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PREFACE

This book seeks to make Arithmetic and Algebra a science,—
a piece of knowledge to wit everywhere reasoned out in an

orderly way from principles expressly laid down—
, and toward

that end has to run wide of the track of the common books.

In the arithmetic of whole numbers these books at starting

are so altogether taken up with numerical notation and notational

processes as with the help of sundry ellipses and ambiguities of

language to becloud the first notion of pure number and to miss

the operations that are the very heart and life of arithmetic's every

part that therefore abide ever the same under all systems of nota-

tion and that therefore before aught else have a right to the name

of arithmetical operations. Yet the notation itself marks numbers

only as results of certain of those operations and so can only be

understood by knowing what the operations are. Besides the pro-

perties of, and the processes that have to do with, the notation

spring wholly from, and so can only be known through, the laws

of the operations. Hence the notation's exact meaning is mistaken

the processes themselves are not made out and of the operational

laws

the more striking alone get any handling whatever though

of the roughest kind while the rest are deemed unworthy of even
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Passing on to the arithmetic of fractions the mist and darkness

settles down thickens and spreads. Because forsooth multiplying

one whole number by another yields the same product as multi-

plying this other by the first the two operations become henceforth

absolutely undistinguishable,
—as if seemingly operations to be

the same have only to give the same results—
, and thus it comes

about that the one guiding principle throughout fractional opera-

tions is marred in itself and maimed and crippled for its work that

these operations are first misunderstood and then neither traced

back to their springs nor truly performed at all and particularly

that in both whole and fractional arithmetic it is held the same

operation from the product and the multiplicand of a multiplica-

tion to get the multiplier as from the product and the multiplier

to get the multiplicand. To such a length indeed are distinctions

cast aside of things that differ as to lead to the saying that "
every

multiplication is a division and every division a multiplication"

without the smallest misgiving in the sayer.

The third and last part of arithmetic where the numerical

relations of magnitude fall to be dealt with is worse than left out.

For not only is the phenomenon of Incommensurability, through

which alone arises any need of ratio either the thing or the name,

given the go by to but everything touching ratio is put as no

more than fractional relationship. Operations with incommensu-

rable numerical quantities are therefore far too much to look for

but that books claiming of all things intense practicality should

pass over the arithmetic of approximates is startling. Nay as if to

go wrong of set purpose to the furthermost the quantities which

come straightest from and have most of all to do with ratio are

the ones named irrational. The confusions too of multiplication

and division could hardly flourish anywhere ranklier than in what

goes by the name of the Rule of Three.

Arithmetic which as to matter is either whole fractional or

incommensurable is as to manner of handling either pure nota-
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tional or symbolic. In symbolic arithmetic the books with all the

mistakes confusions and falsities above spoken of thick upon them

plunge headlong into downright contradictions. For instance the

sum got by the addition to 2a+$b of 4a+b is first said to be

2a+$b+(4a+b) but afterwards 6a+4b and the process of making out

that 2a+$b+(4a+b) = 6a+4b is called an operation of addition.

Again the product of a-b and a+b is said to be (a-b)(a+b),
—

whether a—b or a+b is the multiplier either is not stated or if

stated is soon after either forgotten unheeded or contradicted—,

but shortly the same product is said to -be a 2—b2 and then the

method of reaching this result is called multiplication. Likewise

although at first l\ja—2s]a is said to be the remainder got by sub-

tracting 2\ja from $»Ja yet after a while ?,\Ja is said to be so and

the quotient got from dividing sja by *Jb though at first symbolized

by ^yr
turns out nevertheless to be , /

j.
No symbol perhaps fares

so ill at the hands of book writers as the fraction symbol which, or

rather what from likeness of shape can only be meant for it, is

sometimes found with a number of specified units written in the

numerator's place and a number of either specified or unspecified

units in the denominator's and sometimes with symbols written

termwise of two magnitudes neither expressed numerically. To use

this last symbol is to cut away the very ground for taking the

fraction shaped symbol at all to be the numerical representative of

a ratio, inasmuch as what fits it for becoming so is that a fraction's

terms express magnitudes numerically in reference to a common

unit magnitude, and to use the other is either to set at naught or

not to see that settling what unit a fraction refers to settles at once

what common unit the fraction's terms refer to. Moreover so

utterly slighted is anything like principle in symbolic language

that *Jcisjb or sja.sjb is taken to mean the product by *Ja of *Jb

instead of the second root of ctsjb that *Ja{b+c) is put in the stead

of (\/a)(b+c) and that sinyZsini? is made to stand for what

b
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(sinA) sin 2? rightly stands for. It is too not only heedlessness of prin-

ciple but even a flat contradiction as well of the symbol's definition

to use abxc or ab.c for the product of ab into c instead of for the pro-

duct of a into bxc or b.c andn+i.n+2.M+3 for what (n+i)(n+2)(n+$)

rightly symbolizes. In ways such as these the symbolic language

which might could and with greater delicacy of touch and skill in

handling would cut out sharply the nicest distinctions and lay bare

and open up the knottiest entanglements has its fine edge so

turned and blunted and hacked that at last it becomes unfit for

any but the coarsest work and that on the whole there is nothing

which it more does than witness to the roughness of hand and the

sightlessness of eye of its many users.

The algebra of the books is quite of a piece with the arith-

metic. Indeed since it is Arithmetic alone with its operations laws

theorems and processes that first brings into being and afterwards

everywhere underlies shapes moulds and gives the cue to Algebra

there can be no sound true and thorough algebra without a sound

true and thorough arithmetic. No wonder therefore that the prin-

ciple of all algebraic extension of meaning and use to arithmetical

symbols should be loosely grasped lightly prized and even run

clean counter to, that there should be no clear well marked

boundary between what is matter of definition and principle and

what is matter of demonstration, that algebraic operations and

laws of operation should be unnoticed undistinguished undefined

unproved and even utterly confounded with one another, and that

in particular such things should lie far away out of sight and be

never dreamt of as the meaning member of an operational equiva-

lence being always the stepping stone whence as from sure footing

meaning is laid down for the unmeaning member this meaning

becoming In turn if need be a stepping stone in like manner to

still other meanings and the need there may be of generalized

laws for generalized operations. But notwithstanding all the stray-

ings tumbles and flounderings of algebra writers some conclusions
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reached by them are nowhit less than wonderful. For instance

which never ceases to have meaning is said to be equal in
i+x

some sense to i—x+x2—x3
-\
—

(with the successive operations sym-

bolized understood to be endless) even when this has no meaning

whatever, to wit when x has an absolute value not less than I
;

in

particular to make all sure it is said that - = i-i+i-H that

_ = i_2+2 a—23
-\ and the like. This astounding result is got

by saying that the product of the multiplication by i+x of

I—x+x*—x3+ • • • is i—x+x^—xH \-x—x*+x3 which is said to be

the sum of the addition to i-x+x2—xH of x-x2+x3 and this

sum again is said to be I by actual addition. The process in full so

far as one can guess,
—for long ago all distinctions between opera-

tions and operational laws have been thrown to the winds and

everything has been made the sheerest ciphering and symbol

grinding
—

, seems to be the following, (i-\-x)(i—x+x
2—x3

-\ )

= ixii-x+x
2

)+x(i-x+x
2

)
= i-x+x2

+(x-x
2+ • •

•)

= i-x-\-x2-x3+ \-x-x
2+x3

= i+x-x+x2-x2+x3-x3+ • • •

= i-(x-x)+(x
2-x2

)-(x
3-x3

)-\

Now of the six expressionlike things here written as if asserted to

be equal to one another the first five are empty of all meaning so

that either the first five are equal in being all equally meaningless

and in this sense it is untrue that any of them is equal to the sixth

or the whole set of statements is arrant nonsense in the strict sense

of the word and inasmuch as nothing whatever is said there is

nothing whatever to be gainsaid nothing to be proved nothing to

be disproved. Algebraers thus run away with by their overmaster-

ing symbols are at last driven to the strange and wild shift and

outrageously overtowering extravagance and absurdity of finding

b2
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and raising high as a principle that a chain of reasoning to be

strong and good need not have meaning in every link that in other

words the conclusiveness of an argument has nothing to do with

the intelligibility of its several steps or that things may be tho-

roughly made out true for reasons nowise to be understood.

Small need then to say as a wind up that arithmetic and

algebra in their wonted setting forth cannot but be educationally

bad and mischievous scientifically misleading bewildering unhelp-

ing balking stunning deadening and killing and philosophically

worthless.

Queens' College Cambridge

7 September 1867
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PELICOTETICS

PART FIRST

ARITHMETIC

CHAPTER I

NUMBER IN ITSELF.

1. If any thing and any other thing be put together, and to

the group thus made another thing be put, and to the new group
of things then made another thing be put, and so on, other groups

being made successively in the same way by putting to each group
made another thing to make the next following group ;

and if the

things that make up the several groups be viewed only as distinct

individual members of the groups, leaving utterly unheeded what

the things are, how they are arranged in the groups, and all else :

still the groups differ from one another, and from the things

that make them up, as to what is called the NUMBER of things

in each of them. Accordingly groups so viewed are spoken of

as Different Numbers of Things or as Different

Numbers simply.

Arithmetic is the Science of Number.

2. Definition.

Each thing in any group of things is called One of the things

or a Unit or Unity.

A group made by putting to a thing another thing is called

Two things or units.
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A group made by putting to a group of two things another

thing is called Three things.

— — — Four

— — — Five

And so on, the groups following next in order being severally
.

t
called Six, Seven, Eight, Nine, Ten.

Since the groups that can be thus made each from the next

before are endless the definitions of different specific numbers must

likewise be endless. The names however (hereafter to be dealt

with) of all but a few numbers are so chosen as to show the order

of successive formation of the numbers and hence serve to define

as well as to express them.

3. Def. A number is said to be EQUAL to, or the Same as,

another number when to each unit of the one there is

a unit of the other.

This is (art. 2) just to say that those numbers are equal to one

another which have the same name.

4. Def. A number is said to be GREATER than another number
when a number equal to the former is among those

numbers that can be made by putting units in succes-

sion to the latter and to the numbers successively

made. Also the latter number is then said to be LESS
than the former.

5. Def. That made by barely putting things together is called

their AGGREGATE.

6. Axiom. Equals to the same are equal to one another.

Hence Equals to equals are equal to one another.

For an equal to one of two equals is, by the axiom, equal to

the other and therefore, again by the axiom, is equal to an equal
to that other.

7. Ax. A whole is equal to the aggregate of its parts.

8. Ax. A whole is greater than its own part.

9. Ax. A 11 equal to, and much more a greater than, the greater

of two unequals is greater than an equal to, and much
more a less than, the less.

10. Ax. If to equals equals be severally put the wholes are equal.
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11. Ax. If to unequals equals be severally put, or to equals tin-

equals, the whole with the greater unequal is greater

than the wJwle with the less.

12. Ax. A whole with parts as many as, and severally greater

than, the parts of another wJiolc is greater than that

other.

13. Hence Iffrom equals equals be severally taken the remainders

are equal.

Else by putting to unequal remainders the equals taken the

equal wholes would (art. 1 1) be unequal.

14. Also Iffrom unequals equals be severally taken the remainder

of the greater unequal is greater than the remainder

of the less.

Else by putting to the remainders the equals taken the greater

of the unequal wholes would be either (art. 10) equal to, or (art. 11)

less than, the less.

15. Again If from equals tincquals be severally taken the remain-

der over above tlie greater tincqual is less tlian the

remainder over above the less.

Else by putting to the remainders the unequals taken the equal

wholes would (either art. 1 1 or art. 12) be unequal.

16. Much more If from the greater and the less of two unequals

the less and the greater of two unequals be seve-

rally taken the first remainder is greater than

the other.

17. The foregoing axioms and axiomatic consequences are shared

by Arithmetic in common with other sciences. The following pos-

tulates belong to Arithmetic alone.

POSTULATE. Let it be granted that the units which make up a

number are all equal to one another.

Things may be numbered together as units however unlike

they are to one another. Inasmuch then as they are deemed all

equally separate individual things in any group of things so are

they EQUAL units of the number of things in the group.

18. Post. Let it be granted that any numbers make up as parts

some number as a whole.

Groups of things cannot be grouped without making a single

group of the things. Several aggregates of units cannot but make

up one whole aggregate of those units.

1—2
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19. Defi The number which as a whole is made up of numbers

as parts is called the SUM of those numbers.

20. POST. Let it be granted that any number greater than ONE

may as a whole be made up of any number less than

itself and some other number as parts, hence this other

likewise if greater than ONE of any number less than

itself and some other, and so on; moreover that the

number may as a whole be made up of all those less

numbers and the last come to of those other numbers

as parts.

21. Proposition. To find the sum of'two given numbers.

The sum of every two numbers has to be found singly. If

either of the two be one the sum is given (art. 2) as a matter of

definition. If neither be one the way to find the sum is always as

follows :
—

Let four and six be the numbers whose sum is sought
The aggregate of four and o?ie is (art. 7) equal to their sum

which (art. 2) is five. To each of these equals put one and (art.

10) the aggregate offour, one, and one, is equal to the aggregate of

five and one. But because (art. 2) the aggregate of one and one is

two, putting to four each, (art. 10) the aggregate of four, one, and

one, is equal to the aggregate of four and two. Also the aggregate
of five and one is (art. 7) equal to their sum which (art. 2) is six.

Therefore (art. 6) the aggregate offour and two is equal to six.

Again to these equals severally put one and (art. 10) the ag-

gregate of four, two, and one, is equal to the aggregate of six and

one. But the aggregate of two and one being (art. 7) equal to their

sum to wit (art. 2) three, to four put each and (art. 10) the aggre-

gate of four, two, and one, is equal to the aggregate of four and

three. Also (art. 7) the aggregate is equal to the sum of six and

one to wit (art. 2) seven. Therefore (art. 6) the aggregate offour and

three is equal to seven.

In like manner may it be shown turn by turn that the aggre-

gate of four and four is equal to eight, of four and five to nine,

and at length offour and six to ten.

But the aggregate of four and six is (art. 7) also equal to their

sum. Therefore (art. 6) the sum offour and six is equal to ten.

Hence further (art. 9) the sum of four and six is greater than

any number less than ten and is less than any number greater.

Therefore (arts. 3,4) the sum offour and six is ten.
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22. Def. The operation just gone through in art. 21 is called the

Addition To a number Of a number.

The instance above taken shows that the sum got by the addi-

tion to four of six is ten.

23. Def. The following marks, called DIGITS, FIGURES, or

CIPHERS, have the meanings severally written under

them,123456789
one two three four five six seven eight nine.

24. Def Letters of the alphabet, either alone or marked with

accents, dashes, suffixes, or other marks, being taken

for symbols of any numbers, the symbol a+b, read

"a PLUS b", stands for the sum got by the addition

to a of b.

Thus 1 + 1 is the symbol of what is denoted by 2, 2+1 sym-
bolizes what 3 denotes, 3+1 stands for what 4 represents, 4+1

expresses the same as 5, and so on.

25. Def The aggregate of any things is expressed symbolically

by writing in any order the symbols of the things

with a comma between each adjoining two and shut-

ting all in by a pair of like shaped brackets such as

(Ml. Q
26. Def. The symbol = stands for is equal to, equals, or such

other part of the verb to be equal to as its manner of

use may call for.

27. Def. The symbol .*. means hence or therefore, and the symbol

V since or because.

28. Prop. If to equal numbers equal numbers be severally added

the sums are equal.

For if a, a, b, b' } be any numbers such that a = a and b = b ',

(art. 10) (a, b)
=

(a', b').

But (art. 7) a^b = {a} b) and a+b'= (a, b').

.*. (art. 6) a+b = d+b'.

29. Prop. The sum got by adding to one number another is the

same as the sum got by adding to this other thefirst.

For if a, b, be any numbers, (art. 7)

a+b=(a,b) and b-\-a-(a,b).

.'. (art. 6) a±b = b+a.

Wherefore (art. 3) these are the very same number.
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30. PROP. To find the sum of more than tzvo given numbers.

First to any one of three given numbers add (art. 21) another

and to the sum found add the third. The sum last found is the

sum of the three numbers.

For the aggregate of the first two numbers being (art. 7) equal

to their sum, to each put the third number and (art. 10) the aggre-

gate of the three numbers is equal to the aggregate of that sum

and the third number. But (art. 7) these aggregates are equal

severally to the sums of the numbers aggregated. Therefore (art.

6) the sum of the three numbers is equal to, and hence (arts. 9,

3,4) can be no other than, the sum got by adding to the sum of

the first two numbers the third number.

Next the sum of four given numbers is the sum got by adding

(art. 21) to the sum of any three of them the fourth. For the

former is (art. 7) equal to the aggregate of the four numbers.

And, because the sum is (art. 7) equal to the aggregate of the

three numbers, (art. 10) the latter is also equal to the same.

In like manner the sum of five given numbers is the sum got

by adding to the sum of any four of them the fifth. And so on for

six or more given numbers.

31. Def. The sum got by adding to a+b c is symbolized by
a+b+e, the sum got by adding to a+b+e d by a+b+e+d,
and so on.

32. Def. Shutting within a pair of brackets the symbolic expres-
sion of the result of one or more operations marks

that the expression is to be understood just as a

letter expressing the result would be understood in

the same place.

Thus a+(b+e) stands for the sum got by the addition to a of

b-\-e, a+{b+c+d) for the sum of the addition to a of b+e+d,

v+(w+x)+{d+(e+f)} for the sum of the addition to v+{w+x) of

d+(e+f) y and tne like -

33. PROP. If the letters standfor any numbers,

x+ {a+b+e+ • • +f+g+h) = x+a+b+c+ • • • +f+g+ h.

First of all, if a, b, e, be any three numbers, a+(b+c) = a+b+e.

For (art. 7) b+c= {b, e), to a put each and (art. 10) (a, b+e)= (a, b, e).

But (art. 7) a+(b+e) = (a, b+c). .: (art. 6) a+(b+c) = (a, b, e).

Again a+b = (a, b), to each put c and (a+b, c)
=

[a, b, e). But

a+b+e = (a+b, e).
.'. a+b+e = (a, b, e).

.'. (art.6) a+(b+c)=* a+b+e.
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Hence x+(a±b+c+---+f+g+h) = x+{a+b+c+">+f+g)+h,
by what has just been proved, and .*. again (arts. 28, 6)

= x+(a+b+c+ • • • +/) +£+//,

.'. again in like manner —
x-\-(a-\-b-\ Yc)+f+g+k,

at length .*.

and .*. at last = x+a-\-bic+'"+f+g+h.

34. Prop. Thefinal sum got by adding all but one of any numbers

in succession to that one and to the sums successively

got is the same in zuhatever order the numbers are

taken.

It has already (art. 29) been shown that for any two numbers

a, b, a\b = b\a. And the general proposition may be proved in like

manner from art. 30. For a, b, c,...f, g, h, being any numbers it is

there shown that a\b\c+—hf+g+h=(a, b, c,...f, g, h), and also,

taking the numbers in any other order, that g-\-c+h-\ Yb+f+a
=

(a, b, e,...f,g, h).

.'. a+b+c+ • • +f+g+h =g+c+h+ • • • +£+/+*.
But the proposition may be better viewed as a consequence of

the propositions laid down in arts. 29,33.

Let a, b, c, be any three numbers.

V (art. 29) a\b = b+a, to each add c and (art. 28) a+b+c= b+a+c.

So likewise a-\-c+b = c-\-a+b and b+c+a = c+b+a.

And the orders in which a, b, c, are written in these expressions

are all the orders that can be
;

for the orders in the last two ex-

pressions are the only ones with a last, those in the two next

before the only ones with b last, and those in the first two the only
ones with c last.

Now (art. 33) a+b+c = a+(b+c) and .*. (arts. 29, 28) =a±(c+b),
.'. too =b+c+a (art. 29),

= a -\-c+b (art 33).

.*. a+b-\-c= b\a\c = a-\-c-\-b = c+a+b = b\c\a — c+b-ta.

Again let a, b
} c, d, be any four numbers.

By what has just now been shown and art. 28,

a+b+c+d a+b+d-s-c a+c+d+b b\c+d\a
= b+a+c+d =b+a+d+c =c+a+d-\-b =c+b+d+a
= a+c+b+d =a+d\b\c = a+d+c+b = b+d+c+a
= c-\-a+b+d =d+a-t-b+c = d+a+c+& =d-±b+c+a
= b+c+a+d = b-\-d+a+c =c+d+a+b =c+d+b+a
= c+b+a+d, =d+b+a+c, =d+c+a+b, =d+c+b+a.
Also (art. 33)

a+b+c+d=a+(b+c+d) and /. by the above =a+(c+d+b)=a+(b±d+c),
and.*. -b\c\d\a (art.29), (art. 3 3)

= a+c\-d+ b =a+b+d+c.
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Hence (art. 6) all the expressions in the four groups above of

six each are equal.

The proposition thus proved for any four numbers may next

be proved in like manner for any five, then in like manner for any

six, and so on.

35. Def. Different operations or sets of operations are said to

be Equivalent which when performed with the

same numbers give the same result whatever those

numbers be. And the symbolically expressed results

of equivalent operations or sets of operations are

said to be Operationally Equivalent.
Thus (art. 29) a+b=b+a and (art. 33) a+(b+c) = a+b+c whatever

numbers a, b
} c, stand for. a+b then is operationally equivalent

to b+a and a+(6+c) to a+b+c. Equalities like these have to do

only with the very nature of the operations and not at all with the

particular numbers operated with.

36. Def. The proposition of arts. 29, 34, is called the Law OF

the Commutation of Additions and that of

art. 33 the LAW OF THE DISTRIBUTION OF ADDITION

over Additions.

The proposition of art. 29 and the first case of the proposition

of art. 33 are not only the simplest cases severally of the general

propositions of arts. 34 and 33 but also together the groundwork
whereon these have been built, and must therefore be held to be

Fundamental Laws of Operational Equivalence.

37. Def. The operation of finding the sum of a given number

of numbers each equal to a given number is called

Multiplication; the former given number is called

the Multiplier, the latter the Multiplicand, and

the sum the Product of the Multiplication
By the multiplier Of the multiplicand.

This operation is a special case of the general operation of

finding the sum of any numbers (arts. 2 1,30).

The units that make up, or the units of, the multiplier are each

equal to the multiplicand and therefore (art. 6) all equal to one

another. These units then are equal to one another not only in

the sense in which (art. 17) all the units of a number are equal but

also in the further sense of being equal numbers (art. 3). But

(art. 28) equal numbers enter into operations of addition all in the

very same way and so far are not to be distinguished from one



MULTIPLICATION <)

another. Hence the equal unit numbers of the multiplier, though

distinguishable both as individual units of the multiplier and as

individual parts of the product which as a whole they make up,

are not distinguishable as numbers. That therefore about them

alone need be marked which their common name expresses, and

hence instead of saying that the units of the multiplier are num-

bers bearing the name of the multiplicand it is enough to say that

the multiplier refers to the multiplicand as unit.

Moreover although it is the name only of the multiplier that

expresses how many numbers each having the same name as the

multiplicand make up the product yet it may be said for shortness

that the multiplier itself expresses this.

For example in finding what number seven threes make up no

two of these threes are the same three. Yet in adding to three

three adding to the sum got three and so on till the sum of all the

seven threes is at length found, what is done at any stage with any
one three is just what would be done at that stage with any other

three
;
there is nothing to distinguish the threes but the order in

which they are taken. It is enough simply that *each of the seven

units is three or that the multiplier seven refers to the multiplicand

three as unit. Also the number of the threes that make up the

product is seven or seven expresses how many threes make up the

product.

38. Def. The symbol bxa, b.a, or ba, read "b INTO a?\ stands for

the product of the multiplication by b of a
; cxbxa,

e.b.a, or eba, for the product of the multiplication by
c of ba

; dxexbxa, d.e.b.a, or deba, for the product of

the multiplication by d of eba
;
and so on.

The multiplication sign x, or the dot ., may be left out only

when the symbol cannot reasonably be confounded with the symbol
of anything else. Thus the product of 2 into 3 must not be sym-
bolized by 23, for this (as will soon be seen) is made to stand for

something else
;
even the symbol 2.3 may be mistaken for 2*3 a

symbol afterwards to be used for quite another thing.

The symbol 2x7 stands for the very same as 7+7, 3x4 for the

same as 4+4+4, and generally ax for the same as x+x+x-\ \-x

with x written a times, or as this may be written

{

x+x-\-x+---+x+x
]

.

K - - a xs - - >1

It is clear that axi =a= ixa whatever number a stand for.

Of course (a+b)e stands for the product of a+b into c, a{b+c)
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for that of a into b+c, (abc)d for that of abc into d, and the like

(art. 32). Also 1+2x3 stands for the sum of the addition to 1 of

2x3, 1+2x3+4x5x6 for the sum of the addition to that sum of

4x5x6, and the like (arts. 24, 3 1).

39. PROP. The product made by multiplying by a sum of numbers

a number is the same as the sum of the products
made by multiplying by each of those numbers that

number.

First for any three numbers a, b, c.

(a+b)c is the same as f+c+c-\ \-c
l

-\-c+c+c+—|-rH

|<
- acs - )(<- -bcs- ->j

and .*. (art.33)
=

,£+£+£-! \-c+
{(c+c+c-\ \-c)

{

which is ac+bc.

X - - a cs - -X - - b cs - - >
Hence for any numbers a, b, c,...f g, h, x,

(a+b+c+-
• -+f+g+h)x = (a+b+c+- • -+f+g)x+/ix by the above,

= [a\b\c-\ +f)x+gx+hx by the same,

=
(a-\-b)x+cx-\ \-fx+gx+hx,

= ax+bx+cx-\ vfx+gx+kx.

40. Def The proposition just proved (art. 39) is called the Law
of the Distribution of Multiplication Of
over Additions.

41. PROP. If the letters standfor any numbers;

abc. . .mnpqr = {abc. . .mnpq) r.

For (art. 39) if qlf q2 , q^...qpj be any/ numbers,

qS+q2r+q3r+- -~\qpr= (q 1+q2+q3+--+qJ>)r.

If therefore in particular q t
= q2

= q3
— • • • = qp and each = q,

pqr={pq)r.

Hence, making use of this again and again,

abc. . .mnpqr — abc. . . tnn (pq) r

= abc'. . .m(iipq)r

—
a{bc...mnpq)r,

and at last = [abc...mupq)r.

42. Def This proposition (art. 41) is called the Law OF THE
Colligation of Multiplications.

43. Def. The symbol a? stands for aa} a3 for aaa, and generally

an
for aa...aaa with a written n times or as it may be

written

]

aa...aaa
l

.

K n as »



POWER 1 1

That symbolized by a" is called the ;/Tii Power of

the number symbolized by a and this power is said

to be of the n'Y\\ DEGREE; also the number sym-
bolized by ;/ is called the INDEX or EXPONENT of

the power.
In this system of symbolization a 1 must stand for a, and hence

the first power of a number is just the number itself.

44. PROP. If the letters standfor any numbers,

awava". . .a"apanam = dr"»'/««'
,"»-«»'«

For first anam is
i (aa...aaa) i

aa...aaa
i ,

^ n as ^K f* as y\

and .*. (art. 41) = laa aadaa...aaa , which is am+n.

Hence awava". . .aqa*a
nam = awavau

. . .(fa'cC**

45. Prop. If the letters standfor any numbers,

{a")
x=axn

.

For (art. 44) alva\ . . apanam = am+"+'+
"+"+w

, whatever numbers
a

} m,n,... w, be. If then in particular m = n= />
= -- = v = w, and

there be x of them,

(a
n
)

x = axn .

46. Def The mark o, called ZERO, stands for naught, nothing,

or not any.

Clearly ox = o and xxo = o whatever number x be.

47. Prop. To explain hozv numbers are denoted decimally.

Every number less than ten is denoted by a digit (art. 23).

For the purpose of explaining how every other number is de-

noted let upright strokes be drawn side by side

so as to make a column between each adjoining

two, and let the columns thus made be named

severally, in order from right to left, A, B, C,... G F E D C\BA
. From not fewer than ten things ten may be

counted off, and should any be left over, from

them if not fewer than ten ten more may be

counted off, and should any be again left over, from them in turn

if not fewer than ten other ten may be counted off, and so on.

But since by counting off the things singly there would at length
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be none of them left over, much sooner by counting them off by
tens must there at length be left over either none or fewer of them

than ten. Hence any number not less than ten may be made up
of one or more groups of ten units each either alone or with some

number of ungrouped units less than ten.

If there be any ungrouped units their number being less

than ten may be recorded by writing in the column A the digit

which expresses that number. If the number of the groups
be less than ten it may be recorded by writing in the column 5

B the digit which expresses it, and this digit which of itself 8

expresses only the number of the groups may when placed in

the column B be taken further to denote the number of the units

in those groups. Moreover if there be any ungrouped units the

digit in the column B and the digit in the column A denoting

severally the number of grouped and the number of ungrouped
units may be written side by side and taken jointly to denote the

number made up of those numbers. In this way then may any
number be denoted which is not less than ten but less than the

number of things in ten groups of ten things each, that is than the

product made by multiplying by ten ten.

But if the groups, which for distinction may be called groups of

the first rank, be not fewer than ten they like the original things

may be counted off by tens into one or more groups of a second

rank until there be left over either none of them or fewer than ten.

If any first rank groups be left over ungrouped the number of

them being less than ten may as before be recorded by writing in

the column B the digit which expresses that number and the digit

so written may be taken as before to denote the number of the

units in those groups. Now if the second rank groups be fewer

than ten their number may be recorded by writing in the column C
the digit which expresses this number, and this digit ex-

pressing the number of second rank groups may be taken

to denote the number of the units in these groups. More-

over, should any units or any first rank groups be left over

ungrouped, the digit in C denoting the number of units in

the second rank groups and either or both of the digits in

B, A, denoting severally the number of units in the first rank

groups and the number of the ungrouped units may be written on

a level all in a row and taken jointly to denote the number made

up of, and consequently determined by, those numbers. Since ten

units make a first rank group and ten first rank groups make a
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second rank group, there may in this way be denoted any number

not less than the product made by multiplying by ten ten but less

than the product made by multiplying by ten that product.

Again the second rank groups if not fewer than ten may in

turn be told off by tens into groups of a third rank until none or

fewer than ten of them be left over, these groups of the third rank

if not fewer than ten may be told off by tens in like manner into

groups of a fourth rank, and so on. But since all numbers are

(arts. 2, 22) the sums got by adding in unbroken succession one to

one and to the successive sums got, and the sum got by adding one

to any number is (arts. 4, 1 1, 12) less than the sum of ten numbers

each equal to that number, the final sum of any successive addi-

tions of one to one and to the successive sums got is less than the

final product of as many successive multiplications by ten of one

and of the successive products made. Wherefore in telling off by
tens to the utmost the units of any given number into first rank

groups, these first rank groups into second rank groups, and so on,

groups of some rank must be come to at length which are fewer

than ten and out of which consequently no group of a higher rank

can be made. Hence by first writing severally in the columns A,

B, C, ... and all in a row the digits which express such numbers

each less than ten of units, first rank groups, second rank groups,...

as may be in turn left over ungrouped and at last the number of

the groups that yield no further group; by then taking the digit

which expresses the number of groups of any rank to denote the

number of units in those groups ;
and by lastly taking the whole

row of digits to denote the number made up of the numbers seve-

rally denoted by the digits ;
it follows that any number whatever

may be denoted.

In this system of notation then the numbers to which as units

the digits written in the several columns in order from

right to left are understood to refer are severally one and

the products made in succession by continued multipli-

cations by ten of one and of the products successively

made, each digit is understood to denote the product
made by multiplying by the number which it expresses
the number to which as unit it refers, and a row of digits

in different columns is understood to denote the final

sum got by adding in succession the numbers denoted

by all but the first of the digits taken in order from left

to right to the number denoted by the first and to the

sums successively got. If t be made to stand for ten, 1
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written in the columns B, C, D, ... denotes severally /, t
2

, P, ...

The digits 3, 9, 5, 2, 6, written in the several columns A, B, C, D,

E, denote severally 3, gt, $t
2

, 2P, 6t*; and a row of the same digits

so written denotes 6t*-i 2*3+5*
a

+9M-3.
When a number is denoted in the way now shown the only use

of the columns is to mark the ranks of the groups to which as

units the several digits refer. But if a digit were in every column
to the right of any column wherein a digit is the bare order of suc-

cession of the digits would do this. Hence by using zero as a digit

to fill up empty columns the columns themselves may be done

without. When columns are done away with by this use of

zero as a digit to fill up gaps the other digits are called signi-

ficant.

Thus in a row of digits without columns the numbers to which

as units the digits in backward order, that is from right to left,

severally refer are one and the successive products made by con-

tinuedly multiplying by ten one and the products successively made,
which therefore are severally denoted by

1, 10, 100, 1000, 10000, ...;

each digit denotes the product made by multiplying by the number

which it, primarily or apart by itself, expresses the number to

which as unit, from its place in the row, it refers
;
and the whole

row denotes the last sum got by adding successively the numbers

denoted by all but the first of the digits in order, that is from left

to right, to the number denoted by the first and to the successive

sums got. For example the row of digits

S3000704
denotes the last sum of successive additions of all but the first of

the following numbers in order to the first and to the sums got in

succession, to wit

'or the product^
made by multi-

plying by the

number denoted

^by

3000000 3 IOOOOOO

700 7 100

4 4 1;

of which also the symbolic expression is 8^+3^+7^+4.
It can make no change in the meaning of a row of digits to

write any number of zeros at the beginning of the row. For

instance, 750, 0750, 00750, ... all denote the same.

the number

denoted by
80000000

(the number)
, , . \

10000000
[denoted byj
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A number as above denoted is viewed as the sum of the pro-

ducts of certain multiplications of which the multipliers, each

less than t, are alone written but so written as to show by their

order the several multiplicands, to wit, i, /, t
2

,
tl

,
... in backward

order.

In dealing with decimally denoted numbers the use of stroke

bounded columns may help to clearness whenever the ranks of the

units referred to by the digits are at all likely to be mistaken.

48. The Principle of DIGIT KNITTING in the notation of
numbers.

This principle has two parts and may be shown from a parti-

cular instance. If t mean ten,

4950638002 is 4/9+9/
8
+5/7+6^+3*4-8/H2 ancj :% (art. 33)

= 4^+(9'
8
+5'7+6/s)+3/H(8/H2).

But 9^
8

+5/
7+6/ s is 950600000 and 8/ 3+2 is 8002. If then the

sum of the numbers denoted by the digits in a knot of consecutive

digits taken anywhere in a row of digits, that is the number which

would be denoted by the knot were every other digit in the row o,

be called shortly the number denoted by the knot, it thus follows that

the number denoted by a row of digits is the same as the sum of

the numbers denoted severally by any knots of digits or by any
knots of digits and single digits into which the row may be

broken up.

Again $F is (art. 43) 5#/
a and .\ (art. 41)

=
(5tt)t

5 or {$t
2

)t'\ So

likewise gt
8

=(gt
3

)t
5

.

.'. 9^
8

+5/'
7+6/ 5

=(9/
3
)/

5

+(5/
2

)/
5+6/ 5 and .-. (art. 39)

=
(9/

3
+5/

2

+6)/
s or 9506x100000.

It thus follows that the number denoted by a knot of consecutive

digits in a row is the same as the product made by multiplying by
the number which the knot were it a row apart by itself would

denote the number to which as unit the last digit in the knot from

its place in the row refers.

Hence a row of digits may be broken up any how into knots of

consecutive digits and taken to mean, in a secondary sense equiva-
lent operationally to the primary, either (1) the sum of the numbers

denoted severally by the knots, or (2) the sum of the products
made by multiplying by the number which each knot viewed as

an independent row denotes the number to which as unit its last

digit refers. For example the row 477290063801025 may be cut

into 47, 72900, 6, 3801, 025, and taken to be the final sum got by

adding successively all but the first of the numbers in order in
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either of the two following sets to the first and to the successive

sums got :
—

470 000000 000000

7 290000 000000

60000000

3 801000

25-

The product by 47 of 10 000000 000000

72900 ... 100 000000

6 ... 10000000

3801 ... 1000

25 ... 1.

Any of the knots into which a row is thus broken up and

through which it is given a secondary meaning may when viewed

as an independent row be itself in like manner broken up into

knots and through them in its turn be given a like secondary

meaning.
When the digits of a row are knit regularly in backward order

into knots of equal numbers, by first writing the

rows which denote the numbers referred to as units 3>74>95> I 8,62

by the last digits of all the knots but the last and IO°
• 1 00 00

then cutting atwo each of them where the next ,™™^~100,0000
following knot ends the foregoing principle shows 100 000000
that these numbers in backward order are severally

the products of continued multiplications by the last of them of

one and of the successive products made. The independent proof
of this is that if n be the number of digits in each knot the

numbers to which as units the last digits of the knots in backward

order severally refer are (art. 33) the same as 1, t*, t
2ft

, t3H
}
... which

(art.45) are operational equivalents of I, /", (t")
2

, (t")
3
,... severally.

49. PROP. To explain how numbers are named.

The name of any number less than ten is given in art. 2.

Numbers wholly made up of groups of the first rank are named in

order

10 20 30 40 50 60 70 80 90
ten twenty thirty forty fifty sixty seventy eighty ninety.

Other numbers denoted by two digits have names compounded
of the names of the numbers denoted severally by the digits ;

1 1

is named eleven and 12 twelve; then follow

13 14 15 16 17 18 19

thirteen fourteen fifteen sixteen seventeen eighteen nineteen;

and the rest are all named after a uniform law, as

21 22 35 47 86 99

twenty-one twenty-two thirty-five forty-seven eighty-six ninety-nine.

A group of the second rank is called a Hundred, and numbers

made up only of second rank groups are called in order
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100 200 300 900
one hundred two hundred three hundred . . . nine hundred.

Any other number denoted by a row of three digits is viewed

through the principle of digit knitting (art. 48) as the sum got by

adding to the number denoted by the first of the digits the number

denoted by the knot of the other two and named accordingly,

as for instance 108 one hundred and eight, 5 1 1 five hundred and

eleven, 694 six hundred and ninety-four.

A group of the third rank is called a THOUSAND
;
and any

number denoted by more than three digits but by not more than

twice three or six is viewed (art. 48) as the sum got by adding to

the number denoted by the digit or knot of digits standing before

the last three digits in the row the number denoted by the knot

of the last three, also the former of these when denoted by a knot

is viewed (art. 48) as the product made by multiplying by the

number which the knot as a separate row denotes the number to

which as unit its last digit refers. Thus the numbers denoted by
the following rows are named severally

8000 eight thousand,

505 3 five thousand andfifty-three,
10000 ten thousand,

1 2067 twelve thousand and sixty-seven,

30200 thirty thousand two hundred,

1 00000 one hundred thousand,

300500 three hundred thousandfive hundred,

207080 two hundred and seven thousand and eighty,

570406 five hundred a?id seventy thousandfour hundred and six, •

999999 nine hundred and ninety-nine thousand nine hundred and

ninety-nine.

A group of the sixth rank is called a MILLION. When a

number is denoted by a row of more than six digits the digits

are knit regularly by sixes in backward order, the number is by
the principle of digit knitting viewed as the sum of the numbers

denoted by the several knots, and the number denoted by each of

the knots but the last is by the same principle viewed as a product*.

In the multiplications that yield the products thus secondarily

denoted by the knots the multipliers being each denoted by not

more than six digits have already been given names and by
reason of the regularity of the knitting the multiplicands in back-

ward order are (art. 48) the successive products of continued multipli-

cations by one million of one and of the products successively made

2
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which after the first are severally called a Billion, a Trillion, a

Quadrillion, and so on. Thus the numbers denoted by the

following rows have the names severally written against them :
—-

1,000000

1000,000000

53444,827921

100000,000000

9876,543210,123456

one million ;

one thousand millions ;

fifty-three thousandfour hundred andforty-four
millions, eight hundred and twenty-seven
thousand nine hundred and twenty-one ;

one hundred tJioitsand millions ;

nine thousand eight hundred and seventy six

billions, five hundred and forty-three thou-

sand two hundred and ten millions, one

hundred and twenty-three thousand four
hundred andfifty-six.

In a row of many enough digits then the digits are first knit

backwards by sixes, then in each knot of six the digits are knit

backwards by threes, and lastly in each knot of three the digits are

knit backwards by twos.

Of course the digits in a row may be sundrywise knit and the

number denoted by the row sundrywise named after the secondary

meanings given to the row by the principle of knitting. Thus the

row 1623 may be cut into 16, 23, and the number denoted by it

named sixteen hundred and twenty-three; 1 000000 may be taken as

1000,000 and called o?ie thousand thousand or knitting by twos the

digits of the first knot ten hundred thousand.

50. Prop. To find the decimally denoted sum of given decimally
denoted numbers.

(1) The sum of any two num-

bers each less than 10 must first

be found by pure addition (art. 21).

In the accompanying table the sum

got by adding to any number in the

top row any not greater number in

the side column is set down under

the former over against the latter,

and hence by the law of the commu-
tation of additions (art. 29) the sum

got by adding to any number in the

side column any not less number in

the top row is over against the former

under the latter.
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32

_7_
39

56
8

The numbers standing against 1 in the row next the top are

(art. 2) a matter of definition. And by making use of the law of

the distribution of addition over additions (art. 33) the numbers in

each of the following rows may be gathered from the numbers

in the row next before as a matter of definition.

(2) The sum got by adding to any number not less than 10

and not greater than 90 any number less than 10 is next to be

found as in that one of the two following instances which may
be fit. Putting / for 10,

324-7 is 3t+2+7 and .*. (art.33) = 3^(2+7) which

by the first case above is 3/+9 or 39.

56+8 is 5/4-6+8 = 5/+(6+8) which by (1) is 5/4-14

or 5*+(/+4) and .'. (art.33)
= 5/-1-/+4 and this by the

meaning of the symbols (art. 38) is 6/+4 or 64.

The way shown in the one instance or in the

other is to be taken according as adding to the

number denoted by the last digit of the first number the

number gives a sum less or not less than 10.

(3) Hence the sum of any ten or fewer numbers may be found

as in the following instance.

386+75+4+2790+507+600666 is when expressed symbolically

3/
2

+8/+6+(7/+5)+4+(2/
3

+7/
2

+9^)+(5^+7)+(6/
5+6/

2

+6/+6) and .*.

(art.33) =3/
2

+8/+6+7/+5+4+2/
3+7^+9^+5^+7+^ s+6/

2

+6/+6, .-.

(art. 34) =6/ s+2/ 3

+3/'+7r+5r+6/
2

+8/+7^+9/+6/+6+5+4+7+6, .\

64 4p

3'9l

t

6J4

other

+6^(6+5+4+7+6).

386
75
4

2790
507

600666

604428

8"

(art.33) =6/ 3+
But by the case (1) 6+5 is 11, and by

the case (2) 11+4 is 15, 15+7 22, 22+6 28;

that is 6+5+4+7+6 is 28. And the greatest

sum which can here arise in any instance

is the sum of ten 9s, that is as found in

like manner by (1) and (2) 90. The above

expression therefore

=6/ 5+ +6/+(2/+8) and .'. (art.33)

=6/ 5+...+6/
2

+8/+7/+9/+6/+2/+8, ,\ (art.33)

=6/M-. . .+6/ 2

+(8/+7/+9/+6/+2/)+8, ,\ (art. 39) 6

=6/ s+. • .+6/
2

+(8+7+9+6+2)/+8.
As before 8+7+9+6+2 is 32. And the greatest sum which can

in any instance arise at this stage is 99 the sum of eleven 9s, to

wit a 9 from each of ten given numbers and another 9 from 90 the

greatest sum of the numbers denoted by the last digits of those

numbers. The expression therefore

2—2

3]2

M
4428
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= 6/ 5+---+6/
2

+(3/+2)^+8 and .\ (art. 39)
= 6/ s+..-+6/

2

+{(3^+2/}+8, .-. (art. 41)
= 6/ 5+---+6/

2

+(3/
2

+2/)+8, .-. again (art. 33)

= 6/ 5+2/ 3
+3/

2

+7/
2

+5/
2
-f6/

2

+3/
2

+2/+8, .\ by the same steps as before

= 6/ s+2/ 3+(3+7+5+6+3)r+2/+8.

Again as before 3+7+5+6-1-3 is 24. Also the greatest sum of

the kind which can in any instance arise either at this or at

any after stage is still 99, the sum to wit of a 9 from every one

of ten rows and another 9 the first of the 9s in 99 got from the

sum of the numbers expressed by those digits that refer to the

next lower power of / as unit. The expression got therefore

= 6^+2/3
+(2/+4)^

2+2^+8 and .-. as before

= 6/*+2/H2/ 3+4/
2+2M,8

«= 6/ 5

+(2+2)/
3+4^

2+2^+8.

.*. 386+75+4+2790+507+600666 is 604428.

When the bare result of this process is all that is sought those

steps which show only the nature and proof of the process may of

course be left out. It is enough then to write in order the rows

denoting the numbers each of them but the first under the one

before with digits which refer to groups of the same rank as units

in the same up and down column, to draw a cross stroke under the

last row, and to write under the stroke the digits of the row denot-

ing the sum as they are got in backward order each in the column

of digits whence it arises.

(4) Lastly the given numbers if more than ten may be

arranged in sets of ten or fewer each and the sum of each set found

by the foregoing cases. The sum of the sums so found is (art. 33)

the same as the sum of the given numbers. When the sets are ten

or fewer the sum of their sums may be found as before and there-

fore the sum of any given numbers of which there are more than t

but not more than t
2
.

But when the sets are more than ten their sums may be

arranged in sets of ten or fewer each, the sum of each set of sums

may be found as before, and as before the sum of the sums so

found is the same as the sum of the former sums and therefore the

same as the sum of the given numbers. Hence when the new
sums are ten or fewer and their sum may therefore be found the

sum may thus be found of any given numbers of which there are"

more than f2 but not more than t3 .

In like manner by arranging the last sums when more than ten

into sets of a third kind of ten or fewer each the sum of any given
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numbers may next be found of which there are more than fi but

not more than / 4
. And so on.

Hence the sum of any given numbers of which the number is

not greater than some power of / may be found in this way. But
as was shown in art. 47 there is a power of / greater than any
given number. Therefore the sum of any given numbers may be

so found.

The way now shown of finding the sum of more than ten given
numbers is perhaps the best for shutting out mistakes of ciphering.
Yet this fourth case may often be more easily dealt with in the

same way as the third case. Of course the sum of any given num-
bers may always be found from the first case by means of the laws

used in the second and third cases.

51. Def The process of the last art. is called the NOTATIONAL
Additive Process.

This process is to be carefully distinguished from the Pure

Operation of Addition (arts. 2 1,30). Although the first great end

of a numerical notation is to represent by means of a few marks all

numbers whatever yet it serves the hardly less end of finding from

the results of some few operations the results of all other operations

without actually performing these other through the nature of the

notation and the general laws of operational equivalence. Thus
from the thirty-six sums of additions given in the Table of the (1)

case of art. 50 the sums of all other additions are found by the

notational additive process. NUMERICAL OPERATIONS are the

same whatever system of notation be used and have nothing to do

with Notational Processes.

52. Prop. The product made by multiplying by a number a sum

of numbers is the same as the sum of the products

made by multiplying by that number each of those

numbers. . >

For a, by c, being any three numbers,

a{6+c) means \6+c+{6+c)+(6+c)+--+(6-\-c).i

and .*. (art. 33)

a {b+c)s >j

mb+c+b+c+b+c+" +6+C, .*. (art 34)
= b+b+b+ • •

-fb+c+c+c+ ..--K .'. (art. 33)

= b-tb+b-{ Yb+(c+c+c-\ \-c)
which means ab-\-ac.

Hence x, a, b, c
} ...f g, h, being any numbers,

x(a+b+c+---+f+g+h)=x(a+b+c+---+f+g)+xh and .\

= x{p+b\c+ • • • +f)+xg+xh

= xa\xb\xc+ • • •

-\-xf+xg+xk.
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53. Def. The proposition of the last art. is called the Law OF

the Distribution of Muliplication By over

Additions.

54. Prop. Thefinal product made by multiplying by all but one of

any numbers in succession that one and the successive

products made is the same in wJiatever order the num-

bers are taken.

First if a, b, be any two numbers.

ab is tf
( (i+i+H hi), which (art.52)

K - - b is- ->
= flXl+tfXi+tfXi+'-'+#xi or fi+a+a-] \-a

{

which is ba.

K - - b as - >
Next if a, b, c, be any three numbers. Because by what has

just been shown bc = cb, (art. 28) 2bc—2cb, :. again (art. 28) ^bc — icby

and so on; ,\ abc — acb. So bac—bca and cab — cba.

But abc= (ab)c (art.41) and .'. by the case above = [ba)c

= cab by the case above = bac (art.41).

.*. abe = acb = bac = bca = cab = cba.

Now let the proposition thus proved for any two and for any
three numbers be taken as true for any ;/ numbers. Then if a, b, c,

•••fig* h> *> be any n+i numbers,
abc. . .fghi = {abc. . .fgh) i (art. 4 1

)
and . \ by the hypothesis

= (bac.fgh)i=(cab...fg/i)i = • • • = {habc.fg)i
= iabc.fgh by the first case, and (art.41)

— bac...fghi = cab...fghi = • • • —habc.fgi.
But because by hypothesis be...fghi is not changed in result if the

order of the ;/ letters b, c, . . ./, g, h, i, be changed abc. . fghi gives the

same result as if the letters after a were written in any other order.

So bac...fghi gives the same result as if the letters after b were

written in any other order. And the like holds for each of the ex-

pressions cab...fghi, . , . habc.fgi, iabc.fgh. Hence the pro-

position if true for any ;/ numbers is true for any u+i. But it is

true for any 3 numbers. It is therefore true for any 3+1 or 4 num-
bers. Therefore it is true for any 4+1 or 5 numbers. And so on.

55. Def The proposition of the last art. is called the LAW OF

the Commutation of Multiplications.

56. Def The common result of multiplying in whatever order one

of any numbers by another the product made by a

third and so on to the end is called the Product of

the Multiplication Together of the Num-
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600
8000

480OOOO

the significant digit of the multiplier refers, secondly that the

number primarily expressed by the former digit is multiplied by
the number primarily expressed by the latter, and thirdly that the

product of the first of those multiplications is multiplied by the

product of the other. Hence if the

multiplicand be first written, then

below it the multiplier, so that digits

which refer to groups of the same

rank as units may be in the same

column, and below the multiplier a stroke be drawn across the

page, all that is needed for writing below the stroke the product in

like manner is to mark that the product made by multiplying the

number to which as unit the multiplicand's significant digit refers

by the number to which as unit the multiplier's significant digit

refers is by the principle of digit knitting denoted by the digit

1 written in the column as many columns to the left of the column

in which the multiplicand's significant digit is as the multiplier's

significant digit is columns to the left of its last digit, and there-

fore to write either in the column so fixed the single digit, or in

this column and the next column to the left severally the second

and the first of the two digits, denoting the product made by mul-

tiplying the number expressed by the multiplicand's significant

digit by the number expressed by the multiplier's.

If the multiplier be less than 10 abt
n =

(ab)f\ if the multiplicand

{at
m
)b— (ab)t

m
,
and all else is as before. These are at once brought

under the general case by making the unmeaning t° mean 1.

(3) When one of the two numbers is denoted by a single sig-

nificant digit and the other by a row of digits two or more of them

significant, if the one denoted by a single significant digit be the

multiplicand the product is by the law of the distribution of multi-

plication of over ad-

9
ditions (art. 39) the

same as the sum of 7°

the products made 4900

by multiplying the 34342o

multiplicand by each

of the numbers de-

noted by the several digits of the multiplier. These products may
be found by the first and second cases above and their sum may
be found by the notational additive process (art. 50). By rinding

the products in backward order the multiplicative and the ad-

70
4906

280000

63000
420

343420

'7
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ditive parts of the process may be carried on together and then

the result of the whole process need only be written.

But if the multiplier be the one denoted by a single significant

|6oc'S5o
] 6o|ooo

J600J850
I 60,000

36'o5 1 jooo'poo

36
looo'ooo'ooo
1

48J000J000
3 looo,cxx)
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multiplying by the multiplier each of those numbers. These pro-
ducts may be found by the foregoing third case and their sum

may then be found as before.

58. Defi The process of the last art. is called the NOTATIONAL
Multiplicative Process.

From the 36 products of multiplications tabulated in the case

(1) of art. 57 all other products of multiplications are got by this

process without performing (art. 37) the multiplications.

59. PROP. Having given a number and a part of it to find the

other part.

This has to be done separately for every given number and part
but may always be done as follows :

—
Let eleven be a given whole and four a given part of that

whole.

Eleven is (art. 2) the sum and therefore (art. 7) is equal to the

aggregate of ten and one. But since ten is the sum and therefore

equal to the aggregate of nine and one, to each put one and (art. 10)

the aggregate of ten and one is equal to the aggregate of nine, one,

and one. Therefore (art. 6) eleven is equal to the aggregate of

nine, one, and one. But since the aggregate of one and one is two, to

nine put each and the aggregate of nine, one, and one, is equal to

the aggregate of nine and two. Therefore eleven is equal to the

aggregate of nine and two.

Again since nine is the sum and therefore equal to the aggre-

gate of eight and one, to each put two and the aggregate of nine and

two is equal to the aggregate of eight, one, and two. Therefore

eleven is equal to the aggregate of eight, one, and two. But since

the aggregate of one and two is equal to the sum of one and two

which is three, to eight put each and the aggregate of eight, one, and

two, is equal to the aggregate of eight and three. Therefore eleven

is equal to the aggregate of eight and three.

In like manner may it be shown that eleven is equal to the

aggregate of seven and four.

But (arts. 20, 7) eleven is equal to the aggregate of the part

sought of it and four. Therefore the aggregate of seven and four
is equal to the aggregate of the part of eleven sought and four.

From each of these equals take four and (art. 13) seven is >

equal

to the part sought. Hence (art. 9) any number greater than seven

is greater than the part sought and any number less than seven

is less.

Therefore (arts. 3, 4) the part sought of eleven is seven.
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This result may also be got if instead of stopping in the path
above taken as soon as eleven is shown to be equal to the aggregate
of seven and four it be gone on further to show in like manner that

eleven is equal to the aggregate of six and Jive, of five and six, and

at length offour and seven.

The result may be got in yet a third way by showing as in

art. 2 1 that the aggregate of four and one is equal to five, of

four and tivo to six, .... and at last of four and seven

to eleven.

60. Defi The operation gone through in the last article is called

the Subtraction From a number Of a number;
the former number is called the Minuend, the latter

the Subtrahend, and the result of the operation
the Remainder, Excess, or Difference.

The instance taken above shows that the remainder got by the

subtraction from eleven of four is seven.

When from a given number of things a given number of them

is taken it is by this operation that the number left is found. If

the number taken be the whole of the things and therefore the

number of them left none at all, however little of operation there

then is, and however little a number can be rightly said to be made

up of two parts when by one of these parts is meant the number
itself and by the other naught, yet this from its close ties with

other subtractions must be held to be a subtraction too.

Although the manner in which things are arranged has nothing
to do with the number of them still any particular number of

things greater than one can be known and dealt with only by

passing through all less numbers one by one in ascending order of

greatness up to it and so climbing from number to number by unit

steps. When therefore one part of a given number is given the

other part must be found by taking the given part to be made up
of one or more unit steps either at the beginning or at the end

of this upward passage. In art. 59 the first way shown of sub-

tracting from eleven four was by going down four steps, first from

eleven to ten, secondly from ten to nine, thirdly from nine to eight,

and fourthly from eight to seven; the second way was by going
down so many steps from eleven that four upward steps might be

left ;
and the third was by going up so many steps from four that

eleven might be reached. Thus in the first of these ways there is a

downwardly, and in each of the others an upwardly, taking away
of four from the natural ascent to eleven. Hence subtraction is
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of two kinds, DESUBTRACTION or subtraction downward and Sur-
SUBTRACTION -or subtraction upward ;

the term remainder most

fitly applies to a result of the first kind of subtraction and excess

or difference to a result of the other.

61. Def The symbol a-b, read "a MINUS b", stands for the

remainder got by the subtraction from a of b, a-b-c
for the remainder got by the subtraction from a-b
of c, a-b—c-d for the remainder got by the subtrac-

tion from a—b—c of d, and so on.

From what is said in art. 60 a-a is o whatever number a

stands for.

The kind of subtraction may be symbolically specified when
needful by using a - b for the remainder left by the desubtraction

from a of b and reading it "a MINUS DEORSUM b" and using a—>b

for the excess of a over b, or the difference between a and a not

greater number b, and reading this "a MINUS SURSUM b"
; the

small stroke drawn downwards to, at the a end of, the minus stroke

in the first symbol and upwards to, at the b end of, that stroke

in the other serving to mark severally the downward course of

operation from a and the upward course of operation from b.

For example though by the very nature of subtraction (art. 59)

(a—bf b)
= a and .*, (arts. 7, 2 1) a—b+b = a, b+(a—b) = a, yet a >- b+b = a

more immediately than a^b+b = a and b+(a^b)=a more imme-

diately than b+(a^-b) =a. Indeed a^- b, a-^b, may be defined as

the numbers severally such that a^-b+b = a and b+(a—ib) =a.

62. PROP. If from equal numbers equal numbers be severally sub-

tracted the remai7iders are equal.

For if a, a', b, b', be any numbers such that a = d, b = b', a is

not less than b, and hence (arts. 6, 9) a is not less than b'
;
then

(art. 59)

{a—by b)
= a and (a'—b', b')

= a'.

.-. (art. 6) (a-b,b) = {d-b',b').

Hence from these equals taking severally the equals b, b\ (art 13)

a—b — a'—b'.

63. PROP. If tlie letters stand for any numbers that give meaning
to the statement,

a—b — a+c—(b-\-c).

'.' (art. 59) (a—b, b)—a to each put c and (art. 10) (a—b, b,c)
—

(a, c).
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But v (art. 7) b+c = (b, c) to a-b putting each (a-b, b+c) -(a-b, b, c).

And a+c=(a, c). :. (art. 6)

(a—b, b+c) = a+c.

But (art 59) {a+c- {b+c), b+c)
= a+c.

:. (a-b, b+c) = \a+c-(b+c), b+c}.

From each of these equals take b+c and (art. 13) a—b — a+c— (b+c).

64. Dcf. The proposition of the last art. is called the LAW OF
Relativity in Subtraction.

65. PROP. If the letters be any numbers that give meaniiig to the

statement,

x-(a+b+c+ • • • +f+g+h) =x-h-g-f c-b-a.

For (art. 59) [a-(b+c), b+c}=a.
But v (a—c—by b)—a—c to each putting c (art. 10) (a—c—b, b, c)

= (a—c, c) and .*. (art. 59)=^. Moreover V (art. 7) b+c=(b, c) to

a—c—b putting each (a—c—b, b+c) = (a—c—b, b, c). .'.

(a—c—b, b+c) = a.

.'. [a—(b+c), b+c]
= (a—c—b, b+c). And from each taking b+c

a—(b+c)
= a—c—b.

Hence making use time after time of this first and simplest
case of the proposition,

x-(a+b+c+- -+f+g+h) =x-h-(a+b+c+- --+f+g)
= x-h-g-(a+b+c+- . •+/)

=x—h—g—f c—b—a.

66. Def. The proposition of art. 65 is called the Law OF THE
Distribution of Subtraction over Additions.

67. Prop. The last remainder got by subtracting numbers in suc-

cession from a number and from the successive re-

mainders got is tJie same in whatever order the

numbers are taken.

Let a, b,c,.. .f g, h, be numbers that can be severally subtracted

from a numbers and the remainders successively got, and let those

numbers be taken in any other order say h, a, g,...b,f, c.

x-a-b-c f-g-h=x-(h+g+f-\ H+b+a) (art. 65) and .*. (art. 34)
= x-(c+f+b+---+g+a+h), ;. (art. 65)
=x—h—a—g b—f—c.

68. Def. The last article's proposition is called the Law OF

the Commutation of Subtractions.
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69. PROP. Of successive additions and subtractions when the num-
ber either first added to or first subtracted from and
all the members added are one set of numbers and all

the numbers subtracted one set the result is the same

whatever be the order of succession.

First of all a+b—c = a—c+b if a, b, c, be any numbers that give

meaning to the statement.

For (art. 59) (a+b—c, c)
— a+b and .'. (art. 7)

=
(a, b).

But y (a—c, c)
= a to each put b and (art. 10) (a—c, c, b)

=
(a, b).

.'. (a+b—c, c)
=

(a—c, c, b).

From each of these equals take c and (art. 13)

a+b—c = (a—c, b) and .". (art. 7) —a—c+b.

Secondly it hence follows that

a—p—q—r— • —u-v—w+b+c-\ Yf+g+h
= a—p tc—v+b—zv+c-\ Yg+h
— a—p u+b—v—w+c-\ Yg+h

— a+b—p—q u—v—w+c-\ Yg+h ;

so in like manner = a+b+c—p—q v—w+d+ • • •+g+h

and at last = a+b+c-\ Yf+g+h—p—q—r u—v—w.

Thirdly and lastly therefore, taking for instance as a result of

successive additions and subtractions

a^+a^+a-b-b-b-b^+a^+a^+a-b-b^+a-b^- • •

;
this

=a
l+a2+a3+aA+a5+a6-b-b-b-b-b-b6+a—b 7

+- • by the second case,

=al+a2+a3+a4+a5+a6+a-b-b-b-b-b-b6-b7+'" by the same,

- a,+a2+a3+ b-b-b
3

But taking the operations in any other possible order so that the

number either first added to or first subtracted from and all the

numbers added are aIf a2 ,
#

3 ,...and all the numbers subtracted

bu bs ,
b
3 ,...

as for instance

a
1
+a-b-b-b

7
+a 1+a6+a-b-b5+a2+a-b-b3+>

• •

;

this as before = a
7
+aA+a x+a6-\ b6-b—b7

—b2

which by the commutative law of additions (art. 34) and the com-

mutative law of subtractions (art. 67)
= a,+a2+a3-\

b-b-b
3

Hence the two orders of succession of the operations lead to one

result.

70. Def The last article's proposition is called the Law of the
Commutation of Additions and Subtractions.
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71. PROP. If the letters be any numbers that give the statement

meaning,

/«X-HM" • •+aa-m-m„ ///,*+£,+•
•+b

fi
-n

l
nv+ \

X\ ....+k1+~+kK-t-..-tJ
= x+a K+aa+- •+aa-m-m2 mp

+b l+ba+~+&fr-n-na IVH • • -+k l+»+kK-tl tT .

First if a, b> c, be any three numbers of which b is not less

than e,

a-\-(b—e)
= a+b—e.

For (art. 7) a-\-(b—e)
=

(a, b—c). To each put c and (art. 10)

{a+{b—c), e}
=

(a, b-c, c). But V (b-e, c)=b (art. 59), to a putting
each (a, b—e, c)

=
(a, b) and :. = a+b. .'. [a+{b—e), c) =a+6.

But (a+b-e, c)
= a+b.

.'. {a+(b—e), c)
= {a+b—c, c).

And taking c from each (art. 13)

a+(b—e)
= a+b—c.

Hence secondly

x+(a—p—q—r u—v—w) = x+(a—p—q—r u—v)—w
= x+(a—p—q—r u)—v—w

— x-\-a—p—q—r u—v—w.
Hence lastly

ta x+aa+> •+aa-m-m2 m^b,+- •+^-w ,
11v+ \

X\ -•-+£l+"+£K-tl—tJ
= x+{a,+ +kK)-t-t2 tT , .'. (art. 33)
= x+(a x+ -s<r)+k1+k2+- • • +k-t-t2 tT)

=x+a,+a2+- •+aa-m l
--m2 ;^+3t+- •+bp-n I

nv+
....+^+..+6-^ tT.

72. Def The last article's proposition is called the LAW OF
the Distribution of Addition over Additions
and Subtractions.

73. PROP. If the letters be any numbers that give the statement

meaning,

_ /#x+tf2+- •+aa-m-m2 m
ll+ds+- •+bp-n l ;/„+ \

*
\ -•+£1+~+kK-tl~.-tJ

= X+tT+"+t2+t-kK k2-kt+
'"• +nv+~+n-b{s b

1+mfl
+~+m-aa a,.

In the first place if a, b, c, be any three numbers such that b is

not less than c and not greater than a+c,
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a— {b—c)
= a+c—b.

V (art. 59) [a-{b—c), b—c)
= a to each put c and (art. 10)

{a— {b—c), b-c, c]
=

{a, c). But v {b—c, c)
= b to a- {b-c) putting each

\a-{b-c), b-c, c}
=

{a-{b-c), b). And (art. 7) {a, c)=a+c. :. (art. 6)

{a— {b—c), b]
= a+c.

But (a+c-b, b)
= a+c.

.-. {a—{b—c), b)
= (a+c—b, b). From each taking b :. (art. 13)

a—{b—c)
= a+c-b.

In the second place hence

x-{a—p—q—r u—v—w) —x+w—{a—p—q—r u—v)
— x+zv+v—{a-p—q—r u)

= x+zv+v+u-\ \-r+q+p—a.
Hence in the third and last place

_ ta,+a2+- •+aa-m-m3 m^+b^- •+bp-n 1
nv+ \

*
\ -•-+k1+..+k<-t1 tj
= x+tT+tT^+ • • • +t2+t -{a x+ +kK), .\ (art. 65) .

= x+tT+tr_ x+- • • +t,+t-kK-kK_1 k-k -{a x+ -s«)

and by repetition of the like steps at length
= x+tT+~+t,+t-kK k-k

x+
\-nv+~+n—bfi

b
x+m[L

+~+m-aa a
x.

74. Def. Art-73's proposition is called the Law of the Dis-

tribution of Subtraction over Additions
and Subtractions.

75. PROP. If the letters be any numbers that give tJie statement

meaning,

(a x+a3+' •+aa-m1-m3 m^+dx+- •+b
fi
-n

l nv+h-+00-«x n
y+ Y

. . . +kl+-+kK-t1 tj
=s a

1x+asx+"+aax—m Jx—mix mLLx+
\-kxx+- •+kKx—tx

x t7x.

First if a, b, c, be any three numbers of which a is not less

than b,

{a—b)c= ac—bc.

For {a—b)c is \C+c+c-\ \-C\
which (art. 60) is the same as

K {a-rb) cs >
{

c+c+c-\ \-c
{+{c+c+c-\ \-C\-{c+c+c-\ he)}, and .*. (art. 7 1

)

K {a-b) fs^--ks--)^--ks- -
>|

as \C+c+c-\ bc+c+c+c-] K|— {c+c+c-\ Yc) ,

or ac—be.

^ . . - acs - - - >K - b cs -
>i
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Wherefore secondly

(a-p-q-r n-v-w)x = [a-p-q-r n-v)x-wx
— [fi—p—q—r u)x—vx—wx

= ax-px—qx—rx ux—vx—wx.
Therefore thirdly and lastly

;/"+
)x

=
(*,+ +£<t>r-/x;r-4r 4*, .-. (art. 39)

=
(a t+ —s^x+k^+k^xl Yk^-t^-t^x tjX

m atx+ajc+- '\-aax—m 1
x—m2x tn

(1
x+b 1x+~+bfi

x—n
l
x n„x+

Ykxx+>~\-kKx—t1
x t^x.

76. Def. Art. 75's proposition is called the Law OF THE DIS-

TRIBUTION of Multiplication Of over Addi-
tions and Subtractions.

77. Prop. If the letters be any numbers that give the statement

meaning,
/al+aa+~+aa—m l

—ina *0M+^x+"+V"w « //„+ \

\ • • • +£+••+*«-',—J
= xaL+xaa+'-+xaa—xm,—xma xm^

+xki+~+xkK—xtY xtT.

This follows at once from the last proposition by the commuta-
tive law of Multiplications (art. 54). It may also be proved inde-

pendently thus :
—

First a{b-c) is
{b-c+(b-c)+(b-c)+ K^)i and •'• (art.71)

K a (b-e)s >
= b-e+b-e+b-e+ . . . . +b-c, .-. (art. 69)

= b+b+b-{ vb-c-c-c e, .'. (art. 65)

= b+b-{-b-\ Yb— (e-\ \-c+c+c) which is ab—ac.

Next x(a—p—q—r u—v—w)
= x(a—p—q—r u—v)—xw by the above,

= x(a—p—q—r u)—xv—xw by the same,

= xa—xp—xq—xr xu—xv—xw.

^aStly
-^l ~..+kl+..+kK-t1 tj

= x(a x+ +kK)—xt—xts xtT) .'. (art. 5 2)

= x(a t+ -s^+xk,+xka+ • • • +xkK—xtt
-xta xtT ,
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= xa
s+xaa+- •+xaa-xm-xm2 xm^+xb^-+xbfi

-xn
I xnv+

—xtx
xtT .

78. Defi Art.77's proposition is called the LAW OF THE DIS-

TRIBUTION of Multiplication By over Addi-
tions and Subtractions.

79. PROP. Tofind the decimally denoted remainder of the subtrac-

tionfrom the greater of two given decimally denoted

numbers of the less.

If a be the greater of two given numbers and b the less (a—b, b)

— a (art. 59). But if x be any number greater than a—b and y any
number less (x} b) is greater than (a—b, b) and (y, b) is less (art. 1 1).

Wherefore (arts. 7, 6, 9) a—b+b = a whereas x+b is greater than a

and y+b is less, a—b then is the only number to which if b be

added the sum is a. Hence from the additive process of art. 50 a

kind of counter process may be drawn for finding the decimally
denoted remainder by simply marking what the digits in backward
order of a number must be so that the sum got by adding thereto

the subtrahend may be the minuend. For example let the minuend
be 327640 and the subtrahend 82653. Beginning with the last

digits, What number denoted by one digit is that

which by adding to it 3 gives a sum denoted by two 327640
digits with the second of them ? Since (art. 50) 8->6k?>
the greatest sum of two numbers each denoted by one —
digit is 18 the sum can only be 10 and therefore the ^"^ '

number sought can only be 7. Passing on to the

digits next before and not forgetting the 1 brought (art. 50) from

the last digits, What number is 8 when #+5+1, or (art. 33) its equi-

valent #+(5+1) to wit z+6, is a number denoted by two digits of

which the second is 4. The greatest number which can ever arise at

this, or any after, stage is 9+9+1 or 19; therefore z+6 is 14 and

therefore z is 8. In like manner going on to the other digits, What
number and 7 make 16? just 9. What and 3 7? 4. What and 8 12?

4. What and 1 3 ? 2. Hence the digits in backward order of the

remainder are 7, 8, 9, 4, 4, 2, and the remainder itself is 244987.
But the remainder may be found independently of the nota-

tional additive process.

All those remainders must first be found by the pure operation

(art. 59) which can be got by subtracting either from a number not

greater than 10 a less number or from a number greater than 10

but not greater than 19 a number less than 10 but not less than
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the number denoted by the second of the two digits denoting the

number. In the accompanying table each remainder of the kind is

written under the minuend in the top row over against the subtra-

hend in the side column.
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6/ 7+6/
6

-9/
6

+3/
s-/ s

+5/
4-6/ 4 =5/ 7

+;/
6

+(/
s+/ s

)+5/
4-6/ 4 and .-, (art. 33)

= 5/
7

+7/
6
+/ s+/ 5

+5/
4-6/ 4

,
.-. as before

= 5^
7+;^+/s

+(/+5-6)/
4 or $t

7

+7t
6

+t*+9t\
Hence by like steps (art. 6) 66350428-9160472

= 5/
7

+7^
6+/5

+(8/
4+/ 4

)+4^-4r+2A-7/+8-2
= 5/

7

+7/
6
+/s+8^4

+(9^
3+^3

)+4/
2

-4/
2

+2/-7/+8-2
= • • • +8/4

+9/
3

+(/+4-4)/
2

+2/-7/+8-2
= • • • +8/4

+9^
3

+(9/
2+/ 2

)+2/-7/+8-2
= +9/

3

+9/
2

+(M-2-7);+(8-2)
= 5^

7+7^+^+8^4

+9/
3

+9^+S/+6 or 57189956.
When nothing but the result of this process is sought it is

enough to write in any order the minuend and the subtrahend with

digits that refer to groups of the same rank as units in the same

column and drawing a stroke to write the remainder in like manner

below, finding its digits in order as follows :
—Taking the example

above 66350428—9160472, say 6 less o gives 6 but as in the next

column 6 is less than 9 write 5 and carry 1 to the next column;

pass to the next column and say 16 less 9 gives 7 and as in the column

next following 3 is greater than 1 write 7 ;
as to the next following

column 3 less 1 gives 2 and as before write 1 and carry 1
;
as to the

next in order 1 5 less 6 9 but casting the eye on the columns to the

right the first with the minuend's digit not the same as the subtra-

hend's is one with the former's 2 and the latter's 7, therefore write

8 and carry 1
;
next 10 less o 10, 9 and carry 1

; so 14 less 4 10, 9

and carry I
;

1 2 less 7 5 ;
and lastly 8 less 2 6.

80. Defi Either of the processes of art. 79 is called the NOTA-
TIONAL SUBTRACTIVE PROCESS.

8 1 . PROP. Tofind tJie number ofnumbers each equal to a given num-

ber which either by themselves or along with some

number to befound less than that number make up as

parts a given number as a whole. »

Let a, b
y
be any two given numbers.

If a be not greater than b it is itself either less than b or equal
to b.

If a be greater than b it may (arts. 20, 59) be made up of two

parts a—b and b. If a—b be less than b a is made up of this part

less than b and one part equal to b. If a—b = b a is made up of two

parts each equal to b.

But if a—b be greater than b it may be made up of two parts

a-b-b and b, and then (art. 20) a is made up of three parts a-b-b,
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b, and b. If a-b-b be less than b a is made up of this part less than

b and two parts each equal to b. But if a—b-b = b a is wholly made

up of three parts each equal to b.

Again if a-b-b be greater than b it may be made up of a—b—b—b
and b

y
and then (art. 20) a is made up of a—b-b-b, b, b, b\ and

so on.

In thus finding the successive parts a—b, a—b—b, a—b—b—b,

there must sooner or later arise one that is not greater than b. For

if b were 1 this would happen before a of them were found and if b

were anything else much sooner (arts. 59, 15).

Hence a if not less than b may be wholly made up either of

one or more parts each equal to b or of these and another part less

than by moreover the number of the parts each equal to b and the

part less than b may be found in this way.

82. Defi The operation gone through in art. 81 is called the

Division Of a number By a number ;
the former

number is called the Dividend, the latter the Divi-

sor, the number of the numbers each the same as

the divisor which either alone or together with a

number less than the divisor make up the dividend

the Quotient, and this number less than the divisor

the Remainder of the division.

When the dividend is made up only of parts each equal to the

divisor, or in other words when there is no remainder, the division

is said to be EXACT. In an exact division then (art. 37) the dividend

is equal to the product made by multiplying by the quotient the

divisor and the quotient expresses how many numbers each equal

to the divisor make up the dividend.

83. Prop. Tofind the decimally denoted quotient and remainder of

the division of one decimally denoted number by

another.

The decimally denoted dividend and divisor being severally a

and by the successive remainders a—b, a—b—b, a—b—b-b,... may be

found by the notational subtractive process (art. 79) instead of

by pure subtraction (art. 59), and as in pure division (art. 81) the

number of the subtractive processes gone through when at length

either no remainder is left or a remainder less than b is the same

as the quotient.

If q be the quotient or the number of the successive subtrac-
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tions in the division and r be the remainder when there is one of

the division or o when there is none (which may be taken as a

remainder o).

r = a^—b-b b
{

and .\ (art. 65)
= a—(b-\ Yb+b) or a—qb.

K - q bs - >
Hence if of the products b, 2b, 3^,... the one xb can be found that

makes a-xb less than b x is the quotient and a—xb is the remainder.

Of course the notational multiplicative process (art. 57) may be used

for finding this product.

Again if e, f, g,...l, m, 11, be any numbers such that

q = e+f+g-\ yl+m+n
r=arb-b b

x

-b-b b
x

—
,—b—b b

{

and .-. (art. 65)

K - ebs - -
)£

- fbs - > <- nbs - *
= *-(£+. • • +£+£)-(£+-. • +£+£)- -(£+ • • +6+6)

or a—e6—f6 nb

.-. again (art. 65) =a—{nb+mb-\ Vgb+fb+eb), :. (art. 39)

— a—(n+m+l-\ Vg+f+e)b and .% also (art. 34)

= a-\e+f+g+ • • • +l+m+n)6.
Hence if products eb, fb, gb,...lb, mb, nb, can be found such that

a—eb-fb mb—nb is less than b this is the same as the re-

mainder of the division and e+f-\ \-m+n is the same as the

quotient.

The readiness with which products of multiplications can be

found by the notational process (art. 57) when the multipliers are

denoted by single significant digits points out multipliers of this

kind as the fittest to be used for e, f, g,...n. These multipliers

may further be so chosen that their significant digits refer to

groups of different ranks as units and therefore that their sum is

got without any additive process by barely writing those digits

in a row. Here as in other notational processes it will tend to

clearness to write in the same column all digits that refer to

groups of the same rank as units. To keep in mind how the

process is linked to the multiplicative process of art. 57 as a kind

of counter process it is well to write the divisor

first, to draw a stroke a little way below so as to 147692
leave room between for the quotient, to write the

dividend close below the stroke, and then to carry 3 277 '0,048 5

on the after work below. For example let the

divisor be 47692 and the dividend 327790485. It is readily seen

that 10000x47692 is greater than the dividend and that 1000x47692
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is less. Trying then 1000x47692, 2000x47692,...

9000x47692, the dividend is found to be greater

than 6000x47692 but less than 7000x47692 ;
there-

fore writing the row which denotes 6000x47692, to

wit 286152000, or such of its digits as may be

needed to mark it, the remainder of the subtrac-

tion from the dividend of this product is found to

be 41638485. Dealing with this remainder in the

same way it is found to be greater than 800x47692
but less than 900x47692 ;

therefore writing the

needful digits of the former which is 38153600 the

new remainder is 3484885. In like manner the sub-

traction from this of 70x47692 or 3338440 gives

the remainder 146445, and at length the subtrac-

tion from this last of 3x47692 or 143076 gives for remainder 3369
which is less than 47692. Hence 6873 is the quotient and 3369
is the remainder of the division of 327790485 by 47692.

84. Def. The process of the last article is called the Nota-
tional Divisive Process.

47692

327790485
286152

41638
381536

34848
333844

14644
143076

3369



CHAPTER II

NUMBER IN RELATION TO MAGNITUDE

85. Def A Magnitude is whatever can be viewed as a whole

made up of parts anywise like the whole.

Thus a straight line is a magnitude because made up of

parts each of them itself a straight line. So is a plane surface

because made up of parts each a plane surface, and also an

angle because made up of parts each an angle. But a man's

body though made up as a whole of head, arms, and the rest,

as parts is not a magnitude because the head is not like the

whole a man's body, neither are the arms, and so on. Still the

bulk of a man's body is a magnitude being made up of the bulks

of the several parts, and likewise the weight being made up of

the weights of the parts.

86. Def. A magnitude is of the Same Kind as, or of a
Different Kind from, another magnitude accord-

ing as it can, or cannot, be thought to be either

greater than, equal to, or less than, that other.

Thus all straight lines are magnitudes of the same kind since

one of any two straight lines must be thought either greater than,

equal to, or less than, the other. So likewise are all weights. But

a straight line and a weight are so utterly different in kind that

the one cannot be thought either greater than, equal to, or less

than, the other.

It belongs to the science which has to do with a particular
kind of magnitude to settle precisely when one magnitude of

the kind is equal to, and when greater than, another. But first of

all there must be that about the magnitudes and common to them
which gives rise to this way of dealing with them.

87. Def A magnitude either equal to, or wholly made up of

parts each equal to, another magnitude is called a

Multiple of that other; and this other is called a

SUBMULTIPLE or MEASURE of the first.
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The parts being each equal to the same are (art. 6) all equal to

one another.

A magnitude wholly made up of n parts each equal to another

magnitude is said shortly to be ;/ times that other and the number

n is said to express, although it is indeed the bare name of the

number which expresses, what multiple the first magnitude is of

the other. Hence the product of a multiplication is the multiple
of the multiplicand expressed by the multiplier, and the quotient
of an exact division expresses what multiple the dividend is of the

divisor.

S8. Equimultiples of equals are equal.

For if to equals equals be severally put the wholes are equal

(art. 10), and if to the equal wholes equals be severally put the

new wholes are equal, and so on. Hence a whole with parts as

many as, and severally equal to, the parts of another whole is

equal to that other. In particular when the parts of each whole are

equal to the same equimultiples of equals are equal.

89. A multiple of the greater of two uncquals is greater than the

same multiple of the less.

For (art. 9) this is a case of a whole with parts as many as,

and severally greater than, the parts of another whole, to wit

when of each whole the parts are equal to the same, and therefore

(art. 12) the proposition holds.

90. Equisubmultiples of equals are equal.

Else equimultiples of unequals would be equal and (art. 89) this

cannot be.

91. A submultiple of the greater of two unequals is greater than

the same submultiple of the less.

Else either equimultiples of equals would be unequal against
art. 88, or a multiple of the less of two unequals would be greater
than the same multiple of the greater against art. 89.

92. Def. Any multiple of any submultiple of a magnitude is

called a FRACTION of the magnitude.
A magnitude is (art. 8) greater than each of any equal parts

into which it may be wholly cut
;
also if a magnitude be wholly

cut first into a number of equal parts and then into a greater

number (art. 4) of equal parts so many of the latter parts as there

are of the former make up only a part of, and therefore (art. 8)

what is less than, the magnitude and hence (art. 91) each of the
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former parts is greater than each of the latter. Hence those sub-

multiples of a magnitude that are equal to one another are pre-

cisely those of each of which the magnitude is the multiple

expressed by some one and the same number.

Def The number that expresses what multiple a magnitude is

of a submultiple of it is called the DENOMINATOR of all

fractions of the magnitude that are multiples of this sub-

multiple, and the number that expresses what multiple
one of the fractions is of the submultiple so determined

is called the NUMERATOR of that one. The numerator

and denominator of a fraction are called its Terms.

From what is here said and art. 89, of two fractions having the

same numerator but different denominators that is the greater

which has the less denominator.

93. Def A fraction with numerator m and denominator n is call-

ed m nth. parts or shortly m-nths and is written
in

n

1 2 3
The fractions -

,

-
,
-

,
. . . are also named severally one-halfy

123
tzvo-halves}

three-halves, ... and -, -, -,... severally one-quarter,
4 4 4

tzuo-quarters, three-quarters, . . .

94. Def A fraction is said to be PROPER or IMPROPER accord-

ing as its numerator is less or not less than its

denominator.

An improper fraction of a magnitude either is a multiple of

the magnitude, to wit when the numerator is exactly divisible

(art. 82) by the denominator and the quotient then expresses what

multiple, or is made up of two parts one that multiple of the

magnitude which is expressed by the quotient of the division of

the numerator by the denominator and the other that proper
fraction of the magnitude which has the same denominator as

the fraction and for numerator the remainder of the inexact division.

Thus (art. 83) ^ °f a magnitude is made up of 6873 times

the magnitude and \.
^

of the magnitude and this is written

6873
33 9

, and read "6873 and 3369-47692^3".
47092

95. Multiples of a magnitude are one kind of fractions of it

whether expressed as 1, 2, 3,... times the magnitude, taking
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(art. 87) an equal to a magnitude to be a submultiple of it, or as

n "2n "Ktl

-, — ,

—
,... of the magnitude (art. 94), ;/ being any number.

7Z 71 71

But multiples of a magnitude are also numbers having for units

magnitudes that are equal to one another by being each equal to

the magnitude. Hence under the general class of things called

fractions are embraced as a special class all such numbers as have

equal magnitudes for units. From the common practice in language
then of making the word used for a part of a class stand for the

whole there springs the

Def. With the understanding that the unit is a magnitude and

that the units are equal magnitudes the term NUMBER
is widened in meaning so as to apply to any fraction of

a magnitude as well as to any multiple. The magni-
tude of which a number in this sense is a multiple or

fraction is called the Unit or Unit Magnitude to
WHICH THE NUMBER REFERS. Numbers that are mul-

tiples of the unit magnitude are called WHOLE NUM-
BERS and all others FRACTIONAL NUMBERS.

When magnitudes are in this way viewed as numbers the

numbers are spoken of as expressing what multiples or fractions

the magnitudes severally are of the unit magnitude although as

in arts. 37, 87, it is only the names of the numbers that truly do so.

Def That submultiple of the unit magnitude which the deno-

minator of a fraction determines and in reference to

which as unit subordinate to the unit magnitude the

fraction is a whole number is called the SUBUNIT of

the fraction.

96. Def. A CONTINUOUS magnitude is one of which every part

is a magnitude.

Magnitudes are always understood to be continuous unless

expressly stated not to be.

97. POST. Let it be gra7ited that a magnitude may be wholly cut

into a7iy assigned munber of equalparts.

98. Prop. A fraction may be expressed i7i terms of the products
made by multiplyi7ig by its correspo7iding tcnns a7iy

whole 7iii77iber.

771

Let — be any fraction and x any whole number.

Cut into x equal parts (art. 97) each of the ;;/ subunits that
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make up the fraction and also each of the n subunits of the

same denomination that make up the unit to which the fraction

refers. All these parts are (art. 90) equal to one another. Also

(art. 37) the fraction is made up of mx of them and the unit mag-
mx

nitude of nx. Therefore (arts. 8 7, 92) the fraction is .

nx
This is simply taking for the subunit of the fraction a sub-

multiple of the subunit given. It is the one principle by which all

operations with fractions are performed and is called the Prin-

ciple of Fractional Subunit Change.

99. Prop. To express fractions of which particular terms differ so

as to have the corresponding particular terms the

same.

Let —1 % 1 -?,... -7 1 -, Tit be fractions of which the terms
a b c r s t

a, b\ c,..y, s, t', arc different numbers. Whatever whole numbers

a, j3, y,...py <t, t, are these fractions may (art. 98) be expressed as

ay. b/3 cy rp scr tr

do.' T$* cy' Vp' 7a' Tt'

And to have the corresponding terms the same as one another

all that is needed is to choose a, /3, ...t, so that

ay. = b'j3
= cy = ' • • = rp = sa = t'r.

This (arts. 54, 56) may be done by taking for a the product of all

but a of the numbers a, b', c,...r', s, t\ for /3 the product of all but

U of them, . . . for r the product of all but t'. The same would

be done also by taking for c, /3, ... t, severally the products of those

products each into any the same whole number. It may often be

done (as will afterwards be seen) by taking for a, &..t, numbers

severally less than b'c.r'st', ac..r'st\ . . . ab'c.r's.

100. PROP. Tofind the order of greatness of'given fractious.

Fractions with the same denominator are (arts. 88, 20, 8) in

the same order of greatness as their numerators and with the

same numerator (art. 92) in the reverse order of greatness to their

denominators. And fractions having not may (art. 99) be so ex-

pressed as to have either the same denominator or the same nume-

rator.

1 01. PROP. To find the fraction which as a whole is made up of

given fractions as parts.

Given fractions either have or (art. 99) may be expressed so as

to have a common denominator and are then the whole numbers
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expressed by the several numerators in reference to that submul-

tiple of the common unit magnitude as common unit which the

common denominator determines. Hence (art. 19) the whole which

they as parts make up is that multiple of the submultiple so deter-

mined which the sum of the numerators expresses and hence

(art. 92) is the fraction whose numerator is this sum and denomi-

nator the common denominator.

The sum of the numerators can be got either immediately

(arts. 21, 30) or mediately (art. 50) only by adding to one of the

numerators another adding to the sum got another and so on to

the end.

102. By widening the meaning of terms as in art. 95 there

arises the

Dcf. The fraction which as a whole -is made up of fractions as

parts is called the Sum of those fractions. The opera-
tion of finding a fraction whose numerator is the sum

got by adding to the numerator of one the numerator
of the other of two fractions expressed so as to have a

common denominator and whose denominator is this

common denominator is called the Addition To the
FIRST FRACTION Of THE OTHER. If the letters stand

for any numbers whole or fractional a+b symbolizes
the sum got by adding to a b, a+b+c the sum got by
adding to that sum c, and so on.

103. PROP. If a magnitude and a part of it be given fractions

of a common unit magnitude to find what fraction

of the unit magnitude the other part is.

A whole magnitude and a part of it that are given fractions

of a unit either are or (art. 99) may be expressed as whole numbers
of the equal subunits determined by some common denominator,
and then (art. 59) the other part is the whole number of those

same subunits got as the remainder of the subtraction from the

one of the other. Hence this other part is that fraction of the unit

magnitude whose numerator is this remainder and denominator

the common denominator.

104. Widening the meaning of the terms and symbols of arts. 60,

61, after the manner of arts. 95, 102, gives the

Dcf The operation of art. 103 is called the SUBTRACTION
From a fraction Of a fraction; the former frac-

tion is called the MINUEND, the latter the Subtra-
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hend, and the result the Remainder, Excess, or

DIFFERENCE. If a, b, be any two numbers whole or

fractional of which a is not less than b, a—b stands for

the remainder of the subtraction from a of b, if c be

any number whole or fractional not greater than a—b
a—b—c stands for the remainder of the subtraction from

a—b of c
f
and so on.

As this subtraction springs out of, and rests on, the subtrac-

tion of art. 59 all that is said of the latter in art. 60 touching its

kinds holds of the former.

105. PROP. The laws of operational equivalence that Jtave to do

only with additions and subtractions are the same

for fractional as for whole numbers.

Additions and subtractions of fractions are (arts. 101, 103) addi-

tions and subtractions of whole numbers of such equal submulti-

ples of the unit magnitude as some common denominator deter-

mines. And what is true of whole numbers in general is true of

whole numbers in particular of which the units are equal magni-
tudes. Therefore the propositions of arts. 28, 62, the laws of com-

mutation,—of additions (arts. 29, 34), of subtractions (art. 67), and

of additions and subtractions (art. 69)
—

,
the laws of distribution

of addition and of subtraction,—over additions (arts. 33,66), and

over either subtractions or additions and subtractions (arts.71,73)
—

,

and the law of relativity in subtraction (art. 63), are all true no

less for fractional numbers than for whole.

106. PROP. If a magnitude be a given fraction of another magni-
tude and this other a given fraction of a third

magnitude, to find what fraction thefirst magnitude
is of the third.

m r
Let a magnitude be — of another magnitude and this other -

of a third magnitude.
If u, v, be any two whole numbers, (art. 98) the first magnitude
mu rv

is of the second and the second — of the third. If further u. v,nu sv

be (art. 99) so chosen that nu = rv and the common result be called

mu x
x, the first magnitude is— of the second and the second — of theX sv

third. The second magnitude then is at once x times each of the

mu submultiples that make up the first and x times each of the
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sv submultiples that make up the third. Therefore (art. 90) each

of the former submultiples is equal to each of the latter and there-

fore (art. 92) the first magnitude is — of the third.

Although it will always do to take u r and v n (art. 54) so that

tnr
the first magnitude is — of the third yet u, v, may often be taken

less numbers. Partly for this reason but chiefly to keep in clear

view the nature of the operation the method here given is rather

to be borne in mind than the result.

107. Finding what fraction the first of three magnitudes is of

the third when the first is a given fraction of the second and the

second a given fraction of the third is a general operation of which

a particular kind is finding what multiple the first of three magni-
tudes is of the third when the first is a given multiple of the

second and the second a given multiple of the third. But (art. 37)

the latter operation is the multiplication by one whole number of

another when the units are equal magnitudes. Here as in arts. 95,

102,104, instead of making a new name for the general operation
the old name of the particular operation is used in a generalized
sense.

Def The operation of finding what fraction of the unit magni-
tude a magnitude is which is a given fraction of a given
fraction of the unit magnitude is called the MULTIPLI-

CATION By the former given fraction Of the

LATTER; the former given fraction is called the MULTI-

PLIER, the latter the MULTIPLICAND, and the result of

the operation the PRODUCT. If a, b,c, ... be any numbers

whole or fractional ba> b.a, or bxa, stands for the pro-

duct made by multiplying a by b, cba, c.b.a, or cxbxa,

for the product made by multiplying that product by r,

and so on.

108. PROP. T/ie laws of operational equivalence that have to do

with multiplications are tfie same for fractional as

for whole numbers.

The laws of multiplicational equivalence are given in arts. 39,

41,52, 54, 75,77, and by means only of propositions that relate to

additions and subtractions are there proved from the following

simplest cases of them :
—

(1) ab — ba. (2) abc=(ab)c.
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(3) i
(
*H(a+b)c = ac+bc. \(a-b)c = ac-bc.

+b) = ca+cb.
^

\c(a-b) = ca-cb.

All but one of those propositions about additions and subtrac-

tions have (art. 105) been shown still true with the new meanings

given to addition and subtraction. The one not shown true is

that—The products made by multiplying by equal numbers equal
numbers are equal. It is not shown because multiplication is no

longer always successive additions as in art. 37. It may however
be proved thus:—

Equal multipliers either are, or (art. 99) may be expressed as,

fractions that have a common denominator and then (art. 100)
their numerators are equal. Of equal multiplicands the equisub-

multiples determined by the common denominator are (art. 90)

equal and therefore (art. 88) of those equal equisubmultiples the

equimultiples expressed by the equal numerators are equal, that is

the products.

Hence if the above simplest cases of the laws be proved in the

sense now given to them the further proof of the laws becomes
the same as before but with the language understood in the wider

meaning now borne by it. Writing then for a, b, c, symbols expli-

citly fractional

,
. m r mr . - - •

. •

"

. mi r m ,
, ^

to «7-m (art I06) a"d •"• (art 54)
= m =

S n (art Io6
>-

, N mr it m ru mru , L ^ . . L N

(2) = = -—r— (art. 106) and .*. (art. 41)v ' n s v 11 vs (vs)u
N ;

[mr)u mr
vsn sn

u _ fm r\u

v \n s)v
'

. N fm r\u fms rn\u ms+rn u , .
. . , . -.

(3) -+- h = —+—h - — (art 101) and .\ art. 106
\7i sjv \ns sn/v ns v

_ (ms+rn)u , . _ (ms)u+(rn)u
vns

'"* '39J- ^ »

, x (ms)u (rti)u t ,' ^ ms u rnu mu r u
:. (art. 101)=

v——+-—— and .-. (art. 106) = + or +- -
.

x ' vns vsn ns v sn v n v s v

Either in the same way as this (using art. 5 2 instead of art. 39)

or from this by (1)

ufm r\ um u r

v\n sj v n v s

ms—rn .
N , . A . u(ms—ru), N ufm r\ u ms—rn . K , .- ,

"
,~

(4) ins)
=
v ~^r (

art- IQ3) and •'• (
art Io6

)
=•

N urns—urn urns urn , N

.-. (art. 77)
=—7—-r = -r-x—7—r- (art. 103)v '"

(ns)v (ns)v (sn)v
x

(ns)v
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u ms u rn u m u r
and .: (art. 106) = — or .

v ' v 11s v sn v n v s

Either in the same way as this (using art. 75 instead of art. 77)

or from this by (1)
fm r\u _ m u r u

\n s)v n v s v
'

109. PROP. If two magnitudes be given fractions of a third mag-
nitude to find what fraction one of the two is of the

other.

Let one magnitude be and another - of a third magnitude.

If u
y 7>, be any two whole numbers the first magnitude is —

nu
ri)

and the second — of the third (art. 98). If further u, v, be taken so
sv \ s /

in it

that nu = sv and this common product be called x the first is—
X

rv
and the second — of the third. The first is then mu times and

x

the second rv times - of the third. Therefore (art. 92) the first
x

is — of the second.
rv

ms
By making u s and v n (art. 54) the first magnitude is - - of the

second. But here as in art. 106 the method is rather to be kept id

mind than the result.

r
Since the second magnitude is of the third magnitude the

S 1)1

third (art. 92) is of the second. The first magnitude being then —

of the third and the third - of the second the first (art. 107) is

m s
of the second. This (art. 106) gives the same result as before.

1 10. The finding what fraction one of two magnitudes is of

the other when each is a given fraction of a third magnitude is a

general operation under which there falls as a particular the find-

ing what multiple, if any, one of two magnitudes is of the other

when each is a given multiple of a third magnitude. But this par-
ticular operation (art.82) is the exact division of one whole number

by another when the units are equal magnitudes. Generalizing
then as before in arts. 95, 102, 104, 107, the name of the particular

operation,
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Def The operation of finding what fraction one of two given

fractions of the unit magnitude is of the other is called

the Division Of the former given fraction By
THE LATTER

;
the former given fraction is called the

Dividend, the latter the Divisor, and the result of

the operation the Quotient.
The division of a whole number m by a whole number n gives

fpg

the quotient
—

. If m be exactly divisible by 11 this (art. 98) is
fi

only another way of expressing the quotient found by art. 81. But
if m be not exactly divisible by n let ;// (art. 81) be made up of q

parts each equal to n and a remainder r less than n so that (arts.

3 1, 38) 7n = qn+r, then

m . qn+r . , , . qn r , m r— is and .*. (artioi) = ±-+- or (art. 98) q+- .

Hence the division of art. 81 unless exact must be held to be an

incomplete operation inasmuch as it cannot take account in the quo-
tient of the remainder.

in. Def The quotient got by dividing the unit magnitude by
any fraction of the unit magnitude is called the

Reciprocal of that fraction.

Hence (art. 109 or more immediately art. 92 used as in the latter

part of art. 109) the reciprocal of a fraction is a fraction of which the

denominator is the numerator and the numerator the denominator

of the fraction.

112. Since a magnitude of which the unit magnitude is a given
fraction is (art. n 1) the fraction of the unit magnitude expressed

by the given fraction's reciprocal magnitudes of which the unit

magnitude is the same given fraction are (art. 100) all equal to one

another. As then in art. 92 a magnitude is expressed numerically
in reference to another magnitude as unit by means of the multi-

ples which they severally are of some one magnitude so more

generally may a magnitude be expressed numerically in reference

to another magnitude as unit by means of the fractions which they

severally are of some one magnitude. And as in that art. a magni-
tude m times a magnitude is in reference to a unit magnitude n

times the same magnitude called — so by a widened use of lan-

guage spoken and written there comes the

Def A magnitude which is a certain fraction -- of a magni-
11
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tude of which the magnitude taken for unit is a certain

fraction
r

is called a Complex fraction of the unit

(-)
magnitude and is written -—

; the former fraction

o
is called the NUMERATOR and the latter the DENO-

s

MINATOR of the complex fraction, also the numerator

and denominator of a complex fraction are called

its Terms.
A fraction with its terms whole numbers is called a Simple

fraction when distinction is needed.

Since (art. no) the quotient of a division expresses what mul-

tiple or fraction the dividend is of the divisor, or in other words

is the numerical expression of the dividend in reference to the

divisor as unit, the quotient of the division of - of a magnitude by
7l>

(-)1' \ll J
- of the same magnitude may be expressed by —*

.

w
fm\ fmu\

The complex fraction ^-— may (art. 98) be expressed as —
>

\s) - \sv)

u v being any whole numbers, or, making nu = sv (art. 99) and call-

lmu\

V x J win
ing each x, as . This, being

—- of a magnitude of which the

w ( I

unit magnitude is — , and therefore mu times a magnitude (- of
x \?c

)
uiu

rv times which the unit magnitude is, is — and there-

fore so also is the complex fraction.

\ 11 ) in • •

Again
- -

, being
— of a magnitude of which the unit magni-

W
4—2
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Y m • S
tude is - and therefore fart. 02) — of a magnitude which is - of the

s
v ;

// r

. i • / \
m s

unit magnitude, is (art. 107)
— -

.

As a complex fraction is made after the shape of a simple frac-

tion by taking one or each term a fraction instead of a whole

number so may a more complex fraction be made by taking a

complex fraction as term. And by taking for term a fraction of any

complexity a fraction may be made of still greater complexity.

By expressing in the way just shown as a simple fraction each

fraction of the first degree of complexity that enters into a frac-

tion of any degree, doing the same with the resulting fraction of

lower degree, and so on, any fraction however complex may be

expressed as a simple fraction.

113. Prop. PYoducts made by multiplying equal multiplicands

ave in the same oYdeY of gYcatncss as the multi-

pliers.

For multipliers either are, or (arts. 99, 1 1 2) may be expressed

as, simple fractions having a common denominator and then (art.

100) are in the same order of greatness as the numerators. Now
of equal multiplicands the equisubmultiples determined by the

common denominator are (art. 90) equal and therefore (arts. 88,

20, 8) of those equal equisubmultiples the multiples expressed by
the numerators, that is the products, are in the same order of great-

ness as the numerators. Therefore the products are in the same
order of greatness as the multipliers.

114. The product of a multiplication (art. 107) expresses nume-

rically in reference to a unit magnitude a magnitude expressed

numerically by the multiplier in reference to another magnitude as

unit expressed numerically by the multiplicand in reference to the

unit magnitude.
The quotient of a division (art no) expresses numerically one

of two magnitudes in reference to the other as unit the former

of which is expressed numerically by the dividend and the latter

by the divisor each in reference to a common unit magnitude.
Now if a, b, be any two numbers whole or fractional (arts. 93,

1 1 2) the symbol j stands for the numerical expression in reference

to some understood unit magnitude of a magnitude expressed

numerically by a in reference to a magnitude as unit in reference
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to which as unit the unit magnitude is expressed numerically by b.

This symbol then is as in arts, no, 1 12, an expression of the quo-
tient of the division of a by b.

Also, making refer to a magnitude as unit expressed numeri-

cally by b in reference to the unit magnitude, in the symbolic

expression ,b the numbers a, b, b, all refer to the same unit mag-

nitude. For, as shown in arts. 92, 112, and there made the very

hinge on which all fractional relationship simple or complex turns,

magnitudes in reference to which as units the same magnitude is

expressed by the same whole or fractional number are all equal to

one another. Therefore b = a. But by the nature of multiplication

and division, if q be the quotient of the division of a by b, qb = a.

Therefore yb = qb. Therefore (art. 1 13) ^is equal to , , any number

greater than q is greater than r, and any number less than q is

less than , .

b

Hence any other symbol than n= for the quotient of the division

of a by b is needless and hence the

Def The symbol t, read "a BY b", stands for the quotient of

the division of a by b and therefore for the number

marked out by this alone that -,b = a.
b

1

It is at once clear that ~r = a', for multiplying b by each the

products are the same.

115. Prop. Quotients of divisions by equal divisors are in the same

order ofgreatness as the dividends.

For (art. 114) in divisions by equal divisors the dividends are

equal severally to the products made by multiplying severally by
the quotients the equal divisors and therefore (art. 113) are in the

same order of greatness as the quotient multipliers.

116. Prop. If the letters be any whole orfractional numbers,

a _ac
b~Tc'
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v (art. 114) -jb
— a, multiply by each rand (art. 113) (^b)c

= ac;

.*. (arts. 41, 108, 6) -jbc
— ac. But (art. 114) -j-bc

—
ac. .: (art. 6)

a L ac , , , . a ac-
b
bc =

Tc
bc, and .-.(art. 113)^

=
^.

117. Def This proposition of art. 116 is called the LAW OF RE-
LATIVITY IN DIVISION.

The principle of subunit change of art. 98 is a particular case of

the law.

