
Notes on Combinatorics

Peter J. Cameron



ii

Preface: What is Combinatorics?

Combinatorics, the mathematics of patterns, . . . , helps us design com-
puter networks, crack security codes, or solve sudokus

Ursula Martin, Vice-Principal (Science and Engineering),
Queen Mary, University of London

These notes accompanied the course MAS219, Combinatorics, at Queen Mary,
University of London, in the Autumn semester 2007.

It is impossible to define combinatorics, but an approximate description would
go like this. We are given the job of arranging certain objects or items according
to a specified pattern. Some of the questions that arise include:

• Is the arrangement possible?

• In how many ways can the arrangement be made?

• How do we go about finding such an arrangement?

This is best illustrated by examples.

Example 1: Sudoku You are given a 9×9 grid, divided into nine 3×3 squares.
Your job is to put the numbers 1,2, . . . ,9 into the cells of the grid in such a way
that each number occurs just once in each row, once in each column, and once in
each 3×3 subsquare.

It is not hard to see that the arrangement is indeed possible. A heroic calcula-
tion by Bertram Felgenhauer and Frazer Jarvis in 2005 showed that there are

6,670,903,752,021,072,936,960

different ways of filling the grid.
Now suppose that someone has complicated the problem by writing some

numbers into the grid already. In general it may or may not be possible to complete
the grid; and even if it is, it may be very difficult to find a solution. Nevertheless,
many people around the world enjoy engaging with this combinatorial problem
every day.

Example 2: Euler’s officers The great mathematician Leonhard Euler asked in
1782:
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Six different regiments have six officers, each one holding a different
rank (of six different ranks altogether). Can these36 officers be ar-
ranged in a square formation so that each row and column contains
one officer of each rank and one from each regiment?

Euler conjectured that the answer is “no”, and this guess was eventually proved
correct in 1900. However Euler also conjectured that the answer is “no” if six is
replaced by 10, 14, or any number congruent to 2 mod 4. He was completely
wrong about this, but this was not discovered until the 1960s.

Example 3: Kirkman’s schoolgirls In 1843, Thomas Kirkman asked:

Fifteen schoolgirls go for a walk every day for a week in five rows of
three. Is it possible to arrange the walks so that every two girls walk
together exactly once during the week?

This is certainly plausible. Each girl has to walk with fourteen others; every
day there are two other girls in her row, so seven days would be the right number
for the schedule. However, this does not prove that the arrangement is possible.

In fact, it can be done; Kirkman himself found a schedule satisfying the con-
ditions.

Examples and reality The examples may give you the impression that combi-
natorics is a collection of charming puzzles of little relevance to our modern tech-
nological world. In fact this is completely wrong. The course is not really about
applications, but in the digital world this subject is of enormous significance. Peo-
ple (and computers!) spend a lot of time sorting data, sending messages through
networks, correcting faulty data or encoding data to keep it safe from unauthorised
access, designing better networks, looking for new combinations of atoms to form
molecules which will provide us with better drugs, and so on. We need to decide
when such a problem has a solution, and to find the solution efficiently.

These notes These notes reflect the contents of the course in 2007. I have added
a couple of proofs of major theorems not covered in the course. The notes have
been provided with exercises (some of them with worked solutions) and an index.

The recommended textbook for the course was my own bookCombinatorics:
Topics, Techniques, Algorithms, first published in 1994; but rather than following
the book I have written everything anew. The course covers roughly the first half
of the book; if you enjoyed this, you may want to read more, or to look at my
Notes on countingon the Web.

I am grateful to Volkan Yildiz who spotted a number of misprints in a prelim-
inary version of the notes.
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Further reading Either of the two level 4 courses at Queen Mary can be taken
by students who have done the Combinatorics course:

• MAS408: Graphs, Colourings and Design

• MAS439: Enumerative and Asymptotic Combinatorics

I mentioned above myNotes on countingwhich are on the web in the same
place as these notes.

Some other books which contain further material (including the recommended
course text) are:

• Martin Aigner,Combinatorial Theory, Springer, 1979.

• Norman Biggs,Discrete Mathematics(2nd edition), Oxford University Press,
2002.

• Peter J. Cameron,Combinatorics: Topics, Techniques, Algorithms(2nd edi-
tion), Cambridge University Press, 1996.

• J. H. van Lint and R. M. Wilson,A Course in Combinatorics, Cambridge
University Press, 1992.

• Jiri Matousek and Jaroslav Nešeťril, Invitation to Discrete Mathematics, Ox-
ford University Press, 1998.
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Chapter 1

Subsets and binomial coefficients

One of the features of combinatorics is that there are usually several different
ways to prove something: typically, by a counting argument, or by analytic meth-
ods. There are lots of examples below. If two proofs are given, study them both.
Combinatorics is about techniques as much as, or even more than, theorems.

1.1 Subsets

Let n be a non-negative integer, and letX be a set withn elements. How many
subsets doesX have?

Proposition 1.1 The number of subsets of an n-element set is2n.

