ~ k ~ 6, defined by 

x 7 L bkXk = L Ckxk. 

OSkS16 OSkS6 

If the error concerns the l-th rank for 0 ~ l ~ 119, we have 

L Ck xk + L b120+kXk = x 7 L bkXk +x7 L akxk 

OSkS6 OSkS6 OSkS119 OSkS119 

xl+7 • 

If the error concerns the rank l, 120 ~ l ~ 126, we have 

'"' k '"' b k 1-120 L Ck X + L 120+k x = x • 

OSkS6 OSkS6 

As x generates K*, we can always find l, and if 0 ~ l ~ 119, we can correct 
the received message. 

c) We have x 7 L ak xk + L a120+k xk = 0 for every transmitted 
OSkS119 OSkS6 

sequence (ak)0<k<126. If two transmitted sequences differed for a single 
index l with 0 $1 ~ 126, we would have xl = OJ if they differed for two 
indices l and l', we would have xl = xl' • But this is impossible since x is of 
order 127 in K*. 

Three errors suffice: we can receive the sequence ao = a120 = a123 = 1, 
ak = 0 otherwise, instead of the zero sequence, and we will not perceive 
the error, since 

x 7 L ak xk + L a120+k xk = O. 
OSkS119 OSkS6 
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Solution to Exercise 14.4. 

1) a) f is surjective since it is the Frobenius automorphism of K. 

b) Let 9 be the restriction of f to K*. It is a homomorphism of multi
plicative groups. Its kernel has two elements: 1 and -1, which are distinct 
since p > 2. Thus, its image has (q - 1)/2 elements (we can also see that 
if x =1= 0, then x =1= -x since p > 2 and x 2 = (_X)2, which enables us to 
count). The image of f also contains 0, which gives the result. 

2) a) As a is non-zero, it is invertible. By 1) a), _a-1 is the square of an 
element x; we obtain the result by setting y = 0. 

b) Because a and f3 are non-zero, the two sets have (q + 1) /2 elements, 
as does the image of f. Thus their intersection is non-empty. Let z be 
an element of this intersection; there exists x and y in K such that z = 
1 + ax2 = _f3y2, which gives the result. 

Solution to Exercise 14.5. 

1) The polynomial X 3 + X2 + 1 has roots in 1F2, so it is irreducible over 
1F2. The quotient 1F2[Xl!(X3 + X2 + 1) is an extension of degree 3 of 1F2' 
so it is a field with eight elements. 

2) x generates K*, which is of prime order. The table of powers of x, 
expressed in the basis (1,x,x2), is given in Table 14.l. 

3) a) The values of Z are given in Table 14.2. 

b) Because two elements are both powers of the generator x, their sum 
is computed by factoring out the smallest power of x. For a < b, we have 
x G + x b = x G(l + x b- G) = xG+Z(b-G). For example, x 3 + x4 = x 3(1 + x) = 
X 3x5 = x 8 = X. 

c) XZ(Z(i» = 1 + XZ(i) = 1 + 1 + Xi = Xi, hence Z(Z(i)) = i. 

Solution to Exercise 14.6. 

1) We compute the cubes modulo 7 (Table 14.3). 
X3 - a is irreducible in 1F7 [Xl if a is not a cube modulo 7, i.e. if a = 

2,3,4,5. 

2) K is a field with 73 = 343 elements and K* has 342 = 2 x 9 x 19 
elements. The order of an element of K* is a divisor of 342. As x3 = 2 and 
23 = 8 = 1 mod 7, x is of order 9. 
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1 X x 2 

1 1 

x 1 

x 2 1 

x 3 1 1 

X4 1 1 1 

x 5 1 1 

x 6 1 1 

x 7 1 

TABLE 14.1. Powers of x 

i 1 2 3 4 5 6 

Z 5 3 2 6 1 4 

TABLE 14.2. Zech's logarithm 

3) If y = a+bx is of order 19, we have y19 = 1, so y21 = y2. As (a+bx)7 = 
a + bx7 = a + 4bx, this gives 

a3 + 12a2 bx + 48ab2x 2 + 64b3x 3 = a2 + 2abx + b2x 2 , 

a3 + 5a2 bx - ab2x 2 + 2b3 = a2 + 2abx + b2x 2 ; 

hence, a3 + 2b3 = a2 , 5a2 b = 2ab, -ab2 = b2 . 

We do not have b = 0 since y would lie in IF 7 and would not be of order 
19. So we can simplify the last condition by b2 , which gives a = -1. The 
second condition is then satisfied, and the first implies that b3 = 1, i.e. 
b = 1,2,4. 

4) A generator of K* is the product of three elements of order 2, 9, and 19 
respectively; for example, u = -xy = x - bx2 . Let us compute the powers 
of u (Table 14.4). We immediately see that u is of degree 3 over lF7 since it 
is a generator of K* . As u3 = bu - 2, X 3 - bX + 2 is the minimal polynomial 
of u over lF7 . 

x 0 1 2 3 4 5 6 

x3 0 1 1 -1 1 -1 -1 

TABLE 14.3. 
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1 X x2 

1 1 0 0 

u 0 1 -b 

u2 -4b 2b2 1 

u3 -2 b _b2 

TABLE 14.4. 

Solution to Exercise 14.7. 

1) If p = 2, the Frobenius morphism F defined by F(x) = x 2 is an au
tomorphism of K. Its surjectivity means that every number is a square in 
K. 

2) If -1 = b2 , then because 2 is invertible, we have 

3) a) The Galois group of Lover K has two elements, id and F. Hence, 

N(x) = xF(x) = xxq = xq+l. 

b) N(xy) = N(x)N(y) is clear; ker(N) = {X,XQ+l = I}. 
Let 9 be a generator of L*; the elements ofker(N) are clearly the gk(q-l), 

o ::; k < q + 1. There are q + 1 of them. Thus the image of N contains 
(q2 _ l)/(q + 1) = q - 1 elements, so it is K*. As an element of L can be 
written u + iv with u, v E K, for every x E K*, there exists u and v in K 
such that N(u + iv) = x, i.e. u 2 + v 2 = x. 