1 1 8. Prop. If the letters be any zvhole orfractional numbers,
'
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Let any numbers a, b, c, ...g, h, be divisors in succession of a

number x and the successive quotients got, and let those numbers

be taken in any other order of succession say c, h, a, ... b, g. Then

(arts. 118,54, 1 08)

pffPir
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L # J
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Therefore the different orders of succession of the operations give
the seime result.

123. Def Art. I22's proposition is called the LAW OF THE COM-
MUTATION of Multiplications and Divisions.

124. Prop. If the letters be any numbers whole orfractional,

ab _a ,

c c

a L
-co

For (art. 114) => .-. (arts. 41, 108)
=—

.*. (arts. 54, 108)
«

'->,

("4 a= -—
••• (arts. 41, 108)

= -^— .'. (art. 1 14)= -A
C C C

125. Def Art. 124's proposition is called the LAW OF THE COL-
LIGATION of Multiplication Of and Division.

126. PROP. To find an expression with a single quotient symbol

operationally equivalent to a product of several expli-

citly symbolized quotients.

_. L a b an bv . -. .. . , an x . c
First — 77

= -7- =7- (art. 116) if u v be any numbers, = — tt if
a b an bv v ' x bv

u v be taken so that du = bv and the common result be called x.

This can be done (arts. 54, 108) by making u b and v a'; but it may
an

a b ~x
X

often be done in a simpler way. Hence (art. 122) —-, = —- and

.*. (art. 114) = -.,- .Thisv bv

and in particular yields

. (art. 1 14)
=

-.,- . This is a generalization of art. 106's proposition

a b _ ab

a b'

~
b'a'

'

Hence-** -
f g h - a f^- a ...' M and .

farts
a b c f g h a f hg' a e {hg')f

K

41,108) = -
itt-tf,

= - - - and at length = ., ,.,
J*

L/ , .

7 J a ehg'f
fe hgf ...cba

127. PROP. If the letters be any numbers whole or fractional,

ab a

'

©
_ , . ab ab * , ... a
For (art. 114)

— = — and ,\ (art. 1 16)
=

(]
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128. Defi The proposition of art. 127 is called the LAW OF THE
Colligation of Multiplication By and Di-

vision.

129. Prop. To find an expression with a single quotient symbol

operationally equivalent to the quotient of the divi-

sion of one explicitly symbolized quotient by another.

fa\
(auX

lau\

First ^~- = —t— (art. 116) if u v be any numbers and = -7—
tb\

f
bv\ K J J

fbv\
[b'J \Jv) \x)

an—x
x

if a'u = b'v and each be called x, .'. (art. 1 16)
=

-77— or (art. 1 14) ,

au

v

Since (arts. 54, 108) a'b' = b'd u may be taken b' and v a'; still du

(-)
\fL) ab'

m
may be often more simply made equal to b'v. Hence -vr = ,

Hence further i)\ (pJ (ab')c'

1(1)

(3 (?)

cbd
-r and .'. (arts. 41, 108) =

ab'c

~cTa"

Likewise
© ab'c'd'

dcbd

Also-

(?)

\a'J \a'J _ acU

'~bc
1
\~o~c~

r
a'

i

And so on.

6)

r
u

© b'J

.[w

(-)
\a'J acd'b' , . . ...

.tttt =rrn, and the like.
bdc \ bdc a

[cd'b'J
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1 30. PROP. If the letters be any ivhole or fractional numbers that

give meaning to the statement,

#,+#,+• •+aa-m t
-7na ;^+£,+- •+bp-n l

nv+- • • •+£,+• •+£«-/, tT

x

= a
^+

a
j>+..jr

a°-JthJ!l± *»i*'i,, ifr

'

** .J^-L £*xx xxx jc x xx x x x'

For (art. 1 14)
g± - • "H*.^.— • ^»,+».+ -*

X
a

x
aa m. t*m . tT—

x-\ \— X x -x+ -X
_X XX X X

X

,. (arts.75, 108)
= \S.

* *
x

* *±-

v ' X XX X X

131. Def. Art. 130's proposition is called the Law OF THE Dis-

tribution of Division over Additions and
Subtractions.

132. PROP. To find an expression with a single quotient symbol

operationally equivalent to the result of successive

. additions and subtractions of explicitly symbolized

quotients.

_ , d b' c m' 11 p' d' V q' . e . _

Let -+t + !T+^+— be taken for instance of a
a b c m 11 p d e q

result of successive additions and subtractions of quotients. If

a, /3, 7, fi, v, ot, 8, €, %, be any numbers whole or fractional that

result (art. 116)

_dai b'fi cy m'fi nv p'ts d'B e'e q\~
act. b/3 ^7 mfi nv par d8 ee q%

'

And if a, &...%, can be so taken that ao.
— b^—- - - - = q% and

each of these be called x this (art. 130)

_a
,

OL+b'/3+cy—m'/A—uv—p''Gr+d'8+e
,

€—q'x
x

By taking a the product of all but a of the numbers a, b, c, m, u,

p, d, c, q, ft the product of all of them but b,
- - - - x tne Pro"

duct of all of them but q, (arts. 54, 108) a% = b^~ - - - -
=<?X>

and the same may often be brought about by taking a, &..»x»

simpler products than these.
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133. POST. Let it be granted that of any given magnitude however

small a multiple may be taken greater than any

given magnitude of the same kind however great.

1 34. PROP. To explain the decimal notation of fractional numbers.

Any multiple of a magnitude is denoted decimally either by a

digit or by a row of digits as in art. 47 when the magnitude is

made the unit. The single digit or the last digit in a row of digits

denoting a multiple of the unit magnitude being the digit which

refers only to the unit magnitude is called the UNIT'S DIGIT and

the numbers to which as units the other digits in backward order

of a row severally refer are spoken of not only as groups of units

of the first, second, third, - - - ranks severally but also as multi-

ples of the unit magnitude of those several ranks. Now all that

is needed further for decimally denoting fractional numbers is to

make digits stretch away in a row to the right of the unit's digit

no less than to the left and to understand universally that that to

which as unit any digit refers is ten times that to which as unit the

next digit to the right refers or the same thing is one-tenth of that

to which as unit the next digit to the left refers.

But the unit's digit being no longer the last digit

in the row must have some other mark set on it

and to this end a dot, called the Decimal Dot or

POINT, is put midway between it and the next digit

to the right, or when stroke bounded columns are

used the column with the unit's digit is separated
from the next column to the right by a double

stroke. Hence if t be ten the numbers or multiples

of the first, second, third, ranks to which as units the digits

to the left of the unit's digit in backward order severally refer are

/, r, P, ... and are therefore severally denoted by 10, 100, 1000,... ;

the numbers or submultiples of the unit magnitude of the first,

second, third, ranks to which as units the digits to the right

of the unit's digit in order severally refer are -, (-)
,

(--)
,... and

are therefore severally denoted by o*i, croi, o*ooi,...; each digit

denotes the product made by multiplying by the number which it

of itself expresses the number to which as unit it refers
;
and a row

of digits denotes the final sum got by adding successively the

numbers denoted by all but the first of the digits in order to the

number denoted by the first and to the successive sums got. For
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example 837-2546 denotes 8/N-3/+7+2* +5Q +40Y+60V The

digit next to the unit's digit on the right is said to be IN THE
first PLACE OF DECIMALS, the digit next in order to this on the

right IN THE SECOND, and so on for the rest.

A fraction of a magnitude (art. 94) is either a multiple of the

magnitude, a proper fraction of the magnitude, or made up of a

multiple and a proper fraction. Again a proper fraction of the unit

magnitude (art. 1 09) is some fraction of -

{one-tenth) of the unit and

therefore (art. 94) is either a multiple of -, a proper fraction of -
,

t t

or made up of a multiple of - and a proper fraction of
;
the multi-

T t

pie too of - must in each case be less than t since the fraction of

the unit magnitude is proper. In like manner a proper fraction of

of the unit is some fraction of (
-J

{one-tenth of 07ic-tcntJi) of the

unit and therefore as before is either a multiple less than t of (-] ,

a proper fraction of
[-),

or made up of a multiple less than /of

(-1
and a proper fraction of

l-J
. And so on for the submultiples

of higher ranks
f-J, (/)> •••(/)»

tne ^ast °f these being the sub-

multiple of the unit magnitude of any rank whatever the zth.

Wherefore a fraction is either a multiple of 1, made up of one or

more multiples each less than /of -, (-) , (-z)>""(z)>
a proper

fraction of
(-),

or made up of several of these. But any multiple

of 1 (art. 47) and any multiple less than / of any of the submulti-

ples
-

, (-), (-:)''•'[-})*
mav be denoted. When therefore any

fraction of the unit is given there may be denoted decimally either

this fraction itself or a fraction differing from it by a proper frac-

tion of a submultiple of the unit of any assigned rank.

Moreover of any given magnitude however small of the same
kind as the unit magnitude a multiple may (art. 133) be taken

greater than the unit magnitude, and as shown in art. 47 by taking
i great enough /' may be macle greater than the number expressing
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what multiple is so taken. That submultiple therefore (arts. 9 1,92)

of the unit of which the unit is the multiple then expressed by f is

less than the given magnitude and therefore (art. 9) much more so

is a proper fraction of that submultiple. But a submultiple of the

unit of any rank being t times the submultiple of the next higher

rank and the unit t times the submultiple of the first rank the unit

is /'"times the submultiple [-}.
Hence if a fraction cannot be deci-

mally denoted another fraction at least can be differing therefrom

by less than any given magnitude however small.

-1 i

a,

-©'

135. Prop. Li the widest meaningyet given to the symbols,

am-n jf m ke no j. jess tkan ^

(
-

J
if m be not greater than n.

The word power must (art. 43) have a meaning answering to

the meaning of multiplication. But the index laws anam =am+n
,

(a
n
)

m = amn
, of arts. 44, 45, are still true now that a may be a frac-

tional number since the proofs of these laws (art. 108) still hold.

g)> is (art.43)

/, \aa aa and.', (arts.41,108) = --• aa aa
{

\\aa a a) v * ' '
\aa aa\

1

j
J

I 1

j
1 I

K- n -s-y^m tfs> ^-n-s-yK-?nas-yia a

.*. if m be greater than n = aa aa,aa aa\
\aa aa\ I

I

j I I I

|<- n -s -X - » #s - >K {?n—ti) as y\a

the zth pair of brackets being marked
'( ),;

and if m be less than ;/ = -- aa...aa\
\aa aa\aa aa\

'

i

1
'

1
' l

te(n—m) -sy^m -s¥^ #s>i

1 1

I

!

11 I -"/I 71 VI \ \ \_ / _ _# #
) ,,,a) a.

aa\a \a \a \a J, J2 )m_x
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But (art. 114) -a=i and (arts. 37, 106) lxa is a. Therefore the for-
a

(i\
n~m

mer result is a 7" " and the latter I-
J

.

am (~) being (arts. 54, 108) = (-]
a 7"

is therefore also operation-

ally equivalent to one or other of these. Yet this may be shown by

simpler laws as follows:—
aM(-) is \(aa ad)

— and.*. —\aa
\aj

K J \aa aa\

II 11
. . . MCI

(Id (l CL\

I

I I

K- m as -X - n -s->| < m as y^-n -s ->a a

-r 1
I I I I

/. if;;/ be greater than ;/ = \aa aa\aa aa~- --
to \aa aa\

I I lii
i<^ (;;/—«) as y^ 11 as X " 1l " s "^

and. *. = ,## aa.a (a...[a[a-\ -\ ••—) -,

l^ (;;/—;/) #s>l

•r 1. 1 .i I X I I I I II
but if m be less than u = \aa ...aa-- --

\aa aa.a a aa\
1 ill 1

'

<; Pt asy£-m-s-y£ (n-m) -s >

Now because the magnitude expressed by a- in reference to the

unit magnitude is (art. 107) expressed by a in reference to a magni-

tude as unit which is expressed by - in reference to the unit

magnitude and in reference to which as unit therefore (art. 114) the

unit magnitude is expressed by a, a- — \. Therefore the result in
a

-1

When ;;/ is greater than 71 the more immediate operational

equivalences (arts. 60,61) are
f-J

a"
i = a"'

LH
,
am

(-j
= a"

tnn
, and when

/i\" /l\"
n*"

/i\
M

/i\mumm is less than «
(-)*>»= (-) ,«"(-)-(-)

•

The case when ;;/ = ;/ is brought under the law by giving to a

or (
J
the meaning 1 as in art. 57.
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136. The Principle of Digit Knitting holds in the decimal

notation offractions.

For taking an instance and putting t for 10, 7208310-5940062 is

7t
6
+2t s+SP+3t

2

+t+S~+9(^j +4(~)+6(^) +2(jJ
and .;. (arts. 33, 105)

.

= 7/6+2^8.3+
{3r

+/+5^90)V4©} +
{6QV2g)

7

}

or 7208000+3 1 0-594+0-0000062.

Further (arts. 135,41, 108) 9 Q)
=
9'(£f=

(90
({f, s)

= 5'
2

(*)

3

•^^^
and .*. (arts. 39, 108) = (y5+t*+5t

2+9
t+4)fy\

So 6Q+2Q=(6/
2

+2/)0J,
and (arts. 44,41) 7/

6
+2/ s+8/ 3

=
(7t

3

)t
3
+(2t

2

)r+8t
3 and .\ (art. 39)

=
(7/

3+2/
2

+8)A
.*. 7208310-5940062

=
(7/

3+2/
2

+8)/
3

+(3^
5

+^+5^+9^+4)0

3

+(6/
2

+2/)Q ,

that is 7208x1000+3 10594x0-001+620x0*00000001.

Hence the number denoted by a row of digits is equivalent

operationally (1) to the sum of the numbers denoted by any knots

of consecutive digits into which the row may be cut,—meaning by
the number denoted by a knot the sum of the numbers severally

denoted by the digits of the knot—
,
and (2) to the sum of the pro-

ducts made by multiplying by the whole number which each knot

were it a separate row with its last digit the unit's digit would

denote the number to which as unit its last digit refers.

137. A decimally denoted fractional number is usually named

by first naming as in art. 49 the number denoted by all the digits

to the left of the decimal dot and then naming in order the num-
bers primarily expressed by the several digits to the right. Thus

4012*53006 is named fonr thousand and twelve, dot, five three naught

naught six.

But by help of the principle of digit knitting a fractional num-
ber decimally denoted may also be named in the same way as a

whole one. First taking the unit's digit for the first digit in a
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knot of digits and any digit to the right for the last it is found

what multiple the unit magnitude is of the submultiple referred to

as unit by the latter digit and hence what submultiple of the unit

magnitude this submultiple is. Then taking any digit to the right
of the unit's digit for the last digit in another knot of digits it

is found what multiple the number denoted by the knot is of

the submultiple referred to as unit by the digit. Thus I = ioxot,
i = iooxo'Oi, I = ioooxoooi, and hence 01 is one-tenth, ooi is

one hundredth, oooi is one thousandth, ; 4012*53006 may be

named four thousand and twelve, and fifty-three thousand and six

huudredthousaudths, or forty hundred, one thousand tzvo hundred

andfifty-three hundredths, and sixty millionths or in yet other ways;

telling off the digits by sixes to the right of the decimal dot as well

as to the left 90, 182007-300064,005 508,61 0000 may be read ninety

millions, one hundred and eighty-tzuo thousand and seven, three hun-

dred thousand and sixty-four millionths, five thousand five hundred

and eight billionths, six hundred and ten thousand trillionths.

Hence too may a decimally denoted fraction be expressed in

the primary, necessary, general, common, or universal, form of a

fraction by taking for numerator and denominator the numbers
found as above that express what multiples the fraction and the

unit are severally of the submultiple referred to as unit by the last

digit in the row denoting the fraction. Thus 80-637 may be ex-

, 80637 806370 8063700
pressed as ~ or -—- or —— or .r IOOO IOOOO IOOOOO

138. Prop. To find the 'decimally denoted results of operations

with decimally denotedfractional numbers.

The notational processes for finding results of operations with

decimally denoted fractional numbers are simply those extensions

of the processes of arts. 50,57,79, 83, that naturally spring from the

extensions of the operations. And as the laws of operational equi-

valence on which these processes rest are (arts. 105, 108) the same
for the extended as for the unextended operations the extended

processes are so far the same as the unextended. The use of the

index law of art. 135 is indeed all they differ in.

In the Additive Process the first two cases of art. 50 stand

just as before, the third case undergoes the slight change shown in

the instance following, and then (arts. 102, 105) the fourth case still

holds in the wide sense now given to the language. Taking / for 10,

59-63+o-95048+2ooo7oo2+o-86i +67+372+0-0705 is

5
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5370-940381-4675-600383006 is

5^+3^+7/+9^4(,)v3
(-;)V8(;)

s

+
(;y

-{4,
+6^+5+6;+3G)V8(IJ+3©V6(I)]

and .-. as in art. 79 (arts. 65, 69, 105)

. 5„_4/>+J,_6,w/_?,_5+s>;_6
!+4

(!)- »;;gU

.'. by the same steps as in art.79 = 6/
2

+9/+5+9-~6-+4^- ]
-\

.-. (arts. 7 1, 105)
= 6/

2+9/+5+^-6^+4Q
2

+. .. .

.-. (art. 108)
=
6r+9/+5+(9-6)^+4(j)

2

+----

,. (art.79) -6rw+fr{3§+{$}+3§ -3© +-•
.-. (arts. 33, 105, 1 35)

==^+9/+5+3l+
3(IJ

+(9+l)
(I)'

+
3(I)

4

-
3
(I)

4

+ ....

., (ar, I08)
= - . . +3

(1)^0)^1)
^3© -30)V

•- •

.-. (arts. 33, K>5) -v> +3
(7)

+9
(7) +(7)

+ • • •

,^,rt„3 i , ?,,os,-.^9
(i)V{,(I)V3G)'-

3
(i)'}«G)'-..

.-. (arts.75, 108)
=•

+90)

S

+(/+3- 3
)gy+8gy_.

.

.-. by like steps = . . +9(^+9(^j\(t+8-8)(^
,

+(^j-
•

so also =.. +9gy+9gy+(/+i_3)gy_6gy
... +9

(i)V(7+
,

)(;J_6(ij
= ..

+9(;)V?(i)V (,+„(i)U(;j

-:+7
(i)-„(i)'

+(>„)GHJ
and at length = 6*

a

+9M-5+3^+3 (7) +9(7)
3+
9(7)+9(7)

S

+7G) +9
(7)

7+9
(7)"

f(/
"
6)

(7)

9

or 695'339997994«

5-2
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The digits in order of the result may hence be got in the same

way as in art. 79.

In the Multiplicative Process the first case of art. 5 7 re-

mains unchanged. The second case now is when of the multiplier

and multiplicand each is denoted by a single significant digit but

not in the unit's place for both, and here the multiplier may be

al-j instead of at
m and the multiplicand bl-J

instead of bf\

Hence the product instead of being {at
m
)bt

n which = {ab)f

be one or other of these :
—

= ab\-

may

r,bt
n = a(-\ bt

n
(arts. 4 1, 108), .\ (arts. 54, :

.-. (arts. 135,41, 108)
=
(a6)(jf

"

or {ab)tT*

according as m is not less or not greater than n and =ab\i
' m = n\

(^^^Q^^^Q)^^"^)^^)^" (^)({f"
or **9

in like manner as before;

©KH»x;)M-;ro)"=«(r
as in art. 57 (art. 108).

In all these as well as in the corresponding product (ab)t
n+m

of art. 57 the handiest way of finding the number to which as unit

ab refers is to mark that (arts. 41, 108) the pro-

/i\
m 6

duct of a multiplication by t
m or by f

-J
of any g

number is the same as the final product of m

successive multiplications by / or by -of that

number and of the products got in succession

and hence from the nature of the notation (art.

1 34) that the number referred to as unit by ab is

the number referred to as unit by the digit m %

columns to the left or m columns to the right of

the digit b. When ab is denoted by two digits the first digit of the

two must by the principle of digit knitting (arts. 48, 136) go into

the column next to the left of the column with the second.

When the second case of art. 57 is thus changed the other two
cases hold just as they are if only the language be understood in
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all the wideness of meaning now borne by
it. Thus the product of the multiplication 72*00605 !

by 003 of 7200605 (arts. 52, 108) is the sum 0*038 400,9

of the products of the multiplications by 2 l6
?

l8 *'5

0*03 of each of the numbers 70, 2, 0006, 57 4 "4
(

000005; an^ these products may be found 1

^Socaac
by what goes next before and therefore

2^765 '097 120445'"
their sum by the notational additive process .— '

above. So too may the products be found 72*oo6;o5 '.

of the multiplications by each of the num- 003814009

bers 0*008, 0*0004, 0*0000009, of that same 2
688jo63 (

'

72*00605. Hence further may the sum of 70,80118

these products by 0*03, 0*008, 0*0004, ! °'^J^L-'
0*0000009, severally of 72*00605 be found —

2765 '007
'

125 '445'
which (arts. 39, 108) is the same as the ' '

'

product of the multiplication by 0*0384009 of 72*00605. Or

0*0384009x72*00605 may be found equally well by finding in the

same way first 0*03 x70+0008 x 70+0*0004x70+0*0000009x70 which

(arts. 39, 1 08) =0*0384009x70 and likewise the products by 0*0384009
of each of the numbers 2, 0*006, 0*00005, and then the sum of the

products so found which (arts. 52, 108) is the same as the product

sought.

The Divisive Process is the last of the processes in art. 83

changed twowise (1) in understanding that (arts. 105, 108)

a—eb-fb-gb Ib-mb—nb — a—{e+f-\g-\ +/+;;/+«) b

for any numbers whole or fractional and (2) in then seeking thereby
the result of none other than what is (art.no) a full, complete,

thorough, division. If in finding the successive remainders a—cb,

a—eb—fb, a—eb—fb-gb, one that is o be never come to the

quotient cannot be denoted decimally; there can then (art. 134) be

denoted decimally only what differs from

the quotient by less than any given magni- 72*006 05 \

'

tude however small of the same kind as the 0*03814009 ,

magnitude expressed by it. Thus to find the 2765 J097J1 25*445

decimally denoted quotient of the division 2 1601181 )5

of 2765097125445 by 72*00605 the former °04'
I

9 I
5|
6

,

number is greater than 0*03x72*00605 but JLL_'?4 li •

28'867 2
less than 0*04x72*00605 and is greater than

28'8o2'zi2 1

0*03x72*00605 by 0*604915625445, this last -—
^TTfe '

is greater than 0*008x72-00605 but less than
64*805 '44*;

0*009x72*00605 and exceeds 0*008x72-00605 i

by 0*028867225445, this last again exceeds
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0*0004x72-00605 by 0*000064805445, and this last is

0-0000009x72-00605 ;
so that

'

\
is decimally denoted

by 0*0384009. Likewise taking up the example of art. 83 it is found

that 327790485 is greater than 68ys X47692

by 3369 than 6873*07x47692 by 30*56 [ 47J692 \ [

than 6873*0706x47692 by 1*9448 than I 6;873*Q7c;64Cj7

6873*07064x47692 by 0*03712 than 3 27|79° l4
8 5

!

6873*0706407x47692 by 0*0037356 and 3''369 '

1

so on. Therefore among other things
3i33q44

(

3277904J. is greater tnan 6873*0706 by 28615I2
J

lessthan 0*00005, isgreater than 6873*07064 1 007*68
'

by less than 0*0000008, and is less than •

37*12
'

6873*070641 by less than 0*0000003; so 3^!384
!

4
that this quotient is better expressed to

-a'735'6

the fourth decimal place by 6873*0706
than by 6873*0707 but to the sixth decimal place is more nearly

6873*070641 than 6873*070640.

By this divisive process a fraction expressed in the common or

general fractional form (usually called aVULGAR FRACTION) maybe
expressed either exactly or to any required degree of nearness as a

decimally denoted fraction (usually called a DECIMAL FRACTION).
If a> b, q, be decimally denoted numbers such that a = qb and

e, f,...m, 11, be the numbers severally denoted by the digits in

order of q the divisive process finds e, f> ... m> n, and through them

q by breaking up a into eb, fb,...mb, nb, and is in this manner a

counter process to the multiplicative process which finds a by

making it up of eb,fb,...mb, nb. Now if r, s,...y, z be the numbers

severally denoted by the digits of b the other multiplicative process
which finds a by making it up of qr, qs>...qy, qz, has in like manner
a counter process by which when a and q are given r, s,.. .yy z, and

through them b can be found by breaking up a into qr, qs,... qy> qz.

For (arts. 65, 105)

a—qr-qs qy-qz = a-(qz+qy+ \-qs+qr), .'. (arts. 5 2, 105)

= a—q(z+y-\ \-s-\-r)
and .*. (arts. 34, 105)

= a-q(r+s+.">+y+z).

Thus to find what decimally denoted number it is that multiplied

by 0*0384009 gives as product 2765097125445; writing 0*0384009
with room above where to write the digits of the number sought
as they are found and with a stroke drawn close below, then writing
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2765097125445 under the stroke, and doing ^^^, ,

all the other writing needed below, so o-o^Iaoo'q '

that everywhere digits referring to mul-
2765tor 125-445

tiples or submultiples of the same rank as 268k '063!
»

units are in the same column, the greatest 77:034! 1

number denoted by a single significant digit 761801,8

which multiplied by 0*0384009 gives a pro- 3
'

duct not greater than 2765097125445 is ;

230-40 5 '4

after slight trial found to be 70 and i!92cb

2765097125445-0-0384009x70 is by the _J I9
2°

l°45

foregoing multiplicative and subtractive pro-

cesses found to be 0*077034125445. In like manner 2 is found the

greatest number denoted by a single significant digit which multi-

plied by 0*0384009 gives a product not greater than 0*077034125445,

and so on. And so at length the number sought is found to be

72*00605.

Here as in the divisive process it may happen that no decimally

denoted number when multiplied by a given decimally denoted

number gives another given decimally denoted number for product.

All that can then be done is to find a decimally denoted number

differing from the number sought by less than any given magnitude
of the same kind as the magnitude expressed thereby.

That number which multiplied by q gives the product a is

symbolized by -a. For this (art. 107) is the numerical expression

in reference to the unit magnitude of a magnitude which in refer-

ence to another magnitude as unit expressed numerically in refer-

ence to the unit magnitude by a is expressed numerically by -

and in reference to which therefore as unit (art. 1 14) that other is

expressed numerically by q. Since then the number that multiplied

by q gives the product a is the product made by multiplying a by
the reciprocal of q the notational process for finding it when a and

q are given decimally denoted numbers is called the RECIPROCAL

Multiplicative Process.

139. Prop, hi the widest meaningyet given to the symbols,

an

am

m l

a '

n

i

am-n ^ m ke not iess than 1ly

-^-n if ;;; be not greater than n.
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For if m be greater than n am is

both
x

aa....aa
x

aa aa^ and ^aa aa^aa...aa lf

\^n as »< {in-n) #s>| ^(m-n) as >f< n as>i

and . \ (arts. 4 1
,
1 08) = a 1lam

~n = am
~nan .

Hence 4^™= ^j****"*
.\ (arts. 41, 108) = (\aAa

m-n which (art. 1 14)

is a

—-and/, (art. 1 1 4) =*•*-»,

*"';S
=

(a"™*") 4; .•• (arts. 41, 108)
= ar-nan\ which (arts. 107, 1 14)a a ex

is aT~".

When w is less than 11 an = avlan~m and also = ^w"^w as before.

Hence

\*H= Jn-,n a
m

•'• (art 126) = (*J- \\m and .\ as before
an amaH m s '

\a
n "l am)

-a
m which is

an-m a,n -" « „-,„ »

t= = -i^rin and •'• (art. 1 16)
= -—

,

am—n = am n-,n m = am-£ *^= = (
a™ 4« J := which is —— .

an
a"

mam aT an m
\ amJa

nm an m

More immediately

1 i am T t

-a" = **"-" or -^ while both ~ and ^- =a— or -£-.

When m = n the law holds by making a° mean 1 as in arts. 57,

135.

140. Prop. an
b
n
c
n
....f

ngn
]f = {abc....fgh)

n
.

First an
b
n

is

{ (aa aa\bb bb
f

.'. (arts.41, 108)
= aa...aabb...bb :. (arts.54,108)

^ n as >j< 11 bs ^1

— abab...abab .'. (arts.41, 108) = (ab)(ab)...(ab)ab that is (ab)
n

.

Hence an
b
n
c
n
...f

ng
nhn

= an
b
n
c

l

...f
n
(g/i)

n = an
b
n
...e

n
(fg/i)

M = = [abc...fgh)
n

.

i4 i. prop. ^=y.
t-> ^1 • 1 , ,, .,. a.a2 ...a„ Ta)t a.a„ a,, ,an .

For this is what the proposition V~r hr — r T>--r^-r in

Kbn-x—oJ)x b,b2 bn_z
bn

art. 126 becomes when each of the numbers a
z ,
a2 ,

...an ,
is a and

each of the numbers b1} bs) ... bn ,
is b.
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142. Before passing on to sundry uses made of what has so far

been done it may be well to set forth here in one view arranged
under their several heads the laws laid down with the symbolic
statement either of each law itself or of its simplest and funda-

mental case :
—

THE FUNDAMENTAL LAWS OF OPERATIONAL EQUIVALENCE

I. Latvs of Commutation

(i)
of Additions and Subtractions; (1) a+b = b+a (arts. 29, 34, 105),

(2) a-b—c=a-c-b (arts. 67, 105), (3) a+b-c= a—c+b (arts. 69, 105).

(ii) of Multiplications and Divisions; (1) ab = ba (arts. 54,108),

(") (-)
/ \ \bj \cj , s , s ab b ,

(2) V =
~T (art.120), (3)

— = a-
c (art.122).

II. Laws of Distribution

(i)
of Addition; (1) a+(b+c) =a-\~b+c (arts. 33, 105),

(2) a+(b-c) = a+b-c (arts.7 1,105).

(ii) of Subtraction
; (1) a—(b+c)=a—c—b (arts. 65, 105),

(2) a-(b-c) = a+c-b (arts.73,105).

(iij)
of Multiplication; (1) #***"** (arts. 39, 108),

K JJ F ' w
\c(a+fi)=ca+c& (arts. 5 2, 1 08),

. . {{a-b)c—ac—bc (arts.75,108),

\c(a-b) = ca-cb (arts. 77, 108).

(iv) of Division; (1)
— = -+- (art. 130), (2)

—- =---
(art. 130).

III. Lazvs of Colligation

(i)
of Multiplications; abc= {ab)c (arts. 4 1,108).

W a
(ii) of Divisions;

— =-7 (art. 1 18).

(iij) of Multiplication and Division; (1)
— = -b (art.124),
c c

&
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IV. Laws of Relativity

(i)
in Subtraction; a—b = a+c— (b+c) (arts. 63, 105).

(ii)
in Division; t=t- (art. 116).

From these come what may be arranged as follows under the

head of

Index Lazvs

(1) anam = am+n (arts. 44, 108), (2) (a
n
)

m = a""
1

(arts. 45, 108),

(3)
i — y =: am H

if m be not less than n (arts. 135, 139)

«"©". ar\-
.a

(art 1 35),

but if m be not greater than ;/ \ ~-a*
an

a'
1

-^ (art. 1 39),

an (a
(4) ^'=(^r(art.i4o), (5)^=^J (art 141).

143. INDIRECT ARITHMETICAL QUESTIONS.
When numbers are sought linked to given numbers in given

ways not, or not at once seen to be, those in which results of ope-

rations, or sets of operations, of addition subtraction multiplica-

tion and division (arts.21, 30,37,59,81,101,103,106,109) are linked to

the numbers operated with, the first •

thing to be found out is of

which, or of what sets, of these operations with the given numbers

are the sought numbers the results. This is done by means of the

laws of operational equivalence and the following propositions.

Numbers are equalprecisely when

(i)
the sums are equal got by severally adding either to them, or

them to, equal numbers

(ii)
the remainders are equal got by severally subtracting either

from them, or them from, equal numbers
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(iij) the products are equal got by severally multiplying cither

tJicm byy
or by then/, equal numbers of which none is o

(iv) the quotients are equal got by severally dividing either them

by, or by them, equal numbers of which none is o.

Let a, a', be any numbers and b, b\ any numbers that are equal
to one another.

It is precisely when a — a (arts. 10, n) that (a, b)
—

(d, b') and

therefore (arts. 6, 9) that either a+b — d+b' or b+a = b'-\-d.

Next if a be not less than b and d than b' it is (arts. 6, 9) pre-

cisely when a — d that {a— b, b)
= (d—b' } b') and therefore (arts. 1 3, 14)

that a-~b—d—b\ Besides if a be not greater than b and a than b'

(art. 6) (b—a, a)
=

(b'—d, d) and therefore (arts. 13, 15) it is precisely

when a = d that b-a = b'—d.

Again b, b'}
if not os either are, or (art. 99) may be expressed

as, fractions that have a common denominator and they have then

also (art. 100) a common numerator. Hence (arts. 90, 9 1,88, 89) it

is precisely when a = d that ba = b'd. It has been already shown
-

(art. 1 1 3) that a — d precisely when ab = db'.

Lastly by what has just been shown it is precisely when a = d

that b'a = bd and therefore (arts. 6, 9) that l-,d)a = l-a) d or that

— da— -ad and therefore by what has just been shown (v da=ad)
a a J J N '

that —= -. It has been shown already (art. 115) that a — d precise-

ly when |
=
|

.

(1). What is the height of a house wall in which a window 6 feet

high has under it - and above it - of the whole height ?

Let the height sought be x feet. Then under the window there

-x feet and above it -.

3 2
are -x feet and above it -x feet.

/. -x-\-6+-x—x.
3 2

This happens precisely when, by subtracting -x from each of the

numbers -X+6+-X and x,
3 2

I . I I I

-x+6+-x—x—x—x322 2
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and .'. (arts.71, 105) precisely when -x+6+(-x—x\—x--x
y

.*.
, subtracting -x from each of the numbers -x+6 and x—x.5

3 3 2

precisely when
1 - 1 11
-X+O X—X X X
3 3 23

and .*. (arts. 69, 105) precisely when -x—x+6=x—x—x
3 3 2 3

and .*. (arts.75, 108) precisely when 6=1 1
jx

that is
^x,

.*., multiplying by 6 each of the numbers 6 and
^x, precisely when

6x6 = 6x7^o

and .'. (arts.41,108) precisely when 6x6=(6x^]x that is when

36 = x. And the height can only be 36 feet.

This result may be otherwise got as follows, where each state-

ment after the first holds just when the statement next before it

holds and therefore any one statement holds just when any other

does.

-x+6+-x = x, 6+-x+-x = x, 6+!-x+-x)=x,32 32 V3 2 /

^(HMH)*«-(H)*

6 = ^x, and as before 6x6= x.
o

(2). How may a debt of 5/. be paid with 29 coins some of them

crowns and the rest florins ?

Let there be x crowns. Then there are 29—^ florins, the x crowns

are worth xx$ shillings, and the 29-^r florins are worth (29—^x2

shillings.

.'. xx$-\-(2g—x)x2 = $x20 or 100.

This happens precisely when any one of the following happens,
because each of them happens precisely when the one next before

it happens for the reason written against it,

(art.75) ^rx 5+(29x2-^x2) = IOO,

(art. 71) xx 5 +29x2—^x2 = 100,

(art. 69) xx$—^X2+29X2 = 100,
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(art. 77 and subtracting from each 58) x($-2)+$%-$% = 100-58,

(art.71) ;rx3+(58-58)= 42,

XX 3 4.2

(dividing each by 3)
=—

,

O

(art. 1 14) *=I4>

(subtracting each from 29) 29-^= 15.

So that 5/. can be paid in the required way only with 14 crowns

and 15 florins.

(3). A workman engaging for 36 days to take 3s. 6d. every day
he worked and to pay is. 6d. every day he did not made 2/. 16s.

How many of the 36 days did he work ?

If x be the number of days he worked, 36—x is the number he

did not; by working then he gained xx$~ shillings and by not

working lost {36-x) xi-. Hence

xx3-—(36—x)x 1- = 2x20+16.

This happens precisely when any of the following does :
—

^x3^+^xil-36xi^ = 56 (arts. 73, 105),

(
3
2
+ I

2)"54+54=56+54
'

xx$ = 110 by the nature of subtraction (arts. 59, 103),

xx$ _ no

X= 22.

And it was therefore 22 out of the 36 days that he worked.

(4). A smuggler with brandy that would bring 9/. iSs. had after

selling 10 gallons
- of the rest seized and so made only 8/. 2s. Find

the number of gallons and the price of a gallon.

Let there be x gallons. The price of a gallon then is -(9x20+18)

or -x 198 shillings and after selling 10 gallons
- of the remainingx 3

x— 10 gallons would therefore bring \-(x—ion-xig8 shillings which

by the question is 198—(8x20+2) or 36 shillings. Hence

^-io)Uxi98
= 36.
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This holds just when any one of these does:—-

-(^-io)-xi98 = 36 (arts. 41,108),
3 x

-4r-xi98
—xio-xi98 = 36 (arts. 75, 77, 108),

3 •# • 3 &

i^xi 98-ixioixi 98 = 36,

66-(66—x 10-x 198) = 66-36

by subtracting from 66 each of the last two numbers,

66+-x 10- x 198-66 = 30,
3 x

66-66+-xio-xi 98 = 30,
3 x

1 1 1 1—x3x-xio-xiq8 =— x^x^o,
10

°
3 x y 10

J °

fe(
3X

3)
XIO

}i
XI98=9,

—-— = -^-
dividing 198 by each of the last two numbers,

ixio8 9

= 22 (art. 116),

©
X X

x = 22 since— = —-

(art. 1 16)
= -

(art. 1 14).

-x® \
The number of gallons therefore is 22 and by the fourth line back

the price of a gallon is 9 shillings.

These results may also be got thus:—Taking x as before for

2
the number of gallons the 10 gallons and - of the rest not seized

at -X198 shillings the gallon yield 8x20+2 or 162 shillings.x

/. \io-i—(x-i6)[-xigS sb 162.

And this happens just when any one of these does:—

\io-\-(~x
—xioH-xi98 = i62, (10+-.2-

—-)-*io8ss ^2,
\ V3 3 ))x V 3 3/^
/ 20 2\I . 10 1 /2\i

'

(jO-yf-*J-XI98
= 162, y -X 1984 (-*)-X 198 = 162,
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-X198+ -x~xigS= 162, -

--xi98+-(^-)xi98= 162,x 3 x 3 •** 3\ •*/

12
1.X198+132-132- 162-132,

I0

^xi98+(i32-i32)
= 3o,

3 •* 3 •*

? 10 1 7. / 3 io\ i

x xi98 = --X30, (— x— -xi98 = 9, and the rest as before.103^ y 10 °
\io $ Jx

The same question may still be dealt with in another way. If

V shillings be the price of a gallon
— is the number of gallons and

hence v is to be such that

This happens when and never but when any one of the following

happens.
|

I0
+(| ^

—
|xiojJz/=

162,
(l04~^-|xio)v«l62,

2
,
2 io8\ ^ 10 (2 io8\ 10 2 iq8

10 XIO+--^- Z/=l62, —s/+(--Z- W162, —zM--— z>=i62,
3 3 » / 3 \3 ^ / 3 3*

10 ^ 10 , , 3 10 3— ^+132-132=162-132,
-^+(132-132)

= 30, y y^
=
Yo

x 3o,

3 io\ 198— )v = g or v = g,
-^- = 22.

10 3/
y y v

(5). How much tea at 2s. 6d. must be mixed with 60 lbs. at 4s. /\d.

that the mixture may be at 3^. gd. ?

Let it be x lbs. Then the 6olbs. is worth 60x4- shillings, the

x lbs. ;rx2- shillings, and the mixture of 60+x lbs. (604.*-) x 32 4

shillings.

.*. 60x4-4-^x2- = (60+^r) X3- .

This is the case precisely when any one of these is:—11 3 3
60x4-4^x2- = 60x3-4^x3- (arts. 39, 108),

3 2 4 4

60x4-4^x2— (60x3 -4^X2-) = 60x3-4^x3-- (60X3?+JTX2-),
3 2 v '4 2/ 4 4 \ 4 2/

^ 1 1 i^3
6oX4-4^X2 4TX2 6OX3-

3 2 2 ^4

=
60x354^x32-^x2^-60x3- (arts. 65, 105),

60x4-4 (^X2
;trx 2-

j
-60x3

6ox3?-6ox3?4^x3?-^x2i (arts. 7 1,69, 105),
T" T" T" ^
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6o^-3|) =*{i\-
z
%}

(
arts-/7> Io8 )>

7 >6ox— 4rx-
12 4

© ©
28 = x.

(6). What sums of money have two men when according as the

one takes from, or gives to, the other 3s. so is the first's sum made

equal to, or | of, the other's ?

o

If the first man have# shillings he must have^r-1-3 shillings after

taking 3 from the second and this being what the second then has

the second must at first have had ^+3+3 which (arts. 33, 105)
= -^+(3+3) or x+& shillings. Hence when the first gives the second

3J-. the first's sum becomes x—3 shillings and the second's x+6+3
which =#+(6-1-3) or x+g shillings. Therefore

And this holds precisely when any one of these following does:

*-3=|*-+g><9 (arts. 5 2, 108),

^-3+3 =
g-^+|x9+3,

*-|*
=
|^|x9+3-|r,

(
i-$x

=lx-lx+¥^>-

S
X~

8
'

8 3 _8 69

3
X
8*- 3

X
8

'

(~x §)•*>
that is x, =23,

x+6 = 29.

Hence the first has 23^. and the other 29^.

(7). How many sheep has a man who gets 90/. 6s. by selling
2 1
- of them at 22s. each - of them at 30^. each and the rest at 35 j.

each ?
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2 I

Let there be x sheep. Since after taking away - and - of the

2 1 I

sheep there is I or — of them left,v
3 4 12

|

2
j)XI \-(-x)xi-+(— ^r)xi- = QO-i;

V3 J IO V4 / 2 \I2 J 4 ^10'

which happens precisely when any one of the following happens.

2 hi 31 7 903-xx—\--xx--\ XX - =
,

3 10 4 2 12 4 10

211 1 3 17 Q03
xx - x Yxx -x- -{-xx— x - = Z-2

(arts. 54, 108),
3 10 42 12 4 10 v " "

^bo^S^sy
-

10
'

^x 301: = 903

240 10

/9?3

\io
/30i\ /30A

'

V240/ V240/

X = J2.

(8). How many leaps must a greyhound take to catch a hare 50
hare leaps before it if 2 greyhound leaps be equal to 3 hare leaps

and the greyhound take 3 leaps to the hare's 4 ?

Let x be the number of the greyhound's leaps. Since x grey-
jc x

hound leaps are equal to -X3 hare leaps the hare takes -X3—50

x
-X3-50

leaps and therefore runs during times the time of four of

its leaps. Hence

XX W± (903)
240 \ioJ

4 3

This relation holds exactly when any one of the following relations

holds :
—

(*xI)x 3-5o
,

xx- (art. 122),
4 3

1

;rx-x3— S° = xx\ (arts.41,108,130),
4 4
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I

-X3
xx — =xx- (art. 122),

4 4 3

3 50 50 1 50

3 1 I 50 I

<H)
I I 50xx—xx—H—
3 3 4

xx
24
L

(SO)

V24J I24/

^=300.

The question may be otherwise treated thus :
—Let the grey-

hound catch the hare in t times the time in which either the grey-

hound takes 3 leaps or the hare 4. Then expressing numerically

the distance run by the greyhound in reference to that distance as

unit which is equal to 2 greyhound leaps and 3 hare leaps,

/X3 _ 50+/X4
~2

~
3

'

And this happens just when any of the following does :
—

,x 3 = 5o /X4
,x 3_,x 4 = 50 4_/x 4

2 3 3 233 33
/x

1

(
S
°)

and the greyhound's leaps are /X3 or 300.

/= 100,

144. Into every simple arithmetical operation whether of addi-

tion, subtraction, multiplication, or division, two numbers enter of

which either may be viewed as the number operated on and then

the other becomes the number by which the operation is performed
or shortly the operating number. According as the number added

to or added, subtracted from or subtracted, multiplied or multiplied

by, divided or divided by, is held to be the number operated on so

may the corresponding operation be named Addition To or

Addition Of, Subtraction From or Subtraction Of, Mul-
tiplication Of or Multiplication By, Division Of or Divi-

sion By.
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Def. If an operation performed on a number give a certain

number for result the operation which performed on the

latter number gives back at once the first number for

result is called the Inverse operation.
The inverse operation of an inverse operation is clearly the

original operation.

Those steps taken in dealing with the questions of the last arti-

cle that are neither bare symbolic statements of the questions nor

laws of operational equivalence are inversions of operations.

145. Let any number x be taken for a number operated on and

any number a for a number operating.

The result of addition to is x+a and (arts.71, 105) x+a—a
= x+(a—a) that is x. The inverse operation then of addition to is

subtraction from. The inverse operation of subtraction from ought
therefore to be addition to and accordingly x-a+a (arts. 59, 103) =x.

The result of addition of is a+x and (arts. 69, 105) a-\-x-a

= a-a-\-x or x. So that the inverse of addition of is subtraction from.

Accordingly also a-\-{x—a)
= a+x—a = a—a+x or x.

The result of subtraction of is a—x and a— {a—x) = a+x—a (arts.

73. I05) =ci—a-\-x or x as before. Therefore the inverse of subtraction

of is subtraction of
Thus of either addition to or addition of and subtraction from,

and also of subtraction of and subtraction of each must be held to

be the inverse operation of the other. But, distinguishing between

the kinds of subtraction (arts. 60, 61, 104), x+a^-a=x, x<—a+a = x,

a+x-^a = x, a+(x—ia)=x, a—\{a^—x) = x, a<—(a^x)=x, more imme-

diately and directly than the corresponding expressions above and

therefore a still closer relationship of inversion is borne to one ano-

ther by addition to and desubtraction from, by addition of and sur-

subtraction from, and by desubtraction 0/and sursubtraction of

The result of multiplication of"is ax and (arts. 41, 108) ~ax=l-a

which (art. 1 14) is x. If then the multiplication of a number by the

reciprocal of a number be named RECIPROCAL MULTIPLICATION

Of or Reciprocal multiplication By according as the former

number or the latter is made the number operated on the inverse

operation of multiplication of is reciprocal multiplication of. Accord-

ingly too a x= (a
J.

x or x.



84 ARITHMETIC

Xd
The result of multiplication by is xa and (art. 114)

— = x. Hence

x
the inverse of multiplication by is division of. Conversely -a = x.

a 1 x
Lastly the result of division by is - and —z a — —a (art. 116)x ia \ a

t) X*
x

and .*. (art. 114)
= -a=x. So that the inverse operation of division

by is reciprocal multiplication by. And accordingly
— =—r=-^.'

\\ ©
Hence in each of the following pairs of operations each opera-

tion is the inverse of the other:—
Addition To and Desubtraction From,
Addition Of and Sursubtraction From,

Desubtraction Of and Sursubtraction Of,

Multiplication Of and Reciprocal multiplication Of
Multiplication By and Division Of,

Division By and Reciprocal multiplication By.

SYMBOLICALLY GENERALIZED PROBLEMS

146. Arithmetical questions alike in everything but the particu-

lar numbers given in them are all treated in the same way and

therefore may be brought together under a single treatment by

using general symbols for the given numbers. The results are then

embraced in one symbolically expressed result of certain operations

with those symbolized numbers or in what is called a General
Formula.

To find two numbers of which the sum is s and the difference d.

Let x be the greater. Then x—d is the less and

x+(x—d) = s,

which happens precisely when any of these happens :
—

x+x-d= s (arts. 7 1, 105),

2x = s+d
because (art. 145) the inverse of subtraction from is addition to,

x= l

-(s+d)

because the inverse of multiplication of is reciprocal multiplication of,

x-d = -s+-d-d=-s-[d—d) =~s— ( I— )d = -(s—d).
2 2 2V2/2V2y 2 K '
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The greater number sought therefore is -(s+d) and the less ~{s-d).2 2

Thus at an election where 823 votes were given and the winning
candidate had a majority of 211, the winning candidate must have

had -(823+211) or 517 votes and the other -(823-211) or 306.
2 2

So a rod 5327 inches long to be cut into two parts with one

greater by 1044 inches than the other must have the one part

(5 3 '27+ 1 0-44) or 3 1855 inches long and the other -(53-27— 10*44)
2 2

or 21-415.

147. To cut a given number a into ;/+i parts so that

the 2d part may be greater by hx
than e

z
times the 1st part,

_ 3rd _ _ _ _ __ K — e* — — 2d —

(;H-i)th hn en — wth
t

Let the first part be x. The second part is then e
xx+hv There-

fore the 3rd part is e^x+Zi^+Z^ and therefore (arts. 52, 108) the

same as e^sx-\-eJt t+K Therefore again the 4th part is the same as

e^e^x+efa+h^+h^ and therefore also as e/^esx+e/Jtz+e^ta+A3
. And

so on till at last the (w+i)th part is the same as

Hence x is to be such that

And this happens just when any of the following does :
—

x+e1x+/i1+(e2e1)x+eji 1+/i2+(e3
e
2e1)x+(e3

e2)k l+e3
/i2+/i3

+(ei
e
3
e2e1)x+ +//„ = 4

x+exx+' ••+(*„.. el)x+{/i1+eA+- '

•+('••
• '.)*.}

+{h2+e3
h2+- •

'+(e„..e3)/i2}+- '+{/iH_ 1+eJiM)+/iH
= a,

+( 1 +^3
+ • • "K... e,e3)/i2+ +( 1 +en_ 1+eHen_1) /*„_,+{ 1 +eH)/iH_1+/in = <*,

(!+€,+• "+eft
..e1)x

+{(i+^2+- • •+en ..e2)h 1+(i+e3+.
• -+eH ..e3)/i2+ +(i+^)//M-x+//,,) = a

or as it may be written for shortness Ex+H= a,
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Ex= a—H
the inverse operation of addition to being subtraction from,

x=±(a-H).

And when the first part is thus found the other parts must be

found as above. Calling the z'th part xiy xl+l
= eixf\-hi )

and hence x\

being found the other parts may be found each from the one

before it by making i in succession I, 2, 3, ... ;/, that is

xm*epx+hx% x
3
= e^2+/i2 , . . . .x

fl+l
= e

f(
xn-{-/iu .

For example to cut a line of 1858 fathoms into 5 parts each

after the first greater by 7 fathoms than 3ce the one next before it

the first part must be

1

p8s8
i+3+3.3+3.3.3+3-3-3-3L-i( i +3+3.3+3.3-3)7+(i+3+3-3)7+(i+3)-7+7}J

or 12 fathoms and the other parts in order then are 3.12+7 or 43,

3.43+7 or 136, 415, and 1252, fathoms.

Again to deal out 23/. among three men so that the second's

share may be 61. more than - the first's and the third's 5/. more

than - the second's the first's share must be
3

^MHM]
or 61 ' the second's share is therefore -x6+6 or 9/. and the third's

2

-xq+5 or 8/.

3

The problem of art. 146 may be brought under this general

problem as a particular case by taking it to be either the cutting a

number s into two parts so that the second part may be greater

by a number d than the first part or the cutting s, with a stretch of

language, into any number of parts more than 2 so that the second

of them may be greater by d than ice the first and every other

greater by o than o times the one before it. Either way gives the

first part ~{s—d) and the second part is therefore ix-(s—d)+d^ 2

-
\
S
~\

d+d=
\
S+d~\

d =
1

2
S+

{
d-

1

2
d
)
=HlL

i)
rf"i^

The second way of viewing the problem gives the third part
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ox-(s+d)+o which is o and every other part oxo+0 which is

also o.

Cutting a given number into any assigned number of equal

parts is the special case when every part but the first is greater by
o than 1 times the part next before.

148. To find the capital in a business at first when at the end

of ;/ years it becomes a pounds by having
in the 1st year changed at the rate of ct pounds the pound and

had withdrawn from it d
l pounds

— 2nd c2

;;th cn

If at first the capital be x pounds at the end of the first year it

becomes xc
1
—d

l pounds. Therefore at the end of the 2nd year it is

[xc —d1)c—d2 which — {xc^c2—dl
c—d2 =xc1

c—d
1
c—d2 . Therefore at the

end of the 3rd year it = (xc1
c2—d1

c2—d2)c3—d3
=

(xcI
c2)c3—(d1

c2)c3—d2c3—d3

= xc^c—d.c^c—d^—d^ And so on until at length at the end of the

nth. year

xc,c2 . . .cn_1c,-d1
c2cr . .cn_x

cn-d2c3 . . ,cn
- -d^c^^-d^^-d,, = a.

This happens precisely when any of these does: to wit

^x^---^_x^-«+^_ I^+^_2^_x^+ +dl
c2c3 ...c,l_ lc„) =a,

_a+(dn+dn_,cn+dn_2cn_fn+ +d1
c2c3 ...cn^c,t_1

cM)x=-
r r r

,,

since the inverse operation of multiplication by is division of.

The result may also be got in a direct manner. The capital at

the beginning of the 72th year is at the rate of cn pounds the pound

changed into a-\-dn pounds and can therefore only be pounds.

In the same way therefore the capital at the beginning of the

a+dn . fa+dn , \

(#-i)th year is —- and .*. = -—- = .

Cn-\ Cn-\Cn Cn-\Cn

Hence in the same way the capital at the beginning of the (n—2)th

year

a+dn+d,,^ {a+dn+d„_zc„
t ^ \
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And so at last the capital at the beginning of the ist year

_ a+dn+d„_Icn+d„_2cn_I
cn+> . . ^df/r^c^c.

Cjf% . . .Cn_2Cn_ 1
Cn

which by the law of the distribution of addition over additions

(arts. 33, 105) is the same number as the result got before.

149. To find when the minute hand of a clock is m minute

divisions before the hour hand.

The hour and minute hands of a clock are to be taken as ever

turning round the same way upon a common spindle each passing

through equal spaces in all equal lengths of time but with such

speeds that while the minute hand makes a full round of the face

every hour marking by the number of minute divisions passed

through since the beginning of the hour how many of the hour's

60 minutes have passed the hour hand makes — of a round. More-r 12

over the hour and the minute divisions begin together at the 12 or

o o'clock hour line and the 60 or o minute line, so that between

every adjoining two hour lines there are —x6o or 5 minute divi-

sions. Hence the minute hand moves at the rate of 1 minute divi-

sion a minute and the hour hand at the rate of -^-x$ or — minute
60 J

12

divisions a minute.

Let it be then at x minutes past // o'clock that the minute hand

is m minute divisions before the hour hand on the clock face. In

the ;tr minutes taken by the minute hand to move from the 12 o'clock

hour line to a place x minute divisions distant therefrom in the

direction of motion of the hands the hour hand moves over xx—
12

minute divisions. But at h o'clock the hour hand is distant from the

12 o'clock hour line hx$ minute divisions in the direction of the

hand's motion. Therefore at ;r minutes past // o'clock the hour hand

is /ixt+xx— minute divisions distant from the 12 o'clock line inD
12

the said direction.

. 1

.\ x= hx$+xx—Ym.

This holds just when any of the following holds:

x— /ix$+m+xx— ,

1 2L
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x—xx— = hx 5+m.
12

D

x(i
J

= //x5+w,

^=~^—-=(//x5+;«)x- (art. 1 16).

I12J

Thus making ;;/ o and // O, I, 2, ..., the hour and minute hands

are together at o minutes past o o'clock that is 12 o'clock, at

5— minutes past 1 o'clock, at 10 past 2, 16— past 3, 21—

past 4, 27-^ past 5, 32— past 6,
38-^ past 7, 43^ past 8, 49^

past 9, 54— past 10, 60 past 11 which is 12, 65— past 12 which

is 5— past 1, and so on.

The minute hand is 7 minute divisions before the hour hand at17 12
(ox 5 +7) xi

— or 7— past 12, at (3x5+7)x
— or 24 minutes past

3, and others.

Also the minute hand is 23 minute divisions behind the hour

hand just when 60—23 minute divisions before and therefore is so

at (nx5+37)x— or 100— minutes past 11 that is 40— past 12, at

(1 2x54*37) x
— or 105— minutes past 12 that is 45

— minutes past 1,

122 2
at (4x5+37)x— or 62— minutes past 4 that is 2— past 5, and

the rest.

And generally the minute hand is m minute divisions behind

12 12
the hour hand at {/iX5+(6o-m)}

— and hence at (//x5+ i2x5-;/*')x—

12
and at {(/M-i2)x5—m}x— minutes past h o'clock and therefore

12
also at (tix$—m')x

— minutes past Ji o'clock.

150. If in m grains of a mixture of two compounds that sub-

stances A, By form severally with a substance C there be n grains

of Cand A, B, enter into their compounds with C at the several
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rates of a, and of b, grains to the grain, to find how much there is

in the mixture of each of the substances A, B.

x
Let there be x grains of A. There are then -

grains of the com-

x
pound of A and C, .'. -(i—a) grains of C compounded with A,

n—(i—a)x a
.•. 11
—

(i—a) grains of C compounded with B, :. —
grains of

the compound of B and C, .\

x,
sn— (i-a)a J x

7 |-- = ///.

i—b a

And this holds just when any of the following does:

-ci-a)n a> J x
+- = m,

i—b i—b a

n xx i—a .
,

.

T~~h^—nT~~h =im
(
artI22

>

i—0 a a i—o

it fx x \—a\ 11 (x i—a x\ _
i—b \a a i—b) i-b \a i—b a) .

according as - is greater or less than 7 ,& a & a \—b

m

n x ( \—a\ 11 xfi—a \—7+- [
i 1 or —z

— —7-i )=mi-b a \ l-bj i-b a\i-b J

according as I is greater or less than —y ,

xf \—a\ 11 xfi—a \ 11 , ,- i 7 )=m 7 or - —7-1 =—-.—in (art. 145),
a\ i-b/ i-b a\i-b J i-b v Wl

m—2-? [ni
—1

—j\{}-b) mii-b)——Ai-b) . ,.x . - _ i-b \ i-b) K J

_
v ' \-b K '

_m(i-b)-ii
a

~
\—a~( i—a\, 1S

"

i-b-(i-a)
~
i—b+a—i

/ T\ I T\ 7—m 1—1}l K 1—b)
m(\—b)-n m{\-b)-n \-b \i-b J

K '

or
1—i+a—b a—b i—a

Y^b
< G3-*M

—j(i—b)—m(i—b) / r\ / 7\ , ,\\—b K ' v '

_ii-m{\ —b) _ 11—m
(
1 —b) _ 11—111

(
1 —b)

i-a-(i-b)
~
i-a+b-i

""

1—1+b-a
~

b—a

mil—b)— 11 11—111 ( 1 —b)x— —j; l—a or 7^ La.
a—a b—a
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X/r \
11- (i -a)

The number of grains of B in the mixture is —r— b and may

hence be found. But the number of grains of B may be got in the

same way as the number of grains of A above by simply putting

b where a is and a where b. Therefore by thus interchanging a

and b it follows at once that there are in the mixture either

n—ni
(
I -a) . in

(
I —a)—n , . c „

—,—-b or ——,—-— b grains of B.
a-b b-a to

If a = b the substances A and B cannot be distinguished from

one another and all that is then known is that either of them or

the two together make up m—n grains of the mixture.

151. If two liquids that undergo no change of bulk by mixing

weigh at the several rates per gallon of i+a and i+b times the

weight of a gallon of water to find how much must be taken of

them to make ;/ gallons of a mixture weighing at the rate per

gallon of \-\-c times the weight of a gallon of water, a being greater
than c and b less.

Let it be x gallons of the first liquid that must be taken. Then
11—x gallons of the other must be taken and since the liquids and
their mixture weigh severally x(i-j-a), (n—x)(i+b); n(i+c), water

gallon weights

(n-x)(i+b)+x(i+a) = n(i+c)

which happens exactly when severally,
—

ii(i+b)-x(i+b)+x(i+a) =ii(i+c),

x(i+a)-x(i+b)+ii(i+b) = ii(i+c),

x{i+a-(i+b)} =n(i+c)-ii(i+b),

x(i+a-b-i) = ii{i+c-(i+b)},

x(i-i+a-b) =n(i+c-b-i) = u(i-i+c-b),

_ n{c-b)X ~
a-b '

_ n(a-b) n{c-b) _ n(a-b)-u(c-b) _ ii{a-b-{c-b)\

a—b a-b a—b a—b

__ n(a-b+b-c) _ 11 (a—c)
a—b a-b

152. Arithmetical questions of the direct kind may likewise be

dealt with in this general symbolic way.
Thus if/ pounds be put out at simple interest at the yearly rate

of r pounds a pound in ;/ years 1 pound bears nr pounds interest and/
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pounds therefore pnr pounds, oxp pounds bears in I year/r pounds
interest and therefore in ;/ years npr pounds. Hence p pounds rises

in n years to p+pnr which =p(i+nr) pounds and the sum of money

which in n years rises to the amount of a pounds is pounds.

A debt of a pounds due n years hence may therefore be paid now

with
^ pounds reckoning simple interest at r pounds a pound a

year and the discount on the debt therefore is

a
a = a—a

i+nr i+nr

i / i \ (i+nr i \ i+*r— I— =a[ i
)

= a\ = a
-nr \ i+nr) \i+nr i+nrj i+nr

i—i+nr nr anr— a— = a = pounds.
i+nr i+nr i+nr

If the rate of interest be c pounds per cent, r the rate per pound

is c or Q'oic.
ioo

153. When money is at compound interest at the yearly rate of

r pounds a pound a sum of money is changed in a year at the rate

of i+r pounds a pound. Therefore 1 pound becomes at the end of

1 year i+r pounds, at the end of 2 years (1+r)
2
pounds, at the end

of 3 years (i+r)
2

(i+r) which (arts. 44, 108) = (i+r)
I+2 or (i+r)

3

pounds, at the end of 4 years (i+r)
3
(i+r) which =(i+r) I+3 or (i+r)

4

pounds, and generally at the end of n years (\+r)
n
pounds. Hence

in n years a sum of/ pounds is changed at the rate of (i+r)
H
pounds

a pound and therefore becomes p{i+r)
n

pounds. Wherefore the

present worth of a pounds due n years hence reckoning compound
interest at the rate of r pounds a pound a year, that is the sum of

money which at this rate of interest would in n years mount up to a

pounds, is rj pounds.

If the interest be due after each - of a year instead of after each
v

J

year but still at the rate of r pounds a pound simple interest a year

money changes at the rate of i+-r pounds a pound in - of a year

and therefore as before at the rate of (i-\
—

r)
v
pounds a pound in

1 year. Then p pounds becomes at the end of n years p{{i+ -r)
v
}

n

which (arts. 45, 108) =p(i+-r)
MV

pounds.
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154. If n men can singly do a work in diy da , d3 ,
. . . dnt days

severally, in how many days can they do it together ?

Taking each man to do an equal part of the work in every equal

part of the time he works the 1st man does -7 of the work in a day,

the 2nd -7, the 3rd -7 ,
. . . the wth -.-. Therefore working altoge-»2 d

3
dn

ther they do -> + -r+-jH Y-r of the work in a day and can
d

x
da d

3
dH

therefore do the whole work in days.ill 1
*

d, d9 d
3

dn

In like manner if two men can together do a work in d days

which one of them can do alone in d' days the other can do -.—
Tfd d

of the work by himself in one day and the whole in days.

~d~d'

155. If m men reap a acres in d days of h hours each, (1) how

many acres can m men reap in d' days of H hours each ? (2) how

many men are needed to reap a acres in d' days of K hours each ?

(3) in how many days of H hours each can m men reap a acres ?

and (4) how many hours a day must m' men work so as to reap
a acres in d' days ?

Taking every man to reap in every equal part of every hour of

every day an equal part of an acre,

since m men in d days of h hours each reap a acres,

1—am
I 1

dm
1 1 1

Jidm

,,l 1 1

ham
r,r,l I I

dh-f-.—andm

fJ,j,i 1 1md h-j-j—andm
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To reap d acres in d' days of Ji hours each men are

d'Ji ^-j—akdm

needed. Since if vi men reap d acres each of them reaps —,d acresF vi

4,*
in

it is in days of-// hours each that vi men can reap d
./ill
h-j-j

— a
/idm

acres. And lastly since if vi men reap in d' days #' acres I man

reaps in I day -y,—,d acres it is hours a day that m' menr J d m iii '

//<?;/z

must work for d' days to reap d acres.

156. At what mean rate in ounces the cubic foot does a frame-

work weigh made with cxt c2 ,...cM ,
cubic feet severally of n kinds of

material weighing at the several mean rates of uxt uat ...uH , ounces

the cubic foot ?

The whole bulk of material being c
x+ca-\ Ycn cubic feet and

the whole weight cjtg4*jtn-i Vcnun ounces the framework weighs

at the mean rate of —-— — (cj^+cjt^ \-cHu„) ounces the
^x+^2+ • • • +cm

cubic foot.

157. How many ounces the cubic foot does a compound weigh

composed of w
x ,
w2,...wny ounces severally of n substances weigh-

ing severally uti u2 ,...?in ,
ounces the cubic foot ?

The bulk of wf ounces of a substance weighing ut ounces the

iv
cubic foot being — cubic feet the bulk of all the n substances is

IV IV IV—i
-j
—

--\ 1-— cubic feet and if when change of bulk happens in

composition it be at the rate of k cubic feet the cubic foot the bulk

(7JU

IV IV \—
-\
—-

2

-l 1

—-)k cubic feet Also the weight
n

x u2 uj
of the compound, being the weight of all the substances composing

it, is w
x+wa-\: Ywn ounces. Hence the compound weighs

1

(wx+wa-{ \-zv„) ounces the cubic foot.

If no change of bulk happens in forming the compound k is 1.



95

GENERAL THEOREMS
158. There are theorems in Arithmetic of so general a kind and

of such common use as to rank only lower than the very Laws
of the science. The conditions fulfilled by the numbers found in

art. 146 and by the numbers that s and d there symbolize give two

theorems, to wit—(1) The greater of two numbers is half the sum

got by adding to, and the less half the remainder got by subtract-

ing from, the sum of the numbers their difference—(2) The greater
of two numbers is the sum got by adding to, and the less the

remainder got by subtracting from, half the sum of the numbers
half their difference. These theorems may be otherwise shown thus,

a being any, and b any not greater, number :
—

a is
f-xzjtf

and .'. = -
(b-b+a+a) = -

{a+b+a-b) = -
{
a+b+(a-b)\

= {a+b)+
1
-
(a-b). b is

(

~ x2
)b

and .-. = \ (a-a+b+b)
= - (a+b+b-a)

= l

2 {a+b-{a-b)}
=
\{a+b)-

l

-(a-b).

159. The sum of any number but 1 and its reciprocal is greater
than 2 by the product of the differences from 1 of the number and

the reciprocal. For if x be any number

x+- — 2—I—i+x+- =both 2+x—H 1 and 2-\ i+x— 1XX XX
and .'. according as x is not less or not greater than 1

= 2+
(*-i)-(*!-i)

°r =2+6-
i)-("H

=
2+\x-l-(x-l)

l

x

=
2-K*-,)(,-l)

nI-i^i

2+
(l-*)g.

160. If the excess of any number greater than 1 over its re-

ciprocal be divided by the sum of the number and 1 the quotient
is less than 1 by the number's reciprocal. For if x be any number

greater than 1

1 . t 11 /i 1 \ I / Nx— x-\-(i— i)
— x+i—x— -r+i- [-+ -X] x+i— -(\+x)X _

V ' X _ X X _ \X X ) _ X s '

X+l~ X+l X+l X+l X-\-l

_X+l X _ I—
X+l x+l

"
x'
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Also if the excess of any number greater than I over its re-

ciprocal be divided by the excess of the number over I the quotient
is greater than I by the number's reciprocal. For

x-- x-\+\— x—i+ i-x—
) x-i+~(x-i)X X \X Xj X

X—l X—I X—l X—I

*{x-i)
_X-l X K '

_ I

X— I X— I x'

161. The difference of the second powers of two numbers is

equal to the product of the sum and the difference of the numbers.
For if a, b, be any two numbers of which a is not the less

*_* - a2-ab+ab-b2 - f*-**K«*-*)
- (*^)*H*-b)b=(a-b){*±b).+

\a
2

-ab+(ba-b
2

)
= a(a-b)+b(a-b)= (a+b)(a-b).

Hence if any number (2a) be cut into two equal parts (a, a) and
into two unequal parts (a+b, a-b (art. 158)) the product of the un-

equal parts is less than the product of the equal parts by the

second power of the difference (b) between each of the equal and

either of the unequal parts.

Hence too of any three numbers (a—b, a, a+b) whereof the first

is less than the second and the second than the third by the same
difference (b) the product of the greatest and least is less than the

second power of the middle one by the second power of the com-

mon difference.

Moreover (art. 158) ^ =
jI(^+^)+i(^_^)ljI(^+3)-I^-^)|

and/.=^(^)j-{i(^)
162. The second power of the sum of two numbers is greater,

and the second power of their difference is less, than the sum of

their second powers by twice their product. For a, b, being any two

numbers such that a is not less than b

(a+by= a(a+b)+b(a+b) = a2

+ab+{ba+b
2

)
=a2+ab+ab+b2

= a2+b2+ab+ab = a2+b2

+(ab+ab) or a2+b2
+2ab.

(a-b)
2= a{a-b)-b(a-b) = a2

-ab-(ba-b
2

)
=a2-ab+b2-ab

= a2+b2-ab-ab = a2+b2

-(ab+ab) or a2+b2-2ab.

Hence ±{(a+b)
2

+{a-b)
2

}
= ±{a

2+b2

+2ab+(a
2+b2

-2ab)} = a2+b2

2 **

(art. 158). And -{(a+b)
3

-(a-b)
2 = ~{a

2+b2

+2ab-{a
2+b2

-2ab)} =2ab.
2, £
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.\ (a+b)
2

+(a-b)
2 = 2{a

2+b2

)
- 2a3+2£3

,

(a+b)
2

-(a-b)
2 = 2X2ab = (2x2)ab or 4^,

and .*. (art. 140) = \^(a+b)
I -\-{a-b)[ as in art. 161.

If a be cc
a and £ /3

3

|^(a

3

+^)|

3

-|i(a
3
-y3

3

)|

3

= a3
/3

3 =
(a/3)

3

and
^(a

3+^3

)j

3

=(^) 3

+^(a
3

-^)j

a

.

163. If O) b, c, be three numbers of which the sum of any two is

not less than the third (a+b—c) (c+a—b) (b+c—a) (a+b+c)
= 2i{bcy^cay+{aby}-{{a

2

y+{b
3

y+(c
i

y}.

For (a+b-c)(c+a-b)(b+c-a) (a+b+c)
= {(a-\-b-c)(a+c-b)}(b+c-a)(b+c+a) and .*.= either

[{a+(b-c)){a-(b-c)}]{{b+c)
2-a2

}
or [{

a-(c-b)){a+(c-b)}][(b+cy-a
2

}

= either {a
2

-{b-c)
2

}{b
2+c2+2bc-a2

)
or {a

2

-{c-b)
2

}(b
2+c2+2bc-a2

)

m
{
a*-(b

2+c2

-2bc)}{b
2+c2+2bc-a 2

)
-

[a
2

+2bc-(b
2+c2

)){b
2+c 2+2bc-a2

)

= {2bc+a
2

-(b
2+c2

)}{2bc+(b
2+c 2

)-a
2

}

= either [2bc+{a
2

-(b
2+c2

)}][2bc-[a
2
-{b

2+c2

)]\

or {2bc-{b
2+c2-a2

)}{2bc+{b
2+c2-a2

))

= either (2bc)
2

-{a
2

-(b
2+c 2

)}
2 or (2bc)

2

-(b
2+c2-a 2

)

2

= 2 2b2
c
2

-{(a
2
)

2

+(b
2+c2

)

2-2a2
(b

2+c1

)}

= 4^3

-[(^
3

)

3

+{(3
a

)

3

+(^
3

)

3+2^V 3

)-(2^
3+2^V3

)]

= 4^V
3

-{(^
3

)

3

+(^
3

)
3

+(^
3

)

3+23V3-2^3
<;
3-2^3

^}
= 4b

2c2+2a2b
2+2c 2a2-2b2

c
3
-{{a

2

)

2

+(b
2

y+(c
2

)

2

}

= +b
2
C 2-2b2

C
2+2C 2a2+2a2b2

-{(a
2

)

2

+(b
2

)

2

+(c
2

y}
= (4-2)(^)

3

+2(^)
3

+2(^)
3

-((^
3

)

3

+(^
3

)

3

+(^)
3

}

= 2((^)
3

+(^)
2

+(^)
3

)-{(^)
3

+(^
3

)

2+ (^
3

)

3

].

164. Def. A set of numbers determined one by one in order after

a fixed law is called a SERIES ; the several numbers

are called the Terms of the series, the first and last

terms the Extremes, and all the other terms the

Means.

165. Dcf. Numbers are said to be in ARITHMETICAL PROGRES-
SION when either every one but the first is greater
or every one but the first is less than the one next

before it by the same number called the COMMON
Difference.

7
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Let a be the first term of a series of numbers in arithmetical

progression and b the common difference.

If the numbers go on increasing the 2nd term is a-Vb, the

third term is a+b+b and .*. =a-\-(b-vb) that is a+2b, .'. the 4th term
— a+2b+b = a+(2b+b) that is a+^b, and if generally after the law

of the first 4 terms the zth term be operationally equivalent to

a+(i-i)b the next following term the (t+i)th = a+(z—i)b+b
= a+{(i—i)b+b] that is a+ib after the same law. This law .*. that

holds for the first 4 terms if it hold for any term whatever holds

for the next term following. It holds .*. for the 4+1 or 5th term .\

for the 5+1 or 6th term and so on to the end of the series. The
zth term .*. =a+(t—i)b.

But if the numbers go on decreasing the 2nd term is a—b, the

3rd term is a—b—b and .*. = a—(b+b) that is a—2b, :. the 4th
— a—2b-b — a—(b+2b) = a—{2b+b) that is a—3b, and if generally the

ith = a-(i-i)b the (*'+i)th
= a-{i-\)b-b =a-{b+(i-i)b]

= a—{(i-i)b+b] that is a—ib and follows the same law. This law .\

holds for the 5th term .*. for the 6th and so on throughout the series.

Hence in particular the n consecutive whole numbers 1,2, 3, ...«,

are severally equivalent operationally to 1, 1+1, 1+2, ... i+(«— 1),

whereof the z'th term is i+(z— 1) and = *— 1+1 that is i\ and the

same numbers in backward order are severally equivalent opera-

tionally to n, n—i, n—2, ... n—(n—i), whereof the z'th term is

n—{i—i) and =n-\-\—i—n—H-i. Wherefore if #, be the zth term of

any series of n numbers ux% u^ ... Umt the zth term counting back-

wards from the «th or last term as the first is u
ft_(t

-_z)
.

166. Of an arithmetical progression the sum of every two terms

equidistant from the beginning and the end is the same number,
and the sum of all the terms is equal to half the product made by
multiplying that number by the number expressing how many
terms there are.

Let a be the first term and b the common difference of a series

of n numbers uti uai u3 ,
... un ,

in arithmetical progression.

If the numbers increase (art. 165)

tt,
=

tf+(7-i)£ and un_(i_x)
= a-\-{n-(i-i)-i)b, :.

Ui+uH_{t_t) =a+(i-i)b+[a+{n-(i-i)-i}b] = a+(i-i)b-\-a+{n-i-(i-i)}b

= a+a+{(n-i)b-(t-i)b}+{t-i)b = 2a+(n-i)b-(i-i)b+(t-i)b
= 2a+(?i-i)b.

But if the numbers decrease (art. 165)

u, = a-(i-i)b and
«„_,,-.„

= a-{n-(i-i)-i)b, .\
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^H-^«_(t_r)=^— (2— 1)^+[^—{^— (^"— l)— i}^] =^r— (2— 1)^+^— {//— I—(£— i)}^

= a+a-(z-i)b-{(n-i)b-(i-i)b] = 2a-(i-i)b+(i-i)b-(n-i)b
= 2a—(n—i)b.

So that 0/f»«u4£jj is the same whichever of the numbers 1, 2, 3, ... ;/,

the number i is.

Moreover 2(wI+«,+«,H h?0 is

us+u9+u9+ • • • +*C+(*1+#,+*,+
' • •

+**) and .-.

= «,H +*„+*1+*.H— +«„ = M*i»+*.4*«m+*j+*»-+ +#»+*,

by commutation of the additions and taking the us in the order

the first of the one set and the last of the other then the 2nd of the

one and the 2nd last of the other then the 3rd and the 3rd last

and so on, =u
I-\-un+(u3+u„_ I)+(u3+un_a)+-' -+{un+u t)

= "i+tt,t_{t_ 1)+{u>+u„_li_I))+
• • • •

+(^-+w„_ (
,_ I) )

by what has just been shown, that is «(?^+«M_(,_ 1)).

.-. *f+*,+tf$+ . . .+un = - n{u^uH_(i_^.

167. The matter of arts. 165, 166, may be put to sundry uses such

for example as the following.

(1). I+2+3H \-n = -n(u+i). Thus the sum of 10000 terms of

the series 1, 2, 3, ... = -xiooooxioooi and .\ is 50005000.

The ;/th term of the series 1, 3, 5, . . .

= I+(//-l)x2 = I+(#X2-2) = #X2—2+1 =#X2+I-2 = «X2-(2-l)

that is 71x2-1. .'. the sum of n terms I+3+5H h(«x2-i)

= -;/(;/x2-i + i) =2x-;/
3 = (2x-W that is n2

.

Of the series 3, 4-, 6, . . . the 456th term = 3+(456-i)xi- and
2 2

is .*. 685-, also the sum of 456 terms = -x456x( 3+685-J and is .-.

2 2 \ 2/

I56978. 12 2
The 223rd term of 611, 608-, 605-, . . .

= 6ii-(223-i)x2-

and .-. is 19, .*. the sum of the first 223 terms = -x223x(i9+6n)

and .'. is 70245.

(2). To find m arithmetical means between a given numbers and

a given greater number a. If b be the common difference of the

7—2
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series of increasing numbers in arithmetical progression of which

the terms in order are a m numbers and a', since the last of the m
numbers is the (i+/#)th term and .'. a' the (i-f-/^4-i)th,

a' = a+(i+m+i-i)b and ,\ =a+{i+m+(i—i)}& that is a+(i+m)b.

Wherefore (i+m)b = a'—a, b = (a'—a). And v i-f;/z— i = i—i+m

the several means then = a+b, a-\-2b, . . . a+mb.
Thus to find 10 arithmetical means between 19 and 74;

I9+(i+io)£ = 74, b= —(74-19) that is 5, and the means .\ are 24,

29, 34, 39, 44, 49, 54, 59, 64, 69.

The thing may also be done by finding the common difference

of the series of decreasing numbers in arithmetical progression with

the terms in order a the means and a. Then a!—(i+;/z+i— \)b
= a.

(3). To find the series of numbers in arithmetical progression
whose zth term is u and (H-z')th u

i+i
„ The series must have a first

term a and a common difference b such that

either {
a+^~ l

)
b = "t and

or {
a-^~ 1 )^ - »< and

(tf+(z+z"- 1 )£
= k^, (#- (*+*'- 1

)
b = u

i+i
,

according as ut is less or greater than u^,. Of these alternative

pairs of conditions the former holds just when first

a = 11f- (z- \)b and then either zt
i+i

, = u— (z— 1 )b+(z— 1 +z ')
b

=
U;-(z-i)b+{(i-i)b+i'b} = u-(i-i)b+(i-i)b+i'b, i'b = u

i+i
,-u

if or b

=
-{Uz+z'—Ut)' And the latter alternative pair holds just when first
Z

a = ui+(i-i)b and then either ti
i+i

. = ui+(i— i)b-(z'+z-i)b
= ui+{z-i)b-{z'+(z-i)}b = z^+(z-i)b-{z'b+(z-i)b}
= Ui+{i-\)b-{i-i)b-i'b = zi^{(i-i)b-{i-i)b}-zb, z'b = u-u^.,

or b= l,(zi -zii+i).

Thus of the series of numbers in arithmetical progression
whose 20th term is 64 and 45th 139 the common difference is

———
(139—64) or 3 and the first term is 64—(20-i)x3 or 7;

45 20

hence the series is 7, 10, 13,

Again the series of numbers in arithmetical progression whose

15th term is 27-28 and 104th 6*8 1 has its common difference

(i04-i5
(2;

'28~6 '

8l)
)

°'2 3 its first term (27'28+(i5-i)xo-23) 30-5

and is itself 30-5, 30-27, 30-04, ....
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1 68. If Vi stand for a+ib

' * ' +^^+I^+2...^+r_3^+r_9^M+r_I

*v„^_9vu

(r+i)b
Since by the nature of subtraction (arts. 59, 103)

when a,/3, 7, £, ...are any numbers that give the statements meaning

=(?V V.l^^-tv .^+r_i)v«_i+{(v«_1
. .^^J^^-x-^-x. •^+,_>*_2)+

+{(^2-.0^+ -(^••^+x)
7;

x)+((^"^)^+x-(^x..^)^o)
=

(V„ . .tf^J (^w+r-^_x)+K_x • .*VJ (^«+r_x-^«_2)

+K_2..*v,JK+,_a-0+- • • •

+(*««*'#)(«w-«0«

But v v^+x-^= «+{/+(r+i)}^-(«+^) =flf+{i*+(r+i)^}-(«+^)
= a+i6+(r+i)b-(a+i6)=a+ib-(a+ib)+(r+i)b that is (r+i)£, and

;/—k+r+i = n+r+i—k = n+r—(k—\) \( k be not less than 1,

(r-f 1
)
£ = v

nJr
-vn_x

= v^r_-vn_,
= ^+r_2-^„_3

= .... = vr+ -v
and the above .'.

= ^'»'^n+r.1+^t-r-'Vn+r_2+VM_2 ..V„+r_3^-"
• +*, . . Vr) (r+l)Z>.

and /. also *vxvn.>vr̂ rjpr̂ &r.vrjvrvr̂ ^pA..tf&4JUr^+

When r is 1 this gives

«+«+ («+2*)+(«+3*)+. • •

+{«+(«-!)*) =
{«Hn-i)b}{«+nb)-a(a+b)

_ {a+{nb-b)}a+{a+{n-\)b)nb-{a
2

+ab)and .-. -
2b

_ (a-\-nb—b)a+{a+{n—\)b)nb—ab—a
2

~
2b

_ a2+ {11b)a—ba+[a+(n— 1
) b)nb-ab—a

2

~
2~b

_ a2—a 2

+nba+{a+(n—\)b}nbr-ba—ab _ nab+n{a+(n—i)b}b—(ab+ab)
2b 2b

_ n[a+{a+(n—i)b}]b—2ab_ n{a+a+(n—\)b}b—ax2b
2b 2b

__ [n{2a+(7i-\)b\\b ax2b _ ii{2a+{n-i)b)
2b 2b 2
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Wherefore a+{a+b)+{a+2b)+ • • • +{a+(n-\)b)

= a+b+(a+2b)+-> • +{a+(n-\)b)+a =
n

\
2a+ \

n" 1
) 1 _a+a

= n{2a+(n-*)t} and >%
(
art I24)

= ln
[
2a+{n-i)b} as in art. 166.

2 2

It .*. also still further = -;/x2^H—n(n— i)b
— -x2na+\-n(n— i)\b

/i \ n(n—i) , ., , . n[n—i) ,= [-X2 \na+-± -£ that is na+-± J
-b.

\2 J 2 2

Again when a is o and b i i.2.3...(r—2) (r— 1)7+2.3.4.. .(r— i)r(r+i)+

+«(«+ 1
) («+2) . . . («+r-3) (*+r-2) (*+r- 1

)

A
1 of wh

n(n+l)

!(«+l)(»f2)...(«-K-3)(»^l)(8+r) f wh;ch ;cu]ar cases are
7+1

r

1+2+34 •+*

. x «(«+l)(«+2)
1.2+2.3+34+.. • +*(*+l) = -*

^ '-,

, w , «(«+l)(«+2)(«+3)
I.2.3+2.3.4+3.45+ • • • +«(«+l)(«+2) = -*

_

A A ^
•

By help of these theorems simple expressions may be found

operationally equivalent to the sums of the terms of several series.

Thus

a+(a+b)+{a+2b)+ • • •

+{a+(n-i)b] = a+a+b+a+2b+ • • • +a+(n-i)b
= a+a+a+ • • +a+b+2b+ \-{n-i)b = na+{b+2b+ • • +(«— 1)£}

, . ::. . (n—i)n T n(n—i).= na+{i+2+---+(n-i)}b and ,\ = na+ K- >—b = na+-^ J
-b

2 2

as was above found.

Again y i
2 =

i{i+(i—i))
= i(i+i—i) = i(i+i)-i

i
a+2 2

+3
3
+...+;/

a = i.2-i+(2\3-2)+(34-3)+...+{»(«+i)-«} and .-.

= 1.2-1+2.3-2+3.4-3+. • • +n(n+\)-n
m 1.2+2.3+3.4+.. * +n{n+i)-n 3-2-1

e

'

s i \ n(n+i)(n+2) n(n+i)- 1.2+2.3+3.4+. . • +«(»+i)-(i+2+3+- • +») =——:
—K

-^—
L

3 2

_ {«(w+i)(«+2)}x2 {«(«+i)}x3 _ «(«+i)(«+2)x2—«(«+i)x3
3x2 2x3 6

_ n(n+ 1 )(«x2+2
a—

3) _ ;/(??+i){ftX2+(4-3)} _ n(n+i)(2n+i)
6

~
6

~
6

*

Once more y t*-m (i+i)i—i= (z+i)(z+2-2)—(z+1-1)
=

(*+l)(z+2)-(z+l)x2+I--(z+l) = (*+i)(*+2 )+I-(/+l)-(*+l)x2
= (t+l){t+2)+ I-[(i+l)x2+(j+l)} = (z+l)(z+2)+ I-(*+l)(2+l)
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^ = ^(t+i)(i+2)+i-(i+i)x3} = t(i+i)(z+2)+i-i(i+i)x$ and .-.

i3+23+3
3+- • • +?/3 - i.2.3+i-i.2.3+(2.34+2-2.3.3)+(34.5+3-3-4-3)+

• • • +{«(«+i)(«+2)+«-«(«+i)x3}
= 1. 2.3+1-1. 2.3+2.3.4+2-2.3.3+ •••+«(«+ 1 )(7/+2)+«-«(»+l)x 3

= 1.2.3+2.3.4+-
• •

+;/(«+i)(;/+2)+ I+2+. • • +f$

-;/(;/+i)x3 2.3.3-1.2.3

= 1.2.3+2.3.4+
• • • +«(;/+i)(«+2)+(i+2+- • • +«)

-[(I.2)x3+(2.3)X3+-
• •

+{«(«+i)}x3]

= 1. 2.3+2.3.4+. • •

+«(;/+i)(«+2)+(l+2+. • • +«)

-{1.2+2.3+ •••+»(*+0}x3

= «(«+i) (»+2)(»+3) «(;<+!) «(;/+i)(«+2)

4
"

2 3
3

^ ;/(«+i)(;/+2)(«+3H{«(«+i)}x2-{«(«+i)(«+2)}x4

4

^ «(«+!) {(«+2)(;/+3)+2-(;/+2)x4}

4

^ »(^+i){«(;/+3)+2(«+3)+2-(;/x4+2X4)}

4

_ ^(;/+i){;/
a

+;/x3+(2;?+2.3)+2-8-4^}

4

_ «(^+i)(^
3
+3^+2;/+6+2-8-4;Q _ n(n+i)(n*+sn+2n-4n+6+2-8)

4 4

_ ;/(;/+i){«f+(3«+2»-4«)+(6+2-8)} = 7zQ+i ){;;*+ (3+2-4);^

4 4

_ {»(«+i)}(»»+«) = {»(«+ i)}
a

= [n(n+i)Y
4 2 a

(
2 J"*

169. If r be any whole number greater than 1 and v,-stand for

a+ib

III JL_L1 I ll...JLU_ 4.1-11...I _L JL+

III III
•••+•

^n Vn+ i
vM+a VH+r_3 t/H+r_3 VH+r_t

]_}_]_
II J I_ _J I_

(r-i)b

••' v^_ir-vi
=

a+{i^-{r-i))b-{a-\-ib)
= a+{ib+(r-i)b}-{a+ib)

= a+ib+{r-i)b-{a+ib) m a+ib-(a+zb)+(r-i)b,

(r-i)b = vr-vt
= v

rjfX
-v%

= v^rfi = • • • = Vn+r-r-Vn and . \
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(

!I..._L_L+II...I_L+IL...i-i- + v

«Vft vrj,Vr ».», vtv^, »,«; v
r+1

vr+,
\r-i)b

iii / i\i i i i i / i\i i
,

'

v "v v
V"+r-1 \ nv)v "v

n+i " n+r-

I_ J £ £ I I _T_ _I_ J_
I

»»**,* *."*>, v"*>* v
3
"7>r+1 v

9
"vr4S

'

I I I I I

I I

vx v9 vr_t v„+1
vn^vn+r_x

Whence the proposition at once follows.

If a be o and b I there is when r is 2

it n.it i i ^ i_
12 23 34

'

nn+i
l

n+i

, . 11+1 1 n+i-i 7i+(i-i) - .. 71 _.„and .'. = — =—— =—^-—'- that is . When r is 3
11+1 7Z+1 11+1 71+1 71+1

J

iii
IH I I I III I _I I _ 2 71+1 71+2

123 234 345
+ " ,+

^;7Ti;2+2~ 2

(71+1) (71+2) 2 f (;H-i)(;*+2)-2|

and . _ 2{7l+l)(ll+2) {(n+2)(n+i)}x2 = j 2(«+l)(»+2) j

2 2

_ «(«4-2)+(«+2)—2 _ ;/
2+;/x2+;/+2-2 _ 7Z

2+ (2 ;*+;*)+ (2-2)

2X2(^+l)(//+2) ~(2X2)(;/+l)(;?+2)
_

4(«+l)(«+2)

_ t>
9

+3n _ (n+3)n n(n+j)

4(71+1) (71+2)

~
4(7l+l) (71+2)

~
4(7l+l)(7l+2)

'
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170. Dcf. Numbers are said to be in GEOMETRICAL PROGRES-
SION when the division of every one but the first by
the one next before it gives for quotient the same
number called the COMMON QUOTIENT.

Let a be the first term and c the common quotient of a series of

numbers in geometrical progression.

The second term then by definition is ca, the third term likewise

is cca and .*. = {cc)a that is c*a, .'. the 4th term = cc
2a = (cc

2

)a that is

c3a, and if generally after the law of the first 4 terms the zth term

be operationally equivalent to c^a the next following term the

(i+\)th.
= cc

i~ la= (c(?~
l

)a that is c
{a after the same law. Hence this

law which holds for the first 4 terms if it hold for any term what-

ever holds for the next following term. It holds .-. for the (4+i)th
or 5th term .*. for the (5+i)th or 6th and so on throughout. Any
term the zth .*. ^c^a.

Hence if the series be usf u2 , u3 ,
... unt

ut+vB+u9+ . . . +Uft
= a+ca+c2

a-\ \-c
M
~'a and .-. also

= {i+c+c
2+-"+c,t

~
I

)a.

Now c
i+I = c

i-c t

'+c
i+I = c

i
+c

i+I-ci= c
t

+(c
I+t-c i

)
if c

I+i be not less

than c\ = c
i

-\-{c
ic-c i

)=c
i

-\-c\c—\) if c be not less than 1. .\ if c be not

less than 1

= c"-s+c
n
-s(c-i)+c

n-2
(c-\)+c

n- l

(c-i)

= c+c(c-i)+c
2

(c-i)+..-+c"-
2

(c-i)+c
h- i

(c-i)

= i+(c-i)+c(c-i)+c?(c-i)+. • • +cn~I

(c-i) t

c
n—l

and if c be greater than 1 — \-\-c-\-c
2
-\ \-c"~\

Again c< = c
i+I-ci+1

+c<^c^+c'-c 1*'=c*1

+{€<-€*c) if cfc be not

greater than c\ =ci+I

+c\i-c) if c be not greater than 1. .'. if c be

not greater than 1

i=c+(i-c)
= c 2

+c(i-c)+(i-c)
= c*+c

2

(i-c)+c(i -c)+(i-c)

= c"-*+c"-
2

(i-c)+..-+c(i-c)+(i-c)
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w» = c
n+c n- l

(i-c)+c
n-2

{i-c)+.
•• +(i-c)-c

H

= c^cn^n-1 (
w

)+ . . . + (
x_f

)
=

(^-i+^«-3+ . . . + x
) (

j _^)

I—£*
and if <: be less than I = c

n~ I
-{-c

n~2+ • . • +c+ 1 = I+c+c 2+ • - • +c'
i—c

If c be I i-\-c+c
a
-\ Yc

n~l
is ;z. Hence on the whole

c
n-i

Ut+Ut+uA- - • - +*«_,+*,

i-c

a if c be greater than I

if c be i

a if c be less than i.

c—i

na if c be I

I—er*"

171. The conclusions of art. 170 may be put to such uses as the

following :
—

2
n

1

(1). i+2+2 2
4 \-2

H~ l — which is 2n— 1, that is the sum of
x ' 2—1

any number of consecutive terms of the series 1, 2, 2 3
, ... beginning

with the first term is less by 1 than the term next following these.

Thus a horse if sold at 1 farthing for the 1st of the 32 nails

fastening his shoes, 2 farthings for the 2nd, 4 for the 3rd, and so

on doubling each new time, would bring i+2+2 3
H h-2

3a_I
farthings

23
2

1 23°X2 2
I I

and.*.— pence which = = 230—
. Since 2 10

is 1024
4

r
4 4 4

and 23* IO =
(2

10

)
3
,
23°= (1024)3 and .-. is 1073741824. All the far-

things amount to 4473924/. 5.9. 3-*/.

To give 1 grain of corn for the 1st of the 64 squares of a chess

board, 2 grains for the 2nd, 4 for the 3rd, and generally 2*
_I

grains

for the zth, there would be needed in all 2 64— 1 grains. Since

26xio+4:=24(2
IO

)3^
=

24((2
IO

)

2

}3
and 2 10

is greater than 1000, this is

more than 16 trillions of grains which reckoning at the rate of

5000000 grains to the quarter of corn comes to more than 3 billions

of quarters and taking the whole population of the world to be
2000000000 would be more than enough to afford every individual

1500 quarters.

<* \4U1+-+
©-H;+i+e)'+-*©'

1
1_

S)"
I_

(S" n\"= - ~- and .-. (art 1 26)
= -—~— that is

i-(-J
. This result

may be reached more directly. For if from a magnitude its - be
2
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cut off its other - is left. Hence if from the - left its - be cut off
2 22

the new - left is (-)
of the whole magnitude. Hence again if from

the
3

1 /i\ 3

so left its - be cut off there is then left - of the whole.
2 \2j

And so on. Therefore after the ;/th halving (-)
of the whole mag-

nitude is left and the parts cut off are together therefore both

-+(-) H H-) and I—
(-)

of the magnitude.

Likewise more generally

u u jv_ u f v V u
f

v Y~ l

_ ( v y
u+v u+v u+v u+v\u+v) u+v\u+v) \it+v)

'

(3). An annuity of a pounds to be entered on m years hence and

to last ;/ years thenceforth is (art. 153) now worth in pounds
a a a a

,+- ;+••• +
(i+r)"

,+1 '

(i+r)
w+2 '

(i+r)
w+3 ' '

(i+r)'

reckoning money at compound interest at the yearly rate of r

pounds a pound, and since -. w = #t r,=a( J
is thereforeF *

(i+r)* (1-hr)
1

\i+rj

operationally equivalent to

•ur^r*--mi
JL(J_Y

+1
/ 1

y/
1 y

+i
f 1

y"Y
1 y*

1

)

i+r\i+r)
+
\T+r)\i+r) .

+ *

\l+r/ \i+r) J-«{(£)
+

\i+r

G
1 \

m*-

Tr)
=U

i+r

(1

I-

+rJ I

i+r

i+r
\i+r)

\i+r)

(£)-^<mv
i+r-i\ \i+rj )\i+rj i-i+r\\i+rj \i+rj \i+rj

- a
\{

! r f
r v

+

1 = a
- - — v^ w

r\\i+r) \i+r) J r(i+r)
m

r(\+r)
m*n

~~

(i+r)
m

(i+r)
n
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The same result may be got thus:—It is - pounds that (art. 15 2)

yields a pounds yearly interest at the rate of r pounds a pound
and therefore the present worth of a perpetual annuity of a pounds

to be entered on m years hence is . ^ . pounds. But the worth of

this annuity is made up of two parts the one the worth of the first

n payments and the other the worth of all the after payments.

The latter part is

(i+r)'
pounds the worth of a perpetual annuity

of a pounds to be entered on m+n years hence and therefore

the former part is pounds.
(i+rT (i+r)'

(4). A number denoted decimally by a knot of digits having its

last digit in the ath decimal place and which as a separate row

with its last digit the unit's digit would denote a whole number a

followed by n knots all alike of /3 digits each and each of which as

a separate row with its last digit the unit's digit would denote a

whole number b is (art. 136) operationally equivalent to

t standing for 10 and .'.

4*
1—

««

"-*MO)

1 a
±Jk

fr\fi-P

^1

afi+b—a

i\P)
n

b

/a(^-i)

afl+b—a

(^-i)/
a

(fi-i)P (P-i)t* (fi-i)P

iyi* b_
t) 1 (?-i)t«-
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As (art. 170) /0-1 = t-i+t(t-i)+t
a

(t-i)+> • +^'(1-1) and .\

= (/-i)^
_1

+(V-i)/r3+- • •

+(t-i)t+{t-i) (^-i)/» is denoted by a row

made up of ft 9s and a os. Also #/£+£ = the whole number denoted

by the row made up of the knot of digits which as a separate row

would denote a and the knot which as a separate row would

denote b.

Thus the number denoted by 4273681 681...68 1 with the knot

of digits 681 written n times

= 427368i-4273_
( }

681

(iooo-i)xioo
v '

(IOOO— i)xioo

4269408 , s _ 681= -——
(o-ooiV'x

—
.

99900
v '

99900
The number o -

o5959...59 with the digits 59 written n times

= i9_
(0

.0I y.x iSL.
990

V '
990

And 0-999...9 witn 9 written n times = 1— (o'l)".

172. Prop. A number may be taken so great that its reciprocal is

less than any given number however small. A nd a

number may be taken so small that its reciprocal is

greater than any given number however great.

Let k be any given number however small. Of the magnitude

expressed numerically by k in reference to the unit magnitude a

multiple may (art. 133) be taken greater than the unit magnitude.
Let m be the whole number expressing the multiple so taken and

let - be any simple fraction greater than m. Since then m times

the magnitude expressed by k is greater than the unit the magni-

tude expressed by k (art.91) is greater than — of the unit, in other

words — is less than k. Moreover v - is greater than m whichm v
&

inv 1

(art. 98) is — fi (art. 100) is greater than mv .'. (art.91)
— p is

greater than — mv which (art. 108) is (-mjv that is v .'. (art. 115)

W.

I

is greater than - that is (arts. 1 14, 1 1 1)
— is greater than

[a fju
m

'uch more .*. (art. 9) is k greater than —-
.

®
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Again let a be any given number however great Of the unit

magnitude a multiple may be taken (art. 133) greater than the

magnitude expressed in reference to the unit magnitude by a. Let

this multiple be expressed by the whole number n. Then n is

n I

greater than a and V — (art. 11 6)
=—- the reciprocal of -is.*.

-n
n ©

greater than a. Also if - be any simple fraction less than - or its

equivalent
—

, (art. 100) v is greater than up :. (art. 1 15)
- or (art.i 1 1)

71LL
JUL

is greater than n, and much greater .*. is —- than a.

173. PROP. Of any giveii number greater by however little than 1

a power may be taken greater than any given number

however great. And of any given number less by

however little than 1 a power may be taken less than

any given number Jiowever small.

If i+k be any given number greater than 1 (art. 170)

V I+/c-l = I-I+k (l+/c)
n-I = {l+(l+/c)+{l+tc)

2+' • •

+(l+K)
n~1

}K.

Any power of i+/e is .*. greater than 1. /. (arts. II, 12)

i+(i+k)+(i+k)
9

+--+(i+/c)'™ is greater than n. And .\ (art. 113)

(i+k)
w— 1 is greater than nic. But (art. 133) ;/ may be taken so

great a whole number that iik is greater than any given number.

Therefore n may be taken so great that (i+k)"—i and much more

(i+*)* is greater than any given number.

Again if 1—k be any given number less than I

l-K I

V I-/C=
;

= (i-

(i-tf) 1+
l-K V ' l-K

But by what has just been shown n may be taken so great as to

make f iH———J greater than any given number and .:. (art. 172) n

may be taken so great as to make or the operational

equivalent (1—k)
h
less than any given number.

174. From arts. 172, 173, and the several operational equivalents
found for the sums of the terms of some of the series in arts. 169,

'""I^JW
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171, it follows that the sum of the terms of a series may become
ever nearer and nearer to some fixed number when ever more and
more terms are taken and may at length when a great enough
number of terms are taken become nearer to that fixed number
than by any given number whatever. Since (art. 169)

I 1 1 1 1 1 11 1 ,

'

K ,

1 1 1 1

— = 1 — and (art. 172) n may be taken so
12 23 34 nn+i n+i v ' ' J

great that —— is less than any given number however small so

many terms may be taken of the series — , --, — as to
12' 23' 34'

make their sum although always less than 1 yet less than 1 only by
a number less than any given number however small. That the

sum of the terms of this series becomes thus endlessly near to 1 as

the number of the terms becomes endlessly great is written shortly

II 11 11

12 23 34
In like manner that (art. 171) there is no end to the nearness to

which —n~) +(~ H n~) may ^e made equal to 1 by taking

n great enough is written —H
-J +(-) H = I. With the like mean-

I—cn 1 c
n

c
n

ing too (art. 170) when c is less than 1
•• = and

** v J l—C l—C \—c \—c

may by taking n great enough be made less than any given num-

ber k to wit by making c
n
less than k(i—c), i+c+c 2+c3

-\
=

;

)

#

999 with endless 9s (art. 171) = 1; 4273681 681 681 the knot

4269408
)8i being repeated without end (art. 171) =

99900

NOMIC PROCESSES

175. Def. A symbolized product of which one factor is some

power x
n of a number x and no other factor has x in

it at all is called a MONONOMIC EXPRESSION or

MONONOME in respect of, in reference to, or in, x.

This product being, either itself, or by the commu-

tation and colligation laws of multiplications opera-

tionally equivalent to, the product made by multi-

plying xH
either by or into the product of all the

other factors, the product of all the factors into
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which x does not enter is called the Coefficient

of **. Also the degree of the power x n
is called

the Degree of the mononome.

Although an expression a into which x does not enter is not by
itself a mononome in ;tryet in relation to the mononomes ax, ax

2
,..,

xa, x 2
a,... it must be held to be so; it may also as in arts. 57, 135,

139, be taken to be ax° or x°a in relation to x.

Since xn
is at once xn

xi, xn
xixi,... ixx M

, ixixxn
,... a simple

power ofx comes straight under the definition.