First proof We encode subsets by sequences(e1,e2, . . . ,en), where eachei is
either 0 or 1. There are 2 choices fore1, 2 choices fore2, . . . , 2 choices foren; so
altogether 2n sequences. So we are done if we can establish a bijection between
subsets and sequences.

To each subsetY of X, we associate the sequence(e1,e2, . . . ,en) where

ei =
{

1 if i ∈Y,
0 if i /∈Y.

It is easy to see that each sequence arises from a subset, and distinct sequences
arise from distinct subsets; so the correspondence is a bijection.

Second proof This is a proof by induction. Letf (n) be the number of subsets
of {1,2, . . . ,n}. We see thatf (0) = 1 (the empty set has just one subset, namely
itself). Also, f (n+1) = 2 f (n); for each subsetY of {1,2, . . . ,n} can be extended
in two ways to a subset of{1,2, . . . ,n+ 1}: we can choose whether or not to

1



2 CHAPTER 1. SUBSETS AND BINOMIAL COEFFICIENTS

includen+1 in the subset. Now we can easily prove by induction thatf (n) = 2n.
The induction starts becausef (0) = 1 = 20. For the inductive step, assume that
f (n) = 2n; then

f (n+1) = 2 f (n) = 2·2n = 2n+1.

So the induction goes through, and the proof is complete.

1.2 Subsets of fixed size

If n andk are integers satisfying 0≤ k≤ n, how manyk-element subsets does an
n-element setX have?

Define thebinomial coefficient

(
n
k

)
by

(
n
k

)
=

n(n−1) · · ·(n−k+1)
k(k−1) · · ·1

.

(There arek factors in both the numerator and the denominator, thei-th factors
beingn− i +1 andk− i +1.)

For 0≤ k≤ n, the number of k-element subsets of an n-element set is

(
n
k

)
.

Proof We choosek distinct elements of then-element setX. There aren choices
for the first element;n−1 choices for the second; . . .n− i +1 choices for thei-th;
. . . andn−k+1 choices for thek-th. Multiply these numbers together to get that

the total number of choices is the numerator of the fraction

(
n
k

)
.

This is not the answer, since choosing the same elements in a different order
would give the same subset – for example, 1, then 4, then 3 would be the same as
3, then 1, then 4. So we have to divide by the number of different orders in which
we could choose thek elements. There arek choices for the first;k−1 for the
second; . . .k− i +1 for thei-th; . . . andk−k+1 = 1 choice (really no choice at
all!) for the last. Multiplying these numbers gives the denominator of the fraction.
So the result is proved.

It will sometimes be convenient to give a meaning to the symbol

(
n
k

)
even if

k is greater thann. We specify:

If k > n, then

(
n
k

)
= 0.
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This is a “reasonable” choice since, ifk > n, there are nok-element subsets of an

n-element set. You should check that our formula for

(
n
k

)
remains correct in this

case: ifk > n, then one of the factors in the numerator is equal to 0.

1.3 Properties of binomial coefficients

1.3.1 Sum of binomial coefficients

The total number of subsets of ann-element set is 2n. We know the number of
subsets of sizek, for each value ofk: adding these up must give the total. In other
words,

n

∑
k=0

(
n
k

)
= 2n.

1.3.2 Binomial coefficients and factorials

Here is an alternative formula for the binomial coefficients. This uses thefactorial
function, defined by

n! = n(n−1)(n−2) · · ·1,

the product of all the integers from 1 ton inclusive. Now we have(
n
k

)
=

n!
k! (n−k)!

.

For if we take the definition of the binomial coefficient, and multiply top and
bottom by(n−k)!, then in the numerator we have the product of all the integers
from 1 ton, that is,n!; the denominator isk! (n−k)!.

In order to make this formula valid in the limiting casesk = 0 andk = n, we
have to adopt the convention that 0!= 1. This may seem strange, but if we want
the recurrencen! = n · (n−1)! to hold for n = 1, then it is forced upon us! This

then correctly gives

(
n
0

)
=
(

n
n

)
= 1, and in particular

(
0
0

)
= 1.

However, the formula does not work ifk > n, since thenn− k < 0 and we
cannot define factorials of negative numbers.

1.3.3 A recurrence relation

There is a simplerecurrence relationfor the binomial coefficients, which enables
big ones to be calculated from smaller ones by addition:(

n−1
k−1

)
+
(

n−1
k

)
=
(

n
k

)
.
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First proof Consider the problem of counting thek-element subsets of ann-
element setX, which contains one special element calledx.

First we count the sets which containx. Each of these must havek−1 out of

the remainingn−1 elements. So there are

(
n−1
k−1

)
such sets.

Next we count the sets which do not containx. Each of these must necessarily
havek elements chosen from then− 1 elements different fromx; so there are(

n−1
k

)
such sets.

Adding these numbers together gives all the

(
n
k

)
sets.

Second proof We can prove the result by calculation, using our formula:(
n−1
k−1

)
+
(

n−1
k

)
=

(n−1)!
(k−1)! (n−k)!

+
(n−1)!

k! (n−k−1)!

=
(n−1) ·k
k! (n−k)!

+
(n−1)! · (n−k)

k! (n−k)!