4) If q = 13, then q = 1 mod 4, so -1 is a square; we see easily that 
-1 = 52, so a = (6a + 6)2 + (4a - 4)2. 

If -1 is not a square, we can still work using successive tries. For example, 
the squares mod 19 are 1, 4, 9, -3,6, -2, -8,7,5, so 2 = 16+5 = 42+92, 
3 = 16 + 6 = 42 + 52, etc. 

Solution to Exercise 14.8. 

1) It suffices to note that xn - 1 = (xm - l)pr. 

2) a) As Xn - 1 is prime to its derivative nXn- 1 since n is not a multiple 
of p, it has n distinct roots and IIlI = n. As Il is a cyclic subgroup of the 
cyclic group K*, there are <I> ( n) primitive n-th roots of unity. 

b) The proof is the same as the one given in §9.4.2. 
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c) The property is obvious for n = 1. Let n > 1, and suppose that the 
property holds for every k < n. We have Xn -1 = <pn(X) II <Pd(X) 

dED(n),di'n 
in Z[X]. Hence f(xn -1) = f(<pn(X» II f( <Pd(X)), i.e. by the the 

dED(n),di'n 
induction hypothesis, 

II <Pd,K(X), 
dED(n),di'n 

We conclude by comparing with the formula of b). 

3) a) We have F(() = (q so, by induction, Fk(() = (qk. As F is of order 
sin G, we see that qk #- 1 for 1 ::s: k < sand qS = 1. This gives the result. 

b) As K[J.L] = K[(] for every generator ( of J.L, every root of <Pn is of 
degree s over K. Thus, the irreducible factors of <Pn, which are minimal 
polynomials of these generators, all have the same degree s. 

4) a) <P factors into linear factors: <p(X) = (X + 1)4. 

b) If p #- 2, we have q = 1, 3, 5, 7 mod 8. As these elements are of order 
1 or 2, we have s = 1 or 2; thus ( is never of degree 4 over IF q and X4 + 1 
is reducible over lFq whatever the value of q. 

c) The cases proposed here lead to different situations. 

• q = 5. As 5 is of order 2 in U(8), X 4 + 1 factors into a product of two 
irreducible factors of degree 2 in lF5[X], Noting that -1 = 4 mod 5, 
we have X4 + 1 = (X2 - 2)(X2 + 2) in lFdX]. If we set 2 = a? and 
L = lF5[0:], we have X4 + 1 = (X - 0:) (X + 0:) (X - 20:)(X + 20:). 

• q = 7. Because 7 is of order 2 in U(8), the degree of the irreducible 
factors is again 2. As -1 is not a square in lF7, we will translate the 
equality of R.[X] : X4 + 1 = (X2 - v'2x + 1)(X2 + v'2x + 1). We see 
that 2 = 32 mod 7, so X4 + 1 = (X2 - 3X + 1)(X2 + 3X + 1). If we 
set i2 = -1 and L = lF7 [ij, we obtain X4 + 1 = (X + 2 - 2i)(X + 2 + 
2i)(X - 2 - 2i)(X - 2 + 2i). 

• q = 17. As 17 = 1 mod 8, X 4 + 1 factors into linear factors and 
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5) Distinguish the cases p = 2, p = 3, and p 2: 5, and use the same 
reasoning as in 3) b); as U(12) ~ (Z/2Z)2, we see that s = lor 2. 

6) a) The condition "<I> is irreducible over K" is equivalent to s = deg(<I» = 
cp(n), in other words to the fact that q generates U(n). This means that 
U(n) is cyclic, i.e. (see Exercise 9.8,4 b» that n is of the form 2pk or pk, 
for an odd prime p. 

b) As q must generate U (n), we find that 

q = 2 mod 3 if n = 3; q = 2, 3 mod 5 if n = 5; 

q = 3,5 mod 14 if n = 14. 

Solution to Exercise 14.9. 

1) A polynomial of degree 4 is reducible if it has a root or 2 irreducible 
factors of degree 2. We know that the only irreducible polynomial of degree 
2 over IF 2 is X2 + X + 1. Since the only reducible polynomial of degree 4 
has no root over IF2' it is X4 +X2 + 1 = (X2 +X + 1)2. Now, a polynomial 
of degree 4 over IF 2 which has no roots must be one of the four polynomials 
X4 +X + 1,X4 +X3 + 1,X4 +X3 +X2 +X + 1 and X4 +X2 + 1. The 
preceding remark shows that only the first three of these polynomials are 
irreducible. 

2) Tables 14.5 and 14.5bis give the powers of x expressed in the basis 1, x, 
x 2 , x 3 in each case. We see that x is a generator in the two first cases (to 
obtain this result alone, it would suffice to check that x is not of order 3 or 
5, which is shown by the computation of x3 and x5 ) but not in the third. 
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X 4 +X + 1 X 4 +X3 + 1 

k 1 X x 2 x 3 1 X X2 x3 

0 1 1 

1 1 1 

2 1 1 

3 1 1 

4 1 1 1 1 

5 1 1 1 1 1 

6 1 1 1 1 1 1 

7 1 1 1 1 1 1 

8 1 1 1 1 1 

9 1 1 1 1 

10 1 1 1 1 1 

11 1 1 1 1 1 1 

12 1 1 1 1 1 1 

13 1 1 1 1 1 

14 1 1 1 1 

15 1 1 

TABLE 14.5. 

1 X x 2 x 3 

1 

1 
1 

1 

1 1 1 1 

1 

TABLE 14.5.bis 

3) a) The Galois group Gal(lF16IlF2) is cyclic of order 4, generated by the 
Frobenius automorphism F, defined by F(z) = z2. 

b) Because x is a root of <I> 15 having minimal polynomial X4 + X + 1, we 
know that <1>15 is divisible by X4 + X + 1. This shows that the irreducible 
factors of <1>15 in lF2[Xl have degree 4 (see Exercise 14.8). Thus <1>15 is 
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a product of two irreducible factors over <P2, and the second one is the 
quotient <P15(X)/(X4 + X + 1) = X 4 + X3 + 1. Hence, 

<P15(X) = (X4 + X + 1)(X4 + X 3 + 1). 

c) The distinct roots of <P15 are all the generators of the cyclic group 
IFi6' Le. the xk where k is prime to 15. Thus, we find that <P15(X) is equal 
to 

The conjugates of x over IF 2 are the images of x under the elements of the 
Galois group Gal(IF16IIF2); thus they are x = id(x),x2 = P(x),x4 = p2(X), 
and x 8 = p 3(x). These are the four roots of X4 + X + 1. ' 

The roots of X4 + X 3 + 1 are the other roots of <P15 : x7, xu, x 13 , X14. 
We can check that these are the conjugates of x7 , since P(x7 ) = x14, 
p 2(X7) = X1S, and p3(x) = Xll. 