Def. The symbolized result of an addition or additions, of a

subtraction or subtractions, or of one or more additions

and one or more subtractions any how mixed, when

the numbers operated with in their written order

are mononomes in x of ever higher and higher de-

grees or of ever lower and lower is called a Polyno-

MIC EXPRESSION or POLYNOME in x. The mononomes
in order operated with are called the TERMS in order

of the polynome. A polynome's DEGREE is the degree
of its term of highest degree. And the RANGE OF THE

Powers, the Power Range, or the Range, of a

polynome in x is the number of terms in that series of

successive powers of x of which the first term is the

lowest power of x in the polynome and the last the

highest.

Ifpoi px% p2) ...pn) be the coefficients of successive powers of x
in the several terms and ± stand for "+ or — "

a polynome of the

;/th degree in ascending powers of x either is or is operationally

equivalent to

A±A*±A*3

±.--±A^
W or p ±xpi±x*j>2±...±xyn ,

and a polynome of the ;/th degree in descending powers oix either

is or is operationally equivalent to

p*f±ps™±pjr~
%

± • • ±PnJ*±p« or xy ±x
n
-%±x»-*p2± . . . ±xpn_±pn.

If the lowest power of x in a polynome be x™ and the highest
xn the range of the polynome is the number of terms in the series

x™, xm+
\ xm+

% ...x
n
, and if this number be i

m-h(i—i)'=n and .*. i = n — m+i.

176. Def. A mononome in each of any symbolized numbers.^,
x2,...xr , with jt£», x"*,...x?

r
,
the factors into which

alone xx , x2 , ...xr , severally enter is called a MONO-
NOME of the (« x+«a+ • • • +^)th Degree in xu xa ,...xr ,
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and the product of all the other factors is called the

Coefficient of x T

J
r
...xl^x^. Mononomes in the

same symbolized numbers are called HOMOGENEOUS
when of the same degree in those numbers jointly,

and Like when of the same degree in each of those

numbers separately.

Thus 4x3
, 2(7—2a)x

2

y, ^bxy
2
, $(a+ b-6c)a

2

y3
, are homogeneous

mononomes of the 3rd degree in x, y, and no two of them are like

mononomes in x,y. Again qa
2
bc*, yx

2a 2bc3
, (2x—$x

i

)a
2bc3

f being all of

the 2nd degree in a of the 1st in b and of the 3rd in c, are like

mononomes in a, b, c. Like mononomes are the same either in

everything or in everything but the coefficients.

Def. The symbolized result of one or more operations of addi-

tion, subtraction, or addition and subtraction, with mo-

nonomes, every two of them unlike, in several numbers

xx , x?}
...xrf in the order of ascent or descent of their

degrees in each and all of those numbers, is called a

POLYNOME in xx% x2 ,...xr . The mononomes are called

the Terms, and the degree of the term or terms of

highest degree is called the DEGREE, of the polynome.
A polynome is said to be HOMOGENEOUS of which all

the terms are homogeneous. That term of a polynome
in x^ x3 ,...xr ,

in which the powers of xiy x3 ,
...xr ,

sever-

ally ax$x?\x?\i..x?
r
4 is distinguished from every other

term by calling it the term IN x" r ...x
7

J2x" x
.

Since a polynome in descending powers of a with all terms pos-

sible has terms in order in a 1, that is in a 1 a
,
if of the 1st degree,

in a 2 a 1 if of the 2nd, in a3 a 2 a 1 if of the 3rd, and so on a

polynome in b, a, with all terms possible arranged in descending

powers of b primarily and in descending powers of a secondarily
has terms in order in b a 1 if of the 1st degree, in b2 ba b a2 a 1 if

of the 2nd, in b3 b2a b
2 ba2 ba b a? a 2 a 1 if of the 3rd, and so on.

Hence a polynome in c, b, a, with all possible terms written in the

order of descending powers of c as a 1st principle of arrangement

descending powers of b as a 2nd and descending powers of a as

a 3rd has terms in order if of the 1st degree in c b a 1, if of the 2nd

in c
2 cb ca c b2 ba b a 2 a 1, if of the 3rd in c3 c

2b c
2a c

2 cb2 cba cb ca2

ca c b3 b2a b2 ba2 ba b a3 a2 a 1, and so on. Hence too in like manner

may the order be found of the terms arranged after the like laws

of polynomes in 4 or more symbolized numbers.

8
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If the polynomes be in ascending instead of descending powers
of their several symbolized numbers of reference while these num-

bers bear the same rank to one another in the arrangement the

order of the terms is exactly reversed. Thus a polynome of the 4th

degree in ascending powers of a, b, c, with a ranking before b and b

before c has all the terms in order that it can have in 1 c c2
c3 e4 b

be be2
,
be3 b 2 b2

e b 2e
2 b3 b3c b* a ac ac2 ac3 ab abc abc2 ab2 ab2c ab3 a2 a2

c

a2
c
2 a2

b a2be a2b2 a3 a3c a3b a4
.

Polynomes may be in ascending powers of some of the numbers

of reference and descending powers of the rest. Thus a polynome
of the 3rd degree in x, y, a, b, in descending powers of x and sub-

ordinately ofy and ascending powers of a and subordinately of b

has all its possible terms in order in x3 x2y x 2 bx 2 ax 2

xy
2
xy bxy

axy x bx b2x ax abx a 2x y3 y
3

by
2

ay
2

y by b2

y ay aby a2

y I b b2 b3 a

ab ab2 a2 a2b a3
.

Polynomes may further be in ascending or descending degrees

of their reference numbers jointly and then in each set of homo-

geneous terms the order of the terms may be either as before in

ascending or descending powers of each and all of the reference

numbers or after some law of symmetry by which when the refer-

ence numbers are taken in a certain order in an endless round with

the first following the last and every other the one before it those

terms follow one another in order that are in the same powers of

such of the reference numbers as hold severally the same relative

situations to one another in the round. Thus of a polynome of the

2d degree in descending powers of a, b, c, d, all the possible terms

in order are in a2 ab ac ad b2 be bd c2 cd d2 a b c d 1 if in each homo-

geneous set the terms are in descending powers first of all in a next

in b then in c and last in d, but by a symmetric arrangement in

each homogeneous set the terms in order are in a2 b2 c2 d2 ab be cd

da ac bd a b c d 1. Again all the terms in order that there can be

in a polynome of the 3rd degree in ascending powers of x,yy taking

each homogeneous set of terms in ascending powers of y as the

primary number of reference and in ascending powers of x as the

secondary are either unsymmetrically in 1 xy x2

xyy2 x3 x2

y xy
2

y3

or symmetrically in 1 xy x2y2

xy x3 y3 x2

y xy
2

.

177. Since a polynome of the rth degree in a single symbolized
numbers may have terms in 1 x x2

... x r and can have no more it

has at most r+i terms.

Hence a polynome of the rth degree in two symbolized num-
bers one of them x has at most 1 term in xr

,
2 terms in x*" 1

, 3 in
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x^2
,
... r in x, and r+i free from x or in x°. The greatest number of

terms it can have is therefore I+2+3H h(r+i) which (art. 1 68)

= (r+i)(r+2)
2

Hence the greatest possible number of terms of a polynome
of the rth degree in 3 symbolized numbers of which one is x is

1.2 . „ 2.3 . ^ r(r+i) . (r+i)(r+2) . . ,— in ** —2 in x^\ . . . V .T .
J in ^,

v v
in ;r° or 1, and2.2 2 2

.*. in all

1.2 2.3 3.4 (r+ i)(^+2 ) i.2+2.3+..+(r+l)(r+2)

'(r+i)(r+2)(r+3))

-(art.n8)
(r+l)^2)(^3)

2 2.3

And if generally after the law of polynomes in 1, 2, or 3, sym-
bolized numbers the greatest number of terms that a polynome
of the rth degree in any number ;/ of symbolized numbers can

have be

(r+i)(r+2) (r+s) ...(r+11-2) (r+«-i)(r+;Q
i.2%3 ...(#—2)(«—i)«

the greatest number that one in ;/+i symbolized numbers can have

must then in like manner be

\.2..(n-\)n 2.3. .»(«+!) (r+i)(r+2)..(r+n-i)(r+n)

\.2..{n—i)n i.2..(n-i)n i.2..(n-\)n

_ i.2..(n-i)n+2.3..n(/i+i)+- . •+(r+i)(r+2)..(r+n—i)(r+n)

i.2..(n—i)n
'

(r+i)(r+2)...(r+n-i)(r+n)(r+n+i) }

n+i I

i.2...{n—i)n

= (r+ 1
) (r+2) . . . (r+n- 1

) (r+n) (r+n+ 1 )

{i.2...(«— i)#}(«+i)

(r+ 1
) (r+2) (r+3) • • - (r+n-2) (r+n- 1 ) (y+;/) (r+;/+ 1 )

I.2.3...(»—2)(«— l)«(«+l)

which is after the same law. The law is .*. true for 4 symbolized

numbers, .*. for 5, and so on for ever.

The greatest number of terms of a polynome of the rth degree
in n symbolized numbers being thus

1.2. ..(;/—l)n

8—2
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\(r+i)(r+2)...(r+n-i)(r+n)}i.2...(r-2)(r-i)r

{i.2...(n-\)n)\.2...(r-2){r—i)r

_ {i.2...(r-i)r}r(+i)...(r+n-i)(r+n)

{i.2...(r—i)r}i.2...(n—i)n

i.2.3...r(r+i)...(r+n—2)(r+n—i)(r+n)~
{1.2.3... (r-2)(r-i)r} 1.2.3... (n-2)(n-i)n

1.2.3. . . (n+r—2) (n+r—i)(n+r)~
{1.2.3... (n—2) [n-i)n] 1.2.3... {r-2){r-\)r

and .*. besides in the same way

_ (n+i)(n+2) (n+$) . . . (n+r-2) (n+r—i)(n+r)
1. 2.3... (r—2) (r—i)r

It hence comes out that the greatest number possible of the

terms is the same for a polynome of the rth degree in n sym-
bolized numbers and for a polynome of the ;zth degree in r sym-
bolized numbers.

Moreover since a mononome of the rth degree in n symbolized

numbers if of the z'th degree in one of these numbers must be of

the (r-i)th degree in the other n—i the number of all the terms

that any homogeneous polynome of the rth degree in n symbolized

numbers can have, which is just the number of all the unlike

mononomes there can be of the rth degree in n symbolized num-

bers, is the same as the number of all the terms that any polynome
of the rth degree in n—\ symbolized numbers can have and there-

fore is

n(n+i)(n-\-2) . . . (n+r—3) (u+r-2) (n+r—i)

1.2.3. ..(r-2)(r-i)r

178. Def. When n is a whole number the symbol \n stands for

i.2.3...(n-2)(n-l)n and is read "n FACTORIAL".

The greatest possible number of terms then of a polynome of

the rth degree in n symbolized numbers is any of the operational

eauivalents
(^+ I )(^+2)-(^+^-i)(r+;Q (n+i)(n+2)...(n+r-i)(n+r)

4
[n

'

\r

\r+n \n-\-r——
,
——

. And the greatest possible number of unlike mono-

nomes of the rth degree in n symbolized numbers is any of the

operational equivalents
^+1)... (n+r-2) (n+r-i)

^

(r+ 1
) (r+2) . . , (r+n-2) (r+n- 1

) \n-i+r \ r+(n-i)

\n-i
'

\n—i{r'

'

\r\n-\
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179. PROP. However small but 7iot o may be the given number pQ

and liowever great each of the given numbers pIf

At-~Pn> tliere are yet endless great enough numbers

such that if x be any one of them the polynomic

expressiofi x
M
p -xn~1p—xn

~*p2 xp,u.—pn has mean-

ing and endless small enough numbers such that if x
be a?iy one of them the polynomic expression

Po-xp-Jfp* ^"'A-i-^A has meaning.
In the first place if a number a be not less than either of two

numbers b, b', (arts. 59, 103)

(a—b, b)
= {a-b'y b) v each = a.

.'. (art. 15) if b be greater than b' a—b is less than a—b'. Hence and

by arts. 9 1, 89, if p be either that or any one of the coefficients

Pa p2 y-Pn> which is not less than any other the polynome
xH
po-*

H~t

px-x^
a

p, xpn-i-pn has meaning if

xu
pQ—x,t

~p—x
n~2
p xp—p has and the polynome

p-xp-x*pz ^'"'A-x-^A ^ Po-xp-^p x^p-x^p has.

In the next place a—(b+c) (arts. 59, 103) has meaning precisely

when a is not less than b+c or (arts. 7, 6, 9) its equal (b, c) and this

is precisely when a being not less than c (a—c, c) the then equal to

a is further not less than (b, c) which again (arts. 13, 14) is precisely

when a—c has meaning and what it means is not less than b, that is

precisely when a-c—b has meaning. So that a— (b+c) has meaning

just when a—c-b has and .*. generally x-(a+b+c-\ Vf+g+h) has

meaning just when any of the following expressions has, to wit

x-h-(a+b+ • • • +g) } x-h-g-(a+b-\ \f), x-h -g-f c-b-a.

Hence the polynome x"p —x
H ~

I

p—x
H~2

p xp—p has meaning just

when x^Po—^+xp+x^p-i Yx
n~x

p) has and the polynome

p-xp-x?p x"p just when p-(x
n
p+x'

t
~

1

p+ . • •

+x*p+xp) has.

But in the third place x
n
p -(p+xp+x

2

p+ - • +x"-
1

p) (art. 170)
x*

1— 1

=x*p p if x be greater than 1 which by what has been here

x"
first proved and art. 113 has meaning if x1l

pQ
——/ has and ,\ if any

of the following operational equivalents of this last has, to wit

t^-OjA-—A ^ri^-OA-—A —x
C*-*-A

£(*a-^a), £(r*f>*
And

•: i^-c-^
=

xx'-'p, p-(x
n
p+x

H-l

p+ • • •

+x-p+xp) =p -(xx
"- t

p+xx"-*p+ • • • +xp)
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^p-xix^+x"'^ • • •

+x+i)p = (art. 170)p-x^^p if x be less than

1 which as before has meaning if either p —x / or any of its

following operational equivalents has,

On the whole ,\ xH
p —xH~1p—xn~2

p2 xpn_—pn has meaning ifx be

any number not less than —^ and po—xp—^P* ^"'A-i—^A
Po

has meaning if ;tr be any number not greater than ^°
.

P+Po
Hence much more will any polynome got from either of these

polynomes by putting a + instead of a — before any term or each

of several terms have meaning under the like conditions severally.

180. PROP. To find the mononomic or polynomic expression that is

operationally equivalent to the result of one or 7nore

operations of additio?i, subtraetio?i, or addition and

subtraction, with expressions mononomic, polynomic,
or mononomic andpolynomic.

This is done as in the instances following.

(1). yax
2—2ax2

+2$ax
2+ax*— loax2—^ax

2

by distribution of the mul-

tiplication of ax2 over the subtractions and additions

= (7-2+23+1- 10-4) tf.*
2 which is 1 S^x

2
.

(2). 4a
2

+$a
2

-yb
2

-8ab46ab+ i \b
2

~ia
2

by commutation of the addi-

tions and subtractions = 4a
2

+$a
2

-$a
2

-\-6ab-8ab+ 1 1 b
2

—jb
2

:. by distri-

bution of subtraction and of addition over subtraction

= 4a
2

+$a
2

-sa
2

-(8ab-6ab)+(iib
2

-7b
2

)
and .\ by distribution of mul-

tiplication of over addition and subtraction

= (4+5-3K-(8-6)tf£+(n-7)£
2 which is 6a2

-2ab+4b\

(3). ax2+bx3+c+(ax4-cx2o)+cx6-(ax6+bx5-cx7)

+{axio-bx4+cx9)-bx8+(axii+bxi6)+(a-bx2-cx3)
by distribution of the additions and the subtraction over the seve-

ral additions and subtractions

=ax2+bxs+c+ax4-cx20+cx6+cxy-bx$-ax6+axio-bx4+cxg
-bx8+axii+bx\6+a-bx2-cx3 .: by commutation of the additions

and subtractions = ax2-\-ax4—ax6+ax 10+ax 1 1+#

+bxi6+bx$-bx5-bx4-bx8-bx2+c+cx6+cx7+cxg-cx3-cx2o
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.'. again by distribution of subtraction and of addition over addi-

tions and subtractions =ax2+ax4-ax6+axio+axn+a
—(6x2+t>x8+bx4+bx$-&x3-bxi6)+(c+cx6+cx7+cx9-cx3-cx2o)
and .'. by distribution of multiplication by over additions and

subtractions

= «x(2+4-6+io+ii+ i)-^x(2+8+4+5-3-i6)+<:x(i+6+7+9-3-2o)
which is ax22.

(4). I_2^_ 3^+4,r3_
Q+^1^+4^

_
Q_^

+(3~2x*-x*)+ ($X+7X3-.5^

by distribution of the subtractions and the additions over the addi-

tions and subtractions

= 1-2x-$x
2
+4x3--x3+ -x2—x-

1
-+x4--+3-2x3-x3+-x+yx3--x4

5 4 3 2 4' 5 3

.'. by commutation of these additions and subtractions

i-L-L+ *+ $X-2X---X+-X*-\X2-2X2
+4x3-^X3-X*+7x3+x4-5-X*

* 4™ 5 3 4^ *5 /
3

.*. by distribution of addition and of subtraction over additions and

subtractions

\ +3- (-X+2X- ~x\ - (2X2

+$X
2- ^x2

)
2 4- \3 5

+
^3_^3_^3+7^ _

(^-^)
and .*. by distribution of multiplication of over additions and sub-

tractions

thztis ^-^x-^-x^x3- 2
^.

4 15 4 5 3

( 5 )
. 4^3-

i,xy
2

+2y3-z3-
{jx

2y-6xyz+$y
2

z)

+( 1 ix3-gx
2

z+7xyz-5y3+3yz
2

)-(2x
2

z-4xz
2
+6yz

2

)

+(8x
2y- 1 Ot»»+ 1 2z3

) -(3x
2

y-4xy
2

+4y
2z-yz2

) +6x*z

by distributing commutating and writing like mononomes in the

same column
= 4X3 ~3*y

2 +2y3 -&
—jx

2

y +6xyz —5J
2z

+u 3̂ -9v*z -\-7xyz sy3 +$yz
2

-2x2z +4XZ
2

-6yz
2

+8x3y -loxz2
: +\2z3

-ix
2

y +4X)>
2

-Ay
2* +&~ 3

+6x2z
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.v by commutation of these additions and subtractions and by dis-

tribution of addition subtraction and multiplication of

= (4+1 1)^_(3+7_8)^/-(2+9-6^^+(4-3)^/
2

+(6+7)^/^

-(io-4)^
2

-(5-2)j/3_(4+5)^+ (3+3_6)^
2

+(i2-i)^
that is I $x3-2x2y-$x

2

z+xy*+ 1 ixyz-6xz
2—^y

3-gy
2z+ 1 1 z3

and this is equivalent operationally to the symmetric polynome
i $x3—$y3+ 1 1 z3—2x2

y—gy
2z—6z2

x+xy
2—$zx2+ 1 ycyz.

1 8 1. PROP. To find the mononomic or polynomic expression that is

operationally eqitivalent to theproduct made by mul-

tiplying by one mononomic or polynomic expression

another.

The several cases that can arise are to be dealt with as follows,

(i). (agw
mxn

yp)dgw
m
'x

n
'y
p'

by the colligation of multiplications
= agw

m
x*

t

ypdgwm
'x

n
'y
p

'

.*. by commutation of multiplications
— adgg'w

ntwm'xnxn
'y
pyp'

.*. again by colligation of multiplications
= (aa')(gg)(w

mwm')(xnxn
')y

pyp
'

and .% = {ad)(gg')w
m'+mx,t

'+yp
'

+p
.

(2). (2x^-8x^-1 \x3-{—x2

-\--x-$\xi8x3 by the distribution of the

multiplication of i8x3

=
(2**) x 1 8x3

-(8x*) x ! Sx3
-( 1 ix3

)
x 1 8x3+(-x2

) x 1 8X3

+
(^x)xi8x

3-Sxi8x3

and .*. by (1) above

= (2xi8)x
3+
t-(8x\8)x

3+
4-(iixi8)x

3+3+(-xi8)x3+2

+
(^xi8)x

3+I
-(5xi8)x

3

which is s6x
8
-i44x1-ig8x

6
-{-i2xs-\-2yx

4-gox3
.

Again \^x\{j&
3-ia

2x+t>ax
2-\2x3

) by the distribution of the

multiplication by -a6x

=
(^a

6
x\x4a3-

\^a
6

x)X3a
2

x+^a
6

x)x$ax
2

-^a
6x)xi2x3

and .*. by the case (1) above

=
{2̂ x^a

3

*x-( 2̂ x^a
2^^

which is \4cPx l a8x2+^dlx3-A.2a (ix\22



NOMICS 121

(3). (3a*+2a
3c-a'c*-2ac3+3c4

)(4a*--5a
2
c+6ac*-7c

i
) by distribution

of multiplication of

+(3^)(4a
3-

5a
2c+6ac2

-yci
)

.-. by the above case (2)

= 1 2a1- 1 5a
6c+ 1 8aV3- 2 1#V3+ (8A- 1 OtfV3+ 1 2<?V3- 14^)

-(4^-5 tfV3+6rfV»-7tf
2cs
)-(8a

4c3- 1oaV+ 1 2aV- 1 4ac
6
)

+(i2a
3c*-i$a

2
cS+i8ac

6
-2ic'')

and .*. (art. 180)

= i2tf?-i5tfV+i8tfV-2itfV
3

+8 10 •• +12 •• -14^^
-4 . . 4 5

• • -6 • • +7^V
-8 •• +10 •• —12 •• +14^

+ 12 •• -15 •• +18—21c1
.

= i2a 1-7a
6
c+4asc

3-i2a*c3+2a3c4-2oa2
cS+32ac

6-2ic1
.

This polynomic equivalent may be got otherwise by first dis-

tributing the multiplication by. The product then

= (3^+2^V-^V-2^3
4-3^)x4^

3-(3^
4-|-2^%-^V-2^<:3+3^)x5^V

+(3a4+2a
3c-a2

c
2-2ac3

+3c*) x6ac
2

-(3a*+2a
3c-a 2

c
2-2ac3

+3c4)xyc
3

and .*.

= i2a1 +8a6c -4*1^ -8a4c3+i2a3c*

-I5-.-IO-- 4-5
•• +10 •• -i$a

2
c$

+ 18.. +12 -. -6 •• -12 •• + i8ac6

-21 •• —14 •• +7 •• +14 •• —21c7

= 12^-7^+4^- 1 2a*c3+2a3c*-20a2
c*+i2ac

(i-2\c ]
.

When the terms of each or either polynomic factor are arranged

symmetrically or when the law of succession of the terms in ascend-

ing or descending powers of the reference numbers ranked in some
order is not the same for both factors the process can be gone

through in a regular and orderly manner only after commutating
the operations with the terms so as to have that law alike in the

factors. Thus

{2y
2

+ix
2

-4xy3-$x3y){$-4y+ix-2x
2

y+y3
)

= (2y
2

-4xy3+3x
2
-5x3

y)(5-4y+y
3+3x-2x

2

y)

and .*. distributing the multiplication of, polynomizing by the (2)

case the products so got, distributing the additions and subtrac-

tions, commutating the operations equivalent by distribution to

the subtractions,
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i oy
2

-8y3
+2y*+6xy

2

-4jt
2

y3

—20xy3
-f 1 6xy

4—4xy
6 — 1 2;ry -

+ 1 $x
2- 1 2^2

7+3^)/3
.

-\-8x3f
+9x3 —6x4y

-2^x3
y-\-20x

3y
2
-^x3y4-\^x

Ay\ lOx^y
2

— 1 oy
2

—8y3+2yS+6xy
2

-20xy3+ 1 6xy4—4xy
6+ 1 ^x

2- 1 2x 2y- 1 $x
2

y3

+gx3—2$x3y+20x 3y2

+$x3y4—2 ix4y+ 1oxsy
2
.

182. The last written polynome is operationally equivalent to

1oy
2

-8y3
+2y$+(6y

2

-2oy3+ 1 6y
4~4y

6
)x+(15— 1 2y- 1 $y3

)x
2

+(g-2$y+20y
2

+3y4
)x

3-2 iyx
4+ioy

2x$ = 2(5~4y+y3
)y

2

+2(3-ioy+8y
2

-2y4
)y

2

x^i5-i2y-i3y3
)x

2

+(g-2$y+2oy
2+^)x3

—2iyx4+ioy
ix $ = ioy

2
xt—2iyx4

+(c)—25y+20y
2

+3y4
)x

3

+(i5-i2y-i3y3)x
2

+2(3-ioy+8y
2

-2y4
)y

2

x+2(5-4y+y3
)y

2
.

It is also operationally equivalent to

2
(J/3_4/+5)J/2_2 (2y

4-8y
2+ 1 oy-s)y

2

x-( 1 3J/3+ 1 2j/- 1 5 )*
3

+(3y4+2oy
2-2$y+9)x3~2 iyx

4+ 1 oj/
3
.*-*

= iary-2i^4
j/+^

3
(3j/

4
+20j/

2

-25j+9)-^
3

(i3j
3+i27-i5)

-2^j/
3

(2y-8j/
3+ ioy-3)+2y

2

(y
3-4y+$).

And in the same way any polynome in one symbolized number

having as a factor of any term a polynome in one other symbolized
number is equivalent operationally to a polynome in those two

symbolized numbers. So again if there be still a polynomic factor

in some third symbolized number of any term of this polynome in

two symbolized numbers both this polynome and the original

polynome in the first symbolized number is equivalent operation-

ally to a polynome in the three symbolized numbers. And so on.

183. To find the polynomic equivalent in^r of

(i—kx)(i-jx)(i—tx)...(i-cx)(i-bx)(i—ax) if a, b, c
} ...i, j, k, be any

n numbers. By the polynomic process of art. 181

(1—bx){\—ax) = 1—ax

-bx+(ba)x
2 = i-(a+b)x+(ba)x

2
.

. \
(
1 -ex) (i-bx)(i-ax) = (

1 -ex) {
1 -(a+b)x+ {ba)x

2

}

= i-(a+b)x +(ba)x
2

-ex+{e(a+b) }x
2—

(eba)x
3

= 1 -(a+b+e)x+{ba+e(a+b) }x
2

-(eba)x
3

= i-(a+b+e)x+(ba+ea+eb)x
2

-(eba)x
3

.

So .*. (1—dx){\—ex)(i—bx){\—ax)
= l-(a+b+e)x+(ba+ea+eb)x

2

-(eba)x
3

-dx+\d(a+b+e)}x
2-

[d(ba+ea+cb) }x
3+(dcbd)x

4

=
l-(a+b-\-c+d)x+(ba+ca+cb+da+db+dc)x

2

-
(cba+dba+dca+dcb)x

3
+(dcba)x

4
.
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And if the law of these three polynomes hold for any // numbers

a,b,...j,h, (\-kx)....(\-bx)(i-ax)

{-sfl_ l
x n~ l

-\-snx
n

if ;/ be even

\
Jtsn_ l

x n
—s,t

x" if // be odd,

where s
t
stands for the sum of the numbers a, b, c,...k, and sr for

the sum of the products made by multiplying together (arts. 56, 108)

every r of them, and the upper or the lower of the marks H—
written before the term in x r

is to be taken according as r is even

or odd. By an Even number is meant a whole number that is

exactly divisible by 2 and by an Odd number one that is not. If

then this be the law for any 11 numbers a, b, ... k, it follows that for

any n+i numbers a, b,...k, /,

(i-/x)(i-kx)(i-jx)(i-zx) (i-cx)(i-bx)(i—ax)

{+s

x"

—snx

-&+(/^-(/,>3+ . . . ± {lSr̂
. . .

{^jj^gg;
•

^ \+(sn+lsn_,)x
n
-(ls,)x

n+1
if;/+i be odd

(-(j„+/j-M_ I)^
w
+(/$-„)^

M+I
if;/+i be even.

Now s,+l is the sum and lsn is the product of the ;/+i numbers

a, b, ... k, I. Moreover if when r is any whole number between 1 and

71+1 p, p' y p",... be the products of every r of the n numbers a,

b, ... k, and g, q, q"',... the products of every r—i of them so that

sr is p+p'+p"+ • • • and sr_T q+q'-\-q"-\ the products of every r of

the 11+1 numbers a, b,...k} /, are made up of two sets those into

which / does not enter as a factor and those into which / does and

therefore are/,/',/", ... /q, Iq, Iq" ,
... of which the sum

that is sr+lsr_x
.

Hence the law that holds for 2 for 3 and for 4 numbers if it

hold for any number of numbers holds for the next greater num-
ber. It therefore holds universally.

If for the sake of symmetry the symbol sQ be given such a

meaning as makes the sum of the products of every r of the ;/+i

numbers a, b, ... k, /, equal to sr+lsr_ 1
even when r is 1 a+b-\—Yk+l

—
s^Isq and i" can only be I. The polynome in x then which is

operationally equivalent to
(
1—kx) (

1 -jx) (
1—ix). . .

(
1—ex) ( I—bx) (

1 —ax)
is sQ

—s^x+s^x*—s3
x3

-\
— ±snx

H
according as n is an even number or

an odd.

The coefficients stf s3) ...sH , may be found in an orderly way
when a, b, ... k, are given by means of the principle proved that
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the sum of the products of every r of more than r numbers is

equivalent to the sum got by adding to the sum of the product^ of

every r of all but one of those numbers the product made by mul-

tiplying by that one the sum of the products of every r—i of all

the numbers but that same one. After this principle if the n num-
bers be taken in the order a, b, c, d, ... //, i,jt k, and kr stand for the

sum of the products of every r of the numbers before k, jr for the

sum of the products of every r of them before/, and so on,

Sj is a+b+c-\ Yh+i+j+k
kx

- a+b+c+ Yh-vi+j

j\
- a+b+c-\ \-h-\-i

i
x
- a+b+c-\ Yh

dx
- a+b+c

ct
- a+b

bx
- a

s2
= bb,+ccx+ • • • +hh1 +ii1+jjJ+kkl

k2
= bb

z+ccs+ • • • +hh1+ii1 +jj\

/,
= bb

x+ccz+ • • •

+////,+//,

i2 = bb
x+cc^-\ \-khz

d2
= bb,+ccx

c2 is bbx

s
3
= cc2+ • • • +hk9+ii*+jy\+kk%

d
3

is cc2

&H-2 — Mh-z+JJh-2

7, IS 11,K*-3

fcn-i 1S JJtr-2

Sn is kktr-p

And the several results may be found, or Calculated, in the fol-

lowing way, or Algorithm as it is called.

a b c d - - - i j k

K c% dx
- - - i

x j\ kM st

bK
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where the first row is the numbers written in order, the 2nd and

every other even row has its first number the same as the first

number of the row next before but written one place to the right

and every other the sum got by adding to the number next before

it in the row the number right above that number in the row next

before always written one place to the right, and each number in

every odd row but the first is as its symbol shows the product
made by multiplying the number next above it by the number

in the first row at the top of the column. Taking for example
1, 2, 3, ...9, 10,

123456 7 8 9 10

1 3 6 10 15 21 28 36 45 55

1320

18150

157773

902055

3416930

8409500

12753576

10628640

2 9 24
2 II
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When each of the numbers a\ b} . . . k, is I every odd row but the

first being the same as the row-

next before it may be left out iiiiiii---
and then the process is that of I2 345^---
the Arithmetical Triangle of l 3 6 10 15 . _ _

PASCAL [CEuvres. tome $me. Paris. l 4 J o 20 _ . _

1819). Hence 1 5 *5 - - -

(1-x)
2 = i-2x+x 2

,

1 6 _ _ .

(l-xy = i-3x+3x
2-x*f

1 - - .

(i—xy=i-4x+6x
2
—4x3+x4

,
and so on.

.

- - -

184. If in art. 183 the ft numbers a, 5, c,...k, be all equal to one

another each of the products whose sum is sr is ar and hence if the

symbol n\ r stand for the number of these products

(i-ax)
n = i-(n lla)x+(n ]2

a2

)x
2

-(n l3
a3
)x*+- ±(ii\na

n
)x

n

= i—n^ax+it^afx
2

±ti\,A
nxn

.

Here n\ z being the number of the numbers themselves is n and

ii\H being the number of the products of all the numbers is 1.

Further since as before the
;/|r+I products of every r+i of the num-

bers may be made up of those into which one of the numbers does

not enter of which the number is («— i)\r+1 and those into which that

same one does enter of which the number is (;/— i)j r

n
]r+l ={n-i) lr+1+(u-i) lr

.

.'. doing the like with n— 1, ft—2, n—$,•... r+i, in succession

=
(«-3)|,+i+(«-3)i,+(«-2),,+(«-i),,

= (^+2) f
,+I+(r+2) |r+(r+3 ) k+.

• • +(*-2) |r+(*-l)fr

-KiWr+i)^(r+2) |r+...+(»-i)(f

and /. =r, r4-(r+i), r+(r+2V+...+(;/-i), r V (H-i),r+I
= 1 = r

[r
.

When r is 1 then, »j,«= l|s+2|s+3|«+---'.+(^-l)|, that is 1+2+3+

• • •+(«— 1) and .*. (art. 168)=- —
, /. when ris2, ?/j 3

=2
f2+3| 2+4j 2+

1.2 2.3 (
»-2)(»-i) 1.2+2.3+ • - • +(n-2) {n- i)

•+(»-i)i.=—+T+-+- ~
2

=
5

\{n-2)(n-\)n\

{ 3 J {n-2){n-i)n
2 '2.3

And if generally after the same law

_ (n—r+ 1 ) (n—r+2) . . . {it—2) (n— i)n
1lw

_
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i.2...(r-\)r 2.i
t ...r(r+i) (n-r)(u-r+\)...(n-2){n-\)

"'-+
=—

\?

— +—
[r

+ ' ' ' +~ ~~
Tr

_ i.2..(r— i)/H-2.3..r(r+Q-t \-hi-r)(n-r+i). .(n-2)(n-i)

~xr
'{11-r) (u—r+i). . . (n—2) (n—\)ii\~~

r+i J

Lr

_ (n—r)...(n—2) (11—1)11 _ (11—r) (11—r+\) .. .{11—2) (11—1)11

(i.2...(r-i)r}(r+i) 1.2.3. ..(r-i)r(r+i)

after the same law. n\ r is .*. always the same number as

(;i-r+i)(n-r+2)...(n-2)(n-i)n , . . . .

'

.; A

p
—5 — — and may .\ be taken henceforth to

symbolize either this number itself or any of this's operational equi-

,
- n—(r—\) 11-211—111 . ^ \n , , ,

valents such as—5 -
(art. 126), 7—*=—

(art. 177),r 3 2 1
v J '

\r\n-r
K " J '

\ii (r+ i)(r+2)... (11-2) (n— 1)11 ii(n-\)(n-2)...(n-r+2)(n—r+i)

\n—r\r' \n—r
'

[r

Hence m r
—

n\ n r . V each = either —~— or —-—
. The same|r l

"-r '

\r\n-r \n-r \r

too follows straight from the fact that to the product of any r out

of 11 numbers there corresponds the product of the other n—r.

If meaning be given to n
]o by making the law («+i)| r+I =«| r+I-f n\ r

still hold when r is o (11+1)^=11 x+n\ and n*
l0
must then symbolize

1. The same result is got if taking iv r to stand for

n-(r-i) 11-211-in . 11-r . ,... ,—* - the consequence n\ r+
= n> r is still made to

r 321 ' + r+i '

hold when r is o. With this meaning of n\ the polynomic equiva-

lent of (\—ax)
n
may be written without lopsidedness

/ \n , , , , {+n\*a"x" ^ * be even
(i-ax)

n=n
l

-ii
{l
ax+iiua*x

2
-ii

l3
a3x3+"- ]

'

vv ' ' ' l3

(—«|„tfV if be odd
= iiv -ii^t_ 1ax-\-nw_2a

2x2

-n\ n_za
3x3

-{ ±n {o
aMxn

,

where also for greater symmetry the first terms may be severally
written 7i

lo
a°x° and 11 na°x°.

185. In the same way as in art. 183 it may be shown that if

ay b, c,...i,j, k, be any 7* numbers and J-r be the sum of the products
of every r of them

(\+kx)(i+jx)..\i+*x)(i+bx)(i+ax) = s +stx+s3x°+s3
x3+- • .

+.$•„**,

(x-k){x-j)...(x-c){x-b){x-a)

(+sM if « be even
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(x+k)(x+j)...(x+c)(x+5)(x-\-a)
= sax

M
+sIx'

t
-

l+s2x"-
2+ • • +stu_ Ix-\-sm

(kx—i) (jx—i). . . (cx—i)(bx—i)(ax— i
)

f+^o
^ * be even-

sjr- -sn_xx +sH_^ sn_jc
• + ' ' •

|_Jq if n be odd>

(kx+ 1
) (jx+ 1

)
. . . (ar+ 1

) (bx+ 1
) (aar+ 1

)
=s

;i
xH+s!l _ 1

xn-l+sn_s
n-2

+' • +j^+sot

(k-x) (j-x) . . . (c-x) (b-x) (a-x)

-sx^^s^t" if 11 be even
-^-^_^4-^_^

2
Sn_3X*+ ^^n-i^n if „ be odd>

(k+x) (J+x) . . . (c+x) (b+x) (a+x)
= su+s„_Ix+sn_2x

2+ - • • +Jr^"
1

+^.
The polynomic expression operationally equivalent to the 11

factored product

{k,-kx)Urjx) (i-tx) . . . (c-cx) (b-bx) (a -ax)

may be found either in the same way or from the polynome got in

art. 183 as follows. Since

( A i r /- 1 \ 7a—ax= a — [a — \ax= a—a—ax= a
i \i

—
\ -a\x\

and the like for each of the other factors (k—kx)...(brbx)(a—ax)

= kr ..ba i
(s'-s' 1x+s' 2x

2
-s'

3
x3+ • • ±s'„x

n
)

if s r stand for the sum of the products of every r of the 11

numbers —a,-rb,... 1-k f

a
t

o
l

fe
t

=k
t

. . .b
l
a

ls'-(kr . .b
ta/ 1)x+(kr . .b

las^x
2

-{kr . .b
i
as'

3)x
3+-±(kr . .b

i

a
i
s'n)x

,t

.

But k
l
...b

i
a

i
s is kr ..b

i
a

i ,
k

l
...b

ia/n is k
i
...ba(-rk)...(-rb) —a and .v

= k...ba, and k^^.b^s^ when r is one of the whole numbers

1, 2, 3, ...n— 1, is by distributing the successive multiplications by
a

t> by b
lf

.., by kp over the additions that give the sum s r opera-

tionally equivalent to the sum of the products that have every r of

the n numbers —a, -rb, ... -rk, for their several first r factors in order
a. 0. k.
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of operation and a
t

, b
lt
...£

t
, for their common other n and .-.,

—
V kr ..b

la(—j\...(-c]—a taken for example of one of these products

=
k.j. [—. At.. ..cf- c)ba i

-a = k.j. -zji.., .c-cba—a
\j/J V, / ci

t

tJ
jf

'

'c
t

'

'a
t

— k
t [jr. \jir . . (c—\cb(a — \a = kjir . xb<a and any other may be dealt

with in a like way— , also operationally equivalent to the sum of

the products made by multiplying together the upper numbers of

every r of then pairs k k k k .k k and the lower

numbers of the other n—r. If then Sr symbolize the sum last

spoken of

(k—kx) (j—jx) . . . (c-cx) {b-bx) (a—ax)

- s s^+s^-s^+ • . . I
+5^ if n be even- a

fl ^+^ ^ +
|_5^w .

f n be Qdd

So likewise

(k,+kx) (j,+jx) . . . (ct+cx) (b,+bx) (a,+ax) - 5 +5^+5^+ . +£„**,

(kx—k) (jx—j) . . . (cx-c) (bx—b) (ax—a')

-Sjtf-S jT*+S j*~-S **-3+..J
+5o ^ « be even->V z> n_x +± Hjr z^jr +
|_5o if ^ beodd>

(kx+k)Ux+j) • • • te*+0 (**"+£,) (**+<0

186. When in art. 185 a=b=c= =£ and a=b=c
t

— =k
/f

(art. 184)

'+ («| M#*);tr* if n be even
"

"[-(^i^*);^
- - - odd

=
?i\ at

M-n
ll
a

i

H~1

ax+n\ aa"~*a*x
a

-n\ 3
a"~3a*x3

-\
—

±n\ na
HxM

=
n\ na;-n l

„_1a^
l

ax+n\^2a;-
3
a*x

3-n lH_3a;'-
3a3x3+' - -

±n\ aMxn
i

{a t+ax)
n = n< a

i

n
+n\ 1

a
t

n-Iax+n
l3
a

)

n
-*a

a
x'+- • •

+n\ tt_1
a

ta^x^'-tn^x",

[ax-ay = n\ a"x"-n\ l
a^la^1

+n\ aa^a;x^-nha'
t^a

l

3x'
t
-
3
-t-

• •

(+n\ na* if n be even

(—n\ na? - - - odd,

(ax+a)
H = «: ^^+«, I

^-I^
/
^-,+« |3

^"-
3

^2^-2
+. . . +n\ H. l

aa
i

H- J

x+n\ Ha i
".

In particular (u+v)
H=~uM

-\
==— u*~

l

v-\
—— uH~2v'+

l* LLi^zi \2 \n-2
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• • • + T-h—uv"-*+^v». And v -J£-a~if= ([n-l—Xi—if
\n—i \i \n \r]n—r \—\r \n—rj

— \n— un
~rvr and meaning may be given to [o by making the

law \r+i =[r(r+i), got from i.2...(r-i)r(r+i) = {i.2...(r-i)r}(r+i),

hold even when r is o which gives |o a symbol for I (u-\-v)
n

=\n~ un
+\ n—i— u"-

l

v+> • •+ \n±- v
n= [n f~ «"4—— «*"Vf• • •+ ,-v

n
)

\H \}\
n~ l & \|« U

|/g

— i [« /

[n
x '

(d[/z \ijn-i \

2
\
n~2 till

+VV*V». Still further V —I_«~V» (—-)u"-r
7f

«0
[r j^—y \\n—r \r)

1 l „-r r l n-r l r ( l „-r\ l r *" & l / \-

in—rir \n—r [r \\n—r J[r \n-r \r
1

[n

- — — unv°+ r- a* *v+ ;

—»*-V+ ....+__ #v* and
[/z[o p-i [i \n-2\2 \o\n

(u+v)
n

__
un if ft""

1 v un~ 2 v2
.
u if

1
'

1 u° vM

[n

~
\n [O \n—\ [_i |«—2 |2 |i |«— i

|0_|#^

Whenever *z is given ;z
(2

, «[3 ,
... may be readily found one after

another as in the instances following:
—

7| x being7, 7| 2
=-—x/=3X7

or2I > •*• 7\3
=~ x2l = 3S, ••• 7(4

=
^X35

=
35, which =

7i 7
-4 as

it ought, and so on.

.-. (i-ax)'
J = i-7ax+2ia

2x 2

-35aSx3+35a4x4-2iasxs+7a
6x6-aW.

•7 6 k
Likewise

8| 2
= -x8 which is 28, .*. 8 I?

=-X28 which is 56, .*. 8j 4
=- x 562 3 4

which is 70, .*, 8| 5
= -X70 which is 56 = 8| 8_g ,

and so on.

.-. {x-df = x8-8axi+28a2x6-K_6a3x s+7oa4x4-$6a$x3+28a6x 2-8a ,

'x+a8
.

1 87. PROP. To find tJie mo7ionomic or polynomic expression, when
there is one, operationally equivalent to the quotient

got by dividing one mononomic or polynomic ex-

pression by another.
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The ways of dealing with the several cases are as follows.

^ ''

bgufx'z* bgw/
tx qzt

bgTifx'z*

_ b g tv» x* z>
0g™X *

^\bg w» x< z>)
Dg7̂ X *

= afurx>f
bgufx"^ bgisfx

9? bg inf
1 xq tf

and .\ ifm be not less than n, p than q, and r than s,
=T -iif

l
~Hxp

~
9sr'

t
.

. v 6^3-27^4^+i5^ 5-42^6

_6^^ 2ja*b* i$a3b* 42a
2
b*

*
2
''

$a
2
b* 3^^~~3^*

+
"3^F~"3^T

(3). For finding the polynomic equivalent of

20-27^2^+36^+3^-^' if there be any>
4-7X+3X

2 *

2o-27x-23x
2

+$6x3
+3x4-gx$

20- — (4-7x+3x
2

)~5 (4-7*+5*
2

)+20-27x-23x
7

+36xs+3x*-9xi
4

= 5(4-7^+3^
a
)-(2o-35^+i5^

3

)+2a-27^-23^
a
+36>3+3^4_9jr j

= 5(4-7^+3^
a

)-i5^
3

+35^-20+2o-27^-23^
a+36^+3^4-.gLr

s

= 5(4-7^+3^r
2

)+35^-27^-23^
a-i 5^

2+36^+3^4_o^5
= 5(4-7^+3^

a

)+(35jr-27^)-(i5^
a

+23^
a
)+36>3+3^4_o^i

= 5(4-7^+3^
a

)+(35-27)^-(i5+23)^
a
+36>3+3^4_9rs

=
5 (4_7^+3^

8

)+|^(4-7^+3^
a

)-(^)
(4-7*+3*

a
)

|

+8^-38^r
a
+36>3+3^4-9^ j

= 5(4-7^+3^
a
)+(2^) (4-7^r+3^

a
)~(8^- i4^

a
+6>3)

+8x-38x
2

+36x*+3x*-gxS

m
(5+2x) (4-7x+3x

2

)-6x*+ 14X
a
-8^+8^r-38x

2
+$6x3+$x*-9x!

= ($+2x)(4-7x+3x
2

)-(3$-i4)x
3

+(36-6)x*+3x4-9x s as before

= (5+2^)(4-7^+3^
3

)-^(4-7^+3^
3

)+(^
a

)(4-7^+3^
a

)

-24Jr
a
+30tr

3+3^4-9r^

= ($+2x-6x
2

)(4-7x+3x*)+(24x
2
-42x3+i8x4)-24x

2
+30x3

-\-3x
4-9x*

= ($+2x-6x
2

)(4-7x+3x
2

)+24x
2
-42x3+i8x4-24x

2

+3Qx 3+3x4-9xS
= ($+2x-6x

2

)(4-7x+3x
2

)+24x
2-24x 2

+3Qx3-42xHi8x4+3x4-9x*

9—2
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= (5+2x-6x
a

) (4-yx+3x
2

)+(24x
2
-24x 2

)-(42x
3
-3Qx3)

+(i&r*+3**)-9**

\2X i
/I 2 \= (5+2*-6*

a

)(4-7*+3*
2

)
——(4-7x+3x2

)+[~x
3

){4-7*+3*
2

)

—
\2X*+2\X*-<$X i

= ($+2x-6x
2

-3xs)(4-7x+3x
2

)+(i2xS-2ixH9x ;l

)-i2x3+2ix4-9x$
= (S+2x-6x

2

-3xs)(4-7x+3x
2

)+(i2x*-i2xs)-2ix4+2ix4+(9x$-9xS)
as 'before

= ($+2x-6x
2

-3x3)(4-?x+3x
2

)

•
20-27*-23*

2
+36>3+3*4-9* g _ 6

4_7^+ 3^3
-5+2* o* 3*.

The result of this process may be got in an orderly way without

showing the steps if keeping like mononomes always in the same

column there be written in order

the divisor, the quotient's poly- 4 ~7X +3*
3

nomic equivalent as the succes- 5 +2x —6r 2 S*3

sive terms are got, and the divi- 2o-2yx-2ix
24 36*3 4.^-^

dend with a stroke drawn close 2o— 3 5*+i $x
2

above it along its whole length;
•

then in alternate rows with a

stroke drawn close under and

stretching just as far as each —24x
2
4-?>Qxi

those sets of successive opera-
~24* 2

+42*3— 1 8x4

tions with mononomes which in —I2x3+2ix4

polynomizing the product of the _ \2x342\x4~9x i

divisor by the quotient's poly-
nomic equivalent come from the several terms of that equivalent ;

and lastly close under each set and on the other side of the

stroke those other operations with mononomes which enter into the

process at the same time as the set. So that the operations of all

such of the said sets as are above any stroke the operations close

under that stroke and the operations with the terms of the divi-

dend beyond the right-hand end of the same stroke give together
a result always operationally equivalent to the dividend.

In like manner if a polynomic equivalent be sought for

3*
6- 1ox s-\-—x4-27x34—s?x 2

+9x-4
7 the first term being operationally
\JX ~~ 1 4&X jX~\~ 2i

\X^ . X I

equivalent to ~- is ^6~3 or -x3 and the dividend

+8*-38*
2

4%x-\4x
2 +6>3
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(-x3
\(6x

3-\2x 2

—?>x+2) 6x3 — \2x 2

—ix+2

-Atx i
-\-\

p

jx^-2^x3

log .

+ -^x
2
+9x-4,

the next term = 5—7 is .'.

ox*

^x*~3 or -x 2 and the divi-
6 3

dend

= (-x3-2
x 2

)(6x
3-i2x 2

-3x+2)

+gx4-3Qx3+—x 2

+9x-4,

ox*
the third term = 1-, is .*.

f^4
"
3 that is ^x and the di-

6 2

vidend

I

-X
2
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a* -ab -ac +b2 -be +c2

a +b +c

a3
—2>abc

a3—a2b-at

c +ab2 —abc

+a2b+a3
c —ab2—2abc

+a2
b —ab2 —abc
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c- u l, a <lb±c qb c c
Since when a — qb±cy T — ,

= V±t=: ?±t>0000 o

2x s+—x 4-i ix 3--x 2

+7x+3
I _ 2X 2-$X-A
-X 2+2X-l-

AX 3

-$X*-2X+1 2 AX 3-yc
2-2X+l

'

2+3x-ax
3+iqx3 6x'-nx 3

m 8x 3+\2x t>

r2- = 1+2* -= 1+2X-$X
3+

2-X+^X
2 2-X+AX*

^
2-X+AX*

,
i6x4-i6x 5

m .
_ _ 8x 5+$2x6

= \+2x--\x 2+ax 3+ - = \+2x-yc*+Ax3+8x ti -
.

2-*+4*
a ^ T 2-X+AX 2

And hence the quotient got from the division of a polynome by
a polynome of not greater range if not operationally equivalent to

some polynome or mononome differs therefrom by the quotient got
from the division by the divisor either of a mononome or of some

polynome of less range than the divisor.

Also v 6x 2-nx*= (6-iix)x
2
, 8x*+i2x4 = (8+i2x)x*

=
{4(2+3*) }*

3
,

\6x*-\6x* = {16(1-.*)}**, 8**+32*
6 =

{8(1+4*)}**,

and by the colligation of multiplication of and division -t-=t^ it

follows that

2+3*-4*'+i9" = 6-1 ix = 4(2+3*)
x3

2-X+AX 2 2-X+AX 2 J 2-X+AX 2

= \+2x-yc
2+Ax 3+

l ^~X
\x

4 = i+2x-3x
2+ax*+8x4 ( I +4*)

g
9" Tt

2-*+4* 3 ^ *
2-*+4* 3

In like way °lZ?L.= a«-*+a
»->x+an-3x s+ . • . +ax^2+xn

-\J a—x

a +X = an
~

1+an
-*x+a

n~3x 2+ • • • +axH~3+xH~t+— - **,#-x a—x
r -*M_I

if n be even
^—^- = ^w- I-^-3*+^-3* 3-^"4* 3+..J _ 2 n . c .

'

a+x +xn l xn
if /z be odd,

L a+x

aH+x n
„__ __ „ . . I -**~ r+——** if n be even,= aTI-an 2x+an 3x 2-an 4*H 1 a+x

a-\-x
+x n~ l

if n be odd.

189. IfA>A» A» •••/«> be given numbers as many numbers q ,

ft* ?»> ••• q» may be found such that A**+A*
W~ I

+A*"~
3
+- • • +pMx+pn

and {q x
n~l

+q1
xin+q9x

ir
^-\ \-qn.x){x-a)+qH are operationally equi-

valent. For (arts. 181,180) the latter

= q x
n

+q 1
x»~i

+£*«»+.... +^x
*

-
fe^z)**-

1

-^)**"
8

{qt̂ P)x-qn_xa+qH

= ? *N<? -? tf)*"'
x

+(? -^^"'M- • • •

+(?«_x-?»-,tf)*+(?H-?„-i0).



136 ARITHMETIC

And this is the same as the given polynome if q , q-q a, q-q x
a y

...

qn_-qn-2a, qn-qn_xa, be severally the same numbers as A>A> A> ...

Pn-i, Pn- It is only needful then to make q p and to take qlf q2 , q3 ,

... qn ,
in order so that

q* =A+?cA q* =PMfr ?3 =A+q*a > ~-q*-* =Pn-l+qn-*a, qn =pn+q„-^-

The whole may be handily arranged by writing the ps in order

in a row, below each/ in another

row the product of a by the q A A P% A - - - A-i A
next before when got, and below £>« 4z& q*a SW* qn-^

this product with a stroke drawn go qx q3 q3
_ _ _ q„_t qn

between and in a third row the

new q got by adding the product to the / above it. Thus to find a

polynome in x and a number such that the sum got by adding the

number to the product by the polynome of x—^ is operationally

equivalent to iox8
+4x^-\-gx

6
-\-$x

4+8x^6x+y,

10490 5 80 6 7

30 102 333 999 3012 9060 27180 81558

10 34 in 333 1004 3020 9060 27186 81565

and (ior'+34^r
6+i 1 1^+333^+1004;^3020^-9060^+27186) (af-3)

+81565 = the polynome last written.

Again for A+A^+A^H VPn*" to be operationally equiva-
lent to

(q +qs+q,*
2+ • • •

+?«-3
*w-3

) (i-*x-te
2-cx3

)+(qn-,+q»->x+qn*
s

)x'
t
~3

when p , pT , p2 ,
... pn , a, b, c, are given numbers it must

= qQ +qs +q2* 2

+?3
* 3 +qA**+-

-{qo^x-iq^^-^a^-iq^)^—-
-(qJ)*-(qJ)*

3

-(qJ)**—-

-(q c)x*-{qAx*—-

+?«-3
*w"3

—{qn-^)x
n
^-{qn_3a)x^

...-{qn_sb)x^-{qnJ)x^-{qnJ)x
^

= q + ^-qoa)x+(q-q&-qJ))x*+{q-q&-qib-q^

+ • • • ^{qn.-qn-za-qnJ-qn_f)x
n
-^{qn_-qnJ-qn^c)x

n-1^
And .'. inasmuch as q-r—s-t=p just when q =p+t+s+r=p+r+s+t
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?«
=A+^o*

q* =PM0+qJ>
q3 =P3+qj*+q£+qs

q* =pK+qp+qJ>+qxC

q»-,
imP*-.+qu.&+q»-P+q«-f

q*n =Pn-i +qn-P+qn-{

qn =A +q«-s-

Hence the qs can be found one by one in order. The process may
be carried on by writing in successive columns the sets of numbers

of which the qs are severally the sums with the ps in the first row

and the qa products the qb products and the qc products in the

other several rows in order.

A A A A A - - * A-3 A-2 A-i A
q a q,a q2a q3

a - - -
q„_4

a q„_3
a

qj> qJ> qJ>
- - - q*J> qnj> qn-J>

q c qx
c - - - qn_jf qn_<c q^c qn_3c

q q, q* q3 q4
~ - -

q»-3 qn-, q*-* q*

If for instance the ps in order be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and

a, b, c, severally 3, 5, 7,12345 6 7 8 9 10

3 15 69 315 1410 6306 28194

5 25 JI 5 525 2350 10510 46990

7 35 i^i 735 3290 I47I4 65786

1 5 23 105 470 2102 9398 42002 61713 65796

1+2^+3^
3+4^3+5^4+6^+7^6+8^+o^r8+ 1or9

So that
1—yc—$x

2—
jx*

= I+5^r+23^
3+ 105^3+470^+2 I02;tr*+9398;tr

6

42002+6 1 7 1 3^+65 796^
i—3X-5X

2—yx3

.2

-x\

190. If Pn stand for a given polynome

Ptpf+pjf^+pjf^-K HA-r^+A °f tne wtn degree in descending

powers of x a like polynome jP„_x
of the («— i)th degree and a

number (2« may (art. 189) be found such that when a is any given
number

In the same way may a polynome Pn_a of the (;/-2)th degree in

descending powers of x be found and a number QH_ t
such that

/>

M_1=/>

M_2(^-^)+(2«_i and then by distribution and colligation
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P„= {PnJ?-a)+QnJ&*-a)+Qn
= {PnJ?-^)){?-a)+Q^x-a)+Qm

=Pn_lx-ay+Qn_Xx-a)+Qn .

Again in the same way PH_2
= Pn_3{x—a)+QK_2 ,

Pn_3 being a poly-

nome of the {n—3)th degree and Qn_2 a number, and v as before

[Pn_3(x-a) +Qn_2}(x-ay - {^.3^-«)}^-^)
2+G«_2(^-^)

3

it follows that Pn=Pn_lx-ay+Qn_Xx-aY+Qn_lx-a)+Qn .

By going on in the same way getting from Pn_3
Pn_A and Qn_3 ,

from

PM-4 Pn-s and Qn-A >'~ a polynome Px of the 1st degree is at length

come to which = PQ(x-a)-\-Q l where P is a number independent of

x, or what by a stretch of language may be called a polynome of

the oth degree in x, and may .\ in the system of symbols used,

v P =o{x—a)+Q , be symbolized by Q . Hence at last a polynome

QXx-ay+Q 1(x-ay-*+Qs(x-ay-*+-
• .+QU*-")+Q»

of the nth degree in descending powers of x—a is thus got opera-

tionally equivalent to Pn .

The same then that is done with the coefficients of Pn for find-

ing Qn has again to be done with the coefficients of Pn_x for finding

Qn_If next with the coefficients of Pn_2 for finding Qn_2 ,
and so on

to the end. To find for example the polynome in x—2 that is

operationally equivalent to (^x
6
+yxi

-\- $x*+3x3+4x
2
+6x+8,—leaving

out needless repetitions of the first coefficient 9— ,

9 7

18
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191. PROP. Tofind the mononomic or polynomic equivalent if any
tJiere be of tJie product made by multiplying one

mononome orpolynome by tJie reciprocal of anotJier.

The following are the ways of dealing with the several cases.

w acxmypzr J
\z

r
ypxm ca) ' sf y* xT c a *

if n be not less than m, q than /, and s than r.

(2).
——

(8ac*x4- 1 2acAxi-V28ac3x6
-24ac

2x i

)

x 8acsx* —- x 1 2ac4xi
-\

— x 2Sac3*6
-j— x24ac

2x1

4ac
3x* 4ac

2x4 4ac
2xx

4ac
2xA

= (- x s\ a^fx*-*-
(-

x 1

2)
« I

"
I

^4
"2^5

~
4+ (-X28) a^c^x6-*

—
(-X24)a

1
~

1<r3x7
~
4

that is 2c3—
2>c

3

x-\-ycx
2—6x\

(3). For polynomizing ^ (20x
5+gx4—^6x3

-\-28x
2

—20x+7)
$x +ox—7

if it can be done,

20x5

+gx
4
-36x3

-\-28x
2

-20x+7

= ($x
2
-\-6x-7)x—2

x20x5

-($x
3

+6x-7) (i
X20W5

"2

+2QX5

+9X*-36x
3+28x2

-2QX+7
= ($x

3
+6x-7)x4x

3

-(2Qx
5+24xa-28x3

)+2Qx
5+9x

4
-36x3+28x2

-2qx+7
= ($x

2

+6x-7) x4x
3+28x3-24x

4-20x5+20x5+gx
4
-36x3+28x2

-2Qx+7
= ($x

2

+6x-7) x4x
3+9x

4-24xA+28x3-36x3+28x2
-20x+7

= ($x
2

+6x-7) x4x
3
-(24x

4-9x
4
)-{36x

3-28x3
)+28x

2
-2Qx+7

- (5^+6^-7) x4x
3
-(24-g)x

A
-{36-28)x

3+28x2
-20x-^7

= (5*
3

+6>-7) X4x
3-

(sx
2
+6x-7) x— x 1 5^

+($x
2

+6x-7) (- x 1 5 Jx
4
"
2-! i

>
xA-8x34-28x2

-20x4-7

= (5^+6^-7) (4x
3-3x

2

)+( 1 5^+ 1 8x3-2 lx2

)-! S^-8x3
-h28x2

-20x+7
== ($x

2

+6x~7) (4x
3-^x

2

j+ 1 $x<+ 1 8x*-2 ix2- 1 $x*-8x3+28x2
-20x-\~7

= ($x
2

+6x-7) (4*3-3**)+ 1 5-r»— 1 5*«+i %x*-%x*+2%x
%-2 ix2

-20x+7
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= (5^+6^-7) (4^3-3^)+( 1 5^4_ 1 5^4)+( i Sx3-8x3
)

+(28x
2-2 \X*)-20X+7

= (5x
2

+6x-7) (4x*-p;
2

)+(i8-8)xt+(28-2i)x
2
-2ox+7

= (5x
2

+6x-7)(4r*-3x
2

)

+{(S^H6^-7) 3̂
xio^3

-(5^H6^-7)('ixioW
3
"
3

)+iair
3+7^

2

-2o^+7
$x V5 /

= (5^
2

+6^r-7)(4^
3-3^

2

)+(5^
2

+6^-7)x2^-(io^
3+i2^2

-i4r)
+ io^3

+7^-
2

-20^+7
= (5^

2

+6^-7)(4jr
3-3^

3
+2^)-(i2-7)^r

2- (20-14)^+7 in the same way

as before, = (5^+6^-7) (4^
3-3^

2

+2^)- (5^+6^-7) —3X5^

+(5^+6^-7)-5^
2

-6^-4-7

= (5^
2

+6^-7)(4Jir
3-3^

2

+2^-i)+(5^
2

-5^
3

)+(6^-6^)-7+7
as before.

Wherefore because the inverse operation of multiplication of is

reciprocal multiplication of

——
-p (20^+9ar4-36>

3+28x*-20x+7) =4^3-3^
2
+2^--i.

The result may be got with-

out showing the steps by writing

with like mononomes everywhere
in the same column first the

polynome sought operationally

equivalent to the product as it

is got term by term, then the

polynome whose reciprocal is the

multiplier, thirdly the multipli-

cand with a stroke close above

over its whole length, after these

in alternate rows and with a

stroke close below each stretch-

ing throughout its precise length the sets of successive operations

with mononomes that in polynomizing the product of the sought

polynome by the polynome in the second row arise from the

several terms of the former, and lastly next to each set close under

the stroke those other operations with mononomes that come into

the process with the set and are such that all the sets up to and

ending with the set they and the operations with those of the

multiplicand's terms which stretch away to the right of the stroke

give jointly a result operationally equivalent to the multiplicand.
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third whole expression, or which is the same thing
when the quotient of the division of the first whole

expression by the second is equal to some whole

expression, the first is called a Multiple of the

second and the second a Submultiple or Measure
of the first.

As to whole numbers this definition agrees with the definition

of art. 87 but as to whole symbolics it may or may not. As to whole

symbolic expressions Formal or SYMBOLIC multiples and measures

are all that is to be understood.

195. Def. A whole expression is said to be PRIME which has no
measure but itself and unity.

196. Def. Two whole expressions are said to be Prime To One
Another which have no common measure but

unity.

197. PROP. Any measure ofa whole expression is a measure of any

multiple of it.

For if m be any measure of a whole expression a there is (art.

194) some whole expression k such that

a = km
and therefore any multiple of a

pa =pkm = (pk)m.

But k, p, being whole expressions pk is a whole expression. Where-

fore mis 3. measure ofpa.

198. PROP. If two whole expressions be prime to one another any
measure of tlie one is prime to any measure of the

other.

For any common measure of the measures (art. 197) is a mea-

sure of any multiples of them and .*. of the whole expressions.

There can .'. be none but 1.

199. PROP. All the common measures of a whole expression and

any multiple of it are precisely all the measures of
the whole expression itself.

For any measure of a whole expression a is a measure of pa
any multiple of it and .*. is a common measure of a and pa. Con-

versely any common measure of a and pa is of course a measure of

a. All the common measures of a and pa are .*. precisely all the

measures of a.
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200. PROP. Any common measure of two whole expressions is a

measure both of their sum and of ttieir difference.

For if m be any common measure of two whole expressions a a

a = km a = k'm

k k' being whole expressions. .\

a\d = km+k'm = (k+k')m a-d = km-k'm - (k-k')m.

k+k' k-k' then being whole expressions m measures each of the

expressions a+d a—d.

201. PROP. If a whole expression differfrom a multiple of another

whole expression by a third whole expression all the

common measures of the first and second whole

expressions are precisely all the common measures

of the seco?id and third.

Let a b c be three whole expressions and kb a multiple of the

second such that

a = either kb+c or kb—c

and .*. also such that c — either a—kb or kb—a.

Any measure of b is a measure of kb. All common measures of a

and b :. are common measures of a and kb :. (art. 200) are measures

of either a-kb or kb—a .*. (art. 194) are measures of the equal

thereto c and .'. are common measures of b and c. Likewise too all

common measures of b and c are common measures of kb and c :.

are measures of either kb+c or kb—c .: are measures of a the equal
to this and .*. are common measures of a and b. Since then all

common measures of a and b are common measures of b and c and

all common measures of b and c common measures of a and b all

the common measures of a and b are the very same as all the

common measures of b and c.

202. PROP. To find the greatest common measure of two given
whole numbers.

Let a b be any two given whole numbers of which a is not less

than b.

Divide a by b without using fractions (arts. 81, 83). If the

division be exact a is a multiple of by all the common measures

of a and b (art. 199) are then precisely all the measures of b, and
as a whole number is clearly (art. 194) its own greatest measure

b is the greatest common measure of a and b. But if the divi-

sion be inexact let q x be the quotient and r, the remainder, then

since a differs from qjj by r, all the common measures of a

and b (art. 201) are precisely all the common measures of b



b

9S3 (?4

144 ARITHMETIC

and rv Divide unfractionally b by r, and if the a
division be exact all the common measures of q) qb
b and rt and .'. also all those of a and b are pre- ~^T

cisely all the measures of r„ as before then rx is \

the greatest common measure at once of b and

r
s
and of a and b. But if the division be inexact

let q2 be the quotient and r2 the remainder, then

all the common measures of b and r
t
are pre-

cisely all the common measures of r
t
and r9f .-. all the common

measures of a and b are precisely all the common measures of rx

and r2 . Again divide unfractionally r, by r2 . If the division be

exact all the common measures of rx and r2 and .*. all those both of

a and b and of b and r
x are precisely all the measures of r2 and the

greatest of them then is ra . But if the division yield an inexact

quotient q3
and a remainder r

3
all the common measures of r

t
and

r2 are the same as all those of r2 and r
3
and all the common

measures are the same of a and b of b and r, of r, and r2 and of

r2 and r
3

. Now in going on with the process of dividing unfraction-

ally by each new remainder that arises the remainder of the in-

exact division next before the remainders become ever less and

less and by not less than 1 at each step, .\ in not more than b

unfractional divisions from starting a remainder o must at length

be come to. Let it be the zth remainder r4 that divides exactly the

remainder r
t_t next before. All the common measures then of r

t-. t

and rt are precisely all the measures of r,. But all the common
measures of r^ and r, are precisely all the common measures of

any two consecutive terms of the series

<*, by
rlt r„ r

3,... r,_z , rj.

Therefore all the common measures of a and b are precisely all the

measures of r{ . And .\ r
z being itself the greatest of all its own

measures is the greatest common measure of a and b.

Since if r be less than r r^qr+r just when r
t

= qr+(r—r)+r'
= qr+r-r+r'= (q+i)r+r—r= (q+\)r—{r—r') and .\ all the common
measures of r

t
and r are precisely all the common measures of r

and r—r, in the above process r—r' may be anywhere used instead

ofr'.

203. COROLLARY. All the common measures of two whole num-
bers are precisely all the measures of their

greatest common measure.

In art. 202 it is shown that all the common measures of any two
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whole numbers a b are precisely all the measures of their greatest

common measure r,.

204. Prop. A common measure of two whole numbers is their

greatest common measure precisely when the whole

numbers arc prime to one another that express what

multiples of it they are.

First let ;;/ be the greatest common measure of two whole num-

bers a b so that

a — hm b = km

h k being whole numbers. If /x be any common measure that h k

can have so that

h = 7)/J,
k = KfJ,

7j k being whole numbers

a = {7]fi)m
=

rj/xm b = (icfi)m
= K\im

and .*. fim is a common measure of a and b. But V tn is the greatest
common measure

/j,
cannot be else than 1. The only common

measure .*. that h k can have is 1, that is h k are prime to one

another.

Again let m be a common measure of two whole numbers a b

such that

a = hm b = km

where // k are whole numbers that are prime to one another, v (art.

203) all common measures of two whole numbers are measures of

their greatest common measure the greatest common measure of a

and b is gm, g being some whole number, and .*.

a — h'gm b = k'gm
h' k' being whole numbers. .\

//;;/ = h'gm = {h'g)m km = k'gm = (k'g)m

and .'. h = h'g k = k'g.

But h k being prime to one another have no common measure

but 1. .*. g is 1 and .'. gm the greatest common measure of a

and b is m.

205. PROP. To find the greatest common measure of more than two

given whole numbers.

First if there be three given whole numbers a b c find (art. 202)

the greatest common measure m of any two a b and then the

greatest common measure ;;/' of m and the third c. Since all the

common measures of a b (art. 203) are precisely all the measures of

;;/ all the common measures of a b c are precisely all the common
measures of ;;/ and c. But all the common measures of ;;/ and c are

10
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precisely all the measures of m '. Therefore all the common mea-

sures of a b c are precisely all the measures of m . Hence since of

all ni's measures m' itself is the greatest m' is the greatest common
measure of a b and c.

Next if there be a fourth given whole number d find the great-

est common measure m' of m and d. All the common measures

then of a b c being precisely all the measures of m all the common
measures of a b c d are precisely all the common measures of 111

and d. But these again are precisely all the measures of m '. All

the common measures therefore of a b c d are precisely all the

measures of m" and therefore the greatest of them is m".

In like manner all the measures of the greatest common mea-

sure of m" and a fifth number e are precisely all the common
measures of the five numbers a b c d e and that greatest common
measure is therefore the greatest common measure of the five. And
so on for six or more whole numbers.

The greatest common measure of four given whole numbers

may also be got by finding the greatest common measure m of any
two of them the greatest common measure m

t
of the other two and

then the greatest common measure mu of m and m
t

. For all the

common measures of the first two being precisely all the measures

of m and all the common measures of the other two precisely all

the measures of m
t
all the common measures of the four are pre-

cisely all the common measures of m m
tf
hence are precisely all the

measures of m
ti , and hence have m

it
the greatest of them. In a like

way may the greatest common measure of more than four given
whole numbers be found.

206. Cor. All the common measures of any whole numbers arc

precisely all the measures of their greatest common

measure.

207. Prop. A whole number prime to each of two whole numbers

isprime to theproduct made by multiplying by either

of them the other.

Let a whole number a be prime to each of two whole num-
bers b c.

If a be 1 1 is the only measure of a and .\ the only common
measure of a and be. Again if b be 1 be is c if c be 1 be is b and to

both c and b a is prime.
But if neither a b nor c be 1 let the unfractional division of b by



NUMBERS RELATIVELY PRIME 147

a give the quotient q x
and the remainder r

x ;
should b be less than

a q x
is o and r, is A Because tf is not a measure of £ r, is not o.

Because £ differs from ^z by r
x
all the common measures of b and

# are precisely all the common measures of a and rt and .'. as b is

prime to a so also is a to rs . Wherefore and because when a is a

multiple of r
x
all the common measures of a and r, are precisely all

the measures of r, # can be a multiple of r
t only when r

x
is 1. When

then r, is not 1 let the unfractional division of a

by r
x give the quotient q.a and the remainder r3 else b

than o. As before because a is prime to rt r, is # ^ ^ (g

prime to r2 and r, can be a multiple of r2 only ^
) qj- ~^

when 2̂ is 1. Again when r2 is not 1 let the
t q v (q

unfractional division of r
t by r2 give the quotient

<7,
and the remainder r

3
else than o, then r2 is °*>

^Jj.

prime to r
3
and r2 can be a multiple of r

3 only r
4

when r
3

is i. And so on. Now in carrying on

these unfractional divisions by each new remainder of the last one

the remainders go on lessening by 1 or more at each step and
must at length .*. be always brought down to o. Let it be the un-

fractional division by the zth remainder r, that gives this remainder

o, then every two consecutive terms of the series

b a rt ra r
n

. . . r,_t r4

are prime to one another and .'. and because r,_ x
is a multiple of

ri r4 is 1.

Because r
x
= b—q x

a r
x
c = (b—q 1a)c = bc—(qla)e

= be—q 1
ae and .*. any

common measure of be and qx
ac is a measure of r

x
c. But because

any measure of a is a measure of the multiple thereof^, .\ of this

multiple's equal ac, and .*. of the multiple of this last qxac, any com-

mon measure of a and be is a common measure of qx
ac and be.

Therefore any common measure that a and be can have is a mea-

sure both of ac and of r
x
c. In like manner because r^

—
a-q^r^

r.f= ac—q2
r

x
c .*. any common measure of ac and r

x
c is a measure of

r2c and .*. any common measure that a and be can have is a mea-

sure at once of ac of r
x
c and of rj:. In the same way it follows step

by step that any common measure of a and be is a measure of

every term of the series

ac r
x
c r2c r

3
c . . . r

t_x
c r

t
c.

Because then r
t
c is c any common measure that a and be can have

is a measure of c and .'. a common measure of a and c. But a is

prime to c. Therefore a is prime to be.

10—2
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208. PROP. If each of any whole numbers be prime to each of any
other whole numbers the product ofall thefirst whole

numbers is prime to tJieproduct of all the others.

Let each of the whole numbers a b c . . . g hbe prime to each of

the whole numbers d b' c' . . . m' 11 .

Because a' is prime to a and to b it is (art. 207) prime to ba,

because then prime to ba and also prime to c it is prime to cba, and

so on. .". a' is prime to hg...dcba, that is a whole number prime to

each of any whole numbers is prime to their product. So each of

the other whole numbers b' c' . . . m! ri is prime to the same product

hg...cba. Hence hg...cba because prime to each of the whole num-

bers d b' c' . . . m ri is prime to their product rim' ...c'b'd.

209. Cor. If one whole number be prime to another any power of
the one is prime to any power of the other.

This is only the particular case of art. 208's prop, when a—b = c

= • • • = h and a = b' = c' = • • • =. ri.

210. PROP. All the common measures of two whole numbers are

precisely all the common measures, of one of them

and theproduct made by multiplying the other by any
whole numberprime to the first.

Let a b be any two whole numbers and / any whole number

prime to a.

If m be the greatest common measure of a b

a = hm b = km
h k being whole numbers that (art. 204) are prime to one another,

and

pb —pkm = (pk)m.

But v a = hm and .'. —mk h is a measure of a and (art. 198) .*. is

prime to/. /Hhen is prime to both k and p and .*. (art. 207) is prime
to pk, that is the whole numbers are prime to one another that

express what multiples a and pb are of m. :. (art. 204) m is the

greatest common measure of a and pb. All the common measures

/. of a and b (art. 203) are precisely all the common measures of a

and pb.

211. PROP. If of two equal simple fractions the terms of one be

prime to one another the terms of the other are those

multiples ofsome whole number that are expressed by
the corresponding terms of thefirst.
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Let -. = 77, a b a b' being whole numbers of which a b are prime

to one another.

Then (art. 113) a> = J*' and .'• (art. 124)
= -r-. •*. (art. 194) ab' is

a multiple of b and .'. (art. 199) all the common measures of ab' and

b are precisely all the measures of b. But v a is prime to b all the

common measures of b' and b (art. 2 10) are precisely all the common
measures of ab' and b. :. all the common measures of b' and b are

precisely all the measures of b. .'. b is a measure of £', that is there

is some whole number k such that

b' —kb and .*. also = bk.

,
akb (ak)b .

.-. a = —r- = *-r- = #£.
£ b

212. Prop. Tofind the least common multiple of two give?i whole

numbers.

Let a b be two given whole numbers.

Any whole number that is at once a multiple of a and a multi-

ple of £ =
pa = qb,

p q being whole numbers. If then m be the greatest common mea-

sure of a and b and

a — km b = km
h k being whole numbers that are prime to one another

phm = qkm.

This happens precisely when singly (ph)m = (qk)m, ph = qk,ph = kq,

ph _kq p _ k

qh hq* q h'

.'. (art. 211) p = kr q = hr, r being some whole number, and .*. any
common multiple of a and b

= (kr)hm — (hr)km = krhm = hrkm = rkhm — rhkm.

Any of these equals is least when r is 1 and .*. of all the common

multiples of a and b the least

, j r j b a j ba ab= khm = hkm =—a — —b = — = —
.m m m m

213. Cor. All the common multiples of two whole numbers are

precisely all the multiples of their least common

multiple.

In art. 2 12 any common multiple of two whole numbers a b is

shown = rhkm where r is a whole number and hkm = the least com-

mon multiple.
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214. Prop. To find the least common multiple of more than two

given zvhole numbers.

If there be three given whole numbers a b c find (art. 2 12) first

the least common multiple v of any two of them a b and then the

least common multiple v of v and the third c. v (art. 2 13) all the

common multiples of a and b are precisely all the multiples of v

all the common multiples of a b and c are precisely all the common

multiples of v and c. But all the common multiples of v and c are

precisely all the multiples of their least common multiple if, .'. all

the common multiples of a b and c are precisely all the multiples

of v'. Now the least of all the multiples of any whole number is

clearly just that whole number itself. .'. if is its own least multiple
and .*. is the least common multiple of a b and c.

Again if there be a fourth given whole number d find the least

common multiple v" of v and d. All the common multiples of a b

and c being precisely all the multiples of v all the common multi-

ples of a b c and d are precisely all the common multiples of v

and d. But these last are precisely all the multiples of v". .: all the

common multiples of a b c and d are precisely all the multiples of

v" and .'. the least common multiple of a b c and d is the least of

v'
n
s multiples, that is v" itself.

So all the common multiples of five given whole numbers

a b c d e are precisely all the common multiples of v" and e .*. are

precisely all the multiples of the least common multiple of if' and

e and .\ the least common multiple of a b c d e is the least com-

mon multiple of v" e. And so on for more than five given whole

numbers.

If u be the least common multiple of two or more whole num-

bers u' the least common multiple of other two or more whole

numbers and u" the least common multiple of u and u!
,

all the

common multiples of the first two or more whole numbers being

precisely all the multiples of u and all the common multiples of

the other two or more precisely all the multiples of u' all the

common multiples of all those whole numbers are precisely all the

common multiples of u and u'. As then all the common multiples
of u and u' are precisely all the multiples of u" so too are all the

common multiples of all the whole numbers and the least of them
is therefore u". This may be made use of for finding the least

common multiple of more than three given whole numbers.

215. COR. All the common multiples of any whole numbers are

precisely all the multiples of their least common

multiple.
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216. It is by means of the foregoing propositions about the

measures and multiples of whole numbers that the fractional opera-
tions of arts. 101,103, 106, 109, and the process of art.99 on which
these operations all hang may be most readily gone through.

First and foremost a fraction is expressed as a simple fraction

in terms the least possible only when the terms are whole numbers
that are prime to one another. For (art. 2 11) any whole number
terms in which it can be expressed are multiples by these of some
whole number and therefore (arts. 88, 89) neither of them ever can

be less than the corresponding term. If then in the handling of

fractions the least whole numbers are to be used that need be the

greatest common measure of the terms of every given simple
fraction and the numbers expressing what multiples the terms are

of the greatest common measure must be found. Taking for ex-

~~.~i^ 4.u~ r 4.:— 2231
dllipj
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£ 45X17 33x23 19x31 = 7^5-759+5^9 = 595 = 35x17

713x17 527x23 391x31 12121 12121 713x17

and because 17 is the greatest common measure of 595 and 12 121

35
therefore is .

In like manner

53563 82751 = 1847x29 ^ 997x83 = 1847^ 997 = ll47
28913 154463 997x29 1861x83 997 1861 1861'

63 2090 _ 9x7 209xio_ 9 209 _ 9x11 209x13

1729 60 ""247x7 6x10 "247 6 ""247x11 6x13

11x3x3 2717 _(nx3)x3_33x
2717 13x2x3 (13X2JX3 26'

54 \ / 24x1 1\ /24\ / 24x3 \ / 72 >

535/ V385X11; _ V385/ _ V385X3/ _ V1155/

/264A /24xu\ /24A / 24x3 \

V4235/ = V385XII/ = V385/ = V385X3/ = UI55/ = 71
/424 \ / 53x8 \ /53A /53X5\ / 265 \ 265*

V1848; V231X8; V231/ V231X5; V1155/

217. Any given whole number is either prime or equal to the

product of two whole numbers each else than 1, if the latter each

of the factors is either prime or equal to the product of two whole

numbers each else than 1 and then the given whole number either

immediately or by colligation and commutation of the multiplica-

tions is equal to the product of three or four whole numbers each

else than I, again each of these factors is either prime or equal to

the product of two whole numbers each else than 1 and the given
whole number is then as before equal to the product of more than

three but not more than eight whole numbers each else than 1, and

so on. But because any whole number that is not prime is equal to

the product of two whole numbers each of which is less than itself

and by never less than 2 the process cannot go on for ever. There-

fore any given whole number either is itself a prime number or is

equal to the product of whole numbers of which every one is a

prime number. If then a of the factors of this product be the prime
number a ft of them the prime number b 7 of them the prime
number c v of them the prime number n the given whole

number

= ii7t . . nntntn . . mmlL .11. cc. . ccbb . . bbaa . . aa

= {ft., nn) (m . . mm) (/..//).... (c. . cc) {b..bb)a..aa

that is nvmHx...c^a°;
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Thus 1, 2, 3, 5, 7, 11, 13, I7> J 9» 23, 29, 31, 37, 41, 43,... are

prime numbers. 4 = 2 3
,
6 = 2x3, 8 = 2*, 9 = 3

3
,
10 = 2x5, 12 = 3x4

=
3.2

3
, 14 = 2x7, I5 = 3><5» i6 = 4X4 = 2 3x2 3 = 2*, 360 = 6x60

= (2X3).2.30
= 2.3.2.2.15 =2.3.2.2.3.5 =2.2.2.3.3.5 = (2.2.2)(3.3).5

=
2^.3

3

.5 J

70 000 = 7(5x2)" = 7.54.24
=

24.54.7 m 7.2154.

Any number equal to ff*HI*P*„jCi&»4*»%
where <x

t /3 t yt
. . . v

t
are

whole numbers not greater severally than a £ 7 ... 1/ and of which

any may be o, is a measure of the number equal to u lw>x/K...cv6l3aa .

For

nv
. . .b^aa = nT*'4*'. . .^"ft"^* #*"">< = {ii

v
>n™) . . . (b^b

p
~^)a

a
'a

a~a
>

= ;^7^-"'. ..b^b^a^a --*' = «r»/. . .bP-t'OP-^n": . .£&#*>

But no other whole number can be a measure whether equal to

vu...rqpn
v
<l
K
'...b£> where /3,...\ r

4
are as before and / ^ r...u v are

powers of other primes than # $ c...l m n of which one at least is

not 1, to 7i
v<mtA

'l
k
<...cv'bP'a

a
'

where a' 7 . . . fi' are whole numbers

severally greater than a 7...^, or to vu...rqpu
v'mtL'l

k
>...cy'bfi>aa:

,
—

taking these as instances of the equal product having severally as

factors powers of other primes than a b...n and no higher powers

of a b...n than the product nv
...b^a°-y powers of no other primes but

higher powers of some of these, and powers of other primes and

higher powers of some of the primes a b...n. For

fppplK . .c^a°- _ (*
r"

1
''/
x~\ . .bW')n

v
> mv-fa. . .cyb^a*

vu. . . rqpn
v>mrlK:. .cy'b^a -'

~
(vu...rqp7nw. . .d~^o^~a

)7i
v-my-lK>. . xi&>cP

as above and .

Likewise

vu...rqpm>J- *...cy~yaa a

vu...rqpn
v

- l
K
>... bp ' vu...rqp

fMP-l* . . .cybpaa n™' lx
~K

>
. . .b^*

nv'm*'lK'...cy'lfi'aL
'
~

m^~^...ci~yaa:
~a-

'

And in the latter fraction of each of these pairs of equals every
factor of the numerator product is prime to every factor of the

denominator product, therefore the numerator is prime to the de-

nominator. Besides none of the denominators is 1.

Hence all the measures of the number equal to nvmHx...cyb^cf-

are the same as all the products that can be made by multiplying

together numbers taken one from each of the sets
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219. Def The FULLEST COMMON MEASURE of whole symbolic

expressions is that common measure of them which

has in it the greatest number or numbers and the

most letters, any power of a number symbolized by
a letter counting of course for as many letters as the

index of the power expresses.

The fullest measure of any whole expression is clearly just the

whole expression itself.

220. PROP. Tofind the fullest common measure of whole symbolic

expressions.

PROP. A whole symbolic expression prime to each of two whole

symbolic express ions is prime to the mononomic or

polynomic equivalent of their product.

These propositions have their several cases so closely bound up
with one another that they must go together.

Since (arts. 175, 176, 180, 181, 193) whole symbolic expressions
either are or are operationally equivalent to whole mononomic or

polynomic expressions these last alone need be dealt with.

Let then a b c . . . be whole mononomes or polynomes whose

fullest common measure is sought, Let//* k be three whole mono-

nomes or polynomes such that/ is prime to h and to k, and let lik

symbolize the mononomic or polynomic equivalent of hk.

(1). If a be, .. be absolute mononomes,—that is expressions

mononomic relative to every number in them symbolized by a

letter—, their fullest common measure is the mononome having as

factors the greatest common measure of all the numerical coeffici-

ents and the lowest powers that anywhere enter of such letter sym-
bolized numbers as are common to them all. For (art. 181 or 187)

the only measures that a whole absolute mononome can have are

either the measures of its several factors or the products of some or

all of these measures.

Hence all the common measures of absolute mononomes are

precisely all the measures of their fullest common measure.

(i).
\if h k be absolute mononomes the numerical coefficient of

/being prime to the numerical coefficient of h and to the numeri-

cal coefficient of k is (art. 207) prime to the numerical coefficient of

'hk, and /having no letter symbolizing a number in common with

either // or k can have none in common with 7ik. Therefore / is

prime to 7ik.

(2). If some of the expressions a b c . . . be absolute mononomes
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and the rest polynomes having absolute mononomes as terms,

since (art. 181 or 187) the only mononomic measures of a polynome
are the common measures of its terms all the common measures of

a b c . . . are precisely all the common measures of all those of them

that are mononomes and all the terms of all those of them that

are polynomes and therefore the fullest common measure of the

one is the fullest common measure of the other.

Hence all the common measures of whole expressions some

of them absolute mononomes and the rest absolutely mononomic

termed polynomes are precisely all the measures of their fullest

common measure.

(ii).
If f h be absolute mononomes and He a polynome whose

terms are absolute mononomes let k be the fullest common measure

of all k's terms. Since all the absolutely mononomic measures of k

are precisely all the measures of k all the absolutely mononomic

measures of lik are precisely all the measures of Tiic and therefore

all the common measures of/ and hk are precisely all the common
measures of/and h/c. But /being prime to h and to k is (art. 198)

prime to h and to k's measure k and therefore by the
(i) case above

to Tiic. Hence 1 being the only common measure of/ and ^ 1 is

the only common measure of/ and hk.

(iii).
If / be an absolute mononome and h k be polynomes

whereof each's terms are absolute mononomes any common mea-

sure of / and hk can only be an absolute mononome. Now any
whole absolute mononome is either prime or equal to the product

of two whole absolute mononomes each else than 1, each of these

is again either prime or equal to the product of two whole absolute

mononomes each else than 1, of each of these the same holds, and

so on. But since a whole absolute mononome is the product of a

whole number and powers of numbers each symbolized by a letter

this process cannot be endless. Hence and by colligation and com-

mutation of the multiplications any whole absolute mononome is

either prime or equal to the product of whole absolute mononomes

each prime and else than 1. Let then fi be either any common
measure that/ and 7ik can have if prime or any factor else than 1

of the prime factored product equal thereto if not prime and so

(art. 197) still a prime common measure. Because / is prime to h

/'s measure fx is prime to h and therefore h must have one or more

terms prime to /x; h may have one or more other terms not prime
to

jjl
of which then

//,
must because a prime be a measure. Hence

by the processes cf arts. 180, 181,187, if it v be the several sums of
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the nonsubtracted and of the subtracted terms of h that are prime
to

fjb
and u' v the several mononomic or polynomic equivalents

of the quotients got from dividing by fju
the sums of the non-

subtracted and of the subtracted terms of h that are not prime to

jj,
k — H+11 fi-v-v'fi and therefore is operationally equivalent to

one or other of

r~~r, L> -!.. r.u—v+ u —V fl u—v— V—1IH u—v fl— v—u

which for shortness may be severally symbolized by /i
t+/ifi h—h'/n

h'fi—h l
where //

/
is a whole mononome or pclynome with each of its

terms prime to fi and never can be o and H is either a whole mono-
nome or polynome or o. In the same way k is operationally equi-

valent to one or other of

k^k'fJL k—k'fJb k'iL—kt

where k
t

is a whole mononome or polynome with each of its

terms prime to \x and can never be o and k' is either a whole mono-

nome or polynome or o. Should h be equal to the second of the

former three expressions and k to the first of the latter three ITk

= either '//,£,+ {hfi—Ji (k^k'/u) }/jl
or hk—^i'i^k^k'^—hfi}^ again

should h be equal to the first of the former three and k to the third

of the latter hk = [hfi+ti (k'/ju—k^fj,— h l

k
l

, and each of the nine

cases that can so arise may be treated in the like way. Hence

'hk is operationally equivalent to one or other of

Wfa+w/i,
]

/ife-w/j, wfjb—h l
k

/

where w is some whole expression or o and therefore 7TF
t

is equal
to one or other of

hk \hk hk

Ik P V>

that is (art. 194) //,
is a measure oVhkr Therefore fi is a measure of

every term of r
h~kr But if t t' be severally the terms of highest

degree in Ji
t
and in k

t
[t being h

t
when h

t
is a mononome and t' k

t

when k
t
is a mononome) the term of highest degree in h

t
k

t

is (art.

181) 77 and since
//,

is prime to / and to t' fi is prime to •/?. The
terms of lowest degree would do just as well. Hence fi cannot be

aught but 1 and hence 1 is the only common measure of / and Hk.

(iv). If/ be a polynome whose terms are absolute mononomes
and h k be absolute mononomes since Wk is then an absolute mono-

nome any common measure that / and ^hk can have must be an

absolute mononome. But because /is prime to h and to k so like-

wise is any measure of f and therefore any mononomic measure.

Therefore any common measure of/and Wk is an absolute mono-
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nome prime to h and to k and therefore also to hk. It can therefore

be no other than 1.

(3). If a b be absolutely mononomic termed polynomes in the

same reference number let a be the fullest common measure of ds

terms ft the fullest common measure of b's and
jjl

the fullest com-

mon measure of a and ft all found by the (1) case above. All the

absolutely mononomic measures of a are precisely all the common
measures of ds terms and therefore precisely all the measures of

these's fullest common measure a. Likewise all the absolutely mo-

nonomic measures of b are precisely all the measures of ft. There-

fore all the absolutely mononomic common measures of a and b

are precisely all the common measures of a and ft therefore again
are precisely all the measures of fi and therefore the fullest of them

is
fJL.

Because a is ds fullest mononomic measure a — da. where d is

not only a whole polynome but also an absolutely pure polynome,

calling an absolutely mononomic termed whole polynome Pure
which has besides 1 none but polynomic measures or in other

words which is prime to every absolute mononome. For if a

had any absolutely mononomic measure a! a = a"a' f
a" being a

whole expression, a= (d'a!)oL
= d'a'a. and if a' were else than 1 a

would have a fuller mononomic measure a'a than the fullest a. So

b = b'ft where U is an absolutely pure polynome.
All the measures of a that are pure polynomes are precisely all

the measures but 1 of d. For since a = da.= ad a is a multiple of

d and therefore any measure of d is a measure of a. Also ifp be a

purely polynomic measure of a a =p'p, p' being a whole mononome
or polynome, a'a=p'p and a is a measure of p'p. Hence and because

a is prime top if a be a prime else than 1 a cannot be prime top',

since by either the
(ii)

or the
(iii)

case above a would then be prime

p'p \p'
to p'p, therefore a is a measure of/ and therefore d =— = \—p

a a

where
v— is whole. But if a be not a prime a as shown above
a

in (iii)
=

ty. . .Tap where p ar...yjr are primes each else than 1, p'p
— d^r...Tcrp

=
{d^r...Tcr)p and hence as before/ is a measure of

dyfr...rcr, hence in the same way p is a measure of d^r...r} and so

on until at last it follows that / is a measure of d. Since then any
measure of d is a measure of a and any purely polynomic measure

of a is a measure of d all the purely polynomic measures are the

same of a and of d. So too all the purely polynomic measures of
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b arc precisely all the measures but 1 of b '. Therefore all the purely

polynomic common measures of a and b are precisely all the

common measures but 1 of a and b'.

Of a b' let it be a! that has not the less power range, then (arts.

187, 188) there is a mononomic or polynomic expression the pro-

duct of the multiplication by which of b' either is equal to a or

differs from a by a mononomic or polynomic expression of less

range than b'. These expressions however need not be whole. But

8'

if the first term of the former of them were
jx*

where x is the

reference number and 8' 8 are whole mononomes of which 8 is not

a measure of 8' the first step in the process for finding them would

give

a— (-zx
i

\b'±l±m±...±s

where I m ... s are unlike mononomes that can be other than whole

only by reason of the fractionality of
-^

and hence it would follow

that

W8 =
\(^x^b'±l±...±s\8=(8'x

i

)b'±
r

J8±'m8 F...+S

where 75
lm8 ...^ are all wholes. The next step would then give

. r
1

a'8 = (8V+ yc** )b'±m'±ri±. . . ±s

f
'

f being whole mononomes of which f might not be a measure

of f and m 11 ...s unlike mononomes that can be other than

whole only by reason of
^-'s fractionality, hence as before \a'8)% and

hence the operational equivalent of this

]

m'% '#'£ ...(7f being wholes. And so on. Therefore when the mono-
nome or polynome is not whole which multiplied into b' gives

a product either equal to d or differing from a' by a mononome or

polynome of less range than b' a whole mononome a may be found

such that ]

a'a! either is equal to, or differs by a whole mononome
or polynome of less range than b' from, the product of b' by some
whole mononome or polynome.

In the former alternative Wa is a multiple of b' and because

b' is a pure polynome a is by what is above shown also a multiple
of b'. All the common measures of a' and b' are then (art. 199) pre-

cisely all the measures of b' and the fullest common measure of ci

and b' is therefore b\
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In the latter alternative let rT be the whole mononome or poly-

nome of less range than b' by which SV differs from a multiple

qj?' of b'. All the common measures of a!a and b' are then (art. 201)

precisely all the common measures of U and r1 . But because b' is a

pure polynome all the common measures of da! and b' are by what

is above shown precisely all the common measures of a' and b'.

Therefore all the common measures of a and b' are precisely all the

common measures of b' and zx . If r, be a mononome #' is prime to

rt
and therefore #' is prime to b' . If r, be a polynome let p T

be the

fullest common measure of all r/s terms and therefore rz 's fullest

mononomic measure, then r,
= r'

lp 1 r\ being a pure polynome of

the same range as rx
and as before all the common measures of U

and rIf and therefore all those of a and b', are precisely all the

common measures of b' and r\.

Again in like manner either b' is a multiple of r\ and then all

the common measures at once of U and r\ and of a and b' are pre-

cisely all the measures of r\ and the fullest of them is therefore r\

or a whole mononome /3' may be got such that (

b'fi' differs from a

multiple q2r\ of r\ by a whole mononome or polynome r2 of less

range than r\ and then all the common measures at once of U

and r\ and of a' and 3' are precisely all the common measures of

r\ and r2. If r2 be a mononome the pure polynome r\ is prime to r2

and therefore so is U to r'
x
and #' to b' but if r2 be a polynome let

^2
= r'2p2 where p2 is r2 's fullest mononomic measure and therefore

r'2 a pure polynome of the same range as r2 then all the common

measures are the same of a and b' of b' and r\ and of r\ and r 2.

The like process may now be gone through with r\ and r 2. And
so on. But since the range of the succes-

sive rs goes on lessening at every step

by at least 1 there must sooner or later

always arise one of them rt which either

is a mononome or is such that the purely

polynomic equivalent r\ of the quotient

got from dividing it by its fullest mono-

nomic measure p{ is a measure of the

purely polynomic equivalent /%_, of the

like quotient got from r
t_z . In the first

hap the pure polynome r'
z_r is prime to

the mononome r€ in the other r t_x being

a multiple of r\ all the common mea-

sures of r' {_x and r\ are precisely all the

measures of r\. But all the common

a
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measures are the same of every two consecutive terms of the

series

,, t (either r
t

3

(
or r t.

Therefore if r4 be a mononome the only common measure of a' and

b' is I and if r, be a polynome all the common measures of a and

b' are precisely all the measures of r\.

Now any common measure of a and b is either a mononome or

a polynome and if a polynome either a pure polynome or operation-

ally equivalent to the product of a pure polynome and a mononome
each of them a common measure of a and b. But all the monono-

mic common measures of a and b are precisely all the measures of

ft and all the purely polynomic common measures of a and b are

precisely all the common measures but I of a and b '. Therefore if

r£ be a mononome all the common measures of a and b are precise-

ly all the measures of
fj,

and the fullest common measure of a and

b is then /z. And if r4 be a polynome since of all the whole products

equal to common measures of a and b all the mononomic factors

are precisely all the measures of
//,

and all the purely polynomic
factors precisely all the measures but I of r { all the common mea-

sures of a and b are precisely all the measures of r'jt and the

fullest common measure of a and b is therefore
r',/j,.

Hence all the common measures of two absolutely mononomic
termed polynomes in the same reference number are precisely all

the measures of their fullest common measure.

(4). If a b c... be three or more absolutely mononomic termed

polynomes all in the same reference number find by the foregoing

{3) case the fullest common measure m of a and b and the fullest

common measure m' of m and c. Because all the common measures

of a and b are precisely all the measures of m all the common mea-

sures of a b and c are precisely all the common measures of ;;/ and

c. But all the common measures of m and c are precisely all the

measures of ;//. Therefore all the common measures of a b and c are.

precisely all the measures of ni and therefore the fullest common
measure of a b and c is ;//'. Again find the fullest common measure

;//" of ;;/' and d then all the common measures of a b c being pre-

cisely all the measures of in all the common measures of a b c d
are precisely all the common measures of m and d therefore are

precisely all the measures of in" and therefore the fullest of them

is in". In the like way all the common measures of a b c d e are

precisely all the common measures of ;//" and e precisely all the

11



l62 ARITHMETIC

measures of these's fullest common measure m'" and m'" is the

fullest common measure of a b c d e. And so on.

Hence all the common measures of whole polynomes in the

same reference number of each of which the terms are all absolute

mononomes are precisely all the measures of the fullest common
measure of those polynomes.

(v). If//z be polynomes in a common reference number with

absolutely mononomic terms and k be either an absolute mono-
nome or a polynome in that common reference number with abso-

lutely mononomic terms let /=/'<£ h — Jir] where <f> tj are the fullest

mononomic measures severally of f h and /' // are therefore pure

polynomes. Because/ is prime to h and to k so is/'s measure
</>
and

therefore by either the (ii) or the (iii)
case above

</>
is prime to Jik.

Also all the mononomic measures of / are precisely all the mea-

sures of
<f>
and dLs7ik= {h'rj)k

=
^Jtkr) all the purely polynomic mea-

sures are the same of 7ik and of (
7i
r
k. Therefore / and hk can have

besides I none but purely polynomic common measures and all

the common measures of/ and ^hk are precisely all the common
measures of/' and ^Ji'k.

Since /'<£
=

<£/' and /irj
=

7j/i /' is a measure of/ and U of h

therefore / is prime to Ji and to k. The polynome Ji then being

prime to, and therefore no multiple of, the polynome /' there is

some whole absolute mononome rj' such that Wq' differs from a

multiple qxf of/' by a whole mononome or polynome rx of less

range than /'; should /"s range be greater than Ji's rj is I qs is O

fk is H and everything still holds good. Because r
x
— either ^n'—q,/'

or qif'—Uri rji either = (h
,

7]'—q1f')k = r)'h'k—q1f'k or ^q^'k—rj'h'k
and any common measure of /' and UTk being a measure at once

of /"s multiple kf of this multiple's equal f'k of this equal's mul-

tiple q^f'k and of Hk's multiple rj Jik is hence a measure of rfi.

If now r, be a mononome all the purely polynomic measures

are the same of rft as of k so that any common measure but I of

/' and ITk is then a purely polynomic common measure of/' and k

and therefore is none whatever. But if rz be a polynome r
1=r 1pI

p x being rx
's fullest mononomic measure and r\ a pure polynome of

the same range as rs and then since {r'Ip 1)k= {r\k)p 1 all the purely

polynomic measures of rxk are precisely all those of r\k and

among them therefore any common measures but I of /' and Wk,

Then too as shown in the (3) case above all the common measures

of Ji and /' are precisely all the common measures of /' and r\

and therefore /' is prime to r\. Hence again there is some whole
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absolute mononome
<j>'

such that /'</>' differs from q/ x a multiple
of r', by a whole mononome or polynome r2 of less range than r\

and since as before rfi — either <$f'k—qy\k or q./^k—^fk it follows

as before that any common measure of /' and lik because a mea-
sure of f'k and of r\k is further a measure of rjs.

Here again if r3 be a mononome all the purely polynomic
measures are the same of rjz as of k and therefore because /' is

prime to k so is /' to (^. But if r3 be a polynome r2
= r'^ p2 being

r3's fullest mononomic measure and r\ a pure polynome of r3's

range such that r'2£ has the very same purely polynomic measures

as rjk then again in the like way r\ is prime to r\ some whole

absolute mononome p\ makes Vjlx
differ from a multiple q3r\ of r\

by a whole mononome or polynome r
3
of less range than r\ and

any common measure of/' and ^6 is a measure not only of f'k
of r\k and of r'^ but also of rjt. And so on.

But since the rs keep on lessening in range by 1 or more at

every step and each r is prime to the r' next following an r must

at last be reached,—call it t4—, which is an absolute mononome.
Then any common measure of /' and lik is a measure at once of

f'k of r\k of r'Jt of r'^k and of r
t
k all the purely polynomic

measures of r
t
k are precisely all the purely polynomic measures of

k all common measures of /' and rlik are common measures of /'
and k and therefore /' is prime to Hk and /to Tik.