=
n· (n−1)!
k! (n−k)!

=
(

n
k

)
,

where we have used the facts thatn! = n· (n−1)!, k! = k · (k−1)!, and(n−k)! =
(n−k) · (n−k−1)!.

I make no secret of the fact that I like the first proof better!

1.3.4 Symmetry

We have (
n
k

)
=
(

n
n−k

)
.

For the first proof, we find a bijective correspondence between thek-element
sets and the(n− k)-element sets in a set of sizen; this is easily done by simply
matching each set with its complement.

The second proof, using the formula in 2 above, is a simple exercise for the
reader.
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1.3.5 Pascal’s Triangle

It is possible to arrange the binomial coefficients in a symmetrical triangular pat-

tern, in which the(n+1)-st row contains then+1 numbers

(
n
0

)
, . . . ,

(
n
n

)
.

The triangle begins as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

Although we call this Pascal’s Triangle, Pascal was not the first person to
write it down. Below is a version due to Chu-Shi-Chieh (Zhu Shijie), taken from
work of Yang Hui, in his bookSsu Yuan Ÿu Chien, dated 1303. Jia Xian knew it
about 250 years earlier. Other people who knew about it at roughly the same time
include Halayudha in India, and Al-Karaji and Omar Khayyam in Iran. We don’t
know who invented it!

The property in 1.3.4 above shows that the triangle has left-right symmetry.
The recurrence relation 1.3.3 shows that each entry of the triangle is the sum of
the two entries immediately above it. This gives a very quick method to generate
as much of the triangle as required.
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1.4 The Binomial Theorem

We now come to theBinomial Theorem, a generalisation of the property 1 of the
preceding paragraph (putx = y = 1 to see this).

Theorem 1.2 (Binomial Theorem)

(x+y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

First proof We have

(x+y)n = (x+y)(x+y) · · ·(x+y),

where there aren factors on the right-hand side of the equation. If all the brackets
are expanded, we get a sum of very many terms; but each term is obtained by
choosingx from some of the brackets andy from the remaining ones. If we choose
x from k brackets andy from the remainingn− k, we obtain a termxkyn−k. So
the coefficient of this term is the number of ways we can do this, in other words,
the number of choices ofk out of then brackets from whichx is selected. This

number is

(
n
k

)
. So the theorem is proved.

Second proof We prove the theorem by induction onn. Forn= 0, the left-hand
side is(x+y)0 = 1, while the right-hand side has just the single termk = 0, which

is

(
0
0

)
x0y0 = 1. So the induction starts.

Suppose that the Binomial Theorem holds for a valuen. Then

(x+y)n+1 = (x+y)(x+y)n

= x

(
n

∑
k=0

xkyn−k

)
+y

(
n

∑
k=0

xkyn−k

)
.

For k = m, second term gives us a contribution

(
n
m

)
xmyn+1−m. What is the con-

tribution to of the first term to the coefficient ofxmyn+1−m? To get this term, we

must putk = m−1, and the coefficient is

(
n

m−1

)
.

So the coefficient ofxmyn+1−m in (x+y)n+1 is(
n

m−1

)
+
(

n
m

)
=
(

n+1
m

)
,
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which is just what we require to make the induction work. So the proof is com-
plete.

Sometimes it is convenient to have a one-variable form of the Binomial Theo-
rem. Puttingy = 1, we obtain

(1+x)n =
n

∑
k=0

(
n
k

)
xk.

1.5 Further properties of binomial coefficients

1.5.1 Even and odd

We know that, for fixedn, the sum of the binomial coefficients

(
n
k

)
over all values

of k from 0 ton is 2n. What if we add them up just for evenk, or just for oddk?

For n > 0,
bn/2c

∑
i=0

(
n
2i

)
=

b(n−1)/2c

∑
i=0

(
n

2i +1

)
= 2n−1.

Proof Let Se andSo be the sums of the even and odd binomial coefficients re-
spectively. ThenSe+So is the sum of all the binomial coefficients; in other words,

Se+So = 2n.

If we putx =−1 in the one-variable Binomial Theorem, we obtain
n

∑
k=0

(−1)k
(

n
k

)
= (−1+1)n = 0. Now in this sum, the even binomial coefficients

have coefficient+1 and the odd ones have coefficient−1; so the equation says
that

Se−So = 0.

The two displayed equations show thatSe = So = 2n/2 = 2n−1.

1.5.2 Binomial identities

There are a huge number of other equations connecting binomial coefficients.
Here is one.

Let m,n,k be positive integers. Then

k

∑
i=0

(
n
i

)(
m

k− i

)
=
(

m+n
k

)
.

(This result is sometimes called theVandermonde convolution.)
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First proof Suppose a school class consists ofm girls andn boys, and we need
to choose a team ofk children. In how many ways can this be done? We count

the number of teams containingi girls: there are

(
m
i

)
ways to choose the girls,

and

(
n

k− i

)
ways of choosing the remainingk− i team members from then boys.

Multiplying these numbers gives us the number of possible teams containingi
girls, and summing overi gives the total number of teams. But we know that the

total is

(
m+n

k

)
.