Solution to Exercise 14.10. 

1) Let us first assume that c E IFq. If ( E IFq, we have (q-1 = (k = 1, so 
q - 1 = 0 mod k. If ( ¢ IFq, we have cq = c = (+ C 1 = (q + C q , so 
((q-1 _ 1)(( - C q ) = o. As the first factor is non-zero, we have ( = C q , 

so (q+1 = 1 and q + 1 = 0 mod k. 
Now assume that q = ±1 mod k. 
If q = 1 mod k, then (q-1 = 1 shows that ( lies in IFq, so c does as well. 

If q = -1 mod k, then (q+1 = 1 implies that ( = C q , so cq = (q + C q = 
C 1 + (= c. Thus c E IFq. 

2) a) The primitive 17th roots of unity are all distinct in an algebraic 
closure of IF 16, since X 17 - 1 is prime to its derivative. If c = W + W -1, we 
have w2 = cw + 1; if c = 0, then W = 1, otherwise c can take eight distinct 
values since if W + w-1 = TJ + TJ-l, we have (w - TJ)(WTJ -1) = 0, so TJ = W or 
TJ = w-1. We have w2 = cw+ l,w4 = c3w +c2 + 1, w8 = c7w +c6 +c4 + 1, 
w 16 = C15W + c14 + c12 + c8 + 1, w17 = c15 + w(c16 + C14 + C12 + c8 + 1). As 
W 17 = 1 = c15, C is a root of the polynomial Q(X) = X8+X7 +X6+X4+1, 
whose roots are exactly the eight possible values of c. 

b) We see that x is a root of Q. Let ( be a 17th root of unity such that 
x = (+C1. As ( generates the group ofl7th roots of unity in IF 16[(] ~ IF256, 
the possible non-zero values of c are the (k + (-k with k = 1, ... ,8. Table 
14.6 gives the result of the computations; the first line gives the value of k, 
and the second gives the expression for the quantity (k + (-k in terms of x. 
We can also use the factorization Q(X) = (X4 + X + 1)(X5 - l)j(X -1). 
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1 2 3 4 5 6 7 8 

X X2 X+X3 l+x X2 +X3 x 3 1 +x+x2 +x3 1 +x2 

TABLE 14.6. 

Solution to Exercise 14.11. 

1) For every u E IFp, we have (x+u)P -(x+u)+a = xP+u-x-u+a = o. 
The p roots of P are thus the x + u with u E IF p. 
2) If P is reducible in K, there exist polynomials S, T in K[X] such that 
P(X) = S(X)T(X) with deg(S) = s, 1 ::; s ::; p - 1. The roots of S are 
among the roots of P; they are of the form x + u, with u in IF p. Their sum 
is of the form sx + v with v E IFp; as it belongs to K (up to sign, it is a 
coefficient of S), we have sx E K, so x E K since s -10. Because one root 
of the polynomial P lies in K, they all do, by 1). 

3) a) The polynomial XP - X + a has no root in IFp, since xP - x = 0 for 
every x E IFp. Thus, it is irreducible in IFp[X], which gives the result. 

b) The preceding question shows that XP -X +n is irreducible in IFp[X], 
so it also is irreducible in Z[X] and in Q[X], whenever n is an integer not 
divisible by p. 

Solution to Exercise 14.12. 

1) Let C be an algebraic closure of IF q, and let L be the subfield of C with 
qn elements; it is an extension of degree n of IF q. Let x denote a generator 
of L*; x is of degree n over IFq, so its minimal polynomial over IFq, which is 
irreducible over IFq, is of degree n, and consequently, Iq(n) ~ 1. 

2) Let L be as above. Consider the equivalence relation: "x and yare 
equivalent if they have the same minimal polynomial over IF q". If x is of 
degree dover IFq, then x has d distinct conjugates over IFq, and d divides 
n. The desired equality follows from the partition of L into equivalence 
classes. 
3) The Mobius inversion formula gives nlq(n) = L J-l(d)qn/d. 

dED(n) 

4) If P is an irreducible polynomial of degree d for some d dividing n, then 
every root of P is in an intermediate extension between IF q and IF qn, so it 
satisfies xqn - x = o. This proves that P divides xqn - X. By 2), the sum 
of the degrees of such polynomials is equal to the degree of xqn - X, which 
concludes the proof. 

5) a) We have 0 < 1- (nlq(n)/qn) = L J-l(d)qn(-l+l/d) < nq-n/2. 
dED(n),d# 
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b) The results are given in Table 14.7. Note the form of the equivalence 
of a). 

n 1 2 3 4 5 6 7 8 9 

qn 2 4 8 16 32 64 128 256 512 

Iq(n) 2 1 2 3 6 9 18 30 56 

n 1 2 3 4 5 

qn 3 9 27 81 243 

Iq(n) 3 2 8 18 48 

n 1 2 3 n 1 2 

qn 5 25 125 qn 7 49 

Iq(n) 5 10 40 Iq(n) 7 21 

TABLE 14.7. 

COMMENTARY. - These tables show that we can choose an irreducible 
polynomial of degree n over IF q in many ways. However, certain polynomials 
are more useful than others. 

Solution to Exercise 14.13. 

1) a) Every x E U(p) can be written as a power of g; the result follows 
since p is odd. 

b) On the one hand, gP-l = 1; on the other, if a = g(P-l)/2, we have 
a 1:- 1 and a2 = 1. Thus, because IF p is a field, we have a = -1. 

2) The properties follow from 1). The last one follows from the equality 
between the number of even powers and the number of odd powers of 9 in 
U(P). 