(5). \iabc... be absolutely mononomic termed polynomes but

not all in the same reference number since they could only be

polynomes in the reference number of a polynomic common mea-

sure all their common measures are absolute mononomes are there-

fore precisely all the common measures of all their terms and are

therefore precisely all the measures of the fullest common measure

at once of themselves and of all their terms.

(vi). If/ h be absolutely mononomic termed polynomes in dif-

ferent reference numbers and k be either an absolute mononome or

an absolutely mononomic termed polynome / and Tik can have a

polynomic common measure only when they are polynomes in a

common reference number and therefore only when k is a poly-
nome in /'s reference number. If then k be either a mononome or

a polynome in another reference number than /'s / and lik have

no polynomic common measure. If k be a polynome in /'s re-

ference number // must be a measure of every coefficient of a power
of that number in lik and therefore any measure of lik which is a

polynome in that number must have a purely polynomic measure

11—2
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in common with k so that still f and ^hk have no polynomic com-
mon measure because f and k have none. Moreover by the (ii)

and

(iii) cases above any mononomic measure off is always prime to

Uik. Therefore f is prime to ^hk.

(6) and (vii). Next in order of complexity to a polynome whose
terms are all absolute mononomes is a polynome of which some of

the coefficients of the several powers of the symbolized reference

number are polynomes of that kind and the others if there be any
are absolute mononomes. Of a whole polynome of this kind the

terms though not absolute mononomes are yet mononomes relative

to the reference number and any measure is either a relatively

pure polynome,—calling a whole polynome Relatively Pure
when it is prime to every relative mononome and therefore has

besides I only relatively polynomic measures—
, a relative mono-

nome which is a common measure of all the terms or an opera-
tional equivalent of the product of a relatively pure polynome and

a relative mononome each of which is itself a measure. Hence as

after the cases (1) and
(i)

above of absolute mononomes the cases

(2) (ii) (iii) (iv) (3) (4) (v) (5) and (vi) of absolutely mononomic
termed polynomes follow so now in like manner by putting all the

foregoing cases viewed as the cases of relative mononomes in the

place of the two first and using throughout the nine others relative

instead of absolute mononomes and relatively pure instead of ab-

solutely pure polynomes do the corresponding cases follow of rela-

tively mononomic termed polynomes.
Since by taking polynomes of any complexity for some of the

coefficients of the several powers of a new reference number a

polynome is got of a greater complexity the orders of polynomic

complexity are endless. But as from the cases of absolute mono-
nomes the cases are passed on to of polynomes with absolute

mononomes for terms then from all these the cases are passed on

to of polynomes with absolutely mononomic termed polynomes for

coefficients of powers of their reference numbers so generally in the

same way from the cases of mononomes and polynomes up to any
given order of complexity may the cases be passed on to of poly-
nomes of the next higher order of complexity by always holding
as relatively mononomic all the terms of these last and all poly-
nomes of lower complexity in other reference numbers.

221. COR. All the common measures of whole symbolic expressions
areprecisely all the measures of theirfullest common
•measure. - -
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Hence any common factor of whole products is a factor of their

fullest common measure and in finding the fullest common mea-

sure the other factors then need only be sought.

222. Prop. A common measure of two whole symbolic expressions

is their fullest common measure precisely when the

whole expressions equal to the quotients of tJieir

divisions by it areprime to one another.

Let a b be two whole symbolic expressions. And first let m be

their fullest common measure so that

a = hm b = km

h k being whole expressions. Then if /a be any common measure of

h and k h = rjn k —
Kfju rj tc being whole expressions and .

a =
(rjfj,)

m =
TjfjLm b = (k/m)m =

Kfjum.

Therefore fim is a common measure of a and b. And if
//.
were else

than 1 fjum would be a fuller common measure than the fullest m.

Wherefore // is prime to k. Conversely let m be such a common
measure of a and b that

a = hm b = km
where h k are whole expressions prime to one another. Then be-

cause m is a common measure of a and b and all the common
measures of a and b are (art. 221) precisely all the measures of the

fullest common measure of a and b this fullest common measure

=gm g being some whole expression and a = h'gm b = k'gm K k'

being whole expressions. Therefore

hm = h'gm = (h'g)m km — k'gm = (k'g)m
h — Jig k — k'g.

Therefore g is a common measure of h and k. But h and k have no

common measure but 1. Hence g is 1 and gm the fullest common
measure of a and b is m.

223. Prop. All the common measures of two whole, symbolic ex-

pressions are precisely all the common measures of
one of them and the mononomic orpolynomic equiva-
lent of the product made by multiplying the otlter by

any whole expression prime to thefirst.

Let a b be any two whole symbolic expressions and / any
whole expression prime to a.

If ;;/. be the fullest common measure of a and b .

a=hm b—km
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where h k are whole expressions that (art. 222) are prime to one

another and

ffi

'

=pkm — ^pkm.

Now since hm — mh h is a measure of a and therefore is prime to

p. Hence h being prime to both / and k is (art. 220) prime to

ffi. Since then h ^pk the whole expressions severally equal to

£. -c_ are prime to one another in is (art. 222) the fullest common
tn in

measure of a and ^3. Hence the fullest common measure being the

same of a and b as of a and pb and all the common measures of

whole symbolic expressions being (art. 221) the same as all the

measures of their fullest common measure all the common mea-

sures are the same of a and b as of a and ^pb.

224. Prop. If tzvo symbolically wJwle termed fractional expres-

sions be equal and the one's terms be prime to each

other the other's terms are tlie multiples by t/iefirst's

corresponding terms of some whole expression.

Let t = T7 where a b d b' are symbolically whole expressions

and a is prime to b.

Then a' — T b' — -y therefore ^ab is a multiple of b and therefore00
all the common measures of ^aF and b are precisely all the mea-
sures of b. But (art. 223) all the common measures of b' and b are

precisely all the common measures of ^ab
1
and b because a is prime

to b. Therefore all the common measures of b' and b are precisely
all the measures of b. Therefore b is a measure of b'f that is there is

some whole expression k such that

b'=kb and .'. also = bk.

. akb (ak)b ,
.-. too a — -T-— ±—+- = ak.

o o

225. Def The Simplest Common Multiple of whole symbolic

expressions is that common multiple of them which
has in it the least number or numbers and the fewest

letters, any power of a number symbolized by a
letter counting of course for as many letters as the

index expresses.
The simplest multiple of a whole expression is clearly just the

whole expression itself.
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226. PROP. To find the simplest eom?non multiple of whole sym~
bolic expressions.

First let a b be two whole symbolic expressions. Any whole ex-

pression that is both a multiple of a and a multiple of b =

pa— qb

p q being whole expressions. And if m be the fullest common
measure of a and b

a = //;// b — km
h k being whole expressions that (art. 222) are prime to one

another.

.'. ///;;/
— qkm.

But this happens precisely when severally [p1i)m — {qk)m ph = qk

qh hq

p_k
q h'

Hence (art. 224) / q are the multiples by k h severally of some
whole expression r and hence any common multiple of a and b

—
(kr)hm = (fir)km — krhm — hrkm = rkhm = rhkm.

each of these equals is simplest when r is 1 and therefore the sim-

plest common multiple of a and b

= khm = hkm = \—a — I— b — \

— =
I

—
.mm mm

Since any common multiple of a and b — rhkm all the common

multiples of two whole symbolic expressions are precisely all the

multiples of their simplest common multiple.

Next for three whole symbolic expressions a b c find the sim-

plest common multiple v of any two of them a b and the simplest
common multiple v of v and the third one c. Then since all the

common multiples of a and b are precisely all the multiples of v all

the common multiples of a b and c are precisely all the common

multiples of v and c. But all the common multiples of v and c are

precisely all the multiples of v'. Therefore all the common multi-

ples of a b and c are precisely all the multiples of v' and therefore

v its own simplest multiple is the simplest common multiple of

a b and c.

In like manner for a b c and a fourth whole symbolic expression

d find the simplest common multiple v" of v and d. Then all the

common multiples of a b and c being precisely all the multiples of

v all the common multiples of a b c and d are precisely all the
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common" multiples of v' and ^therefore are precisely all the multi-

ples of v" and therefore v" is itself the simplest of them all. And
so on for five or more whole symbolics.

227. Cor. All the common multiples of whole symbolic expressions

are precisely all the multiples of their simplest common

multiple.

228. What has been now shown about symbolic measures and

multiples gives the means of simplifying to the utmost the processes

of arts. 126, 129, 132, for finding single quotient expressions opera-

tionally equivalent to the results of operations with quotient ex-

pressions.

First and as the ground whereon rests everything else a fraction

is expressed in the simplest whole terms precisely when these terms

are prime to one another. For (art. 224) any other whole terms of

an equal fraction are the multiples by them of some whole expres-
sion and therefore must be severally less simple than they.

Hence any fraction with whole symbolic terms is expressed
most simply in terms of the whole expressions equivalent oper-

ationally to the quotients got from dividing the terms by their

fullest common measure. Thus for the simplification of

30+I40^+70^r
a
-36o^3-320^4

. . . , ,,.,*,.
„„ a ,

—t—x
—

„ ± ,

—-—r- the algorithm may handily be what is

on the next following page whence

3o+i4C^+7o^
3

-36o^3-32o^4
=(3+i4^+74r

3

-36^-32^) x 10

75^
3

-M4Qr3-Il5^4
4-I20^=(l5+284r-23^

3
+24^3

)x5^r
a
,

10 and $x
2

being the fullest mononomic measures and their fullest

common measure is 5,

(3+i4jr+7jr
2
-36^3-32^4

)x5
3 = (ix 5+14*) (1 5+28*-23jr

3

+2+*r3
)

-(5i+349^+568*
3

)x2;r
3

(i5+28^-23^
3

+24^3
)(i7)

3

=(5xi7-423^)(5H-349r+568^
3

)

+(3+8*) x 30900**

5 i+34ojr+568.*
3 = (17+71*) (3+8*)

so that of every consecutive two of the polynomes
3+i+r+7*

3
-36*3-32*4 i5+28*-23*

2

+24*3
5i+349*r+568*

3

3+8* all the common measures are precisely all the measures of

3+8* and this is the fullest purely polynomic common measure

3Q+i4atr+7Qr
2
-36o*3

-32a»;4

= {(i+2*-3^
3
-4r3

)x2}(3+8*)x5 .

75*
2

+i40*3-ii5* 4+i20*s
=

{(5-4*+3*»)jr
a

}(3+8#)x5

_ (f+2*-3^
2-4^3)x2 _ 2+4*-6*

3-8*3

(5-4*+3^
2

)^
a

==

5^3_4;r3+3^4
*
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_ [{x+(2+3c)}(i-c)]{(3-2c)x-(2-3c+c*)} _^ {x+(2+3c)}(i-c)

{{i+c)x-{2-c+3c
2

)}{(3-2c)x-{2-3c+c
2

)} (i+c)x-(2-c+sc
2

)

m (i-c)x+(2+c-sc
2
)

(i+c)x-(2-c+3c
2

)

'

Again simplest whole termed fractional expressions with cer-

tain of their terms unlike are most simply expressed so as to have

the corresponding terms alike precisely when the latter terms are

made all equal to the simplest common multiple of the former.

Thus
2X-\ 2X3-X 2+X+I _ 2X-\ (2X+l)(x

2

-X+l)_____
4f_ I

-
^+I)^_£.+ I ) 4T-I

- (^-l)(2X-\-l) (2X3-X
2

+X+I)(X+I)~
(*H i

) {2x+ 1
) (r-l)(r+ 1 )

(2^r)
a-I 2X^+X^+2X-\-l _ 4X

2-l
~
2X^+X3+2X+l X 2-l

~
X 2—l '

2d>4-t>a
2b+t)ab

2

+3b3 6a*+a2

b+7ab
2+6b*

3a*+t>a
2

b+$ab
2+2b3 4^3-8a2

b+gab
2

-gb3

_ (2a+3b) {a
2+ab+b2

) (3a+2b)(2a
2

-ab+3b
2

)

'

2a+sb 3a+2b = 2a+3b~
(3a+2b){a

2+ab+b2

) (2a-3b)(2a
2
-ab+3b

2

)

~
3a+2b 2a~3b 2a-3b*

/________!_ ^ f (i-fl)(2+3a)
|

/ i-a \

\4+4a+a
2+6a3) _ \(2-a+2a

2

)(2+3a)) _ \2-a+2a2
) _ \-a

/ 3+a-2a
2

\
"

f (i+g)(3-2g) I
. f_i±a_\

~
i+a

'

\6-~7a+8a
2

-4ay \(2-a+2a
2

) (3-20) J \2-a+2a2
)

/2X 2
-$X+2 \

{{x-2){2X-l)\ /X-2\
f(*r-2)(.*r-l)

|
\2X 2

-{-X-I J _ \(x+l)(2X-l)) _ \X+l) _ \{x+l){x-l))

(

2x 2

+$X+2\
{ (x+2){2X+l) }

/X+2\ \(x+2){x+l)
'

2X 2-X-I J {(*-l)(2*+l)J [x-lj {(X-I){X+1)

ugax2
6$a3x 2oga

2
xy \43a

2

xy

^x 2—
3x4-2

~X 2
+3X+2'

2'j2a
2

xf' i$6a
3xyi

?6a
3x 2

y3 88ax3y2

{yx)xijax 5 x 1 3a>x nxiga
2
xy (i3a)xiiaxy

{i6ay*)xi7<zx~~ (
1 2y

l
) xi3a

3x (4axy
2

)x\ga
2

xy (8x
2

y) x 1 1axy

7* 5
,

ll I 3^ = (7^)><3^
2

$x4ax
2

y
i6ay* I2y* ^axy

2 8x 2y (i6ay
4

>)x3x
2

(i2y
3
)x4ax

2y

\\x\2xy
2

(\3a)x6ay
i _2\x3-20ax2

y4-\32xy
2

-j8a
2

y3

(4axy
2

)
x 1 2xy

2

(8x
2

y) x6ay
3
~~

48ax
2
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IO£ 3
+2I<:-IO IO£ a

+29*:+IO 25^r
a
-4 20£

5r+2 5<:-2 2<r+5 17

(5^-2)(2^+5) (5^+2)(2(;+5) (5^-2)(5^+2) 20c

(5^+2)' . (5*-2)» (2*+5)' 17

(l0^
3

+2I^-I0)(5^+2) (lOdT
3

+29<:+IO)(5^~2) (25^
3

-4)(2dT+5) 20£

__ 25c
2
+2QC+4+(2$C

2
-20C+4)-(4C*+20C+2S) 17

50<:
3+i25^-8t:-20 20£

(4&r
a-20>- 1 7) x 20c 17($oc

3+12$c'—8c-2o)~
($OC

3+I2SC
2

-8c-20)X20C~(20c)($OC
i+12$C

2

-8c-20)

_ 70^-2525^—204^+340~"

20(50^+125^-8^-20)^'



CHAPTER III

MAGNITUDE IN RELATION TO NUMBER

229. Def When capital letters are taken to stand for magni-
tudes and small letters for whole numbers the

symbol n[A) stands for 11 magnitudes taken to-

gether each equal to the magnitude A, -(A) for a

magnitude such that n magnitudes each equal to it

m
are together equal to A, and —(A) for m magni-

tudes together each equal to a magnitude such that

n magnitudes each equal to the same are together

equal to A.

These symbols for the multiple the submultiple and the frac-

1 m
tion of A expressed severally by n - and — serve to mark that A

is the unit magnitude referred to.

230. Def The symbols >, not>, <, not<, severally stand for

is greater titan, is not greater than, is less than, is not

less than, or for such other parts of the several

verbs to be greater than, to be not greater than, to be

less than, to be not less than, as their manner of us«

may need.

231. Any given magnitude may be wholly cut into so many equal

parts that each of them is less tJian any given magnitude of
the same kind however small

For if A be any given magnitude and G any given magnitude
of the same kind however small a multiple n(G) of G may be

taken (art. 133) greater than A and (art. 97) A may be cut into as

many equal parts n as there are parts each equal to G in the

multiple so taken. Then (art. 91)

•:n{G)>A G> l

-{A).
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22,2. Iffrom any given magnitude there be taken not less than its

half andfrom the remainder left not less than its half and

from the remainder then left not less than its half a?id so

on there is at length left a remainder less than any given

magnitude of the same kind however small. (EUCLID Bk. x

Prop. I with not less put for greater).

Let a straight line AB represent any given magnitude and

another straight line C any given magnitude of the same kind

however small
; straight lines may fitly represent magnitudes of

any kind if those only of their qualities be heeded which they have

in common with all magnitudes. Of the magnitude represented by
C a multiple may (art. 133) be taken greater

than the magnitude represented by AB, let

then a straight line DE represent a multiple Ay
of C so taken greater than AB and let EH
HG GF FD represent the parts each equal
to C of which this multiple is wholly made

up. From AB let a part AK be taken not less

than -(AB) and from the remainder KB let K

a part KL be taken not less than -(KB) and L-
from the new remainder LB let LM be taken y^ _

not less than (LB) and so on until at last g

C

II

there are as many parts AK KL LM MB
in AB as there are parts DF FG GH HE in DE. Because

DE > AB and the part DF of the greater DE not> -(DE) and the

part AK of the less AB not< -(AB) it follows (arts. 9 1,9, 16) that

the remaining part FE > the remaining part KB. In the like way

V FE>KB and FG not> -(FE) and KL not< -{KB) it follows

that the remainder GE > the remainder LB. And at last v GE>LB

and GH not> -(GE) and LM not< -(LB) it follows that the re-

mainder HE > the remainder MB. But C=HE. Therefore (art. 9)

C>MB.

233. Any magnitude greater than the least and less than the

greatest of a set of magnitudes in ascending order of
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greatness is either equal to some one of these magnitudes' or

is greater than t/ie one and less tlian t/ie other of some con-

secutive two.

For if A z A 2 A 3
...An_I A n be any magnitudes in ascending order

of greatness a magnitudeX greater than A
x and less than A n either

not> A 2 or > A 2 and if not greater than A 2 either > A l and < A 2 or

—A 2 . But if greater than A 2 X either not> or > A
3
and if not

greater either > A 3 and < A
3
or — A

3
. Again X if greater than A

3

either not> A
A
or > A

4
and if the former either > A

3
and < A

4
or

= Ar And so on until at length X if greater than A n_x is by hypo-
thesis less than A n .

234. If magnitudes each equal to the less of two unequal magni-
tudes be taken away in succession from the greater and

from the remainders successively left there is at length left

either no remainder or a remainder less than the less of the

two unequals.

Since (art. 133) of the less of two unequals a multiple may be

taken greater than the greater (art. 233) of the successive multiples
of the less got by taking it once twice thrice the greater either

is equal to some one or is greater than the one and less than the

other of some consecutive two. Magnitudes then each equal to the

less taken severally from the greater and the successive remainders

left are in the one case together equal to the greater and therefore

can leave no remainder but are in the other together less than the

greater by a less than the less and therefore must leave this less

than the less as a remainder.

235. PROP. To fittd whether or not two given magnitudes of the

same kind have any common measure and if they

have tofind the greatest one.

Let two straight lines AB and C represent any two given mag-
nitudes of the same kind and let AB represent the one that is not

less than the other.

If AB be a multiple of C any measure of C is a measure of

each of the one or more parts each equal to C that make up AB
therefore is a measure of the whole AB and therefore is a common
measure of AB and C. Any common measure too of AB and C is

of course a measure of C. Therefore all the common measures of

AB and C are precisely all the measures of C and since (art. 8) a

magnitude is greater than any measure but itself of itself the

greatest common measure of AB and C is therefore C.
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A-r

D--

E--

F.

B

All the common measures then of a magnitude and any mul-

tiple of it are precisely all the measures of the magnitude itself.

But if AB be not a multiple of C let AD DE EF
be the parts each equal to C taken away in succession

from AB and the successive remainders DB EB until

at length a remainder FB is left less than C. It AB
and C have any common measure each of the parts

AD DE EF is wholly made up of parts each equal
to that common measure and therefore so likewise is

AF the whole made up of AD DE EF. But AF is

a part of AB and AB Is wholly made up of parts

each equal to the common measure. Therefore FB the

remaining part of AB is wholly made up of parts

each equal to that same common measure, that is any
common measure of AB and C is a measure of FB
and therefore is a common measure of C and FB.

Again if C and FB have any common measure each

of the parts AD DE EF and also the part FB is

wholly made up of parts each equal thereto and hence so likewise

is the whole AB made up ofAD DE EF FB, that is any common
measure of C and FB is a measure of AB and therefore is a com-
mon measure of AB and C. Since then any common measure of

AB and C is a common measure of C and FB and any common
measure of C and FB is a common measure of AB and C all the

common measures of AB and C are precisely all the common
measures of C and FB.

Now let P Q R
x be the magnitudes represented severally by

AB C FB. Because R X <Q magnitudes each equal to R
l may be

taken in succession from Q and the remainders successively left

until at length (art. 234) either no remainder is left or a remainder

less than R x
. If no remainder be left Q is a multiple of R

x and then

as shown above all the common measures of Q and R
x are pre-

cisely all the measures of R
s

. But all the common measures of P
and Q are precisely all the common measures of Q and R

t
. There-

fore all the common measures of P and Q are precisely all the

measures of R
t
and therefore R

x
its own greatest measure is the

greatest common measure of P and Q.

But if a remainder be left call it R 2 then as shown above all the

common measures of Q and R
t and therefore also all the common

measures of P and Q are precisely all the common measures of R T

and R s . As before V R a<R t one or more magnitudes each equal to
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R 2 may be taken successively from R 1 and the successive remain-

ders got until there is left either no remainder or a remainder less

than R2 . If R
T
be a multiple of R 2 all the common measures at

once of P and Q of Q and R z
and of R s and R 2 are precisely all

the measures of R 2 and the greatest of all is therefore R 2 . But if

there be a remainder R
3
less than R 2 all the common measures at

once of P and Q of Q and ^
z
and of R

z and 7? 2 are precisely all

the common measures of R 2 and R 3
one or more magnitudes each

equal to R
3 may then be taken in succession from R2 and the

remainders successively got as before and so on.

The series of constantly decreasing magnitudes R z
R 2 R3

... can

come to an end only when there arises some one R
t
that is a mea-

sure of R
t_x

the one next before. Then since all the common mea-

sures are the same of every consecutive two of the magnitudes P
Q R z Rz^.R^ R; and all the common measures of the last two R

t_z

and R
t
are precisely all the measures ofR

t
all the common measures

of P and Q are precisely all the measures of R
t
and therefore the

greatest common measure of P and Q is R
{ .

But if the series is endless P and Q have no common measure.

For Q being not a measure of P is either greater or less than -(P).

If greater R x
is what is left of P after taking from it not less than

its half and if less v R,<Q RM
is still what is left of P after taking

from P not less than -(P). In the same way R 2 is what is left of

Q after taking from Q not less than -(Q), R3
what is left of R

t

after taking from R t
not less than ~{R S),

and so on. If then P and

Q could have any common measure M since from P there is taken

not less than -(P) and from the remainder R x left not less than
2

- (R z)
and from the new remainder R

3
left not less than -

(R3)
and

2 ^

so on there would (art.232) be at length left some one remainder

of the series R x
R

3
R

5
... and much more every after one less than

M. But every common measure of P and Q is a measure of every
one of the magnitudes R, R 2 R 3

R
4
— Therefore M would be

a measure of every one of the magnitudes R, R 3
R

5
... and there-

fore would be a measure of each of endless magnitudes each less

than M itself.
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236. COR. All tJie common measures of two magnitudes are pre-

cisely all the measures of their greatest common
measure.

Hence a fraction is expressed in the least whole terms by the

numbers expressing what multiples the fraction and the unit mag-
nitude severally are of their greatest common measure and hence

what was shown in art. 2 16 comes out afresh but by a straighter

road that a fraction is expressed in terms of the least whole num-
bers precisely when these are prime to one another.

25J. Prop. The base of a right angled isosceles triangle has no

measure in common with either of the equal sides.

Let ABC be a right angled isosceles triangle of which AB AC
are the equal sides. Because AB is equal to AC the angle ABC is

equal to the angle A CB and therefore these two angles are together

twice either of them.

But these two angles B.

of the triangle ABC
are together less than

j

twice a right angle Q
and so therefore is

twice either of them.

Therefore each of the

angles ABC ACB is

less than a right an-

gle. Wherefore it is E
the angle BAC that

is the right angle.

Because the angles
of the triangle ABC
are altogether twice a

right angle and one A
of them BAC is a

right angle the other two ABC ACB are together equal to a right

angle. Hence twice each of the angles ABC ACB is equal to a

right angle, that is each of them is half a right angle. Since then

the right angle BA C is greater than either of the half right angles
ABC ACB the side BC is greater than either of the sides AC AB.
But the two sides AB AC of the triangle are together greater than

the third side BC and therefore so is twice AB or twice AC the

equal to AB AC together. From BC which thus > AB or AC but

12
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< 2{AB) or 2 (AC) cut off close to the end C a part DC equal to

AB or AC and the remaining part BD <AB or AC.

From the point D in BC draw on the same side as the triangle

a straight line DE at right angles to BC Bisect BC in F and join

FA Because ABC is a triangle the point A is not in the straight

line BC and therefore BFA CFA are triangles. In these triangles

because the two sides BF FA are equal severally to the two sides

CF FA and the base BA is equal to the base CA the angle BFA
is equal to the angle CFA, that is FA is at right angles to BC.

Because then of the triangle CFA the angle CFA is a right angle
the other two angles FCA FAC are together equal to a right

angle, but one of these FCA is half a right angle therefore the

other FAC is half a right angle and therefore equal to the first

FCA therefore again the sides FC FA over against these equal

angles are equal so that the triangle FAC is a right angled

isosceles one. In the like way the triangle FAB is a right angled

isosceles one. Because of the triangle FAC the angle AFC > the

angle FA C the side AC > the side FC and therefore also DC> FC.

Since then DC FC are unequal straight lines having a common
end C and lying in the same straight line upon the same side of

their common end the less FC is a part of the greater DC and

therefore the point F is on the same side of the point D as the

point C. But because BD DC are the parts of BC the point B is on

the opposite side of D to that on which C is. Therefore B and F
are on opposite sides of D. Again the straight lines DE FA make
with the straight line BC cut by them (if produced) at the different

points D F interior angles FDE DFA upon one side that are

severally right angles and that are together therefore twice a right

angle therefore DE is parallel to FA. And because in the straight

line BC the points B F are on opposite sides of the point

D and through D F parallel straight lines DE FA are drawn the

point B and the straight line FA are on opposite sides of the

straight line DE. But the point A is on the same side of DE as

FA therefore B and A are on opposite sides of DE. The line BA
then ends at two points B A on opposite sides of the endless line

in which DE is and therefore is cut somewhere between B A by
that endless line. Let E be the point where BA is so cut. Join EC.

Because E is in the straight line AB but not at either A or B
the only points that AB has in common with the straight lines AC
BC severally EAC EDC are triangles. And because the angles

EA C EDC of these triangles are right angles
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(square of EA, square of AC) = square of EC

(square of ED, square of DC) — square of EC
:. (sq. of EA, sq. of AC) = (sq. of ED, sq. of DC).

But the square of AC is equal to the square of DC because the

straight line AC is equal to the straight line DC Therefore the

square of EA is equal to the square of ED and therefore the

straight line EA is equal to the straight line ED. Moreover since

E is not in BC EBD is a triangle and since the angle BDE of this

triangle is a right angle and the angle DBE is half a right angle it

follows as before that DBE is a right angled isosceles triangle and

therefore AE ED DB are all equal to one another.

Hence as before since DBE is a right angled isosceles triangle

BE>BD and <2{BD). From BE therefore cut off close to E a

part GE equal to BD and a part BG remains less than BD. Then

because AE is equal to ED or DB AB is wholly made up of three

parts AE EG GB of which each of the two AE EG = BD and the

third GB<BD so that AB>2(BD) but<3(£Z>). Also to each of

the equals AE DE putting EB AB is equal to DE EB together
and BD is one of the equal sides of the right angled isosceles

triangle DBE of which the other two sides DE EB are together

equal to AB.

Again in the same way from G in BE draw on the same side

as the triangle DBE a straight line GH at right angles to BE and

BD is cut between B and D by GH. Let the point where BD is so

cut be H and DH HG GB are all equal GBH is a right angled
isosceles triangle BH>BG but<2(BG) from BH may be cut

close to HKH equal to BG leaving BK less than BG BD > 2(BG)
but < 3{BG) and BG is one of the equal sides of the right angled
isosceles triangle GBH of which the other two sides BH HG are

together equal to BD.
From K in like manner KL may now be drawn at right angles

to BH cutting BG in L between B and G and making a right

angled isosceles triangle KBL of which one of the equal sides is

BK and the other two sides BL LK are together equal to BG, and

so on. In the series of ever lessening straight lines BC BA BD BG
BK thus got from the first two BC BA by each after one

being that part less than the one next before of the one next but

one before by which the latter exceeds a multiple of the former it

hence comes out that every one but the first two is one of the

equal sides of a right angled isosceles triangle of which the other

12—2
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two sides are together equal to the one next before so that the

latter is greater than twice and less than thrice the former. The

series therefore goes on for ever and therefore (art. 235) BC has no

measure in common with BA.

238. Def Two magnitudes of the same kind that have no com-

mon measure are said to be INCOMMENSURABLE
with one another.

Since (arts. 92, 112) one of two magnitudes can be a fraction of

the other only when they are multiples of some one magnitude a

magnitude may be of the same kind as another magnitude and yet

be no fraction of it. One magnitude is or is not a fraction of another

according as it is or is not commensurable therewith.

239. PROP. Of any two magnitudes of the same kind the first

either is a fraction of the second or is greater than

the one and less than the other oftwo fractions of the

second differing from one another by less than any

given fraction however small.

Let A B be any two magnitudes of the same kind. Cut B into

any number n of equal parts so that each of them (art. 231) is less

than A and take magnitudes each equal to -(B) from A and from

the successive remainders left until at last (art. 234) either no re-

mainder is left or a remainder less than -(B). Let m be the number
n

of the magnitudes each equal to -(B) so taken. If no remainder be

left A is -(B) but if a remainder be left A>-(B) and <—(B)n K ' n n v '

m m -4-1 1

and the fractions — differ from one another by - which (art.
n n n s

172) may be made less than any given fraction however small by
taking n a great enough whole number.

If A and B have no common measured is greater than the less

and less than the greater of two successive multiples of -(B) what-

ever whole number n be and then A can be known numerically

relative to B only through one or other pair of fractions of B inter-

cepting as it were A between them. If A and B have a common
measure let u v be the whole numbers expressing what multiples

they severally are of their greatest common measure then since all
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the common measures of A and B are (art. 236) precisely all the

measures of their greatest common measure A can be expressed as

a simple fraction of B only by —
. where i is a whole number and

hence it is only when n — vi that^4 is a multiple of -(B) or in other

words only when n is such that -;/ is equal to a whole number.

Wherefore A is a multiple of -(B) whatever whole number n be

only when z> is 1, that is only when A is a multiple of B. But

m
even when A is a multiple of B and is therefore — (B) whatever

m~~c /m-\-d
whole number n be still A> —(B) and< (B) c d being any

•

. r ,. , . , m+d m-c m+d-(m-c)
whole numbers of which c not> m and = 2 l

n n 11

m+d+c—m m-m+d+c . . ^+r ,. , . , .

= =-
, that is which because equal to

n n n

may (arts. 133, 172) by keeping d+c fixed and taking ;/ great

\d+c)

enough be made less than any given fraction however small.

240. Def. Two fractions of a magnitude such that another mag-
nitude is greater than the less of them but less than

the greater are called a Pair of Fractions Inter-

cepting THIS OTHER MAGNITUDE RELATIVE TO

THE FIRST.

241. PROP. If any pair offractions be given intercepting one mag-
nitude relative to another each of thefractions ofany
otherpair intercepting thefirst magnitude relative to

the other if only these fractions differ from one an-

other by less than a certain fraction is greater than

the less and less than the greater of tJie fractions of
the given pair.

Let two straight lines OA and B represent any two magnitudes
of the same kind and let a straight line OC of which OA is a part

represent the greater and a straight line OD which is a part

of OA the less of any two given fractions intercepting the magni-
tude represented by OA relative to the magnitude represented
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-F

A

D-

by B so that A C and DA represent the dif-

ferences between the magnitude represented

by OA and the greater and the less of the

given fractions severally. Cut B into any such

number n of equal parts (art. 231) that each

of them is less than either AC or DA and

take magnitudes each equal to -(B) from OA

and the remainders successively left until (art.

234) there be left either no remainder or a re-

mainder less than -(B). Let there be m mag-

nitudes so taken. If no remainder be left OA is

ftt

(B) and if a straight line OE a part of OA re- O-

TC

A

1)

B

(B) and a straight

n

present the next less multiple of -(B) to wit

line OF of which OA is a part the next greater multiple to wit

—^—(B) so that each of the differences ^4 is Misrepresents -(B) since

each of the magnitudes AD AC > -(B) AD>AE and AC>AF.

Hence from OA taking the former unequals OD < OE and to OA

putting the latter OC>OF, that is (B) >the less of the two
u

m+\
given fractions intercepting OA relative to B and (B) < the

u

greater.

But if a remainder be left OA > -(B) and < ^±±(B) and if OE

a part of OA now represent
—

(B) and OF a whole of which OA

is a part (B) much more AE <AD and AF <AC Therefore

OE > OD and OF<OC, that is -(B) > the less and
1

^1(B)< the

greater of the given fractions intercepting OA relative to B.

Much more if ft were taken a still greater whole number would

each of the fractions of the pair got in the same way intercepting
OA relative to B be greater than the less and less than the greater
of the fractions of the given pair.

242. PROP. Each of the fractions of any pair intercepting the

greater of two unequal magnitudes relative to an-
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other magnitude is greater than each of thefractions

of any pair intercepting the less relative to the same

if only the fractions of each pair differ from one

another by less than a certain fraction.

Let a whole straight line OA represent the greater and a part

OB of OA the less of any two unequal magnitudes so that the

other part BA represents their difference and let a straight line C

represent any other magnitude of the same kind. Cut

BA (art. 97) into two equal parts BD DA so that OD O
represents a magnitude greater than the less of the

two unequals and less than the greater by the very
same amount that to wit represented by BD or DA.
Cut C into so many equal parts n (art. 231) that each

-(C) is less than BD or DA and also less than OB

and let (art. 234)

OA not<-\C)n x '
but

n v '

B-

D--

OB not<— (C) but <'—(On K ' n v '

x m

where ;// m are whole numbers.

Because BA>-(C) OA >™±?(C). If then OA be -(C)

m>m+2 and .*. m—i>m'+i, each of the fractions there-
n 11

fore is greater than and much more therefore than either —

or . But if OA >—(C) (C)> (O •'• m>m+i and
n n K '

11
y

11
s y

therefore each of the fractions — is greater both than each of
;/ n

the fractions — and than each of the fractions .

n 11 11 11

If the whole number n were taken still greater much more
would each of the fractions so got intercepting OA relative to C be

greater than each of the fractions so got intercepting OB relative

to C.

243. Since (arts. 239, 241) all the pairs of fractions that intercept

however closely equal magnitudes relative to any one and the same

magnitude are the very same and (art. 242) all those pairs of frac-

tions that intercept closely enough the greater of two unequal mag-
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nitudes relative to any third magnitude have each of their fractions

greater than each of the fractions of all those pairs of fractions that

intercept closely enough the less relative to the same third magni-

tude, so that the tracks of greater and less intercepted of equal

magnitudes are everywhere the same however close together the

tracks go and the tracks of greater and less intercepters of the

greater of two unequal magnitudes run apart from the tracks of

greater and less intercepters of the less wherever the tracks of each

pair go close enough together, not only is the order of greatness of

magnitudes that are fractions of a magnitude settled (art. ioo) by
the fractions which they severally are thereof but generally the

order of greatness of any magnitudes of the same kind whether

fractions or not of some one magnitude is settled by the pairs of

fractions which intercept them severally closer than by any given

degree of closeness relative to that magnitude.

Def. That definite numerical relation of any magnitude to any

magnitude of the same kind in virtue of which the

former either is a fraction of the latter or is greater than

the one and less than the other of two fractions of the

latter differing from one another by less than any given

fraction however small is called the RATIO of the former

magnitude to the latter.

244. Def. The symbol A : B stands for the ratio of the magni-
tude A to the magnitude B, A B are called the

Terms of the ratio, A is called the First Term
the Leading Magnitude or the Antecedent of

the ratio and B the Second Term the Following
Magnitude or the Consequent.

245. Def. The first of four magnitudes is said to have to the

second the Same Ratio as the third has to the

fourth when if the first be a fraction of the second

the third is the same fraction of the fourth or if the"

first be greater than the one and less than the other

of two fractions of the second by less than however

small a given fraction they may differ from one

another the third is also greater than the former and

less than the latter of the same two fractions of the

fourth.

Def. That A has to B the same ratio as C has to D is sym-
bolized by A :B = C': D and this is read "A is to B
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as C to D" or "as A is to B so is C to ZT. Like-

wise A
1
:B

l
= A 2 :B2

= A
3
:B

3
= =A n :Bn sym-

bolizes that the ratios of A
v
to B

t
of ^4 2 to i?2 of y2

3

to B
3

of A n to Bn are all the same. The same-

ness of ratios is called a PROPORTIONALITY. The

terms of the ratios in a proportionality are called the

Terms of the Proportionality and are said to

be Proportional magnitudes Proportionals
or Proportionate. Magnitudes of the same kind

A B CD ...G H such that A:B = B:C=C:D =
= G : H are said to be CONTINUEDLY PROPOR-

TIONATE or In a Continued Proportionality.

246. Def The first of four magnitudes is said to have to the

second a Greater Ratio than the third has to the

fourth when the first is greater than some fraction of

the second but the third is not greater than the same

fraction of the fourth. The third is then also said to

have to the fourth a Less Ratio than the first has

to the second.

Def That A has to B a greater ratio than C to D is sym-
bolized by A :B > C:D and that C has to D a. less

ratio than A to B by C: D < A : B.

247. PROP. Magnitudes of the same kind that are like multiples

severally of as many other magnitudes are together

the like multiple of those other magnitudes together.

(Euclid v. i).

Let A B C ... F GH be any magnitudes of one kind and let n

be any whole number. Because 11(A) is wholly made up of n parts

each equal to A and n(B) is wholly made up of 11 parts each equal
to B (arts. 7, 10) {11(A), 71(B)} is wholly made up of n parts each

equal to (A, B), that is

[n(A% n(B)}=n(A,B).

Hence {n(A) } 71(B), 71(C)}
=

{n(A, B), 11(C)} and therefore as before

= n(A,By C). In like manner therefore {n(A), n(B), 71(C), n(D)} =

{n(A, B, C), 11(D)} m n{A, B, C, D). And so on till at last

{u(A) f n(B) } 71(C),... 7i(G) t 71(H)}
= 7i(A,By C,...G,H).

248. Cor. If a magnitude be a multiple of a)wtiter magnitude that

like multiple is any multiple of thefirst magnitude of
the same multiple of the other.
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This is only the particular case of the general proposition in

art. 247 when A = B= C= = G = H. If there be tn of these

magnitudes the proposition then is that m{n(A)} = n[m(A)}.

249. Defi The symbol = stands for is greater than equal to or less

than and = for is less than equal to or greater than,

250. Prop. A magnitude and any fraction of a magnitude of the

same kind are in the same order of greatness as the

multiples of those magnitudes expressed severally by

the denominator and by the numerator of the frac-
tion.

Let A B be any two magnitudes of one kind and m 11 any two

m (1 I (m )

whole numbers. Since (art. 229) —(B) is m\-(B)Y (art. 248) n\-(B)Y

= m n\-(B)[ which is m(B). Hence (arts. 88, 89)

^ m ^*"

according as A=—(B) so is 11(A)
— m(B)

^ *^ m
and (arts. 90,91) according as 11(A)

— m(B) so is A =
—(B).^ ^ n

25 1. Prop. Thefirst offour magnitudes has to the second the same
ratio as the third has to the fourth precisely when

any multiples wliatever of thefirst and second are in

the same order of greatness as the like multiples

severally of the third andfourth. (This is The Mul-
tiple TEST of the sameness of ratios and is made
the Definition in Euclid's Fifth Book).

First let A B CD be four magnitudes such that A:B=C:D
and let m n be any two whole numbers. Cut B into n equal parts

and let it be fi magnitudes each equal to -(B) that can be taken

from A and the successive remainders left so as to leave at last

either no remainder or a remainder less than -(B).n x '

If there be no remainder A =-(B) and then (art. 245) C=-(D).

Hence (art. 250)

11(A) =n{B) n(C) = fi(Z>).

If then 11(A)
— m(B) m can only be fi and .\ 11(C) =m(D). If
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11(A) > m(D) m must </* and /. 11(C) > m(D). And if n(A) < 111(B)

m must > fM and .*. 11(C) < 111(D).

But if there be a remainder A > -(B) but < -—
(B) and then

ir '
11

^ '

(art. 24 5) C>^(D) but <^-(D). Hence (art. 250)

n(A)>p(B) but<(/i+i)(£) n(C)> ti(D) but<(fi+i)(D).

tit

11(A) cannot now = m(B) for then (art. 250) would A — —(B) or A

would be a multiple of -(B). But if 11(A) > 111(B) 111 not>/-t .*.

11(C) >m(D). And if 11(A) <m(B) m not</x+i :. 11(C) <m(D).

Hence according as 11(A)
= m(B) so is 11(C) —m(D).

Conversely let A B CD be four magnitudes such that whatever

whole numbers m n are according as 11(A)
=

111(B) so is 11(C)
=

111(D).

As before cut B into ;/ equal parts and let fi be the number of

magnitudes each equal to -(B) taken from A and the remainders

successively left when at length either no remainder or a remainder

less than -(B) is left.
ir y

If no remainder be left A =-(B) and .*. (art. 250) 11(A)
=

fi(B).
it

Now ;;/ being any whole number whatever may be taken fi so that

11(A)
=

111(B). Then by hypothesis 11(C)
=

111(D), that is fi(D). And

/.(art.250) C=^(D).

If a remainder be left A >-(B) and <^±I(£) and .\ n(A)>n(B)
it it

and < (fi+i)(B). But 111 being any whole number may be taken /*

so that 11(A) > 111(B) and then by the hypothesis 11(C) > m(D) y
that

is > p(D) .'. C>-D. Also m may be taken p+i so that n(A)< 111(B)

then 11(C) <m(D), that is < (/Hi)(£>) and .\ C<^-(D). Moreover
11

it being any whole number may (art. 172) be taken so great that -

by which — -— differ is made less than any given fraction how-

ever small.
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Hence if A be a fraction of B C is the same fraction of D or if

A be greater than the one and less than the other of two fractions

of B by less than however small a given fraction they may differ

from one another C is also greater than the former and less than

the latter of the same two fractions of D, that is (art. 245)

A :B=C:D.
On the whole then since four magnitudes that are proportionate

have any multiples whatever of the first and second of them in the

same order of greatness as the like multiples severally of the third

and fourth and four magnitudes that have any multiples whatever

of the first and second of them in the same order of greatness as

the like multiples severally of the third and fourth are propor-

tionate it follows that four magnitudes are proportionate precisely

when any multiples whatever of the first and second of them are

in the same order of greatness as the like multiples severally of the

third and fourth.

252. Prop. The first of four magnitudes has to the second a

greater ratio than the third has to the fourth pre-

cisely wJien some multiples of the first and seco?id

are in descending order of greatness but the like

multiples severally of the third and fourth are not.

(This The Multiple Test of the greaterness and

lessness of ratio is made the Definition in Euclid's
Fifth Book.)

First let A B C D be four magnitudes such that A :B>C:D.
m

There are (art. 246) whole numbers m n such that A > — {B) but

ipi

C not> —{D) and .*. (art. 250) n(A)>m(B) but n{C) not> m{D).n

Again let A B C D be four magnitudes such that for some

whole numbers m n u(A) > m{B) but n(C) not> m(D). Then (art.

250) A>—(B) but C not> -(£>), that is (art. 246) A\B>C\D.

253. PROP. If when the first of four magnitudes is greater than

the one and less than the other of two fractions of
the second the third is greater than the former and
less than the latter of the same two fractions of the

fourth by less than however small a given fraction

the two fractions may differ from one another then

if thefirst be a fraction of tJie second the third is the

samefraction of thefourth.
*
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Let A B C D be four magnitudes such that

A >™{B) and <
m+C

{B) C> 1"

'(D) and <
t

^(D)
11

N
11 11

s n v

;;/ n c being whole numbers such that - may by taking ;/ great

enough be made less than any given fraction however small and

let A — IB). Then > — and < and hence
v v 11 11

-
(D) > — (D) and < (D).

ti

Now since if C>-(D) 11 could (art. 242) be taken so great as to

1H ftlA-C
make each of the fractions — (D)

— (D) greater than each of two

fractions intercepting -(D) relative to D and therefore so that

— > - and if C < -(D) n could be taken so great as to make each
n v v K '

of the fractions —(D) (D) less than each of two fractions inter-

n 111A-C U
cepting

-
(D) relative to D and therefore so that < - it fol-

lows that C= -(D).

254. PROP. Ratios the same as the same ratio are the same as one

another. (EUCLID v. 11).

Let A :B =P:Q and C:D = P:Q.
If 11 be any whole number there is (art. 239) a whole number

m such that A not<-(B) but <—(£). .-. and v A :B = P: Q

(art. 245) P not< - (Q) but <— (0. .-. again and V C :D~P : Q
1Z llr

111 niA- 1

(art. 245) Cnot<-(Z>) but <—^—{D). If then A be a fraction of

By—to wit when "not<" here means "="—
, C is the same fraction

of D and if A be greater than the one and less than the other of

two fractions of B by less than however small a given fraction they

may differ from one another,—to wit when "not<" means ">"— ,

C is greater than the former and less than the latter of the same

two fractions of D, that is (art. 245) A :B=C:D.
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255. Prop. Equal magnitudes Jiave to tJie same magnitude',
and

the same has to equals, the same ratio. (EUCL. v. 7).

For if A B be equal magnitudes and P a magnitude of the

in m-\-\
same kind A not< — (P) but < (P), m n being whole numbers

m m-\-\
11 any whatever, and .*. (arts. 6, g) B not< — (P) but < (P), that

n n

is A :P = B: P. Also P not< -
(A) but <— {A), r s being whole

numbers s any whatever, and .\ (arts. 90, 88, 6, 9) P not< -
(B) but

<— (B), that is P : A = P : A

256. Prop. 7/" /zw magnitudes have to a single magnitude the

same ratios severally as other two magnitudes have

to another single magnitude tlie first has to the

second of the first two magnitudes the same ratio

as thefirst has to tJie second of the other two.

Let two magnitudes A B have to a magnitude H the same
ratios severally as two magnitudes C D have to a magnitude K,
that is let A :H=C:K and B:H=D:K.

If n j be any whole numbers (art. 239) there are whole numbers
m r such that

A not<
™
(H) and < ^±i (H) B not< -(H) and < *±I

(H).

Therefore and by reason of the given proportionalities (art. 245)

C not< - (K) and <"^ (K) D not<
V
(K) and < —(K).

fm\

If then "not<" mean "=" throughout (arts. 112,114) A=^-(B)

C=j^-(B).
But if "not<" do not mean " = "

throughout

W
fm\ fm-\-i\

A n0t<M\^^\ and

<^M^(^)Jandtherefore(art.ii2

or 129)
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A not< t™ pi (ff)\
and < (-^±^

\

r
-(H)\ .

(r+i)n \
s x

') rn \s
x

')

Butv^(//)>^(art. 9 .) r̂ {^^//)}>^^) and ,.

(art. 89) (^{~-
!

(^)}
>
jj%tyfP)-

Likewise and by arts, go, 88,

V T-m not>B
&£*£(*>} not>^-V).

Hence (art.9)

A > -. r (B) and < * '-
(B).

In the same way

£> 7-7-T- (Z>) and < = ^-
(Z>).

\r+\)ir
' rn x

r;/ (r+i);/ »\ r r+I/ ;/(r(r+i) rj

1 ;;/ s s is . . .. a u+0 . . r r . .=
1 . And if - -— be any given pair of fractions m-

s nr+i r nr v v
yt> r

tercepting A relative to H (art. 241) n may be taken so great that

each of the fractions - '-— is greater than - but less than
11 n

and if - -— be any given pair of fractions intercepting B relative
<T (7

to H s may be taken so great that each of the fractions is

greater than £ but less than -—
. Let then n s be taken thus

great and V->£ r
-£-> 9—

;. (art. 100) sp<ar .: (art. 115) -£ < —s s <i sp err
v y r v JJ

rp pr

and .*.-<-. Much more .*. (arts. 100,9) < -. Since then - <-
r p r+I P r p

(arts.Qi.So) < and .*. much more (arts. 1 13,9) <[-) . In
\ * *i r+ir r+i p \pj

m ii\Q m s s ll+0 /cV , / ^. v

the same way v -<-— <-— - and .*. (art.91)J n v 7ir+ir v \pj

<--— (- . Also --<--. Hence (art. 12)
snr+ir s v \pj nr np
\m s s is iu+0/cr\ 3

1 <J -r, . . -r t -,
' c

1 <--— - +--. But since if k be any given frac-
s n r+ir nr s v \p) 11 p

tion however small s 71 may (art. 231) be severally taken so great

that -!——(-) <-k and --<-k s n may be taken so great that
s v \pJ 2 np 2
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--—l-H—-<-k+-& that is k. Much more therefore (art.g)
S V \pj 11 p 2 2 \ ?>

I 111 S S IS
may s n be taken so great that 1 and therefore also its

s n r+ir 11 r

(m-X-l\S 11IS

equal —
-, r- is less than any given fraction however* m (r+i)n

J b

small. Hence too (art. 253) should even in this case A be a frac-

tion of B C is the same fraction of D.

Wherefore in both cases if A be a fraction of B C is the same
fraction of D or if A be greater than the one and less than the

other of two fractions of B by less than however small a given
fraction they may differ from one another C is also greater than

the former and less than the latter of the same two fractions of Dy

that is (art. 245) A:B=C:D.

257. COR. The reciprocal of the greater of two unequalfractions is

less than the reciprocal of the less.

r r s <t

For if - > — it is shown in art. 256 that the reciprocal of < -
s a s r p

the reciprocal of -
.

258. COR. A product of which the factors are as many as and

severally greater than the factors of another product

is greater than that other.

The proof in art. 256 that if —— be severally greater than

^ the product —— (-) is greater than the product
n r+i r r v \p)

fe *
11 r+i r

is quite general.

259. PROP. If the first of four magnitudes be to the second in the

same ratio as the third is to the fourth the second

is to the first in the same ratio as the fourth is to

the third.

Let A \B^C\D. Then v (art. 245) B:B =D:D B A have to

B the same ratios severally as D C have to D and .*. (art. 256)

B:A=D:C.

260. Def. The ratio of the consequent to the antecedent of a

ratio is called the Inverse Ratio.

The proposition of art. 259 then is that of ratios the same as

one another the inverses are the same as one another. Since the

magnitudes A B C D are in the inverse order D C B A and to say
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that D:C=B:A is just (art. 245) to say that B:A=D:C the

proposition may also be stated—Magnitudes proportionate are

inversely proportionate.

261. Prop. Magnitudes are equal to one another either which have

to the same magnitude or to which the same magni-
tude has the same ratio. (EUCL. v. 9).

First let A:Q = B:Q. Then if A B could be unequal and A

were taken as the greater each of two fractions — intercepting

A relative to Q would (art. 242) be greater than each of two frac-

tions intercepting B relative to Q if only each two fractions differed

from one another by less than some fraction and therefore (art. 9)

B<~(Q). But v A :Q = B:Q and A>"~(Q) (art.245) &>*(&
Therefore A cannot be unequal to B, that is A =B.

Again let Q : A = Q : B. Then (art. 259) A : Q = B : Q and there-

fore by what has just now been shown A =B.

262. Prop. A ratio the same as the greater of two ratios is greater

than the less. (EUCL. v. 13). And a ratio the same

as the less of two ratios is less than the greater.

Let A :B=C:D and C'.D>E:F. Because C : D > E : F there

m m in
is (art. 246) a fraction — such that C>—(D) but Etiot> — (F).

And v A:B=C:D and C>-{D) (art.245) A >- (B). Hence

A > -
(B) but E not> - (F), that is (art. 246) A:B>E:F.

Again let A :B=C:D and C:D<E:F. v C : D <E: F there

m tn m
is a fraction — such that C not> — (D) but E> —

(F). And because
11 11

K ' n K J

A:B=C-.D and Cnot>-<#) A not>-(£). A then not>
™
(B)

m
but E > - (F) and that is to say that A :B<E:F.

263. PROP. The greater of two unequal magnitudes has to the

same magnitude, and the same has to the less of tzvo

uncquals, the greater ratio. (EUCL. v. 8).

Let a magnitude A be greater than a magnitude B and let K
be any other magnitude of the same kind.

13
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fft m-\-C
Because A > B there are (art. 242) fractions intercepting

A relative to K each greater than each of two fractions intercept-

ing B relative to K and .\ A > — (K) but B < and .\ not> — (K),

that is (art. 246) A:K>B:K. Again v -
(K) > B and <A

K>-(B) and < and .'. not>-(^), that is K:B>K:A.m y ' m K l

264. Prop. A ratio greater than the greater of two ratios is

greater than tJie less.

Let A:B>C:D and C\D>E:F. Then (art. 246) there are

fractions - - such that A>-(B) but Cnot>-(£>) C>-(D) but

r iti r rE not>-(.F). Hence (art.9)
— > - and much more A > -(B). But to say

S Tlr S «>

that A>-(B) but E not> -
{F) is (art. 246) to say that A:B>E:F.

s s

265. Prop. Of two magnitudes that is the greater which has to

the same magnitudey and tliat is the less to which

the same magnitude has, the greater ratio. (EUCL.
v. 10).

For if A : Q > B : Q (art. 246) A >- (Q) but B not> ™(Q) m 11

being whole numbers and .'. (art.9) A >B.

Again if Q : B > Q : A Q> -(B) but not> -(A) r s being some

whole numbers .-. -(B) < -(A) -(B) <-(A) and B<A.

266. Prop. The inverse of the greater of two ratios is less than the

inverse of the less.

ifi in
'LetA:B>C:I>. A fraction - is such that A> -(B) but

11 n

Cnot>-(D) and ;.B<-(A) but £>not<-(Q.

\iD>-(C) then-/^<-(^) B no\>-(A) and D:C>B:A.m K m^ J m> '

But if D = —(C) v —(A)>B there are fractions inter-m ' m> ' s s

n
cepting —(A) relative to A each greater than each of two fractions



PROPORTIONALITIES 1 95

11 r
intercepting B relative to A and therefore so that - (A)>-(A)

andi?<^(^)./.£>^/.^(0>^(Oand/.Z?>^(0. *
2>*j(Q

but £<and .*. not>-(A), that is D\C>B\A %

267. Prop. If there be more than two magnitudes of one kind

and as many otJicr magnitudes of one kind which

taken two and two in order have severally tJic same

ratios thefirst has to the last of the former magni-
tudes the same ratio as thefirst has to the last of the

latter. (EUCL. v. 22).

First let there be three magnitudes A B C of one kind and

other three A' B' C of one kind which taken two and

two in order have severally the same ratios to wit

A :B-A':B B:C = B':C. V B:C^B:C inverse-

ly (art. 259) C:B=C':B' so that A C have to B the

same ratios severally as A' C have to B '. .'. (art.

256) A :C=A':C.
Next let there be four magnitudes A B C D and other four

magnitudes A' B' C D' such that A :B = A' : B'

ABC
A'B'C

A B C D
A'B'CB'

A B C D E
A' B CD E

B:C=B':C and C: D=C':D'. From the first

two proportionalities by what has just been shown

A :C= A':C and hence from this and the third

given proportionality in the same way A :D = A':D'.

In like manner if a fourth proportionality D \ E =D' :E' be

given since there are three magnitudes of one

kind A D E and other three A' D' E' of one

kind which taken two and two in order have

severally the same ratios A :E = A' : E' . And
so on.

268. Dcfi When from the ratios A : B B : C - - - G : H of the

first to the second of all the consecutive twos in

order of magnitudes A B C ... G H being severally

the same as the ratios A' : B' B : C G \ H' of

the first to the second of all the consecutive twos in

order of as many magnitudes A' B' C . . . G H' the

ratio A : If of the first to the last of the former

magnitudes is inferred (art. 267) to be the same as

the ratio A' : H' of the first to the last of the latter

13—2
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this proportionality is said to arise By EQUALITY
of Ratio in Orderly Proportionalities.

269. PROP. If there be more than two magnitudes of one kind and

as many other magnitudes of one kind which taken

two and two in cross order have severally the same

ratios,
—that is the first two of the former magni-

tudes and the last two of the latter the two next after

the first of the former and tJie two next before the

last of the latter and so on—, thefirst has to the last

of thefirst magnitudes the same ratio as the first has

to the last of the other. (EuCL.v.23).

First let there be three magnitudes of one kind

ABC and other three magnitudes of one kind

ApC such that A:B = B':C and B : C = A':B'.

If n s be any whole numbers there are (art. 239)

whole numbers m r such that

ABC
A' H C

A not<-(£) but<
;

-^±V)
r+iB not<~(C) but <

s K '
s
(Q

and then (art. 245)

B'not<-(C) but <—(£") A' not<-(£') but <— (£').s

If "not<" mean "=" in all these statements (art. 106)

A =
!r

-(Q A' =^(C) and .-. (art. 108) = ^(C).ns

Otherwise v (arts. 90, 9 1,8 8, 89)

m
{B) not<%M and

m+i
{B)<

m+
u =±i{=±!(0}

(arts. 9, 106) A > --(C) but <———(C).

And in like manner A'>—(C) but < (C) and
s n^ ' s n K

. mr tr*~ u m+ir+i,^,. ,, #/+ir+i mr
108,9) >— (C) but <— (C). Moreovery/ n s^ ' n s •

' ' n s 11 s

(arts.

But (art.241) if ^^ be any
v v J

m/r+i r\ ir+i _ 1 m 1 r+i

n\ s s) n s s n 11 s

given pair of fractions intercepting A relative to B n may be taken

so great that both — and is greater than - and less than -—& n n v v

and if - "— be any given pair of fractions intercepting B relative

to C s may be taken so great that both - and —- >
"

and <
"—

.

S S <T cr
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When then ;/ s are taken thus great (art. 91)
— <--— <& x y ' s 11 s v n s

-*— - and .'. (art. 12) 1 <-— h-c— . Now by takingn a s 11 11 s 11 a

71 s great enough each of the fractions
1 p+K 1 il+0

n a may (art. 231) be

made less than -k k being any given number and therefore (art. 12)

-" Y--— may be made less than k. Much more therefore (art.

9) may -1 ;// 1 r+ 1

or its equal
m+ir+i mr

be made less than
s -

71 s n s

k. Hence also (art. 25 3) if A be still a fraction of C although A is

not a fraction of B and B not a fraction of C A' is the same frac-

tion of C\
Wherefore universally if A be a fraction of C A' is the same

fraction of C and if A be greater than the one and less than the

other of two fractions of C by less than however small a given

fraction they may differ from one another A' is greater than the

former and less than the latter of the same two fractions of C, that

is (art. 245) A : C= A' : C.

Next let there be four magnitudes A B CD and other four mag-
nitudes A B C D such that A : B = C \D'

B:C= B':C and C:D = A':B'. From the first

two of these proportionalities there are three

magnitudes ABC and other three magnitudes
B C D which taken two and two in

A B C D
A B C D'

cross order have severally the same ABC A C D
ratios therefore by what has just been B' CD' A' B D'

provedA\C—B\D\ Then from this and ~
the third given proportionality there are three magnitudes A C D
and the three A B D which taken two and two in cross order

have severally the same ratios and therefore again A : D =A \D'.

Again let there be five magnitudes A B C D E and other five

A B C D' E such that A : B = U : E
B:C=C':D' C : D = B : C and D : E =
A\B. Then because there are four magni-
tudes A B C D and other four B C D' E
which taken two and two in cross

order have severally the same ra-

tios A : D =B : E and because

there are now three magnitudes

A B C D E
A' B CUE

A B C D
B C D' E

A D E
A B E
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A D E and other three A' B' E which taken two and two in cross

order have severally the same ratios A : E = A' :E'. And so on for

six or more magnitudes in each of the sets.

270. Def. When from the ratios A \B B\C G : H of the

first to the second of all the consecutive twos in order

of magnitudes A B C ... G H being severally the

same as the ratios G'\H' F' \G A' : B' of the

first to the second of all the consecutive twos in back-

ward order of as many magnitudes A' B' C ...G' H'
the ratio A :H of the first to the last of the former

magnitudes is inferred (art. 269) to be the same as

the ratio A' : H' of the first to the last of the latter

this proportionality is said to arise By EQUALITY
of Ratio in Crossorderly Proportionalities.

The proportionalities of the extreme magnitudes by equality
of ratio in orderly and in crossorderly proportionalities are got by
striking out the mean magnitudes in the following contrasted

ways :
—

A:B = G':H'

yG^H^A>B.

271. Since (art. 267) the first has to the last of more than two

magnitudes of one kind the same ratio as the first to the last of as

many other magnitudes of one kind which taken two and two in

order have severally the same ratios and (art. 254) ratios are the

same as one another which are the same as the same ratio there

arises the following

Def. The ratio of the first to the last of more than two magni-
tudes of the same kind is said to be COMPOUNDED of

ratios severally the same as the ratios of the first to the

second of all the consecutive twos in order of the mag-
nitudes. And the ratio compounded of the ratios P

x : Q t

P2 : Q2 . . . PH : Qn is symbolized by

<"/>,

\P*

0.

a

Thus ifX
x
Xs Xz

... XH XH+l be more than two magnitudes of
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one kind such that Xx \Xu**Pt \ Q t X, :X
3
= P2 : ga

- - - Xn \ X„+l

~Pn \Qn and Y
x
F2 F3

... Y„ Y„+l
be as many other magnitudes

of one kind such that Yx\Ym-Px \Qx Y,: Y3
= P3 :Q3

--~ Yn : Yn+l

= P„:Q„ then Xx i X.- Yx : K. JT.:JTt- K.: r.-.-JT.:*^

n : Fw+I
and />. : a stands indifferently for JST, : ^f„+I

and for

Fi: F,/+, Iftoo />,:& = *,:£ P.:Q9-Rm :S,—Pm :QM mltm ;S
fl

then

^1
'

^«+i =

jr.: jr.

*

1
3
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But f/>2 :<22
]

= l/V&J = P*-Q* and
[>3

: Q3]
likewise

11^3 ••

3J J I P.-: 0. J [*** 0J I lA i Q.\ J

P2 :Q2 \. Therefore fart. 254) ratios compounded of the same

three ratios are all the same as one another in whichever of their

six orders of succession the three are taken. Next for ratios com-

pounded of the same four ratios it hence follows by taking the four

ratios in any order and compounding the last three that the com-

pound ratios are the same as one another in each set of six which

have the same component ratio first in order then by interchanging
the first component and the compound of the other three with each

of the three made first in turn that four compound ratios taken one

from each set of six are the same as one another and that there-

fore all the twenty-four compound ratios differing in the orders of

their component ratios are the same as one another. And so on for

ratios compounded of the same five or more ratios. Therefore gener-

ally ratios compounded of the same ratios are the same as one

another in whatever order these ratios are taken.

If further the terms of the component ratios be all magnitudes
of the same kind



MULTIPLICATE COMPOUND RATIO 201

pound Ratio of any one of these ratios of the

Degree of Compoundness marked by the num-
ber of the ratios. Particularly ratios compounded of

two of three of four ratios all the same as P : Q
are called severally the DUPLICATE the TRIPLICATE
the Quadruplicate compound ratio of P : Q.

The ratio compounded of n ratios each the same as

P : Q is symbolized by P~Q.
Thus of magnitudes enough in a continued proportionality the

first has to the third of any consecutive three the duplicate com-

pound ratio of any one to the next following the first has to the

fourth of any consecutive four the triplicate compound ratio of the

same and so on.

273. Prop. If two magnitudes have to a single magnitude the same
ratios severally as another single magnitude has to

other two magnitudes tJie first has to tlie second of
tliefirst two magnitudes the same ratio as the second

has to thefirst of the other two.

Let two magnitudes A B have to a magnitude H the same
ratios severally as a magnitude K has to two magnitudes C D,
that is let A:H=K:C B:H = K:D.

Because B\H=K\D inversely (art. 259) H:B = D:K. There
are then three magnitudes A H B and other three D K C which

taken two and two in cross order have severally the same ratios

therefore by equality of ratio in crossorderly proportionalities (art.

269) A \B = D:C.

274. PROP. If offour magnitudes of the same kind the first be to

the second as the third is to the fourth the first is to

the third as the second to thefourth. (EUCL. v. 16).

Let A B C D be four magnitudes of the same kind such that

A\B = C\D. Then since (art. 245) B:C=B:C the three magni-
tudes ABC and the three BCD taken two and two in cross

order have severally the same ratios and therefore (art. 269)
A:C=B:D.

275. Defi Four magnitudes are said to be taken Alternately
when the second and third change places.

Thus art. 274's proposition is that four proportionate magnitudes
of the same kind are proportionate alternately.

If A B C D be four such magnitudes of one kind that

A:B = C:& \'A:C=B:D
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A '-D =
{i

:

:l)
=
{f:c)

andalS° = S:3 =
(?:3'

that is the first of four proportionates of the same kind has to the

fourth the ratio compounded of the ratios of the first to the second

and to the third which is also the same as the ratio compounded of

the ratios of the second and third to the fourth.

276. PROP. The first and third of four proportionate magnitudes

of the same kind are in the same order of greatness

as the second andfourth. (Eucl. v. 14).

For if A\B—C\D where A B CD are magnitudes of one

kind alternately (art. 274) A : C = B : D. Therefore (art. 251) any

multiples whatever of A and C are in the same order of greatness

as the like multiples severally of B and D and in particular A and

C are in the same order of greatness as B and D.

277. Prop. If magnitudes have to a single magnitude the same

ratios severally as as many oilier magnitudes have to

. another single magnitude all the first magnitudes

together have to the first single magnitude the same

ratio as all the other magnitudes together Jiave to the

other single magnitude. (EuCL.v.24).
First let there be two magnitudes^ A 2 and a magnitude A

and other two magnitudes Bx
B2 and another magnitude B such

that A t
:A=Bt

:B and A 2 :A = B2 :B.

If n be any whole number there are (art. 239) whole numbers

m
x
m2 such that

A, not< — (A) and <—^—(A) A 2 not< —(A) and <——(A)
ft rt ft ft

.'. (art. 245)

B
x
not< -*(B) and < ^^(B) B2 not<—2

(^) and < ^±I(£).
ft ft ft ft

.-. (A lt A 2) not<-^-^{A)
and < ^~(A )

(2?„ B2) not<
1

-^(B) and <^±^(B).
a j m^r+m2^-2 mA-m2 2 1 . , , , . .,And —l — - which maybe made less than any givenn ft ft

fraction k by taking (art. 231) n so great that - < -k. Hence and by
ft 2

art. 253 if (A lf A 2\ be a fraction of A (Blf B2) is the same fraction

of B or if (A lf A 2)
be greater than the one and less than the other
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of two fractions of A by less than however small a given fraction

they may differ from one another {Btt B2)
is greater than the former

and less than the latter of the same two fractions of B, that is

(A lt A 2):A=(Blf Ba):B.
Next let there be more than two magnitudes A t

A a A 3
... A H as

many others B
l
Ba B3

...Bn and two magnitudes A B such that

A
X
\A=B

X
\B A a :A=Ba :B A

3
:A=B

3
:B A n :A=B„:B.

Then since by the first case above (A lf A a):A = (Blf Ba)
:B and by

hypothesis A 3
\A—B

3
\B it follows by the first case that

(A lf A 3f A 3)
:A — (Bt , Ba , B) :B. Then in the same way because

of this and the fourth given proportionality

(A lf A ai A 3 ,
A

4):A= (B1} Ba ,
B

3 , B4)
: B. And so on until at last

(A lf A a> A 3)
... A H) : A = (Bl} Ba , B3 , ... Bn):B.

278. Prop. If two magnitudes be proportionate to two magnitudes

any multiples whatever of the first two are propor-
tionate to the like multiples severally of the other

two. (EuCL.v.4).
Let two magnitudes A B be proportionate to two C D, that is

A \B-C\Dy and let p q be any two whole numbers. Because p
magnitudes each equal to A are severally to B as p magnitudes
each equal to C are to D (art. 277) p[A) :B=p(C) : D. Likewise

because (art. 245) q magnitudes each equal to B are severally to B
as q magnitudes each equal to D to D q{B) : B = q(D) : D. There-

fore (art. 256) p(A) : q{B) =p(C) : q(D).

279. Prop. If the first offour magnitudes be to the second as the

third is to thefourth thefirst and second together are

to the second as the third and fourth together to the

fourth. (EUCL. v. 1 8) .

Let A \B=C\D. Then since also (art. 245) B:B = D:D (art.

277) (^5):5=(C^):A

280. Defi Four magnitudes are said to be taken Jointly when
the first and second together are put instead of the

first and the third and fourth together instead of the

third.

Art.279's proposition then is—Four proportionate magnitudes
are proportionate jointly.

281. PROP. Magnitudes of one kind that have severally to as many
other magnitudes the same ratio have together to

those other together that same ratio. (EuCL.v. 12).
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Let A I
A 2A 3

...A n be magnitudes of one kind and B
I
B2 B3

...Bn

as many other such that

A
l
:B

1
= A 2 :B2

=A
3
:B

3
= ---=A„:Bn.

If A :B be any one of these ratios y A I
:B

I
= A :B alternately

A\:A ^Bt
:B and in like way A 2 :A =B2 :B A

3
:A =B

3
:B __ .

A H : A = B„ : B. Since then A x A 2 ... A n have to A the same ratios

severally as Bx
B2 ... Bn have to B (art 277)

(A lt A 2 ,
... A n) : A = (Blf B2) ... Bn) : B. Therefore alternately

{A lt A 2 ,
A

3 ,
... A n)

: (£x ,
B2> B3 ,

... flj = A : B
= A 1 :B1

= A 2 :B2
= --- = A n :Bn .

282. COR. Two magnitudes of one kind are proportionate to any

equimultiples of them. (EuCL.v. 15).

If in art.281 A
X
= A 2

= *?Am and each =A and.*, (art. 276)

B
1
=B2

= —Bn —B the proposition becomes in particular

n{A):n{B) = A :B.

283. Def When from A the greater of two unequal magnitudes
A B a part equal to B the less is taken the remain-

ing part is symbolized by A \B.

284. PROP. If two unequal magnitudes have to a single magnitude
the same ratios severally as other two magnitudes
have to another single magnitude the difference of
thefirst two magnitudes has to the first single mag-
nitude the same ratio as the difference of the other

two magnitudes has to the other single magnitude.
Let A be the greater of two unequal magnitudes A B which

have to a magnitude H the same ratios severally as other two

magnitudes C D have to a magnitude K, that is so that

A:H=C:K and B:H=D:K.
Since ABU are magnitudes of the same kind and A is greater

than B (art. 242) a whole number r may be taken so great that

there are whole numbers m n such that not only

A not< -(H) and <—(#) B not< -(H) and <
1

^(H)
in m~\- 1

but also each of the fractions — is greater than each of the
r r &

fractions —
. Then (art. 245)

Cnot<-(K) and<^±i(AT) D not< -(K) and <— (K).
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Should "not<" mean "=" in all these statements A\B=?—^{H)

and C\D=~{K).

r. . 1 .1 .1 • 1 ^/ - t\ m n+ l m—n—i
But whether this be so or not (arts. 14, 15, 16) V

and

r r r

ni+i n m-n+\

(H) and < (H)

r
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Art.285's proposition then is that Four proportionates are pro-

portionate disjointly and art.287's below that Four proportionates
are reversely disjointly proportionate.

287. Prop. If thefirst offour magnitudes be to the second as the

third is to the fourth and the first be greater than

the second the first is to the difference between the

first and second as the third to tJie difference be-

tween the third andfourth.
Let A :B=C:D and A >B so that (art.251) C>D. Since then

(art. 285) A\B\B=C\D\D A and A\B have to B the same ratios

severally as C and C\D have to D and therefore (art.2 5 6)

A:A\B=C:C\B.

288. PROP. Two whole magnitudes proportionate to parts of them-

selves are proportionate to their remaining parts.

(EUCL. v. 19).

Let A B be two whole magnitudes proportionate to parts

A' B' of themselves to wit A :B = A' :B'. Because A:B = A' \B

alternately A:A' — B:B' therefore reversely disjointly (art.287)

A:A\A' = B: B\B' and therefore alternately A : B = A \A
'

: B\B.

289. Prop. The greatest and least of four proportionates of the

same kind are together greater than the other two

together. (EUCL. v. 25).

Let A be the greatest of four magnitudes A B C D of one kind

such that A\B=C\D. Because A > B (art.251) C > D and

because A > C (art.276) B > D. Wherefore and because by suppo-

sition A > D D is the least of the four. Reversely disjointly then

A\A\B = C\C\D and hence v A > C A \B > C\D. To each of

these unequals put (B, D) and (art. 11) (A y D)> {B, C).

290. Defi The ratio of a magnitude to a magnitude of the same

kind is determined and may therefore be repre-

sented either by the number which expresses what

multiple or fraction the first magnitude is of the

other or by that which although not a number is

yet so closely akin to a number that it can be

known only as greater than the less and less than

the greater of two numbers differing from one an-

other by less than any given number however small

which express what fractions magnitudes severally

less and greater than the first magnitude are of the

other.
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A magnitude estimated numerically in reference to a

magnitude of the same kind as unit is called a

Quantity.
The numerical representative of the ratio of a magni-

tude to a magnitude of the same kind being the

very same as the numerical expression of the

former magnitude in reference to the latter as unit

is called a NUMERICAL QUANTITY. A numerical

quantity then can only be said to be either a

number or a something akin to a number from

which there are numbers that differ by less than any

assignable number. A numerical quantity is called

Commensurable if a number and Incommensu-
rable if not.

291. Prop. If each of several magnitudes can be expressed numeri-

cally to any required degree of nearness in reference

to a common unit magnitude a magnitude equal to

the mag7iitudes together may be expressed numeri-

cally to a?iy required degree of nearness in reference

to the same unit magnitude.

Let a magnitude in reference to a unit magnitude
not< a—k and not> a+/c

and let another magnitude in reference to the same unit magni-
tude

not< a- k and not> a'+/c
f

where ad kk are numbers such that k k may each be taken less

than any given number however small. By using "not<" "not>"

instead of ">" "<" severally the cases are included of either of the

magnitudes being expressible by a number, that is of either of the

numbers k k being o. Then (art. 101) a magnitude equal to the

two magnitudes together in reference to the unit magnitude

not<a—K+(a—k) and not> a+tc+(d+/c')

and/. not<a+a—(k+k) and not> a+d+(k+k).

Further by taking k k each less than half of any given number
however small k+k is made less than that number. Hence the

magnitude equal to the two magnitudes together may thus be

expressed numerically in reference to the unit magnitude to any
required degree of nearness.

If a third magnitude be expressible numerically to any required

degree of nearness in reference to the unit magnitude then in the
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same way by putting the magnitude equal to the two magnitudes

together instead of the first of the two and the third magnitude
instead of the other a magnitude equal to all three magnitudes

together may be expressed numerically to any required degree of

nearness in reference to the unit magnitude. And so on for a fourth

magnitude a fifth or any other.

Hence too if in reference to a common unit magnitude

a ist magnitude not<a
I
—/c1

and not> a
z+Kt

.2nd _ _ _ a2
—k2 . > a2+K2

.3rd ... a-K
3 . . a

3+/c3

- nth . . . an-Kn . . a„+tc,t

then a magnitude equal to all these ;/ magnitudes together in

reference to the same unit magnitude

not< c^-faj +a„- (#cx+/e2H +/cH)

and not> a
x+aal ha„+(^I+/c2H \-/cH)

or as it may be written for shortness not<X(a)—X(/c) and

not> S (a)+2 (k) taking 2 (a) to symbolize the sum of the as and

X(k) the sum of the ks.

292. Def. The numerical quantity which (art.291) can be found

to any required degree of nearness expressing in

reference to a unit magnitude a magnitude equal to

several magnitudes together when the numerical

quantities severally expressing these in reference to

that unit magnitude may each be found to any

required degree of nearness is called the Sum of the

numerical quantities. The operation by which by
adding to one of two numbers the other near

enough severally to numerical quantities a b ex-

pressing two magnitudes in reference to a common
unit magnitude a number is found as near as may
be required to the numerical quantity expressing in

reference to the same unit magnitude a magnitude

equal to the two magnitudes together is called the

Addition To the first numerical quantity a

Of the other b and the result of the operation

which is at once the sum got by this addition and

the numerical quantity expressing in reference to

the unit magnitude the magnitude equal to the two
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magnitudes together is symbolized by a+b. The sum

got by adding in like manner to a+b a numerical

quantity c is symbolized by a+b+c and so on.

293. Prop. If each of two unequal magnitudes can be expressed

numerically to any required degree of ?ieamess in

reference to a common unit magnitude tJieir dif-

ference may be expressed numerically to any re-

quired degree of nearness in reference to that unit

magnitude.
In reference to one unit magnitude let the greater of two un-

equal magnitudes be not less than ol—k and not greater than ol+k

and the less not less than a'—k and not greater than cl+k where

a a! k k are numbers of which both k and k may be less than any

given number however small. Then (art. 242) tc k may be each

taken so small that each of the numbers a—k ol+k is greater than

each of the numbers ol—k ol+k. Hence (art. 103) taking k k each

thus small the difference of the unequal magnitudes in reference to

the unit magnitude

not< a—k—(ol+k) and not> cl+k—(ol—k)

and .*. not< a—a —(k+k) and not> a—ol+(k+k).
And k+k may be made less than any given number k however

small by taking k k each less than -k. The difference of the un-

equal magnitudes therefore may in this way be expressed numeri-

cally to any sought degree of nearness in reference to the unit

magnitude.

294. Def The operation by which when numerical quantities a b

expressing two unequal magnitudes in reference to a

unit magnitude can be found near enough the nu-

merical quantity may be found to any required

degree of nearness (art. 293) expressing the difference

of the unequal magnitudes in reference to the unit

magnitude is called the SUBTRACTION FROM THE
NUMERICAL QUANTITY a EXPRESSING THE GREATER

UNEQUAL OF THE NUMERICAL QUANTITY b EX-

PRESSING THE LESS. The two numerical quantities
are called Unequal and the former is called the

Greater and the latter the Less. The result of the

operation is called the Remainder got by this sub-

traction and is symbolized by a—b. The remainder

14
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got by subtracting "in like manner from a—b a not

greater numerical quantity c is symbolized by a—b—c

and so on.

295. Prop. If every one but the last of more than two magnitudes

of the same kind can be expressed numerically to any

required degree of nearness in reference to the next

following one as unit the first of the magnitudes

may be expressed numerically to any required degree

of nearness in reference to the last of tliem as unit.

First let there be three magnitudes A 3
A Z A 1 of the same kind

such that

A
3
in reference to A a as unit not< ol—k and not> ol+k

A 2 in reference to A
,
as unit not< 0!—k and not> o!+k

a a! k k' being such numbers that k k may be each less than any

given number however small. Then (art. 106) A 3
in reference to A t

as unit not< (ol—k) (ol—k) and not> (ol+k) (ol+k)

and .*. not< aa'—[k(o!—k)+kol} and not> olo!+{k(o!+k)+k'o].

But if fi be the greater and 7 the less of any given pair of fractions

intercepting A 3
relative to A z (art. 241) k may be taken so small

that each of the numbers ol-k ol+k is greater than 7 and less than $
also if /3' be the greater and 7' the less of any given pair of frac-

tions intercepting A 2 relative to A
x k may be taken so small that

each of the numbers ol—k o!+k is greater than 7 and less than ff.

Let then k k be taken each thus small and k(o!—k) k(ol'+k) are

each less than k/3' and kcl is less than #'/3 and therefore each of the

numbers k(ol—k)+k'ol k(o!+k')+kol is less than k/3'+k'/3. Now kj3'+k'@

may be made less than any given number x however small by
1 1
-x -x
2 2

taking k less than -« and k less than -~ . Much more therefore may

k(ol—k)+kol k(o!+k')+k'ol be made each less than any given number.

And hence A
3 may thus be expressed numerically to any required

degree of nearness in reference to A
t
as unit.

Again if another magnitude A 4
can be expressed numerically

to any required degree of nearness in reference to A
3
as unit since

A
3
can be expressed numerically to any required degree of near-

ness in reference to A x as unit it follows by what has been shown
that A

4
can be expressed numerically to any required degree of

nearness in reference to A z as unit. And so on for five or more

magnitudes.

296. Defi The operation by which when numerical quantities b

a can be found to any required degree of nearness
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expressing severally the first of three magnitudes
in reference to the second as unit and the second

in reference to the third as unit the numerical quan-

tity may be found to any required degree of near-

ness (art. 295) expressing the first of the three in

reference to the third as unit is called the MULTI-
PLICATION By the first numerical quantity
b Of the other a. The result of the operation to

wit the numerical quantity expressing the first mag-
nitude in reference to the third as unit is called the

Product of this multiplication and is symbolized

by ba. The product made by multiplying in the like

way ba by a numerical quantity c is symbolized by
cba and so on.

The ratio compounded of ratios represented severally by nu-

merical quantities h g f...c b a is represented by the product

hgf. . .cba.

If a be the numerical expression of any one of many enough
continuedly proportionate magnitudes in reference to the next fol-

lowing one as unit an is the numerical expression of the first in

reference to the last as unit of any consecutive »+i. And if the

ratio of each to the next following of these continued propor-
tionates be the same as P : Q the numerical representative of

297. Prop. If each of two magnitudes can be expressed numeri-

cally to any required degree of nearness in reference

to a third magnitude as unit either of the two may
be expressed numerically to any required degree of
nearness in reference to the ot/ter as unit.

Let one of two magnitudes in reference to a third magnitude as

unit not< ol—k and not> a+/c and the other not< ol—k and not>

ol+k where a o! k k are numbers such that k k may be each less

than any given number however small. Then the first in reference

to the other as unit of the two magnitudes (art. 114) as in art. 256

ol—k , OL+K
not< -—

7 and not> ——
-,

a +k a —k

and.-. not<-,--L-T—-,+k ,* A
a

( a+/e a(a+tf)J

and not> - + \tc
-—

-,+K-n—l

—
rr [ .

a
(
ol—k a (ol—k))

If now j3 be the greater and 7 the less of the fractions of any given

14
—2
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pair intercepting the first magnitude and j3' the greater and 7' the

less of the fractions of any given pair intercepting the second each

relative to the third magnitude (art. 241) k may be taken so small

that both ol-k and cl+k > 7 and < /3 and k so small that both cl'—k

and a!+K > 7' and < /3'. Let then k k be taken each thus small and

v <*'-*'> 7' (art.257) -^ <i and /. (arts.91,89) tf^<*y.
Again v a!—/c' and much more .\ a!>y' (art. 25 8) a'(a'—K)>y'

2 and

.*. as before -77-7
—k < -rm . Wherefore a-^—,

—- < a-j- and .-. much
a (a—*) 7

3
a(a—/c) y

2

more (arts. 113,9) </3-^ '•' @>ol+k and much more /. > a. Hence

(art. 9) -jj-,
—7n<-^ and .*. as before k-tt-,—k <k^z. On the

a (a
—/e ) 7 a (a -/c ) 7

3

whole .*. (art. 12) k-—j+k'-jj-,
—k < k— +/c'-hz. In the same way

> ; a-K a'(a.-/c) 7 y
2

k——-,+K-m—7v< /c—.+tc'-^r* • But K—+K-f-ra may be made less
ol+k a(a+tc) 7 7

a
7 7"

than any given number x however small by taking k less than

1 1
-x -x
2 2—r and k less than -57 . Therefore much more may each of the

&
(f.)

numbers k-—
1 +k'-t—i

—K and k-—7 +/c'-rr-,
—K be made less

a +k a (a+k) a —k a (a
—k

)

than any given number. And therefore the first of the two magni-
tudes may in this way be expressed numerically to any sought

degree of nearness in reference to the other as unit.

298. COR. A number's division by thegreater of two numbers gives
a less quotient than its division by the less and a still

lesser than a greater number's division by the less.

In art. 297 a'(a—k) being greater than y
2

it is shown that

a -TT-,
—k and therefore the operational equivalent —n—,—77 is less

a(0L—K)
r ^

a (a -ye)
I rt

than a-yr and therefore than the operational equivalent -r- and
7 7

2

R
much more less than — /5 being greater than a. This latter also

7
follows from the former by arts. 1 15,9.

299. Def. The operation by which the numerical quantity ex-

pressing one of two magnitudes in reference to the
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other as unit may (art. 297) be found to any required

degree of nearness when the numerical quantities

a b can be found to any required degree of nearness

expressing those magnitudes severally in reference

to a third magnitude as common unit is called the

Division Of the numerical quantity a ex-

pressing THE FIRST OF THE TWO MAGNITUDES
By the numerical quantity b expressing

THE OTHER. The result of the operation the nu-

merical quantity expressing the one magnitude in

reference to the other as unit is called the QUO-

TIENT of this division and is symbolized by y •

As a particular case of this operation if one magnitude be

expressed in reference to another as unit by the numerical quan-

tity a since this other magnitude is expressed in reference to itself

as unit by the numerical quantity 1 it is expressed in reference to

the first magnitude as unit by the numerical quantity
- which is

called the RECIPROCAL of a.

If the first of three magnitudes be expressed numerically in

reference to the second as unit by a and in reference to the third

as unit by b the second is expressed numerically in reference to

the first as unit by - and therefore (art. 295) in reference to the

third as unit by -b.J a

According to the manner of its first and every after use

(arts. 93, 112, 114) the symbol y even now when a b may be incom-

mensurable numerical quantities still stands for and may be read

as the numerical expression of one magnitude in reference to

another as unit of which the former is expressed numerically by a

and the latter by b each in reference to a common magnitude
as unit.

300. If in different operations or sets of operations which give
the same results with the same numbers be these numbers what

they may,—and which for this reason (art. 35) are called EQUIVA-
LENT—

, any or all of the numbers operated with be such as

approximate to the same incommensurable numerical quantities
be these incommensurables what they may the results are the



214 ARITHMETIC

same which approximate (arts. 291, 293, 295, 297) to the results of

the corresponding different operations or sets of operations with

the incommensurables. But the results with the incommensurables

are known no otherwise than by the results with their commensu-
rable approximates so that it is only the sameness or difference

of the latter that settles the sameness or difference of the former.

Hence the

PROP. The Laws of Operational Equivalence are the same for
incommensurable asfor commensurable numerical quan-
tities.

Hence also whatever operational equivalences hold good for

numbers hold good for numerical quantities generally.

Moreover on the same ground,
—that the results of operations

with incommensurable numerical quantities are only the results

that can be endlessly neared by the results of the like operations
with numbers near enough to the incommensurables— , all defini-

tions hitherto made for numbers whole and fractional are hence-

forth to be understood as made for all numerical quantities com-
mensurable and incommensurable and then all propositions proved
for the former are proved for the latter.

301. Not only are there magnitudes which from their very
nature (art. 237) are not expressible as numbers but even in all

numerical estimation of magnitudes practically by sight feeling

hearing and the rest whether alone or helped by instruments such

as measuring rods microscopes weighing machines and so on it is

no further than some more or less certain degree of nearness that

can be reached. What is done throughout arts. 291, 293, 295, 297,

may be used for finding the degree of nearness to which the result

can be got of operations with numbers thus given only to some
more or less certain degree of nearness.

A magnitude is usually expressed by a decimally denoted

number of which those digits only are understood to be given

aright which refer to multiples or submultiples of the unit magni-
tude greater than of some given rank. For instance when a French

gramme is said to weigh 15*434 English grains this is to be under-

stood only as nearly as can be denoted by using three digits to the

right of the decimal dot and the digit in the fourth or any after

decimal place is not meant to be o. It is to be understood that in

finding this number there was no way of distinguishing between

two weights differing from one another by croooi grain so that for

aught said the number of grains equal to a gramme may be in-
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differently 15-434+0-0001, 15-434+0-0002, or indeed any numerical

quantity 15 -434+* where x is not greater than 00005. But since

15-434+0-0005 is 15-4345 and 15-434-0-0005 is 15*4335 of which

the former is just as near to 15-435 and the latter to 15*433 as to

15-434 if x were greater by however little than 0*0005 I 5'434+-*r

would be nearer to 15*43 5 and 15-434-* to 15 -433 than to 15*434-

All the knowledge given of a gramme then is that it is not less

than 15-434—0-0005 or 154335 grains and is not greater than

15-434+0-0005 or 15*4345-

In like manner if the Sun's distance be 93000000 miles right to

a million it can only be gathered that the distance is not less than

92500000 miles and not greater than 93500000.

What can be known about the length of a line wholly made up
of three parts severally 34*70 52*693 and 8o'i chains long each

number right to the last written digit ? Since

by what has just been shown the 1st part 347 347JO
not< 3470-0*005 chains and not> 3470+0*005 5 27 5 2

"°|93

the 2nd not< 52*693-0*0005 and not> .

^°' 1 8o '

I
l

52-693+0-0005 and the 3rd not< 80-1-0*05
l67'S l67*4l93

and not> 80*1+0*05 it follows (art. 291) that

the whole line made up of the three parts in reference to

a chain as unit not< 347+52-693+80* 1-(0*005+0*0005 +0-05), that

is 167*493-0*0555, and not> 167*493+0*0555. But as the digit in

the 1st decimal place is not thoroughly known of the sum ap-

proximated to nothing whatever is known of the

digit in any after place and hence 167*5 the near-
167*493

est number with a single digit to the right of 167*5

the decimal dot to 167*493 is to be taken as the 0*007

approximate sum. And the greatest difference °'°555

therefrom that can arise, v 167*5-167*493 is 0*007 0*0625

and .". 167-493-0*0555 =167-5-0-007-0*0555 = 167*5
—
(0-0555+0-007) or 167-5—0-0625, is 0-0625. Hence the length

sought differs from 167-5 chains by less than 0*07 chain.

Again if from a line made up of 34*70 and 52-693 chains as

parts 801 chains be taken each number being given

right to the last written digit what can be known of the
34-70

remainder? As before the line may differ from 87-393 52*69

chains by not more than 0-0055 chain and therefore
87*3J9

,

3

(art. 293) the remainder not< 87'393-8o-i-(o-oo55+o*05)
8°' l

\

or 7*293—0*0555 chains and not> 7*293+0*0555 chains. 7"2 'l9 3

Since then 7*293 = 7*3-0*007 and 0-0555+0-007 is 0*0625
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which < 0*07 the remainder can differ from 7*3 chains only by less

than 0*07 chain.

If the distance between the centers of the Earth and Moon be

expressed by 59*9643 in reference to the Earth's equatorial radius

as unit and this radius by 3962*8 in reference to a mile as unit

each right to the last written digit what can be known of the

expression in miles of the distance between the Earth's center

and the Moon's ? Since the former number not< 59*9643—0*00005
and not> 59*9643+0*00005 and the latter not< 3962*8-0*05 and

not> 3962*8+0*05 the distance in

miles (art. 295) does not differ from

59*9643x3962*8 by more than

0*00005 x3962*85+o*o5 x59*9643,
that is does not differ from

237626*52804 by more than

0*1981425+2*998215 or 3-1963575.

And therefore V

237627-237626*52804 is 0*47196
and 3*i963575+o-47i96 is 3*6683175,

the distance cannot differ from

237627 miles by so much as 37 miles.

If a cubic inch of water weigh 252*5 grains right to the last

digit what can be known about the weight of a cubic foot (1728
cubic inches) of water in reference to an ounce (437*5 grains) as

unit ? The weight of a cubic

3962*8

59*9643
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line 3792 yards long has

to a straight line 2*5146

yards long when all the three

numbers are given right only
as far as the last written di-

gits? Since
3792

falls short
2-5146

of 1*508 by less than 0*000007
1

2*5146

j-508
1792
2 514 6

T277
1257

20
20

1

1 168

2-5H55

1

754365

245635
2263095

193255
201 164

2-5:

o*6
455

1*508
1 50873

2-5I455
of 0*398 by less than

/ 3792 \

V2-5I46/

0*0005 xo*398+o*oooo5 xo*6 is

( 0*000199]

t+o*•00003
or 0*000229

oper-0-0004 and ^^
ationally equivalent to

?^5? of 0*6 by
2*51455x2*5146
less than 0*0003 the nume-

rical representative of the

ratio falls short of 1*508 by
less than 0*000007+0*000229

oro*ooo236. Hence thelength

sought differs from 34*3824

miles by less than 0*0807926

mile and therefore is within 0*0983926 (which is 0*0807926+0*0176)
mile and much more within 0*099 m^e °f 34*4 m

'

1^-
How much is there of a certain substance in 77*3 grains of a

certain compound

22*8 22*85

i*5 08 0*000236

30 1 16 457
3016 6855
1 2

J

064 I37 1

34*3J824 0*0053926
344 754

0*0176 17^
0*0983926

o*ooo236x22*85+o*o5x 1*508 is

0*0807926

in 142*653 grains

of which there are

9*87 grains of the

substance each of

the three numbers

being right to the

last written digit?

In 1 gr. ofthe com-

pound there is

0*0692 gr. of the

substance nearer

than by
0*00002+0*000036

oro*oooo56gr.and

hence in so much

0*06 92
142*65 3

987
855
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of the compound as does not differ from 77-3 grs. by more than

0*05 grs. there are more nearly 5*349 grs. of the substance than by
0*008 gr.

If in reference to the weight of a cubic inch of water as unit the

weight of a cubic inch of gold be 19*258 of silver 10*474 and of a

mixture of gold and silver 13*263 each right to the third decimal

place what can be known about the bulks and the weights of gold
and silver in one cubic inch of the mixture ? Let g s m be the num-

bers severally approximated to then if there be in 1 cubic inch of

the mixture x cubic inches of gold and therefore 1—x cubic inches

of silver the weight of the cubic inch of mixture in reference to the

water inch weight as unit is

x?--\-(i—x)s = m and .*. x — i—x = -
v ;

g-s g-s
m—s g—s g—m are not further than by 0001 from 2789 8*784 5*995

severally x is within 0*0001512 of 0*31751 and therefore within

0*00017 of 0*3175 i-^ris within 0*000202 of 06825 and therefore

within 0*00021 of 0*6825 there is of gold within 0*0039 water inch

weight of 6*115 wr. in. wts. and there is of silver within 0*0033 wr-

in. wt. of 7*149 wr. in. wts.

302. PROP. If the first of continnedlyproportionate magnitudes can

be expressed numerically to any required degree of
nearness in reference to the last of them as unit each

of them but the last may be expressed numerically to

any required degree of nearness in reference to the

nextfollowing one as unit.

Let A r A r_z ...A 2 A x
A be any continuedly proportionate mag-

nitudes. If a be the numerical expression of A r in reference to A Q

as unit and x the common numerical expression of A r ... A 3 A x
in

reference to A r_ I ...A x A severally as unit (art. 295) xr = a. Now
taking n any whole number any number of terms of the series

0123
- may be found and therefore too any number of terms

;/ 11 11 n f
J

of the series
(-]

f
-

J (- J

(-) . But since the former series may

be carried on until (art. 100) there are terms in it greater than any

given number much more after terms are come to greater than 1

(art. 2 5 8) may the latter series be carried on until the corresponding
terms are greater than any given number and hence (art. 241) until

there are terms greater than any given numerical quantity. If then

a can be found to any required degree of nearness since the series
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f-J (- J (-)
starts from o and may be carried on till terms are

come to greater than a (art. 233) a either is equal to some one term

of this series or is greater than the one and less than the other of

—
J may

be known to which a is equal or the consecutive two terms

(
—

) ( )
between which a lies. Iff — \=a x \$>

— and because
\nj \ n j \nj n

m
(art. 2 5 8) any greater number than — has a greater rth power and

rl

any number less a less rth power x is no other than — . But if

(m\ . fm+iY m . m+i , m+i mi , . .

a > I
— and < x > — and < and = - which
\n) \ n j n n n n n

by taking 11 great enough may be made less than any given frac-

tion however small. Here too x can only be one numerical quantity
for if it could be either of two numerical quantities each of two

fractions - —— between which the greater lies would (art. 242) be

u u-\- 1

greater than each of two fractions - between which the less& v v

lies so that
(-J

would be greater than (
j
and yet a> f-J

and

m-
303. Def. That numerical quantity of which a given power is a

given numerical quantity is called the ROOT of the

given numerical quantity of the same Degree as

the power. The root of the rth degree of a numeri-

cal quantity a or shortly the rth root of a is sym-
bolized by IJa and the whole number r is called the

Index or Exponent of the root. The second root

of a is usually written >Ja without the index.

By definition then {^a)
r
is a. And since (art. 302) there is only

one numerical quantity of which the rth power is a certain nume-
rical quantity %a

r = a.

That ratio is represented numerically by %a of which the rpli-

cate compound ratio is represented numerically by a.

304. PROP. A numerical quantity has a commensurable root only

when the quantity can be expressed as a simple frac-
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Hon with prime terms each a power of a whole num-
ber of the roofs degree.

For a numerical quantity whose r\h. root is a prime termed

tn Im\
r wC

fraction — is equal to (
and therefore also equal to — . And

n \n) n

(art. 209) because m is prime to n mr
is prime to nr

,

305. Prop. ^...#W«*"^a
First if n be any whole number (art. 302) there is a whole num-

ber m such that

_. m . m+i*rja not<— but< ,v n n

that is a nbt<f—
J

but < (
J

. Therefore a not< •

(

—
J

\ but

<|(-
—

) [
> that is ya not<

/—J
but <(

J
and that again is

m , m+\
Vila not< — but< .vv n n

*ZJa ZjZja then (art. 302) either are equal to the same fraction — or

/
yyi Wl-l- T

lie between the same two fractions which by taking n great

enough may be made to differ from one another by less than any
given fraction however small and

.'. yya = ya.

Hence ###..^##<i^

306. In particular since (art. 303) a — %a
x

.

Cor. ya = ytf.

307. Prop. tth)(yg){yf)...(yc){yb)ya = yhgf..cba.

First if n ri be any whole numbers there are (art. 302) whole

numbers m m' such that

m . m+i r , m' , m'+iVa not< — and < Jb not< — and <—7—~
n

_
n ^ n n

or which is the same thing

a not< gy and <
i^f)

b not<
(£)'

and <
pjljf.

,.(^)^not<^^and<^±i^±-
1
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fmm'Y , (m+itri+iY
and .'. not< -,

and < — -7-
\ii n ) \ n n )

that is Dab not< T and < —
.v « 71 71 71

Moreover
-, T

= —+— - and .'. < -p+—, a when ;/

^ » 7Z « ^ » 71 n 71 71

71' are taken great enough if a be the greater of any two given

fractions intercepting that magnitude relative to another magni-
tude which in reference to this other as unit is expressed numeri-

cally by I]
a and /3 the greater of any two given fractions inter-

cepting that magnitude relative to another magnitude which in

reference to this other as unit is expressed numerically by l]b.
But

both -6 and -
,a and therefore too -8-\—.a may be made less than

n n 71 n J

any given fraction however small by taking n fi great enough.
Much more therefore by taking n 71 each great enough may
m+l7n'+I m77l! , * t *.«. r *« ^

-. T be made less than any given fraction however
n n n 71

small. So then (l]d)ljb and Z]ab are either equal to precisely the

same fraction or lie between precisely the same two fractions that

may be so taken as to differ from one another by less than any

given fraction

Hence (V*){fe){ffl. ..(&)(&)& = mWAtif)-»tiM**
= m)^g)...^d)^cba

=
l]hgf...cba.

308. If in art. 307 a=b=c= =f=g=/i and there be x of

them the proposition is the

COR. (l]a)
x
=Zl(f.

In particular when x is r there is anew a = %Ja
r
as in art. 303.

309. Prop. To find an expressio7i with a si7igle root symbol opera-

tio7ially equivalent to tJie product of any powers of
any roots,

(ya)t/Z>=Wa
r

')yi/b
s
'

(art. 303) if r' s be any whole numbers

**(fttf
f

y$P (art. 305) and if r s' be so taken (art. 2 12)

that r'r s's are a common multiple \ of r s

x A.

=
fya

rb s

(art. 307).

In like manner if \ be any common multiple of r s t.,.xy z



ROOT LAWS AND PROCESSES 223

x
. x.

And v {%#)"= l]c? and {cff = ar

The \th root is of course of the least possible degree when \ is

taken the least common multiple.

310. Prop,' r

slb~\l b

If n ri be any whole numbers (art. 302) there are whole num-

bers ;;/ ni such that

m . m+iDa not< - but <^
11 n

m . m' m+i
Ijb not< — but <

n

or in other words

a „ot< QJ but <
pj^f

I not<
g)f

but <
£§*)'.

Then if "not<" mean "=" in all these statements

K")l
///A /;/A

andj-
©' m

.. . .
' a \n)

, that is . / -r = —-=

But if "not<" do not mean " = "
in all these statements

1 m
but <m ©

© /w-j-

but<
« )m ©"

and [©

that is

L\ *' A

f
fH+

but <^
ra
©

but<

And P¥) ® ;«+iw'+i ^w'
//

© G3
n n _l I I

m'm'+i
~
n ''

ri ri

(s)
/w\ rini+\m
\ri J ri ri

-,
and

.*. <-^H—rst when ft /*' are taken great enough if a be the
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greater of any two given fractions intercepting that one of two

magnitudes relative to the other which in reference to this other as

unit is expressed numerically by jjte
and ft, the less of any two

given fractions intercepting that one of two magnitudes relative to

the other which in reference to this other as unit is expressed

numerically by Zjb. But ft ri may be taken so great that each of

the fractions- -
3-
—

, ^ and therefore also -7.-1—,3- is less than
nfi4

n pf n$t
n /3

2

anv given fraction. Much more therefore may -—
K =

—- beJ fe

fm\ (m+\\
\ri) \ri~)

made less than any given fraction however small by taking n ri

each great enough. Thus it comes out that %-? * /t either are

equal to the very same fraction or lie between the very same two

fractions differing from one another by less than any given frac-

311. PROP. To find a root operationally equivalent to the quotient

of a power of a root by a power of a root.

r
la

r
l
r
'la

r'

T"i
= ^,; j.

if r' s' be any whole numbers

''la'— vttf and if r> s
'

ke so taken that r'r s's are a common
i/o

multiple \ of r s

A

7
ar

b*

Hence (^)P-^-^l- 7—Hence p)'-^-wrV/,-

312. Prop. To find the decimally denoted second root of a given

decimally denoted number.

First of all if u v be any two numerical quantities

(u+v)
2 = u(u+v)+v(u+v) = u2

+uv+v(u+v) = u2

+{vu+v(u+v)}
= U2

+v{u+(u+v) }
= U2

+V(2U+V).