Second proof Consider the equation

(1+x)m · (1+x)n = (1+x)m+n.

What is the term inxk? On the right, it is

(
m+n

k

)
, by the Binomial Theorem. On

the left, we could choose the termxi from the first factor andxk−i from the second

and multiply them. The coefficients of these two terms are

(
m
i

)
and

(
n

k− i

)
; so

we multiply these numbers, and then sum overi.

Puttingm= n = k, and noting that

(
n
i

)
=
(

n
n− i

)
, the equation reduces to

n

∑
i=0

(
n
i

)2

=
(

2n
n

)
.

1.5.3 Sum of sizes of sets

Here are a some further results and proof techniques.

First result:n

(
n−1
k−1

)
= k

(
n
k

)
.

First proof From a class ofn children, we have to choose a team ofk members,

and a captain for the team. There are

(
n
k

)
teams, andk choices of a captain for

any team; altogetherk

(
n
k

)
choices. But we could proceed differently: we could

choose the captain first (inn ways), and then the remainingk−1 team members

from the remainingn−1 children (in

(
n−1
k−1

)
ways), givingk

(
n−1
k−1

)
in all.
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Second proof

k

(
n
k

)
=

k ·n!
k! (n−k)!

=
n· (n−1)!

(k−1)! (n−k)!

= n

(
n−1
k−1

)
.

Second result:
n

∑
k=1

k

(
n
k

)
= n·2n−1.

First proof

n

∑
k=1

k

(
n
k

)
= n

n

∑
k=1

(
n−1
k−1

)
= n

n−1

∑
l=0

(
n−1

l

)
= n·2n−1.

Second proofWe have

(1+x)n =
n

∑
k=0

(
n
k

)
xk.

Differentiating gives

n(1+x)n−1 =
n

∑
k=1

k

(
n
k

)
xk−1.

(We omit thek = 0 term since it is zero.) Now putx = 1 to get the result.

Third proof There are

(
n
k

)
subsets of sizek of an n-element setX; so the sum

on the left simply adds up the sizes of all these subsets. But we can calculate this
sum another way. Pair up each subsetA with its complementX \A; these two
sets containn elements between them. There are 2n subsets, and so they fall into
2n/2 = 2n−1 pairs. Thus the value of the sum isn2n−1.

1.5.4 Congruences

Here is a picture of part of Pascal’s triangle. I have put∗ to mean that the entry
is odd, and left a blank if the entry is even. Notice the fractal structure of the
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diagram: If we know the triangle formed from the first 2n rows, we obtain the first
2n+1 rows by putting two copies of the triangle side by side below the first one,
and leaving the positions in the middle triangle blank.

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗
∗∗

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

∗∗∗∗∗∗∗∗

∗∗
∗∗
∗∗
∗∗

∗∗
∗∗
∗∗
∗∗

∗∗∗∗

∗∗
∗∗
∗∗
∗∗

∗∗∗∗

∗∗
∗∗
∗∗
∗∗

∗∗∗∗

∗∗
∗∗
∗∗
∗∗

This is explained by a result calledLucas’ Theorem:

Theorem 1.3 (Lucas’ Theorem)Let p be a prime number. Write n and k to the
base p:

n = a0 +a1p+a2p2 + · · ·+adpd, k = b0 +b1p+b2p2 + · · ·+bdpd,

where0≤ ai ,bi ≤ p−1. Then(
n
k

)
≡

d

∏
i=0

(
ai

bi

)
(modp).

In particular,

(
n
k

)
is divisible by p if and only if ai < bi for some value of i.

The proof of the theorem is in the next section. You should try to explain
how this justifies the fractal shape of the diagram showing the parities in Pascal’s
triangle.

1.6 Appendix: Proof of Lucas’ Theorem

Recall the statement of Lucas’ Theorem:

Theorem (Lucas’ Theorem) Let p be a prime number. Write n and k to the
base p:

n = a0 +a1p+a2p2 + · · ·+adpd, k = b0 +b1p+b2p2 + · · ·+bdpd,

where0≤ ai ,bi ≤ p−1. Then(
n
k

)
≡

d

∏
i=0

(
ai

bi

)
(modp).

The proof comes from the following lemma:
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Lemma Let p be prime, and let n= cp+a, k= dp+b, with 0≤ a,b≤ p−1.
Then (

n
k

)
≡
(

c
d

)(
a
b

)
(modp).

Proof Here is a short proof using the Binomial Theorem. The key is the fact
that, if p is prime, then

(1+x)p ≡ 1+xp (modp).

For each binomial coefficient

(
p
i

)
, for 1≤ i ≤ p−1, is a multiple ofp, so all

intermediate terms in the Binomial Theorem vanish modp. (We have

(
p
i

)
=

p!/i!(p− i)!, and p divides the numerator but not the denominator.) Thus (con-
gruence modp):

(1+x)n = (1+x)cp(1+x)a

≡ (1+xp)c(1+x)a

=
c

∑
i=0

(
c
i

)
xpi ·

a

∑
j=0

(
a
j

)
x j .