254 14. Finite Fields 

3) a) As (4 = -1, we have (2 = -C2 , so a2 = (2 + 2 + C 2 = 2. 

b) We know that (~) = 2(p-l)/2, so (~) = aP- 1 = aPia. As aP = 

(( + C1)P = (P + C P , aP depends on the values of p mod 8. 

If p = ±1 mod 8, then aP = a, so (~) = aP- 1 = 1; 2 is a square modulo 

p. 

If p = ±5 mod 8, as (4 = -1, aP = (5 + C 5 = -a, so (~) = -1; 2 is 

not a square modulo p. 

4) a) Let k, l, m denote both an element of IFq and the corresponding 
integer between 0 and q - 1. The multiplicativity of the Legendre symbol 
implies that 

L (~) (i) (HI - L (m L (k) (m -k) 
k,/EU(q) q q O:S:m:S:q-l kEU(q),ko/-m q q 

(_I)(q-l)/2 L (m L C -mk-1
) 

O:S:m:S:q-l kEU(q),ko/-m q , 

since(~) (m;k) = (_;2) C-;k- 1
) =(_I)(q-l)/2C-;k-1

). 

( 1 k- 1 ) b) If m = 0, then L - ; = q - 1. If 1 :s: m :s: q - 1, 
kEU(q),ko/-m 

we have 

L C-mk- 1 )= L (i) =-1' 
kEU(q),ko/-m q lEU(q),lo/-l q , 

this follows because {I - mk - \ k E U (q), k -=I- m} = {l; lEU (q), l -=I- I} 
and from the last equality of 2). 

c) We obtain a2 = (_I)(q-l)/2 (q - 1 - L (m) = (_I)(q-l)/2q. 
l:S:m:S:q-l 

d) To begin with, 

Furthermore, a -=I- 0 by c). 



Solutions to Some of the Exercises 255 

e) The preceding computations allow us to write 

- = q 2 = (-1) 2 2 aP = (-1) 2 2 -. (q) (=.!) (=.!)(.'1..=.!) -1 (=.!)(.'1..=.!) (p) 
P q 

5) The number 65,537 is prime (see Exercise 14.2), and it suffices to show 

h (~) =1 t at 65,537 . 

By 3), (65,2537 ) = 1 since 65,537 = 1 mod 8. 

By 4), we have 

( _3 ) = (65,537) = (~) =-1 
65,537 3 3 

and 

(65,5537) = (65,:37) = (~) = -l. 

This gives the result. But it does not produce the numbers with square 
equal to 30 modulo 65,537. A formal computation program gives ±27, 135. 



15 
Separable Extensions 

In this chapter, we consider arbitrary commutative fields, i.e. finite and 
infinite fields of arbitrary characteristic. 

15.1 Separability 

DEFINITION. - Let K be a field and L an extension of K. An element a E L 
that is algebraic over K is said to be separable over K if it is a simple root 
of its minimal polynomial. 

An algebraic extension L of a field K is separable if every element of L 
is separable over K. 

An irreducible polynomial in K[X] that has no multiple roots in an 
algebraic closure of K is called separable; if it has multiple roots, it is 
called inseparable. 

EXAMPLES. -

1) If Lee is an algebraic extension of a field K, then L is a separable 
extension of K (see §4.4.5). 

2) Algebraic extensions of finite fields and of characteristic 0 fields are 
always separable, by Proposition 15.5 below. 
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COMMENTS. - The notion of separability dates back to Steinitz (1910). A 
non-separable algebraic element of degree n over a field K has less than n 
conjugates over K. 

15.2 Example of an Inseparable Element 

Let IFp(U) be the field of rational functions in U with coefficients in IFp. 
Let K be the image of the Frobenius homomorphism F: IFp(U) -+ IFp(U) 
defined by F(x) = xP (Figure 15.1). Set V = F(U) = Up. Then V belongs 
to K, and U is algebraic over K since it is a root of the polynomial XP - V E 

K[X]. However, we can easily check that it does not lie in K. 
Let us show that the polynomial XP - V E K[X] is irreducible over K. 

The proof is immediate for p = 2. In the general case, we have XP - V = 

F(XP - U) and FIIFp(U) is an isomorphism, so it suffices to show that 
XP -U is irreducible in IFp(U) [X]. But IFp[U] is a factorial ring, with fraction 
field IFp(U), in which U is an irreducible element, so it is prime and we can 
apply Eisenstein's criterion. 

Thus U is of degree p over K, with minimal polynomial XP - V. In 
IFp(U)[X], we have XP - V = XP - UP = (X - U)p. Thus, U is a unique 
root, of order p, of its minimal polynomial, so U is not separable over K. 

IF (U) 
p 

F 

FIGURE 15.1. 

IF (U) 
p 

,. Im(F)=K 

15.3 A Criterion for Separability 

PROPOSITION. - Let p be a prime, K a field of characteristic p, L an 
extension of K, and a an element of L which is algebraic over K, of 
minimal polynomial P over K. 

1) a is separable over K if and only if pl(a) f= 0 or, equivalently, p' f= o. 
The conjugates of a over K are then also separable over K. 

2) If a is not separable over K, then P is of the form 

P(X) = L akXkP . 
O~k~n 
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PROOF. -

1) We have P(X) = (X -a)S(X), so PI(X) = SeX) + (X -a)S'(X). If 
a is separable over K, we know that Sea) i=- 0, so pl(a) is non-zero. 
The converse is immediate. Finally, p' i=- 0 is equivalent to P' ( a) i=- 0 
since P is the minimal polynomial of a over K and pI cannot vanish 
at a if P' i=- o. 

2) We have pI = 0 by a), which implies that P(X) = L akXkP. <> 
O~k~n 

15.4 Perfect Fields 

Let K be a field of characteristic p > O. Let KP denote the image of the 
Frobenius homomorphism F: K ~ K defined by F(x) = xp • As F is 
injective, it is a subfield of K. 

A field is said to be perfect if it is of characteristic 0 or of characteristic 
p i=- 0 with the property that KP = K. 

EXAMPLE. - Every finite field is perfect. 