Hence in the next place if a bc.fgJi be any numerical

quantities
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*H5KW^f^
-.+h 2(a+b+c+-»+f+g)\

40
86

92-3

92*607
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less than (5o)
a

. The greatest number x denoted by a single signifi-

cant digit has now to be found which makes x{2X40-\-x) not greater

than 2 1 44-3 38249- (40)
2 or 544-338249. Because 6x86 is 516 and

7x87 is 609 x is 6. Then V k-a 2

-b(2a+b) = k-{b(2a+b)+a
2

}

= k-{a
2

+b(2a+b)} = k-(a+b)
2 2 144-3 38249- (46)

2 = 544*338249-516
or 28-338249. Again 2x46 being equal to 86-\-6 or 92 and 0*3x92-3

being less and 0-4x92-4 greater than 28-338249 as before

2i44*338249-(46-3)
2 = 28-338249-27-69 or 0*648249. And so at last

2 1 44-3 38249- (46-307)
2 = 0-648249-0-007 (2x46-3+0-007) or o, that is

2144-338249 is (46'307)
2 and that again is \J2 144-338249 is 46*307.

When the root is incommensurable this NOTATIONAL SECOND
ROOT PROCESS has only (art. 134) to be carried on far enough to

get the root denoted decimally to any required degree of near-

ness.

313. But after several digits of a decimally denoted second root

are got by art-312's process the rest maybe simply approximated to

by a divisive process. For let the row of digits denoting a second root

be made with a knot of m digits followed by a knot of n> let u be

the whole number which a row of the m digits followed by n os

without a decimal dot would denote v the whole number which a

row of the n digits without a decimal dot would denote and co the

multiple or submultiple of the unit to which as unit the last digit

of the row denoting the root refers. By the principle of digit knit-

ting then the second root = (u+v)co and therefore the number of

which this is equal to the second root = {{u+v)co}
2 — (u+v)

2
co

2 =

{u
2

-\-v{2u+v))co
1
. Hence if after finding u by the second root nota-

tional process instead of going on to find v by the process, which

would give v as — -, a divisive process be set about to give

-±— -= v-\
— instead of finding the root (ti-\-v)<o there is found

2i{- 2,11'

f+
(
t'+
£))

w which =
{
u+v+S)a

= ^+v^+S,a-

But v u not< (io)
H+m~l the least whole number denoted with m+n

digits and v < (10)*

g< Kio)1
2

< ( IQ)" and • <^
2U 2(I0)

W+W_I * '

2{lO)
n+m~1 2

if 2n not>n+m-i, that is if n not>?/z-i. If then n not>m—i
i)

2
1

(u+v)(o+--<d is greater than (zt+v)co only by less than -co so that
2,11 2

when several digits of the root are found by the second root pro-
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cess one fewer than as many more may be

found aright by the process for finding the

quotient of the division of the remainder got
at that .stage by twice the number denoted

by the digits already found. Moreover in the

divisive process whereby the other digits of

the second root are found it is clearly needless

to take account of any digits but those which

are more or less nearly the same as the

digits which would have been in their places
had the root process itself been gone on

with. Thus because 2 = (r4i42)
3

+o*oooc>3836

0*00003836

227

1-41421356

and 0-00001356 right to the
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=
(4jtr3_5^

2

/+(4o^
5-25^4)-40^

s+49^4-46^3+
j

•

= (4jr3-5^
2

)

2

+(4O^5-4O^0+(49-25>
4-46^H29r

2

-i2^-f4

= (4^-5^
2

)
3

+(3^){2(4^_5^^)+3^]-(3^)(8^
3-io^ 2

4-3^)

+24*4-46x3+29x
2- 1 2^+4

m fax
3-$x

2

+3xy-9x
2
+30x*-24x

4+24x4-46xs+29x
2- 1 2^+4

= {4xS-Sx
2

+3x)
2

-{46-3°)x
3
+{29-9y

2- l2*+4-

= (4^-5^
2

+3^)
2

-^{2(4^-5-
2

+3-)-g
1

==
(4^3_5^2+5;r

_2)2+2 (3;ir
3_ Io^ 3

-i-6^-2)-i6^
3+20^ 2

-i2^+4

= (4x*-$x
2

+3x-2)
2

+(i6x
3
-i6xs)-{20x

2-20x 2

)+(i2x-i2x)-(4-4),

that is (4^
3
-5^r

2
+3^-2)

2
.

.*. V(i6^
6
-40^ 5+49^4-46^3+29^

2
-i2^+4)=4^3-5^

2
+3^-2.

The result of this process may be got by the following algorithm

without showing the steps.

4jt
3 —$x 2

4-yc—2

4*3
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315. When there is no polynome operationally equivalent to the

second root of a polynome/ yet if there be a mononome operation-

ally equivalent to the second root of/'s first term art.3i4's process

may be used for finding a polynome u and a polynome v of less

range than u such that p differs from u* by v. Then (art. 300)
since

either / = u*+v

p—u
2 = v

Up-u)Up+u) = v

V
slp-u

*Jp+u

s!p
=

\lp+u
+u = «+

V

s/p+u

or p = u2—v

u2
—p = v

(ti-slp)(u+*Jp)
= v

V

u+»fp

V V

U—Jp m

*Jp
= u— — u—

Also if v = wco s]p = //+

in the other.

Thus v i+x= i
2+x

= [l+-X-aX
2
±-pXS)

\ 2 8 16 /

w
\lp-\-u

u+*Jp

co in the first case and u—

>JP+IL

W
*Jp+u

^-r+rt?1

1 +x
I

V64 64 256

('
+H*'+

nf')'

')

4H

2
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i , . §('-§*) [= I+
2*-g*

+
/ I I \

X

V(l+^)+(l+-^-g^j

= l+-x-\x*+\x* ^A—-—
% ;

—rx* and so on.
2 8 i6

*«^H**&0
316. PROP. Tofind the decimally denoted third root of a given de-

cimally denoted number.

First if u v be any two numerical quantities {u-Vv)
1

—
(z/+z/){^

3

+^(2z/+z/)}(art.3i2) and .\ =u{u
2

+v(2ti+v)}+v{u
2

+(vx2it+v
2

)}

= U3
+UV(2Zt+v)+v(u*+VX2U+V

2

)
= U3

+{vtl(2tl+v)+v(u
2+VX2U+V2

)}

= U*+v{tlX2U+UV+(tl
2+VX2U+V2

)}
=

tfi+v{2tl
2+VU+tl2+VX2U+V2

)

= 7/3+^{2&
2+&2

+(^X2&-H^)+^
2

}
= ^3

+^(3^
2+^x3^+^

3

)-

Hence next if a b c .../
'

g h be any numerical quantities

(a+b+c+-.'+f+g+hy
( 3 (a+b+c+.-.+f+g)

2

"J= (a+b+c+
• • •

+f+gy+h\ +hx $(a+b+c+ • • • +f+g) \

{ +h2
J

J
3 (*+£+<;+... +/)«

I
= {a+b+c+

• +f)*+g
\
+gx 3(*+o+c+ •••+/)>

I +iT
3

J

+/J +y^X 3 (tf+£+^+ • • +f+g)
\

I +h2
J

r 3 xo
2

j (

3^
2

) (
3(<H-^)

2

) f
3(^+')

2

]= al+ax3Xo\^bhbx3a\+cl+cxs(a+b)l^dl^dx3(a+b+c)\+
I +tf

2
J I +^2

J I +c2
J I +</

2
J

- - -

+k\+Axs(a+6+c+
• • • +/+£) [.

I +h2
J

Moreover 3(u+v)
2 the first of the three terms summed in each pair

of crow wing brackets but the first = 3 {u
2+nv+vu+v2

) (arts. 162,300)
and .*. =3?/

2

+3?^+3^^4-(2^
2
H-^

2

)
= 3^

2

+^x3^+^x3?^+2^
2+^2

= 3^
2

+^x3?^+^
2

+^x3?^+2^
2 the sum of yf+vxyi-vv

2 the sum of

the three terms summed in the pair of crow wing brackets next

before vxyi the second of these terms and 2^2 twice the third.



NOTATIONAL THIRD ROOT PROCESS 231

From these theo-

rems the decimally 02*085
denoted third power

may be found of a

given decimally de-

noted number by ta- 27°

king ab c... the num-

bers denoted by the

several digits in order

and the more easily

to get the products 276
aa 2

b(3a
2
+bx3a+b

2

)

Ma+ty
\+cxi{a+b)+c

2
\

two auxiliary co-

lumns may be used

the one for finding 3a

${a+b) 3(a+b+c) . . .

(which are severally

equal to 3a 3a+$b

Za+ib+y . . .

)
and

the other for finding; through these and the theorem

276-24

8100
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270

276

276*24

780848-314714125

-(92-085)3
= o, that is

780848-314714125

= (92-085)*

and this again is

^780848-314714125
= 92*085.

When the third root

is incommensurable a de-

cimally denoted number

differing from it by less

than any given number

may be found by this

NOTATIONAL THIRD
Root Process carried

on far enough.

317. After several digits of a

found by art.3i6's process

one or more others may be

found by a divisive process.

Let the root be denoted by a

row of m+n digits of which

the first m followed by n os

would as a row without a

decimal dot denote a whole

number u and the other n

as a dotless row a whole

number v and let co be the

multiple or submultiple of

the unit to which as unit

the last digit of the row re-

fers so that by the principle

of 'digit knitting the root

= (u+v)(o and therefore the

numberofwhich this is equal
to the third root ={(u+v)co}

3

=
{^

3+^(3^
3
+^x3^+^

2

)}o)
3

. If

then after finding u by the

notational third root pro-

cess instead of going on

92-085

8100
162

243
54

78o'848-3i4,7

729|_ ;

5i ;

49^688

25392
22'08

64

25414-0864
22 08

128

25436-I792

I 3812

2! l60

2I033 126,912

25

25437'56o425

127 187^02

27 187-802

25

125

decimally denoted third root are

0-736 806 30

21

2-19

2'208

1-611876

I3H
72

1-625088

I7664
64

1-62685504

I7664
128

1*62862272

46|0I7

10:983,

9^71 ;256

,3Ii;744,

1

1

3OI484032

2-2104
J

o;259|o68

9 7717 14

488 23
488 5I9
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vi'KJC
2
-\-VX 3 H-\-V

2
}

further to find v as the equivalent of
3 ^a

y
there be

d . v(yi
2

+vxyt-\-v
2
) . . . vx$u

2 v2
x$h v3 v2 v3

«

taken -^ ^ which = J +—7-+ —a =v+—+—- there

( v2 v3 \ . . , /z*
a

z*3 \ „
is got not u+v but «+ (v+- H : which = «+z/+ - +—-

. But Vs
V u in

2
) \u 3«V

* not< (io)
M+w,~ I and z-<(io)"

^ j^ Kio)"}' {(iq)1
3

and . (ioT . (IP)-

* 3*
a

(io)
w+wt_I

3[(io)"
+"r~

I

}

a
'

(io)"^
1

^3(io)
3(^w_ir

Hence if n+m—i not< 2/*+i, which is just if either m not< «+2 or

2 (71+m- 1
)
not< 3;/+;;/,

z>
3

z>3 1
,

1 .

' '

•- 1— < — H—;

—r- and much more .-. < -.
11 in

2

10^3(10)'* 5

(V

2 V3 \—+—-

3 ](o

which differs from the root by less than -co. Thus for example

0*4 = (07 368)3+0-000010259968 3(o7368)
3 = 1*62862272

^-p>
5"— is less than 0*0000063 by less than 0*000000 0003

1*02002272

and ^0*4 is less than 0*7368063 by less than 0*000000 002. In going

through the divisive process those digits only need be heeded that

would have been the same or nearly the same had the root process

been gone on with.

3 1 8. PROP. To find the mononome or polynome, if there be one,

operationally equivalent to the third root of a mono-

nome or polynome.

Inasmuch as (bqx
r
y

s

)
3 — b3

q
3x3y3* the third root of apx^y

1 can

have a mononomic equivalent only when m n are multiples by 3

and then Z]apx
m
y
n =

(#*) (#/)**">-*".

For finding polynomic equivalents Of the third roots of poly-

nomes along with the two theorems

(*/+z/)3
= u3

+v(2u
2

+vx$u+v2

) 3(u+v)
2 = in

2 + vx3u+v
2
+vx$it+2v

2

given in art. 316 these other two are needed

(U—V)
3 = {U—V){U

2—
v(2U—v)} = U{u

2—
v(2U-v)}—v{u

2—{vX2ll—V2

)}

= U3
—Uv(2U—v)—v(u

2+V2

—VX2u) = U3—
{v(u

2+V2—VX2U)+VU(2U—V)}
= U3

—v[u
2+V2

—VX2U+{uX2U-~?n>)) = U3
—v(u

2+V2—VX2U+2tl2

-Vll)

= U3—v{2U 2
-\-U

2—VU-VX2U-\-V2

)
— ifl—viSlf—VXlll+V

2
)
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$(u—v)
2 = ${u

2—uv+v2

—vu) —
/

$U
2

—'$UV+{2V
2+V2

)—?>VU

= 3^
3—VX$U+2V2+V2—VX$U = 3U

2—VX$U+V2

—VX3tt-\-2V
2
.

Then the polynomic expression operationally equivalent to the

third root of a given polynomic expression is to be found as in the

instance following :
—

8+6ox+io2x 2
-3ix3+2i6x4+429x $-6iQx 6

+ioyix'i-$88x
8
+343x

(>

= (^8)s-2*+8+6ar+
- - -

= 23+
[|i^4

3X22+^ X3X ^

4-6ox+\02x 2

— 23
+(S^r) {3 X2

a

+(5^r) X 3 X 2+{$x)
2

)- 1 2$X*— I $OX
2-6ox+6ox

+i02x 2
-3ix3

-\

= (2+5^)
3
-(l50-I02)^

3

-(l25+3l)^3_j_2i6^
4+

+(ax 2
){
I2+30X+2S*2

\-a8x 2---+
^)\ +3qx+sqx

2

-{4^
2

)(6+iSx)+(4x
2

)

2

]
4*x

(I2+OQX+75X

2 \

-24^
2-6ar3

J

+id*«/
-48x

2
-i$6x3+2i6x4+—

= (2+5x-4x
2

y+(4x
2

)(i2+6Qx+5ix
2
-6oxs+i6x*)-48x

2

-i$6x3+
= (2+5x-4x

2

)s+(48x
2
-48x

2

)+(240-i56)xH(204+2i6)x4

+(429-24o)xS-(6io-64)x
b
+iojix 1

- (2+5*-4*
2

)
3

^{3(2
+s^-4^

2

)
2+

8

ff

3

x 3
(2+5^-4^)+(§^

{12+6qx+$

ix 2-6ox3+i6x*

-24x
2-6ox3

+32x*+(7xs)(6+i5x-i2x
2

)+(7x*)

+84x3+420x4+i8gx i-546x
6
+i07ixi-$88x

8
+343x9

= (2+s^-4^
2

)
3
+(7^

3
)f3(2+5^-4^

3

)
3

+(7^
3
)><3(2+5^-4^

2

)+(7^
3
)
2

}

(1

2+6ar4-27^
a—i2o^34- 48^4 \

+42x3+io$x4-84x$
J-f-

+49^7
= (2+5^-4^

2

+7^3
)
3
-(7^3)( I246ar+27.r

3

-78^3
4-i53.r

4--84^4-49^
6

)

+84^4-
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+(588*
8
-588*

8
)-(343^_343*9).

/. %(8+6ox+i02x
2

-3ixs+2i6x4+429x!-6iQx
6
+io7ix1-5S8x*+343x

(

>)

= 2+5^r-4^
3

+7^3
.

The result of the above process may be got without showing
the steps by the algorithm on page 236 following.

In like manner 27c
6
-io8ci+279c4-424cS+46$c

a
-300c+i2$

= (3r
a

)3-(4r){3(30
3

-(4^)x3x3^+(4^)
a

)+(4^)(27^-36V
3

+i6^)
-108^+

=
(3^

3
-4<:)

3+io8^-i44r4+64r3-io8<; s
+279<:

4
-424i:

3+

=
(3^

3

-4^)
3+i35c4

-36cx:
3+465^

3

-30o^+i25

= (3^-4r)H 5 {3(3^
3

-4^)
3

+5x3(3^-4^)+5
3

}

j27,4_
36,3+l6,*

Jb
\

-
36r

3+32^
3
+5(9^

3

-i2^)+25j^
***

m
(^-4c+sy-s(

27^~72c^ - - -

= (3^-4^+5)3-125+300^-465^+360^-135^+135^-360^+465^
-3oa:+i25

= (3^
3

-4r+5)3-i25+{300<;-465<:
3

+(36o<:
3
-36o(r

3)+465^-300^]+i25

and ^/(27^
6-io8^ s+27cx4

-424<:3+465 <:
3
-300^+i25) = $c

2
-4c+5.

319. If a polynome/ be not operationally equivalent to the third

power of any polynome yet if/'s first term be operationally equi-

valent to the third power of a mononome art.3i8's process may be

made use of to find two polynomes u v such that ?/3 differs from /
by v and its range is not greater than twice a range less by 1 than

z/'s. Then too

either / = u*+v and

v=p-ifi=(l]p-ii){(ZJp)*+{Z]p)u+i?

v .

%p^ti+
{ypy+{yp)u+u

a

or p — u$—v and

v = u*-p = (u-j/p) {u
2

+uyp+(ypy}

V
3//> = //—HP = u

(wr+mtw
And if v = zvco ,,,... , ,, . := ,,,,, ,, x -co. For example

(#/)"+(#/)«+«" Cv#)
a

+(#>)"+"
a

*3+3** = (,r+^3)3_(3^7+^9) = (<r+r3)3_(3+<^)^
=

(^+jt3_^5)3+(5^9_3^3+^is) = (x+x3-A'$y+($-3x4+x
6
)x

9 and so on.



236
ARITHMETIC

CO
itCO
4-
o

00
CO
vo

I

8
VO

I

I

I

O

I
VO

00 00 r

8

VO
VO

CO

r

1

CO

r

1

ON
CO

CO
+

+

Tt CO n

CO
+

+
VO



NOMIC THIRD ROOT PROCESS

x+xl —x*

237

-r3+3^
x*

+2

3* 4-3^

+X6

3*+3*3

3 +3 +1

+3
+2

3 +6 +3
-3 -3**

+3 +3**+**

4-*
1

3 +6

Therefore ^(;r
3+3^)

x*x*-t,\, , .

3 +1

3+*
a

3 -1

-3 -6 +3^3-^1$

+5

{^(^
3
+3^))

3

+{^(^
3+^)}(^+^3

)+(^+^
3
)

3 +1

{^(^
3+3^s

))
3

+{^(^
3+3^5

)K;c'+-;ir3-^)+(^+^3-^)
:X*

and so on.

320. The notational and polynomic second and third root pro-

cessses of arts. 3 12, 3 14,3 16, 318, may be generalized into corre-

sponding processes for roots of any degree. For the theorems

whereon those processes rest are only particular cases of the

following. Since (art. 186)

(ti+v)
n = n\ unjrn\ x

un~^v-\-n\jt
n~2v^ +n\ nv

n

(u-v)
n =

7i\
un-nuu

M~1v+nuu
n~2v2

In^v"
it follows that

(u+v)
M = un

+v{nu
n~ I

+vn\ 2u
n~2

+v*n\ji
n~3+-> • -\-v

n~2nu_,u+v
H~1

)

and (ti—v)
n = un

—v(7iu"~
I

—vn\ 3u"~
2+v2

n\3
uH~3— • •

±.v
n~ l

).

And v ;/(;/— 1)|
[n- 1- (r-i)+i}...(n-2)(n- 1

)

ir-i

n^u+v)"'
1 = 7mn~ 1

+v?i\ 2tt
n~2

+i?7i\ 3
ir3+ • • • +vr~I

7i\ rii
n~r+ • • •

-\-v
n~ 1

+zw\ 2u
M-2
+2v*n

5
?i"-3+ -+(r- i)tr

K

nv*
r'r+ • •+(«- 1 )v

n~ l

niti-v)'
1
'

1 = min~1

-vjiyi
n~2 +v2

n\ 3
u"-3 -v3

n\ A
un~4

-\- ±z/'"
x

-vn\^2

-\-2i?n\ 3
un~3-iv3

n\ A
uH

~*+ • • • ± {n-\)v
H
~\
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321. From the matter of art. 190 a general process may be

drawn for finding the decimally denoted ;/th root of a given

decimally denoted number a. Let c
1
c2 c

3
...ci be the numbers de-

noted by the digits in order of the root and let H(x—c) symbolize
the polynome in x—c operationally equivalent to xn viewed as the

polynome x'
t+oxn

~
I+oxn~2

-\ \-ox-\-o. If cx c2 c
3
...c

t
- were known there

could be found in turn the polynomes TL(x—c^ U(x—c—c2)

U(x-c—c—c3) H(x-c—c2 c
t) and hence,—v x—c-c2 ct

=x—(Cf\—\-c2+c^=x—(c^-c2-\
—K)— ,

the polynomes TX(x-c?)

U[x-(cx+ca)} U{x-(c,+c2+c3)} 1I{x-fc4ca+>
• +ct)} of which the

last terms,—because every term but the last of U(x—c) is o when
x is c—

,
are severally cx

n
{cx+c2)

n
(cz+c2+c3)

n
(^+^4-...+^.)". If

then ex e^e2 e1+e2+e3 ^+^+ K- be those several last terms

a — e^-e2-\ et
= ea+e3-] Yet+ex .*. a—e^

= e2+e3-\ ye4 and likewise

a-e-e2
= e

3+e^~'+ei a-e-e-e
3
= e

4+e5+-+ei a-e-e2 e
t
=o.

Hence Cs is the greatest number denoted by a single significant

digit that makes es not greater than a c2 the greatest number
denoted by a single significant digit that makes e2 not greater than

a—e^ c
3
the greatest number denoted by a single significant digit

that makes e
3
not greater than a—e-e2 and so on and hence

c
1
c2 c

3
... may be found by trial. The process then of art. 190 has

to be gone through with c
1
c2 c

3
... in turn when so found but in the

last column a a-e
x
a—e—e2 a-e—e—e

3
are to be written instead

of o et e^e2 e1+e2+e3 severally. If the root can only be ap-

proximately denoted it is clear that after finding several digits of

the denoting row one or more others may be found by taking heed

of those digits alone which serve to fix the digits sought and
which are either quite or almost unchanged throughout the whole

after process. Thus from the work on the page next following

100= 25+68 = (2-5)
5+ 2-34375 and nearly =

(2-5i)
s

+°*3749374

(2-5ii)
s+o' 1763229 (2"5ii8)

s

+o-oi72037 (2-5 ii88)
s+croo 12805

(2-511 886)
s+o*oooo862 (2-5 1 1 8864)

s+o*ooooo66

and 4/100
=

2-5 1 18864 right as far as the seventh place of decimals.

322. The root laws of arts. 305,307,310, may be put to such uses

as the following.

(1). The order of greatness may be found of aljb c^d without

finding them. For

a r

sjb
=

\y<f) yd = ^a
r
b = M(a

r

&y = %/«) If = ^cPP
and c(/d

= ^c
<Tsd\
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Hence if p a be so taken that pr = <rs — any common multiple v of

r and s a r

>jb cfjd are in the same order of greatness as avbp
c^d*.

Taking for example 3V2 and 2^41 3V2= 5

73
5><2

.2
S

2^41 =
2X

^/2
2X5

.(4i)
2

and 3
io
.2* = 2^x59049 2 I0

.(4i)
2 = 2^x53792 .-. 3V2>2^4i.

Instead of c d s putting bar severally aljb
=

Zjcfb
= ^(ba)a

r~1

blja—ljb
ra = ^{ab)b

r~l and therefore aljb b^Ja are in the same
order of greatness as aT 1 b

r~ l and therefore also as a b.

Making a and d both r and b and c both s

r^/s
= %r

sr
s> = y^r^r*-** s^r = y(r"s*)s

{^l)s

and therefore r{Js sfjr are in the same order of greatness as r^ 1 r

s(r
~
1)s

. Thus 34/5 < 5^3 because ^~1)X3 < 5
lri)*s

.

And generally r (J_I)r s{r
~
1)s or their equivalents (r

r
)

-r
~

I

(x
y

)

r_I are

in the same order of greatness as r s. For (n+i)
n

= ;^+7///
;'_I

+%7/'~
2+ h#u_i*+I and .*. if ;z > I («+i)

w > nn+nnn~ l

or 2/*
w

/. (^+i)
w+i

>(;^+i)x2;^ .\ {(»+l)
iH'

,

}*~
i

>{2*:
,

(»+ i)
n~ l

}{n
n
)

n- 1
.

But v 2W_I not< n and (*+l)*"' > ^T
1 2w

-
I

(;M-i)*"
I >wz'1

"
1 or ;A

.-. {(«+i)*
+I

}'

r"
x >«' ,

(»*)
,,
~
x or (*")" In like way

(*+*)^>2(^#X^*-0
,^> 2(*+^^

> 2 («+z )
... 2 (/z+2) x 2 (;*+ 1

)
nn

.-. {(n+i)"*^>\2r
i

!in+^^ and

.-. much more > (n
n
)

n+i
~\ Wherefore rljs s^Jr are in the same order

of greatness as r s.

Again if a d be both s and b c both r s^r^sTr
9

=y(r*f)f™
r^Js

= r

^j{s
rrs

)r
rs~s and therefore the order of greatness is the same

of s
r

sjr rfl$ as of ssr
~r r9'^ and therefore as of s r.

Also l]r
=

^/r
s

f/s
= r

f/s
r and therefore Z]r *Js are in the order of

greatness of r* s
r

.

(2). Other expressions may be dealt with after the same man-

ner. Since %ayb= ^^/a
s
b = s

^{ba)a
s~ I and y&f/a

=
%/[ad)lr* the or-

der of greatness is the same of Ija^b Zjbtja and of a b. Since

Zjal]b
= r

Zj(ba)ar* ZjaZjb Z/aQb are in the same order of greatness

either as s r if a> 1 or as r s if a< I. And since

tta)Zjb=(
r
s/Z/a

s

)Zj%b
r

=.ya
s
b
r =

y(afb)b
r-T the order of greatness of

yatfb (%a)%b is that of 1 IT* and therefore that of 1 b. Thus

V3^ W3)Jl ftj\ m<]\ J& </& are in de-

scending order of greatness.

(3). It often happens with other root expressions as with the

above that there are expressions either equal or operationally equi-

valent thereto having fewer root symbols. Besides the cases given

of this in arts. 309, 3 11, others are—
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= a+b%
if r be odd.

Xjdijctjb^a
= Md'cybqa = *%$(&**%* =?W?«
= ilW(d

st

)

r

(c
s

)

r
b
ra = rst

%d
rst
c
rs
b
r
a.

And those expressions equal to the root expressions that have

the fewest roots of the lowest degrees may be found as in the fol-

lowing instances.

^648+^24-^375 =^216x3+^8x3-^125x3 =6^3+2^3-5^3
= (6+2-5)^3 = 3^3-

(V3^3)(V3)^3 - (V^3
3

-3)(V^/3
3

)^V3
2 = #3

4
-3

3

.3
2

= ^3
2+3+4 = #3

6

.3
3 - 3V x

3

/3
3 - 3V3-

(V 4) (V 1) (V 2)\/
l

2\/W'4

r,

/fS£\
g
[ 7_L 75'-3

4
, f

i- 'V5
6
3

;

V V 2* / jV 3.2
6 V 2 3-2

6 V 2'<

(5V3)(3\/2-2V3) = (5\/3)x3\/2-(5v3)x2\/3
= (5x3)(V3)\/2-5x2(V3)

3

=i5V3x2-30=i5(V6-2).

(Vi-2V2
)(

2^+3V2
)

-
(V9(

2
\/i

+3^)r(2^
(
2Vl+3V2

)

=
3X2x^+3

2

^-?x2-2x3X2-2V2x^ =9V3~4\/3+9~ 12

- (9-4) \/3-( 1 2-9)= 5 V3-3-

2V7 = V W x
7 VW X

2
X
7 ylW = V/3X7V

^iV©'4v (i)'x^r
v

!d)j
v^iJ

'

(V3^3)^3V3 _ e^.3)^3'-3 _^3 4
-3

3
_ */3' .,,,_ v .,,_ „-

(V3)#3 (W^3' #33
.3' V3 5 V3 VVJ v "'

ii>
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(V3)x2+Cy4)x3 m (V3)x2 3^4 = £ "^3' ^44

Ov/5)><4 {(^5)x2}x2
+

(^5)x4 2 ^5
+3

*ys
34™

1 4

/i
2 y 44

-i Vi
2 i2

/ 1V 5
+3V (5

348
).4

4
"
2V I+3V 5

3
-4

8
'

(4). Quotients of divisions by divisors free from roots may be

found that are equal to quotients of divisions by results of addi-

tions and subtractions with roots as in the examples below.

V3-V2 = (V3~V2)
a

_ (V3)
2
+(V2)

a

-2(V3)V2

V3+V2 (V34-V2KV3-V2) (v
/

3)-(V2)
a

3+2-2^3X2
3-2

= 5-2V6.

V2+V3+V5 V2+V3+V5
V2+V3-V5 (\/24-v

/

3-v
/

5)(v
/

2+\/3+V5) (V2+V3)
2

-5

(v
/

2+V3+V5)(y
/

2)V3 =(v
/

2)V34-(y
/

3)V2+v
/

5x2X3J2V3+3V2+V30
{2(V2)V3)(V2)V3 2(V2)

3

(V3)
a 12

4+V3+V2 = (4+V3+V2) (4-V3+V2) = (4+y
/

2)
a
-3

4-V3-V2 (4-V3-V2)(4-V3+V2) (4-V3)
3-2

= i5+(2x4)V2 = (154-8^2) (17+8^3) (1 5+8^/2) (17+8V3)

i7-(2x4)V3 (i7-8V3)(i7+8V3) (i7)
a-8a

.3

=
\l{a+x)—slx.

_ (\Z^)y*+(y^)v
y

u+v
u—v

^5-^4 (^S-^4){(^5)
a

+(^5)^4+(^4)
a

l

W5j +wSW4+lV4; •

g = a{b'-bc%d+{cyd)*} _ a{6'-6cyd+c'(*/d)'}

b+c%d {t>+cyd){t>>-6cj/d+{cj/d)'}

~
M+c*d
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I

(>a)^(>a
)
4^3+(>a

)
3

(^^
3
)

a-(>a
)

a(W 3+(>a

)(^) 4
--(^)

5

(>3

+^>){(>
a)M>T#^^^
AyaY-iZ/a)Vb+ab-(%a)\<Jb)^a)b'-Uby

a2-P

1 = (^)
,

+(^)'+(^g)'+(^)^-(^)^4-{ydtfb
j/a-yb+j/c a-b+c+3j/abc

and this may be dealt with as , , .

16—2





PELICOTETICS

PART LAST

ALGEBRA

CHAPTER IV

THE PASSAGE
FROM ARITHMETIC TO ALGEBRA

323. Of the fundamental laws of operational equivalence on

which all Arithmetic hinges those into which additions and sub-

tractions alone enter are

( a+b = b+a (i)

\a+(b+c) = a+b+c (ii)

1a—b— a+c— {b+c) (iij)

\a—b-c— a—c—b (iv)

[a—(b+c) = a-c—b (v)

ia+b—c= a—c+b (vj)

\a+{p-c)—a+b—c (vij)

[a-(c-b)=a+b—c (viij)

where a b c are understood to be such numerical quantities as by
the definitions of H give the statements meaning. If however

a b c be any numerical quantities while the first two of the state-

ments always have meaning the rest sometimes have and some-

times have not. Because a not< b just when a+c not< b+c and a

not< b+c just when as shown in art. 179 after a not< c a—c not< b

and therefore further and v b+c — c+b a not< c a—c not< b just
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when a not< b a-b not< c in each of the statements (iij) (iv) (v) the

expressions between which the mark = lies have at any one time

either both meaning or both no meaning. But because when c

not> a+b it may happen that c > a that c > b that c < b in each of

the statements (vj) (vij) (viij) one of the two equated expressions

may have meaning while the other has none.

When one only of the members of any of the equivalences (vj)

(vij) (viij)
is meaningless let trial be made to give it a meaning on

the principle that the equivalence is to hold and that any meanings

to be given to + — whenever these marks are as yet meaningless

are to grow out naturally from the meanings which they already

have. Let two adjoining portions OA AB of an endless straight

line represent severally two magnitudes which in reference to a

common unit magnitude are expressed numeri-

cally by a b so that the portion OB represents a

magnitude expressed numerically by a+b. And

taking (vj) first let a portion OC cut off close to

O from OB represent a magnitude which in re-

ference to the unit magnitude is expressed nu-

merically by c and which is not greater than the

magnitude represented by OB so that CB re-

presents a magnitude expressed numerically by

a+b-c. If OC not> OA CA represents a magni-

tude expressed numerically by a—c and therefore

CB made up of CA AB a, magnitude expressed

numerically by a—c+b. Hence a+b-c = a—c+b.
But if OC>OA a—c and therefore also a—c+b
is wholly unmeaning. Yet now as A C represents a magnitude ex-

pressed numerically by c—a and AB is made up of AC CB the

hint is easy that by taking a—c when a < c to mean the expression

of a something which lessens by so much as is expressed by c—a

any magnitude put to it of the same kind as, and not less than, the

magnitude expressed numerically by c—a and a—c+b the numerical

expression of the magnitude got by thus putting to it a mag-
nitude expressed numerically by b the magnitude represented

by CB is still expressed numerically by a—c+b and therefore

a+b-c = a—c+b.

Again taking (vij) (viij) let a magnitude expressed numerically

by c and not greater than the magnitude represented by OB be

represented by a portion of straight line CB cut off from OB close

to the end B so that OC represents a magnitude expressed nu-

O

C-

A-

B v ..b

J-.A

C *
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merically by a+b—c. Then if C'B not> AB AC
represents a magnitude expressed numerically by
b—c and therefore OC a magnitude expressed ^
numerically by a+(b—c). Hence a+b—c = a+(b-c).

But if C'B>AB b—c and therefore too a+(b—c) is

utterly meaningless. Yet when c>b by making
b—c mean the expression of a something which

lessens by so much as is expressed numerically

by c—b any magnitude to which it is put of the f
&

same kind as, and not less than, a magnitude £

expressed numerically by c—b and a+(b-c) the

numerical expression of the magnitude got by so

putting it to a magnitude expressed numerically

by a the magnitude represented by OC is then

also expressed numerically by a+(b—c) and hence a+b—c = a+(b—c).

Once more if C'B not<AB CA represents a magnitude expressed

numerically by c—b and therefore and because OA is made up of

OC CA as parts OC a magnitude expressed numerically by
a—(c—b). Hence a+b-c= a-(c-b). But if C'B <AB c—b is without

meaning and therefore so is a-(c—b). Yet since then AC represents
a magnitude expressed numerically by b—c and OC is made up of

the parts OA AC by taking c—b when c < b to mean the expres-
sion of a something which greatens by so much as is expressed by
b—c any magnitude from which it is taken away of the same kind

as the magnitude expressed numerically by b—c and a—(c—b) the nu-

merical expression of the magnitude got by thus taking it away from

a magnitude expressed numerically by a the magnitude represent-

ed by OC is expressed by a—(c—b) and therefore a+b-c = a— (c—b).

Thus then in each of the operational equivalences (vj) (vij) (viij)

whenever one of the equated members ceases to have meaning and

the other does not according to the arithmetical definitions of the

symbols used meaning may be given to the unmeaning member so

as still to keep up the equivalence by first taking u—(v+u) to be

the expression of a something which on the one hand decreases by
so much as is expressed numerically by v any magnitude of the

same kind as, and not less than, the magnitude expressed by v

either which is put to it or to which it is put and on the other

hand increases by the same amount any magnitude of the said

kind from which it is taken away and secondly making the marks

+ and — if not otherwise defined to stand for "
changed by the

putting thereto of" and "changed by the taking away therefrom

of" severally.
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The something here symbolized by u-(v+u) through which a

balance of meaning is brought about between the two members of

each of the three equivalences dealt with is defined only by what

happens when it undergoes certain operations that lead to strictly

arithmetical results and are equivalent to strictly arithmetical

operations. Whether or not therefore it have any existence apart

from the operations thus undergone it may at least be used as an

arithmetical tool. To get for it a symbol free from the nonessential

element u make c a in the equivalence (v) and by the principle

above used let

a—(b+a)=a—a-b, that is o—b or —b.

Whence -b which hitherto has no meaning is henceforth made to

symbolize the same as a—(b+a). For the sake of contrast make b o

in the operational equivalence (i)
and

a+o = o-\-a or a = +a.

Dcf. That which —v symbolizes if v be a numerical quantity is

called a Minus QUANTITY and a numerical quantity

when contrasted therewith is called a Plus QUANTITY.
Also +v is read "PLUS v

n -v is read "MINUS v" and

the numerical quantity v is called the ABSOLUTE
Value both of +v and of —v.

. 324. The thing symbolized by —v has often a distinct existence.

For example if a pounds be gained by one set of transactions and

b pounds be lost by another set a—b pounds are gained or b—a

pounds are lost by the two sets according as a is not less or not

greater than b. But a—b pounds may be said to be gained in both

cases if a gain of —c pounds be understood to mean a loss of c

pounds and b—a pounds may be said to be lost in both cases if a

loss of —c pounds be understood to mean a gain of c pounds.

Again a man now a years old was b years ago a—b years old if

a be not less than b. But if a be less than b the man may still

be said to have been b years ago a—b years old if —c years old be

taken to mean c years before birth. It may likewise be always said

that b years ago was b—a years before the man's birth if —c years
before birth be taken to mean c years after.

As a third example let OP Q be three parallel planes of which

O Q are on the same side of P and a yards b yards severally

distant therefrom. If a > b Q is a—b yards distant from on the

same side as P but if a < b Q is b—a yards distant from O on the

opposite side. Yet Q never fails to be at once a-b yards from
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on the P side and b—a yards from O on the opposite side if only
—c yards from O on either side mean c yards from O on the other.

And generally whenever the difference between two magni-
tudes has a certain quality or a clean contrary one according as

the one magnitude or the other is the greater the sign + written

before the numerical quantity which expresses the difference may
serve to mark either quality and then the sign

— so written serves

to mark the other. There is clearly nothing in any former use

made of the signs -\ to hinder them from standing as sheer

prefixes for these relations of contrariety that magnitudes of the

same kind may bear to one another.

325. Let it now be sought to generalize to the utmost the

whole symbolic language and all the operations laws theorems

and methods of Arithmetic according to

The Symbolization Extension Principle

That while always abiding unswervingly by wliatever

meanings are up to any time given to symbols all

further meanings to be given are to spring tip as

straight as may be from, and to be bound by as close

ties as may be to, those meanings and to this end

that all operations of which the symbols are alike are

to be named alike and are as much as may be to fulfil

laws of operational equivalence of which the symbolic
statements are alike.

ALGEBRA is the science built in this way on Arithmetic.

326. From what is done in art. 323 there comes by the symboli-

zation extension principle the

Defi The (algebraic) SUBTRACTION FROM A NUMERICAL

QUANTITY OF A GREATER NUMERICAL QUANTITY is

the subtracting arithmetically from the latter the former

and writing the sign
— before the remainder.

327. As soon as a minus quantity is held to exist for its own
sake and to be no longer only a handmaid of Arithmetic each of

the equivalences (iij) (iv) (v) (viij) makes a wider assertion than has

yet been proved. As to
(iij) when a<b v b—a = b+c-(a+c) it is still

true that

a—b = a-\-c-(b-\-c).

Next as to (v) when a not< c but < b+c v a = a—c+c

a~{b\c) = a-c-\-c—(b-\-c) and.*, —a—c—b
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by what has just been proved. Hence as to (iv) when a not< either

b or c but a—b < c and a—c < b

a—b—c — a—(c+b) — a—(b+c) = a-c—b.

Lastly as to (viij) when c> a+b let c= d+b then

a-{c-b) m a—{d+b-b) = a-{d+(b-b)} = a-d
and a+b—c=a+b—(d+b)=a—d by the wider reach now proved for

the law of relativity. Therefore still

a—(c—b) = a+b—c.

328. At this stage all the eight equivalences (i)
—

(viij) are shown

true throughout their new stretch of meaning but the balance of

meaning between the two members of (vj) and of (vij) is again

upset the two members of (iv) and of (v) are for the first time un-

balanced in meaning and both members of (iv) are without mean-

ing when a < b and < c. Beginning then with (v),
—for (iv) has

nothing in itself whereon to hang any fresh meaning but will as in

art. 67 follow from (v) through (i)
—

,
if a<c let c = x+a and accord-

ing to the principle of art. 325 let the unmeaning member be given

a meaning such that

a-{b+(x+d)} and .*. a—(b+x+a) = a—{x-\-a)—b,

that is —(b+x) = —x—b.

Whence arises the

Def. The (algebraic) SUBTRACTION From a Minus QUAN-
TITY Of A PLUS QUANTITY is the adding arithme-

tically to the latter's absolute value the former's and

writing the sign
— before the sum.

The way in which this subtraction is drawn from the subtrac-

tion of art. 326 by making a—c-b equivalent operationally to

a—(b+c) as well when a<c as when a not< c shows that in any
matter where what under certain circumstances is expressed by a

plus quantity x is under other circumstances expressed by a minus

quantity
—x if in the first case the expression x—b when x < b be

put to any use to the like use may the expression —x—b be put in

the other case. For example a ship that sails first a miles north-

ward and next c miles southward is a—c miles north from where it

started and if it then sail b miles southward it is a-c—b or a—(b+c)
miles north of its starting place whether a=x+c and .*. a—c—b
— x—b = x+c—{b+c) or c=x+a and .*. a—c—b = —x—b = a—{b+(x+d)}.

329. Since then a—{b-\-c)—a—c—b whatever numerical quantities

a b c are it follows just as in art. 65 that whatever numerical quan-
tities the letters stand for
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x-(a+b+c+ • • •

+/+£•+/*)
= x-h-{a+b+c+ • . . +/+£-)

= x-h-g-(a+b+c+ •••+/)

= x—h—g-f c—b—a

and in particular when x is o

-(rt+£+r+
• • +f+g+/i) = -h-g-f c-b-a.

Hence too

x-y-(a+b+c+ - . . +f+g+h) = *-(*+£+<•+ • • • +f+g+h+y)
= x—y—h—g—f c—b—a

of which a particular case is

-y-{a+b+c-\ Vf+g+h) = -y-h-g-f c-b-a.

So that the law still holds good of the distribution of subtraction

over additions of plus quantities.

The law of the commutation of subtractions ofplus quantities also

holds good. For taking a b c...fg h in any other orderf a g...b h c

x-a-b-c f-g-h = x-(/i+g+f-\ +c+b+a)

= x-(c+/i+b+ - • +g+a+f)

= x—f—a—g b-h—c

and particularly when x is o -a—b—c f—g—h
= —f-a-g b—h-c. The equivalence (iv) is clearly a particular

case of this general law.

330. The equivalence (vj) ceases to say aught when a+b by
the second member being unmeaning. Let c = x-\-(a-{-b) and if a

meaning is then to be given to a—c-\-b so as to fulfil the equi-

valence

a+b-{x+(a+b)} = a-{x+(a+b)}+b = a-(x+a+b)+b = a-(x-\-b+a)-\-b,

that is -x = -(x-\-b)+b.

Hence and from one of the elements in the definition of a minus

quantity in art. 323 there comes (art. 325) the

Def. The (algebraic) ADDITION To A MINUS QUANTITY Of A

PLUS QUANTITY is the taking the arithmetical differ-

ence of their absolute values and prefixing thereto the

algebraic sign of the one which has the greater absolute

value.

This operation by reason of the way in which it has been got

may be made use of just wherever the expression a-tb—c is made
use of. Thus a gain of a pounds a gain of b pounds and a loss of

c pounds give on the whole a gain of a+b-c pounds and because
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a-c pounds is the gain from the a gain and the c loss there is on

the whole a gain of a-c-Yb pounds whether c not> a oa but

not> a-Yb or c > a+b.

331. Because a-Yb-c — a-c-Yb whatever numerical quantities a

b c are

x+a+b+c-Y • • • +f+g+fi-p = x+a+b+c+ . • +f+g-p+k
= x+a+d+c+ • • • +f-p+g+/i

= x-p+a-Yb+c-Y
• • •

+f+g+fi.

.'. x-Ya+b+c-\ Yg+h—p—q—r v—w

V (art. 329) it = x+a+b+c+ Yg+fi-(w+v+ • • •

r-Yq+p)

= x-(w+v-\ Yr+q-Yp)+a+b+c-Y Yg+h
= x—p-q-r v—w+a+b+c-\ Yg+h.

Under this comes the particular case of x being o

a+b+c-\ Yg+h-p-q—r v-w
= —p—q—r v—w+a-Yb+c-\ Yg+h.

Hence -b-^+a.+a^+a-b^b-b^^+a^^+a^ taken for

instance of a result of any successive additions and subtractions of

plus quantities

= a
1+a a+a3

-bJ
-d

!t
—&

3
—&

4
-b

s+a4+as
-&6+a6

hence in the same way
= a1+a2+a3+a4+a-bz-b-b3

-b
4
-b-b6+a6

= ax+a2+a3+ b-b-b
3

In like manner taking the a additions and the b subtractions in any
other order of succession

a
3
-b-b-b

4+a(>+a1+a-b6-b3+a4+a-bx+ • • •

t= a
3+a6+aI+a5+a4+a2+ br-b-b-b(r-b-bx

= a
x+a2+a3+ bx-b2-b3

and .-. =-& x-&a+al+aa+a3
-d

3
-b

4
-b

s+aA+a;r&6-Ya6

So that the law of the commutation of additions and subtractions

of plus quantities is always true.

Moreover x-f+a+b+c+ Yg+h = x+a+b+c-\ Yg+h—p
= x+{a+b+c+ • • +g+h)-p
= x-p+{a+b+c+ • • • +g+h)

which when x is o gives in particular —p+a+b+c+ • • - +g+h
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= -p+{a+b+c-\ Yg+h). The law then of the distribution of ad-

dition over additions of plus quantities is true for addition to a

minus quantity as well as for addition to a plus quantity.

332. The first member of the equivalence (vij) has no meaning
when oa+b and therefore the equivalence (vij) then makes no

assertion. Let c = x+(a+b) and by the symbolization extension

principle a meaning is to be given to a+{b-c) so that

a+b-{x+(a+b)}
= a-Y[b-{x+(a+b)}] = a+{b-{x+a+b)},

that is so that —x=a+{—(x+a)}.

Whence and from one of the elements in the definition of a minus

quantity in art. 323 there arises the

Def. The (algebraic) Addition To a plus quantity Of a
MINUS QUANTITY is the taking the arithmetical differ-

ence of their absolute values and prefixing to it the

algebraic sign of the one which has the greater absolute

value.

From the way in which this operation arises it follows that

wherever use can be made of the expression a-Yb—c just there

may the expression a+{b—c) be made use of. Thus if O X Y Z be

four parallel straight lines such that X is a feet east of O Y b feet

east of X and Z c feet west of Y then Z is a+b—c feet east of O
and because Z is b—c feet east of X Z is also a+(b—<c )

feet east

of O whatever numerical quantities a b c are.

333. Since a+(b—c)
— a+b—c whatever numerical quantities a

b c are

x-\-(a—p—q—r v—w) — x+{a—(w+v-\ \-r+q+p))

- x+a-{w+v+ • • • +r+q+p)
— x+a—p—q—r v—w.

Hence ^+(—^—^+^,+^+^3—^3—^—^5+^4+^5 ), taking the ex-

pression here added to x as instance of a result of additions and

subtractions of plus quantities,

=
*+(flx+0a+03+ b-bs-b3 )

= ^+(#,+^+#3+ • • • )-b1-b-b3

= x+at+a3+a3+ b1-b-b3

= ^-^,-^+^,+^+^3-^3-^4-^5+^+^5

And so addition in all the width of meaning now given to it still

fulfils the law of distribution over additions and subtractions of

plus quantities.
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334. The element in the definition of a minus quantity got from

equivalence (viij) gives according to art. 325 the

Def. The (algebraic) Subtraction From a plus quantity
Of a MINUS QUANTITY is the adding arithmetically to

the first the other's absolute value.

To take again the example in art. 332 of four parallel straight

lines OX Y Z of which X is a feet east of O Y b feet east of X
and Z c feet west of Y Z is c-b feet west of X and therefore

a—{c—b) feet east of even though c<b.

335. Because equivalence (viij) holds for all numerical quan-
tities

x—{a—p—q—r v—w) = x—{a—(w+v-\ Vr+q+p)}
— x+(w+v-\ \-r+q+p)-a
= x+w+v-\ \-r+q+p—a.

Hence x-^—b—b^+a^+a^+a—b-b^—b^a^ bp), taking the

expression here subtracted from x to exemplify any result of

additions and subtractions of plus quantities,
= x-(a^a2+a3+ b-b-b

3
bp)

=
x+bffr

• • • +t3
+ta+&1-(a l+aa+a3+ • •

•)

= x+bp+ • • • +b3+6a+6 l
a -a -a,

= x+dp+ at+bs+b^+b^-a-a-a.+bz+br
So that subtraction throughout the whole breadth of meaning
which it now has fulfils the law of distribution over additions and

subtractions of plus quantities.

336. The operation of adding to a minus quantity a plus quan-

tity by reason of the laws now proved holds out a ready means of

doing what amounts to distinguishing between desubtraction and

sursubtraction as in arts. 60, 104, 145. Since on the one hand k+b—b
= k+{b-b) or k while on the other -b+(b+k) =-b+b+k or k a-b

may be taken to symbolize the same as a «— b and —b-Ya the same
as a—^b. Then \i x be any numerical quantity operated on and a

any numerical quantity operating there comes the system of in-

versions

Result of Operation
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Whence calling addition to a minus quantity of a plus quantity
minus addition of or minus addition to according as the latter quan-

tity or the absolute value of the former quantity is deemed the nu-

merical quantity operated on each of the operations below is the

inverse of the operation paired with it

Addition To and Subtraction From
Addition Of and Minus Addition Of

Subtraction Of and Minus Addition To

If in an endless unclosed line X'OX two points A B be sever-

ally a yards b yards distant from and both on the same side as

X the distance from B to A in the direction toward X is expressed
either numerically or algebraically by —b+a in reference to a yard
as unit while a point in X'OX distant b yards from A on the same
side as X' is a-b yards distant from O in the direction OX. Like-

wise a man a years old was b years old —b+a years ago and b

years ago was a—b years old.

337. Although through the meanings given in turn to a—b
—a—b —a+b a+(—b) a—(—b) whatever numerical quantities a b

are there is now no unmeaning expression in any of the equiva-
lences (i)

—
(viij) whatever numerical quantities a b c are and all

these equivalences are now thoroughly fulfilled yet there are arith-

metical consequences of these equivalences which with the

widened meaning of the symbols both say more than has been

proved and have in them unmeaning expressions. The statement

that

a-b-\-[c-d) =a—b\c—d
is arithmetically, that is if a not<£ and c not< d, just the law

(vij). If a not<£ and c<d this statement is still (vij) but taken in

the wider sense now (art.332) understood. lfa<b and cnot<d
there is still (art. 330) something said but a thing not yet proved.
What is then said may however be thus proved :

—
a-b+(c-d) (art 330) = a+(c-d)-b = a+c-d-b and .'. (art. 331)

= a—b+c—d.

Lastly if a <b and c<d a-b+(c—d) has no meaning and there-

fore the statement says nothing. But then if b—x-k-a and d=y+c
a meaning is by the symbolization extension principle to be given
so that

a-(x+a)+{c-(y+c)} = a-(x+d)+c-(y+c)
= -x+c-c-y (art. 329)
= c-c-x-y (art. 331),

that is —x+{-y) = -x—y.
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And hence arises the

Def. The (algebraic) Addition To A minus [quantity Of a

MINUS QUANTITY is the subtracting algebraically from

the former the latter's absolute value.

This operation may be used for getting a—3+(c—d) just wher-

ever and only so far as a—b+c—d when a < b and c < d expresses

anything. Thus gains of a—b pounds and c—d pounds amount to-

gether to a gain of a—b-\-{c—d) pounds whatever numerical quan-
tities abed may be. Also a rise of a—b feet followed by a rise of

c—d feet gives always a rise from first to last of a—b+(c—d) feet.

338. Because now a—b+(c—d) = a—b+c—d whatever numerical

quantities abed are

x—y+(a—p—q—r v—w) = x—y+{a—(w+v-\ Yr+q+p)}

m x—y+a—(w+v-i Yr+q+p)
= x—y+a—p—q—r v—w

of which a particular case is

—y+(a—p—q—r v—w) — —y+a—p—q—r v-w.

Hence x—y-Y-(-b-b2+a 1-Y-a2+a-b-b-b5-Y-a4+a5 ), taking the

expression here added to x—y for example of a result of any addi-

tions and subtractions of plus quantities,

bb x-y+(a x+a9+a3+ b-b-b
3 )

= x-y+(at+a,+a3+ • . -)-b-b-b3

= x-y+a,+a2+a3-\
b-b2-b3

= x-y-b-b^a^+a^a-b—b-b^a^+a^ .

In particular -;y+(—bx
—&a+at+aa+a3

—&
3
—bA—bs+aA-\

—
)

= -y-bx
—ba+ax+a9+a3

—b
3
-b

4--bs+a4+ ....

Whence and from art. 333 the law of the distribution of addition

over additions and subtractions of plus quantities holds universally.

339. The symbolic statement

a—b— (d—e) == a—b+c—d

a not< b is the same as (viij) either in the arithmetical sense if

d not<^ or in the further sense now (arts. 323, 334) understood if

d<c. But if a<b the statement either says what has not been

proved if d no\.<c or says nothing whatever if d< e. If a < b and

d not<r

a-b-(d-c) = a-(d-c+b) (art. 328) and .'. (art. 335) = a-b+c-d.

If a<b and d<c a—b—{d—e) is an unmeaning expression but is
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to be given meaning by the symbolization extension principle so

that if b=x+a and c=y+d

a-(x+a)-{d-(y+d)} = a-(x+a)+(y+d)-d = -x+y+d-d = d-d-x+y,
that is —x—(-y) = —x+y.

Whence arises the

Def. The (algebraic) Subtraction From a minus quantity
Of a MINUS QUANTITY is the adding algebraically to

the former quantity the latter quantity's absolute value.

This operation may be put to use for getting a—b—{d-c) just

wherever the expression a—b+c—d when a<b and d<c can be

made use of. Thus a gain of a—b pounds and a loss of d—c pounds
whatever numerical quantities a b d c are amount to a gain of

a-b—{d—c) pounds. Also a rise of a—b feet followed by a fall of

d—c feet gives on the whole always a rise of a—b—{d-c) feet.

340. Because now a—b—(d—c)=a-b+c—d whatever numerical

quantities a b d c are

x—y-{a-p—q—r v—w) = x-y—{a-(w+v-\ +r+<?+p)}

= x-y+(w+v+ Yr+q+p)-a
— x—y+w+v-\ Vr+q+p—a

and in particular

-y- {a-p-q-r v-w) = -y+w+v+ \-r+q+p-a.

Hence x-y—(rt—&a+as+aa+a3
-&

3
—&

A
—5

s+a4+ 5P), taking the

expression here subtracted from x—y for instance of a result of any
additions and subtractions with plus quantities,

= x-y-(ax+a,+a3+ b-b-b
3

bp)

= x-y+bp+ • • • +d3
+69+&-fa+aa+a3+ • •

•)

= x-y+bffr • • • +b3+b2+bt
a -a -a,

m x-y+bp+ a
4+bs+bA+b3

-a
3
-a-al+b2+b l

of which a particular case is

-y-(-b-ba+al+aa+ bp)
= -y+dp+ aa-a s+da+br

Whence and from art. 335 the universality is shown of the law

of the distribution of subtraction over additions and subtractions of

plus quantities.

341. The extensions of meaning thus far bestowed on the marks

H— sweep away all meaninglessness from any symbolic expression

wherein + — are the only symbols of operation and besides make

every symbolic statement of what is conditionally a law of arith-

metical additions and subtractions a statement of what is uncon-

ditionally a law of like named algebraic operations.

17
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Every one of the eight results got by adding to or subtracting

from a plus or minus quantity +u a plus or minus quantity +v is

equivalent to one or other of the four simplest results u-\-v —u+v
u—v —u—v as follows :

—
+u+(+v) = u+v

—u+{+v) = —u+v

+u+(—v)
= u—v

—u+{—v) = —u—v

+u—{+v) =^ u—v

—u—(+v) = —u—v

+u—{—v) = u+v

—u-(—v) =—u+v
Of these the particular cases when u is o are

+(+*>)
= +v

+{-V)
= -v

-(+v) = -V

-(-v)=+v.

342. The laws of operational equivalence that rule in additions

and subtractions of plus quantities rule in additions and subtractions

of plus and minus quantities generally. If the upper or the lower of

the signs -j
—

prefixed to any letter be used throughout

+a-(±b) = ±a+(±c+c)+b
= +a\c\c+b
= ±a±c-(±d±c)
= ±a+{+c)-{+b+{+c)}.

And so the law of relativity in subtraction is always true. The
law answering to this in the operation having its result symbolized

generally by —{±b)+(±a) is

-(±b)+(±a) m -(±b)-{±c)+(±c)+(±d)
= +b+c±c±a
= -{±c±b)+{±c+a)
= -{±c+{±b)}+{+c+(+a)}.

For proof of the commutation laws taking dotted reaches to

mark any additions and subtractions of plus and minus quantities
or the operationally equivalent additions and subtractions of plus

quantities

"•• +#••• + (-£-)••• + (-/)••• ±{-v) ...•=
....+#....+£-....+/... +v ....

=
....+p....+v ....+a ....+g....

== ... ± (_/)... ± (_^)
... ±^... ±(

_
r)

....

So that in any additions and subtractions of plus and minus quan-
tities an addition or a subtraction of a plus quantity may change
place with an addition or a subtraction of a minus quantity and
an addition or a subtraction of a minus quantity may change
place with an addition or a subtraction of a minus quantity
without changing the result. But any arrangement of things may
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be turned into any other arrangement sought of the things by
making the first things that are not alike in the two arrangements

change places in the first arrangement then doing the same in the

new arrangement got with the first things that are not alike in it

and in the sought arrangement and so on. Hence the law of the

commutation of additions of subtractions and of additions and sub-

tractions holds universally for plus and minus quantities.

Since the result of any additions and subtractions of plus and

minus quantities is either a plus or a minus quantity the laws of

distribution may be proved as follows :
—

±a+{±b± (-v) ..••}
= ±a+(±Z>+v • • • •

)

= ±a±b+v •• •

= ±a±6±(-v)

±a-{±b±(-v) .•••)
= ±a-(±b+v • • •

•)

= ±a— ±v+b
= ±a>--- +(-v)+&.

Special cases of these general laws are

+{+(-«')}=+(-») -{+(-»)} =-(-!/)

+{-(-»)} = -HO -i-H>)} = +(-»)•

343. Any plus quantity may by adding to it a plus quantity or

by subtracting from it a minus quantity be changed into any

greater plus quantity and inversely any plus quantity may by

subtracting from it a plus quantity or by adding to it a minus

quantity be changed into any less plus quantity. On this ground
then after the manner of, and quite of a piece with all that has

been done through, the symbolization extension principle that one

of any two different plus or minus quantities may henceforth be

called the Algebraically Greater into which the other can be

changed by adding to it a plus quantity or by subtracting from it

a minus quantity and which therefore inversely by subtracting

from it a plus quantity or by adding to it a minus quantity can be

changed into the other. Hence any plus quantity is algebraically

greater than any minus quantity and of any two minus quanti-

ties that have not the same absolute value the algebraically

greater is the one with the less absolute value. Thus the terms of

the doubly endless series

- - - -4 -3 -2 -1 o 1 2 3 4 - - -

are in ascending order of algebraic greatness. When one of two

plus or minus quantities is algebraically greater than the other this

17-2



260 ALGEBRA

other must of course be called Algebraically Less than the first.

Also two minus quantities can be called Equal to one another

only when they have the same absolute value.

The common final result got by algebraically adding in suc-

cession all but one of any plus or minus quantities in whatever

order taken to that one and the successive results got is called the

Algebraic Sum of the quantities. The result symbolized by

±a-(±b) is called the Algebraic Remainder of the subtraction

from ±a of ±b and the result symbolized by —(+&)+(+ a) the

Algebraic Difference by which ±a differs from ±b or the

Algebraic Excess of ±a over ±b.

From the axiomatic principles of all magnitudinal relationship

in arts. 6—16 it follows as in art. 143 that plus or minus quantities

are equal precisely when the algebraic sums are equal got by sever-

ally adding either to them or them to any equal plus or minus

quantities and also precisely when the algebraic remainders are

equal got by severally subtracting either from them or them from

any equal plus or minus quantities. As to inequalities too it follows

likewise that the greater algebraically the plus or minus quantity

algebraically added to, and the less algebraically the plus or minus

quantity algebraically subtracted from, a plus or minus quantity
the more is this quantity algebraically increased.

344. The fundamental laws of operational equivalence in Arith-

metic that have to do with multiplications either alone or along
with additions and subtractions only are

ab — ba- - - -
(ix)

abc= [ab)c
- - -

(x)

{a+b)c=.ac+fic\ _ _

c{a+b) = ca+cb)
'

{ i}

[a—b)c— ac—bc

c(a—b) = ca—cb j

Of these the last two marked (xij) are the only ones that ever

cease to have arithmetical meaning and they only when a < b. But

when a < b the members ac—bc ca—cb of (xij) have been already

given a meaning and so by the symbolization extension principle

furnish a handle for giving meaning to the other members (a—b)c

c(a—b). Beginning then with the equivalence (a-b)c = ac—bc and

making b x+a

{a-(x-\-a)}c
= ac-(x+a)c = ac-(xc+ac)
or {-x)c——xc.
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Whence springs the

Dcf. The (algebraic) MULTIPLICATION By A MINUS QUANTITY
Of a PLUS QUANTITY is the multiplying arithmetically

by the former's absolute value the latter and writing the

sign
— before the product.

The use of this operation is to make (a—b)c of the same breadth

of meaning as ac—bc. Thus a man walking eastward at the rate of

c miles an hour who passed a certain place a hours ago was b

hours ago both [a—b)c miles and ac—bc miles east of the place
whether a not< b or a < b.

345. From the definition of (—x)c and because thence (a—b)c
= ac—bc as well when a < b as when a not< b there follow in ful-

filment as much as may be of multiplicational laws the same as

(ix) (x) (xj) (xij)

(1) (-f)bc = -fbc=-{fb)c=(-fb)c = {(-/)%

(2) (—u+v)w — (v—u)w = vw—uw = —uw+vw.
f (-f+b)c

= -fc+bc = (-f)c+bc.

a\ \
{
aH-g)V = \a-g)c = ac-gc= ac+(-gc)

= ac+(-g)c-

{-M-g)V-{-f-gy={-{g+f)\c=-{g+f)c=-(gc^-fc)
I

- -fc-gc = -M{-gc) = (-/)'+(-*)*

f (-h) (a+b) = -/i(a+b) = -(ha+hb) = -hb-ha = -ha-hb
(4)

|
= -ha+(-hb) = (-h)a+(-h)b.

(5) (—u—v)w — —uw—vw as shown in (3) above.

(
(-f-b)c = -fc-bc=(-f)c-bc.

I {-/-(-ir)k= (-/+*•)*
= ~fc+gc= -fc-{-gc) = (-f)c-{-g)c.

lia not< b (-//) (#-£)
= -h(a-b) = -{ha-hb) = hb-ha

(7)
J

= -ha+hb = -ha-(-hb) = {-h)a-(-h)b.

346. Again the equivalence c[a—b) = #*-<# when £ is ;tr+# be-

comes

r{tf-(;tr+tf)}
=

<:#—<;(;*:+#)
= ca—{cx+ca)

or <;(-#)
= —ex.

Whence springs the

Def. The (algebraic) MULTIPLICATION BY A PLUS QUANTITY
Of a MINUS QUANTITY is the multiplying arithmeti-

cally by the former the latter's absolute value and

writing the sign
— before the product.

The use of this operation is to give c(a-b) the same breadth of

meaning as ca-cb. Thus a ship sailing eastward at the rate of a
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knots in a current running westward at the rate of b knots is c(a—b)

nautical miles and also ca-cb east of where it was c hours ago as

well if a < b as if a not< b. The knots of a ship's logline are so

adjusted that the number of them run out in half a minute is the

number of nautical miles an hour at which the ship is going through

the water.

347. From the definition of c(—x) and because thence c(a—b)
= ca—cb even though a < b

(0 {-f)b=-fb = -bf=b{-f).

\a(-g)c=a(-gc)
= -agc = -(ag)c = (-ag)c = [a(-g))c.^

\ ab(-h) = a(-bh) = -abh = -(ab)h = (ad) (-h).

And either in the, same way as in art. 345 or from what is there

shown by (1)

(3) (a+b)(—h)=a(—h)+b(—k). (4) zv(—u+v) — —wu+wy.

{5)
I c{-f+(-g) }=c(-f)+c(-g).

(6) If a not<^ [a—b)(—Ji)—a(—Ji)—b(—h). (7) w(—u-v) — —wu—wv.

(os {<-/-&) = c{rf)-cb. c{a-(-g)) = ca-c(-g).W
I c[-f-(-g)}=c{-f)-c{-g).

348. The first of the two equivalences (xij) is arithmetically the

same as

(a-b)(c-d) = a{c-d)-b(c-d).

It is by making the first of (xij) still the same as this when c not<a?
and a < b that the definition arises of multiplying by a minus

quantity a plus quantity. When c< </and a not<£ the equivalence
is the law (6) proved in art. 347. When c < d and a < b (a-b) (c-d)
is an unmeaning expression and therefore the equivalence says

nothing at all, but by the symbolization extension principle a

meaning is then to be given to (a-b) (c-d) so that if b =x+a and

d=y+c

[a-(x+a)}{c-(y+c)} = a{c-(y+c)}-(x+a){c-(y+c)}=a(-y)-(x+a)(-y)
=
-ay-{-(x+a)y] = -ay-\-(xy-\-ay)

= -ay+(ay+xy)
= —ay+ay+xy

or (-x)(-y)=+xy.
And hence there arises the

Def. The (algebraic) MULTIPLICATION By A MINUS QUANTITY
Of a MINUS QUANTITY is the arithmetically multiply-
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ing by the former's absolute value the latter's and

writing the sign + before the product.

This operation gives the same reach of meaning and use to the

expressions {a—b){c—d) a{c—d)—b[c—d). For example a ship which

sailing eastward at the rate of c knots in a current setting westward

at the rate of d knots passed a certain place a hours ago was b

hours ago east of the place (a—b)(c—d) or a(c—d)—b(c—d) nautical

miles whatever numerical quantities abed are.

The statement

(a-b)(c-d) = {
a-b)c-{a-b)d

if a not< b is the second of the equivalences (xij) taken either

arithmetically if c not<<^ or as giving the definition (art. 346) of

the multiplication by a plus quantity of a minus quantity if c<d
and if a < b is either the law (7) proved in art. 345 if c not< d or

what may be proved thus if c<d:—If b = x+a and d=y+c

(a-b)c-(a-b)d= (—x)c—(—x){y+c)
= -xc-{—x(y+c)} = -xc+(xy+xc)

= —xc+(xc+xy) = -xc+xc+xy = (—x){-y) — (a—b)(c—d).

349. From the extensions of meaning now given to operations of

multiplication and because through those extensions the opera-
tional equivalences

a(c-d)-b(c-d) m (a-b)(c-d) = {a-b)c-{a-b)d

hold whatever numerical quantities abed are

(1) (-f){-g)=fg=gf=(-g){-n

<-g)(rk) = agh={flg)h = (-ag){-A) = {a{-g)}[-h).

(-f)b{-h)=(-f){-bk) -fbh = {fb)h={-fb){-h) = {{-f)b}{-h).

(-/)(-*)'-(-/)<-**) =fgc= Ue)c- K-/)Hr)k-
(-/)(-tf)M) = {-f)gh^-fgh=-{fg)h = (Jg){-h)

(3) {—n+v){—w) = (v—u)(—w) = v{—w)—tt{—w) = —«(—w)+v(—w).

(4)

(-/+£)(-/&) =-f{-h)+b{-/i) =_(-/A)+*(-A) =fh+b{-h)
= {-f){-h)+b{-h).

l-/+(-i"))M) = (-/-*•)(-*)
= {-(*+/))(-*) = Cf+/y<

=gk+fh =fh+gh = (_/)M)+(-i-)(-//).

(5) Either as in (3) or thence by (1) above and (1) of art. 347

(—Ml) (—11+V)
= —(—«/)«+(—W)V.
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(6) Either as in (4) or therefrom by (1) and (1) art. 347

(-A) (-/+*) = (-*) {-f)+(-h)b. (-A){a+(-g)} = (-A)a+(-k) {-g).

M){-/+Hr)} = M)(-/)+M)Hr).

(7)

(8)

(—u—v)(—w) = {—(v+u)}(—w) = (v+u)zv = (u±v)w
= —(—uw)—(—vw) =—ii(—w)—v(—w).

(-f-i)(-A) = -f{
-h)-b{-h) = -(-fh)-b(-h)

=fh-b{-h)={-f)(-h)-b(-h).

{«-(-«)}(-*) = {a+g){-h)=a{-h)+g{-h)=a{-h)+{-gh)
= a{-h)-gh = a{-h)-{-g){-k).

\-f-(-g)){-*) = (-/+*•)(-*) = (-/)M)+i-M)
= (-/)M)+(-**) = (-f){-h)-gh = (-f)(-h)-(-g)'-h).

(9) Either as in (7) or thence by (1) and (1) art. 347

(10) Either in the same way as in (8) or from (8) by (1) and (1)

art. 347

{-k)(-f-b) - (-h){-f)-{-k)b. {-A){a-(-g)} = (-h)a-{-h)(-g).

h*)[-M-g)] = (-/*)(-f)-(-m-g).

350. With the widened meaning of multiplication the laws of

operational equivalence (ix) (x) (xj) (xij) are (arts. 345, 347, 349)

true when a b c are any plus or minus quantities as well as when
a b c are any numerical quantities. The general laws therefore of

which these laws are the simplest special cases must follow from

these for plus or minus quantities in the same way as in arts. 39, 41,

52,54,75,77, if only it be true here as in multiplications with whole

numbers there that the products are equal made by multiplying by
equal plus or minus quantities equal plus or minus quantities.

Now two plus or minus quantities are equal precisely when the

products are equal made by multiplying either them by or by them

any equal plus or minus quantities that are not o. For in multi-

plying any two equal plus or minus quantities either into or by
other plus or minus quantities it is precisely when these others

have the same absolute value that the products have the same
absolute value and precisely when these others are either both plus

quantities or both minus quantities that the products are either

both plus or both minus.

Hence the laws of commutation colligation and distribution are

fulfilled by all multiplications with plus or minus quantities.
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351. In every plus or minus quantity there are two elements

quite independent of one another the QUANTITATIVE element

marked by the absolute value and the DESIGNATIVE element

marked by the algebraic sign + or — . And the operation of mul-

tiplication has two parts the quantitative part and the designative

part which have to do severally with the quantitative and with the

designative element of the multiplicand or of the multiplier ac-

cording as the one or the other is held to be the object operated

on. These two parts of algebraic multiplication may be done

in either of the two orders possible as shown in the following

special cases of the laws (2) (5) of art. 345 (4) (7) of art. 347 (3)

(5) (7) (9) of art. 349-

[+(-u)v = +—UV)

/ x / n {+u(—v) = H—uv\
(+»)(-*)

={_ (;„)
; = _+4=--'

•

Here what was before written +(-c) to mark it the special case of

±a+(±d-c) when a — o and b — o is written H—c as the bracket

is now needless and the same is done with +(+c) —(+c) —(—c).
If a b be made to stand for any plus or minus quantities it

holds universally that

(+0) (+ff)
= +ab (-a) {+b) = -ab (+*) (-b)

= -ab (-a) (-b) = +ab.

For by the laws of distribution of multiplication of and by of

addition and of subtraction if a b c d stand for any plus or minus

quantities

(c+a){d±b) = c(d¥b)+a{d±b) = cd±cb+(ad±ab) = cd±cb+ad±ab

(c-a)(d±b) = c{d±b)-a(d±b) = cd±cb-(ad±ab) = cd±cb+ab-ad

even when c is o and d is o. ,

The product of a multiplication expresses algebraically in refer-

ence to the plus unit magnitude what the multiplier expresses

algebraically in reference to that as plus unit magnitude which the

multiplicand expresses algebraically in reference to the plus unit

magnitude. Also what the product expresses has to what the mul-
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tiplicand expresses the same relation in respect of both quantity
and designation as what the multiplier expresses in reference to

any plus unit magnitude has to that plus unit magnitude. Thus if

what is expressed algebraically by a in one scale of magnitude be

expressed algebraically by +i in another what is expressed alge-

braically by b in this other scale is expressed algebraically by ba

in the first.

352. The rest of the fundamental arithmetical laws of opera-
tional equivalence deal with divisions and are

(xiij)

(xiv)

(xv)

(xvj)

(xvij)

(xviij)

(xix)

(xx)

These yield of themselves no ground whereon to rear by the sym-

bolization extension principle a meaning for t when either or each

of the letters a b stands for a minus quantity. But since (art. 350)
all plus or minus quantities are equal which if multiplied severally

into a certain plus or minus quantity else than o give for product
a certain plus or minus quantity else than o a meaning is now

bestowed on -= thoroughly at one (arts. 114,299) with all former

meanings and indeed led straight up to therefrom by the

b be
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Def. The symbol j stands for the plus or minus quantity which

if multiplied into the plus or minus quantity b gives a

product equal to the plus or minus quantity a. And the

plus or minus quantity symbolized by j is called the

Quotient of the Division Of a By b.

Hence the operation of Division has now meaning and use of

the same width as multiplication and if u v be any numerical

quantities

+u _ u —u _ u -\-u _ u —u _ u

+V V +V V -v v —vv'
For - is the numerical quantity which multiplied arithmetically

into v gives a product equal to 11 and it is only a plus quantity
which multiplied algebraically into a plus quantity produces a plus

quantity or into a minus quantity a minus and only a minus quan-

tity which multiplied into a plus quantity produces a minus quan-

tity or into a minus quantity a plus. More generally if a b be any

plus or minus quantities

+a _ a —a_a +a _ a —a_a.
Tb~ + b +b~~b ^b~~b ~b~^~b'

For b = a by the definition of y and (art. 351) (±-)(+b)= ±,b

±
b){-b)= +b

i>.

In a division the dividend and the divisor refer to the same plus

unit magnitude and that which the dividend expresses algebraically

is expressed algebraically by the quotient in reference to that as plus

unit magnitude which the divisor expresses algebraically. Also what

the quotient expresses in reference to any plus unit magnitude has to

that plus unit magnitude the same relation in respect both of quan-

tity and of designation as what the dividend expresses has to what

the divisor expresses each in reference to a common plus unit mag-
nitude. Thus if what is expressed algebraically by a in one scale

of magnitude be expressed algebraically by -f 1 in another what is

expressed algebraically by b in the first scale is expressed alge-

braically by - in the other.

353. From the definition of algebraic division (art. 3 5 2) and be-

cause (art. 350) two plus or minus quantities are equal precisely
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when the products are equal made by multiplying either them

severally by or by them severally equal plus or minus quantities
that are not o it follows that two plus or minus quantities are equal

precisely when the quotients are equal got from dividing either

them severally by or by them severally any equal plus or minus

quantities that are not o. For if a d be any plus or minus quanti-

ties and b b' any plus or minus quantities but o that are equal to

one another a — d precisely when -,b = ,,b' and therefore precisely

when t = t7 also a—d precisely when bd — b'a, that is l-a)d

— {—d)a, therefore precisely when -ad = —da and therefore, V

ad = da, precisely when - = -, .r J a a

Hence if throughout arts. 1 1 6, 1 1 8, 1 20, 1 22, 1 24, 1 27, 1 30, the let-

ters be taken to stand for any plus or minus quantities instead of

for any numbers the laws there proved for numbers become proved
for plus or minus quantities generally and hence all the laws into

which divisions enter whether of relativity of commutation of colli-

gation or of distribution hold for all plus or minus quantities.

354. The Laws of Operational Equivalence that rule all Addi-

tions Subtractions Multiplications and Divisions are now shown to

be the same for plus or minus quantities as for numerical quanti-

ties. It is besides shown that two plus or minus quantities are equal

precisely when equal sums are got in adding either to them or them

to any equal plus or minus quantities precisely when equal remain-

ders are got in subtracting either from them or them from any

equal plus or minus quantities precisely when equal products are

made in multiplying either them by or by them any equal plus or

minus quantities but o and precisely when equal quotients arise in

dividing either them by or by them any equal plus or minus quan-
tities but o. Now it is just these very laws and tests of equality
that throughout their arithmetical stretch lead to all results of

Arithmetic beyond those got immediately from the several opera-
tions. Hence all general processes methods and theorems dealing
with numerical quantities are only special cases of like processes
methods and theorems dealing universally with plus or minus

quantities that have severally the very same proofs. Indeed the

broad algebraic proof is often shorter than the narrow arithmetical

inasmuch as the sundry cases which may befall in the latter are

embraced at one sweep in the former.



FRACTIONAL INDEXED POWERS

355. The fundamental power laws or laws of indices are

(a
n

)

m = amn

269

era = a
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Def. If a be any algebraic quantity and m n any two whole

numbers any algebraic quantity of which the /zth power

is equal to a is symbolized by a n and called indiffer-

ently An /zth Root of a and the -th Power of a

and the ;/zth power of what a n
symbolizes is symbolized

m m
by a n and called the —th Power of a.J n

rn 1

If m be a multiple rn of n a n = {a
n

)

rn
by definition and ,\

1 *

—
{(anYY if aH ^e a Pms or mmus quantity or whatever else fulfils

the second index law and then therefore by definition = ar
.

356. If the result of a certain operation performed on anything
a be symbolized by fa then the result of the same operation per-

formed on fa is symbolized by ffa the result of the same operation

performed on ffa is symbolized by fffa and so on. If further the

symbol /have no meaning by itself apart from a symbol of some-

thing operated on, or in other words be a symbol of pure oper-

ation, the result ffa may be symbolized by f 2a the result fffa by

f 3a and generally the final result of n successive operations f per-

formed severally on a and the successive results got may be handily

symbolized by fn
a. The operation thus compounded of the n

simple/ operations and symbolized by fH
may be called the ;/TH

POWER of the operation symbolized by /. Then fnfma means the

very same as fm+na and f\..f
pffma the very same as /"*»**-%|

for there is here nothing answering to the law of the colligation of

multiplications. Hence too {f
n
)

ma means the very same asf
mn

a.

Thus if a be a plus or minus quantity since + and — are sym-
bols purely operational the result symbolized by -H \-++a with

+ written n times may be symbolized by (+)
na and the result sym-

bolized by a with — written n times may be symbolized

by (-Y'a. Hence (+)
na=+a (—)

na = -\-a or -a according as n is

even or odd

(+r(-)'-(+r(-)"(+r(-r« = w«.B"B-«- (-r»
+"+

<*.

1 m
If m n be whole numbers else than 1 f na and/"<z may be given

meanings such that

i • •
'

* 1 t - tm

(f*)»a =f na =fa (f")
ma =f

m
*a =f"a.

And so/" symbolizes any operation whose ^th power yields the
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same result as the operation /and /" the wth power of the opera-
1

tion symbolized by/".

357. If a b be numerical quantities m n r s whole numbers of

which neither n nor s is 1 and heed be taken only of arithmetical

roots

cr m (ya)
m m {{Ma)')

m
(if / be any whole number but 1)

mt

£p

a s a H =
('fya)

rs '

(ffya)"
1*

(s ri being any whole numbers and if so

taken that ss' = nn')
tn v

r_
m

(a
sY =

{H{Z/a)
r

}

m =
[

nn
'J (

S

1Ja)
rr

'}"

t*
(ri

r' being any whole numbers

and if taken so that nri = rr')
tnn' *nr

=
(

s

%a)
mn' = a s' =ans

-{(\
/'M'""~'-{\/«

aP"-""
i

tn f tn r\ tn r tn^

c m r\ 1 -
/ 1 1 \ - 11^ 1

*
not>

s)
=
-™-r^aM

=
(-r^-^)

a"=-T^-™a =-r~
a na s n ^a s n a n ' a s n nH "*

r tn r

(. c m r\a
7+ "a* -2i+2 -^+™ r. 1

if-not<- — = a s n = a s na s —
V 11 s - z

if

1 =—- a*

r m r\ 1

if — not<
u s,

a'

a s

= (a~*
+

»a*)-T

111
,

r\ a n
1 f

- \\ 1
not>

s)^TF° Ts^-(f"sJ
—

:
n n s n n s, " * X /»»'/. » 'a n a a n a

= a'
1 1

tn tn r

,n sT « + 7
= a'

a n a
tn r tn

~n
+T~n

= a'
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m \ —

if — not> -
71 s

/*-,* «\ r m r ,,\ — r m , s /-t\r

(if;»o,<3-(i-^w,(i)-..-'V)yi)
-«-;W-«-f':

mm m

a*b- = (Vanw =
tc/«jv*r

- w«*r = (*)

a" (VaT (Va\
m

I
-M"_W

j? cy»r ty« w w W "

So then the fundamental and therefore all the other index laws hold

for the arithmetical values of any fractional indexed powers of

numerical quantities.

358. An arithmetical meaning can now be given to the symbol
ax when a is any numerical quantity and x is any incommensurable

numerical quantity. For n being any whole number there is a

whole number m such that

x> — but <
n n

and leaving unheeded all but arithmetical roots

m m+i tn x m
if a > 1 -a n +a n = -a n+a nan = (-i+a

n
)a

n

if a<\ -a n +a n =-a n
+\-Ya

n =J-i + f-j"U".

But (arts. 173,300) however small a given numerical quantity k may
be n may be taken so great that

(!+*)">

a if a> 1

1 . r- if a< I

a

—i+a n
if a> 1

and then

-1+ if a< 1

<«.

Besides if of any magnitude expressed numerically by x in refer-

ence to a unit magnitude - —— be any pair of intercepting frac-

tions relative to that unit magnitude (art. 241) n may be taken so

7fl fft~\~ I Lb

great that each of the fractions — is greater than - and less

than -— and then
v
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if a> 1 a n <a»~ andif#<i a H <a*.

Hence a n
may be made to differ from cT* by less than any given

numerical quantity \ if ;/ be taken first so great that both — and

— is greater than - and less than -— and further so great that

—i+a H
<-^j or —

i-H-J < — according as a is greater or less

if* a v

nt m+i

than 1. What therefore a n a * become nearer to than by any given

numerical quantity when n is taken great enough is what a* must

be taken to mean if no heed be given to any other roots than

arithmetical ones.

Since the arithmetical value of 1* and of 1
n

is 1 whatever whole

number n may be the arithmetical value of \
x

is I. As to arith-
r

metical values too while a" is ever greater or less than 1 according
as a is greater or less than 1 yet (arts. 173,300) if k be any given

numerical quantity less than 1 n may be taken so great that if

1

a>\ (\+K)
H >a and if a< 1 (1—tc)

n <a and therefore that a n in

either case differs from 1 by less than any given numerical quan-

tity however small so that here again a° taken arithmetically

must stand for 1.

The arithmetical values of powers with incommensurable indices

follow the same laws as the arithmetical values of the powers with

commensurable indices that approximate to them and through

which alone they are known.

359. If when/ is a purely operational symbol and^ris an incom-

mensurable numerical quantity greater than — and less than

it can be shown that corresponding values offna f n a come end-

lessly near to one another as n becomes endlessly great the common
value thus endlessly neared must be held to be the corresponding
value of what fa symbolizes.

360. The symbol a° has already been often used as a symbol for

1 when a is a numerical quantity and it is by taking a° to symbol-
ize 1 when a is a plus or minus quantity that the third of the five

fundamental index laws as written in art. 355 is made true when

18
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m = n. The same meaning is got for a° by the symbolization
extension principle from the first index law of art. 355 since to

make this law true even when m is o

an
O> = a0+M = an

and +1 is the only plus or minus quantity which multiplied by any

plus or minus quantity an
gives this same plus or minus quantity

a11

for product.

The unmeaning symbols a"1 and a~a are now as far as may be

to be likewise given meanings when a is any plus or minus quan-

tity and a is any numerical quantity so that according to the first

and second fundamental index laws

aa 1 = a~I+l = a°=i (or
1

)"
= aa{~l] = cr*.

And thus arises the

Def. If a be any plus or minus quantity a° stands for +1 a'
1

for -

and or - if a be a commensurable numerical quantity for

I-
J

. If a be any numerical quantity and a any incom-

mensurable numerical quantity the arithmetical meaning

of a~a
is the arithmetical meaning of

(-) . What cc*

symbolizes is called the —aTH POWER OF a.

Hence if t be ten the numbers denoted decimally by cooi
0*01 o*i 1 10 100 1000 are now severally symbolized by

r* r2 r* t-° 1 1* t*

361. If/ stand for a pure operation and a for anything operated
on f° may be given a meaning such that

So that f°a symbolizes the same as a and f° no performance of

the operation f. Then/
-1 and f-°- when a is any numerical quan-

tity may be given meanings such that

ff-^a =f~^a =f°a = a (/-)«* =/«<-% =/-*
So that /_I

symbolizes any operation which is such that if the

result of its performance on anything a were operated on by /
the result would always be a and f~

x
symbolizes the same as

Thus to say that x is anything such that fx-a is just to say
that x =f~

x

a. But any operation which if performed on the result

of a certain operation always gives back as result the object first



MINUS INDEXED POWER 275

operated on is called an Inverse operation and hencef~
l

symbol-
izes any inverse of the operation symbolized by/.

$62. If when a j3 are whole numbers a b be plus or minus quan-
tities but if when a j3 are other numerical quantities than whole

numbers a b be numerical quantities and the arithmetical values

of powers of numerical quantities be alone heeded

r(ifanot<£)rt
a-0

T\-a+0 I—a*™W
j(ifanot>/3)(i)

^ =*(!*
a not<« =

©"*-
•** =*4 -

(and at once if a not> /3) ]

AT

rtT a+
'
3 = rt-^"

a = a"a-^ = 0-a+^

•40

(^)"
a =

©J

/3na
L\l

a

=(^)a =^ = ^(-a)(^)

[=#*-(-£) and also

w rt) -fc) -fc) -fc)

(

-
j

0"* = 000~a = or*'''® and also =
(-) (~)

=
(~)

i\w-a)+(-p)

-0* == ——
,0*
= 000a = a" o-t*> and also =—5 7—— = -——5 = ~=£=r

/i\0 0-0 (0*) dT'vr* ^a

e
—.«-* = (a?)

l

a~* = 0^-0 and also = —R ,. l
= —-=. = -x-r-r

d£ 00 (0-
a
)

_I a00 fl/H"*)

^ =
(<r*)-vr-

=r+* and also =^ =

1̂8—2
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**-<rH**T~
^* and also

a_>a)
_, ^B

S-Sj^-*^-"*" and also=W=^
S^-^-dr and *-S^-?^

^r=^s =^,+a and ais° = 6rsr=©
' °

^(1)'=^ -***-> and also =
g)"gy=(i)^

^*-irr-.'**
rt and also =©"Gr=@'

-|B-(-a)

n©r -
Tr*~

(i
\b

The fundamental index laws then and therefore too all the index

laws hold for those powers of plus or minus quantities whereof the

indices are plus or minus whole numbers and for the arithmetical

values of those powers of numerical quantities whereof the indices

are plus or minus quantities.

Moreover if a a fi be the same as above

363. If a be any numerical quantity but o and 1 and n be any
whole number but o magnitudes A L A^_ A L . . . that are severally

11 n n

expressed in reference to a unit magnitude A Q by the arithmetical

i. — i.

values of a n a n a n
. . . (arts. 358, 173,300) either if a> 1 go on get-

ting ever greater and greater and at length become greater than

any given magnitude however great of the same kind as A Q or if

a < 1 go on getting ever less and less and at length become less

than any given magnitude however small of the same kind as A Q.
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Moreover if be any pair of simple fractions intercepting

one magnitude relative to another (art. 358) ;/ maybe taken so

great that the magnitudes A^A^ severally expressed in reference

tn m+i

to A Q as unit by the arithmetical values of a H a n differ from one

another by less than any given magnitude of the same kind as A .

Hence there is always some numerical quantity a commensurable

or incommensurable which makes the arithmetical value of aa ex-

press in reference to A as unit either any magnitude A a greater
than A if a > 1 or any magnitude A a less than A Q \i a< 1. In like

manner there is always some commensurable or incommensurable

numerical quantity a which makes the arithmetical value of or9-

express in reference to A as unit either any magnitude A_^ less

than A \ia>\ or any magnitude A_a greater than A if a<\.
And so those powers of any numerical quantity else than o or 1

whose indices are plus or minus quantities have arithmetical values

that cover the whole field of numerical quantity.

If one ratio be the multiplicate compound ratio of the ;/th

degree of another this other is in turn called the SUBMULTIPLICATE

Compound Ratio of the «th Degree of the first. The ratio

represented by the arithmetical value of #* then is the multiplicate

compound ratio of the wth degree of the submultiplicate compound
ratio of the /zth degree of the ratio represented numerically by a

and is called shortly the ;/zplicate compound ratio of the subwpli-

cate compound ratio of the same or still more shortly the —plicate

compound ratio. By a stretch of this way of naming ratios the

ratios represented by the arithmetical values of a"- and cr* are

severally called the QUANTUPLICATE COMPOUND RATIO OF THE
aTH Degree or shortly the aplicate compound ratio and theQUAN-
tuplicate Compound Inverse Ratio of the aTH Degree or

shortly the —aplicate compound ratio of the ratio represented

numerically by a and generally the ratio represented by the arith-

metical value of a+a is called the Complicate Compound Ratio
OF THE +aTH Degree or shortly the + aplicate compound ratio

of the ratio represented numerically by a. With like stretch of

meaning the indices of plus or minus indexed powers of a are

called the LOGARITHMS,—that is Xoycov apiOpoi numbers of ratios

or ratio numbers—, of the arithmetical values of those several

powers in the system whose Base is a. Whence the
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Def. The LOGARITHM of a numerical quantity to any given nu-

merical quantity but o and I as BASE is the plus or

minus index of that power of the latter numerical quan-

tity whose arithmetical value is equal to the former.

And the logarithm to the base a of b is symbolized

by loga d.

So far then as a power's arithmetical value only is heeded

\oga b is just that which makes al°Sad equal to b.

364. If a be any unchanging numerical quantity but o and 1 and

x be a changing plus or minus quantity made to pass in unbroken

ascending order of algebraic greatness over the whole range of

minus and plus quantity from algebraically less than any given
minus quantity however algebraically small through oup to greater
than any given plus quantity however great the arithmetical value

of a? is at the same time made to pass in unbroken order over the

whole range of numerical quantity either if a>\ from o through 1

up to greater than any given numerical quantity however great or

if a<i from greater than any given numerical quantity however

great through 1 down to o. Hence as to arithmetical values of such

powers of numerical quantities as have plus or minus indices

cf — ay precisely when x—y
ax = a° or 1 _ „ _ x — o and .*. log. 1 is o

ax = a . . . x—i and .*. logrt
a is 1.

Def What is greater than any given numerical quantity how-

ever great is called an ENDLESSLY GREAT NUMERICAL

QUANTITY or INFINITY and is symbolized by 00.

Hence if u>\ «°° = oo a~™ = and .*. loga 00 is 00 log^o is -co

if a < 1 a
00 = cC™ = 00 and .*. loga o is 00 loga 00 is —00 .

365. The following are the laws of operational equivalence that

have to do with logarithms. In the proofs the arithmetical values

of powers are alone heeded.

lip be any numerical quantity and a b c . . . fg be any other

numerical quantities than o or 1 p = aloga^ and likewise = blogb^

m (a
l°S* 7°s^ = ^lo§^) los« K Therefore (art. 364)

(0 log,/ = (log,/) loga b.

Hence \ogap = Qo&p) logag = {\oggp) [\ogfg) \ogaf=
= Qogffp) (log^) . . . (log, d) (log, c) log. b.
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If x be any plus or minus quantity

f = ^ap* and likewise = (a
lo^)x = axl°^. Therefore

(2) \ogap
x = x\ogap.

If p q r . . . u v be any numerical quantities

gp = a\ogaqp and likewise = aloZa ? a]oe«? = aloZa*+loZ"?. Therefore

(3) \oga qp = \ogap+\oga q.

Hence

log, vu. ,.rqp = log,*//. ..rqp+\ogav = \oga I. ..rqp+\oga u+logav= - - -

= log«/+loga ?+log„ r+ • • • +logfl «+log. tt

Lastly
£ = alo&,

j and likewise = ^ = ar 1**. *+lo
6-/. Therefore

alog*?

(4) loga
|
= -log, q+loga p.

366. Cor. The first of the four fundamental logarithmic laws of

art. 365 becomes when/ is a

1 = (log,*) log, £ or log. £ = (log, a)"'.

367. Leaving unheeded all but the arithmetical values of powers
if any numerical quantity a greater than 1 be taken the base of a

system of logarithms and n be any whole number but o the terms

of the series

J. • _I_ +2. i i JL
- a n a n a n a~ H a n a n a n -

backward and forward from a~ n or 1 to any length may be found

to any sought degree of nearness and by taking n great enough two

consecutive terms anywhere taken may be made to differ from one

another by less than any given numerical quantity but o. More-

over if h be a numerical quantity less than I any index lying

between the two consecutive indices either or —
n n n 11

either =—+/*- or = \-h
- and

n n n n

a" » = a»+{-i+(a
n
)

h
}a* a " n = a «+{-i+(^)

A
J* *.

Now if c be any numerical quantity and k v be any whole num-
bers each greater than 1

L 1. Yzl L
-i+c= (i+c+c ¥ +-..+c ir

)(-i+c*)
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K-I

\ic>\ each of the numerical quantities cv c v
...c

v >i and <c" and

— K KC
.'. —i+c v> — (-i+c) and < (-i+f).

Hence too and V — (-i+c) =— (-i+c) = (-- )(-i+^) = --(-i+c)
vc

K '
cv K

\vc)
K ' vc K

-c-+i) and ^(-I+,)
=
g/)(-,-H-)

=
^(-i+,)&

* 4
-H-^">-(-c"

I

+i) and <-£"(-i+<:).
z;

x '
z/

Wherefore and because £
A when h is incommensurable is only

known as the common value to which cv c v become endlessly near

when v becomes endlessly great and k is always taken so that

h > - and <
v v

i * LI.
-i+(a

M
)

k> /i{-(a
n
)-

l

+i] and < k(a
M
)

h
(-i+a

n
)

.'.>k(-i+a
n
)-fta

H
(-i+a"y and <*(-I-H**)+>&(-l-Hi ")(-l+tf*)

-- A- —
and much more therefore v a n < i and # w <#"

-i+(a
Tl

)

h > k(--i+a")-/i(-i+a"y and < h(-i+a
Tl

)+h(-i+a
n
)

2
.

i

But as shown in art. 358 n may be taken so great that —i+a* is

less than any given numerical quantity but o and much more
1

(-1+a")
2

. If then n be great

1 1

-i+(0*)* = ^(-i+0") nearly

and hence the logarithm —+/i- of a numerical quantity k which

>a n but <a *
may be found very nearly by making h such that

6 = a*^/i(-i+a»)}a" = a»+/i(-i+a«)a», that is y& =
g
J „, .
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Likewise the logarithm of a numerical quantity k greater than

a but less than a n

m —a n+k 1 .=
~n + rrsj near1^

In the same way if \ V be the logarithms of the less and the

greater severally of two numerical quantities ax aK
'

>/i(-i+a-
k+x

-')-/t(-i+a-
K+y

)

2 and < //(-i+a-
x+v

)+/*(-i+*r-^')
a

and hence if a~x^' be very nearly equal to 1 the intermediate

numerical quantity aK+h(~k^ having the intermediate logarithm

X+//(-X+V)

= a:
A
H-{—i+^

A ~
x+x,))^ = ^H^(— i+ar***)^ very nearly

and this = aK+h(—ax+ak
').

368. The expression h{— i+a~
k+K

')a
K

approximately equal (art.

367) to the small change —ax+ax+M~k+k
'

of a numerical quantity
ak

arising from a small change h{—\+\') of the numerical quantity's

logarithm X would be made very simple if the base a of the system
of logarithms could be so chosen as to have the small change
—i+drA+x

'

of 1 arising from a small change —\+V of i's logarithm
o equal to —\+V the small change of logarithm. But if z be a plus

or minus quantity of absolute value less than 1 and a power's

arithmetical value be alone heeded to make a such that

-i-\-a
z = z or a=(\+zy

would be to make a change with z. All that can be done then

toward the end sought is to make that numerical quantity the base
1

of a system of logarithms to which (i+z)
z becomes endlessly near

as z becomes endlessly near to o or to which in other words if e be

a plus or minus quantity of absolute value greater than I (1+-)

becomes endlessly near as e's absolute value becomes endlessly

great.

Let v be any whole number greater than 1 and k any whole

I K
then putting E E' for i+- when e is -

e v

k_
K+i i. 5. £ti *-±I

-E»+E " = (-i+^O-^'-C-^' v +E v
)

I K K~\-\
number but o then putting E E' for i+- when e is - severally
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T £ P'vxp 1

v pv x-R' v p VX i_EV

.(- l+E)E-- *Jh
J* ,

+A
_3

A
,

+ +A
^,(-^'+£)v-i

i +£"+£'+•••+-£ v E' v +E' " E v+E' v E v +:.+E~"

_v J
(k+i)E* E*+E*~^E*+-- • +£* I

(k+i)k
J i+^f+ . . . +£*r E&+E,t

?£*+ • • • +8^1

But E v > E' v E v
if z be any whole number less than k and E' v > i

if f be any whole number greater than o

.-. (k+i)E^> E*+E'*?E
r+>-+E*

I J/—I V—I JA—2 I J/— I

i+.E
7
+.••+£ * <£iir+Ef 9 E'+'+ET

(k+i)E* E'"+E'^ET+-.'+E*
and .*.

—
L t

!rl
>

v=l Yz? JL y~i
'

i+ZT
v
H +£" E' v +E'vE v +->+E *

«!* « / iY
Therefore E' v > E v

. And ( i+-
J

if e be an incommensurable nu-

JC

merical quantity is only known as greater than E v and less than

E'~* when e> - and < however great v is. Hence if e be a nu-
*> *»

merical quantity (i+-) gets ever greater and greater as e becomes

greater and greater.

Again if c be a numerical quantity greater than I and v a whole

number greater than I

-i+^=—y-± ^(-i+0 and ,:>±(-i+c) or
^(~+i)

K-H-
i+c v+c-\ Yc

;. c

Making then c where ft is any whole number but o

5+i

Andasfi+-j =2*985984 it follows that however great v is

(
I+6/ <2 '985984- Hence f

I+-J
if * be a numerical quantity

although it always increases with e yet never becomes greater than
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some fixed numerical quantity less than 3. This fixed numerical

quantity of course > (i-\—
)
or 2.

Since then when e is made to increase endlessly through the

whole range of numerical quantity (1+-) constantly increases yet

so as never to be greater than a fixed numerical quantity greater
than 2 and less than 3, however great a given numerical quantity e

may be a whole number ;/ has only to be taken greater than c for

making (1+-) greater than (i4— )
and therefore the numerical

+

quantity which f H—
J
when e is a numerical quantity endlessly

nears as e endlessly increases is that which (1+-) when n is a

whole number endlessly nears as 11 endlessly increases. Now

^

{n-(n-i)}...(n-2)(n-i)nn\
H

and .

\n \n)

,
.
+-:+HX-3+ ,

(-¥H-3K)

[(-^H-SX-a
,

(-3-(-3(-;)
,

li lg+I
+ i

I being any whole number greater than o and less than ;/. When
;/ becomes endlessly great and i is taken a fixed whole number each

12 i
of the numbers becomes endlessly near to o therefore each

ii u n J

12 i
of the numbers 1— 1 1— becomes endlessly near to 1 there-

fore as in art. 295 the product (1—
-)•••(

1—
)(i
—

)
becomes end-

lessly near to V which is 1 therefore as in art. 297 the quotient
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less than -.+ -—.. In like manner by taking z+i instead of i the

numerical quantity endlessly neared by (1+-) as n becomes end-

lessly great is greater than
1+^
—\-—I h—. by less than

111 / i\*—h-— —.— . Therefore as n becomes endlessly great 1+-)

endlessly nears what is greater than l+-—hnH Kp by less

than . . ..

1
[_£

But in the same way if i i' be any other whole numbers than o

I+±+
'

+ ... + '+...+
'

= I

+-|r+---+^Zi
+

{

I+^+"-+ («+i)...(i+i"-i)(f+i'){]7

and .-. <i+--i-+ i-+... +I+Ii-.

however great 1 may be. And i may be taken so great as to make

-
.-. less than any given numerical quantity but o however small.

There is therefore a fixed numerical quantity greater than i+y-

or 2 and less than i+-—I

—
. or 3 which by taking i' ever greater

and greater H H—I Vr^r^f increases ever more and more
Li [2 £H .

- •

nearly up to and from which by taking i' great enough it may be

made to differ by less than any given numerical quantity but a
Therefore that fixed numerical quantity is what

1 1 1

symbolizes and can only be known as what

> H-tt+tt + •••+£ and <i+r-+— + --- + -. + *-i

li If If li 11 li 'li

however great a whole number i may be taken.
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Hence
( i+-j when e becomes an endlessly great numerical

quantity becomes endlessly near to
i+-j
—

h-pH
—

.

Still further since if e be a minus quantity such that —e > i

H-(-iT
' • v'

'-'-'+r
i I v -e-\

*M»^r
and H becomes endlessly near to I when —e becomes an

endlessly great numerical quantity (i+-) when e becomes end-

lessly near to — <x> becomes endlessly near to what (n J

becomes endlessly near to when —e—i becomes an endlessly great

numerical quantity, that is to H \-—-\ .

Li \2

Def. The numerical quantity H h--j- • • • is symbolized by the

Greek letter e and the system of logarithms having the

base e is called Napier's or NAPIERIAN from JOHN
Napier of Merchiston the inventor of Logarithms

having first chosen that system.

As to the arithmetical values of powers then e is what
(
H—

J

endlessly nears as e endlessly nears either +co or —oo and what
i_

(i+z)
z
endlessly nears as z endlessly nears, whether by decrease

down to or by algebraic increase up to, o. Hence if a be any nu-

merical quantity but I

V i(-I-HO =
{dog,

a)
j-i-Jl

(-i-wO = (k*«)(j^ I)(-i-W)

\-i+a
z
J -\+az Se

(log, a) -r^

log€ {l+(-I+a*)}
W
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and — i+tf* endlessly nears o as z does -(— 1+#*) endlessly nears

loge tf as z endlessly nears o. And hence if z be very nearly o

-

(-i+tf*) very nearly = loge a or — \+a*=.z \ogt a very nearly. So
z

that e is precisely such a numerical quantity as makes -(— i+e*)z

become endlessly near to 1 as z endlessly nears o and — i+e* be

very nearly equal to z when z is very nearly equal to o.