Since 0≤ a,b < p, the only way to obtain a term intk = tdp+b in this expres-
sion is to take the termi = d in the first sum and the termj = b in the second; this
gives (

n
k

)
≡
(

c
d

)(
a
b

)
(modp),

as required.

Proof of the theorem The proof is by induction ond. The induction starts with
d = 1 since, thenn = a0, k = b0, and there is nothing to prove.

Suppose that the theorem holds withd−1 replacingd. As in the statement of
the theorem, let

n = a0 +a1p+a2p2 + · · ·+adpd, k = b0 +b1p+b2p2 + · · ·+bdpd,

where 0≤ ai ,bi ≤ p−1. Puta= a0, c= a1+a2p+ · · ·+adpd−1, b= b0, d = b1+
b2p+ · · ·+bdpd−1. Thenn = cp+a, k = dp+b, and we have (with congruences
mod p): (

n
k

)
≡

(
c
d

)(
a
b

)
(by the Lemma)
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≡

(
d

∏
i=1

(
ai

bi

))
·
(

a0

b0

)
(by the induction hypothesis)

=
d

∏
i=0

(
ai

bi

)
.

Corollary With the hypotheses of the theorem,

(
n
k

)
is divisible by p if and only

if ai < bi for some i with0≤ i ≤ d.

Proof If ai < bi , then

(
ai

bi

)
= 0. So one of the factors on the right-hand side of

the theorem is zero, whence the product is zero.

If ai ≥ bi , then the binomial coefficient

(
ai

bi

)
is not divisible byp (it is non-

zero and there are no factorsp in the numerator sinceai ≤ p−1. Now a product
of d numbers not divisible byp is itself not divisible byp.

Example Let n = 2m−1. Then all the digitsai of n in base 2 are equal to 1, so
we havebi ≤ ai for anyk. This means that every entry in rown of Pascal’s triangle
is odd.

Exercises

1. Write 1001 as a binomial coefficient

(
n
k

)
with n≤ 20.

2. If X is a set of 8 elements, then the number of 3-element subsets ofX is twice
the number of 2-element subsets. Is there any other size of the setX for which
this holds?

3. Calculate
n

∑
k=0

k2
(

n
k

)
.

4. Let X be an-element set. Find a bijectionF between the set ofk-element
subsets ofX and the set of all(n−k)-element subsets ofX. Deduce that(

n
k

)
=
(

n
n−k

)
.

5. This exercise extends the result about “summation of even and odd binomial
coefficients” in 1.5.1. Similar methods can deal with sums of binomial coefficients
wherek lies in any fixed congruence class of positive integers.
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Let i denote the square root of−1, and note that 1+ i =
√

2eπ/4. Hence find the
real and imaginary parts of(1+ i)n for any natural numbern. (You will probably
find it convenient to consider the different congruence classes mod 8 separately.)

Expanding(1+ i)n by the Binomial Theorem, find expressions for

b(n−t)/4c

∑
j=0

(
n

4 j + t

)
,

for t = 0,1,2,3, again separating the congruence classes mod 8. (This involves
a lot of repetitious work. You should at least do all the calculations forn ≡ 0
(mod 8).)

6. By calculating the coefficient ofxn on the two sides of the identity

(1+x)n · (1−x)n = (1−x2)n,

or otherwise, prove that

n

∑
k=0

(−1)k
(

n
k

)2

=

{0 if n is odd,

(−1)m

(
2m
m

)
if n = 2m.

7.

(a) Prove that (
n

k+1

)
=

n−k
k+1

(
n
k

)
.

(b) Prove that, ifn> 2k+1, then

(
n

k+1

)
>

(
n
k

)
; if n= 2k+1, then

(
n

k+1

)
=(

n
k

)
; and ifn < 2k+1, then

(
n

k+1

)
<

(
n
k

)
.

(c) Hence show that, for fixedn andk= 0,1, . . . ,n, the binomial coefficients in-
crease, then remain constant for one step (ifk is odd), then decrease. (Such
a sequence is said to beunimodal).

(d) Show further that the largest binomial coefficient is

(
2m
m

)
if n= 2m is even,

while if n= 2m+1 is odd, then

(
2m+1

m

)
and

(
2m+1
m+1

)
are equal largest.

(e) Deduce that, ifn = 2m, then

22m

2m+1
≤
(

2m
m

)
≤ 22m.
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8.

(a) Show that the binomial coefficient

(
2m
m

)
is divisible by every primep sat-

isfying m+1≤ p≤ 2m.

(b) Using the estimate on Problem Sheet 1, Question 2, show that the number

of primes betweenm+1 and 2m is at most
2m

log2m
.

Remark: This is a weak version of the famousPrime Number Theorem, which
says that the number of prime numbersp satisfying 1≤ p≤ n is asymptotically

n
logn

.



Chapter 2

Selections and arrangements

2.1 The formulae

We have a hat containingn names, and we are going to draw outk names. In how
many ways can we do this?