15.5 Perfect Fields and Separable Extensions 

PROPOSITION. - A field K is perfect if and only if every algebraic extension 
of K is separable. 

PROOF. - Assume that K is perfect. The case char(K) = 0 was considered 
in §4.4.5. Assume p = char(K) i=- 0, and suppose that L is an algebraic 
extension of K, and a is an element of L, non-separable over K, of minimal 
polynomial P over K. By Proposition 15.3, P(X) = L akXkp (with 

O~k~n 

an = 1). As KP = K, there exist elements bo, . .. ,bn E K such that (bk)P = 
ak for 0::; k ::; nj hence, P(X) = ( L bkXk)p. Thus, P is not irreducible 

O~k~n 

over K, which contradicts the hypothesis. 
Conversely, suppose that every algebraic extension of K is separable. If 

char(K) = 0, then K is perfect by definition. Suppose p = char(K) i=- OJ 
let us show that the Frobenius homomorphism F is surjective. Let a E K, 
and let b denote a root of XP - a in an algebraically closed extension of K. 
Let S be the minimal polynomial of b over K. As XP - a = (X - b)P, S 
divides (X - b)P, so it is of the form (X - b)8. But as K[b] is a separable 
extension of K, we have s = 1, so b E K. <> 
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15.6 Galois Extensions 

15.6.1 Definition 

An algebraic extension N of an arbitrary field K is said to be Galois if 
K = J(Gal(NIK)), the field of invariants of Gal(NIK). 

15.6.2 Proposition 

An algebmic extension is Galois if and only if it is normal and sepamble. 

COMMENTARY. - This proposition explains why we used the term Galois 
extensions for normal extensions in Chapter 8 (cf. §8.2). Indeed, as we saw 
in earlier chapters, the Galois extensions of a perfect field are exactly the 
normal extensions since all extensions of such a field are separable. 

PROOF. - Let N be a Galois extension of K. Let x E N have minimal 
polynomial P over K, and let Xl = X, ••• , Xn be the distinct conjugates 
of X in N. The polynomial SeX) = II (X - Xi) is invariant under the 

l::;i::;n 

elements of Gal(NIK), so its coefficients lie in J(Gal(NIK)) = K. It follows 
that P = S and the roots of P are all distinct and lie in N. The extension 
N of K is thus normal and separable. 

Now, let N be a normal separable extension of K. We have the inclusion 
K c J(Gal(NIK)). If X EN does not lie in K, then its minimal polynomial 
over K is of degree strictly greater than 1. As the extension is separable, 
there exists a conjugate y of x, different from x, in an algebraic closure C 
of N. There exists a K-homomorphism a: K[xl- C such that a(x) = y. 
We can extend a to N; let a' denote this extension. As N is a normal 
extension of K, a' defines an element of Gal(NIK) such that a'(x) i:- X; 
consequently, X fj. J(Gal(NIK)). 0 

15.6.3 The Galois Correspondence 

The main theorem of the Galois correspondence given in §8.5 extends to 
all Galois extensions of finite degree, using the same proof as the one given 
in §8.5. 

Toward Chapter 16 

It would be possible to develop the different aspects of Galois theory almost 
indefinitely; we choose to stop at this point and devote one final chapter 
to giving some idea of two domains of current research. 
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Recent Developments 

16.1 The Inverse Problem of Galois Theory 

16.1.1 The Problem 

Is every finite group the Galois group of an extension of the field Q? The 
answer to this question is not yet completely known. 

The study of Galois groups of polynomials of degree 2, 3, and 4 enables 
us to assert that any subgroup of 8 2 , 83 , 8 4 is the Galois group of an 
extension of Q. We also gave examples of polynomials in Q[X] with Galois 
group 8p , p ~ 5 prime (see §12.3 and Exercise 12.1). 

In 1981, Jean-Pierre Serre indicated that aside from abelian groups, the 
answer is actually known for very few groups; until now, however, it has 
been positive in every case. The groups An and 8n (Hilbert, 1892), solvable 
groups (a result whose proof is extremely difficult, due to Shafarevitch, 
1954), the groups PSL (2,lFp) for certain values of p ... all have been shown 
to occur as Galois groups of extensions of Q. 

The situation has developed considerably over the last few years. In 
1985, work by Belyi, Fried, Llorente, Matzat, Thompson, and others showed 
that 18 of the 26 simple groups known as the sporadic groups occur as 
Galois groups of extensions of the field Q. Many other results have been 
proved since then (see the books by B. Matzat and J.-P. Serre listed in the 
bibliography). 
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16.1.2 The Abelian Case 

PROPOSITION. - Let G be a finite abelian group. Then there exists a finite 
Galois extension K ofQ havivg Galois group isomorphic to G. 

PROOF. - We know that G is a finite product of cyclic groups: G 
II'll/n/E, where the ni mayor may not be distinct. For every i E I, 
iEI 
choose a prime Pi such that Pi = 1 mod ni. By Lejeune-Dirichlet's theo
rem of arithmetic progressions (which states that if a and b are relatively 
prime, then the arithmetic progression (an + b )nEN contains an infinite 
number of primes) we can choose the Pi all distinct. 

Set N = IIpi and ( = e2i7r/N . By §9.5, group Gal(Q[(]IQ) is iso
iEI 

morphic to the group U(N) of invertible integers modulo N. By §9.1.2, 

U(N) ~ II U(Pi) ~ II'll/(Pi - 1)'ll. Because Pi - 1 = kini, U(N) has 
iEI iEI 

H = II ni'll/(Pi - 1)'ll as a subgroup. Writing H' for the corresponding 
iEI 

subgroup of Gal(Q[(]IQ), K = I(H') is a normal extension of Q, since H' 
is a normal subgroup of G; its Galois group is U(N)/ H ~ G. <> 

16.1.3 Example 

Let us consider the case where G = 'll/3'll x 'll/3'll x 'll/5'll. We have nl = 

n2 = 3, n3 = 5; we can take PI = 7, P2 = 13, P3 = 11, which leads to 
N = 1,001. 

We know that U(N) ~ U(7) x U(13) x U(11) ~ 'll/6'll x 'll/12'll x 'll/lO'll, 
and we set H ~ 3'll/6'll x 3'll/12'll x 5'll/10'll. 