The numerical quantity e is incommensurable. For if e were a

Di

simple fraction — where n is a whole number greater than 1 it

would follow that

m_ 11 1 / 1 1 \

-||?+(|7l!)^

1 h l
JLi~

n+i j»£ (n+i)(n+2) |«l?

' '

'"

—
{[«+2.3...(«—l)«+34...(n—l)*H \-n-\-i}+m\n-i

1 1

~«^
+
(»+i)(*+2)

''

But —
{[«+2.3...(;z— i);H hi}+m]n—i is a whole number which

because equal to else than o is not o and

1 1 11 ...
H7 w H < 1-? «+••* which

n+i (n+i)(n+2) n+i O+i)
3

1
f

1 / 1 A' 1_ _L_ l -I
~~;H-ij n+i \n+i) "]~n+i _ 1

~
n'

n+i

And therefore a whole number not o would be equal to a numeri-

cal quantity greater than o and less than I.
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A decimally denoted number approximating to e may be found

as below to any sought degree of nearness.

I =
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1+ —+—+••• +— > 27 1 828 1 84-0*000000019 or 2718281821

and < 27 1 828 1 84-000000001 or 2718281 83.

Hence and v x— > 0*000000002 and < 0*000000003
II

|I£

e>27i828i82i and <2*7i828i833 and therefore is 27182818

right as far as the 7th decimal place.

369. If 10 the base of the system of notation be made the base

of a system of logarithms

log10£(io)* = logIO (io)*+logIO£ = x+\og10k

k being any numerical quantity and x any plus or minus quantity.

In particular then if k be taken any decimally denoted number

greater than 1 and less than 10 so therefore that logIO£>o and

< 1 and x be taken any plus or minus whole number so therefore

that by the principle of digit knitting k(\6)
x

is just equal to any
number denoted decimally by the same row of digits as k in all

but the decimal dot's place the logarithms of numbers denoted

decimally by digit rows the same in all but the decimal dot's places

are all equal to the sums got by adding to plus or minus whole

numbers the same numerical quantity less than I. Thus if

logI0 7*386425 be 0*8684343 right to the 7th decimal place to the

same degree of nearness 10^73864*25 is 4+0*8684343

logI0o*oooo73 86425 is -5+0*8684343 and the like.

Def. When a logarithm is viewed as the sum got by adding to

a plus or minus whole number a numerical quantity less

than 1 the plus or minus whole number is called the

Characteristic and the numerical quantity less than

1 the Mantissa of the logarithm.

Of all numbers then denoted by the same row of digits heedless

of where the decimal dot is the logarithms have a common man-

tissa. This along with the characteristic of a decimally denoted

number's logarithm being at once known from the number of places

that the leftmost significant digit of the number's denoting row is

to left or right of the unit's digit marks out that system of loga-

rithms whose base is 10 as the fittest for common use in calculating

with decimally denoted numbers.

Def. The system having the base 10 and taken characteristic

and mantissa wise is called the COMMON system of

logarithms.

By an extension of the common decimal notation the final sum

19
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got by adding severally numbers that can be severally denoted by

digits in order to the right of a decimal dot to a minus decimally

denoted whole number and the successive sums got is denoted by

writing in a row what denotes the whole number with the sign
—

written over close before the decimal dot and the digits in their

places after. Hence by the law of the distribution of addition to a

minus quantity over additions of plus quantities (art. 331) a loga-

rithm with a minus characteristic is operationally equivalent to

what is denoted by the characteristic's decimally denoted absolute

value with the sign
— over it written close before a decimal dot and

that part of the decimally denoted mantissa which is to the right of

the decimal dot written in the same row close after. Thus the loga-

rithm above —5+0-8684343 = 5*8684343 in the same kind of way as

4+0-8684343 = 4-8684343.

In a table of logarithms of the common system the mantissae

right up to a certain decimal place but with the unit's digit o and

the decimal dot left out are given of the logarithms of all numbers

denoted by dotless digit rows of a certain number of digits each

and the logarithm of a number v+/i(—v+v') between one tabular

number v and the next greater one v is to be found as nearly as

may be from what is shown in art. 367 that

loglo {v+/i(-v+v')} =logI0 z/+>fc(-logI0 i^logI0 z/) nearly.

Since this approximate operational equivalence holds the more

nearly the nearer h{—v+v) is to o h can always be found to at least

the degree of nearness to which if v" be the next greater number in

the table to v the table shows that

-logIO v+log10 v" = 2(-logIO H-logIO v)

or what is the same -logIO i>+logIO v = —logIO i>'+logIO v".

An intermediate number v+/z(—v+v) whose logarithm is

log10 {v+/i(—v+v')} is in like manner to be found as nearly as may
be from what is the same as before to wit that

^-log10 ,+logIO {(,+/<-^)}
-logI0 z/+logI0 z/

The results of operations whereinto logarithms with minus

characteristics enter may always be got by the common nota-

tional processes if only the minus quantities that those logarithms
are be denoted decimally. Also if a minus logarithm —a result

whose absolute value a is less than a whole number n but greater
than the next less whole number n—i

—OL = —n+u—OL = —n+(n—oi) .
.
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and so the mantissa n—z may be found and compared with the

mantissae set down in a table.

In dealing with logarithms having minus characteristics special

notational processes may often however be handily used resting on

the laws of operational equivalence that have to do with plus and

minus quantities much as the common notational processes rest on

the laws of operational equivalence that have to do with numbers.

For instance

2-47+3-28+5-5i= -2+3-5+(o-47+o-28+o-5i)=-2+3-5+i40-26=3'26

3-59-4-67 = 3-59-0-674-4 = 3+4+o*59-0'67 = 6'92

5-27-2-54 = -5-2-i4-(i+o-27-o-54) = 873

7x272 =—7x24-7x072 = -14+5-04 = 9-04

^9-04
=
^-7x24(1449-04))

=
-^x7)x2+^x5-04

= 272.

370. The following are some of the uses to which logarithms and

the arithmetical values of fractional incommensurable and minus

indexed powers of numerical quantities may be put.

A sum of/ pounds laid out at compound interest at the rate of

r pounds a pound a year (art. 153) becomes in a whole number n of

years /(i+r)
w
pounds. Here each year's interest is due at the year's

end and is then joined to the principal sum after which the whole

bears interest for the next year in the same way at the same rate.

As to what happens between the beginning and the end of any

year nothing whatever is settled so that the interest due after the

beginning may be none at all until quite the end if only it then

suddenly start into what the rate of r pounds a pound gives. Since

however there is no reason either why money should bear in-

terest at one time rather than another or with the same rate of

interest why money should bear more interest throughout one

length of time than another equal length the only right way is

for money always to bear interest for interest as soon as borne to

begin to bear interest and for all equal sums of money at the same

interest rate to bear equal amounts of interest in all equal portions

of time. If then when r pounds a pound a year is the interest

rate the year be cut into any whole number v of equal parts and

the interest on 1 pound in -
year be q pounds (i+q)

v
=i+r, or

1+q=(\+r)
v
paying heed to arithmetical roots only, and in any

whole number k of -ths of a year/ pounds becomes

19—2
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p(i+q)
K or p(i+r)

v
pounds.

Hence (art. 358) if a be any numerical quantity commensurable or

incommensurable p pounds becomes in a years p(i+r)
a
pounds.

Still further

V {/(i+r)-
a
}(i+r)

a
=/(H-r)-

a
(H-r)

a
=/(i+r)

a-a =/

p{\+r)-°- pounds is the sum of money which becomes in a years

p pounds or in other words the present worth of / pounds due

a years hence. On the whole therefore if x be a plus or minus

quantity a sum of money which laid out at interest at the yearly

rate of r pounds a pound is now p pounds is x years hence changed

into/(i+?')* pounds.
When p r x are given either exactly or to a certain degree of

nearness as decimally denoted numbers p{\+r)
x
may be found by

help of a table of common logarithms as a decimally denoted

number to the degree of nearness that the particular table used

and the degree of nearness of the numbers allow from the loga-
rithmic operational equivalence

log10/(i+r)* = *logIO (i+r)+logIO/
or p(i+r)

x = log"
1

{^logIO (i+r)+logIO/J

and a being x y

s absolute value alogIO (i+r) may be found in like

manner from the equivalence

a logIO (i+r) = log£{log (i+r)+logxo a}.

If the rate of interest be such that the interest in each - th of a
v

year is at the rate of p pounds a pound a year simple interest

1 pound becomes in 1 year (art. 153)

(,
+i

Py.»,,={(,
+
»f=[{(,

+ i
P

which (art. 368) when v is taken endlessly great and therefore -p

an endlessly small numerical quantity approaches endlessly near to

e?. Wherefore if the rate of r pounds a pound a year at which

money bears interest be such as would yield simple interest at the

rate of p pounds a pound a year

i+r = €p or r=-i+ep p = loge (i+r).
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Since -i+(i+-p)>vp, which = fv-)p or p, however great a

whole number v is r> p.

The rate of interest in pounds per pound per annum at which

in x years/ pounds is changed into/' pounds

= - 1 +log^ (logIO/-logIO/)

-i+log-
2

{logIO (logIO/-logIO/)-logI0^} \i x be plus

-H-log-
2

(logIO (log10/-logIO/)-logIO (-^r)} if x be minus.

The algebraic expression in reference to a coming year as + 1 of

the time in which p pounds is turned into p'
r

pounds by money
bearing interest at the rate of r pounds a pound a year

log10 (i+r;

logro'l-log^Ci+^+log^^log^Z-log,^)} if/ not</

-log7o{-log
2

(i-fr)+logIO (logIO/-log10/)} if/ not>/.-I

If in x years the population of a place change from h heads to

U the mean rate of increase in heads a head a year,
— after the

same manner as money put out to interest changes in all but that

the mean rate of increase per head of population may be a minus

quantity not algebraically less than — 1 as well as a plus quan-

tity—,

= -i+logrji logIO jM
= -i+logro

1

j (logIO k'-\ogIO h).

A magnitude that has to a magnitude expressed numerically

by a in reference to a unit magnitude the same ratio as one mag-
nitude has to another expressed severally by numerical quantities

b c in reference to a common unit magnitude is in reference to the

first unit magnitude expressed numerically by -a which
c

= log"
1

{logIO tf+(-logIO <:+logIO b)}
=

log£(lo&io tf-log10 <:+logI0 b).

If in c grains of a certain compound there be s grains of a cer-

tain substance in 1 grain of the compound there are -s grains of
c

the substance and therefore in c' grains c'-s or its equivalent

logTo (log10 J-logIO*flog10 *').
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A railway train that passes over m miles in h hours is going at

the mean rate of J^m miles an hour and this

=
log7o

I

(logIO;;2+logIO/r
l

)
= log£ [logIO?;/+(-i) log10 //}

=
log:; (logIO w-logI0 h).

371. If a be any plus or minus quantity and n any whole
1

number but o (+)
na = +a so that (art. 356) +a is a value of (+)

na

and the operation symbolized by + is as may happen either the

operation, or one of the operations of which any one is, symbolized

by (+)". Likewise (—)

na = +a if 11 be even and —a if n be odd so

that the operation
— if n be even is one of the operations of which

1

any one is symbolized by (+)
" and if ;/ be odd is either the opera-

tion, or one of the operations of which any one is, symbolized
1

by (—)*. An operation affecting like these only the designation of

a plus or minus quantity must now be handled which if symbolized

byj is such thatj2a = —a and of which therefore (—)* is the symbol.
This new operation then is just any operation which performed on

a gives such a result that the same operation if performed on it

would give as result —a. Let x'Ox be a straight line stretching

away endlessly from a point O on each side and let a be any nu-

merical quantity but o. From the straight line Ox ended at O
but endless toward x cut off close to O a portion OA which in

reference to some ended straight line taken as unit is expressed

numerically by a and from Ox ended at O but endless toward x
cut off close to O an eqcal portion OA' which therefore is also

expressed numerically in re^rence to the unit straight line by a.

Through the point O draw in any plane passing through x'Ox a

straight line y'Oy stretching away endlessly on each side of O
toward y y cutting at right angles x'Ox and cut off close to O from

Oy OB and from Oy' OB' each equal to OA or OA' and therefore

each expressed numerically in reference to the unit line by a. If

the algebraic expression of the distance from O in the direction

Ox of A be +ol the algebraic expression of the distance from O in

the direction Ox of A' (art. 324) is -a. Now OA viewed as a

straight line lying in x'Ox may be shifted into where OB viewed as

lying in y'Oy is by turning OA through a right angle in the plane
of the straight lines x'x y'y the way round marked by the order

xyx'y'xy.... and if OA shifted into where OB is were further turned

through a right angle in the same plane the same way round OA
would be shifted into where OA '

viewed as lying in xOx is. The
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operation then of turning through a right angle in the plane of

x'x y'y the xyx'y'x... way round is an operation which performed
on the distance from to A along Ox gives as result the distance

from O to B along Oy and performed on the distance from O to B
along Oy gives as result the distance from O to A' along Ox.
Likewise the same operation performed on the distance from O to

A' along Ox gives the distance from to B along Oy as result

and performed on this result gives as new result the distance from

O to A along Ox. Hence (-)* may be taken to symbolize this

operation but since everything has reference to the initial or

primary direction Ox just as the distance from O to A' along Ox1

is called the distance from O in the direction Ox of A' expressed

algebraically by —a so must the distance from O of B along Oy be

called the distance from O in the direction Ox of B expressed alge-

braically by (—)*a and the distance from of B along Oy the dis-

tance from in the direction Ox of B expressed algebraically by

(—)*(—«). A straight line may be shifted from any of the positions

OA OB OA' OB' OA OB into the next following by turning

it in the plane of x'x y'y the xyx'y'x... way round through 1+0x4
times a right angle if 11 be any whole number as well as through a

right angle and a turning to that amount may be taken as the

operation symbolized by (—)* instead of the other. After the

same manner too since a straight line may be shifted from the

position OA to the position OB from OB to OA' from OA' to

OB and from OB to OA by a turn through thrice a right angle in

the plane of x'x y'y the xyx'y'x... way round the shifting thiswise

may be taken to be what (—)* symbolizes but then it is the distance

from O in the direction Ox ofB that is expressed algebraically by

(—)*a and from O in the direction Ox of B by (—)*(—«). This last

may be brought about as well by making the angle turned through
be 3+0x4 times a right angle. Moreover since Oy may be on either

side of x'Ox and Oy on the other all that is said of B B and the

way round in the order xyx'y'x. . . may equally be said severally of

B B and the way round in the order xy'x'yx....

On the whole therefore it is precisely a distance from O express-

ed numerically by a along a straight line bisecting an angle bounded

by Ox and Ox that in the plane of that angle may be expressed

algebraically either by (-)*a or by (—)*(—«) in reference to a dis-

tance from O expressed numerically by 1 along Ox as +1 and

because when any straight line drawn from O bisects an angle
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beginning at Ox and ending at Ox' the straight line drawn in the

same straight line but in the contrary direction bisects the equal

angle in the same plane beginning at Ox going the same way-
round and ending at Ox if a distance from O along the former

•straight line be expressed by (—)*a an equal distance along the

latter is expressed by (—)*(—a). Hence and because every angle at

O in the plane of x'x y'y bounded by Ox Ox' is bisected by and

only by either Oy or Oy it is precisely either of the distances from

O of B along Oy and from O of B along Oy that in the plane

of x'x y'y may be expressed algebraically by (—)^a and then the

other is expressed algebraically by (—)*(—a).

Of magnitudes generally those only can be dealt with in the

foregoing way that have about them something answering to, and

therefore representable by, directions not only contrary but at right

angles to one another of straight lines in a plane.

372. If in an endless straight line x'Ox the algebraic expression
of the distance from a point O in the direction Ox of a point A be

a and the algebraic expression of the distance from A in the

direction Ax of a point B be b the algebraic expression of the dis-

tance from O in the direction Ox of B (arts. 292, 330, 332,337) is

a-\-b. On this ground is raised (art. 325) the

Def If a bbc any plus or minus quantities and/ stand for (—)*,
in a plane through an endless straight line x'Ox where
the algebraic expression of the distance from a point O
in the direction Ox of a point A is a and the algebraic

expression of the distance from A in the direction Ax
of a point B is jb the symbol a+jb stands for the alge-
braic expression of the distance from O in the direction

Ox of B.

And as a further generalization in the same way the following
definitions are made.

Def. Two endless straight lines x'Ox x'Px are said to be CON-
DIRECTIONATE which are either in the same straight
line or parallel to one another and have the portions

endlessly away toward x x on one side of any straight
line that cuts them and therefore the portions endlessly

away toward x' x' on the other side.

Def. If a b a! b' a" b" .... be any plus or minus quantities and j
stand for (—)*, in a plane through an endless straight
line x'Ox where a+jb expresses algebraically the distance
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from in the direction Ox of a point P and an endless

straight line y'Oy cuts at right angles x'Ox so that Oy
or Oy is on the same side of x'Ox as P according as b

is a plus quantity or a minus if through P an endless

straight line x'Px be drawn condirectionate with x'Ox

and an endless straight line y'Py condirectionate with

y'Oy and P be the point whose distance from P in the

direction Px is expressed algebraically by a'+jb' on the

understanding that P is on the same side of x'Px as Py
or Py' according as b' is a plus quantity or a minus then

a+jb+(a+jb') symbolizes the algebraic expression of the

distance from O in the direction Ox of P. Also if

through P an endless straight line x'P'x be drawn con-

directionate with x'Ox or xPx and an endless straight

line y'P'y condirectionate with y'Oy or y'Py and P" be

the point whose distance from P' in the direction Px is

expressed algebraically by a"+jb" on the understanding
that P" is on the same side of x'P'x as P'y or Py'
according as b" is a plus quantity or a minus then

a+jb+(a'+jb')+{a"+jb") symbolizes the algebraic expres-
sion of the distance from O in the direction Ox of P".

And so on.

The straight line x'Ox because it cuts the straight line y'Oy
cuts the parallel, or the same, straight line y'Py. Let then N be the

point where x Ox cuts y'Py and let N1

be the point where likewise

x'Ox cuts y
'

P'y, Because the distance from O in the direction Ox of

N is expressed algebraically by a and the distance from N in the

direction Nx of N' by a' the distance from O in the direction Ox
of N' is expressed algebraically by a+a'. Also because the distance

from x'Ox in the direction Oy of x'Px is expressed algebraically by
b and the distance from x'Px in the direction Py of x'P'x by £' the

distance from x'Ox in the direction N'y of /^ is expressed alge-

braically by b+b'. Therefore the distance from O in the direction

Ox of P' is expressed algebraically by a+a'+/\b+b') and therefore

this expression and a+jb+(a'-t-jb') symbolize the same thing. In like

manner a+a'+a"+J(b+b'+b") symbolizes the same as

a+jb+(a'+jb')+(a"+jb"). And so on.

373. With regard to any direction chosen while a plus or minus

quantity can only express a distance in either that or the contrary

direction a+(—)*b if a b be plus or minus quantities can express a

distance in any direction whatever in a certain plane and hence the
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Def. What a-\-(—)*b symbolizes when a is any plus or minus

quantity and b any plus or minus quantity but o is

called a Ditensive Quantity and by way of contrast

a plus or minus quantity is then called Protensive.

Also a is called the Protensive Element in a+(-)*b

and the other element (—)*£ without which a+(—)*b
would not be ditensive at all is called the PURELY
Ditensive Element.

374. Def. Two straight distances OP QR are said to be Con-

DIRECTIONATE when if endlessly produced beyond
P R severally toward x x and beyond O Q severally

toward X* x' the endless straight lines x'OPx x'QRx
are condirectionate.

Def. Ditensive quantities are said to be EQUAL which in re-

ference to condirectionate and equal unit distances and

with (—)» meaning the same operation express condirec-

tionate and equal distances.

375. PROP. Ditensive quantities are equalprecisely when their pro-
tensive elements are equal and theirpurely ditensive

elemejits equal.

For a b d b' being protensive quantities and j one meaning of

(—)* if OP OP' be the directed distances starting at a common

point O in an endless straight line x Ox that are severally express-

ed by a+jb a'+jb' in reference to a common unit distance in the

direction Ox (art. 374) a+jb = a'+jb' precisely when P P are the

same point. But if N N' be the points, whose several distances

from O in the direction Ox are expressed algebraically by a a',

where endless condirectionate straight lines y'Py y'P'y through P
P' severally cut at right angles x Ox P is P' precisely when N is

N' and NP is N'P' which again happen precisely when a — d and

b = b'. Therefore a+jb = a'+jb' precisely when a = d and b = U.

376. PROP. Quantities protensive or ditensive are equal precisely

when the sums are equal got by severally adding
either to them or them to any quantities protensive
or ditensive that are equal to one another.

Making/ stand for one of the operations (art. 371) indifferently

symbolized by (—)* and the other letters for protensive quantities

let a+jb a'+jb' be any two quantities and c+jd c'+jd' any two

quantities that are equal to one another and therefore. (art. 375) such
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that c — d and d=d'. Then a+jb — d+jU precisely when a — d and

b — b' whereof (arts. 143,300,343) the former happens precisely when
either a+e = d+c' or c+a = c'+d and the latter precisely when either

b+d=b'+d' or d+b — d'+b\ Wherefore a+jb — d+jb' precisely when
either a+e+j\b+d) = d+c'+j\b'+d') } that is (art. 372)

a+jb+{c+jd) = d+jb'+{c+jd') y or c+a+j(d+b) = c+d+j\d'+b') ) that is

c+jd+(a+jb) = c'+jd'+{d+jb').

377. Prop. The laws of operational equivalence in additions that

hold for protensive quantities hold for quantities

protensive or ditensive.

If a b a' b' a" b" be any protensive quantities and j symbolize

any one meaning of (—) , by the definitions of art. 372 and the laws

for protensive quantities of the commutation of additions and the

distribution of addition over additions,

a+jb+{d+jb') = a+d+j(b+b') = d+a+j\b'+b) =a'+Jb'+(a+jb).

a+jb+(d+jb')+(a"+jb") = a+d+a"+j\b+b'+b")
= a+(d+a")+j{b+{b'+b") = a+jb+{d+a"+j\b'+b")}

= a+Jb+{d+Jb'+{a"+jb")}.

The same may be otherwise shown. For if OP PQ QR be di-

rected distances in a plane severally expressed by u v w any three

quantities protensive or ditensive OQ is the directed distance ex-

pressed by u+v PR is the directed distance expressed by v+w
therefore OR is the directed distance expressed at once by u+v+w
and by u-\-(v+w) and therefore ti+v+w — u+(v+w). Again if a di-

rected distance OL be taken condirectionate with and equal to PQ
the directed distance LQ is condirectionate with and equal to OP
OL is expressed by v and LQ by u therefore OQ is expressed not

only by u+v but also by v+u and therefore u+v = v+u.

From the fundamental laws of additions thus shown true for all

quantities whether protensive or ditensive the general laws follow

by the proposition of art. 376 in the same way as for whole num-

bers in arts. 33, 34.

Of these general laws special cases are

a+jb =jb+a

a+jb+{d+jU) =a+jb+d+jb' = a+d+jb+jU
= a+d+(jb+jb') = a+d+j(b+b').

378. The remainder a—b got by subtracting from any protensive

quantity a any protensive quantity b is precisely that protensive
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quantity which by adding to it b gives a sum equal to a. On this

by the symbolization extension principle is grounded the

Def If a b d b' be any protensive quantities and j be any one

and the same meaning of (—)* the symbol a+jb-(d+jb')
stands for the protensive or ditensive quantity which

by adding to it d+jb' gives a sum equal to a+jb.

If then x be the protensive andj^ the purely ditensive element

of the protensive or ditensive quantity that a+jb— {d+jb') symbol-
izes x+jy+{d+jb') i that is (art. 372) x+d+j(y+b') f

= a+jb. There-

fore (art. 375) x+d = a and y+b'= b therefore x=a—d and y=b—U
and therefore

a+jb-(d+jb') = a-d+j{b-b').

Also if OQ PQ be directed distances severally expressed by

a+jb d+jb' the directed distance OP is expressed by a+jb-{d+jb')
or a-d+j{b-b'). In particular when O is Q,— which happens pre-

cisely when a+jb = or a = o b = o—,
the directed distance QP is

expressed by —{d+jb'), that is —d+j(-b'). And when further a! is

o -jb' =j(-b').

Hence it is with a ditensive quantity v as with a protensive that

if v or +v be the algebraic expression of a distance in one direction

—v. is the algebraic expression of an equal distance in the contrary

direction.

Hence also and because \ija symbolize the result of performing

on any protensive quantity a any one operation symbolized by

(—)* all the results of performing severally on a all the operations

symbolized by (—)* are (art. 371) precisely ja andy(—a) {—) a is

either y'a: or —ja. Since the symbols j and — are here purely oper-

ational the operation whose result on a is —ja is, after the manner

of art. 356, all that can be understood by the operation —j so that

—ja and (-j)a are only two symbols for one thing.

If OQ OL be directed distances severally expressed by a+jb

a'+jb' the directed distance LO'is expressed by —{a+jb') and there-

fore (art. 372) the directed distance LQ is expressed by

~(d+jb')+{a+jb).

379. Prop. Quantities protensive or ditensive are equal precisely

when the remainders are equal got by severally sub-

tracting eitherfrom them or tliem from any quanti-
ties protensive or ditensive that are equal to one

another.

\ij be any one (—)* operation and a b c d d U c' d' be proten-
sive quantities such that c+jd = c'+jd', or (art. 375) that c = c' and
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d=d', a+jb = a'+jb' precisely when a = d and b — b' of which the

former happens precisely when either a—c = a'—c or c—a = c'—d

and the latter precisely when either b-d=b'-d' or d-b = d'—b'.

Therefore a+jb — a'+jb' precisely when either a—c+j(b—d)
= a'-e'+j(b'-d') or e-a+j(d-b) = c'-a'+j(d'-b') t

that is (art. 378)

precisely when either a+jb—(c+jd) = a'+jb'— (c'+jd') or c+jd—(a+jb)
= c'+jd

1

-(a'+jb').

380. PROP. The laws of subtractional equivalence that Iwldforpro-
tensive quantities hold for protensive or ditensive

quantities.

Let u v w be any three quantities protensive or ditensive. If

OQ PQ QR be directed distances in one plane severally expressed

by // v w the directed distance OR is expressed by u+w the di-

rected distance PR by v+w and the directed distance OP by both

u—v and u+w—(v+w).

. \ u—v = u+w- (v+w) .

If OQ OL MO be three directed distances in a plane severally

expressed by u v w the directed distance MQ is expressed by
w+u the directed distance ML by w+v and the directed distance

LQ by both —v+u and —(w+v)+(w+u).
.'.
—v+u = —(w+v)+(w+u).

If OQ PQ RP be directed distances in a plane severally expressed

by u v w the directed distance OP is expressed by u—v the di-

rected distance RQ by w+v and the directed distance OR by
both u—v—w and u—(w+v).

.'. u—v—w — u— (w+v) .

And .'. u—v-w = u—(w+v) = u—(v+w) = u—w—v.

If (9(2 ^Q PR be directed distances in a plane expressed by « v w
severally and RK be a directed distance taken condirectionate

with and equal to PQ then QK is condirectionate with and equal

to. PR the directed distance OP is expressed by u—v the directed

distance OK by «+z£/ and the directed distance OR by both

u—v+w and #-f-w—v.

.*. u—v+w=u+w-v.

Lastly if OP PQ RQ be directed distances in a plane expressed

severally by u v w the directed distance OQ is expressed by u+v
the directed distance PR by v—w the directed distance RP by
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w—v and the directed distance OR at once by u+v-zv by u+(v—zu)

and by u—{w—v).

,'. u+{v—w) = u-Vv—w — ti—izv-v).

These laws may too be proved as follows wherej is any one and

the same operation of which the second power is — and the other

letters are protensive quantities.

a+jb-(c+jd) = a-c+J(b-d) = a+e-(c+e)+j[b+f-(d+f)}

= a+e+J{b+f)-{c+e+jXd+f)} = a^b+(e+jf)-{c+jd+(e+jf)).

-{c+Jd)+(a+Jb) = -c+a+j{-d+b) = ~{e+c)+(e+a)+J{-(f+d)+(f+b)}

= -{e+c+J{f+d)}+{e+a+/(f+b)} = -{c+jf+(c+jd))^e+jj+{a+jb)\.

a+Jb-{c+jd+(e+jy)} = a+jb-{c+e+/(d+f)} =a-(c+e)+j{b-(d+f)}

a+jb-(f+jd)—(e+jf) = a-c-e+j(b-d-f) = a—e-c+j(b—f—d)
= a+/b-(e+jy)-(c+/d).

a+jb+{c+jd)-(e+jf) = a+c-e+j(b+d-f) = a-e+c+j\b-f+d)
= a+jb-{e+jy)+(c+Jd).

a+jb+{c+jd-(e+Jf)} = a+Jb+{c-e+j (d-f)} = a+(c-e)+j{b+(d-f)}\

a+jb-{e+jf-(c+jd)} = a+/b-{e-c+/(f-d)}=a-(e-c)+/{b-(f-d)})

= a+c-e+j(b+d-f) = a+c+j\b+d)-(e+jf) = a+jb+(c+jd)-(e+jf).

From these the simplest cases of those laws of operational

equivalence that have to do with subtractions either alone or only

along with additions the other cases follow by art.379's proposition

in the same way as in arts.65,67,69,71,73.

Under these general laws are embraced as particulars

a—jb — a\ (—jb)
= a+j{—b) = —Jb+a

a+jb—(c+Jd) — a\jb—jd—c — a—c+jb—jd= a—c+(jb—jd)=a—c+j(b—d).

381. By reason of the definitions now given of Addition and

Subtraction and of the laws of operational equivalence now shown
to be fulfilled by these operations the system of Inverses given in

art. 336 for numerical quantities holds true for all quantities pro-
tensive or ditensive.

382. In the other operations yet to follow with ditensive quanti-
ties the straight line as a bare magnitude and that straight line's

direction which as bound up together in a directed distance any
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ditensive quantity serves algebraically to express have to be spe-

cially dealt with. Inasmuch as these answer to what the quantita-

tive and designative elements of a protensive quantity severally

express the symbolization extension principle leads to calling the

straight line's numerical expression the ABSOLUTE VALUE or

Quantitative Element of the ditensive quantity and whatever

expression can be got for the straight line's direction the DESIGNA-
TIVE or Directional Element. For finding the latter element

the matter of the next some arts, is needed but the former element

is at once given by the proposition
—

TJurd proportionates to any straight line and the several sides

about the right angle of a right angled triangle are together

equal to a third proportionate to that straight line and the side

over against the right angle.

Let ABC be a triangle right angled at C V any straight line

and X Y Z three straight lines such that

X:BC=BC: V Y:CA=CA : V
Z :AB=AB: V.

From C draw CD perpendicular to AB and

therefore (EUCLID Bk.vi Pr.8) cutting ABC into

the two triangular parts A CD BCD similar to

the whole triangle ABC and to one another.

Since then from the similar triangles CBA DBC
CB:BA=DB:BC

X BC AB are three straight lines and DB BC
V other three which taken two and two in cross

order have severally the same ratios. Therefore (art. 269)

X:AB = DB: V.

In like manner Y:AB=AD: V.

.-. (art. 277) {X, Y) : AB=(AD, DB) : V, that is =AB : V.

.-. (art. 254) {X, Y):AB = Z:AB and .'. (art 261) {X, Y) = Z.

If now BC CA AB be severally expressed numerically in refer-

ence to V as unit by a b c (art. 295) X Y Z are severally expressed

numerically in reference to V as unit by a2 b3 e 2 and therefore (art.

291) (X, Y) is expressed numerically in reference to Fas unit by
a*+b\

.-. a2+b2 = c\

Hence and because a2 b2 a2+b2 are all plus quantities whether

either a or b be a plus quantity or a minus the absolute value

of any ditensive quantity a+(—)b is *J(a
2+b2

).
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383. Def. An ANGLE is the amount of opening out in a plane

between two straight lines that have a common end.

Since the amount of opening out may be any whatever the

bounding straight lines of an angle may be in the same straight

line and portions of an angle may overlap one another.

Def. A PERIGON is the angle without any overlapping bounded

by two straight lines lying in the same straight line upon
the same side of their common end.

A straight line being everywise alike upon all sides everywhere

throughout is in any plane through it anglewise alike upon both

sides at any point in it and hence half a perigon or a Hemiperigon
is the unoverlapping angle bounded by two straight lines lying in

the same straight line upon opposite sides of their common end. A
right angle is both one-half of a hemiperigon or a Hemisemiperi-

GON and one-fourth of a perigon.

Angles like every kind of magnitude are estimated and ex-

pressed numerically in reference to some one angle chosen for unit

by the numerical quantities representing their several ratios to that

unit angle. And like any kind of magnitude having certain counter-

wardnesses of run reach or stretch angular distances in the same

plane at the same point from straight lines ending at that point are

expressed algebraically by plus quantities or by minus according as

they go one way round the point or the contrary way.
If w be the algebraic expression of an angle in reference to a

perigon as unit the algebraic expression the same way round of

any angle beginning at the same first bounding line and ending at

the same last is co+t or /+&> where i is some plus or minus whole

number or o<

384. Let a straight line stretching away endlessly from a point

O turn round in a plane from a certain initial position Ox into any
other position Or through an angle expressed algebraically by co.

Produce xO endlessly to x' and rO endlessly to r' . From the point

O in the endless straight line x'Ox draw on that side of x'Ox upon
which are the portions close to Ox of such angles as have plus alge-

braic expressions an endless straight line Oy at right angles to

x'Ox. And produce yO endlessly to y'. Because two straight lines

which meet if endlessly produced either lie wholly together or meet

in only one point and there cut one another the endless straight

line y'Oy meets in O only and there cuts x'Ox and therefore Oy Oy
are on opposite sides of x Ox. For the same reason r'Or either lies

wholly in x'Ox or meets in only and has Or Or' on opposite
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sides o{ x'Ox. Likewise r'Or either lies wholly In y'Oy or meets in

O only and has Or Or' on opposite sides of y'Oy. In r'Or take

points P P' anywhere but at O and through P P' draw severally

endless straight lines y'Py y'P'y condirectionate with y'Oy. Let N
N' be the points where x'Ox because it cuts y'Oy cuts y'Py y'P'y

severally. Let r r be the algebraic expressions of the distances

from O in the direction Or of P P severally q q the algebraic ex-

pressions of the distances from in the direction Ox ofN N' seve-

rally and / /' the algebraic expressions of the several distances

from N in the direction Ny of P and from N' in the direction N'y
of P' all in reference to a common unit straight line. If r'Or be in

x'Ox N is P and N' is P' therefore either q=r and q'=r' or q=— r

and q'=—r' and further/ = o and p' = o wherefore = y each being

P P'
either +1 or — 1 and

-^
— — each being o. If r'Or be in y'Oy N N'

are both therefore q = o q — o and either p = r p'
— r or p = — r

p'= —r wherefore - = % each being o and - = -> each being either

+ 1 or -1. If r'Or be neither in x'Ox nor in y'Oy NOP and JV O
P are each three points not in one straight line therefore NOP
NOP are triangles of these the angles NOP NOP are equal

being either the same angle or vertically opposite angles and

the right angles ONP ONP are equal therefore the triangles

NOP NOP are similar therefore NO : OP = NO : OP' and

NP : PO =N'P : P moreover according as P P' are on the same

or contrary sides of are NN on the same or contrary sides of

and P P on the same or contrary sides of x Ox and therefore

according as r r have like or contrary signs have q q like or con-

trary signs and / p' like or contrary signs on the whole therefore

= % and -=-,. Hence each of the quotients - - abides ever the
r r r r r r

same wherever else in r'Or than at O the point P may be taken.

Dcf. The quotients
- - are called severally the COSINE and the

SINE of the angle algebraically expressed by co and are

severally written shortly cos co sin w.

Since (art. 382) '&?*+ l = £^_£+£ =
(J) +(£)'.

that is

(cosa>)
2

+(sin<u)
3 = 1.

385. Let x'Ox y'Oy be two doubly endless straight lines cutting

20
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one another at right angles and taking a point A in Ox anywhere
but at O let a straight line equal to OA turn round in the plane

of xx y'y about one

end O through the

right angle xOy from

the position OA along
Ox to a position OD
along Oy and passing

through first a position

OB between OA and

OD and then a posi-

tion OC between OB
and OD so that the

right angle AOD is

made up of the angles

A OB BOD as parts

the angle BOD of the

angles BOC COD as

parts and therefore

AOD of A OB BOC COD as parts. From O as center at the dis-

tance OA describe a circle which since OA OB OC OD are all

equal passes through the points BCD. From B C of which neither

is in x'Ox for neither is at O the only point common to either OB
ox OC and x'Ox draw perpendiculars BE CF to x'Ox. Because the

angle xOB is part of and therefore less than a right angle the point

E is on the side of toward x therefore OEB is a triangle and

this triangle being right angled at E has the side OB over against

the right angle greater than either of the sides OE EB bounding
the right angle. In the same way F is on the x side of OFC is a

triangle and because this triangle is right angled at F OC is greater

than either OF or FC. The points E F being at less distances OE
OF from O the center of the circle BCD than B C severally and

therefore than any points in the circumference are within the circle

therefore BE CF if produced cut the circumference of BCD on the

opposite sides of E F to B C severally. Produce BE endlessly to G
and CF endlessly to H and let G H be the points where they so

cut the circumference. Since it is only in E F that x'Ox meets the

straight lines BG CH severally neither G nor H is in x'Ox. Join

OG OH and hence and because neither E nor F\s at OEG OFH
are triangles. Because too O is in x Ox but not at either E or F the

only points common to x'Ox and BG CH severally OBG OCH are
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triangles. Moreover EB EG being upon opposite sides of E are on

opposite sides of x Ox that cuts BG in E therefore OB OG on the

same sides severally of x'Ox as EB EG are on opposite sides of

x'Ox therefore the angles EOB EOG are upon opposite sides of

x'Ox and therefore the angles EOB EOG make up as parts the

whole angle BOG. Likewise the angles FOCFOH are upon oppo-
site sides of x'Ox and make up as parts the whole angle COH. Now
the straight line x'Ox passing through the center of the circle

ADG because it cuts at right angles the straight line BG in the

circle not passing through the center bisects BG and OB OG are

equal being straight lines drawn from the center of a circle to the

circumference therefore in the triangles EOB EOG the two sides

EO OB are equal severally to the two sides EO OG and the base

EB is equal to the base EG therefore the angle EOB is equal to

the angle EOG and therefore the straight line Ox bisects the angle
BOG. In like manner Ox bisects the straight line CH and the angle
COH. Again because the angle COF (art. 8) is greater than its own

part the angle BOE the angle COH the former's double (art. 89) is

greater than the angle BOG the latter's double hence the triangles

OCH OBG have the two sides CO OH equal severally to the two

sides BO OG but the angle COH greater than the angle BOG
therefore the base CH is greater than the base BG and therefore

(art. 91) CH's half CF is greater than BG's half BE. Since then of

the straight lines CH BG in the circle ACB CH is greater than BG
CH's distance OF from the center is less than OE BG's and hence

and because OF OE have a common end and lie in the same

straight line Ox upon the same side of OF is a part of OE.

If the turning straight line equal to OA instead of stopping at

the position OD go on through the right angle yOx to a position

along Ox passing meanwhile through a position 01 between Oy
and Ox and afterward through a position Ojf between 01 and Ox'

so that not only is yOx made up of the part angles yOI IOx the

angle IOx of the part angles 10J JOx and therefore yOx of the

parts yOI 10J JOx but taking in the right angled turn through

xOy the angle AOJ is made up of the part angles A 01 10J and

the hemiperigon bounded by Ox Ox' upon the same side of x'Ox as

Oy,
—which call shortly Y—

, of the part angles A 01 IOx and

therefore too of the parts AOI 10J JOx then as before / J are in

the circumference of ADG but neither of them in x'Ox perpendicu-
lars IK JL to x'Ox have feet K L on the x side of within ADG
and if produced cut ADGs circumference in some points MN on

20—2
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the other side ofxOx than / J are on joining OM ON OKI OKM
are equal and similar triangles upon opposite sides of x'Ox so are

OLJ OLN IK MK JL NL are each less than OA IK is greater

than JL and OK is a part of OL.

In like manner if the turning line pass on over the right angle

x'Oy through a position ON between Ox and Oy and then a po-

sition OM between ON and Oy so that the angle bounded by Ox
ON made up of Y and the angle x'ON is part of the angle bounded

by Ox OM made up of Y and the angle x OM and this angle

made up of Y and x'OM part of the angle bounded by Ox Oy'

made up of Y and x Oy or of the three right angles xOy yOx x'Oy

everything said as to / J M N holds as to M N I J. And also

taking OH OG for successive positions passed through by the turn-

ing line in making the fourth right angled turn from Oy to Ox

everything said as to B C G H holds as to G H B C. If after

coming to Ox the turning line goes on further the angles turned

through from the first position OA begin to overlap and then the

same set of positions are passed through as before in the same

order and so on to any amount of turning of the line number of

overlaps of the angle turned through and runs round the set of

positions.

If a straight line equal to OA turned round in the same plane

about one end but the contrary way to wit from Ox to Oy from

Oy to Ox' and so on the same positions are passed through but in

the reverse order.

Hence if o> be the algebraic expression in reference to a perigon

as unit of the angular distance from Ox the xyx'y'x. ..way round of

a straight line OP equal to OA expressed numerically by c in re-

ference to a unit line in reference to which also as unit a expresses

algebraically the distance from in the direction Ox of the point

Q where an endless straight line y'Py drawn through P condirec-

tionate toy Oy cuts x'Ox and b expresses algebraically the distance

from Q in the direction Qy of P as go increases constantly from oill 3 ^ 3
through - to - from - through - to I from I through - to - ands

4 2 2.4 °42
so on a correspondingly decreases constantly from c through o to

—c increases constantly from —c through o to +c decreases con-

stantly from +c through o to —c and so on and therefore cos a>

which =- correspondingly decreases constantly from I through o

to —I increases constantly from — I through o to -fi decreases con-
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stantly from + 1 through o to — 1 and so on. The same changes also

happen correspondingly as to decreases constantly from o through

— to — from — through — to —
1 from — 1 through — •- to —-4224 42

and so on. Likewise as <o either constantly increases from —11 1 3 3 c

through o to +- from + through to - from through 1 to -

4 4
b 244 5

4
1 1 3

and so on or constantly decreases from — through — to —

from — -

through — 1 to — - from —
through — to — and so on

4 4 4 2 4
b correspondingly increases constantly from —c through o up to +c
decreases constantly from +c through o down to —c increases con-

stantly from —c through o up to +c and so on and therefore sin oy

which =- correspondingly increases constantly from — 1 through o

up to +1 decreases constantly from +1 through o down to — 1

increases constantly from — 1 through o up to -fi and so on.

386. It is precisely all the algebraically expressed angles begin-

ning at Ox and ending at either OB or OG (art. 385) that have co-

sines equal to the cosine of any one of these and if &> be the alge-

braic expression of any one ending at either of the bounding lines

OB OG -co is the algebraic expression of the equal one ending at

the other. The same may likewise be said of all the algebraically

expressed angles beginning at Ox and ending at either Oy or Oy'

and of all beginning at Ox and ending at either 01 or OM. There-

fore all the algebraically expressed angles that have cosines equal

to cos &) are precisely all that can be expressed by either ea+i or

—G>+z if i be a plus or minus whole number or o. Since each of the

straight lines passing through E K at right angles to x Ox cuts

the circumference of the circle ADG at points equidistant from and

on opposite sides of x'Ox

sin(—ft>-f-z)=—sin(ft>+z'')

if 1 be any plus or minus whole number or o.

387. If the angles 10K BOB of art. 385 be equal the triangles

OKI OEB have the angles at O K equal severally to the angles

at E and the sides 01 OB over against equal angles equal there-

fore the other sides are equal severally to the other sides to wit

KI to EB and OK to OE. And the angles IOK BOE are equal
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precisely when the angles xOI x OB are equal for each two are

the remainders got by taking from Y the other two. If then co be

the algebraic expression in reference to a perigon as unit of any

angle beginning at Ox and ending at either of the lines OB 01

-—co is the algebraic expression of the corresponding angle be-

ginning at Ox and ending at the other, that is of the angle whose

ending bounder is at an angular distance from Ox the opposite

way round expressed by co. In like manner if the angles MOK
GOB be equal KM is equal to EG and OK to OE the angles

MOK GOE are equal precisely when the angles xOM x'OG are

equal and if co express algebraically the angular distance from Ox
the xyx ... way round of either of the straight lines OG OM and

therefore also the angular distance from Ox' the x'yx. .. way round

of the other —co expresses algebraically the angular distance from

Ox the xyx ... way round of this other. Hence and from what

would likewise happen if each of the ending bounding lines were

along Oy or Oy or if one of them were along Ox and the other

along Ox all the algebraically expressed angles that have sines

equal to sin co are precisely all that can be expressed by either

i'+co or i'+l-—co
J
and therefore by -+(—)'o> if i' i be plus or minus

whole numbers or o. Since BG IM cut x Ox on opposite sides of

cos !- +(—Yco> = (—)

r

'cos CO.

388. Since (art. 386) cos co = cos co precisely when co —i'±ca and

(art. 387) sin co = sin co precisely when co' = -+(—)% it follows that

cos co = cos co and sin co — sin co precisely when co' = i'±co = --\r(—Yco.

i
But co

—
i'±co = -+(—Yco precisely when if i be a plus or minus even

number z"x2 either i' = i" and co' = i'-\-co or © = -(—i"+ir

) and
2 '

co —i"-\-co and if i be a plus or minus odd number z'"x2+i either

., Z*"X2+I
1 = •, that is the plus or minus even number z'x2 is equal

to the plus or minus odd number z'"x2+i which can never be, or

co =
2-\—i'+

—
-J

and co —i'-\-co. Hence (art. 383) coso> = cosft/
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and sin co m sin co' precisely when the straight lines are condirection-

ate whose angular distances from the initial line Ox are expressed

by co co'.

389. If as in art. 385 a straight line OP expressed numerically

in reference to a unit line by c be at an angular distance from Ox the

xyx ... way round expressed algebraically in reference to a perigon
as unit by co and through P an endless straight line y'Py condirec-

tionate with y'Oy cut x'Ox at a point Q whose distance from O in

the direction Ox is expressed algebraically in reference to the unit

line by a and an endless straight line x'Px condirectionate with

x'Ox cut y'Oy at a point R whose distance from O in the direction

Oy is expressed algebraically in reference to the same unit line by
b then OP is at an angular distance from Oy the yxy'... way round

expressed algebraically by --co the distance from R in the direc-

tion Rx of P is expressed algebraically by a and the distance from

Q in the direction Qy of P is expressed algebraically by b. Hence

cosf—&))=—= sin co and sin (
—

ft>)
= - = cos&>.

V4 / c \4 / c

390. From the theorems,—or Laws of Operational Equivalence
as they may be called since cos. sin. are symbols of operation

—
,

proved in arts. 386,387, 389, these others follow:—

cos (co-\
—

J
=sin \—

(&)-f--U
= sin (—co)

= —sin co.

sin I co-\
—

)
=cos

j

—
(co-\
—

J [
= cos (-co)

= cos w.

:os f«H— 1
= —cos-!-— I o-f- )>

(*,+!)
= sin

{|-("+|)}=
-si" »•

(«+=j)
= -cos

{I

-(W ?)}
=
-cos(-|—)

= -cos
(«+I)

sin (©+-)
=—sin |i—(«+-)[

=—sin
(

—co) =—coso

cos (co—
J
= cos

|—|ft)--Jl=:
cosf-—co

)

= sin co.

sin (a)—
J

= —sin ! — (co—
)!
= —cos co.

sin
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co— J
i

(H=-<
sin I co—

J

= —sin ( co) = —sin©.

-J
= cos ( --co) = cos (—o)+ J

= sin (— co)
= —sin co.

sin I co—-
j:

= —sin [
—co+- ) = cos co.

And the cosine or sine of any angle expressed by a plus or

minus quantity is equal to plus or minus the cosine or sine of some

angle expressed by a plus quantity not greater than - in reference

to a perigon as unit. For if a be the numerical expression of any

angle in reference to a perigon as unit cos (—a) = cosa and sin (—a)
= —sin a. Now a either is less than I is a whole number i and then

cos i = cos o = i sin i— sin = or is equal to i+/3 /3 being less

than 1. Again /3 either is less than - is - and then cos- = —coso22 21.1 I

sin- ss sin o or is equal to -+7 7 being less than -. And lastly 722 2

1 . 1 I 1

either is less than - is - or = -+S 8 being less than -. Then first

4 4 4
S

4

cos (H-/3)
= cos /3 sin (i+/3)

= sin secondly cos I- +7
J

= —cos 7

sin
[

—
[-7)

= —sin 7 and thirdly cos (-+§)
= —sin 8 sin [- +8 J

= cos S.

Def. The Complement of an angle is that angle of which the

algebraic expression if added to the algebraic expres-
sion of the angle gives for sum the numerical expres-
sion of a right angle. And the Supplement of an angle
is that angle of which the algebraic expression if added

to the algebraic expression of the angle gives for sum
the numerical expression of a hemiperigon.

If co x be the algebraic expressions severally of an angle and

its complement in reference to a perigon as unit co+x = - and .\

x = —co-\--. Likewise —
co-\
— is the algebraic expression of the sup-

4 2

plement of the angle expressed algebraically by co. And

cos (—CO+-)
= sin co sin f—

a>-f-J
= cos co
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cos (—6)+ ]
= — cos (0 sin (—&)+-)

= sin w.

391. In a plane let there be sundry endless straight lines A'OA

passing through a point O and having anywhere in it a point Pt

/>"
'

1\B passing through PM
and having anywhere in it a point Pa

C'P2C passing through P% and having anywhere in it a point P3

and so on. Through draw in the plane any two endless straight

lines x'Ox y'Oy cutting one another at right angles and through
P

z
P2 . . . severally draw endless straight lines x'P^ x'Pjc . . .

condirectionate with x'Ox and y'P ly y'P3y . • • condirectionate

with y'Oy. Let N
1
N2 . . . be the several points where x'Ox because

it cuts at right angles y'Oy cuts at right angles y'Pty j/P2y . . .

and M
t
M2 . . . the several points where y'Oy because it cuts at

right angles x'Ox cuts at right angles x'P^x x'P^c . . . Then if

S express algebraically the angular distance from Ox the xyx' ...

way round of OA
0, />_ _

pfi
e

3 p^__
P.C

and in reference to a common unit line

rt express algebraically the distance from O in the direction OA ofPt

r. _ _ _ _ _ P, _'*.;— PJ&.P.
r, _ _ _ _ _ P, __ _ P,C.P,

the several distances from O in the direction Ox of N
t
N2 JV3 . . .

or the several perpendicular distances from y'Oy toward that side

of y'Oy on which is Ox of P
1
P2 P3

. . . are expressed algebrai-

cally by

(cos 0,)rx (cos t )
rx+ (cos a)

r2 (cos X) r,+ (cos 2 )
r2+ (cos 3)r3

- - -

and the several distances from O in the direction Oy of M
t
M3

M
3
... or the several perpendicular distances from x'Ox toward

that side of x'Ox on which is Oy of P
t
P2 P3

. . . by

(sin 0yx (sin I)r1+(sm 2)r2 (sin (9>x+(sin ^2)r2+(sin 3)r3 .

This which springs at once out of the definition (art. 384) of the

cosine and sine of an algebraically expressed angle is called the

Principle of Algebraic Projection from the foot of the per-

pendicular to a straight line from a point being called the point's
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PROJECTION on the straight line and the portion of an endless

straight line intercepted between perpendiculars to it from the

ends of an ended straight line the PROJECTION on the endless

straight line of the ended.

392. Let a straight line stretching away endlessly from a point O
turn round about O in a plane from an initial position Ox into any

position OA through an angle expressed algebraically by o> and

then let it turn round in the same plane from the position OA into

any position OB through an angle expressed algebraically by ty

so that on the whole it has turned round from the first position Ox
to the last position OB through an angle expressed algebraically

by co+yjr and so therefore that co
yfr

are of the same or contrary

algebraic signs according as the turnings are the same or contrary

ways round. Produce endlessly xO toward x' AO toward A' and

BO toward B'. In the endless straight line BOB take a point P
anywhere but at O and through P draw an endless straight line

CPC cutting the endless straight line A'OA perpendicularly at Q
and having the portion QC on that side ofA'OA by turning toward

which from OA such angles as have plus algebraic expressions

begin. Through Q draw an endless straight line x'Qx condirection-

ate with the endless straight line x Ox. Since a straight line

stretching away endlessly from Q if it were to turn round about Q
first from the position Qx into the position QA through precisely

the intermediate positions that are condirectionate with the inter-

mediate positions passed through in the turning from Ox to OA
and then from the position QA into the position QC through the

right angle AQC would on the whole turn round from Qx to QC
through an angle expressed algebraically by co+p expressing

numerically a right angle by p this w-\-p expresses algebraically

the angular distance from Qx of QC the way round that plus

expressed angles are turned through. And if r express algebrai-

cally the distance from O in the direction OB of P (cos-v^)r ex-

presses algebraically the distance from O in the direction OA of Q
and (smyjrjr the distance from Q in the direction QC of P. Hence

by the principle of algebraic projection (art. 391) the distance from

O in the direction Ox of the point where x 1Ox is cut perpendicu-

larly by a straight line drawn through P is expressed algebrai-

cally by
(cos ©) (cos o/r)r+{cos (»+/>)} (sin yjr)r

which =
{(cos (o) cos yjr— (sin co) sin ^}r

and the perpendicular distance from x'Ox of P toward that side of
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x'Ox upon which plus expressed angles at O bounded by Ox begin
is expressed algebraically by

(sin co) (cos ^r)r+{sin (a>+p)](sin yfr)r

which =
{(sin co) cos ^+(cos co) sin

yfr]
r.

.'. cos (o)+i|r)
= (cos co) cos yfr— (sin co) sin

yfr

sin (<w-h/r)
=

(sin co) cos -»/r+(cos w) sin
yfr.

Whence and because co—
"\jr
= co+(—yfr)

cos (co—yfr)
= (cos co) cos -\Jr+(sin co)

sin
-\Jr

sin (co—yfr)
=

(sin g>) cos sfr— (cos <w) sin
-*/r.

393. After the manner of all multiplications hitherto the sym-
bolization extension principle gives the

Def. \ij be any one meaning of (-)* and a
l
b

1
a2 b2 be any pro-

tensive quantities [a^jb^ia^jb^ symbolizes the alge-

braic expression in reference to the unit distance drawn

in the primary direction of the directed distance ex-

pressed algebraically by aa+jba in reference to that

directed distance as primarily directed unit distance

which is expressed algebraically by a
1+jb l

in reference

to the primarily directed unit distance.

Let Ox be the primary direction OV the unit distance lying

along Ox and OP the directed distance expressed algebraically

by a
l+jb 1

in reference to the primarily directed unit distance O V.

Produce xO endlessly to x' and draw in the plane of reference an

endless straight line y'Oy cutting at right angles x'Ox with Oy on

that side of x'Ox on which P is when b x is a plus quantity else

than o. Produce OP endlessly to r and PO endlessly to r and

draw in the plane of reference an endless straight line s'Os cutting

at right angles r'OPr with Os on that side of r'OPr which makes

the ..s'rsr'.. way round O the same as the ..y'xyx'.. way. Let

OQ be the directed distance which in reference to OP as a unit

distance lying along Or as a primary direction is expressed alge-

braically by a2+Jb2 and through Q draw an endless straight line

s'Qs condirectionate with s'Os and therefore cutting perpendicularly

r Or in some point N. Because/ symbolizes the same operation in

a2+Jb2 as in ^
x-f/'^x Q is on the side of N toward s or toward s

according as £2 is a plus or a minus quantity. If then
Z be the

algebraic expression in reference to a perigon as unit of the angu-
lar distance from Ox the xyx' ... way round of Or and c

x
be at once

the absolute value of a
I+Jb l

the numerical expression of OP in

reference to V as unit and the algebraic expression in reference
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to V as unit of the distance from O in the direction Or of P
ax
=

(cos 0^ b
x
—

(sin 6
x)cx ^ = \/(a*+b?) the distance from (9 in

the direction Or of iV being expressed algebraically by a2 in

reference to OP as unit is expressed algebraically by a2cx
in refer-

ence to V as unit and the distance from N in the direction Ns of

Q being expressed algebraically by b2 in reference to OP as unit is

expressed algebraically by b2cx
in reference to V as unit. Hence

by the principle of algebraic projection (art. 391) the distance from

O in the direction Ox of the point where a straight line through Q
cuts perpendicularly x'Ox is expressed algebraically in reference

to OV as unit by

(cos x)a2cx+\cos [0i+-
J f^A

which =
(cos x)a2cx-(s'm 0^^

and the perpendicular distance from .ar'cT*" of Q toward that side of

x'Ox on which Oy is is expressed algebraically in reference to OV
as unit by

(sin x)aacs+
jsin f^rr-) Ua which =

(sin 1)#2<:1+(cos x)b2cx
.

.'. (a2+jb2)(a x+jb x )
=

(cos x)a2cx~(s'm l)b2cl+j{(sm i)a2c1+(cos 1 )b2
c

1 }

and .*. too = a2 (cos J)c1—b2 (sin 0,)rI+/{tf2(sin I)^I -|-£2 (cos 0,)^}, that

is afii-bjtx+j^ajti+bp^.

If 2 be the algebraic expression in reference to a perigon as

unit of the angular distance from Or the rsr' ... way round of OQ
and c2 be the numerical expression of OQ in reference to OP as

unit #2
= (cos02X b2=(s'md2)c2 c2 = V (a2

2+b2
2

)
:. (cos i)# !a

=
(cos 0,) {(cos 2V2)^ = (cos 0,)(cos 2)c2cx and the like for the other

like products .\ (cos 0,)^,— (sin x)&a +/{(sin 1)#2<:I+(cos s)b2cl)

—
(cos X ) (cos 2)c2c

—
(sin r)(sin 2)r2<rz

+y{(sin 0,)(cos 2/
V2^+(cos I )(sin a)^J

=
{(cos X )

cos a}£A—{(sin 0J sin
2}ca

+/[{(sin 0,) cos 2}£A+{(cos 0,) sin 2}c2cx]

=
{(cos 0,) cos 2-(sin X)

sin 2}c2cx+j{(sm 0,) cos 2+(cos X )
sin 2}<yx

and .-. fa+j&^+M =
{cos(0I+02)J^I+y{sin (0I+02)}^,

Special cases of these are

{a2+jb2)ax
= a2ax+jb2ax (jb2)ax =jb2ax

(cos 0,-f/sin x)cx
=

(cos x)cx+j {sin. X)^

(a,+jb&&t
= -b2bx+ja2b x =ja2bx-b2bx ajb 1 =ja2bx

WW* = -&A =J
2&A =J\ iK
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^,K+A) - aji l+jajb l {jb9) fa+Jd,) = -bj) l+jbjx l

= a,a^bj)-j(aj)-b,a)

(*-JW<*i+j&i) = *A+4A+/(*A-^.)

{a-jb^a-Jb,) = a./i-bj)-j{aj) x+bji x ).

If the operation y be taken to operate on any ditensive quantity
in the same way as on either a protensive quantity or a ditensive

quantity with no protensive element it changes the quantity into

another expressing a directed distance equal to the directed dist-

ance before expressed but turned through a right angle the way
round that plus expressed angular distances stretch. Then since

(>i){(cos 0^+/ (sin 1)c1 ]
= -(sin x)cl±f(cos 0,)cx

=
{cos(^

I+
I)},

I+
y{sin(^

+
i)},

I

/{(cos l)c^j(sm 0>j =
C/i){(cos 1)c1+j(sm 0fc}

or J{a l+jb 1)=(ji)(a l±/b I ).

The ditensive quantity cos
Z+/ sin

S expresses algebraically a

unit distance so directed as to be at an angular distance from Ox
the xyx' ... way round expressed algebraically by t

and therefore

serves to mark out the direction of the directed distance expressed

algebraically by (cos I)c1+j(s'm 1)cI
or (cos 0,-H/sin 0^cv The ex-

pression cos 0,-t/sin 0, or
j/^

x

+^\
+Jj +̂^\

is then (art 382) the

directional or designative element or factor of the ditensive quantity

(cos 0,+/ sin 0,)^ or a
x-k-jbx.

Def. ® is used as a short symbol for cos 0-f/sin 0.

Since B.=jl and (J l ){a^j^=j\ai+jb^ multiplying by ©,

does the same as operating on withy and therefore GL may be used

instead of/. Likewise <hL = -i ®o
= +i and (-1) (#,+/£,)

= —(aT+jbt)

(+i)(a l+fb l)
= +(a l+jb1)

so that S, may be used instead of —and
<8> instead of -f.

From the definition of ®e and what is above shown Sec, stands

indifferently for (cos 0,+/ sin 0,)^ (cos0l)cI -\-j(s'm 1)cl
a

x+jbx
. Hence

{Q ca)Q9 ct
= ®^/a

and special cases of this being c^9 ct
= ®e c2c1

® ®9 c
z
= ®oj$

c
t

®e <d =Sej+e2
it follows that
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The directed distance expressed algebraically by the product of

a multiplication has then to the directed distance expressed alge-

braically by the multiplicand each in reference to a common pri-

marily directed unit distance the same relation in regard to quan-

tity and designation as the directed distance expressed algebraically

by the multiplier in reference to any directed distance as primarily

directed unit has to this directed distance and if a
Y+jb x express al-

gebraically in one plan of directed distances what +i expresses

algebraically in another aa+jba expresses algebraically in this other

plan what (^a+jba)(a1-\-Jb1 ) expresses algebraically in the first.

394. Prop. Quantities protensive or ditensive are equal precisely

when the prodticts are equalgotfrom severally mul-

tiplying either them by or by them any quantities

protensive or ditensive that are equal to one another

but none of tliem o.

For in multiplying severally quantities protensive or ditensive

either by or into others that are equal to one another and of which

none is o it is precisely when the quantitative factors are equal that

the products have equal quantitative factors and precisely when

the directional factors are equal that the products have equal di-

rectional factors.

395. PROP. TJie lams of operational equivalence that have to do

with multiplications are the same for quantities in

general asforprotcjisive quantities.

Let <d„c %^d <dxe be any three protensive or ditensive quanti-

ties c d e being numerical quantities

(0^)0wr = %^c = ®
lh<a

cd= (0^)©^.

(0X^) (0^)0^ = {%xe)<dw^dc = %„^xedc
= ®u+y+x)(cd)c

If 0^+0^= ®eg where

g= V[{(cos &))r+(cos ylr)d}
2

+{(s'm <o)c+(sm ^)d}
2

]

= V0 2+^ 2

+2{cos (-(0+ylr)}cd]

(0^+0^)0^ = (0,£-)®x* = &x*ge

r, . (cos w)c+ (cos ilr)d .. . (sin a>V+(sin slr)d 1

. ge
..(.. N (cos oy) c-\-(cos -\lr)d ,

. (sin a>)c+ (sin ylr) d)
\

+J
J
(sm x)

J

~J
—

+(cos X)
— — —

Jj

= ®
x+iace+Sx+i};de

=
(0„/-)0x<H-(0^)0x^.
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Wherefore if the unit angle be a perigon

(0^-0^)0x
^ «(8„r+6*y/)*V-» {®u>c)®xe+<dx+ >p+i)de

= (Bj:)Sxe+SX¥^i
de = (0^)0^-0,^ = (0^)0x<?-(0^)0xr.

Either in the same way as the last two or from them by the

commutation law first of all proved

(ex*)(©^+e^) = (0x^)0^+(0^)8^/

(0^(0^-0^) = (0x^)0wr-(0x^)0^.

From the fundamental laws of multiplications thus proved the

general laws follow by help of art. 394's proposition in the same way
as (arts. 108,350) for other kinds of multiplication.

396. As with other divisions so now is there made by the sym-
bolization extension principle the

Def. If when a b a
t
b

t
are any protensive quantities but a

t
b

t

not both o and/ is any one meaning of (—)* a+jb a
t+jb

refer to the same primarily directed unit distance the

symbol .. stands for the algebraic expression in re-

ference to the directed distance as primarily directed

unit distance that a
i+jb l algebraically expresses of the

directed distance that a+jb algebraically expresses.

As with all former quotients then —^7- is precisely the quan-

tity protensive or ditensive which is such that

;gf>,+A)
= «+/»•

Hence if %»c = a+jb and %ta ci

= a
t+jb t

where c c
t
are numeri-

cal quantities and to co
(
refer to a common unit angle

a+jb _ W£ _~ c _ {(cos €>),)<:,} (cos &))<:+{ (sin o>,)fJ(sin to)c

a~+/b~Kft

~ ^^c' ~J?~
. —{(sin (o)c]{cos (o)c+{{cos co)c)}(sin co)c

_ a
ta+bjb .—ba+ajb~
a;+b t

2+J
a,

2+b
t

2
'

This may be otherwise got. For the common primarily directed

unit distance to which a+jb a
t+jb t

refer is expressed by 0.^ or

a—jb t
in reference to some distance in the a>

l expressed direction as

unit and the directed distances severally expressed by a+jb a
t+jb t

in reference to the one unit are severally expressed in reference to
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the other by (a+jb)(arjb) or aa
t
+bb^j^-abr\ba) and [a+jb){arjb)

or a*+b
t

2
.

a-\-jb __aa i
-\-bb

t+/(—ab t-\-ba)_aa^-bb J
.—ab

t
-vba

t

•""

a
t+jb t

~ "

~~af+b]~
~
a?+bf

+J
~a?+bj

'
'

In a division the directed distance expressed by the dividend

has to the directed distance expressed by the divisor each in refer-

ence to a common primarily directed unit distance the same rela-

tion in regard to quantity and designation as the directed distance

expressed by the quotient in reference to any primarily directed

unit distance has to this primarily directed unit distance and if the

directed distance expressed by a
l-vjb j

in one plan of directed dist-

ances be expressed by +i in another —=4r expresses in this other

plan the directed distance that a+jb expresses in the first.

397. In the same way as in arts. 353, 143, but with the wider

meanings in which words and symbols are now understood is

shown the

PROP. Quantities protensive or ditensive are equal precisely when
the quotients are equal got from dividing either them by
or by them any other quantities but o protensive or diten-

sive that are equal to one another.

In the same way likewise as in art. 353 or arts. 1 16, 1 18, 120, 122,

124, 127, 130, follows the

PROP. The laws of operational equivalence that have to do with

divisions are the same for quantities generally as for

protensive quantities.

398. In all Additions Subtractions Multiplications and Divisions

the tests of equality (arts. 376, 379, 394, 397) and the laws of opera-
tional equivalence (arts. 377,380, 395, 397) are the same for proten-
sive or ditensive quantities as for protensive quantities. All the

general theorems methods and processes having to do with these

operations therefore that are made out for protensives are made
out in the very same way for protensives or ditensives.

399. If (o I co2 ...co fl
be algebraic expressions of angles in refer-

ence to a common unit angle and c
1 c2 ...c„ be numerical quantities

(art. 393)

(®^)...(ew/3)(©w/2)®.^ - (®w/w)...(@^3)©Wl+W2%
= (©^...(0^)6^^^^= - - - ^ft^M^.^,
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If in particular co
l

= (oJ
— = coH and each = co and c

L
= c^—

= cn and each = c

400. If co 6 be algebraic expressions of angles in reference to a

perigon as unit ;/ a whole number else than o and c k numerical

quantities (art. 374) ©w£ = (0*£)" = ©„*£" precisely when ©w = ©„d

and c=kn and therefore (arts. 302, 375, 388) precisely when k = %c
and n6 = co+i i being some plus or minus whole number or o.

Hence and because n6 — co+i precisely when 6 — ~
(co+i) = -g>+- i

1 V*= -o)+-

n n

Now the values © x r. © x , of © x , ca*n be equal only when

-6)+ - = -o>4- -£+f" f" being some plus or minus whole number or o
n n n 11

t> r

therefore only when —
[ -©+-' J + [-gH— J

= — (-&>+
-

) + (-<»+-+*'
'

)

therefore again only when —-— = i", that is (art. 194) only when
11

i
t

i' either are equal or differ by some multiple of ;/. Wherefore if

i be made in turn 012 3 ...11-1 the 11 values got of 0, ',- all differ
n n

but if /be made in turn 11 n+\ #4-2... the same n different values

are got over and over again in the same order and if i be made in

turn —1 —2 —3 ... those same values are still got over and over

again but in backward order. Hence any algebraic quantity ©w*r

has precisely n different /zth roots and these are

8 X He © x tyc © x .#*--- ©, n-^c.—w v -w+- v -(0+ v w+— *
n n ft n n n n

Since © x t £ = © f © x k and ©, =
x
= 0' x the # different values

—a.*.— — —a) — * — —
n n n n n n «

of (®„cj» are both ©^ %c 8,8, ^ 8_.82 ^ QnJbzJJc

and © x to © X X ^ ©\© x ^ ©I"
1

©, ijta— CO v — — CO — -co — —w
n n n n n n n

In particular if c be 1 and co o the /* ;*th roots of 4-1 or if (art.

393) viewed operationally of + are © © x ©^ © 3 ©^ of which
n n n n

the first © .= ©„. And by taking i any consecutive H terms of the
H

21
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series ...—3 —2 — 1 o 1 2 3... the same round of values of 0, {

n n

is got though not always beginning with the same value. Therefore

all the n values of (%Mc)
n are the products made by multiplying

any one of them by the several values of (+1)* or (+)*i. Further

if v be any whole number less than and prime to n since the value

@£^ of (+)* i is equal to the value ®^ precisely when — and

v(—i-\-i')
therefore is o or a plus or minus whole number and this

n r

happens precisely when —i+i' is either o or (art. 2 10) a plus or

minus multiple of n all the n values of (+)*i are 0„ 0^ 0^
n n n

Thus the 2 second roots of +c or ® c are

© \fc ®±\/c
or +»Jc -s/c

of -c or ©^ e^c |V
V or (-)V^ -(-)V*

of {-fc or
<ey <d^c % »jc

and of -(-)** or 0^ 0^ 7VV

- {Vi +
<-Vi}* k/i-<->y;}*.

The 3 3rd roots of +c are o^r 0^ ^ r

of -c
%^]c %$c %^Jc

or

of (-)** 0_v^ 0jl^ 0^ or

and of -(-)** 0,^ 0^ 0^ or
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Because generally

coso> = (cos (a)
—
fsin-6jj

=
2(cos-o>J

— I = I—
2(sin-o>)

and specially cos - = sin
^
= ,/ - and cos -7= sin -? are both plus

C0S
J6
=
*Jl{s/\

+ l

)
sin^ =

\/KV^+ I

)-
Putting the" fg

for these severally
—

The four values of (+cf are +f/c {-fijc -$c -(-)*{/c

of((-)M* {/+(-)Vw« {-^+(-)Vi^ (-/-(-)V)^ It-hVkp
of {-(-)*<}* U+(-)V?4" !-/+(-)V)^ {-*-(-)*/}# [M-)*g\ti*

401. If a) be the algebraic expression of an angle in reference to

a perigon as unit m 11 any other whole numbers than o and c a

numerical quantity

n ' n K ' n n

i being a plus or minus whole number.

If
/jl

v express the multiples that in ft are severally of their

greatest common measure — z = -z=— . Let an unfractional divi-
n v v

sion of fit by v give a plus or minus whole quotient q and a plus

or minus whole remainder r (which may be o) of absolute value

less than v. Then - =—±-=-+q and
v v v

But different values £
t

i' of i give the same value of r precisely

when ——- - is a plus or minus whole number and since u is
v

prime to v this happens (art. 2 10) precisely when -/,+*' is either o

or a plus or minus multiple of v. Hence the values o 1 2 3 4 ... v— 1

21—2
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tn

of i all give different values of r and hence i^Jy has precisely the

v different values

n « "*V n v n + v

m
As in art. 400 these v different values of (©«/:)* are the products

of multiplications of any one of them by each of the v z/th roots

of +1.

402. Def. The symbol c
d

if c be a numerical and d a protensive

quantity stands for the arithmetical value of c
d

.

tn

Thus c n
symbolizes the same as

(%/c)
m

.

403. If d be an incommensurable numerical quantity and so

known only by this that when n any whole number but o is chosen

at pleasure there is always a whole number tn such that

. m . m+id> — and <
n n

the symbol (®uc)
a wherein c is a numerical quantity and co is the

algebraic expression of an angle in reference to a perigon as unit

can only get meaning through corresponding values %m _(

f

^/c)
m

tn m+i

©**+! . (%/c)
m+I of (®wr)» (®a>0~*~ severally. But those correspond-

ing values express algebraically directed distances which when n is

taken endlessly great have numerical expressions endlessly near

c
d and make with the primary direction angles having algebraic

expressions endlessly near d(a>-\-i). Wherefore (Suc)
d must be taken

to mean

i being taken any plus or minus whole number.

Since two values ©
rf(fc)fZ/) ®<t

{
„+n of ®

rf(w+0
are equal precisely

when d(a)+i')
= d(a>+i)+i" where i" is a plus or minus whole num-

ber and this is precisely when <Z(—it+i')
= i" or the incommensur-

i"
able d is equal to the plus or minus commensurable —;

—» it

follows that the endless values of ®
d{(0+i)

c
d
got by making i in turn

...-3 -2 -1 o 1 2 3 ... are all different.
~*

Since as n becomes endlessly great %c becomes endlessly near 1

and -
(o>4-z) whatever unchanging value be given to i endlessly

near o (Buc)° must be taken to symbolize ® or +1.
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404. If c e be numerical quantities and eo be the algebraic ex-

pression of an angle in reference to a perigon as unit (©W£)
_I

is just

as in art. 360 to be taken to symbolize ^r— and (©w<r)~* K©^)
-1

}'

or
(sb)

:

Since then (art 396)
—— = 0^- = O^c-1

vJwt C

— v

^(-^)w+{^)(_«-)^__— ^(-<)«o+-i)
C

where i or —i is any plus or minus whole number.

Hence if e be a whole number * (©o^)"" has the single value

tfi

©.wo/7
*

if * be a simple fraction — with the terms w n prime to one

another (®ac)
n has the ;/ different values of © m tc

*
got by

n h

making i in turn o 1 2 3...;/— 1 and if <? be an incommensurable

numerical quantity d (®wc)~
d has the endless different values of

©-rfuH^
_ar

got by making i in turn ...—3 —2—10123....
It here comes out that all the different values of (®uc)

a
if a be

any protensive quantity are precisely all the different values which

can be got of ®
a(u+i)

c
a
or ®auHatt

a

by making i in turn all plus or

minus whole numbers.

405. After the meaning and the values come the laws of pro-

tensive indexed powers of quantities protensive or ditensive. If

o)
-»Jr

be algebraic expressions of angles in reference to a perigon
as unit c d numerical quantities a a protensive quantity and i h g
plus or minus whole numbers taken at will

{%^d)\^cy= [®a(l/
,+l)£)©a(w+A,?=6^,^?= ®4^*«*^^

{(©*0©^)
fl = (©w +dc)'

= %a^g0£
and by making g h i all plus or minus whole numbers h+i is

made all plus or minus whole numbers so that ©a^-H**-)} has the

very same set of values as ©a(M+^,.

.'. (0^/)-(®^)'={(e^)0^:}-.

(®^dy ®«<*+«)£r 5!
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' '

(©^)- v@wJ '

406. If b be a protensive quantity and all else as before

— (h) ?+* — (S) /"+*

and (6^)^=©^^^^
Hence and because ak+bi=(a+b)g whenever i= /i=g the dif-

ferent values of (©w£)*
+* are all among the different values of

If either a or b be a plus or minus whole number any value of

(a+b)(o+a/i+bi differs by a plus or minus whole number from the

value of {a+b)w+{a+b)g got by giving g the same value as either i

in the former case or h in the latter and therefore all the different

values of (®c/)*(® (/)
a
are then precisely all the different values of

7/1 V
If a b be simple fractions — - each expressed in the least

fir S

m in r r

terms (art. 401) (0„c)" = ®„ ,±c"(®acy = 0, Lc
7 and therefore

Let * = z/tf and s = o-/c where k is the greatest common measure of

n and s then —\-- = and it has now to be found whether or
n s VGK

no k i can be taken such plus or minus whole numbers as to make
hcr+iv any given plus or minus whole number f. Since any multi-

ple la of a is a multiple of v precisely when the equal al is and

since a is prime to v this (art. 210) is precisely when / is a multiple
of v unfractional divisions of a 2a 3a...(v—i)a severally by v are

all inexact. And since the divisions of the less ka and of the

greater ka of any two of these can give the same remainder only
when —ka+k'a or the equal (—k+k')a is a multiple of v which as

before is precisely when —k+k' is a multiple of v the remainders

of the v— 1 unfractional divisions are all different. Those .remainders

then are just all the whole numbers but o less than v and among
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them therefore is I. In the division that gives the remainder 1

let h'a be the dividend and i' the quotient so that 1 — /ia—iv and
therefore f=f(Jia—iv) — (fh')<r—(fi)v. Hence ha+iv =f precisely
when ha+iv = (fh')a-(/i')v therefore precisely when

[i+fi')v={-h+fh')a or

, (-h-fli)* _ *{-h+fU)
v v

therefore again as before precisely when —h+fli is a multiple tv of

v and at the same time i+fi' = at = ta or is the same multiple of a
and therefore at last precisely when

h=fk'—tv and i=ta—fi'

t being any plus or minus whole number taken at pleasure. Any
plus or minus whole number f then being taken at pleasure

(0„^(0^)» = @ w .

\« s V(TK

and hence has precisely the vaic different values got by making f
1tl r Itta+rv

in turn o 1 2...v<tk— i. On the other hand —\— — . And
n s VGK

ma+rv is prime to v since any common measure of them measures

(art. 197) rv therefore (art. 200) ma or am therefore (210) m which

being prime to vk or kv is (art. 198) prime to v. Also ma+rv is

prime to a. Hence (art. 207) ma+rv is prime to va and therefore

(art. 2 10) all the common measures of ma+rv and (vo)k or vaic are

precisely all the common measures of ma+rv and k. Let then X be

the greatest common measure of ma+rv and k and let k — k'\.

Because then X is the greatest common measure of ma+rv and vaic

and vaK= va/c'\ = (yaic')\

(0^=0 ^
and has therefore precisely the vaic different values got by

making g in turn o 1 2... vaic — 1. Thus it is only those values of

(®a^)
J

(©a^)
w
got by making / a plus or minus multiple of \ that

are values of (®w^)
" s and therefore it is only when X is 1 that the

several values are the same of (©a/")
'

(®<^)
" and of (®w^)

rn r
If a be — and b — then as above (art. 404)

n s

\n s) vera-
—'
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and ma—rv is prime to va so that if \ be now the greatest common
measure of ma—rv and k and k = k\

\n s )

u s

vctk'

The vgk different values of (®w<r)

" * are therefore — of the vaie

—— — 7/2

different values of (®uc)
s
(®wc)

M
. And the cases when a is and

b - and when a is and 3 — may be dealt with in a like way.
s n s

*

If a be plus or minus an incommensurable numerical quantity

and b +- (a±-)co+a/i-\— differs from (a±-)a>+(a±-]g by a plus

^ t

or minus whole number /just when #(—£"+//)
= +-£"+£

— and inas-

much as the incommensurable a cannot be equal to the commen-
r i

±-g+t——
S S V 1

surable——=
— this is just when —g-\-h — o and + -g+t— = o.

—g+h
~
j s

Hence in each of the endless sets of s each that make up all the

+-
endless different values of (©</•)

f

(® c)
a
there is just one that is a

r

value of (®uc)
a~T

Lastly if a b be plus or minus quantities both incommensurable

in absolute value (a+b)w+ah+bi differs by a plus or minus whole

number / from (a+b)co+(a+b)g precisely when a(—g+h)-\-b(-g+i)=t.

Unless a b be such that b = a-+ - p q being whole numbers each

else than o u a plus or minus whole number else than o prime
to / and v a plus or minus whole number prime to q this is pre-

cisely when —g+i=o —g-\-h
— o and t — o and then the only values

common to (©„£)*(©,/•)* and (® ft/:)

a+* are those wherein i = h=g.
u 1)

But if b = a--\— a(—g+/i)-\-b(—g+t) = t otherwise precisely when

b — —a *
,

. -| : therefore precisely when a\——H— )

=
;
—

therefore a being- incommensurable precisely when ——.-\
— =o

-g+i p
t v

and ———.
— = o therefore again (art.2i i) precisely when x y being

any plus or minus whole numbers but o —g+A=—tix —g-\-i—px=qy
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and t — vy and at length therefore if P=p t p q = q,p p being the

greatest common measure of / and q and z be any plus or

minus whole number but o,
—since px = qy just when - = -q = f = ^

y P P P,

and therefore just when x = qz and y=pz— , precisely when

h=g—{tiq)z i=g+{pq)z °r g+(qp")s and /= (vp)z. The first two of

these last happen precisely when g = /i+(uq)s and i=h+[{n+p)q]z

and hence if b = a—\-- of the endless different values of (®w^)*(®w^)
a

p q
that have any and the same value of h not only is that one in

which i = h a value of (®o,^)
a+* but also every one in which i has

one or other of the endless different values h+{u+p)q t h-\-{(ti+p)q]x2

h+{(u+P)q}*2 h-("+P)<l, k-{{u+p)q}*2 //-{("+/)?,} x 3 .

Moreover since it is precisely when (u-\-p)q j
=i that qt

—^ and

n+p—i and precisely when iti
J
Vp)q i

— — I that q t
=i and u+p = —i

when too in either case q = p p=pq = qp and therefore -=—'

q P
where vp t

then is any plus or minus whole number w it is precisely
I — i) 111 . I f) 7JU

when either b = a—^- +— without / being 1 or b = a —+ - that
P P P P

all the different values of i^Jfi^Jf are values of (®wr)
a+

*.

Since in all cases (a+fr)a>+a/i+6i
=

(a+&)a>+(a+&)/i+6(-/i+i)

407. If the letters stand for the same as in arts. 405, 406,

(eb)^*
=

(
e^He-^)"

= (+)~W)*
+~* =

(+)W->

^r^W =(+)
"

(0™c)
^ and =

(+)
"(<dr

, —a+b
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408. If a b be protensive quantities c a numerical quantity co the

algebraic expression of an angle in reference to a perigon as unit

and g h i any whole numbers chosen at will

and (®»c)
ab=®

(ab)loHab)^
Any value of (Suc)

ad
is therefore always a value of {(©„£)*}".

If n s be whole numbers each else than o and m r plus or

minus whole numbers prime severally to ;/ s

r m in

s s \n s I n s n \n s J \sn nJ

and if tc being the greatest common measure of m and s m — m'k

,
mh hm' mh i hm' + is' . . ,

-
r .

and j = j /c
— =—

r h - = ;

— and as in art.400 h 1 may
sn ns sn n ns

be taken such that hm+is' is any plus or minus whole number f
whatever so that

Again if \ being the greatest common measure of 11 and r 11 — n
t
\

m V mV m!V
and r=r\ — =—- = -7—t and because each of the plus or minus

' n s sn
t

sn
t

whole numbers m' r
t

is prime to each of the whole numbers s' n
t

m'r
l
is (art. 208) prime to s*n

t
so that

tn r

Therefore the
.$•'//,

different values of (®j:)
" J are — of the j'« or

A.

«x' different values of {(©w<r)

7
p.

If a be a plus or minus incommensurable numerical quantity

and
(«-]ft)+<2

—hzz differs by a plus or minus whole number t from

(a-ja+la-jg precisely when al—— m = * therefore a being

incommensurable precisely when
~ r̂ l

+i=o and *= o and there-

fore precisely when t =
~~ l r&

. Let h=r)+h's rj being a whole
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number less than s and H a plus or minus whole number then since

the unfractional divisions by s of o r rx2 rx^ ... r(s-\) severally-

all yield different remainders the division of some one ry of these

yields the remainder rj.
Let ry = r)+ks k being a plus or minus

whole number and it is precisely when g= y+gs g' being a plus or

minus whole number that i= £= —/i'+k+rg' for it is then
s

only that —h+rg is a plus or minus multiple of s. Hence every

value of {(©u^)
7

}"
is a value of (©„<:)*

s

just when r is ±i.

If b be a plus or minus incommensurable numerical quantity
in m

((h\*Y~ = (h) (h)» = (h)

and
-£]a>-H -£)>&+- differs by a plus or minus whole number t

from (—^)g)+(-^W precisely when —b(—g+/i)=t— . Hence there

nt m
are no other values common to {(©W^)*)

M and ((dU)c)
n than those in

which h—g and i is a plus or minus multiple of ;/.

Lastly if a b be plus or minus incommensurable numerical quan-
tities (ab)<xi+(ab)h+ai differs by a plus or minus whole number /

from (ab)co+(ab)g precisely when a{b(-g+h)+i) = t. Unless a b be

u 1)

such that a' 1 = b—h- where p q are whole numbers other than o
p q

u a plus or minus whole number not o prime to p and v a plus or

minus whole number prime to q this is precisely when h =g i=o

and t = o. But if a~I = b--i— a{b(-g+h)-\-i]
= t further precisely

when a x — b-~—h- therefore precisely when b(———
--\
—

)
=It y

\ t p) t q
therefore again b being incommensurable precisely when

———h- = o and -— = o and therefore precisely when xy being

plus or minus whole numbers other than o —g+h=ux t=px=qy

and i = vy. Since px — qy precisely when - = -q = - = ^ p t qt being

the whole numbers other than o that severally express what multi-

ples/ q are of p their greatest common measure x— qz and y =p t
z

B being a plus or minus whole number else than o and therefore

each of the above relations and sets of relations holds precisely

when g=h-(uq)z $m (yp)z and t— {p lqp)z. Hence it is precisely
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any such value of {(©w^)*}
a
as has // any value and i either o or

(vp)z that is a value of (®wc)
ab

the value to wit which has g
either h or h—{iiq)z. Moreover since vp t

is I or — i precisely when

pt
is I and v either I or — I and then p = p q^q.p—pq, and

- = -r1 = — where w is any plus or minus whole number but o all

P pq, q
the values of {(SucY}

a and of {®„c)
ab

are the same precisely when

a q-q
Since in every case @

(a,)w+(a,)A+a ,
= ©" ©(«*>«+<«*>*



CHAPTER V

EQUATIONS
OF THE FIRST AND SECOND DEGREES

409. Def. An Equation is a statement that two quantities are

equal. And these quantities are called the equation's

Members Terms or Sides.

There are as many kinds of equations as meanings of the word

equal. Thus an equation may be one of identity or sameness

as 2a+b = 2a+b of simple result stating as 4+5—6= 3 of definition

of a symbol as ^x=-x-\-x+x or of operational equivalence as

?>x+2x = 5-r. But the following is what chiefly bears the name

equation.

Def. An Equation of Specific Relation is one which

having one or each member either a symbolized quan-

tity or an expression with one or more symbolized

quantities in it marks out these quantities to be not any
whatever but certain only.

Def. When of the quantities that enter into an equation or set

of equations of specific relation one or more are taken

as given or known and the rest as sought or unknown
it is called Solving the equation or set of equations to

find precisely what operations performed on the given

quantities give the sought.

410. If the letters stand for any numbers whole or fractional

any numerical quantities commensurable or incommensurable any

protensive quantities plus or minus or any algebraic quantities pro-

tensive or ditensive

a+b+e+ '•'+£ =/>+q+ • • • +v

precisely when any one of the following equations holds

a+b+e+ • • • +g-b =/>+q+ • • • +v-b

a+b-b+e+ yg^p-b^q^ yv

a+(b-b)+e+ • . • +g =f-b+q+ . . . +v

a+c+ •••+£ =/>-b+q+ • • • +v.
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Since p+q = p—{—q) P+ql K> niay be taken as the result of any
series of successive additions and subtractions and likewise

a+b+c-\ \-g. Hence an equation expressing the equality of re-

sults of additions and subtractions holds precisely when another

equation holds got therefrom by changing either an addition of a

quantity anywhere on one side into a subtraction of that quantity

anywhere on the other or a subtraction of a quantity anywhere on

one side into an addition of that quantity anywhere on the other.

Each of these changings is called TRANSPOSITION. Of course in

either series of successive additions and subtractions each or any
of the quantities operated with may be o.

411. If d b' c ...g be any quantities and a b c...g p any

quanties but O the equation

d b' c
1

g'

a b c g
holds precisely when severally

(d b' c' z'\

\a b c gj
r

d b' c' z'
-p+-rp+-p+'-+4-p = o.
a r b

r
c
r

g r

Further if d = da
t
a — o.a

l
b' =

/3'b, b m j3b j
c' = 7V, c = <yct

z' = &z, g=6g, then - = - T =9 - = - -=4 and if «

£, 7, . . . 0, being quantities such that aa,
=

fifi,
= 7% = =

00, /

be taken equal to each of these products -oca,
=

(-aja,
=

a'a, and

so for the rest and the equation then holds precisely when

a'a, + £'£,+77, + ..-+0'0, = o.

This process is called Clearing an Equation of Fractions.

When a a /3' j3 ... 0' are all whole / is most simply taken equal

to the simplest common multiple of a /3...0. Were it not for the

condition that/ is not o the equation a'a,+£'£,+ f-0'0,
= O might

be fulfilled when the equation
—+-H h— = o is not. The betterH a b g

to meet that condition fractions may be cleared off one by one

instead of all at once. Thus for getting rid of -=- or the equivalent

^ p may be taken ft and then -+-r+-H h— = o precisely when
/8
r- * r a b c g
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If an equation
- a'+ -^P+ - ~ +

qO'
= o be given the more imme-

diate way to clear from fractions is that this holds precisely when

severally

and if / = a
t
(x = ftfi

= =
6,6 V (a,«)-a

=
a,a-a'

= a/a-W and so

on precisely when

412. In art.411 none of the quantities a, a b
t ft . . . . g, 6 is o

because it is there understood that none of the quantities a b...g
is o. But it may happen that some values of the quantity or

quantities held as unknown in the equation —\-^--\ |-^-=o
a b g

make some of the quantities a b ...g to be o.

If a! = a'a
/
and a = aa

t always and some values of the un-

knowns give a
t
the value o then for these values ^ takes the

utterly unmeaning shape - and therefore cannot be said to be

equal to -
. As in all other uses of the quotient symbol so now

by the symbolization extension principle
- is still to be held such

u
that ~v=u and therefore in particular when u is o and v o such

that

o
-xo = o.
o

But it is precisely any quantity whatever that multiplied into o

gives the product o and hence - must be taken to symbolize any

u
quantity be it what it may. So too - when u is not o must be held

such that

11

~xo=u,
o
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But there is no quantity whatever that multiplied into o can give a

product anything else than o. Yet since however great an absolute

value any given quantity k may have v may (arts. 172,300) be

taken of so small an absolute value that the absolute value of

- is greater than the absolute value of -k and therefore (arts. 9 1,89,

1 u
300) that the absolute value of u- or of the equivalent

- is greater

than the absolute value of 11-k or of the equivalent k v may be
U

U
taken so near o that - has an absolute value greater than any

ft

given numerical quantity however great. Hence - when u is any

quantity but o can only be taken to mean what has an endlessly

great absolute value and what therefore ® xco being the alge-

braic expression of an angle otherwise symbolizes.

In like manner -xo and -u are to be held such as severally00 f

fulfil the relations

1 1

ox-xo = o ox-// = ;/.

o o

And hence -xo is any quantity and -u u being any quantity

but o what has an endlessly great absolute value.

If then in the equation -+^+—+•••+- = some values of^ a c g
b' . . a b' c' g

some of the unknowns make -r- one of the quantities
— T

o a c g
o u

become - and none of the rest of the shape - with u not o the
o o

equation holds just when

b' a _g'_ _c'
b

~
a g c

and here the first member being simply anything which multiplied

into o gives o for product may be taken as equal to the other

member whether this other be of the shape
- or some fixed quant

tity. Hence those values fulfil the equation.
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¥ q
b o

If again some values of some of the unknowns make — - and

c 11

one and only one — of the other quotients
- where u is not o the

ji

member j is still what multiplied into o gives a product o but the

member * = + [ )
and there-

a g c a g c \ c)

fore such that f— -—- -)xo=f-—
•

-Jxo—xo+f -Jxo

and .*. = xo which is not o. Hence the values of the unknowns
e

do not in this case fulfil the equation.
ri

If for some values of some of the unknowns -y takes the shape
I JI XI

- and of the other quotients several — -5" j and only these take

the shape of - u being another quantity than o

a g' c a' f d' g' c , . .A — • = <-z— —
j
— and a single quotient

a g c a f d g c

must (arts. 132,354,398) be found equal to
-^ -7 for

S It

other values of the unknowns then according as - takes the shape
-

z o

or not for the values of the unknowns is the equation not fulfilled

or fulfilled by these values.

Likewise values of the unknowns that make only one quotient

- u being not o do not fulfil the equation and values that make

u
several of the quotients of the shape

- fulfil the equation precisely

when the algebraic sum of those several quotients for other values

of the unknowns is equal to a quotient which for the values takes

the shape
- since if the several quotients were -7 -^

• • •

7 the equa-

tion holds precisely when severally

ci c g' (V d' f'\_+ _ + ... +€_ + , , ..4/ =0
a c g \b d f)

~b^d^'"^f g c a'

22



338 ALGEBRA

The cases when one or more of the quantities summed in an

equation take the shape -xo ox- -xu or u- u being else than o

are to be dealt with in a like way.

413. PROP. A product is equal to o precisely when one or other of
its factors is equal to o.

For if any one of the factors of a product be o the product
is o and if each of the factors be else than o the product is else

than o.

414. Equations are CLEARED OF ROOTS as in the following
instances. Let an equation free from root symbols be sought ex-

pressing the very same relation as the equation p+q
1* = 0. If a x

be any values of p* x2 =p and a2 =p .'. x 2 = a2 and this is pre-

cisely when severally x2 — a2 =o {x—a)(x+a)
—

o. But (art. 41 3)

(x—a) (x+a) = o precisely when either x—a = or x+a = o which

severally are precisely when x = a x = — a. Wherefore if a be any
value of p

11 the only other value is —a. This is at one with what

was found in art. 400. Likewise if b be any value of q* the only

other is —b. Hence the equation p+q = o holds precisely when
one or other of the four equations holds

a+b = o —a+b = o a—b = o —a—b = o.

And since —a+b = o precisely when a—b — o and —a—b = o pre-

cisely when a+b = p+q =0 precisely when either a+b=o or

a—b = o and therefore (art.413) precisely when severally

(a+b) (a-b) = o a2-b 2 = O, that is p-q = o.

The equations p+q = o p—q — o then express the very same re-

lation.

Inasmuch as p-q = (/*+£*)(/*-£*) = (/*-?*) (/*+£*) the equa-

tion/—q=0 may be held as got from the equation p*+q^ = o by means

of the factor/^—<f% An expression used in this way to get from an

equation with one or more root symbols another equation express-

ing the same relation but without those root symbols is called an

Unrooting Factor of the equation.

The equation p^—q* = o may be shown in the same way to

express the same relation as the equation p—q = o and hence the

equation p*—q* = o expresses the same relation as the equation

p+q = O. Equations having the same one or more root symbols
are called Conjugate which singly express the same relation as

the same other equation free from those root symbols.
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Either of the equations &+/>*
= o k-p* = o in like manner

expresses the same relation as the equation {k+p ){k-p*) = o or the

equation k2

—p — o.

For finding the rootless equation that expresses the same relation

as the equation p*+q*+f- = o let p*'s two values be a and —a q*'s

two b and -b and r*'s c and —c then /^+q*+r
i = o precisely when

one or other of these eight expressions = o

a+b+c a+b—c a—b+c a-b—c

—a+b+c —a+b—c —a—b+c —a—b—c

and since the last four in order are severally o precisely when the

first four in backward order are this happens precisely when

[a+b+c) (a+b—c) [a—b+c) (a—b—c) or the operational equivalent

(a
2

Y+(b
a

Y+{c
a

)

2-2b2c 2-2c 2a2-2a2b2 = o,

that is p
2

+q
2+r 2

-2qr-2rp-2pq — o.

The same end is gained by clearing away the roots one by one

and then it may chance that more roots than one are cleared away

at one stroke. Thus p*+r+r — ° precisely when

(p
i
+q

i+ri)(p
i
+q

i-ri
)

or

p+q+2p
i
q
i-r=0

and therefore precisely when {p+q-r+2p*q
i

){p+q—r—2p*q*) or

p2

+q
2+r 2

—2qr—2rp—2pq = o. Since

(a+b-c) (a-b+c) (-a+b+c)

= a{b
2+c2-a 2

)+b(c
2+a2-b2

)+c(a
2+b2-c 2

)-2abc

the equation p
i
(q+r-p)+q

i
(r+p—q)+r

i
(p+q-r)-2p*q

i
7'
i = is con-

jugate to, and therefore expresses the same relation as, the

equation p +q +r* = o.

Again a —a being the two second roots of / and b —b the two

second roots of q p* has the two values a3 —a3 and q- the two

b3 —b3
. Hence p*+q* = o precisely when severally (a

3+b3
)(a

3-b3)=o
(a

3
)

2

-(b
3
)

2 = o (a
2

)
3
-(b

2

)
3 = o and at length p3-q3 = o. Or since

p*+q* = i/>

i
+4

i
)(p-p

i
q
i
+q) and p

i
+q

i = o just when p-q = o and

p-p
i
q
i
+q=0 just when (p+qY-ip^q*)

2 or the equivalentp
2

+pq+q
2= o

p^+q^ — O just when (p—q)(p
2

+pq+q
2

)
or the equivalent p3—q3 = o.

Moreover the equations p3
+q- = o p^-q^ — o are conjugate relative

to the equation p3—
q

3 — o.

22—2
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To find the equation without roots that expresses the same

relation as the equation p +q = o let x a be any values of /* so

that x3 —p ai =p and .\ x3 — a3 or x3—a3 — o. Now

x3-a3 = (x-a)(x
2+xa+a2

)
= (x-a)\(x+-a) +/--+I U 2 i

•

=(,-4(,
+
^)-{ (-)^,}]

and therefore ;r3 = tf3 precisely when (art. 4 13) one or other of the

equations is true

Hence if a be any value of/* the only other values (as in art. 400)

are
-Jl+(-)*^L _|I_(_)*^L

if either of the last two be

symbolized by Xa the other — X2a and \3 = 1. Likewise if b be any

value of q* all the three values are b Xb X2
b. The equation p$+q

i=o
therefore holds precisely when one or other of these equations
holds to wit

a+b = o a+Xb = o a+X2b = o Xa+b = o Xa-\-Xb = o

Xa+X2b = o X2a+b = o X2a+Xb = o X2a+X2b = o.

But Xa+b = Xa+X3b = X(a+X
2

b) X2a+b = X2

(a+Xb) X2a+Xb = X2

{a+X
2

b)

Xa+Xb = X(a+b) Xa+X2b = X(a+Xb) X2a+X2b = X2

(a+b) and neither X
nor Xa

is o so that one or other of the nine equations holds pre-

cisely when one or other of the first three of them holds. Therefore

P +q — o precisely when

(a+b) (a+Xb) (a+X
2

b)
= o

and therefore v (a+b) (a+Xb) (a+X
2

b)
=

(a+b) (a
2-ab+b2

)
= a3+b3

pre-

cisely when p+q = o.

In like manner each of the equations p*+Xq* = o p^+X
2

q^ = o

and therefore too the equation (p^+Xq*) (p^+xrf) = o or

p —p q +q = o holds precisely when p+q = o.

In the same way p*+q? = o precisely when one or other of the

expressions a2+b2 a2+X2b 2 a2+X4b2 or a2+Xb2
is o therefore precise-

ly when (a
2

)
3
+(b

2

)
3 or (a3)

2

+(b
3
)
2 = o and therefore precisely when

p2

+q
2 = o. And p^-p^q^+q^ = o precisely when p

2

+q
2 = o.
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Also either of the equations p*-q*=o p
i
+p*q

i
+q

i=o holds just

when p-q = o and either of the equations Jr—q* = O p 3
+p*q*+q 3 — O

just when p
2

—q
2 = o. Moreover both p 3

-\-q
3 =0 and p3—p 3

q
3
-\-q

3 = o

just when p*+q* = o and both p 3—q 3 =o and p~
3+p 3

q
3+q 3 = o just

when p^-q4 = o.

For getting the equation clear of roots that expresses the same

relation as the equation p*+q +r* = let /*'s three values be a \a

\2a ?*'s b \b \2b and r*'s c \c \2c then p
i
+q

i+ri = o precisely

when one or other of the nine expressions is o

a+b+c a+b+\c a+b+\2c a+\b+c a+\b+\c

a+\b+\2c a+\2b+c a+\2b+\c a+\2b+\2
c.

For any one of the nine got from these by putting \a for a and any
one of the nine got by putting \2a for a is o just when some one

of these is. As for instance \2a+Xb+c= \2a+\4b+\3c = \2(a+\2

b+\c)
and therefore is o just when a+\2b+\c is. The product of those

nine expressions is operationally equivalent to the product of the

products of severally the first three of them the next three and

the last three and therefore putting for a3+b3+c3 ^a
2b lab

2

severally

fgh
- {f+gU)(f+^+\*h){f+\*g+->Ji) = (f+g+h)(f

2

+g
2+h2

-gh-hf-fg)

=f*+gl+h3-zfgh = (a
3+b3+c3

)
3-2ja3b3c3 .

Hence p^+q^+r* = o precisely when (p+q+r)
3-2ypqr = o or

~(j>
3+q3+r3

)+p
2

(q+r)+q
2

(r+p)-t-r
2
(p+q)-7pqr=o. Hence too the equa-

o

tion p*+q*-\-r* = o is true just when any one of the following equa-
tions is

(/+?V-(/+<?V+>4 = o (/+^+^)}(/+^)
3

-(/+/)r*+r
f

)
= o

(p*+g*)*+r = o {ph^y+r = o (/*+V$fy+r = o

{(J>
i+^i

)
3
+r}{{p

i+\2

q
i
)
3
+r] = o

I ^{p 3
q^-pq\pV)J

p+q+r-Sptyr* = O (/*+?*+7*) (/*-ftf
f
+**-?V-f*/*-/V) = o
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p^+q^+r^-q^r^-r^-p^q^ = o

(p+q-vr)
2
+l (p+q+r) (pqrf+g(pqrf = o.

The equation p +q = o is fulfilled precisely when if a —a be

p^'s two values and b \b \2b q s three one or other is o of the

expressions a+b a+Xb a+X2b —a+b —a+Xb —a+X2b

and therefore y (a+b)(a+Xb)(a+X
2

b)(-a+b)(-a+Xb)(-a+X
2

b)

= {(a+b)(a+Xb)(a+X
2

b)}(-a+b)(-a+Xb)(-a+X
2

b)
=

(a*+b*)(-a*+fr)

= -(a
2

)
s
+(b

3
)

2 and further

=
{ (a+b) (-a+b) } { (a+Xb) (-a+\b) } (a+\

2

b) (-a+X
2

b)

= (-a
2+b2

)(-a
2+X2b2

)(-a
2+Xb2

)

= (-a
2+b2

){(a
2

)

2+a2b2+b4
) precisely when severally

_/3+2
2 = o -p%+g = o (p*+q)(-p*+q)=o p%+q = o

-p+q* = o (-/+?*) (p
2

+Pq*+q*) = O p
2

+pq
%
+q* - O.