To answer the question, we have to clarify the strategy a bit. First, do we care
about the order in which the names are drawn, or not? Second, when we have
drawn a name, do we put it back in the hat and shake it up before the next draw,
or do we discard it? The answers to this question correspond to samplying with
order significant or not, and with repetition allowed or not allowed. If the order is
significant, we have ak-tuple of names; if not, we have a set (if repetition is not
allowed), or what might be called a “multiset” if repetition is allowed. We will
write multisets in square brackets to distinguish them from sets.

For example, if the names area,b, and we draw two of them, then

• order important, repetition allowed: there are four possibilities,(a,a), (a,b),
(b,a) and(b,b).

• order important, repetition not allowed: there are two possibilities,(a,b)
and(b,a).

• order unimportant, repetition allowed: there are three possibilities,[a,a],
[a,b], and[b,b]. (Choosinga thenb is the same as choosingb thena.)

• order unimportant, repetition not allowed: just one possibility, namely{a,b}.

In general, the numbers of selections are given by the entries in the following
table. We use the notation(n)k for the numbern(n−1) · · ·(n−k+1). This is the

numerator in our definition of

(
n
k

)
, and is often called thefalling factorial.

15
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Order
significant

Order not
significant

Repetition
allowed

nk

(
n+k−1

k

)
Repetition
not allowed

(n)k

(
n
k

)
Note that the numerator in the top right entry isn(n+ 1) · · ·(n+ k− 1), the

so-calledrising factorial.

2.2 Proofs

Order significant, repetition allowed: We get to makek choices, and there are
n names to choose at each step. So there arenk possibilities.

Order significant, repetition not allowed: This time, there aren names to
choose at the first step;n− 1 at the second step (since we discarded the first
name after we chose it);n−2 at the third step; . . . andn−k+1 at thek-th step.
Multiplying these numbers gives the answer.

Order not significant, repetition not allowed: We simply choose a set withk

elements from then elements in the hat. The number of ways of doing this is

(
n
k

)
,

by definition. Alternatively choose with order significant, and repetition allowed,
and note that each unordered sample hask! different orderings; so the answer is
(n)k/k!.

Order not significant, repetition allowed: This case is the most difficult. But
note, before we begin, that we cannot just use the argument in the preceding para-
graph to getnk/k!. [WHY NOT?]

Step 1: The number of choices ofk objects fromn, with order not significant
and repetition allowed, is equal to the number of ways of choosingn non-negative
integersx1, . . . ,xn satisfyingx1 + · · ·+xn = k. For given the selection, we can let
xi be the number of times that theith name was selected; clearlyx1, . . . ,xn satisfy
the stated conditions. Conversely, givenx1, . . . ,xn satisfying the conditions, form
a selection in which thei-th name is chosenxi times.

Thus, for example, suppose thatn = 3 andk = 6. If the names area,b,c, then
the selection[a,a,b,b,b,c] corresponds tox1 = 2, x2 = 3, x3 = 1.
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Step 2: So we have to count the number of choices of non-negative integers
x1, . . . ,xn with sumk. To do this, take a row ofn+ k−1 cells; choosen−1 of

them and put markers in them. There are

(
n+k−1

n−1

)
=
(

n+k−1
k

)
ways of

making this choice. Having made the choice, definex1, . . . ,xn as follows:

• Let x1 be the number of cells before the first marked cell.

• Let x2 be the number of cells between the first and second marked cell.

• . . .

• Let xn−1 be the number of cells between then−1-st andn-th marked cell.

• Let xn be the number of cells after then-th marked cell.

Then clearly the numbersx1, . . . ,xn are non-negative integers; they add up to the
number of unmarked cells, which is(n+k−1)− (n−1) = k.

Moreover, every way of choosingn non-negative integers adding up tok is
represented uniquely by such a marking ofn−1 out of n+ k−1 boxes. So the
result is proved.

For example, our choicex1 = 2, x2 = 3, x3 = 1 would come from a marking
of the followingn−1 = 2 out ofn+k−1 = 8 boxes:

��������

To make this clearer, here is a table which gives both steps in the casen = 3,
k = 2. Let the names in the hat bea,b,c. The first column gives a selection of two
names (with repetition allowed and order unimportant). The second gives three
numbers adding up to 2. The third gives four boxes with a choice of two of them
marked.

aa (2,0,0) ����
ab (1,1,0) ����
ac (1,0,1) ����
bb (0,2,0) ����
bc (0,1,1) ����
cc (0,0,2) ����

2.3 Balls in urns

There is another way to look at the main result of the last section. Suppose that we
haven urns, or vases,U1, . . . ,Un. We havek indistinguishable balls. How many
ways can we put the balls in the urns? [Of course this problem can be put into
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many disguises. I havek identical sweets. In how many ways can I distribute them
to a class ofn children?]

If xi is the number of balls I put into theith urn [or the number of sweets I give
to the ith child], thenx1, . . . ,xn are non-negative integers which add up tok. So

the number of ways of putting the balls into the urns is

(
n+k−1

k

)
.