16.2 Computation of Galois Groups over Q for 
Small-Degree Polynomials 

The whole of this section concerns Galois groups over Q. The first prob
lem is to effectively compute the Galois group of a given polynomial in 
Q[X]. The computations are actually more approachable than what Galois 
believed, thanks to computers; the search for algorithms to compute the 
Galois group of a polynomial has developed a great deal since the 1970s, 
using ideas that can be traced back to work of Lagrange from 1770. By 
1995, algorithms to determine the Galois groups of all polynomials of de
gree less than or equal to 11 had been implemented. For higher degrees, 
Galois' remark remains valid: for polynomials of degree 15, for example, 
one is dealing with groups that are subgroups of S15, a group having more 
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than 1.3 x 1012 elements. The following sections are based on an article by 
Richard Stauduhar, listed in the bibliography. 

16.2.1 Simplification of the Problem 

Let P be a polynomial of degree n of Q[X], and let N be the splitting field 
of P. To determine Gal(NIQ), we can: 

1) Reduce to a polynomial having only simple roots. Indeed, we know 
that the polynomial S = P/gcd(P, PI) has the same roots as P, but 
they are all simple roots: thus, its splitting field is still N, and its 
Galois group is the same as that of P. 

2) Next, reduce to a polynomial having integral coefficients. It suffices 
to multiply P by the least common multiple of the denominators of 
the coefficients of P. 

3) Finally, reduce to a monic polynomial with integral coefficients. To 

accomplish this, if P(X) = 2: akXk E Z[X], it suffices to con
O:S;k:S;n 

sider the polynomial PI(Y) = yn + 2: ak(an)n-k-Iyk. As 
O:S;k:S;n-1 

PI(anX) = (an)n-I P(X), the polynomial PI has the same Galois 
group as P. 

Because of this, we will assume from now on that P is a monic polynomial 
in Z[X]. 

16.2.2 The Irreducibility Problem 

Recall that there exist algorithms to decompose any polynomial in Z[X] 
into a product of polynomials in Z[X], all of which are irreducible in Q[X]. 
These algorithms apply to all polynomials of small degree which we consider 
here. The starting point of these methods is the article by Berlekamp on 
the factorization of polynomials with coefficients in a finite field (1967). 
If a polynomial is not irreducible, it is not always easy to find its Galois 
group in terms of the Galois groups of its irreducible factors. One can try 
to adapt the methods described below. 

From now on, we assume that P is a monic irreducible polynomial in 
Z[X]. 

16.2.3 Embedding of G into Sn 

Recall what we did in §8.1.4. If E denotes the set of roots of Pin C, then 
a bijection cp : {I, ... , n} -> E defines an indexation of the roots of P, 
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Xi = <p(i), giving an embedding <I>: G ---+ Sn. Two bijections {l, ... ,n}---+ 
E define embeddings G ---+ Sn whose images are conjugate subgroups of 
Sn. We will only identify the Galois group as a subgroup of Sn up to 
conjugation. 

16.2.4 Looking for G Among the Transitive Subgroups of 5n 

The group <I>(G) is a transitive subgroup of Sn (cj. §8.1.4); to know which 
one, we can undertake to make a list of all the transitive subgroups of Sn 
up to conjugation, and to find criteria for eliminating subgroups from the 
list one by one, until only one remains. Such criteria can be obtained by 
considering polynomial functions of the roots, the first examples of which 
were given by Lagrange. This procedure gives the structure of G without 
giving an explicit isomorphism from G to the corresponding subgroup of 
Sn· 

In the remainder of this chapter, we will restrict ourselves to the case 
n = 4, except in §16.2.6, where we state a general result. 

16.2.5 Transitive Subgroups of 54 

The list of transitive subgroups of S4 is as follows: 

1) Order 24: S4; 

2) Order 12: the alternating group A4 whose elements are the identity, 
the eight 3-cycles, the three double transpositions; 

3) Order 8: three subgroups isomorphic to the dihedral group D 4 ; these 
groups are mutually conjugate, since they are the 2-Sylow subgroups 
of S4; the elements of these subgroups can be obtained by numbering 
the vertices of the square described in §8.7.2 in different ways via the 
bijections j, g, h (Table 16.1). 

j g h 

A---+1 A---+1 A ---+ 1 

B ---+ 2 B ---+ 2 B ---+ 3 

C---+3 C---+4 C ---+ 2 

D ---+ 4 D ---+ 3 D ---+ 4 

TABLE 16.1. 
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HI = {id, (12), (34), (12)(34), (13)(24), (14)(23), (1324), (1423)}, 

H2 = {id, (13), (24), (12)(34), (13)(24), (14)(23), (1234), (1432)}, 

H3 = {id, (14), (23), (12)(34), (13)(24), (14)(23), (1243), (1342)}. 

4) Order 4: V = {id,(l 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, the Klein 
Vierergruppej 

5) Three mutually conjugate cyclic subgroups of the subgroups of order 
8 of 84 , generated by 4-cycles: 

a) Kl : id,(l 3 2 4), (1 2)(3 4), (1 4 2 3), 

b) K2 : id,(l 2 3 4), (1 3)(2 4), (1 4 3 2), 

c) K3 : id,(l 2 4 3), (1 4)(2 3), (1 3 4 2). 

Our results are shown (up to conjugation) in Figure 16.1. 

S4 

/~ 
D4 A4 

/~/ 
Zl4Z ~ 

FIGURE 16.1. 

16.2.6 Study ofip(G) cAn 

Set 

and 

D = II (Xi - Xj)2 
l:5i<j:5n 

d= II (Xi-Xj) 
l:5i<j:5n 

(D is the discriminant of P). Let T(Xl' ... ,Xn ) = II (Xi - Xj), and 
l:5i<j:5n 

let t be a transposition of 8n . We have t(T) = -Tj we can assume that 
t = (n - 1 n). In this case, the sign change comes from t(Xn- 1 - Xn) = 

-(Xn-l - Xn). It follows that s(T) = T if sEAn and s(T) = -T if 
s (j. An. 
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PROPOSITION. - We have <I>(G) C An if and only if dE Z. 