If to get a rootless equation expressing the same relation as

the equation p*+q* = o x a be any values of p* x4 =p a4 =p and

/. x4 = a4 which happens precisely when severally x4—a4 = O

(x
2-a2

)(x
2+a2

)
=o {(x-a)(x+a)}{x-(-fa}{x+(-fa\ = o

(x—a)(x+a){x-(—fa}{x+(—fa}=o and therefore all the values of

>*are a -a (-fa -(-fa. If likewise b -b (-fb -(-fb be the four

values of q* p*+q
T = o precisely when

(a+b)(a-b){a+(—fb){a-(-yb] =o and hence precisely when severally

p-q = (/*-£*) (/+?*) =0 j>*+g*=0 p*-g* = /-/ = o

/+(-)V = ° P
i
+p

i
q
i
+p

i
q
i
+q

i = O P>
%
~p

i
q
i
+p

i
q*-q* = O

and others.

As to the equation p^+q^ = o if x a be any values of p^
x^—p = ai and

**-a* = (x-a)(x
4+ax3+a2x2+a3x+a4

)

= (x-a){(x
2+aa

)
a

+(ax)(x
2+a2

)-(ax)
2

}

-
(x-a)(x

2+a2

+^ax-^ax)fx
2+a 2+-ax+^ S

-ax)
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= (x-a)
(

V5-1

+ i-my. + (
'-(

V
4

+1

(x-a) { (x-ea-gd) (x-ea+ga) } (x+fa-/ia) (x+fa+/ia),
—

V5-i V5+i
(_^ /5±V5

(_)*
/S-V5e f g h standing for

severally
—

,

'

= (^a){x-(e+g)a}{x-(e-g)a}{x^/-/i)a}{x^/U)a}

Hence /*'a five values are a
j^>Zl+(_)*

/5+V^L

{^-hV^-}" -fr^-'W^
— !— f~(-)

T
A / q \

a or symbolizing the 2nd of them by Xa a

\a \4a \2a \*a. Likewise ^'s 5 values if b be any one are b \b \2b

\3b X4 b. Hence p*+q*=0 just when

(a+b)(a+\b)(a+\
2

b)(a+\
3
b)(a+\

4b)=o and therefore just when se-

verally

(p*+q
1$

) (p$-/sq*+/s'g*s'-p*g*+g*) = o p+q = o

p\-p\qsjrp\q$-p\qsjrq%
- Q .

From the values here found of/ 5 ancj what is found in art. 400
it follows that a perigon being unit angle

I

cos-
5
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Def. An equation or set of equations which holds precisely

when another equation or set of equations holds is said

to be Equivalent to that other.

Def. An equation having one member a polynome of the nth.

degree in one or more unknowns and the other member
o or any equivalent equation is said to be of the /zTH

Degree in those unknowns.

416. If xn
+pjc

n-x

+p2x
,t

-*l hA-i^+A x~a be polynomes in x of

the /zth and 1st degrees severally there are (arts. 192,300,354,398)
a polynome .r

M"I

+^^+^t^w~3^ bJn-Jt+y*-i m x of tne (#— i)th

degree and a quantity qn independent of x such that

xr+Pf~+Pj~+ . . . +p^+pn

= (x-a) {*r*+qfr"+q#~*+ • • • +qtF^+qte^+qH.

If in this operational equivalence x be given the particular value a

an+Aa»->+p2a"-
2+ . . . +A-x«+A = 2n

and if further a be such that an+p1a
n~T

-\-p2a
n~2

-\ hpn^a+pM is o qn

is also o. Hence if Pn be a polynome in x having x*
1 the term of

highest degree and a be a root of the equation in x Pn
— o there is

a polynome in x P„_ x having xn~*
the term of highest degree such

that

Pn ={x-a)Pn_1
.

Hence PH
= o precisely when either x—a = oor Pw_x

= o and hence

all the roots of the equation Pn
= o are precisely a and all the

roots of the equation Pn_l
= o. In the same way if b be a root of the

equation Pn_x
= o there is a polynome Ptn with x*

1'2 the term of

highest degree such that Pn_x
= (x—b)Pn-2 and all the roots of the

equation Ptn — o are precisely b and all the roots of the equation
Pn-2

= o. Wherefore

P, = (x-a)(x-b)Pn_2

and all the roots of the equation Pn
= o are precisely a b and all

the roots of the equation P„_2
= o. In the same way if c be a root of

the equation PM_2 = o Pn_2 — (x—c)Pn_3 Pn_3 being a polynome with

xH~3 the term of highest degree

Pn =(x-a)(x-b)(x-c)PM_3

and all the roots of the equation Pn
= o are precisely a b c and all

the roots of the equation Pn_3—o. And so on until at length a poly-
nome P

x
is come to with x the term of highest degree when if h be

a root of the equation Pt
= o P

x
= x—h and h is the only root of
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the equation Pl
= o since x—k is not o for any other value of x

than //. If then in this way

P. = (
x-a)(x-b)...(x-f){x-jr)Pt

= {x-a)(x-b)...{x-f)(x-g){x-h)

all the roots of the equation Pn
= O are precisely a b c...g h.

If PH be the polynome xH
+pl

x n-1

+p2x"-
2

+'--+p„_ 1x+pn this is

the polynomic equivalent of (x—a)(x—b)(x—c)...(x-f){x-g){x—h)
and therefore farts. 185,300,354,398)

st being the sum of the products made by multiplying together

every i of the 11 quantities a b c...f g h.

417. An equation in x of the first degree takes one of the shapes

A^+A = ° xP<APx — ° A being some quantity else than o and of

these the former holds just when severally AC^+A'A) ==0 *+P7Pi=o
x——p~^pz and the latter just when severally (x+p1pZ

1

)po=o
*4-AAI==0 *=-p1pf.

An equation in x of the second degree takes one of the shapes

A* 2+A^+A = ° x 2

p +xpi+p2
= ° A being else than o and the

former of these holds just when At-^+CAA^+AA) =0 or

* 2

+{P:Pi)*+poP2 = o and the latter just when (^
2

4-.*AA
I+AAI

)A = O

or x 2

+xpipZ
1

+p2p;
1 = o. An equation of either of the shapes

x 2

-\-px+q—0 x2

+xp+q=o holds just when severally

(«-3/)'-Q/)'+j-o (
i-+ :/

)

,

-{_
?+

(i,)

,

},o

h^-HG')?]h>h+
G')T]-»

and therefore just when either x— —
-p—\—q+[-p) \

or

-[>{-*
+ 0)°

which are both included in the single

expression of the two values

When q is o the two values of x are -p—p and —p—p or o

and —p which come at once from the equation x 2

+px = o or

(x+p)x=o. When
?=(-/) ]-£+(-/) f

has only the single value
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+0 or o and the only value of x that fulfils the equation is —p which

comes at once from the equation x 2

+px+(-p J

= o

For solving an equation of any degree the one thing needed is

to find polynomes of the first degree whose product is operation-

ally equivalent to the equation's polynomic member. This how-

ever has never been done for any equation of a degree higher than

the second expressed in general symbols Avithout bringing in some

condition not at all necessarily implied in the equation itself.

418. The following are examples of equation solving.

(1). |(4*r+7)+i(4-vtr)
=

20+5(5;tr-2) just when singly

gx4^+
3J +2_^+|_gx5^_20 =

V3 2 4/ V 2 3/

20 2Q 29/ 12 2Q\-^X 2T = —[* X^ =0 X=2.
12 6 I2\ 29 6/

, . 5^4-3 4^—11 2J-Q, I93 .11 ,,

(2).
-—-—— = -H—— precisely when severallyw
4 7 5 35

* * y

5*3 (\*
4 4

\x n\ 193 (2x g\__
7 7J 35 V 5 5/

5 3 11 4 193 9 2

*(!-HMH'-iH)=°

(I)
140 28

I (i

39

40

39x^- = o x=$.
140

J

« 8 c

(3).
— = ——

. Since when 2^-3 =0, that is just whenw/
2^-3 3^+2 x-i ° J

1 3

4r=-x3 = --, both 3^+2 and ^r— 1 is not o the equation (art. 412) is

then not fulfilled. The equation is likewise not fulfilled either
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when 3^+2 = o or when ;tr-i =0. Therefore the equation is fulfilled

just when severally

3(3*+2)-8(ar-3) _. j__ o
(2*-3)(3*+2) *-l

(-7^+30)(r-i)-5(zr-3)(3jr+2)
= o

~7*
3

+37^-30+30+2 5^-30^r
3 = o

{-37-*-+(37+25)k = o.

And therefore all the solutions are x = 1
— and ;tr= o.

37

, N 3(2^-3) 8* 5(^r+l)(^+2) . . .

<4>- ^^y--(3i+i>
=
^-o^+o^+a) precise'y when one or

other holds of the equations
3 8 c

2;tr-3
= ^ = O (ar+l) (ar+2)

= O
2^—3 3^+2 x— I

and therefore and because the last of these is the equation (3)

•2

above the only solutions are x=- x = o x = —i x——2 and
J 2

2Kx= i— . The value o of x solves the equation twowise inasmuch
37

as it solves both the second and the fourth of the four alternative

equations.

(5).
-—,h — a-\-b just whenKDJ x+b x+a J

a(x+b)-ab , b(x+a)-ba . ,.

and since then there is no solution when either x+b = o or x+a = o

just when severally
ab / , ba \

# -7+ — -£-# =
#+0 \ ;r+tf/

(-*»)(̂ +^ 4T+^/
~~

4; +4- =

;tr+tf+(;tr+3)=0

. 2{x+±{a+b)}=o x=- l

-{a+b).

2X+S . 2X-S l6o . ,

(6). -H - = just whenv '

5^+2 5^-2 221 J

2. s 21 2. . 21
-(5;tr+2)+

— -(5^-2) ,
5 5 5 5 160

5-T+2 $X-2 221
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and as then no solution is got by making o either 5^r+2 or 5^—2
just when singly

\SJ \s) (16°
* A =

$x+2 5^-2 V221 5 5/

5 V5^+2 5^-2 21 221x5/

5-y-2-(5^+2) 4

(5^r+2)(5^-2) 221

22i-((5^)
3

-4} = o (i5)
3

-(5-^)
2 = o (i5-5^)(i5+5^) =0

and the solutions therefore are x=$ and x — —^.

2^r
2

-2 -5^r
2 4

(7)- o
—

7
—

; ^
= 2X likewise precisely when singly2.x 3 3-^ 4

2*(*-i)+(2r-3) 3*(*-0+(3*-4)
~~2at — (J

2^-3 3^-4

Hfe"^)-}-
Therefore one solution is x= o and every other is just what fulfils

each of the following equations.

, \2(3^-4)-3 (2^-3)

(2-^-3) (3^-4)

x- 1-2 (6x
2- 1 yx+ 1 2)

= o

-(25-35^+i2^
2)=°

and so the other solutions are x= - and x = -
.

4 3

(8)- *2x-t
3+~x^

=
3^+2) just when severaUy

5 +-4--3-Q
2^r-I ^r+I

5(#+l)+(2#-l)-2(2#-l)(tf+l) =0
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6+5.T-4A'
3 = O

6+ l'

S
'

!)-K)=°
and therefore just when either x 2 ov x =

, s l—X 2+X \-X A+X . i_ • 1

(a). 1 = - y-— just when singlyw 1+* 2-x z+x 4-x
J SJ

2X ( 2X\ ( 2X\ ( 2X\

/ 2X 2X\2X 2X

1+X '$+*

AfX 4X
3+4X+X

2 8-6x+x 2

4x{-(S-6x+x
2

)+(s+4x+x
2

)}
=0 4x{iox-s) =0

and the only solutions are x = o x = -
.

(10). As to the equation x+(x
2
+a)* = b not only has the un-

known x to be found but (art. 409) it is quite as much part of the

solution to find what value of {x
2

-\-af must be taken for any value

found of x. To solve this equation is (art.355) just to find what

xy are so that x+y = b y2 = x 2
+a. The equation holds just when

(art.410)
—b+x+(x 2

+a)*= o and therefore just when by using the

unrooting factor -b+x-{x2

+afi (art. 414)

{-b+x+(x
2

+af } {-b+x-(x
2

+af} - O.

Whence (-b+x)
2
-(x

2

+a) = o b2-a-2xb = x =
-(#—?)

and then

<--«>' - [(-iH)H'
"> ~* -

-l
i->

Thus

b being 1 and a 3 x+(x*+$)* = 1 just when ;r = — 1 and (^+3)*= 2

- - -1 -
3 x+(x

2

+$f = -i - - *=I -
(^+3)- = -2

I
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The conjugate equation
—b-\-x-(x

2

+a)* = o or x-(x2

-\-a)*
= b

holds just when x~^~iJ )
anc*

(n). x+a+(x2

+2bx+c)* = d precisely when

x+b+{(x+b)
2

+(—b
2

+c)}
2 — d—a+b and this equation having the same

shape as equation (10) but with (x+b) instead of x may be solved

in the same way.

The equation xi+(x+d)* = b is the same as x^+{(x%)
2

+a}^ = b

and therefore like (10) gives as the solution

*»-IH) *-M <~>'-KH
The equation (x+a)*+(x+b)* = c holds just when

(x+a)^+{x+a+(—a+b)}^
= c and therefore may be treated in the

same way.

(12). {{ea+x)
2+c2

} +{(—ea+x)
2+c 2

}
*= 2a precisely when severally

Y-2a+{{ea+x)
2+c2

\

h V-2a+{(ea+x)
2+c2

)* 1 _
[ +{(-ea+x)

2

+cf] I -.{{-ea+xy+c*Y\-°

[-2a+{(ea+x)
2+c2

}*]
2

-{(-ea+x)
2+c2

]
= o

4a
2

~4a{(ea+x)
2+c2

}

i
+{e

2a2+2eax+x2+c2

)-(e
2a2-2eax+x2+c2

)
= o

4a[a+ex-{(ea+x)
2+c2

}

i
]
= o

[a+ex-{(ea+x)
2+c2

f] [a+ex+{(ea-\-x)
2+c2

fy = o

{a+tx)
2

-{(ea+x)
2+c2

}
= o {i-e

2

)a
2-c2

-(i-e
2

)x
2 = o

iKW
and then with either value thus got of x the values to be taken of

the equation's other unknowns are

{(ea+x)
2+c2f = a+ex {(-ea+x)

2+c2

f = -ex+a.

(13). i+xt+{(i+xf+xf = just when severally

(i+x*y-{(i+xf+x] = i+2xi-(i+xf = o

(
1 +2**)

2-
(
1 +x) = o (4+3**)** = o.

Hence the equation is fulfilled only when either x* = and x= o
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(l+*)**l {(i+^+^ = -i or x> = -^ and^= l6

(H*)*«-|
«J y «J

{{i+xf+x}* =
1
-.

(14). $
i
+[s+{x

i
+(x

i
+6)

i
}

i
]

i =
precisely when singly

5 -lS+[^+(^+6)
i

}

i
]
= o {^+(^*+6)

i
}

i = o

xi
+(x

i
+6)

i = o x-{x
i
+6) = o

M'-KH (
JUHJ(<Maj.a

And hence the only ways of fulfilling the equation are by x* = 3 ^r = 9

(.r-+6)*
= -3 and by #*=—2 x = 4 (**+6)*=2 taking besides in

each case those values of 5* and [5+{**+(;r*+6)*}*]* that have con-

trary algebraic signs.

(15). x+(2x—3)*
= 9 precisely when severally

{(2^r-3)^}
2

+2(2^-3)
f-l5=0 {(2*-3)*+l)

3

-(l5+ l)=0

{(2*-3)*-3}{(2.r-3)*+5)=o

and therefore precisely when either (2^—3)* = 3 and x = 6 or

(2.r-3)*
= -5 and *= 14.

(16). In a like way (7-$x+2>
x2

)

i—i—iox+6x 2 =o just when

singly

-i5+(7-5-^+3^
a

)^+2(7-5^+3^
2

)
=0

-Q+2X
1

5)
+

j*
;+2(7-5^+3^

3

)

i

|=
o

(7-5^r+3^
2

)^
= —

, that is either - or -3.

And (7-$*+3**)*
=

I
only when singly -^ +7—5-^+3^ 3 = °

3X- -+ (--—3<*n
=0 ±2+(-— 3^'J

=0 ;r is either - or -p and

(7—$x+3x
2

)*
= —3 only when x = --~

, that is either 2 or — --.

3

(17). (*+#*)*+(#--#*) o
*( -) . Here #* must be under-
\x+x*'

stood to have the same value throughout and although (-] is (art.
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405) operationally equivalent to -? this is only because x* may have
zr

any value. If then both x* and (X+x*)* is to have the same value as

in the other parts of the equation ( z )
has either the same value

x x
or values as j-j or the same as j-j . Hence taking- either

the upper sign throughout or the lower the equation holds just
when severally

(x+xhf+(x-x*f+c—r-i = o x+**+{x-£)*(x+x^f+cx* = o
(x+x*)*

{x+(l+c)x*}>-{(x-X*)*(x+X*)*}> = ^[2(l+^+((l+^)
3

+l}]=:0

therefore just when either x—o and x^—o or x* = — -( i+c-\—— ]

2\ I+Cj

and putting k2 for i+c so that ±c= i—k2 x=
j-(«

3

+-i)f

^'-[{-iHHHKffl'-^aK)'

^•-[{-K'^HHKff-K-iX-^)
the same value of

(«'+
—

) being taken since x+ic'x*

(*+**) Um)
|/_iy

-±^+1)*.

If £ be I the lower sign only can be taken and if c be — 1 the upper

only. The equation is fulfilled in just 5 ways unless c be either +1
or —1 but if c be either +1 or — 1 in just 3.

(18). (x+af+b(x-af=2c(x
2-a2

f. Although (art. 405)

(x+a)^(x—a)^={(x+a)(x-a)}^=(x
2—a2

)^ yet this is only when each

third root may have any of its three values. But when one value is



EQUATION SOLVING EXAMPLES 353

taken of (x+ay and one value of (x—a)* the resulting value of

(x+a)*(x—dy is equal to only one of the three values of (x
2-a2

)^

the other two values however being (art. 400 or 414) equal to the pro-
ducts made by multiplying that one by X X3

if X be either of the two

values other than 1 of (+)*I. Hence the right hand member of the

equation is equal to 2k{x-\-dy{x—dy where k is either c c\ or c\2

and hence the equation holds just when singly

(x+a)
%
-2&(x+a)*(x-afi+b{x-a)*=o {x+a)^-{(-b+k*)

h
+k\(x-af=o

and therefore d standing for (—b+hrf+k just when singly

\{x+a)^-d(x-a)^[(x+a)
%
+(x+d)^d(x-d)^+{d(x-d)^}

2

]
= o

x+a-d3
(x-a) =0 x = 7a1—a 3

Since k has 3 values of which each gives 2 values of d d has

3x2 values and since each of (x+afts 3 values gives with each

value of d a value of {x-dy there are in all (3x2) X3 or 18 ways of

fulfilling the equation.

(19). x$+ 1 = (x+i)*c precisely when

(x+i)[x*-x
3+x 2

-x+i-(x+iyc\ =0

and therefore precisely when either ^+1=0 or severally

X4+2X3

+I-(X3+X)-X
2

-(X
3

+I+2X)V= O

(x
2

+i)
2

-x{x
2

+i)-x
2

-{(x
2

+i)
2
+4x(x

2

+i)+4x
2

}c
= o

(^
3

+i)
3

(i-r)-^+i)(i+4^)-^(i+4^) = o.

If i-£ = o this happens precisely when x(x
2

+x+i) = o, that is

(-3)*- 1

either x — o or x— ^- 1̂
, and if 1+4^ = precisely when

(x
2

+i)
2 = o, that is x=(-i)*, but otherwise precisely when sever-

ally

(, . . i-c 1
}
3 / i-c i\

\(x
2+i)— x\ -x 2

( +- =0

^beingi|f^^+ij
+IlI±i£. The equation then is fulfilled in

precisely 4 3 or 5 ways according as c is 1 —-or neither 1 nor— .
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(20). ^8+I=o just when singly

(x4+l)
2-2X* = O X*-£x 2+l = O (x

2

+l)
a

-(2
i
+2)x

2 = O

^ 3

-(2*+2)Wl =0 X = -
{(2

i
-2)^+(2*+2)

f
}.

419. Def Two incommensurable roots of the second degree are

called Like or Unlike according as either of them
is or is not equal to the product made by multiply-

ing the other by some protensive commensurable

quantity.

420. Prop. The product of two unlike incommensurable second

roots of commensurable quantities cannot be equal
to a commensurable qtiantity.

For x^ jfi being incommensurable second roots of commensur-

able quantities x y xy* = a a commensurable quantity precisely
when

a (?)x
=-r~jy v

and - is commensurable.
y

421. PROP. An incommensurable second root of a commensurable

cannot be equal to the algebraic sum either of a

commensurable and an incommensurable second

root of a commensurable or of two unlike incom-

mensurable second roots of commensurables.

For x* = a+b^ x a b being commensurables and xi F incom-

mensurables just when severally x — a2+2ab7S+b b =-~(—a
2

+x—b)

or just when an incommensurable is equal to a commensurable.

And x* = a^-vti
1 a? U1 being unlike incommensurable second roots

of commensurables just when severally x= a+2a?b*-\-b

cfff* = -(—a+x—b) or the product of two unlike incommensurable

second roots of commensurables is equal to a commensurable which

(art. 420) is never.

422. Hence a+b
7* = a'+b'* a a' b b' being commensurables and

b* b'* incommensurables precisely when a = a! and 1r = b f7S
. For
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otherwise —a+d = k some commensurable else than o and then

a' ~a-\-k &s*k+b which (art. 421) cannot be.

423. Prop. To find the algebraic sum wJien there is any eitlier of
a commensurable and an incommensurable second

root of a commensurable or of two unlike incom-

mensurable second roots of commeusurables that is

equal to a second root of a given algebraic sum of a

commensurable and a commensurable s incommen-

surable second root.

Let s be a given commensurable and t* a given commensurable's

incommensurable second root. Then x = (s+t*)* precisely when

severally x 2 = s+t*

(-S+X
2

)

2-t= O S2-t+X*-2SX 2 = o

{-(s
2

-t)*+x
a

}

a

-2[s-(**-t)*}x
a = o

-(^-/)*+*r»-2|i{j-(^-/)
i
} p«0

Thus for example (2+3*)*= (-) +(-) and therefore in particu-

larV(2+V3)=y| +/V/^ V(2-V3)=^/j-^.So

V(7-4V3) = 2-V3 and ^(5+^)^1+^1,
If instead of (s

2—^ v be used

424. In the same way as in art. 423 if a b be protensive quan-
tities

{a+i-fbf =
|j{

a+(^f
}]*+|j(tf-(^f)]*.

Thus (l+(-)V2)*=(+
)*{V

/

^i+(-)*
/V/^}

{i+hv3 }

§ =mV^-VI !H§i1§= (i+(
-
)§i1G)*

23—2
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Moreover even if the s t of art. 42 3 be such that s+1r is minus still

(s+t*)*
=
^{sHs^}J+^{s-(^-tf}J.

Thus (-7+Vl3)
f-«§

(x/§-A/3 and (a/10-7)*-H*(V5-V*>

425. Let the polynome in ^ p^+p^-'+p^1
'2

-] FA-i^+A
where / /,. /2 ..-A-i A are given protensive quantities be symbol-
ized by/^. The values /# f(a+/i) oifx when x is given the several

protensive values a a+h may be made to differ from one another

by a protensive quantity of less absolute value than any given
numerical quantity else than o however small by taking h near

enough to o.

For first a product of numerical quantities some of them incom-

mensurable is (art. 295) only known as what is endlessly neared by

products of numbers taken either the same as or endlessly near to

those quantities and in the same way but more simply from the

needlessness of intercepting fractions a product of numbers whole

or fractional is endlessly neared by products of numbers taken

some of them endlessly near to and the rest if any the same as

those numbers severally. Hence a product of protensive quantities

is endlessly neared by products of protensive quantities taken some

of them endlessly near to and therefore of the same sign as such as

are not o of and the rest if any the same as those several proten-

sives. In particular then the values /„_,-#*'/„_,•(#+//)
*' of any term

pnjx? of fx become endlessly near to one another as h endlessly

nears o.

Next the algebraic sum of protensive quantities is in a like way
(arts. 291,293) endlessly neared by the algebraic sum of protensive

quantities taken endlessly near to those protensives severally.

Hence as h endlessly nears o f(a+h) endlessly nears fa.

426. If a be the algebraically less and b the algebraically greater

of two protensive quantities that make the values jfa fb of art.425^

fx one a plus quantity and the other a minus there is one proten-
sive root at least of the equation fx= o that is algebraically greater
than a and algebraically less than b.

For as x is made to increase algebraically without any break

from the value a up to the value b fx passes from the value fa to

the value fb through values that (art. 425) everywhere lie endlessly
close together in order and so too run on without any break. One
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value at least therefore of x is passed through which makes the

value oifx pass either from being a plus quantity to being a minus

or from being a minus quantity to being a plus. -But in passing

through any value but o or ±<x> fx keeps the same algebraic sign

as it has and fx is ±00 only when x is. Therefore fx changes sign

only in passing through the value o.

427. If thepQ px ...p„ of art. 425^ /r be given plus or minus deci-

mally denoted numbers protensive roots of the equation fx = o

may often be found decimally denoted to any sought degree of

nearness by help of art. 190's process but with minus quantities

used (art. 354) as well as plus and if need be of what is shown in

art.426. If a
t
a2 a

3
...af being protensives polynomes /,(—a t+x)

fi-a-a.+x) fi{-^i a-a s+x) be found all operationally

equivalent to fx v -a\ a^x = -(a^ Ya^+x a,a2 ... a{
have

only to be so chosen that the last terms fo fo fo of those

polynomes are all of the same algebraic sign and go on getting

ever nearer and nearer to o for a x a
t+a2 a

z+a2+a3
... to be ever

closer and closer approximations to a root of the equation fx = o.

It is handiest here as in art.32i's kindred process so to take

at a3 a
3

. . . that their absolute values are the numbers denoted

severally by the digits in order of a decimally denoted number.

By way of instance if o> be the algebraic expression of an angle

in reference to a perigon as unit

sin 30)
=

sin(2ft)+ft))
=

(sin 2ft)) cos eo-f- (cos 2&>) sine*

= 2 (sin co) (cos ft))

2
-}- {(cos ft))

3—
(sin ft))

3

}
sin ft)

=
2(sina)){i-(sinft))

3

J-|-{i-2(sinft))
3

}sina)
=

3sinft)-4(sinft))
3

and therefore the sines of the third parts of all algebraically ex-

pressed angles that have a given sine a are precisely such values of

x as fulfil the equation
, 3 1

x 3--x+-a = o.

4 4

Since all algebraically expressed angles that have sines the same

as sin3&) are (art. 387) precisely all that are expressed by -+(-)'3ft>

/being a plus or minus whole number if sin $a)=a ;tr=sin
jg+ (—)*&> N

But i is either i'x^ z''x3+i or z''x3-i i' being a plus or minus

whole number and

sin
j^+(-)*U

= sin
j^+H'"}

- sin co
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sin

p|±I+(-) *«*}
=
sing+H-{±(-)"J-<»}]

=
sin{±(-)'J—}

wherefore sin -L
+(—)*<»[

has no other values than sin© sin(^— a>)

and sinf — -?—co) or —
sinf^+w) got by making i in turn o I and

— I. Further sinf ±-p—(o) — s'mco precisely when h being a plus or

I /z

minus whole number +-—e» =—h(—Yco which holds never if h be

odd and if ^ be even and equal to 7/x2 precisely when o>=—#±—

sininf —-p—co
J

=
sinf^—co) precisely when — -p—co =- +(—W -?— co )

which holds never if h be even and if h be odd and equal to

//'x2+i precisely when g> =—
(//"+-) and since —h'±— never

=— (h"-\—
J

sinw sm(-p-co) sinf— -p—co) are never all equal. On

the whole then x has precisely 2 or precisely 3 different values ac-

cording as a is +1 or not. Since a straight line bisecting an angle
of an equilateral or equiangular triangle bisects perpendicularly

the side opposite sin— = - and hence making a - the three roots

of the equation

^3-075^+o*i25 = o

are sin—p sin^ and sin— -^ or —sin^>. The values — 1 o - 1

36 36 36 36 2

7 1 I I I 7 7
of x make xi—-x+-d in turn —

^ +0 —
o +§ and the root sin—'-?40 0000 3^

is to be sought between — 1 and o the root sin^ between o and -
s

36 2

and the root sin-^= between - and 1.

36 2
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fore,
— unless - = -j when the two equations can hold only if - = -,-

a a a a

and so only by being one and the same equation—, precisely when
c' c—>+- ,

,
,a a _—c a+ca

y~
_V_ b

~
-b'a+ba'

'

a! a

Of the equations xa+yb — c xa' = c' the latter settles x's value

and then the former
jj/'s.

If neither b nor b' be o the equations

Tx\vy ~=c\
h°ld Precisely ™teny = ±(-ax+c) = j,(-a'x+c')

and unless
-ja

=
-^d

when the equations can only hold if
-jc
—

-7-, c'

and therefore each equation is the same as the other -A—ax+c)

=
\,{-a'

X+c') precisely when^-—L-g,-^)-^^^
b
a~v a

If neither a nor a' be o the same equations hold precisely when

x—-{c—by) = —{c'—b
f

y) and unless -b = —,b' when the equations

can only hold if -c=—,c' and each equation therefore is simply a

consequence of the other -(c—by) =— (c'-b'y) precisely when

J
1 _, 1 A a a J —ab+ab K '—ib+-b

K

a a

429. If ux
vx u2 v2 ... Ui Vi be quantities such that

Ul _ U* _ U
3 _ _ Ui

v~v2 ~v~'
m

trt

then calling any one of these equals t and taking any i quantities

\ \2 ...\ uz
= tvx uj^t = (tvz)\x

= tv
x\ and in like way u2\2

— tv2\2

u
3\ = ^

3
X

3 u^i = tv^. Hence

u x\+ua\+ ' • +***<= tv
1
\

l+tva\+ • • •

-\4v^i= t(vs\+va\a+ • • • +vt
\

t)

_ u
s
\

T+ua\+ • • • +u t
\t

v
x\+v2X2+ • • • +Vt\;

'

If in particular the Xs be such that ^Vf^XH \-vt
\£=o then

u t\+u2\+ • • • +u t\-= o.
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If the Xs be such that v^+vAH W^h ls not o then since if

— — ••• — be all equal each of them =~V—V ~< and if

each of them be equal to this they are all equal to one another it

follows that — » — mt -3 am mm -J precisely when each
v

t v, v
3

v
t
.

r

flXk+?X'f""-H'A/

—xa+c —xci+c
Thus if as in art. 428 y —

o

_ (—xa+c)a'+(—xa'+c')(—a) _ca'—c'a

ba'+b'(—a) bd—b'a

^A xe c-yb _ c'-ytf {c-yb)b'-{c'-yb')b _ cb'-c'b
till LI II X — — ; 2C— —, j~:

— —
j~. y: ,

a a ab —a b ab —a b

Again if — u. = —u. = — «, = ut and any one of them be
fa vt v, v

3
3

«v
*

called / \u 1
— \vj={\1v^t \ua

= (\2v3)t
- - - - \ut

= (\/vt)t

X,«s+\«9+ h\u,= (\x
v

s+\va -\ VXjVijt and

1

X^+X^H \-\t
v (\us+\jial \-\jt,)

with the understanding that if \vx+\va-\ f-\^-=0 then

X^+X^M |-X,# f
. = o. As before too if \x

vx+\va-\ \-\vt
- is not o

then —u, = —u^~ —u= = — u.- precisely when each of these
vx v9 v

s
a

Vt
r

Pr°ducts °^I+^..-+^(MI+^+ '' • ***

Thus if as in art. 428 7 = t(—ax+c)
—

-r, (—dx+c')

and If jtr= -ic-by) = — ic-b'y)

430. If F=o and F'=o then \F+\T=o whatever quanti-

ties XX' are. Again if V = o and \V+\'V' = o then \T' = o and

therefore if X' be not o F' = o. So if V' = o and \V+\'V' = Q
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then if X be not o V= o. Hence if X X' be any quantities but o

the three equations

f=o v = o xwr=o
are such that each of them follows from the other two and there-

fore any two of them are equivalent to any two.

If V=o and V'=o then XV+X'V' = o and fiV+/i'V" = o

\ \' fi fi being any quantities. Again if X V+X' V = o and

/iV+p'V' = o then x^V+fi! V')+(-ij)(XV+X V) = o and

/i'(\V+\'V')+(r-\')(jiV+fi'V
,

)
= o therefore (\/l-/i\')V = and

(fj!\—\'/i)V=o and therefore if X/i—fjX' or the operational equi-

valent fjb'X—X'fi be not o V = and V—o. Hence if X X' fx jj,'
be

any quantities such that X/i—fiX' is not o

rr( f precisely when J __
, __,

431. If then XX' /M /jl'
be any such quantities as make X/jl'—/jX

else than o

v \(^+^-£)+V(fl';r+£>-^) = (Xa+X'd)x+(Xb+X'b')y-(Xc+X'c')

the pair of equations ax+by = c dx+b'y — c' is equivalent to the

pair

(Xa+X'd)x+(Xb+X'b')y-(Xc+X'c') = O

(^+p'd)x+(p,b+pb')y--{iLC+fLc) = o.

And this pair gives at once .a: and yifXX'fifi be so taken that

Xb+X'b' = o Xa+X'd = not o fia+/id = o fib+fi'b'
= not o.

If b be o ax=c and x^eCc and if #' be o dx=c\ But if neither

# nor £' be o Xb+X'b' = o precisely when Xb'~* = —X'b' 1 and there-

fore precisely when // being any quantity X = hb
r

and X' = —hb.

Also if a be o #7 = c if #' 3^ = c and if neither a be o nor #'

fia+fi'a'
= o precisely when £ being any quantity //,

= kd and

/^'
= —ka.

When XX'
/jl fi are taken severally hb' —hb kd —ka

X/jb—fjiX'
= -k(Xa+X'd) = Atjjub+fju'b')

— hk(db—b'a)

and hence if both h and £ be taken else than o the four quantities

Xfju—fjbX' Xa+X'd fxb+[x'b' db—b'a are then either all o or all not o.

Moreover if neither a nor b be o db—b'a = o precisely when d being

any quantity d—da and b
'

=db and then dx+b'y—c'=d(ax-\-by—d~
x

c)

so that the equations ax+by = c dx+b'y = c' can only hold if c'=dc

when the equations are in effect one equation.
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As examples of the method xx^—yx$ =3 and xxy.+yx2

precisely when the equation pairs severally hold—
(^4-7x5-3) x2+(;o<7+7X2-i6)x5 =o|

—{xx4.-yx$—3) x7+ (.rx7+7x2- 1 6) x4 = oj

^(4x2+7x5) = 3x2+16x5 \ ^X43 = 86| x=2\
7(5x7+2x4) = -3x7+16x4} 7x43 = 43 J y = i)'

Any one holds precisely when any other holds of the pairs
—

S*+ 1 2y = 63 I
2 (5*+ 127-63)-3 (7^+87-5 3)

=
o|

yx+8y = 53 J 7(5*+i 27-63^5 (7^+87-53) = oj

1
V = -

(IO—2\)x— 126-159

(84-40)7 = 441-265

365

= 16

* = -
[

X33 = 3

44
xi 76 = 4

The pairs following are all equivalent
—

5^-97 = 3
J

5^-97-3+3 (37-4) = o
j

It is precisely when any one of the following pairs of equations

holds that any other does—
162 5xx—yx-3.2

3 1

xx--yx-
4

J
3

3

?J

24 J

x(
2
x

1-^)
V3 3 4 2/

-x-
\3 3

x =
IIQ QXi

:X^

7=-

9x16 119

119 9x1

3x12 119

2 4

1

2

= -2

16 1 25 5— x -x-
3 3 24 2

25 2 16 3—-x- +—x-
24 3 3 4j

432. If V1
= o V2

= V
3
= o then X

x
\2 \ fi x fi2 /jl3

v
x
v2 v

3 being

any quantities

Xx K+\ V*+\ ^3 = ^ K+P>* K+fh V3
= o vt Vx+vt V2+v3

V
3
= 0.

Again if these last three equations hold then

pfc ^i+z/2 v2+v3 vyvj^ v^ix, v2+fi3 F3)
= o

v&i Vx+^ V.+p3
V

3)-^ V
x+v2 V2+v3

V
3)
= o

or (^v-w) Vx
=

{fi2v-fi3
v3) V2 (JW-W) Vx

=
{fx2v-ii3

v2)
V

3

and fi2v-fi3
v2) (\ x

Vs+\ F2+\3
V

3)
m O
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or \(n2v-fj,3v2) Vs+\(fij>3-ji3vJ V2+\(fi2v-n3
v2)
V

3
= o

hence \(fi2v-fi3
v2)
Vz+Xa(fi3v-pLv3) V.+X^v-^v,) V, = o

or [X^v-^+X^v -wJ+X^v^ii^)} Vz
=

and therefore if Xx {p2v—iJL3
v2)+X2 (iA3v—fxzv3)+X3 (iJLj>—iJL2

v
z)

be not o

VI
= 0. Doing the same with the 3rd 1st and 2nd of the same

3 equations as is here done with the 2nd 3rd and 1st and again
the same with the 1st 2nd and 3rd if

/^Xv2\-v3
X2)+fi2(v3X-v1

X
3)+fju3(vI

X2--v2\) be noto V2
= o and if

i/J (\2^3-\3/
u,2)+i/2(X3^-XI^3)+z/3(XIyLfc2

-X2/xI )
be noto V

3
= o. But

X, (fi2
v
3-/M3v3)+X2(ji3

v1-fi1
v
3)+X3{^V-fl2Vx)

= \p2v3+W^3
+v1^2P3

-v1p2\-f*Xv3-\v2ii3

= \^v3-v,fi,X3+{^v2X-Xrv2^3)^vX^3-^\v3)

= ^i^-^+^i^X-v^+fi^vX-vX)
= v

z(Xzii-X^)+v2(X^-X^)+v3(\#2-X2/0 .

Hence if Xt X2 X3 fix fi2 fi3 vx v2 v
3
be any quantities such that

X
i^2i/-^i^2X3+Oii/2\3

-\xi/2^3)+(z/i
X2/z3-^i

X2^3)
is not °

Vz
= o\ ( XI F1+X2 F2+X3

F
3
= o •

V2
= o I precisely when J n, Fx+//,2 V2+/x3

V
3
= o

F
3
= oJ (

vl Vl+v2 V2-i-v3
V

3
= o

433. Hence and

=
(XI^ I+X2«2+X3

^
3)x+(Xlb l+X2b2+X3

b
3)y+(X^+X^+X/J z

-(X^+XX+X/J
if X^2v—Viii2X3-\-{jij>2

X—XIr2yLt3)+(^1X2/^3
—^X2v3)

be not o the equations

ajX+brf+CjZ = dt a^+b^+c^ = dz a^+b^+c^ = d3

hold precisely when,— symbolizing X^i+X^+X^ for shortness by
XXa—,

(%Xd)x+(%Xb)y+ '\£Xc)z
= Xxd (2/ia)x+(Zfib)y+ @fj,c)z

= 2fj.d

($va)x+(2ivb)y+(2<vc)z = Xvd.

These last three equations severally give x y z if the Xs the jjls

and the vs be taken so that

2<Xb = o XXc = o HXa = not o

Xfic = o ^fjua
= o Xjjib

= not o

Xva — o %vb = o %vc = not o.
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If b
3(-c2)—b2(-c3)

or the equivalent b2c-b3
c2 be not o (art. 430)

X\b = o and %\c=o precisely when

\2 (b2c-c2b3)
=x^A-^) \(fA-^ = *i(Va-*A)

therefore if further neither b
3
c—b

1
c
3
nor b

1
c—b2cx be o precisely when

\ \ \
3

b2c-b3
c2
m

b
3
c-bx

c
3

~
bf%-bfx

and therefore precisely when / being any quantity \ = t{b2c-b3
c2)

\2
=

t(b3
c —bt

c
3)

and \=i

t(blc—b2c). Then

2)wz = ^{{b^c—b^a^^^—b^^+^^—b^a^ which if t be taken

else than o is o or not o according as

{b2c—b3
c2)a l^{b3

c—b
x
c
3)a2-\-{bl

c—b2c^)a3
is o or not o and

If b2c—b3
c2 — o either (1) b2

= o b
3
= o when of the 3 given

equations the 2nd and 3rd a2x+c2z=d2 a^+c^ = d3
alone fix all

about x z (2) b2=o c2
= o when the 2nd a2x = d2 alone gives x

(3) £3
= noto £3

= when c
3
= o and the 3rd given equation

a
3
x= d

3
alone gives x or (4) £2

= noto £
3
=noto when

-j-
c2 = ^-r3

= some quantity e be it and the 2nd and 3rd given equations are

equivalent to a2x+b2 (y+ez) — d2 and a
3x+b3(y+ez) — d3

and so alone

fix all about x and y+ez as two unknowns.

If b2c—b3
c2 b

3c—bf3
be each o and bL b2 b

3
each noto then

j-c3
= -r-c2

= -rCI
= some quantity/ say and the given equations are

severally equivalent to a
1x+b 1(y+fz)=d1 a2x+b2(y+fz) =d2

a^+b^y+fz) = d3
three equations with only two unknowns x and

y+fz.
If b2c—b3

c2 b
3
c—b

l
c
3 b^—b^ be each not o and

{b£—b3
c2)ax+{p3

c—b
x
c
3)a2+{b1

c—b2cx)a3 be o the three given equations
can hold only if (b2c3—b3

c2)d1+(b3
c—b

1
c
3)d2+(b 1

c2—b2c1)d3 be o then any
values of the Xs that make X\b and %\c both o make

\(a lx+bIy+cl
z—d

1)+\2 (a2x+b2y+c2z—d2) operationally equivalent to

—X^x+^y+c^-d^ therefore each of the three equations is simply
a consequence of the other two and therefore the three are in truth

only two independent equations with the three unknowns xy z.

The conditions 2^/jlc
= o %fia = o 2/x£ = not o and the condi-

tions %va = o %vb = o %vc = not o are to be dealt with in the

same way as the conditions 2<\b = o 2<\c = o %\a = not o. From
all three sets of conditions it may turn out that no two of the three

given equations are independent of one another.
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If \{b2cr b,c2y = X2 (b3c
-blCy =X^c-b^ m t

fi^a-c^)"
1 = fi^a-c^)-

1 = fju^a-c^)'
1 = u and

Vl{a2b-a3
b2y = v2(a3

b-a
x
b
3Y

x = v
3{a x

b-a2b)-
x = v

then putting isf for any one of the operational equivalents

{c2a-c3
a2)b^{cza-c^b^{cTa~c2a^bz

{a2b-a3
b2)c^{a3b-aj)3)c2^{aj)-a2b^c3

aj)2c-cj)2a3+(b^a-a.cj?^+ (cxa2b-b r
a2c3)

fi2v-^v2
= {^^-^^(aA-^A)-^^-^^^-^)
= uv^a-c^b^ic^a-c^b^c^a-c^b^ = z^TsTtf,

/jb3
v

1—fi J
v
3
= uvKa2 AWAW = uvKa

3

X^v-fi^+X^v-^+X^v-fi.v,)
= tuvK{(b2c-b3

c2)a1+(b3
c-b1

c
3)a2+(b1c2--b2cI)a3}

= tuvK 2

and therefore if * & ?/ be each taken else than o

X^v-v^X^(p^X-Xy^)+(1/^3-/^X^3)
is or is not o just according as K is or is not o.

Here follow examples. Any one is equivalent to any other of

the sets of equations

2^-37+5^ = 8
J

3^-Sj+8.sr= 12 i

$X-8y+l2Z = 18 J

{(-5xi2+8
3

)x2+(-8x5+3xi2)x3+(-3x8+5
3

)x5]^=4x8-4xi2+i8j
{(8x5-i2x 3)(-3)+(i2X2-5

3

)(-5)+(5x3-8x2)(-8))j= 4x8-i2-i8|
{(-3x8+5

3

)x5+(-5x3+2x8)x8+(-2x5+3
3

)xi2)^=8+i2-i8 J

X=2
j

7=2 .

Z = 2 )

As to the equations yc+zb = a za+xc = b xb+ya — c where a b c

are each not o since the X factors are —a2
t {ab)t [cd)t and so

handiest when taken —abc one equation of the equivalent
set is

(za+xc-b)b+(xb+ya-c)c- (yc+zb-a)a = o or xx2be — b2+c2-a2

and the others may be got either in the same way as this or from

this at once by symmetry of relation so that the equivalent set of

equations is

3*+c
2-a2

c2+a2-b2 a 2+b2-c2

x — j y = z =
-j

—
.

20c ^ 2ca 2ab
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The equations ;r—27-3.3' = 1 4y—z = 11 7+5.3'
= 8 are equivalent to

any one of the equation sets

3 (x-2y-3z-i)+(4y-z-i 0+2(7+52-8) =0]
3^-30 =

0]
5(47-xr-u)+(7+5^-8)=o > 217-63=0
—(4y-z-ii)+4(y+$z-8) =

' 2u-2i=o' z=i

The equations 3-T+57—4? = 1 1 27+7.3- =39 z = 5 hold precisely

when any one holds of the sets

z = s

7=2(39-7x5)
= 2
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each follows from the other two and hence xy z are simply three

quantities so linked together that any two of them have the values

fixed by any two of the equations whenever a fixed value is given

at random to the third. Also two equations 4^+57+6^=28
6x—4y+$z= 15 and a third equation 1or—227+3,2 = aught else

than -11 are clearly incompatible.

434. Making for the greater ease expressiveness and generaliza-

bility i
x i 2 I3-..2, 2 2 ..-3 I

... symbols of quantities let

i I2 233-3x2 2 i3+(2 I 3 2 i3- I
I 3 22 3)+(3 I

i 223-2 I
i 233) be symbolized shortly

by fi^J then (
art-43 2 )

if (T^J be not ° Vz
= o V2

= o and

V
3
=o precisely when i

1 V1+i 2 V2+i 3
V

3
=o 2xVs+2aVa+23

Vs
=

and 3 X F,+3 2 F2+3 ?
F

3
= o. Also let 1,2,-2,1, be symbolized by fi,2,J

then (art. 430) if i,2j be not o Vz
= o and V2

= o precisely when

i
J VI+i 2 V2

= o and 2
I FI+22 F2

= 0. It is too at once clear (art.413)

that V1
— precisely when 1^=0 if i

x or to use the like sym-
bol

fij
be not o. Now if Vx V2 V3

F
4
be each o then whatever,

quantities i, i 2 ... 44 may be

i,Vs+i9V9+i3
V

3+i4VA
= 6

2
x
F

x+2 2 F2+2 3
V

3-\
2

4
V

A
= o

3,^+3.^+33 ^3+34^4 =

4x Vz+4, V2+43
V

3+4< VA
= o)

And on the other hand if this last set of four equations holds then

it follows from the three last of the four that

$4$* ^+2 2F2+23
F

3+24 r>fJiA| (3, K+3, V2+3 3
F

3+3 4 FJ

+f2 3 3 4J(4I K+4. K+43
V

3+4< VA)
= o

or
[2 I3 34j Vz-\-[2 233^V2

= o and in like ways

[2x3 44j Vr+ f23344j K = o
[2,3-4*1 ^+(2^ V

4
= o.

But by operational equivalency fI I
2 23j

=
[29lx3j|

=
[^A^J

=
f3 3

2jj
=

r2x3jj
=
J3.MJ

=
-[2 x

i 23j
=
-[1&2J

!- [*A3J
= fwj =

r|iA3j = -fix2334
.*•

|2 23 344J ^=-r2 33 44j ^ ^3 34j 3̂
=
r243x42

J £ [2 23 34j K^-^A^K
Wherefore and because from the first of the four equations

iji^l ^+i 2f^ 23 344J
^+i 3f2 23 34j 3̂+i 4(^ 23 344i ^4

=

(i If223 344|-i 2f233 44j+i 3f243 14
2j|-i4[2 I3 243)) K=0.

Therefore if i
If223 344J-i 2|2 3344IJ+i 3[243 14j-i 4f2 I3 24j or to symbolize
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this as in the former cases
[1,2^4^

be noto V1
= o. In like ways

if
[1,2,334^

be noto Va
= o V

3
= o and V

4
= o. On the whole then

if
[1,2,334^

be noto

V=o
V=o
V

4
= o)

•

precisely when -

f
i

t V,+i a Va+i 3
V

3+i 4
V

4
= o

2,^+2,^+23^+2,^ =

3,^+3. K+3 3
V

3+3<K= °

L 4x K+4* K+43 K+4< V* = o.

By help of this theorem may be solved a set of four equations

of the first degree with four unknowns in the same way as (art.

433) a set of 3 with 3 unknowns and (art.431) a set of 2 with 2. A
like theorem may then be got for any five equations and so on.

435. If V=PV'+Q then if V=o and V =0 g = o and if

V' = o and <2 = o F=o so that the pair of equations V=o
V — o is equivalent to the pair V — o Q = o.

Thus xy
— 10 and x-\-y=y precisely when,—

v xy-io=(x+y-y)y-(io-yy+y
2

)
—

, io-yy+y
2 = o and ^+^-7 =

and therefore precisely when either y— 2 and x= 5 or y= 5 and

#= 2. Again the two equations x2

+y
2 = 58 x—y = 4,

—
V -$%+(x

2

+y
2

)
= 2(x

2

-4x-2i)-(r4.+x+y)(r-4.+x-y)
—

, are equiva-

lent to the two x 2
—4.x—21=0 y = ~4+x and therefore hold just

when either x is 7 and j/ 3 or ;tr is —
3 and y —7. Also the equa-

tions x+y = 1 -z*+^ = 31

Y.^+y-31 = (x*-x3y+x 2y2

-xyt+y4)(x+y-i)

+{{x
2
+y

2

)

2

-(x
2

+y
2

)xy-(xy)
2
-3 1

}

and {x
2

+y
2

)

2

-(x
2
+y

2

)xy-(xy)
2

-3i = (x
2

+y
a

-~xyj -l(^/)
3-

3 i

=
|(^+^+i)(^+j/-i)+^i-|^/)|

3

-|(^)
3

-3i

are equivalent to x+y = 1 along with

(x
2
+y

2

)

2

-(x
2
+y

2

)xy-(xy)
2
-3i =0 or

(l-|*r) -?(90^-3 i "bO

or 5(^j)
3—5^-30 = or a7 = |6+(-J [

+- and therefore all the

solutions are (1) x=2 y = —i (2) x — — 1 ^=-2 and (3) and (4)

i+(-n)* i-(-n )*

2 * 2

24—2
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436. If V=Pm ...P3P,Pt and V-Q....Q&.Q, then (art.413)

Z7= o and V=o precisely when one or other of the factors Pz

P2 ...Pm is equal to o and one or other of the factors Q x Q2 ...Qn is

equal to O.

Thus x 2
+y* = $4 and xy=i$ precisely when (art. 430)

x2

+y
2

~34+2(xy-i$) =0 and x2

+y
2

-34-2(xy-is) =0

or (x+y-8) (x+y+8) = o and (x—y-2)(x—y-\-2)=o

and therefore precisely when one or other holds of the equation

pairs

x+y-% =
x-

:+j_8 = o) x+y-8 = o\ x+y+$ = o\ x4y+8=o\
'-y-2 = o j x-y+2 = o j x-y-2 = o j ;tr-j/-f2

= o J

'

that is precisely when either x = 5 and j = 3 # = 3 and y = 5

^ = —3 and jy
= -5 or x = —$ and

jj/
= —

3. In the same way
generally x 2

+y
2 = <z and xy = b precisely when

x = -{(a+2bf+(a-2bf) and j==i{(tf+2£)
f
->-2£)*}.

^> 2

The equations 2x2

+$xy-4y
2 = 2 3 4^

2

-3^y-2j/
3 = 25 hold (art.

430) precisely when either of them holds along with any one of

these following 23(4^—3^/-2j/
3

-25)-25(2^
3

+3^/-4r
2

-23) = o

yx
2

—24xy-\-gy
2 = o (x—^y) (yx—^y)

— o and therefore,—inasmuch as

2x2
+3xy-4y

2

-23 ~(2x+9y)(x-3j/)+23(y
2

-i) and

7
3

(2^
3

+3^-4^/
3

-23) = (i4x+2yy)(yx-sy)-(sy
2

+7
2)^3—> precisely

when either jj/= 1 and x = $ y = -i and ^=-3, or y = (—
J
x/

and
x=3\j-j\

. Generally ax 2

+by
2

+2cxy=f and a'x2

+b'y
2+2c

,

xy=f

if neither f nor /' be o precisely when tf;tr
3

+£j/
2
-f 2£rj/ =/" and

f'(ax
2
-\-by

2

+2cxy—f)—f(a'x
2

+b'y
2

+2c'xy-f') or the operational equi-

valent (fa-fa)x
2

+(f'b-fb')y
2

+2(fc-fc')xy = o and

^^r3+J5j/
3+2Cr^= o if neither A nor ^ be o precisely when

{Ax+{C+K)y}{By+(C+K)x} =0 where .AT is such that iT 3= C 2-AB.
If a polynome of the second degree in xy

ay
2

+(bx+c)y+(dx
2

+ex+f) be written shortly J> y
2+Af+A and an-

other like polynome qQy2j
rq^y-\-q2 then unless p q—p*q be o

A^-tfjMA-ol d when
f

(A^-^J|(A^oA)=o

or for shortness Pxy4-P2
— (P2y+P3)y = o and therefore and be-

cause P2 being not o y is not o and P2(Pty+P2)
= P

r(P2y+P3)+
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(P.'-PtPJ precisely when Pay+P3
= o and P3

2-P
1
P

3
= o. Of the

last two equations the latter is an equation of the fourth degree
for finding x and the former gives the value ofy answering to any
value of x.

If none of the quantities a b c be o the following sets of equa-
tions are all equivalent

yz = a

zx— b

xy = c

yz—a = o yz—a = o

{zx—b)xy-\-b{xy-c)
= o I x2

(yz—a)+(x
2

a—bc) =o
xy-c= o J xy—c=o

x —

y

_ {abcY

W* ..

(abc)-

• c

The equations x(y+z) — a y[z+x) = b z{x+y) = c hold precisely

when -{y(z+x)+z(x+y)—x(y+z)} or the equivalent yz = -(b+c—a)

zx = -(c+a—b) xy
2

(a+b—c) and their solution may therefore be

got in the same way. Also how xyz = a~I

(y-\-z)
= lrl

(z+x) = c~*(x+y)

otherwise than by having xyz severally o may be found in the

same way since it is just then that (art. 429)

xyz= (b+c-a)~
IX2x= (c+a—b)~

lx2y= (a+b—c)~
lX2z or that

yz = 2(b+c-a)~
l zx = 2(c+a—b)~

1 and xy = 2(a+b—c)~
l
.

The equations yz = ax zx=by xy = cz hold when x = o y = o

z = o and otherwise precisely when any one holds of the sets

(zx—by)x-\-b(xy—cz)
= o

- {yz—ax)x^-{zx—by)y — o

zx—by = o

z(x
2

—bc) = o

by
2 = ax

zx — by:»,
y = c^ar

z = aibi
^

The equations x+y+z = a yz+zx+xy = b xyz = c hold (art.4 16)

just when xyz are either the roots if there be 3 of the equation in

t t3—t2a+tb—c = o two of them the roots if there be 2 of this equa-
tion and the third either of those 2 or all three the root if there be

1 only and so the ways of fulfilling the equations are 6 or 1 ac-

cording as the equation in / has more than 1 root or I. By reason

of the operational equivalences
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y+z+(z+x)+(x+y) = 2(x+y+z)

(z+x)(x+y)+(x+y)(y+z)+(y+z)(z+x) = \{z(x+y+z)
2

-(x
2

+y
2+z2

)}

(y+z) (z+x) (x+y) m I
{(x+y+z)

3-
(x

3+y3+z3
)}

the set of equations x+y+z = a x2

+y
2+z2 = b x3+y3+z3 = c is equi-

valent to the set

y+z+(z+x)+(x+y) =2a

(z+x) (x+y)+(x+y) (y+z)+(y+z) (z+x) = -
(sa

2

-b)

(y+z)(z+x)(x+y) =±(a3
-c)

and therefore is fulfilled just when x y z have such values as make

y+z z+x x+y the roots or root of the equation

t3-t2

K2a+-(ia
2

-b)
—

(a
3
-c) =o.2 3

437. Since y3z3 = — q
3 and y3+z3 = r precisely when

and further y3z3+q
3 = (yz+q) (y

2z2

—qyz+q
2

)
out of the 1 8 ways of ful-

filling the equations y3z3 — —q3 y3+z3 = r if - r2

+q3 be not o there

are 6 that are the ways of fulfilling the equations yz = —q y3+z3 — r

and if - r2

+q3 be o out of the 9 ways of fulfilling the former

equations there are 3 that are the ways of fulfilling the latter.

Now x3-i(yz)x+(y3+z3
)

and x3+lqx+r is operationally equivalent to x3—$(yz)x+(y
3+z3

)

precisely when yz = —q and y3+z3 = r.

Hence if — 1 r t2 be the three values of (—)
1 and g be any

value of \-r+(-r 2
+q3

) > it follows that x3+3qx+r = o precisely

when x has one or other of the values —(g—g~
l

q) Tg-r
2

g~
l

q

^g-rg^q.



SUNDRY EQUATION SOLVING USES 375

438. Uses may be made of equation solving such as follow.

(1). When and where are two men together that walk along a

road A OB at the rates of a and b miles an hour in the direction

AB if when the one is at a certain place O the other be c miles

from O toward B ?

At x hours after being at the one is xa miles from toward

B and the other is then c+xb miles from O toward B so that the

men are together just when x is such that xa — c-\-xb and therefore

just when x{a—b) = c or if a—b be not o *"—7. If a—b be a plus

quantity else than o a b being plus or minus quantities the meeting

happens after the first man's being at O or before according as c is

a plus or a minus quantity and since with the value of x got
c c

xa ——-,a
= c-\

-
7 b the meeting happens toward B or toward A

a—b a—b

according as a c have like or unlike algebraic signs. If a b being

plus or minus quantities a—b be a minus quantity else than o the

meeting happens after or before the first's O passage according as

c is a minus quantity or a plus and to the B side ofO or the A side

according as a c have unlike or like signs. If a—b be o the meeting
is either always and everywhere to wit if c be o or never to wit if c

be not o. If each or any of the quantities a b c be ditensive the

question has no meaning unless the road A OB be straight and

then if a b c be severally a-f/V ft+jft' y+Jy where a a' ft ft' 7 y are

protensive quantities and / is (—)* since x hours is either an in-

stant of time or some time after or before an instant (art. 375)

x{a+jd-(ft+jft')} or x(a-/3)+jx(a!-l3') =y+jy just when x(a.-f$)
= 7

and x(a—j3') = y. Hence if d—/3' be o y must be o for a meeting
to happen and then the men are always in a straight line either the

same as or parallel to AB and therefore meet just when the straight

lines drawn through them perpendicularly to AB come together as

one. If a—ft be o there can be a meeting only when 7 is o and then

the men are always in a straight line cutting perpendicularly AB
and so come together just when they are at the same point in this

straight line. If neither a—ft nor a'—ft' be o the men come together

just if and just when the straight lines through them drawn per-

pendicularly to AB become one and the straight lines through
them drawn in or parallel to AB become one at the very same

time which is just if —~ =
, oy and just when x— either. InJ a-ft a -ft'

J
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short the walkers can meet only by taking roads that meet and

can then meet only where the roads meet.

(2). How much did a thing cost on which by selling it for

a pounds there is lost just as much per cent?

Since x pounds is expressed numerically or algebraically by
x

in reference to 100 pounds as unit x per cent, on x pounds

x
amounts to x pounds and therefore by giving x pounds and

taking a pounds there is a loss of exactly x per cent, precisely

when
x

x x — a.
100

This then happens just when singly

Qj
= o

-^+5»_(-£+ 5y
= o *={5+(-tf+25)*)xio.

Thus if the thing were sold for 25/. it cost 50/. and this is the only
case when the question has only one answer and is besides the

case when the selling price is the greatest that can be for the

question's conditions to be anyhow fulfilled unless indeed what is

expressed by a ditensive quantity in reference to a pound as unit

could be taken to mean anything. If the selling price be 24/. the

cost price is either 60/. or 40/. If a be o the cost is either 100/. or o.

If the
thing be sold for —11 pounds the meaning is that 11 pounds

is paid to get rid of it and then the cost is either no/, or —10/. of

which the latter is to be understood as 10/. got with, instead of

given for, the thing.

(3). How many books are bought for 80 shillings if by buying

4 more for the same 1 shilling a piece less would be paid ?

If there be x books the price of each is -x8o shillings and
x

therefore x is just to be such that

-x8o-i = x8o.
x x+4

This holds precisely when severally

I+(_I+_JLj x8o = o ^+4^-4x80 = o x= 2{(8o+ i)*-i}.

The only answer to the question then is 16. Although —20 books

bought may mean 20 books sold this other root of the equation in
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x gives no meaning in the rest of the question. It might very well

have been that no number whatever of books met the conditions

of the question. Generally all the answers to a question of this

kind are precisely all such quantities that fulfil a certain equation
as lie within the field of the question's view.

(4). At what prices the bushel are wheat and barley when

30 bushels of wheat and 26 of barley are together worth 10/. and

27 of wheat and 39 of barley together 10/. 19J. ?

If a bushel of wheat be worth x shillings and a bushel of

barley y shillings the question fixes x and y to be such that

3Qr+26j/= 10x20 and 27^+39^=10x20+19 and these equations
hold just when severally

1 5*+ 1 3.7

9^+13/

100

73

i5^+i3j/-ioo-(9^+i37-73 = o]

5(9^+ I 3^/-73)-3(i5^+i3J-ioo) =oJ

x=l
6
x2? =4

y = X65 = 2-
2X13

J 2

(5). How many yards long is each of two pieces of cloth the

one worth ljs. and the other 22s. the yard if half the first be worth

4/. iSs. more than one-third the other and the two together be

worth 70/. 6s. ?

Calling x yards the length of the piece at 17^. and y yards the

length of the piece at 22s. xy are just such that

xxiy+yx22 = 70x20+6 and ~(-y)x22-\-(-x)x 17 = 4x20+18

and therefore just such that severally

xxiy+yx22 = 1406

22 17

-yxj+xx-£= 98

^(17+^x3)
= 1406+98x3

22
^(22+

—
X2) = 1406-98x2

o

1700x= -t— = 40

'
2

I2IO
J-

^

= 33
22X-
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(6). How many dozens of wine in two several bins are there

which at 56^. and 52s. the dozen would bring 73/. Ss. and at 50^.

and 54$-. the dozen 69/. 14s. ?

If there be x dozen in the first bin and y dozen in the other xy
are only known to fulfil the relations xx$6+yx$2 = 73x20+8
xx$o+yx$4.= 69x20+14 which hold precisely when severally

xx 14+7x13-367 = I ^xi4+^xi3 = 367)

(^xi4+7xi3-367)x2-(^rx25+j/x27-697) = 0} xx$-y = 37 J

367+37x13x= D ' 0/—- = 16
14+3x13

367X3-37*H ^ n
13x3+14

(7). What simple fraction is it which were the numerator 1

greater would be equal to 4 and were the denominator 1 greater 3?
The numerator x and the denominator y are just whatever

whole numbers fulfil the several equation pairs

x+i

y
x

y+T~
3

x+i=4y) (4-3> = 4X3+3) *=i5|
oJ" (4-3)^=1+3 J j =4 r*=3(7+

(8). What must two lengths be so that the one may measure

off into 1 more pieces than the other a length of 12 chains and

that of other two lengths longer severally by 1 chain the one may
measure off into 1 more pieces than the other a length of 20

chains ?

Calling the several lengths x chains and y chains x y have just

j 2 12 20 20
to fulfil the equations —=—hi — = f-i of which the firstx y x+i y+i

is equivalent to -y^+x'
1 =— and the other to

-(i+*)+(i+j/)
= JL(*+i)(j,+i)

^.r^^ =±^x-^l+r)

These equations therefore hold just when (i+x'^fi+x'
1

J

= --

and jr
I =;trI

therefore just when ^r~
1 = -i+ J-+(— ) [ -\

—J 12
J

Ll3 WJ 24J

or _!4-r^2 ancj y-i = _i_j_^ an<j therefore just when either
24 24
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x=i and j/
= 4or^r = - and y = —=-

. Hence the lengths sought

can only be 3 chains and 4.

(9). How must a straight line be cut atwo so that the whole

may have to the part close to one end the same ratio as this part

to the other part ?

Let AB be a straight line to be so cut atwo that AB is to have

to the part close to the end A the same ratio as this part to the

other part. If in reference to AB as unit the part sought close to

A be expressed numerically by x the other part is expressed
1 x

numerically by i-x and hence x has only to be such that - =——
.

This equation holds precisely when severally x
2 = i-x x2^x-i=o

-M014 5*-i .The

only value of x then which

meets the conditions of the

• V5- 1

question is —— or

\/{
i+©H and this at

once (art. 382) gives the con-

struction :—Halve AB in C
from the point B in BA draw

on either side a straight line

BD at right angles to BA
from BD cut off close to the

end B BD equal to AC or

CB because D is not at B the

only point common to the

straight lines BA BD D is

not in AB join AD then AB BD DA being three straight lines

joining two and two three points A B D not in one straight line

ABD is a triangle of this triangle the angle ABD being a right

angle the angle BAD is less than a right angle and therefore less

than the angle ABD and therefore the side AD is greater than

the side BD from AD cut off close to D a part DE equal to

BD because the two sides AB BD of the triangle ABD are to-

gether greater than the third side AD and BD a part of the first is

equal to ED a part of the other the remainder AB is greater than

the remainder AE from AB then cut off close to the end A a part
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AF equal to AE and AB is cut into the parts AF FB so that

AB:AF=AF:FB.

Since —
/ji+f-j >— the other root of the equation is a

I x
minus quantity which makes equal the absolute values of

x 1 x
and besides if x be the algebraic expression of the distance from

A in the direction AB of a point in the endless straight line in

which AB lies i—x is the algebraic expression of the distance from

B in the direction BA of the same point it follows that the minus

root answers the question How must a straight line be produced

beyond one end so that the line may have to the part produced
the same ratio as the part produced to the whole produced line ?

and hence producing endlessly AD to E' from DE' cutting ofT

close to D DE' equal to BD producing BA endlessly to F' and

from AF' cutting off close to A AF' equal to AE' the straight

line AB is produced beyond A to a. point F' so that AB : AF'
= AF' :F'B.

Both roots answer the question Where must a point be taken

in an endless straight line in which an ended straight line is so

that the ended straight line may have to the distance of the point

from one end the same ratio as this distance to the distance of the

point from the other end ?

If upon, and upon one side of, AB a triangle ABG be described

having the side AG ending at A equal to AB and the side BG
ending at B equal to AF,— which may be done because AB being

greater than its own part AF AB an equal to AB and AF are

three straight lines of which any two are together greater than

the third—,
the angles ABG AGB at the base BG of this isosceles

triangle are equal and if FG be joined GBF is a triangle because

G B F are three points not in one straight line moreover AB : BG
= GB :BF and so the triangles ABG GBF have the angle ABG
the same as the angle GBF and the sides about this common

angle proportionate therefore these triangles are similar with the

angle A GB equal to the angle GFB and the angle BA G equal to

the angle BGF. But the angle ABG is equal to the angle AGB
therefore the angle ABG is equal to the angle GFB and therefore

FG BG the sides of the triangle GBF over against these equal

angles are equal. Hence AF FG GB are all equal and the angles

ABG AGB GFB are all equal. Further because the points FAG
are not in one straight line FA G is a triangle and because FA is
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equal to FG the triangle FA G is isosceles the angles FA G FGA
at the base therefore are equal and therefore are together double

of the angle FAG. But because the side AF of the triangle AFG
is produced to B the exterior angle GFB is equal to the offlying

interior angles FAG FGA together. Therefore the angle GFB
is double the angle BAG and therefore each of the angles ABG
A GB GFB is double each of the angles BA G FGB. Since then

ABG is an isosceles triangle having each of the angles ABG AGB
at the base twice the third angle BA G all the angles of this tri-

angle are together five times the angle BAG and hence as the

angles of any triangle are altogether equal to a hemiperigon the

angle BAG is - a hemiperigon and therefore -x- or — a perigon.

Half the angle BAG is therefore -x— or — perigon and since in

reference to AB as unit BG is expressed by —— the half of BG

is in reference toAB expressed numerically by -x—— or the equal

—^—
. Hence and because the straight line which bisects the

4
vertical angle of an isosceles triangle bisects perpendicularly the

, , . I VS— I -r •

base it comes out anew that sin— = 11 a perigon be unit
20 4

r &

angle.

Upon, and upon one side of, AB too a triangle ABU may be

described having AH BH each equal to AF' and if F'H be

joined AF'H FBH are triangles because the angle ABH is the

angle HBF and AB : BH=HB : BF' the triangles ABH HBF'
are similar F'BH is an isosceles triangle each of the isosceles

triangles HAB F'BH has each of the base angles twice the

vertical angle and each of the angles AHB BF'His — perigon. If

the triangles ABG ABH be upon the same side of AB the equal

angles ABG ABH at the common point B having the common

bounding line BA ending at B and lying in the same plane and

beginning together upon the same side of BA exactly fit upon
one another and therefore BG BH are in one straight line.

(10). How is a given straight line to be cut atwo for the parts

to have a given mean proportionate ?

If in reference to the unit straight line the straight line to be
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cut be expressed numerically by 2a the mean proportionate by b

and one of the parts by a+x the other part is expressed numeri-

cally by 2a—(a+x) and therefore by the operationally equivalent

a—x and a+x a-x have just to be such that ^T^= . This
b a—x

equation holds just when singly (a+x) (a—x) = b2 a2—x2 = b2

x2 = —b 2+a 2 x = (a
2—b2

)^. Hence the question's conditions can be

met at all only when the given mean proportionate is not greater
than half the given straight line to be cut the two segments of the

given straight line have the greatest mean proportionate that they
can have precisely when they are equal and any two segments
into which a given straight line can be cut have the same mean

proportionate as other two precisely when the points of section are

equidistant from the middle point or what comes to the same when

that one of the one two segments which is close to either end of the

given straight line is equal to that one of the other two segments
which is close to the other end. Hence too the construction:—
Let AB be the given straight line. Bisect AB in C. If AC or CB
be equal to the given mean pro-

portionate C is the only point

in which AB is cut in the way
wanted. But if AC ox CB be not

equal to the given mean pro-

portionate each of them is greater

than it. Then from C in AB draw

on either side CD at right angles to AB. From CD cut off close to

C CD equal to the given mean proportionate. Produce DC end-

lessly to E and from DE cut off close to D DE equal to A C or

CB. From D as center at the distance DE describe a circle FEG.

Join DB. Because D is not in AB DCB is a triangle and in this

triangle because the angle DCB is a right angle the angle CDB is

less than a right angle and therefore less than the angle DCB
therefore the side DB is greater than the side CB and therefore

than DE. Since then B is at a greater distance from D the center

of the circle FEG than E a point in the circumference and there-

fore than any point in the circumference B is without the circle.

And C is within the circle being at a less distance from the center

D than E or than any point in the circumference. The line CB
therefore ending at the two points C B on opposite sides of the

endless line the circumference of FEG is cut somewhere between

Cand B by the circumference. Let F be the point between £7 and
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B where CB is so cut. Join DF then since if any of the equals A C
CB DE DF be expressed numerically by a and CD by b in refer-

ence to a common unit line CF is expressed numerically in refer-

ence to the same by *J(a*-b
2

)
AB is cut atwo in F so that AF: CD

— CD : FB. If G be the point where likewise AC is cut between

A and C by the circumference of FEG G cuts AB into the parts

AG GB so that AG : CD = CD : GB. And ,4i? can be cut nowhere

else than at F and at G so that the parts may have a mean pro-

portionate equal to CD,
If a b being still numerical quantities b > a from a straight line

6tr stretching away endlessly from taken as a primary direction

cut off close to6>a part 6M and from Ax^ close to A a part y4 (2

each expressed numerically by a from the point A in Ox draw on

either side a straight line y2P at right angles to Ox and produce
PA endlessly to P' from Ox cut

off close to 6> a part 6>i> ex-

pressed numerically by b and

from O as center at the distance

OB describe a circle. Since a < b

A is less distant from O than B
therefore A is within the circle

and the endless straight line

PAP' passing through this point

within the circle cuts the circum-

ference twice once on each side of A, Let P be the point on one

side of A and P' the point on the other where PAP' so cuts the

circumference. Join OP PQ and OF FQ. The straight MnePAP'
because it meets at A and does not lie wholly together with the

straight line OAx meets at A only and there cuts OAx therefore

the points P'F in PAP' on opposite sides of A are on opposite
sides of OAx and therefore OAP QAP are triangles upon one

side of OAx and OAP' QAP' are triangles upon the other side.

In the triangles OAP QAP the two sides OA AP are equal

severally to the two sides QA AP and the angle OAP is equal to

the angle QAP therefore the base OP is equal to the base QP.
In the triangles OAF QAP' likewise OF is equal to QF. Hence
OP QP OP' QP' are all equal and hence the angles POQ PQO
at the base of the isosceles triangle POQ are equal and also the

angles POQ P'QO are equal at the base of the isosceles triangle

POQ. From P'draw PB
t
and from F FB' each condirectionate

and equal to OB and join BP and QB t

BP' and QB'. Because in
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QP there is a point Q in and a point P not in OQx the straight

lines (2-^ OQx meet and do not lie wholly together therefore they
meet at Q only and there cut one another and therefore the por-

tions Qx QO of OQx upon opposite sides of Q lie on opposite sides

of QP. But PB
t being condirectionate to OB is (arts. 374, 372) on

the same side of QP as Qx. Therefore PB
t QO are on opposite

sides of QP therefore the angles QPBt PQO that PQ makes with

the parallels PBt
Ox are alternate and therefore these angles are

equal. The angles BOP QPBt being then each equal to the same

angle PQO are equal to one another. Hence a straight line to get
from the direction OB into the direction OP has to pass through
the same amount of angle the same way round as to get from the

direction PQ into the direction PB
t
. In like manner a straight line

to get from the direction OB to the direction OP must pass through
the same angular amount the same way round as to get from the

direction PQ to the direction PP. The triangles OBP PQB t

further are isosceles and equal vertical angled and therefore are

similar and so likewise are the triangles OBP P'QB'. On the

whole then this is the way in which if in reference to the primarily

directed unit distance the directed distance OQ be expressed

algebraically by 2a the directed distances OP OB PB
t PQ ex-

pressed severally by a-\-{-)^^/{b
2-a2

)
& b -(-)*\l (b

2-a2
)+a are

such that

*+(-)V0*
3-tf3

)+t-RV(£3-<M = 2a

*+(-)V (b
2-a2

) _ b

b
-{-f>J{b

2-a2

)+a

and the directed distances OP OB PB PQ expressed severally

by a-{-f^(b
2-a2

)
b b (-fs/{b

2-a 2

)+a such that

M-)V0*3-O+{Ri
sl(b

2-d2

)+a) m 2a

a-(-fs/(b
2-a2

) b

(-YJ(b
2-a 2

)+a

Another question somewhat like the above is How must a

given straight line be produced so that the whole line produced
and the produced part may have a given mean proportionate ?

Taking 2a b and a+x severally as the numerical expressions in

reference to the unit line of the given line the given mean propor-
tionate and the whole line stretching from one end and produced

beyond the other the numerical expression of the produced part is
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2a+(a+x) or the equivalent
—a+x and therefore x has to be such

. This equation in x is fulfilled precisely whenthat
a+x
b —a+x

severally (a+x) (-a+x) = b 2 -a 2+x2 = b 2

x=(a
2+b 2

f. The only

value of x which straightway fits the case put is ^(a
2+b 2

).
But inas-

much as the other value -*J(a*+b
2

)
makes —p — although bothr x ' b —a+x

minus yet of equal absolute value a+x —a+x have only to be

taken as the algebraic expressions of the distances from the ends

in one direction of a point in the straight line in which the given

straight line lies for both values to answer the question. Hence if

AB be the given straight line

produce AB endlessly to E be-

yond B and F beyond A from

B in the straight line FABE
draw on either side BC at right

angles to FE from BC cut off

close to B a part BC equal to

the given mean proportionate bi-

sect AB in D join DC and from

D as center at the distance DC describe a circle. The endless

straight line FDE passing through D the center of the circle cuts

the circumference on each side ofD let E be the point where FDE
cuts the circumference on the same side of D as B and F the

point where FDE cuts the circumference on the same side of D as

A. In the triangle DBC the side DC over against the right angle

DBC is greater than the side DB over against the acute angle
DCB moreover DE DF are each equal to DC being all straight

lines drawn from the center to the circumference of a circle and

AD is equal to DB therefore DE is greater than DB and DF than

DA. Since DB DE are two unequal straight lines that have a

common end D and lie in the same straight line upon the same

side of D the less DB is a part of the greater DE or in other

words E is in DB produced and in the same way F is in DA
produced. Then E is the only point in AB produced and F the

only point in BA produced such that AE : BC — BC'

: BE and

AF:BC=BC:BF.

(u). What must the sides be bounding the right angle of a

right angled triangle so that they may together be equal to a

E"
'aight line and the perpendicular drawn from their corn-

to the third side may be equal to a given straight line ?

"
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If xy express numerically the sides bounding the right angle q
the straight line to which those sides are to be together equal and

/ the straight line to which the perpendicular is to be equal all in

reference to a common unit line x+y = q and from the similarity

of the parts to the whole of a right angled triangle cut atwo by the

perpendicular drawn from the right angle to the side opposite

-
. The latter of these equations is equivalent to the

V(*
2

+r
2

) y
equation xy =p>J(x

2
+y

2

)
and since xy =p(x

2
-\-y

2y precisely when

singly (xy)
2

-p
2
(x

2
+y

2

)
=o (xy)

2

-p
2

{(x+y-q)(x+y+q)+q
2

-2xy} = o it

hence follows that the values ofxy sought are precisely such of those

values of x y that fulfil the equations x-\-y=q (xy)
2

+2p
2

xy—p
2

q
2 = o

as fulfil the equations x-\-y—q xy=p*J(x
2

+y
2

).
But (xy)

2

+2p
2

xy—p
2

q
2=o

precisely when *y=p{(q
2

+P
2

) -p] and therefore by the foregoing

question (10) the sides bounding the right angle can only be equal

severally to the two parts into which the straight line expressed by
q is cut when these parts have the same mean proportionate as the

straight lines severally expressed by p \/(q
2

+p
2

)—p- There is then a

triangle fulfilling the required conditions just when p{\J {q
2

+p
2

)—p}

not>(-^) or 2p
2 not> \-q) , that is just when the straight line to

which the perpendicular is to be equal is not greater than the

perpendicular drawn from the vertex to the base of a right angled
isosceles triangle having each of the equal sides expressed nume-

rically by -q,

(12). If the sides BC CA AB of a triangle ABC be severally

expressed numerically in reference to the unit line by a b c and

BfiCC be the endless straight line wherein BC lies what is the

numerical expression of the perpendicular drawn from A to B
t
BCC

and where in B
t
BCC is that perpendicular's foot ?

Calling AF the perpendicular from A to BBCC let p express

numerically AF and x algebraically the distance from B in the

direction BC of F each in reference to the unit line. Then a—x

expresses algebraically the distance from C in the direction CB
j
of

F. Since either BFA is a right angled triangle or AF is AB and

x 2
is a plus quantity whether x be a plus quantity or a minus

x*+p* = c
2
. Also (a-x)

2

+p
2 = b2

. Hence

p* = -x 2+c 2 w* -fa-x)
2+d2 x=— (c

2+a 2-b2

) a-x = ~(a2+52-c2

)K ' 2a> ' 2a K '
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/ = -
s/{-(c

2+a2-b2

)

2

+(2a)
2
c
2

}
=—</(2Fc'+2c>a*+2a*P-at-fr-c*)

= l

-\/(a+b+c) (b+c-a) (c+a-b) (a+b-c).
2.CI

If A B C be the numerical expressions in reference to some

unit angle of the angles of the triangle at the points ABC sever-

ally the numerical expression of FA is (sin B)c the algebraic ex-

pression of the distance from B toward C of F is (cos B)c and the

algebraic expression of the distance from F toward C of C is

—
(cos B)c+a. Hence either from the right angled triangle AFC if

F be not at C or because FA is CA if F be at C

b 2 =
{(sin B)c}

2

+{- (cos B)c+a}
2 = ^+a3

-2(cos B)ca

whence the same expressions as before may be got as equals of

(cos B)c or x and (sin B)c or p severally.

Since (sin C)b also expresses numerically FA (sin C)b= (s'm B)c
wherefore and because any other side line of the triangleABCmay
be dealt with in the same way as B

t
BCC

1 l
a I

a =——^0 =
sin A sin B sin C

In these two equations and a third equation,
—which if a perigon

be the unit angle is

A+B+C=±-

stating that the angles of a triangle are altogether equal to a hemi-

perigon are wrapped up all the numerical ties among a triangle's

sides and angles. Each of the equals (sin^)
-I

tf (s'm By
1

b (sin C)~*c

expresses numerically the diameter of the circle circumscribed

about the triangle ABC for BD being the diameter ending at B
if BD be BC the angle BA C is right but if not and CD be joined

the angle BCD is right and the angles BAC BDC being either in

the same segment of the circle or in counter segments are either

equal or supplementary.
Thus from the three fundamental equations in the numerically

expressed six elements of a triangle

sin A = sin (-A+-
J
= sin (B+C) = (sin £)cos ^(cos B) sin C

and therefore ifd stand for the common value of (sin^)"
1^ (sini?)"

1^

(sin C)~
z

c

(sin A)d= (cos B) (sin C)d+(cosC){smB)d or a = (cos B)c+(cos Qb
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likewise b — (cos C)0+(cos A)c c= (cos A)b+(cos B)a and hence

-a 2+b 2
-\-c

2

=
-{(cos B)c+(cos C)b}a+{(cos C)a+(cos A)c}b+{(cos A)b+(cos B)a)c

= 2 (cos A) be.

Again

V —cos A = cos
(

—A-\—
J
= cos (B+C) = (cos B) cos C—(sin B) sin C

{-cos^+(sin B) sin C}
2 = (cos£)

2

(cos Q 2 =
{i-(sin £)

2

]{i-(sin C)
2

}

and .*. (sin^)
2 = (sin^)

2

+(sin 6')
2

-2(cos^)(sin^) sin C

{(sin ^)^}
2 =

{(sin B)d}
2

+{(sm £>/)
2

-2(cos^){(sin B)d}(s'm C)d
a2 = b2

-\-c
2—2 (cos A) be.

(13). If two endless straight lines cut one another how are

the distances severally from each in the other's direction linked

together of a point in a straight line in their plane ? And when
and where do two endless straight lines in a plane therefore meet?

Through a point P anywhere in the plane of two endless

straight lines x'Ox y Oy that cut one another draw an endless

straight line y'Py condirectionate with y'Oy and let N be the

point where x'Ox because it cuts y'Oy cuts y'Py. Let x express

algebraically the distance from O in the direction Ox of N and y
the distance from N in the direction Ny of P each in reference to

the same unit line. Since N is the only point in x Ox whose

distance from O in the direction Ox x expresses and y Ny is the

only condirectionate to y Oy that can pass through N x serves

to mark outj/A^/ among all condirectionates ofy'Oy and since P is

the only point in y'Ny whose distance from N in the direction Ny
y expresses y serves to mark out P among all points in y'Ny.
Hence xy serve together to mark out P among all points in the

plane of x'Ox y Oy. Further if through the same point P an

endless straight line x'Px be drawn condirectionate with x'Ox
and M be the point where y'Oy because it cuts x'Ox cuts x'Px

then OM is equal and condirectionate to NP and MP to ON
and therefore y expresses algebraically the distance from O in the

direction Oy ofM and x the distance from M in the direction Mx
of P. These protensive quantities xy are called the COORDINATES
of P relative to x'Ox y'Oy as Axes.

Let SL be an endless straight line in the plane of x'Ox y'Oy.

Through draw an endless straight line p'Op cutting perpendi-

cularly SL and let Q be the point of cutting. Let / be the alge-

braic expression in reference to the unit line of the distance from
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O in the direction Op of Q. Let co express numerically the angle

xOy and a algebraically the angular distance from Ox the xyx'y

way round of Op and therefore too the angular distance from Op
the contrary or xyx'y way round of Ox each in reference to a

common unit angle so that —ol+co expresses algebraically in refer-

ence to this unit angle the angular distance from Op the xyx'y'

way round of Oy and the operationally equivalent co—a the angular

distance from Oy the xyx'y way round of Op. Then since Ox is

angularly distant from Op the xyx'y way round by what a alge-

braically expresses and Ny angularly distant from Np, one of the

two portions stretching away endlessly from N of an endless

straight line p'Np drawn through N condirectionate to p' Op, the

same way round by what a—co algebraically expresses (art. 391) the

foot of a perpendicular drawn from P to p'Op if P be not in

pOp or P itself if in pOp is distant from O in the direction Op

by what (cos oc);r+{cos (a—a>)}y or the operationally equivalent

(cos a)^-f{cos (co—a)}y algebraically expresses. Now P is in SL
precisely when a straight line drawn through P perpendicularly to

p'Op, is the straight line SL and hence and symbolizing co—ol by
ft P is in SL precisely when

(cos a)^r+(cos ft)y =p.

Or —p+[{cos o)x+{cos fi)y) expresses algebraically the distance from

Q in the direction QP of the point where pOp is cut perpendicu-

larly by a straight line drawn through P and therefore the perpen-
dicular distance from SL toward that side on which Qp is of P
and hence P is in SL precisely when this expression is equal to o.

The equation (cos a).r+(cos/3)j/—/>
= o then inasmuch as all the

pairs of protensive values of x y that fulfil it are precisely all the

pairs of coordinates of points in SL serves to mark out among all

points in the plane of x'x y'y those of them that are in the straight

line SL and hence is called the EQUATION OF THE STRAIGHT
Line SL.

If SL be the same as or parallel to x'x cos a is o cos/3 is

+ sina> and the equation is j/+(sin co)~p
= o. If SL be or be

parallel to y'y cos a cos ft and the equation are severally ±sin&> o

and x+ (sin co)~
l

p = o. If SL pass through O p is o and the equa-
tion (cos a).r+(cos ft)y = o. If SL meet x'x at a point whose dist-

ance from O in the direction Ox is expressed algebraically by a

the values a of x and o ofy fulfil the equation and .*. (cos a)a-p = o.

If SL meet y'y at a distance from O in the direction Oy expressed

algebraically by b y is b when x is o and .*. (cos ft)b—p = o. If SL
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cut elsewhere than at x'x at a point whose coordinates are a o

and y'y at a point whose coordinates are o b none of the quantities

abpiso .'. cosa = -
cos/3 =^ and the equation is equivalent to

II xv
-x+ Ty—i = o and therefore too to this's equivalent —1-4 = 1.
a b

y a b

Any equation Ax+By-\-C=o of the first degree wherein the

quantities ABC independent of xy are protensive is the equation
of a straight line. For if K be any protensive quantity but o SL's

equation is equivalent to (iTcos a)x+(Kcos ft)y—Kp = o and this

is the same as Ax+By+C = o \i a. p K can be and be taken such

that Kcosa=A Kcosft =B-Kp = C. Now a may (art. 385) be

taken so as to have cos a equal to any given protensive quantity
not algebraically less than — 1 and not algebraically greater than

+ 1 and the only tie between cos a and cos ft is that

cos ft
= cos (a)—a)

= (cos a>)cos a+(sin co){— (cos a)
2

+i}

or (cos a)
3+ (cos ft)

2—2 (cos co) (cos a) cos ft
—

(sin co)
2
.

Therefore K must be taken so that K'1 —

{A
2
-{-B

2

-2{cos(o)AB}
i

and then V ^ 3+^3

-2(cos co)AB = (sin a>)M
3

+{(cos o))A-B}
2

= {A-{cosa>)B}
2

+(sm(o)
2B2 and .-. not<(sin w)

2A 2 and not<(sino))
3^3

cos a may be taken K~XA and cos ft K~XB. When then all this is

done and/ taken —K~*C the equation Ax+By+C = o is the equa-
tion of SL. If cos a cos ft p marking out the direction Op and the

distance from O to /ward of Q be the values got by taking either

value of K the values got by taking the other value are — cos a

—cos ft —p marking out the opposite direction Op' and the distance

from O to /'ward of Q. Inasmuch as (cos a)^*+(cos ft)y—p or

( -^A )x
+ (

-jfB jy^r-jfC expresses algebraically the perpendicular

distance from SL toward that side on which Qp is of any point

whose coordinates are x y the equation (cos a)^r+(cos ft)y—p = o or

{-J7-A )x+(-^B)y+-=C=o is called SL's Cathetic equation.

Since it is precisely a straight line the same as or parallel to SL
that cuts at right angles />'#/ two straight lines having as equations

Ax+By+C = o A'x+B'y+C = are the same or parallel precisely

. A' B
when A

=
B'

If X V be protensive quantities independent ofxy the equation

\(Ax+By+C)+\'(A'x+By+C) =0 or the equivalent (\A+\'A')x
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+(\B+XB')y+(\C+XC) = is of the first degree in x y and is

therefore the equation of a straight line. If further neither \ nor X
be othis equation and the equations Ax+By+C—O A'x+B'y+C=o
are (art. 430) such that the values of x y are the same which fulfil

any two of them as fulfil any other two of them and therefore

unless A'B = B'A the three straight lines having these as their

equations are such that each passes through the point of section of

the other two. By taking \ X (art. 431) such that XA+XA' = the

equation (\B+XB')y+(\C+XC) = o is got of a straight line the

same as or parallel to x'x passing through the point where the

straight lines having as equations Ax+By+C= O A'x+B'y+C =
cut one another and therefore the y coordinate of this point and in

like way is the x coordinate of the point got.

(14). What relation holds among the perpendicular distances

from the endless straight lines in which a triangle's sides lie of a

point in the triangle's plane ?

Let ABC be a triangle whose sides BC CA AB lie severally in

the endless straight lines BfiCC C
t
CAA' A

t
ABB. Through any

point P in the plane of ABC draw three endless straight lines a!Pa

fi'P/3 y'Py cutting perpendicularly the straight lines B
t
C C

t
A'

A
t
B' severally in the points L MN so that La M/3 Ny may be on

the opposite sides severally of B
t
C C

t
A' A

t
B to those upon

which ABC is and let a 187 express algebraically the several

distances from L in the direction La from M in the direction M$
and from N in the direction Ny of P. Further let X fi v express

algebraically the several distances from B in the direction BC of

L from C in the direction CA' of M and from A in the direction

AB of N Then ABC expressing numerically in reference to

a perigon as unit the several angles CAB ABC BCA and fg h in

reference to the same unit line as all the distances are referred to

the several perpendiculars drawn from A to B
t
C from B to C

t
A'

and from C to A
t
B since to pass over a —:

—
^g+X expressed dist-

ance from C toward C and an a expressed distance from L
Zaward is to pass to a /3 expressed perpendicular distance from

C,A' inward

(sinO^-^^^^+|sin^--Ua
= ^ or (sin C)\-(cos C)a-j3=g

and since to pass over a \ expressed distance from B toward C
and an a expressed distance from L Laward is to pass to a —7
expressed perpendicular distance from A

t
B iVyward
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(sin 2?)\+isin (2?+-jk
= -7 or (sin^)X+(cos^)a+7 = 0.

These two equations,
—

V (sin C)cosB+(s'mB)cosC=sm (B+C) = sin f-A+-\ =sinA—,

are equivalent to the two

(sin^)se+(sin#)/3+(sin C)y = - (slnB)g

(sin A)X-(cos B)(g+/3)+(cos C)y = o

of which the first shows that (sin ^)od-(sini?)/3+(sin Qy has the

same value wherever P is and this value either therefore by taking
P at A and at C in turn or in like manner as it has been shown

the same as —(sin B)g is the same as —(sin A)f and as —(sin C)h.

If d be the numerical expression of the circumscribed circle's

diameter (sin A ) (sin B) (sin C)d= (sin A)f= (sin B)g = (sin C) h and

therefore

(sin .4)oc+(sin£)/3+(sin C)7+ (sin A ) (sin B) (sin C)d=o.

From the other equation (sin A)\— (cos B)(g-\-/3)+ (cos C)y = o

and the equations

(sin B) [i- (cos C) (h +7)+ (cos A)-x = o

(sin C)y-(cos^)(/+a)+(cosZ?)/3 = o

that must on like grounds hold it follows that

(smA)\+(sinB)fi+(sinC)v= (cos A)f+(cosB)g+(cos C)h

and therefore and

•.• (cos A) (sin B) sin £+(cos B) (sin C) sin A+ (cos C)(sin y4)sin i?

=
(cos A) (sin #) sin ^+{-(cos^)

a

+i)
s= (cosy4){(sin Z?)sin 6+cos (B+C)}+i = (cos A )(cos B)cos C-H

(sin ^/)M-(sin i?)/*+(sin Qz/= {(cos ^) (cos B)cos £+1}^.

The equation in a /3 7 may be otherwise found from what is

shown in question (13) above. Taking any two cutting endless

straight lines x Ox y'Oy in the plane of the triangle ABC as coor-

dinate axes through O draw three endless straight lines p\Op,

P'*Oj>a p'30p3 cutting perpendicularly B
t
C C A' A

t
B' severally in

Qx 2 3
s° that Q tpT Q2p2 Q3p3 may be on the opposite sides

severally of B
t
C C

t
A' A,B' to those upon which ABC is and let

A A A express algebraically the several distances from O in the di-

rection Op, of Q t
in the direction Opa of Q2 and in the direction Op3

of Q3
. After first naming the endless portions of y'Oy upon oppo-

site sides of O Oy Oy' in such a manner that the xyx'y way round
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may be the same as the A
t
A'B

l
BC

l
C way round let co express nu-

merically the angle xOy in reference to a perigon as unit and in re-

ference to a perigon as unit let
t 2 3

so express algebraically the

angular distances from Ox the xyx' way round of Op t 0p3 Op3

severally and
<j> l <f>.2 </>3

the angular distances from Oy the yxy' way
round of the same severally that besides

l -\-c\> l 24-<£2 #
34-03 being

each equal to co -02+03
which =_fI+ Wl+03

)
= -(0a+l\+/03+l\

and therefore expresses algebraically the angular distance from

A A' the A'B
t

B' way round of AB may be equal to —A the nu-

merical expression of the angle A'AB likewise —
34-0, equal to

—B and hence —0.4-0- equal to C. Then if x y be the coor-
2 2 *

dinates of P
-A4-(cos 0^4- (cos <k)j = a -/24- (cos 3);tr4-(cos <£2)j =

-/3+(C0S #
3K4-(C0S </)3)j = J.

And v (cos 2)cos <£3-(cos 3)cos <£2
=

(sin a>)sin(-024-03)

(cos 3)cos ^ — (cos x)cos 3
=

(sin a>)sin(— 34-0 x )

and (cos 0Jcos </>2
—
(cos 2)cos </>,

=
(sin &>)sin(— x4-02)

it follows that the equation free from x y which with any two of

these equations is equivalent to all three is

(sin ^)(A4-a)4-(sin B)(pa+0)+(sm C)(p3+y)=o.

Whence (sin A)a+(s'm B)/3+(s'm C)y has always the unchanging
value (sin A)(—p 1)+(smB)(r-p2)+(s'm C){—p3)

however P be changed.
The equation itself states how the algebraic expressions /,4-a p2+/3

p3+y are bound together of P's perpendicular distances from the

several endless straight lines drawn through O condirectionate sever-

ally with B
t
C CA' AJB' toward the several sides whereon are

Op, Op,_ Op3
.

439. PROP. To explain how triangles and parallelograms ai'c esti-

mated numerically and algebraically.

Let OAB be a triangle and produce AO any ended distance

OU and BO any ended distance OV. Because OA OB are ad-

joining sides of a triangle the straight lines AOU BOV meet and

are not in one straight line they therefore meet at O only and

there cut one another therefore OA OU are on opposite sides of

Ed
OB OV on opposite sides of AOU. Join BU and UV.

ither of the points B V is in the same straight line with
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AOU both UOB and UOV is a triangle. Let a be the numerical

expression of OA in reference

to OU as unit and b the nu-

merical expression of OB in

reference to V as unit. Be-

cause the triangles 6Mi? (9c7Z?

have as a common height the

perpendicular drawn from B
to the endless straight line in

which their bases OA OU lie

OAB : 6>c7£ = OA : OU and

therefore a is the numerical

expression of OAB in refer-

ence to OUB as unit. Again because the triangles OUB OUV
have as a common height the perpendicular drawn from U to the

endless straight line in which their bases OB OV lie OUB: OUV
= OB : OV and therefore b is the numerical expression of OUB in

reference to OUV as unit. Since then a expresses numerically

OAB in reference to OUB as unit and b expresses numerically

OUB in reference to OUV as unit #£ expresses numerically <X4i?

in reference to UFas unit. Let OW be sl straight line equal to

OU and lying in the same straight line and upon the same side of

as OA. Join VW. Because V is not in the same straight line

with WOU WVis a triangle and the triangles OUV WV being

upon equal bases OU OW and between the same parallels UW
and a parallel to UW through V are equal. Hence ab is the nu-

merical expression of OAB in reference to OWV as unit.

If then in particular OV be equal to OU and therefore to

W,—and it is always understood if not otherwise stated that the

unit is the same to which the numerical expressions refer of all

straight lines dealt with at the same time—, a triangle having two

sides expressed numerically by a b is expressed numerically by ab

in reference to an isosceles triangle as unit surface having each of

the equal sides equal to the unit line and the angle bounded by
them either equal or supplementary to the angle bounded by the

two sides of the triangle. Moreover since the triangle OAB is equal

to any other triangle upon a base equal to OB and between the

endless straight line wherein OB lies and the parallel thereto

through A and either of the triangles OUV OWV is equal to any
other triangle upon a base equal to OU or OW and between the

endless straight line in which UW lies and the parallel straight line

through V a triangle with a side expressed numerically by b and a



a triangle's expression and a parallelogram's 395

straight line expressed numerically by a drawn from the opposite

angle and striking at any angles the straight line of that side is ex-

pressed numerically by ab in reference to a triangle as unit surface

having a unit side and a unit straight line drawn from the angle

opposite and striking at angles equal severally to those angles the

straight line of the unit side. In particular if the angles be right

angles at which the side lines are struck a triangle upon a b nume-

rically expressed base and of an a numerically expressed height is

numerically expressed by ab in reference to a triangle upon unit

base and of unit height as unit surface.

Next let OACB be a parallelogram and produce AO to any
point U and BO to any point V. Because OA OB are adjoining
sides of a parallelogram the straight lines AOU BO V meet and do
not lie wholly together therefore AOU BOV meet at only and
there cut one another and therefore OA OU lie on opposite sides

of BOV and OB OV on opposite sides of AOU. Through V a

point not in AOU draw a straight line VD parallel to AOU and

through U a point not in BO V draw a straight line UE parallel to

BOV. Because in AOU there is a point U in and a point not in

UE,— for is in BOV* parallel to UE—, AOU UE meet but

do not lie wholly together therefore they meet at U only and there

cut one another. And because UE cuts ^4 (9 £7 one of the parallels

AOU VD or AOU CB it also cuts the other VD or CB. Let then

D be the point where UE cuts VD and E the point where UE
cuts the straight line in which CB lies. Since OU meets OB only at

BE not at all and EU only at £7 the straight line OU and the

line <9Z?ii £/ made up of the three straight parts OB BE EU end

at the same two points U and only there meet one another

therefore these lines shut in a portion of surface and therefore

OBEU is a figure,. This OBEU figure too being a plane figure

bounded by one line wholly made up of four straight parts of which

no adjoining two are in one straight line is a four sided polygon
and having each opposite two of the four sides parallel is a paralle-

logram. In like ways is OVDU a parallelogram. Let a express nu-

merically OA in reference to U as unit and b OB in reference to

V as unit. Because the parallelograms OACB OUEB are of the

same height OA CB : OUEB=OA:OU and because the parallelo-

grams OUEB OUDV are of the same height OUEBiOUDV
= OB : V Hence a expresses numerically OA CB in reference to

OUEB as unit and b OUEB in reference to OUDVas unit. There-

fore ab expresses numerically OACB in reference to OUDV as

unit.
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If the units OU OV to which a b severally refer be equal it fol-

lows in particular that a parallelogram having adjoining sides ex-

pressed numerically by a b in reference to a common unit straight

line is expressed numerically by ab in reference to an equilateral

parallelogram equiangular to the parallelogram and with each side

equal to the unit line as unit surface. Since too OACB is equal to

any parallelogram upon a base equal to OB and between the paral-

lels in which OB AC lie and OUD Vis equal to any parallelogram

upon a base equal to OU and between the parallels in which OU"

VD lie a parallelogram having a side expressed numerically by b

and a straight line expressed numerically by a crossing from the

line of that side at any angles to the line of the side opposite is ex-

pressed numerically by ab in reference to a parallelogram as unit

surface having a unit side and a unit straight line crossing from the

line of the unit side at angles equal severally to those angles to the

line of the side opposite. If in particular the straight lines cross at

right angles a parallelogram upon a base numerically expressed by
b and of a height numerically expressed by a is numerically ex-

pressed by ab in reference to the square of the unit line as unit

surface.

Since a parallelogram is double a triangle upon the same base

and between the same parallels applying this to the estimated pa-

rallelogram and the estimated triangle in corresponding cases the

parallelogram is expressed numerically by 2ab in reference to the

unit triangle and the triangle by - ab in reference to the unit pa-

rallelogram or applying the proposition to the unit parallelogram

and the unit triangle in the like cases the parallelogram is expressed

numerically by (ab)x2 in reference to the unit triangle and the

triangle by (ab)x- in reference to the unit parallelogram.

Let x Ox be a straight line stretching away endlessly on each

side of a point O and let OB be a straight line drawn from O to a

point B not in x'Ox. In x Ox take a point A anywhere but at O and

join AB so that OAB is a triangle. Let OU OVbe equal straight

lines in the same straight lines and upon the same sides of O as Ox
OB severally and join UV so that OUV is a triangle. If in refer-

ence to OU or OV as unit line b express numerically OB and a

express algebraically the distance from O in the direction Ox of A
the quantitative element of ab expresses numerically in reference to

the triangle OUV as unit surface the triangle OAB and the desig-

native element of ab is the same as that of a. But the algebraic sign
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of a marks whether A be on the x or the x side of O and OAB is

upon the same side of OB as A. Therefore the algebraic sign of ab

marks whether the triangle OAB is upon the same side of OB as

Ox or as Ox.