The conditions can be varied in many ways. Suppose, for example, that I
have to distributek balls amongn urns as above, but with the requirement that no
urn should be empty. This asks thatxi ≥ 1 for all i. If we define new variables
y1, . . . ,yn by yi = xi −1, then the sum of theys isk−n; so the number of choices
of they’s is (

n+(k−n)−1
k−n

)
=
(

k−1
n−1

)
.

The simple way to think about this is: Suppose each urn is to be non-empty.
Then I first taken balls and put one in each urn. Then I distribute the remaining
k−n balls into the urns in any way. This gives the same result as above.

Example How many ways can I distribute 100 sweets to a class of 30 boys and
20 girls, if it is required that each boy has at least one sweet and each girl has at
least two sweets?

To solve this, I first give one sweet to each boy and two to each girl, using up
30+2 ·20= 70 sweets. Then I distribute the remaining 30 sweets among the 50

children, which can be done in

(
30+50−1

30

)
=
(

79
30

)
ways.

2.4 Making words from letters

How many ways can we arrangen distinct objects in order? By the formula in the
bottom left of the box, the answer is simply(n)n = n!. Another way of seeing this
is as follows. LetF(n) be this number. Then

F(0) = 1, F(n) = nF(n−1) for n > 0.

(We takeF(0) = 1 because there is just one list with no entries, the empty or blank
list. To get the second equation, we choose one of then objects to be first on the
list (there aren ways of doing this), and then we have to put the remainingn−1 in
order after the first one.) Now an easy induction argument shows thatF(n) = n!
for all n.

Now we make the question a bit harder. How many ways of arranging some
(possibly all) of then objects in a list?
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Example How many words can I make from the letters of the wordFACE-
TIOUS? (A word is simply a string of letters chosen from those in the word; we
do not require that it makes sense in English or any other language. The order of
the original letters in the word is irrelevant; a better analogy is that you are playing
Scrabble and you have these letters. By convention we include the “empty word”,
which is the string containing no letters.)

In the case given, the letters are all distinct; this makes life easier, so we start
with this case. Suppose that we are givenn letters, all different. How manyk-
letter words can we construct? These words are just selections ofk letters from
the givenn, with order important and repetition not allowed; so the number is
(n)k = n(n−1) · · ·(n−k+1).

So the total numberW(n) of words is

W(n) =
n

∑
k=0

(n)k.

We can express this another way. Note thatn(k) = n!/(n−k)!. So

W(n) = n!

(
n

∑
k=0

1
(n−k)!

)
= n!

(
n

∑
m=0

1
m!

)
.

Now recall from calculus that

∞

∑
m=0

1
m!

= e.

Inside the brackets of the formula forW(n), we see the sum of the reciprocals of
the factorials from 0 ton, in other words, the sum of the firstn+ 1 terms of the
infinite series. So we see thatW(n) is approximately e·n!.

We can be more precise:

e·n!−W(n) =
∞

∑
m=n+1

n!
m!

=
1

n+1
+

1
(n+1)(n+2)

+
1

(n+1)(n+2)(n+3)
+ · · ·

<
1

n+1
+

1
(n+1)2 +

1
(n+1)3 + · · ·

=
1
n
.

(In the last term we summed a geometric series.)
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In other words, en! is bigger than the integerW(n) but smaller thanW(n)+
1/n; so we getW(n) by calculating e·n! and rounding down to the integer below.
So finally we conclude, using the “floor” or “integer part” function, that

W(n) = be·n!c.

For the wordFACETIOUS, we haven = 9, and

W(n) = be·9!c= 986410.

Remark AlthoughW(n) = be·n!c is a beautiful simple formula, and gives us
a very good estimate for the size ofW(n), it is not so good for the purpose of
calculation. For example, 70! is a number with about 100 digits, so in order to
decide whetherW(70) is odd or even we would need to know e to 100 places of
decimals (at least). For exact calculation it is better to use the formula

W(n) =
n

∑
k=0

n(k) = 1+n+n(n−1)+n(n−1)(n−2)+ · · ·

We can also findW(n) by a recurrence method. We have

W(0) = 1, W(n) = 1+nW(n−1) for n > 0.

(The conditionW(0) = 1 is because of the empty word. In general, to form a
word of from n letters, we choose one letter to go first (inn ways), and make a
word from the remainingn−1 letters (inW(n−1) ways) to follow it; but we have
missed out one word, namely the empty word, so we need to add 1.) An easy
induction now gives the formula forW(n).

If the letters we are given contain repetitions, it is more difficult to write down
a formula. Here, we will simply do an example.

Example How many words can be made from the letters ofSYZYGY?

For the case when we use all the letters, the answer is not too hard. There are
6! ways of arranging the six letters, but any rearrangement of the threeYs will
give the same word. So the number of arrangements is 6!/3! = 120.

If we allow words of arbitrary length, it is a bit more difficult. To solve it, we
subdivide the words according to the number of occurrences of the letterY.