PROOF. - Suppose <I>(G) C An. For every a E G, we have s = <I>(a) E An 
so a(d) = S(T)(Xi, .. . ,Xn) = T(Xi, . .. ,Xn) = d. Consequently, d E Q. If 
we write d = p/q with (p,q) = I, we know that p2/q2 = D E Z since it is 
the resultant of a monic polynomial in Z[X], so q = ±1 and d E Z. 

Suppose <I>(G) ct An. There exists a in G such that s = <I>(a) ¢ An, so 
a(d) = S(T)(Xi, ... , Xn) = (-n(Xi, ... , xn) = -d. Hence d ¢ Z. <> 

The case n = 3. If d E Z, we have G ~ A3 ~ Z/3Z. If d ¢ Z, we have 
G~83. 

The case n = 4. If d E Z, we can have G ~ A4 or G ~ V. If d ¢ Z, we can 
have G ~ 8 4 , G ~ D4 or G ~ Z/4Z. 

REMARK ON THE TEST d E Z. - This test comes down to seeking the 
integral roots of the polynomial 

R(X) = X2 - D = (X - d)(X + d), 

known as the A4-resolvent, a polynomial whose coefficients are known to 
be integral. We can compute D exactly, by successive divisions, and look 
to see if it is a square in Z. We can also compute a good approximation 
(say on the order of 10-9 ) of each of the roots, both real and complex, of 
P. This gives a good approximation ~ of D; then, knowing that D is an 
integer, we take D to be the nearest integer to the approximate value ~. 

16.2.7 Study oJ if> (G) c D4 

More precisely, the point is to determine if <I> ( G) is contained in one of 
the three subgroups of 8 4 isomorphic to D4. Consider the polynomial 
U(Xi , ... , X 4) = X i X 2 + X 3X4 introduced by Lagrange (cf. §lO.8). If 
s E 8 4 , then S(U)(Xb ... , X 4) can take one of the three values 

U(Xi' .. . ,X4), 

(23)(U)(Xi' . .. , X 4) = X i X 3 + X 2X 4, 

(24)(U)(Xb .. . ,X4) = X i X 4 + X 2X3. 

The elements of 8 4 that leave U fixed are those of the group Hi men
tioned in §16.2.5, and those that leave (23)U fixed are those of the group 
(23)Hi (23) = H 2. Finally, those that leave (24)U fixed are those of the 
group (24)Hi (24) = H3. 

Let us form the D 4-resolvent, the polynomial defined by 

We now need an elementary result on algebraic integers; this is an extremely 
important notion in number theory which we have not used up to now. A 
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algebraic number over Q is an algebraic integer if its minimal polynomial 
has integral coefficients. We will assume the (true) result that the sum and 
the product of two algebraic integers are also algebraic integers; this result 
can be shown using resultants. 

PROPOSITION. - R(X) E Z[X]. 

PROOF. -

1) By the result just cited, the roots of R are algebraic integers, so the 
coefficients of R are also algebraic integers. 

2) For every a E G, we have a(R)(X) = R(X); the coefficients of R 
are invariant under every element of G, so they lie in Q and are 
computable using results on symmetric polynomials (see Chapter 3). 

3) The only algebraic integers in Q are the elements of Z, which gives 
the result. <> 

PROPOSITION. - Assume that R has only simple roots. Then, 

cI>(G) C HI 

cI>(G) C H2 

cI>(G) C H3 

if and only if XIX2 + X3X4 is an integral root of R, 

if and only if XIX3 + X2X4 is an integral root of R, 

if and only if XIX4 + X2X3 is an integral root of R. 

PROOF. - Suppose that cI>(G) C HI. For every a E G, we have s = cI>(a) E 

HI, so 
a(XIX2 + X3X4) = XIX2 + X3X4· 

Consequently, XIX2+X3X4 E Q. Because XIX2+X3X4 is an algebraic integer, 
it follows that XIX2 + X3X4 E Z. 

Suppose that cI>(G) ¢.. HI. Then there exists a in G such that s = cI>(a) f/. 
HI, so a(xIx2 + X3X4), which is a conjugate of XIX2 + X3X4, is one of 
the two other roots of R. Because the roots of R are distinct, we have 
a(xIx2 + X3X4) #- XIX2 + X3X4. 

Consequently, XIX2 + X3X4 f/. Q, so XIX2 + X3X4 f/. Z. <> 

REMARK. - In the case where R has a multiple root, the preceding criterion 
is not applicable. This difficulty can be avoided, for instance, by modifying 
the polynomial without changing its Galois group. 

16.2.8 Study ofiP(G) C Z/4Z 

Here, again, we want to determine if cI>(G) is contained in one of the three 
subgroups of 84 isomorphic to Zj4Z. This study can be done only in the 
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case where the preceding paragraph gives rise to a positive answer. Assume, 
therefore, that we have shown that <p( G) c H 2 , and let us seek to determine 
if <p(G) c K 2 • Consider the polynomial 

V(Xi , ... , X 4) = XiX? + x 2xj + x 3xl + X 4Xr 

If s E H 2, then s(V)(Xi , ... , X 4) can take one of the two values 

V(Xl, ... , X 4) or 

(13)(V)(Xi , ... , X 4) = X 3X? + X 2X? + x ixl + X4Xj. 

The elements of H2 that leave V fixed are those of the group K 2 . 

Let us form the (7!./47!.)-resolvent, the polynomial given by 

R(X) = (X -(XiX~+X2X§+X3X~+X4Xi))(X -(X3X~+X2Xi+XiX~+X4X§)), 

PROPOSITION. - Suppose that R has only simple roots. Then <p( G) c K2 
if and only if y = XiX~ + X2X§ + X3X~ + x4xi is an integral root of R. 

PROOF. - The proof is the same as the proof of the proposition of the 
preceding section. 

If <p(G) C K 2 , then for every a E G, we have s = <P(a) E H 2 , so a(y) = y. 
Consequently, y E Q. As y is an algebraic integer, it follows that y E 7!.. 