Also a parallelogram having the sides OA OB and expressed

numerically by aUs absolute value in reference to the parallelo-

gram as unit surface having the sides OU OV is upon the Ox or

the Ox side of OB according as ad's sign is + or— .

440. The matter of art. 439 may be put to such uses as the

following.

(1). In a given circle whose diameter is expressed numerically

by d to inscribe a rectangle having a given amount of surface ex-

pressed numerically by a in reference to the square of the unit line

as unit surface.

If x y express numerically the rectangle's sides xy = a. And
since an angle in a circular segment is a right angle precisely when

the circle's center is in the segment's base each of the rectangle's

diagonals is a diameter of the circle and therefore x2 +y2 = d2
.

Hence x y can only be either of them -{\Jd
2

+2a)+*J(d
2—

2a)} and

the other -y(d
2

+2a)—*J(d
2

—2a)}. The greatest value that a can

have is -d2 and then x =y so that the greatest rectangle that can

be inscribed in a given circle is the inscribed square.

(2). About a given circle whose diameter is expressed numeri-

cally by d to circumscribe a parallelogram having a given amount

of surface expressed numerically by a in reference to the square of

the unit line as unit.

Since a straight line drawn through the circle's center perpen-
dicular to the straight line of any side of the circumscribed paralle-

logram cuts perpendicularly the straight line of the opposite side

and meets each of these lines at the point of contact the perpen-

dicular distance between each two opposite sides of the parallelo-

gram is equal to the diameter of the circle. Therefore if A express

numerically any angle of the parallelogram
——

-jd expresses nu-

merically every side and therefore in reference to the square of the

unit line as unit surface d(smA)~
ld or the equivalent (s\nA)~

ld2

expresses numerically the parallelogram. Hence the parallelogram
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a
is expressed numerically by a precisely when (sin A )~

J =
-^ and

therefore precisely when each side of the parallelogram is expressed

numerically by —r%d or the equivalent -%. Since the least value

that (sin^f)"
1 can have is I which happens precisely when A

expresses numerically a right angle the least parallelogram that

can be circumscribed about a given circle is the circumscribed

square.

If a = b2 the following construction may be used. Let BKD be

the circle C the center BCD the diameter at whose ends B D two

opposite sides are to touch and BN DG the straight lines of those

sides. If b — d about BKD circumscribe a square of which BN DG
are side lines. But otherwise from B as center at a distance ex-

pressed numerically by b describe a circle and let E be one of the

points on opposite sides of D where v b>d DG cuts this circle.

Join BE and because E is on one side of BD BDE is a triangle.

From E draw on that side of EB on which is the triangle BDE a

straight line EF at right angles to EB. Because the triangle BDE
is right angled at D the angle EBD is acute the straight lines EF
BD therefore make with EB interior angles BEF EBD upon one

side that are together less than a hemiperigon and therefore meet

on that side if far enough produced. Let F be the point where EF
BD so meet and then EBF is a triangle. Since the angle BEF is

right the perpendicular ED to the side BF cuts the triangle FBE
into the triangular parts EBD FED similar to itself :. BF:BE

= BE : BD and therefore BF is expressed numerically by -Jb and

is therefore greater than BD. From B as center then at the dist-

ance BF describe a circle and let G be the point on one side of D
where the straight line DG because it passes through the point D
within cuts the circle. Join BG and since BG is expressed numeri-

it

cally by -,b the (sin)
-1 of the angle BGD is —j which = (-J ~-j2

and therefore the angle BGD is equal to one angle of the circum-

scribed parallelogram. Further since the triangle BDG is right

angled at D the angle DBG is acute. Through C draw a straight
line LCHK cutting perpendicularly in H BG and let K L be the

points on the same side of C as H and on the opposite side sever-

ally where LCHK because it passes through the center cuts the

circumference of BKD. Because the perpendicular CH is on that
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side of CB on which is the acute angle CBG the straight lines BCD
KCL do not lie wholly together they therefore meet at C only
and there cut one another. Join DK. The points K H being in

LCHK on the same side of C are on the same side of BCD. But
the straight line DK is on the same side of BCD as K and BG
and therefore too DG is on the same side of BCD as H. Therefore

DK is on the same side of BCD as DG. Moreover since K is in

the circumference of BKD and not at D the straight lines DK DB
are on the same side of DG as BKD. Since then from one end and
on one side of the straight line DB a straight line DG is drawn
and from the same end and on the same side o(DB a third straight

line DK not the same as DG is drawn and moreover DK is on

the same side of DG as DB it follows that DK is on the same side

of each of the straight lines DB DG as the other that DK is

between DB and DG that DK cuts atwo the angle BDG that DB
DG make angles KDB KDG with that lie upon opposite sides of

DK and that DB DG are on opposite sides of DK. Through K
draw a straight line KM touching BKD. Because D is elsewhere

in the circumference ofBKD than at K the straight lines KM KD
meet and do not lie wholly together therefore KM KD meet at K
only and there cut one another. Let then KM be the portion of

KM that lies on the same side of KD as DG and therefore on the

opposite side of KD to which DB lies on. Now the straight line

which touches the circle BKD at either end D or K of the straight
line DK in that circle makes with upon either side ofDK an angle

equal to the angle in the segment upon the other side and the

angle in the segment DBK within which is the center C of the

circle is less than a right angle. Therefore each of the angles KDG
DKM is less than a right angle and therefore these angles are

together less than a hemiperigon. The straight lines DG KM
therefore which thus make with DK at the different points D K
interior angles KDG DKM upon one side that are together less

than a hemiperigon meet one another on that side if far enough

produced. Let M be the point where they so meet and since K is

not in DM DMKM meet at M only and there cut one another.

Let too N be the point where MK because it cuts DM cuts the

parallel BN. Because in KCL there is a point K in and a point

C not in the straight line MN,—C being the center of a circle

touching MN—, KCL MN meet and do not lie wholly together
therefore KCL MN meet at K only and therefore L being in KCL
but not at K is not in MN. Through L a point thus not in MN
draw a straight line LO parallel to MN and let be the point
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where BN and P the point where DM because it cuts MN one of

the two parallels MN LO also cuts the other L 0. The straight line

MP and the line MNOP made up of the three straight parts MN
NO OP ending at M P and only there meeting one another shut

in a portion of plane surface and since MP is parallel to NO and

MN to PO the portion shut in is a parallelogram. Since MN
touches the circle BKD the straight line LCK drawn through the

center C to the contact K is perpendicular to MN and since the

parallels MN PO make with LCK equal alternate angles PO is

therefore at right angles to LCK and therefore touches BKD at

L. Since then the perpendiculars CD CL CB CK drawn from C to

the side lines of the parallelogram are all equal the foot of the

perpendicular to any side line is on the same side of either adjoin-

ing side line as C. But C is between the ends of each of the straight

lines BD KL joining opposite contacts and therefore is on the same
side of each of two opposite side lines as the other. Wherefore the

circle's contact with any side line is on the same side of each of

the two adjoining side lines as the other and therefore is between

the ends of the side. The parallelogram is therefore circumscribed

about the circle. Lastly because in the triangle CBH the right

angle CHB is greater than the acute angle CBH the side CB is

greater than the side CH therefore CK an equal to CB is greater

than CH therefore of the unequal straight lines CH CK having a

common end C and lying in the same straight line upon the same
side of C the less CH is a part of the greater CK and therefore

the parts HCHK of CK are upon opposite sides of H and there-

fore on opposite sides of BG that cuts CK at H. But BG NM
because they cut at right angles CK at the different points H K
are parallel and therefore GM is on the same side of BG as HK
on that side to wit whereon is the parallel NM. Moreover GD is

on the same side of BG as HC on that side to wit whereon is

the straight line BCD. Therefore GD GM are on opposite sides of

BG and therefore of the angles which the parallels BG NM make
with the straight line DGM cut by them at the different points
G M DGB is an exterior and GMN or PMN is the opposite in-

terior upon the same side to wit upon that side ofDGM whereon

is the parallel BN. The angle DGB is therefore equal to the angle
PMN and therefore of the parallelogram PMNO the angle PMN
the equal oppfbsite angle PON and each of the other supplement-

's

ary angles MPO MNO has a (sin)
-1

equal to
-^. By doing with the

point on the other side of D where DG cuts the circle described
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from B as center at the distance BF the same as is here done

with G another parallelogram circumscribed about the circle BKD
is got each of whose angles has a (sin)"

1

equal to -j2 and this and

MNOP are the only parallelograms that can be circumscribed

about BKD having side lines lying along BN DG and a surface

expressed numerically by b
2
in reference to the square of the unit

line as unit surface.

(3). To describe a parallelogram equiangular and equal to a

given parallelogram and having a side in one of the side lines of a

given triangle and the ends of the side opposite in the other two.

Let ABC be the given triangle and BC the side in the same

straight line with which the sought parallelogram's side is to be.

Produce BC endlessly both ways and toward y beyond C. Through
A draw an endless straight line xAx cutting By in D at angles

equal severally to the four angles of the given parallelogram and
so that D is on the x side of A. Let a h be the numerical ex-

pressions in reference to a common unit line of BCAD severally and

ka the numerical expression of the

given parallelogram in reference to

a parallelogram as unit surface

equiangular thereto and having
each of its sides equal to the unit

line so that if r s be the numerical

expressions of the given parallelo-

... . ka rs k r
gram s sides ka — rs — = — - = -
& sa as s a

and therefore k is the numerical ex-

pression of a first proportionate to

the given parallelogram's sides and

BC. Through any point G in xAx
draw an endless straight line Gy condirectionate with By and let

E F be the points where the several straight lines of AB AC
because they as well as x'Ax cut By cut Gy. When E F are neither

at A nor in By let EFHK be the parallelogram with sides EKFH
parallel to AD and the side KH opposite to EF in By. This

EFHK parallelogram then is just any parallelogram equiangular
to the given parallelogram and with a side KH in By and the side

EF opposite ending in the straight lines of AB AC. Let x be the

algebraic expression of G's distance from A in the direction Ax.

Since from the similar triangles EFA BCA EF : BC=FA : CA and

26
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either from the similar triangles FAG CAD or because when D is

C G is F FA :CA = AG \ AD EF\ BC=AG : AD. Therefore

and because the straight lines of AB AC cut one another at A
and x'Ax either cuts each of these straight lines at A or lies

wholly together with one of them and cuts at A the other the dis-

tance from E in the direction Ey of F is expressed algebraically

x
by -j(i.

Besides G's distance from D in the direction Dx is ex-

pressed algebraically by h-x. Hence in reference to the unit sided

parallelogram equiangular to the given parallelogram as unit sur-

face EFHK is expressed numerically by the absolute value of

x x
(h—x)-?a. Moreover (h-x)ja

is plus or minus according as G is or

is not in the AD portion of x'Ax so that the algebraic sign of

x
(h--x)ja marks if G be in Ax whether EFHK is on the DA or on

the Dx side of By and if G be in Dx' whether EFHK is on the

same side of EK as Ey or on the opposite. The parallelogram
xEFHK is therefore the one sought precisely when {Ji-x)-a—±ka

and this is precisely when severally

(h-x)x = ±kh x=h+l(±/^\k/iY.

Of all the parallelograms then having G between A and D there

is none equal to the given parallelogram if this be greater than the

one having G at AD's middle if the given parallelogram be equal

to the parallelogram having G at AD's middle it is equal to no

other and if the given parallelogram be less than the one with G at

AD's middle there are precisely two equal to it having their G
points equidistant from AD's middle. But of all the parallelograms

having G not between A and D there are precisely two with their

Gs equidistant from AD's middle point that are equal to any given

parallelogram.

Since in reference to an equilateral parallelogram upon the unit

line as unit surface two parallelograms each equiangular to that

parallelogram and severally with sides numerically expressed in

reference to the unit line by h—x x and by k h are severally ex-

pressed numerically by {1i—x)x and by kh the equation (h—x)x = kh

determines how to cut atwo AD so that two equiangular parallelo-

grams may be equal of which one has adjoining sides equal seve-

rally to the parts and the other adjoining sides numerically

expressed by k h. Likewise the equation (h—x)x— —kh,—being

equivalent both to {—h+x)x— kh and to {h+(-x)}(—x)
— kh—,

deter-
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mines how to produce AD both beyond D and beyond A so that

two equiangular parallelograms may be equal having the one

adjoining sides equal severally to the whole produced line and the

produced part and the other adjoining sides numerically expressed

by k h.

If e stand for \jkli (h—x)x=kh or <? precisely when = -

€ X

(—/i+x)x = tr precisely when = -

h-\-(—x) e
and {h+(-x)\(-x) = e

2

precisely when—-—- = —
c ^~x

and therefore the distances from a straight line's ends of a point
in the endless straight line in which the ended straight line lies

have a given mean proportionate precisely when any parallelogram
with adjoining sides equal severally to those distances is equal to

a parallelogram equiangular thereto with each side equal to the

mean proportionate. If in particular the parallelograms be right

angled the distances from two points of a third point in one straight
line with the two have a certain mean proportionate precisely
when the rectangle of the distances is equal to the square of the

mean proportionate.

(4). Two endless straight lines that cut one another being given
and a point not in either of them through the given point to

draw a straight line so as with the given straight lines to shut in a

triangle having a given amount of surface.

Let x'Ox y'Oy be the cutting endless straight lines and P the

point in neither. Of the portions Oy Oy of yy' stretching away
endlessly from upon opposite sides of O and therefore lying on

opposite sides of xx let it be Oy that lies on the same side of xx'

as P and of the portions Ox Ox' of xx' on opposite sides of yy' let

it be Ox that lies on the same side

of yy as P. From P not in xx
draw a straight line PM parallel

to xx and let M be the point
where yy' because it cuts xx' cuts

PM. Through P and a point R
taken anywhere in yy' but at O
and M draw an endless straight

line PR. Because R is in yy' but

not atM the only point common
to yy' and PM R is not in PM
therefore PR meets and does
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not lie wholly together with PM therefore PR meets at P only

and there cuts PM and therefore PR cuts the parallel xx' to PM.
Let the point wherePR so cuts xx' be Q which cannot be else two

straight lines PR yy' could meet in more points R than one

and yet since P is not in yy not lie wholly together. Then Q R
being three points not in one straight line OQR is a triangle. Let

PM MO be expressed numerically by a b severally and the dis-

tances from in the direction Ox of Q and from in the direc-

tion Oy of R algebraically by x y severally all in reference to a

common unit line so that a b being the coordinates of P relative

to the axes x'x y'y (art.438(i3)) -+-= i. Moreover in reference to
x y

a triangle as unit surface having each of two sides equal to the

unit line and the angle bounded by those sides equal to the angle

xOy let be express numerically the given amount of surface so that

if a straight line OL be taken along Ox and a straight line OL'

along Ox' each expressed numerically by c in reference to the unit

line and ML ML be joined both OLM and OL'M is a triangle

equal to the given amount of surface. Then xy has an absolute

value expressing numerically the triangle OQR in reference to the

unit surface triangle and is plus or minus according as OQR is if

OQ be in Ox on the Oy or the Oy' side of x'x and if OR be in Oy
on the Ox or the Ox' side of y'y and hence OQR's surface is equal

to the given amount precisely when xy = ±bc. Since a b c are nume-

rical quantities each else than o -+- = i and xy = bc precisely when

ay\bx—xy = be and therefore precisely when —I— = I and x(c—x) = ac

also -+- = i and xy — —be precisely when —|— = i and x{c-\-x)
= ac.

Wherefore OQR has the given amount of surface precisely when

Q either so cuts atwo OL that OQ QL or so lies in OL' or L'O

produced that OQ QL' have the same mean proportionate as

MP OL. And there are therefore precisely 4 3 or 2 triangles that

can be found fulfilling the conditions according as ae—l-e) .



CHAPTER. VI

PARANOMIC PROCESSES

441. AN expression such as
—-^(3-*)

—
^^ or V(i+*)

which has no polynomic equivalent may as in arts. 188, 189, 192,315,

319, be operationally equivalent to an expression of the shape
A Q+A,x+A 2x 2+ vA i_,x

i
~"-\-Kx

i wherein ^^.^..J^are quan-

tities independent of x i is any whole number chosen at will and K
is a quantity dependent on x which by taking x endlessly near to o

is made endlessly near to some fixed quantity independent of x.

Inasmuch as i is any whole number whatever

A +A xx+A ax*+ • • • +A,_x
i-I+Kx i

= A Q+A xx+ • • • +A i_lx**+A ix'+At¥s*t+ • • • +i+f_ 1x*'-'+K'x'+
f

m A Q+A xx+ • • +A i_1
x t-i

+[A i+x(A t
.

+l+A 1

-

+2 x+- • • +A i+ i._1
x i"*+K ,xe-x

)}x
i

V being any whole number greater than o and K' a quantity like

K dependent on x which as x becomes endlessly near to o becomes

endlessly near to a fixed quantity independent of x.

.-. K =A i+x(A i+1+A i+2x+ • • • +A i+,_1
x'-2+K'x t'~ l

).

Now if G be the greatest absolute value that A
i+I-\ YK'x^* has

while;? passes continuously from any given value else than o toward

and to o x has only to be taken of an absolute value less than

- forx(A i+I -\ yK'x
1"-1

)
to have an absolute value less than any

given numerical quantity 8 and if OP PQ be the directed distances

severally expressed by two quantities u v one or both of them

ditensive the directed distance OQ expressed by u+v becomes

endlessly nearly the directed distance OP as v becomes in what-

ever way endlessly near to o. Hence it is the fixed quantity A t
-

independent of x to which K becomes endlessly near as x becomes

endlessly near to o. The symbol A,\ then may fitly stand for K.
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Def. If z be any whole number chosen at will A A
1 A 2 ...A t_I

A
i

quantities independent of x and A^ a quantity depen-

dent on x that becomes endlessly near to Ai asx becomes

endlessly near to o A Q+A,x+A 2x2+- - +A i_1x"+AJ\x
i or

the operational equivalent A Q+xA x+x*A 2-\ WA t
\

is

called a Paranomic Expression or Paranome rela-

tive to in reference to or in x.

442. If for ever greater and greater values of 11 starting from

a great enough value A +A xx+A 2x 2
-{ \-A n_xx

n~* becomes ever

nearer and nearer to a certain quantity and at length when the

value of n is great enough becomes nearer thereto than by any

given difference,— and it is then only and thus only that

A +A xx+A 2x
2
A. taken as a result of endless successive addi-

tions has meaning—,
since A Q+A ^x+ \-A &*•{ \-A ilei,_x

x*l>-'L

= A +A 1x+-- • \A
t._1
x i-1

+{A i+x(A i^+A^x+. • +A iW_ l
x'-2

)}x
i

and however great a given whole number 1 is

Af\-x(A i+1+AteX-\ \-A m^x*-
2

) may by taking x near enough to o

be made more nearly equal to A £ than by any given difference the

quantity which A ^-A xx-\-A 2x2j
{ vA n_ x

x n- 1

endlessly nears as n

becomes endlessly great

= A ^A Jx+A ax
a+- • >+A t

_
1
x i

-
I

+Aji

x\

443. If A A
x
A 2 ... be an infinite series of which every term

after a certain one A r_T
has an absolute value not greater than a

certain numerical quantity A

A +A 1x+ • • • +A r_ i
x*~ I+A rx

r+A r+1x"
+I+ • +A r+i_1

xr+£~1

= A +A,x+ • • +A r_1
xr

-*+{A r+A r^x+ • • • +A r+,_1
x t'~ I

)x
r

and since if ©^ ©w/2 . . . 0^. be any quantities protensive or di-

tensive having absolute values ct c2 ... c
t
- the absolute value of

©Wl^+©W2£2
=

V[{(cos w^^+Jcos co2)c2}
2

+{{s'm o)
r)^+(sin co2)c2}

2

]

=
^/[c

2

1+c
2

2-\-2[cos(-co i+cd2)}c1
c3]

which is not greater than ct+Ca and the absolute value of

®w/i+®<o/2H h©«^V likewise not>^+r2H K the absolute value

of A r+A r+1x-\ vAr+^x*'
1

is not greater than that of

A+Ax+Ax 2
-{ -\-Ax

{~x or of this's operational equivalent A

when^r is not I. Besides if x's absolute value be less than 1 -x*'s
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absolute value is less than 1 for any value but o of i. Hence if x
have an absolute value less than 1

A +AjX+ • • +A r+l_ l
xr+'~ 1 = A Q+A xx+ • • • +A r_1

xr~l+Hxr

where H is some quantity having an absolute value less than

2A has. In like wayi-x J

A +A tx+ • • • ^A^-J***^ = A +A xx+ • • . +ArHn*«**+IIxrH

and i may be taken so great as to give x 1*'
(arts. 173,300) and

therefore too Hx rJti a less than any given absolute value. For any
given value of x then that has an absolute value less than 1 how-

ever many be taken of the terms in order of the endless series A
A

L
x A 2x2 their sum's absolute value is never greater than

some definite numerical quantity and so great a number of those

terms in order may be taken that their sum is more nearly equal to

the sum of any greater number of them in order than by any given
difference. This could not be unless the sum of endlessly more and

more of the terms in order of the series became endlessly near to a

certain quantity.

444. If v v
1
v2 ... be an endless series of quantities such that r

i) i) i)

being some whole number each of the quotients -^ —^ -^ - - -

vr Vr+I vr+2

has an absolute value not greater than a certain numerical quantity
c less than 1

^ +^x+- • • +vr+ • • • +vr+{_1

and the absolute value of

I+^+ ... +^.,.^^ not> 1+c+c *+ .. m+c
*-* or the opera-

\—c i
I

tional equivalent
—— and .'. < whatever whole number i may

be. Therefore

zVKVBVf • * +zV-x = z'o+^x+zvt- • • • +*V-i+0*V

where Q is some quantity with an absolute value less than ——
.

Likewise and because v
r+i

has an absolute value not greater than

the absolute value of c*vr
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and by taking i' great enough the absolute value of Qc
{
'vr may be

made less than any given numerical quantity. Hence

v +v x -\ HVh-j has never an absolute value greater than some

definite numerical quantity however great i may be and i may be

taken so great that ^ +^I^ +?Wi is more nearly equal to

^o+^iH V^r+t+f-x however great i' may be than by any given dif-

ference. As i then becomes endlessly great vQ+vz -\ \-vr+t
- becomes

endlessly near to some certain quantity.

If a be not a whole number the series
a\ a^x a\. 2x 2 ... is end-

less where as in art. 184 a\ is 1 and a^ a\ 2 a\ 3
. . . follow therefrom

in order after the law aw+1 = -;
—

dy and the quotient got from divid-

ing by the ith. term the (i+i)th — :
—x= (—-. 1

jx.
If a be

merical quantity else than a whole number—: 1 is minus but of

an absolute value less than 1 whenever t>a-\-i and then x has only
to be taken of an absolute value not greater than c for the absolute

value of
(

—
= 1 Wto be not greater than c for all values of i greater

than a+i. If a be a minus quantity either —a not> 1 and then abs.

val. of —:
— 1 not> 1 always or —a>\ and then although abs. val.

[^—. 1
)>

1 yet for abs. val. (—: 1
J
to be less than i+* however

small a given numerical quantity is k i has only to be taken greater

than -(— 1—a) wherefore when —a not> 1 abs. val.
(

—
: 1

jx
not> c

for all values of i if only abs. val. x not> c and when —a> 1 abs. val.

a+i — 1
Jx

not>c for any value of i greater than -(— I—a) if abs.

val. x not> c. If a be a ditensive quantity p+(—)q p q being

protensives abs. val. t—:

— 1

/4I-

^-PF i

t

i(p±ir±rrr.—y —.
and .'. <i :
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which for all great enough values of i either is not greater than 1

and then x has only to be taken of an absolute value not greater

than c for abs. val. (—. i\x to be not greater than c or although

greater than 1 may yet be made less than any given numerical

quantity i+/c greater by however little than 1 and then if x be

given an absolute value not greater than ——c abs. val. (—.
i)x

not> c.

445. UA +A Ix+.--+A a_ lx^+^* = Bo+Blx+...+B^lxP-'+l^
for all values of x A

t
= B

t
whatever whole number i is. For if

A -+A lx+ • • • +Ajx« = B +Bz
x+- • •

+B£xf*

A -B +{A S
-B

s)x+ • • • +(A^-B+. l)x^+A r-BJj z'
= o

and A —B +A —Bz
\

x = o when x is o only if A —B = o or A = BQ .

Therefore

{A-BMA-B2)x+.. Jt(A^-Bi_l)x^+A i-Bt\
x i-1

}x
= o

for all values of x and therefore when x is noto therefore

- A,-Bz+(A a-B^x+>..+{A^-BjJx~+A<-Bt\
x~=o

for all values of x however near to o if not o. Since then

A
1
—B

s+A a—Ba \ x = o however near to o x may be if not o jt may be

taken so near to o as to make A I
—B

l
if not o nearer to o than by

any given difference. But A
I
—B

1
is nowise dependent on x and

hence A—B
I cannot be else than o therefore A l

= B
l

. Therefore as

before A—Ba+A 3
—B

3
x — o for all values of x however near to if

not o and since as before this makes A—Ba if not o dependent on x
A a

= Ba and so on.

446. If a b be any quantities

(0|o+£|«*+-
• •

+b\ i_1
x i-1+b

{i x%au-\a\ 1x+ • • +au._lx
t'- l+a

]

!x
t

)

+
1

• • •

+^j {*\o+aw*+
• •

-My*')!

Now if a b were any whole numbers each of these operational

equivalents (arts. 184, 186,300,354,398) = (\+x)
b

(i+x)
a

:. ={\+x)
a^

cqui
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and .-. =(a+b)) +(a+b)\ tx+ • • •

+(a+b)i i_J
x i~1+ (a+&)\ t\

x* wherefore (art.

445) if a b be any whole numbers (a+b)\ t
-= b^a^+b^ai^ \-bu-a\ .

But the Laws of Operational Equivalence and the Tests of Equality

on which alone this rests are the same for fractional numbers as

for whole are the same for incommensurable numerical quantities

as for commensurable are the same for minus quantities as for plus

and are the same for ditensive quantities as for protensive. There-

fore whether a b be numbers whole or fractional numerical quanti-
« ties commensurable or incommensurable protensive quantities plus
or minus or algebraic quantities protensive or ditensive still

(«+%:= b\ au+b\ 1
a u_l+b\ 2au_2+ • • . +3|^ !o .

Hence too if a b be any quantities whatever

(£|o+£lx*+-
• • +bu_l

x*-
I

+b\J
1

x t

) (a\ +a\sx+» . +au_1
x i

~^a^x
i

)

=
(a+b) lo+{a+b)i 1x+- . • +(a+&) l

^x
x*-

x

+(a+d)u\x
i
.

The operation then which performed on a gives the result

a\ +a\ xx-\ \-au_x
x i~1

-\-a^x
i

is an operation which if symbolized by
$ fulfils the operational equivalence

(Qfyfa = (f>(a+b).

447. What now can be gathered about an operation <f>
such that

(4&)4>a
=

<j>{a+b) ?

First (fo^a = <j>(a+6)
=

<j>a
and this is precisely when

($o-i)$tf = o. Therefore either $ is an operation which when per-
formed on any quantity a makes the result

<j>a always oor</>o=i.
Next a b c.fg being any quantities

(te)(*/)»- W*)OW*« = (fe-).-.(^)*(a+J) - {<f>g).~{<t>d)<i>(*+b+c)

= - - - =
(f>{a+b+c+

• • +f+g)

and therefore in particular if a=b = c = =f=g and there be
n of them

Whence
N>~^j

=
^n^a ==<))(71-Ja

=
(j)a and .\ (<£#)*= (+)»<£-#.

Hence again if m be any whole number

— — — r m x ™ / t\ m *m

(f»)«
=

[(<j>a) •'}"={{+)"$-«]"'= {+)"4>m
l

-a=
(+)»r6(VJ

a = (+)**£*

Therefore and because an incommensurable numerical quantity is



PARANOMIC THEOREMS 411

only known through its commensurable approximates if a be any
numerical quantity commensurable or incommensurable

(<t>a)
a =

(+)*4>aa.

Lastly if the
<j> operation do not make

<f>a always o and be

therefore such that </>o= 1

{0(—a)} (f>a
= $(a-a) = <f>o

= 1 and .*. <j>(—a)
=—

••• (**)- = [~)
= l*HM— (+)f»M = (+)*(-**) = (+)"°<K-«k

On the whole then either $a is always o or when a is any pro-

tensive quantity cf>a
is equal to a value of

(<j>i)

a
.

448. But I
j
+ 1

\tx-\ 1- 1
| I
_I

jr
i'~I

-H
i_|J

v*= I+x and

aio+a^x^ Va\ l_1
x i~1

-\-a\Ax
i

partly for that reason is not always

equal to o. Therefore (arts. 446, 447) if a be any protensive quan-

tity a\ -\ Nfyl** is the paranomic expression operationally equi-

valent to a value of (i+x)
a and therefore

Thus (i-te)"
1 = i-^+^ 3-^ 3+ • • •

+(-)*"
,**"f

+(-)^l}#'

(i-x)~
2 = i+2^+3^r

3+ • • • +£r*
r,

-f£H|y*

and generally if « be any whole number

(i-^-r - |

+^**
A^z^r +-—

yj

—~x"+

{n+(i-i)}...(n+2)(n+i)n

thus too (1 +.*•)*
=

x'

(+^fI+^_ !• , 3»i 3 5-3-1 _x (zx2-3)... 5.3.1 )

(
I-^,(+)*{

I+^+H^+5^jgs+ ... + .
tfx2Ti)-S

;

3
;

i
1
J

I
2 2.4 2.4.6 2.4...(*X2-2).SX2 j

(w-Mr)
= «/

5 _ «.-3

i—^*I^+~w~2
4r

a—'£-&?**+
3 3-6 3-6-9

. . . |f y {2+(.-i)x 3 }...8.5.2 l

v J

3.6...{(^'-i)x3)/x3
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449. Since putting Srt for the sum of the products of every r of

the i whole numbers 1 2 3...Z and 2 z for 1 after the law (art. 183)

Sr+i(^'+ I
)
=X+iH(^+ 1)^' stretched to the case of r being o

[a—{i- 1)}... {a—2) {a-\)a

= ^Xi-\)-c?-*tXi-\)+ce-*t2{i-\)- • • • +(-y-
I

tf2,_I (*-i)

it follows that a being any quantity

a^+ai.x+a^x
2
-^ • • •

+a\imtx*~
s

+au\v
i

'}

(1? ll l» N

+ - - -

I'

and .'. = H-«(XfaX')

where X stands for ^-x- --'-'.»'+ +(-)"
^-fr" 1 )

Li [2 L?_

#' or the equal

-x—-x*+-x3
1-(—)'"'-. W and X' for a quantity which may be

Si S 2
made more nearly equal to -r^-x

2—-L-x z+ •••+(—)7
L? 13

*

[j

by any given difference by taking a near enough to o.

x i than

450. Now because when u v are whole numbers {(i+x)
v
}

u
=(i+x)"

v

and

(1+*)*
= v

lo+vux+ • • •

+vu}x*
= i + (v{l

x+vux
2+ • • • +v\£_lxf-x

+v\£x
£
)

• • • +^|K*+ • • •

+%]•*?'

not only when z/ v are whole numbers but when u v are any quan-
tities whatever for the laws of operational equivalence and the tests
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of equality whereon the proposition can anywise hang are the

same for quantities generally as for whole numbers.

451. Making then u - so that -v — a whatever quantity v may

be else than, however near to, o and v\ xx+v^x
2
-\ ^ VAX< the ope-

rationally equivalent v(X+vX')

I (-) (~0f

{t-^H
[v(X+vX')Y

= 1+ !L{X+vX
.

)+
(l=^

{X+vXr+

{a—(i—i)v)...(a—2v) [a—v)a (x+vxy

wherefore and because ^—
.

^ — (X+vX'Y endlessly nears

pX* as v endlessly nears without being o
12

a „ a?
a

lo+ahx+aux
2+ • • • +aJ^x

i m
i+gX+^X

2+ • . +
j.

X'

%x<
or i + r-X+—X'+—X 3+--- since -~- =-.X which whatever

\l L2

I*-1
x->

l

a X are has an absolute value less than 1 when i > abs. val. Xa.

Hence if a be any protensive quantity

[l [2

and in particular i-\-x = 1+ .- X+—X 2+- -.

[1 [2

Hence too (art.446) if a b be any quantities
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452. If i-\-x be a numerical quantity and therefore X a proten-

sive quantity

or (art. 368) the base e of the Napier logarithms .\ i+x—ex or

X = \oge (i+x). Hence

loge (1+*) =^-V+^_V+ . • •+(-)- J
,r

z

'.

For the special value e of i+x X is 1 and therefore a being any

protensive quantity

-- a a* a?

453. If i+x i-x be numerical quantities

loge i-^= -loge (i-*)+loge (1+*)

- -(--x--x
2 t-J— x iX2+I

) + (-*—* 2+ • . • +'
*

I
-^X2+I>

)

V I 2 2X2+1
J

/ \j 2 2X2+1
J

/

= 2(-X+-xS+-X$+->>+^ L lX2+A
Vi 3 5 £X2+i_| J

which if abs. val. x<i (2LYt.443)
= 2(-x+-x3+-xi

-\
—

J.

Thus if ——- = —— w being a numerical quantity and h either

a plus quantity or a minus quantity having an absolute value less

than w x— -j and
2W+k

log, («**) = ioge w+2
{l ^A_+ l(iA_)

3

+
l(_J_J+

. .

]
.

Making ^ 1 and w in turn 1 2 4 6 ...—iHGH©-"} -3 = log,+2
{l
+
I(I)%.

log,S=2l0ge2+2
{l
+
^g)

3

+
..j

log. 7 = log, 2+log, 3+2j^+^)
3

+ . .

.J.
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and so on. Whence a set of Napierian logarithms may be found to

any sought degree of nearness. From loge 10 so found,— which

= loge 2x5 = loge 5+ loge 2—, logIO e which (art. 366) = = may be

found. As far as the 7th decimal place logIO e = 0*4342945. Then

V logIO W= (loge w)logIO €

log10 10001 = logIO 10000+2^+\(^f+
• •

jlog.e

and since making w ;/
2— 1 and h 1

log, «• = log, («>- I
) +2

{2
_i_+

I(_i:-)

3

+ . .

.}

-logIO «+log„(«+i)

= -log, («-i)+log, „-2

{_l-
+
I(_l_)

3

+ . .

.}
logIO ,

whence making ;/ in turn 10001 10002 10003 • • • tne common loga-
rithms of 10002 10003 • • • may be readily approximated to. More-

over if — be of a less absolute value than 1w
-logIO w+logIO (w+/i)

and therefore if n be any one of the numbers 10000 10001 10002 . . .

and abs. val. h not> 1

-logIO «+logIO (n+k)
= h- log10 € = /*{-logIO n+log10 (n+i)}

it

as far as the eighth place of decimals.



CHAPTER VII

DITENSIVE GENERALIZATIONS

454. If i+x be any algebraic and e any numerical quantity then

(art. 451) a perigon being the unit angle and X symbolizing

and (i+^)- = 0li+~^+M!x 3

+..j.

On this ground is set up by the Symbolization Extension Principle

(art. 325) a ditensive indexed power's

Def. If to be the algebraic expression of any angle in reference

to a perigon as unit (i+xf
ae

is understood to symbolize
what is such that

Since in particular

= (l+*)^« = (l+*)
e
«'.
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The full consequences of the definition however can only be

got at through the straight line equal to the circumference of

a circle.

455. Inasmuch as all notion of geometric equality is rooted

in the Euclidic postulate "That exact fitters upon one another

are equal" and a curve line is a line of which no part is straight

it is not at once clear how a curve line can be equal to a straight

line. The circumference of a circle is a curve line because in a

straight line passing through any two points in the circumference

every point between the points is within the circle and every point

beyond them without.

Let ABCDEF be any line not straight ending at two points

A .Fand draw the straight line AF. Since ABCDEF is not straight

and AF is straight it cannot be that every point in AF is a point

in ABCDEF let then G be a point in AF between A and F that is

not in ABCDEF. From A as center at the distance AG describe a

sphere. Because AF is greater

than its own part AG F is at

a greater distance from A the

center of the sphere than G a

point in the surface and there-

fore than any point in the sur-

face therefore F is without the

sphere therefore and because the

center A is within the sphere

ABCDEF is a line ending at

two points A F on opposite sides of the spheric surface and

therefore ABCDEF is cut somewhere between A and F by
that surface. Let then C be a point in ABCDEF between A and F
that is in the spheric surface and that is not G since G is not

in ABCDEF and let ABC CDEF be the two parts into which C
cuts ABCDEF. Join AC FC. If C be in the same straight line

with AF it can only be the point where that straight line through
the center A cuts the surface of the sphere on the side of A oppo-
site to G and then CF is greater than its own part GF but if C be

not in the AF straight line CAF is a triangle of which therefore the

two sides AC CF are then together greater than the third side AF
whence taking severally the equals ACAG CF is greater than GF,

From F as center at the distance FG describe another sphere.

Since C is at a greater distance from F the center of this sphere
than G a point in the surface and therefore than any point in

27
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the surface C is without this sphere wherefore and because F is

within the line CDEF ends at two points C F on opposite sides

of the spheric surface whose center is F and therefore CDEF is

cut somewhere between C and F by this surface. Let D be a point
in CDEF between C and F common to CDEF and the F centered

spheric surface and let CD DEF be the two parts into which D
cuts CDEF. Join DF. The straight line AC may be exactly fitted

upon the equal straight line A G and DF upon the equal GF when

AC is so fitted upon AG let AB'G be a line upon which ABC
borne along with its fellow line A C exactly fits and when DF is

so fitted upon GF let GE'F be a line upon which DEF borne

along with its fellow line DF exactly fits so that A B'GE'F is a

line joining A F. Because CDEF is greater than its own part DEF
and GE'F=DEF CDEF>GE'F therefore to the equals ABC
AB'G putting severally those unequals ABCDEF>AB' GE'F.

Thus than any line ABCDEF which is not straight joining two

points A F there is always a less or shorter line AB'GE'F joining

the same points. Hence too if there be any line joining two points

than which there is no shorter line joining them that line can be

no other than the straight line joining the points. All this, how-

ever little it of itself help toward, must yet be taken account

of in, settling what is meant by the equality of a curve line and a

straight line.

Dcf. A straight line passing through a point in a curve line

is said to TOUCH, or be TOUCHED by, the curve line

at the point when of straight lines drawn each through
the point and severally through points taken ever nearer

and nearer thereto in some arc of the curve ending
thereat the portions upon the same side of the point

as the several points make ever less and less angles

with the portion of the straight line upon one side of

the point and at length after the points are taken near

enough to the point make with that portion angles less

than any given angle however small.

Let an arc ABC of a plane curve touch at the ends A C two ad-

joining sides AD CD of a parallelogram ADCE lie wholly on one

side of every straight line touching it either at or anywhere between

A C and have a portion close to A on the same side of the diagonal

AC as AD. Were ABC to meet AD at any other point X than

A a straight line A a might be drawn from ^ to a point a in

ABC so near to A as by the definition of TOUCHING to make



EQUALITY OF A CURVE LINE AND A STRAIGHT 419

with AD an

angle DA a less

than any given

angle also a

might be taken

so near to A
that a.A should

make with aft

the portion on

the same side

of o.A as AD
or as the small

arc between A
and a of a straight line yaft touching ABC at a an angle less than

any given angle hence a might be taken so near to A that AD aft

should make with A a at the different points A a interior angles

O.AD A a/3 upon one side together less than a hemiperigon or

than any given angle and therefore meet at some point /3 on that

side then would ftAa be a triangle with the side A ft produced
to D therefore the exterior angle Dfta would be equal to the off

lying interior angles 13A a ftaA together hence a might be taken

so near to A as to make Dfta less than any given angle and

therefore the supplementary angle A /3a greater than any given

angle less than a hemiperigon so therefore that the angle A aft

should be less than A/3ol and therefore the side Aft of the tri-

angle A a/3 less than the side Act, but a might be taken so near

to A as to make A a less than any given straight line much more

therefore might a be taken so near to A as to make A/3 less

than any given straight line less therefore than AX and then

A X would be on opposite sides of ft and therefore on opposite

sides of fty which meets and does not lie wholly together with

and therefore cuts AX therefore portions of ABC close to A X
would lie on opposite sides of fty and hence ABC cannot meet

AD elsewhere than at A. Next ABC cannot but lie wholly

on that side of AC whereon lie AD CD the point D and the

triangle DAC for a portion of ABC ending at any point but A
in the portion close to A and at a point on the other side of AC
would be cut somewhere between those points by the A C straight

line and the straight line touching ABC at a point X in the cutting

either would be itself the A C straight line and so have the points

on opposite sides of it or would cut the A C straight line and then

27—2
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since ABC is wholly on one side of AD and wholly on one side

of CD X would be on the C side of A and on the A side of C
would therefore be between A and C and therefore the portions

of ABC close to A and C would be on opposite sides of the

toucher at X. Again ABC thus wholly on the D side of AC could

only meet A C between A and C at a point X by there touching A C
and then as before portions of ABC close to A X would be on

opposite sides of some straight line touching ABC between A and X
and portions close to X C on opposite sides of some straight line

touching ABC between X and C wherefore ABC can meet A C only
at A and C Further since the portion of ABC close to C is on the

same side of A C as DC ABC as before cannot meet DC elsewhere

than at C Thus ABC is wholly on the same side of each of the

sides DA A C CD of the triangle DA C as DA C and meets them at

A C only any point B therefore in ABC between A and C is

within the triangle DA C and therefore a straight line FBG touch-

ing ABC at B cuts the boundary of DAC twice once on each side

of B but ABC because wholly on one side of FBG can as before

meet FBG at B only and therefore A C and all points in AC
between A and C are on one side of FG therefore the points where

FG cuts DAC }

s boundary can only be somewhere between A and C
in the line ADC made up of the straight parts AD DC moreover

neither of these points can be at D since then FG would meet at

two points and yet not lie wholly together with AD or CD there-

fore FG cuts AD at some point F between A and D and CD
at some point G between C and D. Because FG cuts AD one of

two parallels AD EC it cuts the straight line of the other EC in

some point H and because in DC D C are on opposite sides of G
the parallels AD EC are on opposite sides of a parallel to either

through G therefore F H are on opposite sides of this parallel

through G and therefore FH are on opposite sides of G. Produce

AE endlessly to A' and CE endlessly to C take a point Z any-
where on the same side of A A' as EC and on the same side of CC
as EA' and therefore on the opposite side of AA' to EC and on

the opposite side of CC to EA and from Z through C draw a

straight line ZCI. Because Z and C are on opposite sides of AA'

Z and DC are therefore ZI meets at C and does not lie wholly

together with and therefore cuts DC and Z because on the same
side of AA' as EC is on the same side of DC as CC therefore

CZ CC are both on one side of DC and CI £7/ both on the other

moreover because Z is on the opposite side of CC to EA and
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therefore to CD ZI cuts CH and CD CI lie on the same side of

C'H hence from one end C and on one side of CD CH is drawn

and from the same end and on the same side of CD CI is drawn

and CI is on the same side of CH as CD therefore CI is on the

same side of each of the straight lines CD CH as the other CI
is between CD and CH CI cuts atwo the angleDCH CD CH make

angles ICD ICH with which lie upon opposite sides of CI and

CD CH are on opposite sides of CI therefore G H are on opposite
sides of CI and therefore GH is cut in some point / between G and
H by CI Likewise from Z through A draw a straight line ZAi
and the EA straight line cuts FG in a point h on the side of A
opposite to E and on the side of F opposite to G and Zi cuts FG
at a point i between F and h. From C not in AZ draw CY parallel

to AZ and on the opposite side of AC to AZ or on the same side

of A C as CI then because the angle ACY is equal to the alternate

angle CAZ and the angle ACD to the alternate angle CAE which

is a part of and therefore less than CAZ the angle A CD is less

than ACY but these unequal angles are at a common point C
have a common bounding line CA ending at C lie in the same plane
and begin together upon the same side of CA therefore A CD is

a part of ACY and this can be only by CY being on the opposite
side of CD to CA CE or CZ and therefore on the same side of CD
as CI again because the side ZC of the triangle ZCA is produced
to / the exterior angle A CI is greater than the off lying interior

angle CAZ and therefore than the equal angle ACY but the

angles A CI ACY are at a common point C have a common
bounder CA ending at C lie in the same plane and begin together

upon the same side of CA therefore the less ACY is a part of the

greater A CI and this can only be by CY being on the same side of

CI as CA or CD hence from one end and on one side of CD CI is

drawn and from the same end and on the same side of CD CY
is drawn and CY is on the same side of CI as CD therefore among
other things CD CI are on opposite sides of CY so therefore are

G I and therefore the line GI ending at G I on opposite sides of

CY is cut at some "point Y between G and / by CY. Likewise a

straight line Ay drawn from A parallel to CZ on the side of AC
opposite to CZ or on the same side of AC as At cuts Fi at some

point jj/
between Fand i. Now because in the straight line FG i Y

are on opposite sides of B a parallel 2>AA through B to AZ or CY
cuts A C at a point A between A and C and ZC at a point A
between Z and C and because A C are thus on opposite sides of
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BA ABC is cut between A and C by BA. If either of the two

parts AB BC into which B cuts ABC met BA anywhere between

B and A the straight line touching ABC there either would be BA
and so have on opposite sides of it ABC's portions close to A C or

would cut BA and so have on opposite sides of it the portion of

ABC close to upon either side of B and at least one of ABC's

portions close to A C wherefore every point but B in AB is on

one side of BA and every point but B in BC on the other. Also

a parallel B8k through B to CZ or Ay cuts AC at a point 8

between A and C and Z^! at a point \ between Z and y2 and

every point but B m AB \s oxv one side of B\ and every point

but B in i?C on the other. Since then every point but B in BC
is on the same side of BA as CY and since every point but C
in BC is on the same side of CD and therefore of 6"Fas A any

point <I> in i?C between i? and C is on the CY side of i?A and

on the BA side of CY therefore a parallel ^"^ through <I> to BA or

CFlies between BA and CY therefore has BA CY on opposite

sides of it and therefore cuts BY in a point ^ between B and F
and AC in a point XI between A and C. In like ways of points

in BC every one but B is on the CZ side of i?\ and every one

but C on the B\ side of CZ a parallel <£&> through <E> to BX or CZ
therefore is between B\ and CZ therefore has BX CZ on opposite

sides of it and therefore cuts \Z in a point a> between A, and Z and

Z?A in a point V between B and A. Because too of each of the

parallelograms \BAZ V<&£LA \BVco cq<&£IZ any opposite two

sides are equal \B = ZA VQ> = AH BV=\o <E>H = ooZ. Thus on

the whole if ABC be cut into any parts A J JM MQ QC by first

cutting ABC into any two parts A J JC next JC into any two

parts JMMC then MC into any two MQ QC and so on parallels

JK JL to AZ CZ severally drawn through J cut atwo severally

ZC in a point K and AZ in a. point Z, a parallel .MTV through M
to AZ cuts atwo iTC in a point iV and a parallel MC through M
to CZ cuts atwo ZZ in a point and JK in a point jP a parallel

gi? through Qto AZ cuts atwo iW7 in a point R and a parallel

QS through Q to CZ cuts atwo OZ in a point 5 and MN in a

point 7
1

and so on so that ZC is cut into as many parts ZK KN
NR RC and AZ into as many AL LO OS SZ as ABC moreover

LJ PM TQ are equal severally to ZK KN NR and JP
MT QR severally to LO OS SZ and therefore the zigzag line

ALJPMTQRC made up of the straight parts AL LJ JP PM
MT TQ QR RC is equal to the line AZC made up of the straight
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parts AZ ZC. The points A J M Q C that cut ABC into parts

may be everywhere taken following one another so near as to have

each straight part of every two straight parted line ending at the

ends of a part less than any given straight line and therefore

so that ABC and the zigzag may everywhere be at a less than

any given distance from one another along a straight line parallel

to either AZ or CZ. The endless zigzags that can be thus drawn

each everywhere endlessly near to ABC are all equal to the two

straight parted AZC and therefore to one another. By taking
another point Z' than Z on the EC side of A A' and on the EA'
side of CC other endless zigzags may be got in the same way each

everywhere endlessly near to ABC each equal to the two straight

parted line AZ'C and therefore all equal to one another and this

line AZ'C need not be equal to the line AZC. Hence two zigzag
lines may be each everywhere endlessly near to the same curve

line and yet be not equal. Here however the endlessly near coin-

cidence anywhere of the zigzag and the curve line is only as to

position while nearness of coincidence anywhere as to direction

is not even tried at.

The direction at a point of a curve line's portion ending at the

point can only be taken to be the direction of that straight line

drawn from the point to which straight lines drawn from the point

through points in the portion become endlessly near as the points
become endlessly near to the point and this straight line is the

straight line touching the portion at the point. Hence if an ended

curve line be wholly cut into any arcs none of them greater than

half the curve line and the line be drawn made up of the chords of

all the arcs each of the arcs be wholly cut into any arcs none

greater than half the arc and the line drawn made up of the

chords of all these arcs into which the curve is then wholly cut

each of these arcs again wholly cut into any arcs none greater than

the half and the line drawn made up of the chords of all the new
arcs into which then the curve is wholly cut and so on the lines

so drawn become at length endlessly near in direction to the

curve line at every point of cutting. Moreover by making every

point in the curve line when plane a point of cutting where either

the portions close to upon opposite sides of the point lie on op-

posite sides of the toucher or the portions close to the point have

touchers not in one straight line the curve may be wholly cut into

such arcs that each of them lies wholly on one side of every

straight line touching it either at its ends or anywhere between
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and has the portion close to one end on the same side of the chord

as the toucher at that end therefore zigzag lines may then be

drawn everywhere endlessly near to the curve and therefore much
more the lines made up of chords. Every condition of endlessly
near positional and directional coincidence is fulfilled by the

Def. A curve line is said to be EQUAL to a straight line when
while the chords of any arcs into which the curve line

may be wholly cut are together less than the straight

line yet of a great enough number of small enough arcs

which make up as parts the curve line the chords are

together greater than any given straight line less than

the straight line.

If a line ABCDEF be wholly made up of straight parts AB BC
CD DE EF whereof no adjoining two are in one straight line and

ACAD AE AFbe joined the line ABC made up of two sides of

a triangle is greater than the third side AC therefore to each

putting CD ABCD>ACD but A CD either is AD to wit if AC
CD be in one straight line and upon opposite sides of C or is

greater than AD to wit if AC CD be either in the same straight

line and upon the same side of C or two sides of a triangle whereof

the third side is AD .'. ABCD> AD whence in the same way
ABCDE>AE ABCDEF>AF Hence of any arcs into which a

curve line joining two points may be wholly cut the chords are

together greater than the straight line joining the points and much
more therefore by the definition of the equality of a curve line and
a straight line is the curve line greater than the straight line. Hence
further of all lines joining the same two points the straight line is

less than any other.

456. An arc ABCDE of a plane curve if it touch at the ends A
E two sides AF EF of a triangle AEF lie wholly on one side of

every straight line that anywhere touches it and have some portion

close to one end A on the same side of the triangle's third side AE
as the triangle is less than the

touched sides AF EF together.

For as shown in art. 455 every

point in ABCDE but A and E is

within the triangle FAE and a

straight line ££7/drawn touching
ABCDE at any point C taken

in ABCDE between A and E
cuts AF at some point G be-
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tween A and F and EF at some point H between E and F and

shuts in with GF HF a triangle FGH. If then the chords A C
CE be drawn of the arcs ABC CDE whereinto C cuts ABCDE
CAE CAG CEH are triangles therefore from the triangle ACE
(A C, CE)>AE and from the triangles A GC CHE {A G, GC) >AC
(CH, HE) > CE and .\ {AG,GH,HE) > {AC,CE). Moreover since

from the triangle FGH (GF,FH) > GH by putting to {AG,HE)
these several unequals (AF, FE) > (AG,GH,HE). Again the arc

ABC touches at the ends A C the two sides A G CG of the triangle

GAC lies wholly on one side of every straight line anywhere touch-

ing it and has a portion close to the end A on the same side of the

triangle GACs third side A C as GA C therefore as in art. 45 5 every

point in ABC but A and C is within GAC 2. toucher KBL to ABC
at any point B between A and C cuts A G at a point K between A
and G and GC at a point L between G and C and shuts in with

GA GC a triangle GKL and if the chords AB BC be drawn of the

arcs whereinto B cuts ABC BAC BAK BCL are triangles. Like-

wise any point D in the arc CDE between C and E is within the

triangle HCE a toucher to CDE at D cuts CH at a point M
between C and H and HE at a point iV between H and is and if

the chords CD DE be drawn of the arcs whereinto D cuts CDE
DCE DCM DEN and HMN are triangles. Hence as before A C
(AB,BC) (AK,KL,LC) (AG,GC) are in ascending order of great-

ness CE {CD,DE) (CM,MNyNE) {CH,HE) are in ascending order

of greatness and therefore to the first four unequals putting severally

the other (our {AC, CE) {AB,BC,CD,DE) {AK,KL,LM,MN,NE)
{A G, GH,HE) are in ascending order of greatness. Each of the arcs

into which ABCDE is cut by B C D has every point in it but its

ends within the triangle bounded by its chord and the touchers at

its ends the same process may therefore be gone through with

these arcs as was gone through with the arcs ABC CDE thus

giving rise to a greater number of smaller arcs making up ABCDE
the aggregate of whose chords is greater than (AB,BC,CD,DE)
the aggregate of whose end touchers is less than (AK,KL,LM,
MN,NE) and such that the former aggregate is less than the

latter the same process may then for the like reason be gone
through with the arcs last got and so on for ever. Let C

z C2 C3
...

be severally the chord AE and the ever greater and greater chord

aggregates (AC,CE) (AB,BC} CD,DE) . . . and Tx T9 T3
. . . the

several ever lessening toucher aggregates (AF,FE) (AG,GH,HE)
(AK,KL,LM,MN,NJS) . . . which yet are greater severally than
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Cx C2 C3
. . . then if ABCDE were not less than Tt it would be

greater than T2 therefore by the definition (art. 45 5) of the equality

of a curve line and a straight line some term Ct of the series Ct C2

C
3

. . . would were the arcs taken small enough at length be come
to greater than T2 much greater therefore would d be than T{ .

Wherefore ABCDE cannot but be less than Tx .

457. If the circumference of a circle be cut at points A B C D E
into more than two arcs each less than the semicircumference and

the chords AB BC CD DE EA be drawn the two arcs AEDCB
AB into which A B cut the circumference lie wholly on opposite

sides of, and have no point

but their ends A B in com-

mon with, the straight line

through A B therefore the

chord AE meets at A only,

the chord BC at B only, and

the chords ED DC nowhere,

that straight line therefore the

chord AB and the line made

up of the chords AE ED DC
CB end at the same two points

and only there meet one an-

other therefore they shut in a

portion of surface or bound a

figure hence and since any other neighbouring two than A B
might have been taken of the points ABCDE the chords A B
BC CD DE EA are the sides of a polygon lying wholly upon one

side of each of those sides and upon the opposite side of each to

the circular segment whose arc is less than a semicircumference.

IfAX BY be those portions of the straight lines touching the

circle at A B severally which are on the same side of the chord

AB as the arc AB each of the angles BAX ABY is equal to the

angle in the circular segment upon the other side of the chord AB
but because the arc AB is less than a semicircumference and there-

fore the arc AEDCB greater the angle at the circle's center stand-

ing on the arc AB is less and the angle at the circle's center stand-

ing on the arc AEDCB is greater than a hemiperigon therefore

the circle's centre is within the circular segment AEDCB and there-

fore the angle in this segment is less than a right angle hence the

angles BAX ABY are each less than a right angle and therefore
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together less than a hemiperigon therefore AX BY meet one

another at some point F on the same side of the chord AB as the

arc AB is on and then FAB is a triangle upon the opposite side of

the chord AB to the polygon ABCDE. If likewise the touchers at

B C meet one another at G those at C D at // those at D E at K
and those at E A at L GBC HCD KDE LEA are triangles upon
the opposite sides of the several chords BC CD DE EA to the

polygon ABCDE. The polygon ABCDE and the triangle ABF
because upon, and upon opposite sides of, the chord A B make up as

parts a whole polygon AFBCDEA then because the portions BF
BG of the toucher at, close to, and upon opposite sides of, B are on

opposite sides of the chord BC the polygon AFBCDEA and the

triangle BCG are upon opposite sides of the chord BC and there-

fore make up as parts a whole polygon AFGCDEA then likewise

because the portions CG CH of GH are on opposite sides of the

chord CD the polygon AFGCDEA and the triangle CDH because

upon opposite sides of the chord CD make up as parts a whole

polygon AFGHDEA then likewise the polygon AFGHDEA and

the triangle DEK upon opposite sides of the chord DE make up a

whole polygon AFGHKEA and at last this polygon and the tri-

angle EAL upon opposite sides of the chord EA make up a whole

polygon FGHKL. Of the polygon FGHKL thus circumscribed

about the circle the sides are as many as the points where they

severally touch therefore as many as first ends of the arcs in order

into which the circumference is wholly cut or as last ends of those

arcs therefore as many as the arcs and therefore as many as the

chords of the arcs or as the sides of the inscribed polygon ABCDE.
Since the arc AB touches at the ends two sides AF BF of the

triangle FAB lies wholly on one side of every straight line touch-

ing it and has the portion close to A on the same side of the third

side the chord AB as the triangle (art. 45 6) (AF,FB) > arc AB.
Likewise (BG, GC) > arcBC (CH,HD) >arc CD (DK,KE)> arc DE
(EL,LA) > arc EA. Therefore the perimeter of the circumscribed

polygon FGHKL made up of the greaters of those several pairs of

unequals is greater than the circumference made up of the lesses.

The circumference of the circle by the definition of the equality of

a curve line and a straight (art. 45 5) is greater than the perimeter
of the inscribed polygon ABCDE.

If the arcs AB BC CD DE EA be all equal it is enough that

there be more than two of them (art. 92) for each to be less than

the semicircumference then because equal arcs of equal circles have
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equal chords all the sides of the polygon ABCDE are equal more-

over putting to the equal arcs BC EA the arc CDE the arc BCDE
is equal to the arc AEDC and therefore the angles BAE ABC at

the circumference standing on these equal arcs are equal so any-

other neighbouring two angles are equal of the polygon ABCDE
and therefore all ABCDE's angles are equal. Hence the inscribed

polygon ABCDE is regular.

Find Z the center of the circle which because as above shown

on the same side of every side of the polygon ABCDE as the

polygon ABCDE is within that polygon and join ZE ZA ZB ZL
ZF. The angles BAE ABE of the triangle FAB are equal because

each equal to the angle in the circular segment upon the other

side of the chord AB to that upon which they are therefore the

sides BFAF of that triangle severally over against them are equal

and ZB ZA are equal because straight lines drawn from the center

to the circumference hence the points B A are equidistant from

each of the points F Z and therefore are on opposite sides of the

straight line FZ therefore BFZ is a triangle upon one side of FZ
and AFZ a triangle upon the other. Since the straight line EG
touches the circle the straight line ZB drawn from the center Z to

B the point of touching is perpendicular to EG and since then the

angle FBZ of the triangle BFZ is a right angle each of the other

angles ZFB FZB is less than a right angle in the same way the

angle FAZ of the triangle AFZ is a right angle and each of the

other two angles ZFA FZA less than a right angle hence the

angles ZFB ZFA upon opposite sides of FZ and each less than a

right angle make up the whole angle BFA and also the angles

FZB FZA make up the angle BZA. Moreover the triangles AZF
BZF have the two sides ZA AF equal severally to the two sides

ZB BF and the right angles ZAF ZBF equal therefore the bases

are equal the triangles are equal and of the other angles ZFA
= ZFB and FZA =FZB. Hence ZF bisects each of the angles

AZB AFB. In like way ELZ ALZ are equal and similar right

angled triangles upon opposite sides of ZL and ZL bisects each of

the angles AZE ALE. Now since the angles AZE AZB at the

center Z standing on the equal arcs AE AB are equal their halves

AZL AZF are equal and since ZA is perpendicular to LF the

angles ZAL ZAF are equal the triangles LZA FZA then have

the two angles AZL ZAL equal severally to the two angles AZF
ZAF and the side ZA between those angles is common to the

triangles therefore AL=AF ZL = ZF and the third angle ZLA
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is equal to the third angle ZFA. Of the equal angles ZLA ZFA
then the doubles KLF LFG are equal and in the same way any
other neighbouring two angles of the polygon FGHKL are equal

therefore the angles of FGHKL are all equal. For the like reason

too that FL is bisected in A is FG bisected in B and then of the

equals FA FB the doubles FL FG are equal in the same way are

any other adjoining two sides of FGHKL equal and therefore all

the sides of FGHKL are equal.

Let M be the point where ZF because ending at two points

ZF on opposite sides of the chord AB's straight line is cut between

Z and F by that straight line and therefore since the straight lines

of ZF and the chord AB meet and do not lie wholly together also

the point where the chord AB ending at two points A B on oppo-
site sides of the ZF straight line is cut between A and B by the

ZF straight line and let N be the point where in like manner each

of the straight lines ZL and the chord AE is cut between its ends

by the other. The triangles ZAM ZBM have the two sides AZ
ZM equal severally to the two sides BZ ZM and the angles AZM
BZM equal therefore the bases AM BM are equal the triangles

are equal and of the other angles each two are equal that are over

against equal sides and particularly AMZ BMZ wherefore the

chord AB is bisected at M and ZM is perpendicular to the chord

AB. Likewise ZN bisects perpendicularly the chord AE. Hence
the triangles ZMA ZNA have the angles at Z M equal severally

to the angles at Z N and the side ZA in common over against the

equal angles at M N therefore among other things ZM=ZN. In

like ways the perpendiculars are equal drawn from Z to any other

adjoining two sides of the polygon ABCDE and therefore all the

perpendiculars from Z to the sides of ABCDE are equal. Since

BM is the perpendicular from the right angle of the triangle BZF
to the side opposite the triangles ZBF ZMB are similar .*. ZB :

ZM=BF:MB therefore and vAB = 2(MB) and FG = 2(BF)
ZB :ZM= FG :AB but because FGHKL's equal sides are just as

many as ABCDE's FGHKL's perimeter is the same multiple of

FG as ABCDE's of AB and therefore FGHKL's perimeter has to

ABCDE 's perimeter the same ratio as the radius of the circle to

the perpendicular drawn from the center to any side of ABCDE.

458. Two regular polygons of the same number of sides may
hence be the one inscribed in and the other circumscribed about a

given circle ABC whose perimeters differ from one another by less
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--P

iQ

than any given straight line MN. Draw a diameter AB of the circle

produce MN endlessly to P from NP cut off close to N NP equal
to 4(AB) find the center of the circle or the middle of AB from

the OA straight line cut off close to O OD equal to a fourth propor-
tionate to MP NP OA and therefore inasmuch as MP is greater
than its own part NP less than

OA since OD OA then are un-

equal straight lines having a com-

mon end O and lying in the same

straight line upon the same side

of O OD is a part of OA and

since the point D is at a less dist-

ance from the center O than A a

point in the circumference and

therefore than any point in the

circumference D is within the

circle through D draw a straight

line FDE cutting at right angles
AB and let F E be the points on

opposite sides of D where FDE
because passing through the point

D within the circle cuts the circumference since FDE cuts AB F E
are on opposite sides of AB let ACB be the semicircumference

ending at A B that lies on the same side of AB as DE and there-

fore E is a point in A CB between A and B bisect the semicircum-

ference A CB in C and join OE because ODE are three points not

in one straight line ODE is a triangle and because this triangle's

angle ODE is a right angle the angle DOE is less than a right

angle therefore the arc AE whereon this angle at the center stands

is less than one-fourth of the circumference and therefore less than

the arc A C bisect A C in G A G in H and so on then since from the

arc A CB there is taken CB not less than A CB's half from the re-

mainder A C GC not less than A C's half from the new remainder

AG HG not less than AGs half and so on there is (art. 232) at

length left a remainder less than AE let the remainder so left be

the arc AH and join OH with OA make at the end O an angle
A OK equal to the angle A OH and beginning upon the same side

of OA as the semicircumference AFB or upon the opposite side to

A CB and let K be the point where OK a straight line drawn from

O a point within the circle cuts the circumference the arcs AK AH
are equal whereon stand the equal angles AOK A OH at the
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center butAH is a part of and therefore less than the semicircum-

ference ACB therefore AK is less than the semicircumference^^i?

moreover AK AFB have a common end A lie in the same line the

circle's circumference and begin together upon the same side of

their common end wherefore AK cannot but be a part of AFB
and therefore K is in AFB between A and B join HK and since

HK are on opposite sides of the AB straight line being in between

the ends of the several semicircumferences ACB AFB let L be the

point between //'and K where HK is cut by the AB straight line

L cannot be at O for then would the equal angles AOH AOK at

the center be the angles ALH ALK that LA makes with upon
one side of HK and therefore the arcs AH AK would be quarter

circumferences therefore OLH OLK are triangles in these triangles

the two sides LO OH are equal severally to the two sides LO OK
and the angles LOH LOK are equal because the same either as

AOH A OK or as the supplements BOH BOK therefore the bases

LH LK are equal the triangles are equal and of the other angles
OLH=OLKnow V AH<AE AOH<AOE but AOE is less

than a right angle much more therefore is A OH less than a right

angle therefore the supplement BOH is greater than a right angle
and .-. AOH < BOH therefore the perpendicular HL from H'to the

AB straight line is on that side of OH whereon is the less angle
AOH or L is on the A side of O moreover L because a point in

HK between H and K is within the circle and therefore on the O
side of A hence L is between A and O produce MN endlessly to

Q and from NQ cut off close to N NQ equal to a fourth propor-

tionate to AL LO MN join OF as before ODF is a triangle the

straight line OD passing through the center of the circle because it

cuts at right angles the straight line EF in the circle not passing

through the center bisects EF the triangles ODF ODE then have

the two sides DO OF equal severally to the two sides DO OE and

the bases DF DE equal therefore the angle DOF is equal to the

angle DOE so that the angle EOF is double of AOE but angle

AOE>ang\e AOH .'. angle EOF> angle HOK since then the

triangles OEF OHK have EO OF equal severally to HO OK
and the angle EOF greater than HOK EF> HK of these unequal

straight lines in the circle then the greater is nearer to the center

than the less or OD < OL and taking each from OA AD>AL
.-. (art. 263) AD:DO>AL : DO and AL : D0> AL : LO .-. (art.

264) AD :DO>AL : LO and .*. (art. 262) >MN : NQ but v
MP:NP = AO:DO disjointly (art 285) MN:NP=AD:DO
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.\ (art 262) MN:NP>MN:NQ and /. (art. 265) NP < NQ :.

(art. 9) NQ>4(AB). Now since the semicircumference ACB is a

multiple of the arc AH the whole circumference is (art. 248) the

same multiple of All's double the arc KAH besides the parts each

equal to AH that wholly make up the semicircumference are at

least four therefore the circle's circumference may be wholly cut

into more than two equal arcs whereof the arc KAH is one there-

fore (art. 45 7) a regular polygon whereof KH is one side may be

inscribed in the circle and a regular polygon of just as many sides

may be circumscribed about the circle with two adjoining sides

touching the circle at K H and if R R be the several perimeters
of these polygons R' : R = OA : OL wherefore disjointly R'\R : R
=AL :LO and .\ =MN : NQ but if the circumference be halved

by the ends A B of a diameter AB and the halves severally halved

by the ends of a diameter at right angles toAB the polygon whose
sides touch the circle at the four diameter ends is a circumscribed

square whereof each side is equal to the diameter and the peri-

meter therefore is 4(AB) the circumference therefore <4(AB) more-

over R<the circumference and 4(AB)<NQ .*. R<NQ and /.

(art. 276) R'\R<MN.

459. Let AB he. a. side of a regular polygon inscribed in a circle

ABC by drawing the chords of more than two equal arcs into

which the circumference is wholly cut through the circle's center O
which is not in AB because AB is not a diameter and AEs middle

point E which is within the circle because in between the ends of

AB draw a straight line and let C Z> be

the several points where this straight

line cuts the circumference on the oppo-
site side of E to O and on the same side

ofE as O this straight line CEOD too

because it meets and does not lie wholly

together with AB meets at E only and

there cuts AB so that D is on the same

side of AB as O and C on the opposite

side it is therefore the arc A CB which is

one of the equal arcs making up the

whole circumference and the arc ABB which is made up of all the

rest join OA OB since O is not in AB OEA OEB are triangles

and OEA OEB have the two sides EO OA equal severally to the

two EO OB and the bases EA EB equal therefore the angles EOA
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FOB are equal and therefore the arcs CA CB are equal whereon

these equal angles at the center stand if then the chord AC be

drawn and n be the number of equal arcs that make up the whole

circumference or the number of sides of the inscribed regular poly-

gon by bisecting each of the 11— \ other arcs as well as ACB the

halves of the n equal arcs are all equal and the circumference is

thus wholly cut into ;/x2 equal arcs hence (art.457) AC is one side

of a regular 11x2 sided polygon that may be inscribed in ABC by

drawing the chords of the ;/x2 arcs and two straight lines AF CF
may be drawn touching ABC at A C shutting in with the chord

A C an isosceles triangle FA C upon the opposite side of the chord

AC to O and each a half side of a regular 11x2 sided polygon that

may be circumscribed about ABC with the sides touching ABC at

the 71x2 arc ends. In reference to the diameter of the circle ABC
as unit let a express numerically AB s a side of the regular nx2
sided inscribed polygon and s a side of the regular 11x2 sided cir-

cumscribed polygon. Join AD and express AD numerically by x
in reference to ABC's diameter as unit. The angle CAD because in

a semicircle is a right angle the straight line CD passing through
the center because it bisects the straight line AB in the circle not

passing through the center cuts at right angles AB therefore AE
is the perpendicular from the right angle CAD of the right angled

triangle A CD to the side CD opposite therefore ADC EAC are

I
-<r

similar triangles so that AD \DC= EA : AC .*. x — — or 2xs — <r
s

moreover from the right angled triangle CAD (art. 382) x2+s2 = 1.

Since the angle A OB is less than a hemiperigon A OC is less than

a right angle therefore AOD is greater than a right angle and

therefore greater than AOC the triangles AOD AOC then have

AO OD equal severally to AO OC and the angle AOD greater

than AOC .'. AD>AO. Hence

s=ly(i+*)-^(i-a)}
x- I{V(l+<r)+V(l-«r)}.

Join OF and let G be the point where (art.457) AC cuts OF be-

tween O and F and OF bisects at right angles AC then AD GO
are parallel because they make with AC at A G interior angles
GAD AGO upon the side whereon COD lies that are together

equal to a hemiperigon therefore and because AD GO cut CD at

D the exterior angle GOC is equal to the off lying interior

angle ADC upon the side of CD whereon CGA lies moreover the

28
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right angles FCO CAD are equal hence the triangles FCO CAD
are similar .\ FC : CO = CA : AD 2(FC) : CD = 2(CA) : 2(AD)

, _ 2£""

2X

V(l+o-)+V(l-o-)
'

If upon, and upon each side of, a radius an equilateral triangle

be described the ends of those three diameters whose halves are the

common side and the other sides ending at the center of the tri-

angles cut the circumference into six equal arcs the chords of these

arcs therefore are the sides of an inscribed regular hexagon and

each chord is - a diameter. For cr then putting 0*5 the sides of

regular 6x2 or 12 sided polygons inscribed in and circumscribed

about a circle are severally expressed numerically by -(*Ji'$—\Zo'5)

and -
. . in reference to the diameter as unit and the peri-

Vi'5+\/0'5
F

meters by 12 fold these severally for a putting -(Vi'5—\Zo*5) the

numerical expressions are got in like manner of the sides and the

perimeters of regular 12x2 or 24 sided polygons inscribed in and

circumscribed about the circle and so on. Thus in reference to a

circle's diameter as unit the under named regular polygons have

the numerically expressed perimeters severally written against
them right as far as the 8th decimal place

Sided
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Wherefore of the 98304 sided regular inscribed and circumscribed

polygons the perimeters differ from one another by less than

-(
—

)
of a diameter and the circle's circumference because greater

(art. 45 5) than the perimeter of the inscribed polygon and less (art.

457) than the perimeter of the circumscribed differs from either

perimeter still more by less than this submultiple of the diameter

and is expressed numerically as far as the 8th decimal place in

reference to the diameter as unit by 3*14159265.

There is clearly no end to the degree of nearness to which in

this way the numerical quantity may be found expressing the cir-

cumference of a circle in reference to the diameter as unit. That

the same numerical quantity should express the circumference in

reference to the diameter as unit of any circle whatever can only
be because the ratio of the circumference to the diameter is the

same for all circles.

460. Dcf. The numerical quantity expressing the circumference

of a circle in reference to the diameter as unit or

representing the ratio of the circumference to the

diameter is symbolized by the Greek letter ir.

If then r be the numerical expression in reference to any unit

line of a circle's radius the numerical expression in reference to the

same unit line of that circle's circumference is irX2r and therefore

too 2irr or [2tt)t.

Hence if 7 be the numerical expression in reference to a perigon
as unit of an angle at the circle's center since angles at the center

of a circle are proportionate to the arcs whereon they stand the arc

whereon the angle stands is expressed numerically in reference to

the unit line by 7(277-) r.

461. If from the point as center where an angle A is a circle of

any radius be described and r a be severally the numerical expres-
sions in reference to a common unit line of the radius and the arc

whereon A stands since angles at a circle's center are proportionate
to the arcs they stand on A is expressed numerically in reference

to a perigon as unit by -—r- or the operational equivalent

and therefore in reference to that angle as unit whose numerical

expression is - in reference to a perigon as unit by -
. The angle
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which — expresses numerically in reference to a perigon as unit is

the angle that A would be were a equal to r.

Def. An angle which at the center of a circle stands on an arc

equal to the radius is called the CIRCULAR Unit
Angle.

All angles are equal to one another which at the centers of

circles stand on arcs equal severally to the radii because each is

expressed by the same numerical quantity
r — in reference to a
27T

perigon as unit.

If 6 express numerically A in reference to the circular unit

angle Or— a. The numerical expression in reference to the cir-

cular unit angle of a perigon is 2ir of a hemiperigon it and of a

right angle -ir,
2

462. Let A OB be any angle less than a right angle with OA
make at an angle A OC equal to A OB and upon the opposite

side of OA to A OB in OA take a point A anywhere but at O from

as center at the distance OA describe a circle and let B C be the

points where OB OC drawn from the center severally cut the cir-

cumference join BC and let D be the point where BC ending at B
Con opposite sides ofOA is cut by the straight line of OA between

B and C because the straight line of BC
passes through the two points B C in the

circumference D in that straight line be-

tween B and C is within the circle and

therefore is on the side of A again be-

cause BOA is less than a right angle and

the equal A OC therefore less than a right

angle the whole angle BOC made up of

these is less than a hemiperigon therefore

BOA BOC are angles upon the same side

of OB with the bounding lines OA OC on

that side of OB therefore every point but

O in OA is on the same side of OB as

every point but B in BC and therefore D is on the A side of O
hence D is between O and A and therefore O A are on opposite
sides of D and therefore of BC ODB ODC then are triangles and
in these DO OB are equal severally to DO OC and the angles

DOB DOC are equal therefore DB —DC the triangles are equal
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and of the other angles BDO = CDO or OD is perpendicular to

EC From E draw on that side of BO whereon OD is BE at right

angles to BO and therefore touching the circle at B because BE
OD make with BO at the different points B interior angles upon
one side OBEBOE the one a right angle and the other less than a

right angle and therefore together less than a hemiperigon BE OD
meet on that side if far enough produced let E be the point where

they so meet and join CE because E is not at the only point

common to OE OC EOC is a triangle then since the triangles

EOB EOC have EO OB equal severally to EO OC and the angles

EOB EOC equal EB=EC the triangles are equal and of the

other angles OBE = OCE OCE therefore is equal to and is there-

fore itself a right angle and therefore CE touches the circle at C.

Now the arc BAC (art. 45 5) is greater than its chord BC and BC is

2(BD) and because the arcs AB AC are equal whereon the equal

angles A OB AOC at the center stand BA C is 2(BA) .-. BA> BD.

Again the arc BAC which is 2(BA) because touching at the ends

B C the two sides BE CE of the triangle EBC lying wholly on one

side of every straight line that anywhere touches it and having the

portion close to B on the same side of EEC's third side BC as

EBC is (art.456) less than (BE, EC) or 2(BE) and /. BA <BE.
Hence if a be the numerical expression of A OB in reference to the

circular unit angle and r the numerical expression of OA in refer-

ence to the unit straight line so that in reference to this unit

straight line BA is expressed numerically by ar BD by (sina)r

and since -it—a is the angle OEB's numerical expression in refer-

1 -. 1 t,t- v sin a sin a -

ence to the circular unit angle BE by -r or r the
5:5

. ft \ cos a
sin;in

g^-a)

three numerical quantities (sina)r ar —— r are in ascending order

of greatness and therefore so are sin a a& cos a

.'. -sina<i and >cosa.
a

Therefore too and V sin—a = —sin a and cos—a = cos a — sin—a < 1
—a

and > cos—a. Hence if 6 be the algebraic expression in reference

to the circular unit angle of any angle less than a right angle

#~
x

sin 6 < 1 and > cos 0.
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But by taking 6 near enough to o cos 6 may be made although
ever less than I yet nearer to i than by any given difference. Much
more therefore may 6 be taken so near to o as to make 0'

1

sin 6

although ever less than I yet more nearly equal to I than by any

given difference.

463. If 6 be the algebraic expression of any angle in reference to

the circular unit angle and n be any whole number but o

(cos-0)
=! 1-2

(sin --0J [ as
i-7zjx2(sin--0j

-J
|
n i„ 'i\V 2ft J -M 11

-)
2ft I zn

\ sVW \2»
e

I

and n may be taken so great as to make --6 nearer to o than by

any given difference and therefore sin - - 6 nearer to 1 and
1 1

/j
£ 11

2n

sin --0 nearer to o than by any given difference. Hence n may be

taken so great as to make (cos-0J although always less than 1 yet

more nearly equal to 1 than by any given difference.

464. If <o
x

co2 ...coM be the algebraic expressions in reference to a

common unit angle of any angles and x be any algebraic quantity

(arts. 185,300,354,398)

(cos (on+x sin co,) . . . (cos co2+x sin co3) (cos to
x+x sin co,)

= <r„+xaH_1+x a&M^+ • » • +xn
cr

where o%- stands for the sum of all the products made by multiply-

ing together the cosines of every i of the 11 algebraically expressed

angles and the sines of the n—i others. Whence- by making x (—)
1

there comes (art. 393) the operational equivalence
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the upper or the lower of the bracketed alternatives being taken

according as n is even or odd. Therefore (art. 375)

~^f t * t \ , . (-)
2

0"o if # be even
cos (©,+©,+ • • •

+g>„)
= <r„-<7„_2+o-„_4 4-r

„_,

( (-^o-, if ;/ be odd

•
1 , n -, (-)

2 V
x
if « be even

sin («,+»,+ • •

+&>„)
= ^.-cr^+ov,. +

j

y

^
( (—)

2
<rQ if « be odd.

If co
x
= o)a

= =
&>„ and each = co (art. 184)

cos uco =
;/| (cos a>)"—%(cos &))

M~3

(sin o>)
2

+?/|4(cos G>)"-
4

(sin a>)
4—

...
, fH^/l^sin©)-

Ifcr) •*i<«(cos»)(smo>)'"

sin ;/&> = «| X (cos co)"'
1

sin a>—#| 3(cos ft>)

w_3
(sin &>)

3

+;/| 5 (cos <w)
n_5

(sin «)*—

{»*

(-)"
2
~ I

^i«_I (cosft))(sinft))''"
1

n—x

(-)
*
*L(sin a))

n
.

Hence if be the algebraic expression of any angle in refer-

ence to the circular unit angle i being any whole number chosen

at will so as only to make no index minus

cos
I / I \

*
/ T \ "—:X2

1 / T \ *

= cos n- 8 = fifJ cos- 6
j h(—Ym,Jcos-0j (sin -0J

sin0 =
«|,fcos-#J

s\n-6 1-(—)'»yx^.Jcos-0) (sin-01

But nu (cos

I

~dJ"(sin

1

-0j

H^W'-SK)/ i_Y««^y± si„ia
»—

\ cos

which (arts. 462, 463) when n is taken endlessly great but with

i kept always the same becomes endlessly near to
p6*'.

There-

fore
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cos 0=1-... +(_)<-!- 6™ sin 6 = - (9- • • • +(_)<_L_ 0*

or (art. 444)

cos0=l-~02+-0H<" sin^ = i(9-^+i-^-.
£ l± 11 li li

Wherefore too

cos0+(-)*sin 6= i+ I(-)%+I{(-)%)^I{(-)%]3+ ....

465. If then 6 be the algebraic expression of an angle in refer-

ence to the circular unit angle and c be a numerical quantity,
—

V (arts.45 1,452) c=i+~\oge

c+^(log
e c)

2+ ,

©* -
[i
+
^H^+^(-)^}

2
+- •

•] {i+rj log.*+|(log.,)'+.

[
T

I

(-)*g
,

{Hty
,

li 12

and .'. (arts. 446, 451)

r+log«<\ (log

li li!*-•}

- T| log«^+(-fojlog^+(-)fy
3

," 1+
i

+
I

+"•

= H-i{log« C

+(-)%)+|(log^+(-)^}'+.
• -.

Hence (art. 454) o) being the algebraic expression of an angle in

reference to the circular unit angle and e a numerical quantity

(e*)
e-'= 0„w

[i+^{log^+(-)

i

0)+^° [log.e+(r)i0}'+.
•]

. (ec,g){iog^+(-)%)+(-)^x2^~
IL

, [(e«g){log.g+(-)*fl}+(-)*«X2ir]' ,

1+

{(cosw)(?}logec—((sin&))i?]^+(—)*[{(cosc<>y}^+((sin(o)£')loge f+«'x27r]_ +•••
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I

l
f \*.

+,— (—) { (cos a))e6+(sin co)e\ogec+eix 2ir

I

+-{(cosG))^loge ^-(sinft))^}

466. Therefore touching the Laws of such powers as have some

of their indices ditensive quantities if c d e be numerical quantities

and 6
<£

co algebraic expressions of angles in reference to the circu-

lar unit angle

(%d)
e»e

{®ec)
e»e

=
®*{(cos w)(0+0)+(sin «)log« *+(*t*)X4*} e^{(cos «)loge dc-(mn w)(0+0)}

0, *{(cos <a) loge -v-(sin w)(-0+0)}
*{(COS «)(-0+0)+(sin w)loge ^+ (-z'+z)X27r}

6

\%d)

["{(cos 0)^+(cos w)*}logf r~|

L -{(sin 0)rf+(sin w)<?}^ J

C{(cos

0)^+(cos w)4^+{(sin 0)^+(sin w)«?}loge <r~|

Now %d+®ap = ®ag if £* be a numerical quantity such that

(cos <f>)d+(cos to)e= (cos o)g (sin <£)tfT+(sin co)e
=

(sin o)g whence

g= *J[d
2+e 2

+2[cos (-<f)+cD)}de] moreover

(e^)
e^=0{(cosaMM(^^^

but all the values of di+ei are not always precisely all the values
of gi". The law of operational equivalence here sought turns out
then to be

29
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Again v
(i)

G"'
=s

(
8^" 1

)

9"'

=
©.{(cos «)(-0)+(sin cjloge^+Zx^} €^cos «)log.^-(sin ")HW

= (e^)
ew+

^=(e^)-
e^

= „ v^,. .. . -^(cosw)logef-(sin«)^}
-*i(cos w)0+(sin w)loge ^+zx27r}

e

(+)n/[^- 2{cos (-0+W)}^]/jl r w

'(e^)
e^ = .

(+)V^+rf
2
-2(cos(-W+^!rf](®^)

e*"'
]

(+)v[^-,!cos(-a,+0)!^(@ )e^__L__
"

j(+r(+y
l

Lastly

{(0^)
e
-^

e^=
[®^{(cos w) ^+(s

.

n w)loge^.X27r}
6^(cosc)loge ,-(sin"^"}

-|8^

=© r (cos 0W(cos w)0+(sin «)log.^xaW lA f^^{(c°Lw)log^sin
o>)0} ~]T+(sw 0M(cos«)loge ^(sin «)4+7x'tJ

€ L-(sm0),{(cos W)0+(sina,)log€,+/x 27r}J

=
(^)r^

cos
^+0)}0+{sin(a,+0)}log eO ~ e^f /

•
{T

S

Jltt}
}

l
-
ge

\. 1L +(COS0)/X27T
^

j+dz'x^Tr

6 L~{sm (a>+0)}0-(sm 0) Z X27TJ
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Examination in the Senate-house. By P. T. MAIN, M.A., Fellow of St.

John's College. 8vo. Is, 6d.

Practical and Spherical Astronomy. For the Use
chiefly of Students in the Universities. By the Rev. R. MAIN, M.A.
Radclifle Observer at Oxford. 8vo. lis.

Brunnow's Spherical Astronomy. Part I. In-
cluding the Chapters on Parallax, Refraction, Aberration, Precession, and
Nutation. Translated by the Rev. R. MAIN, M.A., F.R.S., Radcliffe

Observer at Oxford. 8vo. 8s. 6d.

Elementary Chapters on Astronomy from the
" Astronomie Physique" of Biot. By the Very Rev. HARVEY GOODWIN,
D.D., Dean of Ely. 8vo. 3s. 6d.

Terrestrial and Cosmical Magnetism. The
Adams Prize Essay for 1865. By EDWARD WALKER, M.A., one of the
Masters of Cheltenham College, late Fellow and Assistant-Tutor of Trinity
College, Cambridge. 8vo. 15s.
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Choice and Chance. Two Chapters of Arith-
metic "With an Appendix containing the Algebraical treatment of Permute-

wly set forth. By the Rev. WILLIAM ALLEN
WHITWO Kill, M.A., Professor of Mathematics in Queen's College, Liver-

pool. Crown 8vo. 3*. 6d.

Exercises on Euclid and in Modern Geometry,
rising Applications of the Principles and Processes of Modern Pure

By J. IfeDOWELL, B.A., IVmbroke College. Crown 8vo. 8«. Grf.

Elementary Course of Mathematics. Designed
principally for Students of the University of Cambridge. By the Very Rev.

ELABVEY GOODWIN, D.D., Dean of Ely. Sixth Edition, revised and en-

d by P. T. MAIN, M.A., Fellow of St. John's Coll., Cambridge. 8vo. 16*.

Problems and Examples, adapted to the
"
Klementary Course of Mathematics." With an Appendix, containing

the Questions proposed during the first three days of the Senate House
elimination. By T. G. VYVYAN, M.A. Third Edition. 8vo. 5s.

Solutions of Goodwin's Collection of Problems
and Examples. By W. W. HUTT, M.A., late Fellow of Gonville and Caius

College. Third Edition, revised and enlarged. By the Rev. T. G. VYVYAN,
M.A, 8vo. 9s.

Newton's Principia. First Three Sections, with
Appendix, and the Ninth and Eleventh Sections. By the Rev. J. H. EVANS,
M.A. Fourth Edition. 8vo. 6s.

Examples in Arithmetic, Algebra, Geometry,
rithms, Trigonometry, Conic Sections, Mechanics, &c, with Answers

and Occasional Hints. By the Rev. A. WRIGLEY, M.A., Professor
! ithematics in the late Royal Military College, Addiscombe. Sixth

EdiH /. 8vo. 8*. 6c?.

A Companion to Wrigley's Collection of Ex-
amples and Problems, being Illustrations of Mathematical Processes and
Methods of Solution. By J. PLATTS, Esq., Head Master of the Government
College, Benares, and Rev. A. WRIGLEY, M.A. 8vo. 12s.

Figures illustrative of Geometrical Optics. From
SCHELLBACH. By the Rev. W. B. HOPKINS. Plates. Folio. 10s. 6d.

A Treatise on Crystallography. By W. H.
MILLER, M.A. 8vo. 7s. 6d.

A Tract on Crystallography, designed for Stu-
dents in the University. By W. H. MILLER, M.A., Professor of Mine-

ralogy in the University of Cambridge. 8vo. 5s.

Physical Optics. Part II. The Corpuscular
Theory of Light discussed Mathematically. By RICHARD POTTER, M.A..
late Fellow of Queens' College, Cambridge, Professor of Natural Philosophy
and Astronomy in University College, London. 7s. 6d.
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iEtna. Revised, emended, and explained, by
H. A. J. MUNRO, M.A., Fellow of Trinity College, Cambridge. 8vo., 3s. 6d.

iEschylus. Translated into English Prose, by
F. A. PALEY, M.A., Editor of the Greek Text. 8vo. 7s. 6d.

Aristophanes. Comoedige Undecim cum Notis
et onomastico. By the Eev. H. A. Holden, LL.D., Head Master of

Ipswich Grammar School, late Fellow and Assistant Tutor of Trinity College,

Cambridge. 8vo.

The Plays separately, Is., Is. 6d. and 2s. each.

Demosthenes. The Oration against the Law
of Leptines. "With English Notes and a Translation of "Wolfs Prolegomena.
By W. B. BEATSON, M.A., Fellow of Pembroke College. Small 8vo. 6s.

Demosthenes de Falsa Legatione. Third Edition.
carefully revised. By R. SHILLETO, M.A. 8vo. 8s. 6d.

Demosthenes, Select Private Orations of. After
the Text of Dindorf, with the various Readings of Reiske and Bekker.
With English Notes. For the use of Schools. By C. T. PENROSE, A.M.
Second Edition. 12mo. 4s.

Euripides. Fabulse Quatuor. Scilicet, Hippo-
lytus Coronifer, Alcestis, Iphigenia in Aulide, Iphigenia in Tauris. Ad fidem

Manuscriptorum ac veterum Editionum emendavit et Annotationibus instruxit

J. H. MONK, S.T.P. Editio Nova. 8vo. 12s.

Separately
—Hippolytus. 8vo. cloth, 5s. Alcestis. 8vo. sewed, 4s. 6d.

Titi Lucreti Cari de Rerum Natura Libri Sex.
With a Translation and Notes. By H. A. J. MUNRO, M.A., Fellow of

Trinity College, Cambridge. Second Edition, revised throughout. 2 vols. 8vo.

Vol. I. Text, 16s. Vol. II. Translation, 6s. May be had separately.

Plato's Gorgias, literally translated, with an
Introductory Essay containing a Summary of the Argument. By E. M.

COPE, M.A., Fellow of Trinity College. 8vo. 7s.

Platonis Protagoras. The Protagoras of Plato.
The Greek Text revised, with an Analysis and English Notes. By W.
WAYTE, M.A., Fellow of King's College, Cambridge, and Assistant Master
at Eton. 8vo. 5s. Gd.

Plautus. Aulularia. With Notes, Critical and
Exegetical, and an Introduction on Plautian Prosody. By Dr. WILLIAM
WAGNER. 8vo. 9s.

Sophocles. (Edipus Coloneus. With Notes,
intended principally to explain and defend the Text of the Manuscripts as

opposed to conjectural emendation. By the Rev. C. E. PALMER, M.A. 9s.
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Verse-Translations from Propertius, Book V.
\Vi, ! Latin Text, and Brief English Notes. By F. A. PALEY,
M.A., Editor of l'lnpcrtius, Ovid's Fasti, &c. Fcp. 8vo. 3*.

Propertius, The Elegies of. With English Notes
and Prefkoe on the State of Latin Scholarship. By F. A. PALEY, Editor

of JEschylus, &o. With copious Indices. 10*. 6d.

Theocritus, recensuit, brevi commentario in-
struxit F. A. PALEY, MA. Crown 8vo. is. 6d.

Virgil. The Mneii of. Books I—II. Trans-
i int.. English Verse in the Spenserian Stanza. By EDWARD FAIRFAX

TAYLOR. Small 8vo. 3s. 6d.

P. Virgilii Maronis Opera. Edidit et syllabarum
quantitates novo eo que facili modo notavit THOMAS JARRETT, M.A., Lin-

gua) Hehraje apus Cantahrigiensis Professor regius. One Vol., 8vo., price 12*.

Translations into English and Latin, by C. S.
< ALVERLEY, M.A., late Fellow of Christ's College, Cambridge. Post 8vo.

7*. 6d.

Arundines Cami. Sive Musarum Cantabrigien-
siura Lusus Canori. Collegit atque edidit HENRICUS DRURY, A.M.,
Archidiaconus "Wiltonensis Collegii Caiani in Gnecis ac Latinis Literis quon-
dam Prelector. Eqnitare in arundine longa. Editio Sexta. Curavit
HENRICUS JOHANNES HODGSON, A.M., Collegii SS. Trinitatis quon-
dam Socius. Crown 8vo. 7*. 6d.

Foliorum Silvula. Part I. Being Passages for
Translation into Latin Elegiac and Heroic Verse, edited by HUBERT A.

HOLDEN, LL.D., late Fellow of Trinity College, Head Master of Queen
Elizabeth's School, Ipswich. Fourth Edition. Post 8vo. 7*. 6d.

Foliorum Silvula. Part II. Being Select Passages
for Translation into Latin Lyric and Comic Iambic Verse. By HUBERT
A. HOLDEN, LL.D. Third Edition. Post 8vo. 5s.

Foliorum Silvula. Part III. Being Select
Passages for Translation into Greek Verse, edited with Notes by HUBERT
A. HOLDEN, LL.D. Post 8vo. 8*.

Folia Silvula3, sive Eclogae Poetarum Anglicorum
in Latinum et Grsecum conversa) quas disposuit HUBERTUS A. HOLDEN
LL.D. Volumen Prius continens Fasciculos I. II. 8vo. 10s. 6d.

Foliorum Centuriae. Selections for Translation
into Latin and Greek Prose, chiefly from the University and College Examina-
tion Papers. By HUBERT A. HOLDEN, LL.D. Third Edition. Post 8vo. 8*.

Progressive Exercises in Greek Tragic Senarii,
followed by a Selection from the Greek Verses of Shrewsbury School, and

prefftoed by a short Account of the Iambic Metre and Style of Greek Tragedy.
For the use of Schools and Private Students. Edited by B. H. KENNEDY,
D.D., Head Master of Shrewsbury School. Second Edition, revised. 8vo. 8*.
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- WORKS BY THE LATE J. W. DONALDSON, D.D.

A Complete Latin Grammar. Third Edition.
Very much enlarged, and adapted for the use of University Students.
8vo. 14s.

The enlarged Edition of the Latin Grammar has been prepared with the same

object as the corresponding work on the Greek Language. Lt is, however,

especially designed to serve as a convenient handbook for those students who
wish to acquire the habit of writing Latin ; and with this view isfurnished
with an Antibarbarus, with afull discussion of the most important synonyms,
and with a variety of information not generally contained in works of this

description.

A Complete Greek Grammar. Third Edition.
Very much enlarged, and adapted for the use of University Students.

8vo. 16s.

This enlarged Edition has been prepared with the intention ofplacing with in

the reach of Students at the Universities, and in the highest classes at Schools,
a Manual of Lnstruction and Reference, which, without exceeding the limits

of the most popular works of the kind, would exhibit a more exact and

philosophical arrangement of the materials than any similar book ; would
connect itself more immediately with the researches of comparative Lhilologers ;
and would contain the sort of information which the author's long experience
as a teacher and examiner has indicated to him as most likely to meet the

actual wants of those who are engaged in the critical study of the best Greek
authors.

Without being formally based on any German work, it has been written with

constant reference to the latest and most esteemed of Greek Grammars used on

the Continent.

Index of Passages of Greek Authors quoted or referred to in Dr. Donaldson's
Greek Grammar, price ('»'.

Varronianus. A Critical and Historical Intro-
duction to the Ethnography of Ancient Italy and to the Philological Study
of the Latin Language. Third Edition, revised and considerably enlarged.
8vo. 16s.

Lndependently of the original matter which ivill be found in almost every page,
it is believed that this book presents a collection of known facts respecting the

old languages of Ltaly which will befound in no single work, ivhetJier British

or Foreign, and which must be gleaned from a considerable number of rare

and expensive publications ; and while the lists of Oscan and Etruscan glosses,

and the reprint of fragments and inscriptions, may render the treatise an

indispensable addition to the dictionary, and a convenient manual for the

professed student of Latin, it is hoped that tJie classical traveller in Ltaly will

find the information amassed and arranged in these pages, sufficient to spare
him the trouble of carrying with him a voluminous library of reference in

regard to the subjects of ichich it treats.

The Theatre of the Greeks.
A Treatise on the History and Exhibition of the Greek Drama : with various

Supplements. Seventh Edition, revised, enlarged, and in part remodelled;
with numerous illustrations from the best ancient authorities. 8vo. 14s.

Classical Scholarship and Classical Learning con-
sidered with especial reference to Competitive Tests and University Teaching.
A Practical Essay on Liberal Education. Crown 8vo. 5s.
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The Greek Testament : with a Critically revised
Text; a Digest of various Readings; Marginal References to Verbal and
Idiomatic Usage ; Prolegomena; and a Critical and Exegetical Commentary.
For the Use of Theological Students and Ministers. By HENRY ALFORD.
D.D., Dean of Canterbury. 4 vols. 8vo. Sold separately.

Vol. I. fifth edition, containing the Four Gospels. II. 8*.—Vol. II. fifth

f.dition, containing the Acts of the Apostles, Epistles to the Romans and
Corinthians. 1/. 4*.—Vol. III. fourth edition, containing the Epistles
to tho Galatians, Ephesians, Philippians, Colossians, Thessalonians,

—to

Timotheus, Titus, and Philemon. 18*.—Vol. IV. Part I. third edition.
The Epistle to the Hebrews : The Catholic Epistles of St. James and
St. Peter. 18s.—Vol. IV. Part II. third edition. The Epistles of
St. John and St. Jude, and the Revelation. 14*.

Annotations on the Acts of the Apostles. De-
signed principally for the use of Candidates for the Ordinary B.A. Degree,
Students for Holy Orders, &c, with College and Senate-House Examination

Papers. By tho Rev. T. R. MASKEW. /Second Edition, enlarged. 12mo. 5s.

Tertulliani Liber Apologeticus.
The Apology of Tertullian. "With English Notes and a Preface, intended as

an introduction to the Study of Patristical and Ecclesiastical Latinity. By
H. A. WOODHAM, LL.D. Second Edition. 8vo. 8*. 6d.

The Mathematical and other Writings of Kobert
LESLIE ELLIS, M.A., late Fellow of Trinity College, Cambridge. Edited

by WILLIAM WALTON, M.A., Trinity College, with a Biographical
Memoir by the Very Reverend HARVEY GOODWIN, D.D., Dean of Ely.
8vo. 16*.

The Mathematical Writings ofDuncan Farquhak-
SON GREGORY, M.A., late Fellow of Trinity College, Cambridge. Edited

by WILLIAM WALTON, M.A., Trinity College, Cambridge. With a

Biographical Memoir by ROBERT LESLIE ELLIS, M.A., late Fellow of

Trinity College. 8vo. 12*.

Astronomy and General Physics considered with
reference to Natural Theology (Bridgewater Treatise). By the late Rev. W.
WHEWELL. New Edition, uniform with the Aldine Editions. 5*.

Lectures on the History of Moral Philosophy
in England. By the late Rev. W. WHEWELL, D.D., Master of Trinity
College, Cambridge. New and Improved Edition, with Additional Lectures.
Crown 8vo. 8*.

The Additional Lectures arc printed separately in Octavo, for the convenience
of those who have purchased the former Edition. Price 3s. 6<i.

Elements of Morality, including Polity. By the
late Rev. W. WHEWELL, D.D. New Edition, in 8vo. 15*.
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Kent's Commentary on International Law, re-
vised with Notes and Cases brought down to the present time. Edited by
J. T. ABDY, LL.D., Barrister at Law, Regius Professor of Laws in the Uni-

versity of Cambridge, and Law Lecturer at Gresham College. 8vo. 16s.

A Manual of the Roman Civil Law, arranged
according to the Syllabus of Dr. Hallifax, Designed for the use of Students in

the Universities and Inns of Court. By G. LEAPLNGWELL, LL.D. 8vo. 12*.

A Syriac Grammar. By G. Phillips, D.D.,
President of Queens' College. Third Edition

,-
revised and enlarged. 8vo. 7s. Qd.

A Concise Grammar of the Arabic Language.
By W. J. BEAMONT, M.A. Revised by Sheikh Ali Nady el Bakrany,
one of the Sheikhs of the El Azhar Mosque in Cairo. 12mo. 7*.

The Student's Guide to the University of

Cambridge. Second Edition, revised and corrected in accord-

ance with the recent regulations. Fcap. 8vo. 5s.

This volume is intended to give such preliminary information as may he useful to parents, who
are desirous of sending their sons to the University, to put them in possession of the leading
facts, and to indicate the points to which their attention should be directed in seeking further
information from the tutor.

Suggestions are also given to the younger members of the University on expenses and course of

reading.
Contents.

Introduction, by J. R. Seelev, M.A., Fellow On Law Studies and Law Degrees, by J. T.
of Christ's College, Cambridge. Abdy, LL.D., Regius Professor of Laws.

On Universitv Expenses, by the Rev. H. , r ,. . „, , , ^. i_« „ -,

Latham, M.A., Fellow and Tutor of Trinity
Medical Study and Degrees, by G. M. IDjmphrv,

Hall.
M.D.

On the Choice ofa College, by J. R. Seeley, M.A. On Theological Examinations, by the Right
On the Course of Reading for the Classical Rev. the Lord Bishop of Ely.

Tripos, by the Rev. R. Burn, Fellow and The ordinary (or Poll) Degree, by the Rev. J.

On^^»SX the Mathematical *« "^» ™*n If Magdalene

Tripos, by the Rev. W. M. Campion, Fellow **«««*.

and Tutor of Queens' College. Examinations for the Civil Service of India, by
On the Course of Reading for the Moral Sciences the Rev. II. Latham.

Tripos, by the Rev. J. B. Mayor, Fellow Locai Examinations of the Universitv, by H. J.
and Tutor of St. John s College. roby> ma late Fellow of St. John's

On the Course of Reading for the Natural
College.

Sciences Tripos, by J. D. Liveing, M.A., --. . -

Professor of Chemistry, late Fellow of St. Diplomatic Service.

John's College. Detailed Account of the several Colleges.

Cambridge Examination Papers, 1859. Being
Supplement to the Cambridge University Calendar. 12mo. 5s.

Containing those set for the Tyrwhitt's Hebrew Scholarships.
—

Theological
Examinations.—Cams Prize.—Crosse Scholarships.

—Law Degree Ex-
amination.—Mathematical Tripos.

—The Ordinary B.A. Degree.
—Smith's

Prize.—University Scholarships.
—Classical Tripos.

—Moral Sciences

Tripos.
—Chancellor's Legal Medals.—Chancellor's Medals.—Bell's Scho-

larships.
—Natural Sciences Tripos.

—Previous Examination.—Theological
Examination. With Lists of Ordinary Degrees, and of those who have

passed the Previous and Theological Examinations.
The Examination Papers of 1856, price 2s. 6d.; 1857 and 1858, 3s. 6d., may still

be had.
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