If <p(G) rt. K 2 , there exists a in G such that s = <P(a) (j. K 2 , so a(y), 
which is a conjugate of y, is the other root of R. Because the roots of R 
are distinct, we have a(y) =I- y. Consequently, y (j. 7!.. <) 

REMARK. - We can also study <p(G) c Ki or <p(G) C K3 by this method, 
by renumbering the roots. 

16.2.9 An Algorithm for n = 4 

Let P be a polynomial of degree 4 in Q[X]. 

1) We first reduce to the case of a monic polynomial with integral coef
ficients (see §16.2.1). 

2) We check that P is irreducible over Q. 

3) We compute good approximations of the roots of Pin C. 

4) We test to see if <p(G) c A4 (see §16.2.6). 

5) We test to see if <p(G) c D4 (see §16.2.7). 
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If the answer is 

4: yes, 5 : yes, then G c::: V; 

4: yes, 5 : no, then G c::: A4; 

4: no, 5: no, then G c::: 84 ; 

4 : no, 5: yes, we do test 6) below. 

6) We test to see if <P(G) c Zj4Z (see §16.2.8). 

If the answer is 

6: yes, then G c::: Zj4Z; 

6 : no, then G c::: D4 . 

BIBLIOGRAPHICAL NOTE. - To study recent developments of these meth
ods, see the articles by A. Valibouze and their bibliographies. 
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131 LAM. A First Course in Noncommutative Polynomial Inequalities. 

Rings. 162 ALpERINIBELL. Groups and 
132 BEARDON. Iteration of Rational Functions. Representations. 
133 HARRIs. Algebraic Geometry: A First 163 DIXON/MORTIMER. Permutation Groups. 

Course. 164 NATHANSON. Additive Number Theory: 
134 ROMAN. Coding and Information Theory. The Classical Bases. 
135 ROMAN. Advanced Linear Algebra. 165 NATHANSON. Additive Number Theory: 
136 ADKINslWEINTRAUB. Algebra: An Inverse Problems and the Geometry of 

Approach via Module Theory. Sumsets. 
137 AxLERIBOURDON!RAMEy. Harmonic 166 SHARPE. Differential Geometry: Cartan's 

Function Theory. Generalization ofIGein's Erlangen 
138 COHEN. A Course in Computational Program. 

Algebraic Number Theory. 167 MORANDI. Field and Galois Theory. 
139 BREDON. Topology and Geometry. 168 EWALD. Combinatorial Convexity and 
140 AUBIN. Optima and Equilibria. An Algebraic Geometry. 

Introduction to Nonlinear Analysis. 169 BHATIA. Matrix Analysis. 
141 BECKER/WEISPFENNINGIKREoEL. GrObner 170 BREDON. Sheaf Theory. 2nd ed. 

Bases. A Computational Approach to 171 PETERSEN. Riemannian Geometry. 
Commutative Algebra. 172 REMMERT. Classical Topics in Complex 

142 LANG. Real and Functional Analysis. Function Theory. 
3rd ed. 173 DIESTEL. Graph Theory. 2nd ed. 

143 DooB. Measure Theory. 174 BRIDGES. Foundations of Real and 
144 DENNIs/F ARB. Noncommutative Abstract Analysis. 

Algebra 175 LICKORISH. An Introduction to Knot 
145 VICK. Homology Theory. An Theory. 

Introduction to Algebraic Topology. 176 LEE. Riemannian Manifolds. 
2nded. 177 NEWMAN. Analytic Number Theory. 

146 BRIDGES. Computability: A 178 CLARKEILEDY AEv/STERN/WOLENSKI. 
Mathematical Sketchbook. Nonsmooth Analysis and Control 

147 ROSENBERG. Algebraic K-Theory Theory. 
and Its Applications. 179 DOUGLAS. Banach Algebra Techniques in 

148 ROTMAN. An Introduction to the Operator Theory. 2nd ed. 
Theory of Groups. 4th ed. 180 SRIVASTAVA. A Course on Borel Sets. 

149 RATCLIFFE. Foundations of 181 KREss. Numerical Analysis. 
Hyperbolic Manifolds. 182 WALTER. Ordinary Differential 

150 EISENBUD. Commutative Algebra Equations. 
with a View Toward Algebraic 183 MEGGINSON. An Introduction to Banach 
Geometry. Space Theory. 

151 SILVERMAN. Advanced Topics in 184 BOLLOBAS. Modem Graph Theory. 
the Arithmetic of Elliptic Curves. 185 Cox/LITILElO'SHEA. Using Algebraic 

152 ZIEGLER. Lectures on Polytopes. Geometry. 
153 FuLTON. Algebraic Topology: A 186 RAMAKRIsHNANN ALENZA. Fourier 

First Course. Analysis on Number Fields. 
154 BROWNIPEARCY. An Introduction to 187 HARRIS/MORRISON. Moduli of Curves. 

Analysis. 188 GOLDBLATT. Lectures on the Hyperreals: 
155 KAsSEL. Quantum Groups. An Introduction to Nonstandard Analysis. 



189 LAM. Lectures on Modules and Rings. 198 ROBERT. A Course in p-adic Analysis. 
190 ESMONOEIMURTY. Problems in Algebraic 199 HEoENMALM/KoRENBLUMIZHU. Theory 

Number Theory. ofBergrnan Spaces. 
191 LANG. Fundamentals of Differential 200 BAO/CHERN/SHEN. An Introduction to 

Geometry. Riemann-Finsler Geometry. 
192 HIRsCHILACOMBE. Elements of Functional 201 HlNDRY/SIL VERMAN. Diophantine 

Analysis. Geometry: An Introduction. 
193 COHEN. Advanced Topics in 202 LEE. Introduction to Topological 

Computational Number Theory. Manifolds. 
194 ENGELINAGEL. One-Parameter Semigroups 203 SAGAN. The Symmetric Group: 

for Linear Evolution Equations. Representations, Combinatorial 
195 NATHANSON. Elementary Methods in Algorithms, and Symmetric Function. 

Number Theory. 2nded. 
196 OSBORNE. Basic Homological Algebra. 204 ESCOFIER. Galois Theory. 
197 EISENBuolHARRIs. The Geometry of 205 FELIx/llALPERINiTHOMAS. Rational 

Schemes. Homotopy Theory. 
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