At most oneY We have to make words out of the four lettersS, Z, G andY.
This can be done inW(4) = 1+4+12+24+24= 65 ways.
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Two Ys Temporarily label theYs asY1 andY2 so we can distinguish them.
Now we have five lettersS, Z, G, Y1 andY2, but we must use the twoYs. Choose
some of the other three letters, order all letters including the twoYs in any way,
and add up all possibilities; finally divide by 2 since theYs are really indistin-
guishable. We get((

3
0

)
2!+

(
3
1

)
3!+

(
3
2

)
4!+

(
3
3

)
5!

)/
2 = 106.

All three Ys Similarly the total for this case is((
3
0

)
3!+

(
3
1

)
4!+

(
3
2

)
5!+

(
3
3

)
6!

)/
3! = 193.

So the total is 65+106+193= 364.

Exercises

1. (a) How many ordered sequences of length 5 can be made using the elements
{1,2,3,4,5,6,7} if repetitions are allowed? How many of these contain exactly
two of the numbers 1,2,3? In how many of them do even and odd numbers alter-
nate?

(b) What are the answers to these questions if repetitions are not allowed?

2. How many words can be made using the letters of the wordSTARTS? How
many of these are palindromes (that is, read the same backward as forward)?

3. LetX andY be sets with|X|= n and|Y|= m.

(a) Determine the number of functionsf mappingX into Y.

(b) How many of these functions are injections, i.e. one-to-one?

(c) How many of these functions are bijections, i.e. one-to-one and onto?

(d) (much harder) How many of these functions are surjections, i.e. onto?

4. How many permutations of the set{1,2, . . . ,n} are there? How many of these
are cyclic permutations, that is, their cycle decomposition consists of a single
cycle of lengthn?

5. For which values ofn is W(n) odd?
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Chapter 3

Power series

A lot of combinatorics is about sequences of numbers:

(a0,a1,a2, . . .)

We’ll see such sequences as

(1,1,2,3,5,8,13,21,34, . . .)

(Fibonacci numbers), or

(1,1,2,6,24,120,720,5040, . . .)

(factorials). A very useful device to represent such a sequence of numbers is to
take the numbers to be the coefficient in a power series

∑
n≥0

anxn = a0 +a1x+a2x2 +a3x3 + · · ·

We call this power series thegenerating seriesor generating functionfor the se-
quence of numbers.

In this chapter we look at power series and some of their uses in combinatorics.

Example We saw that the number of subsets of ann-element set is 2n. This
gives us a sequence of numbers, namely

(20 = 1,21 = 2,22 = 4,23 = 8, . . .)

whose generating function is

∑
n≥0

2nxn =
1

1−2x

using the formula for the sum of a geometric series.

23
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3.1 Power series

You’ve met power series in calculus, and maybe in analysis also. So how do they
compare with combinatorics:

First, the good news. We are not doing calculus here, so we don’t have to
worry whether the sequences converge or not. For us, a power series is just a
bookkeeping device, to wrap up infinitely many terms into a single mathematical
object. For example, if our sequence is the factorials above, then the power series
is

∑
n≥0

n! xn

and if you remember the ratio test from calculus, you should be able to show that
this series never converges unlessx = 0. (The ratio of successive terms is
(n+1)! xn+1/n! xn = (n+1)x, which tends to infinity asn→ ∞.) But this power
series might still be useful!

Second, the good news. If a power series does converge, and if you know
something about the properties of the functionA(x) it defines, then you can use
those properties in combinatorics also! We’ll see some examples later. In the
example above, the sum of the series is 1/(1−2x); the series converges if|x| <
1/2.

We denote the set of all power series with integer coefficients byZ[[x]]. This
should remind you of the notationZ[x] for the set of polynomials with integer
coefficients; power series are very similar to polynomials, but can have infinitely
many coefficients. Similarly, if we want the coefficients to be real numbers, we
write R[[x]], with similar modifications for the other number systems.

3.2 Operations on power series

There are various operations that can be done to power series. If you studied
Algebra, you have met the idea of aring; the first two operations below (addition
and multiplication) makeR[[x]] into a ring, for any ringR (though we won’t stop
to prove this).

Addition We add two power series term by term:(
∑
n≥0

anxn

)
+

(
∑
n≥0

bnxn

)
= ∑

n≥0
(an +bn)xn.
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Multiplication We multiply power series in the same way as we multiply poly-
nomials. To get a term inxn in the product, we multiply the term inxk in the first
factor by the term inxn−k in the second, and sum over all values ofk from 1 ton.
Thus (

∑
n≥0

anxn

)
·

(
∑
n≥0

bnxn

)
= ∑

n≥0
cnxn,

where cn =
n

∑
k=0

akbn−k.

Substitution Let A(x) = ∑
n≥0

anxn and B(x) = ∑
n≥0

bnxn. Suppose thata0 = 0.

Then we can substituteA(x) for x in the second series:

B(A(x)) = ∑
n≥0

bn(A(x))n,

whereA(x)n is calculated using the multiplication rule.
Why do we need the constant term ofA(x) to be zero? Consider the constant

term of the seriesB(A(x)). It would beb0+b1a0+b2a2
0+ · · ·, and we would have

an infinite series ofnumbers, and would have to worry about convergence. But
if a0 = 0, then the smallest power ofx occurring inA(x)n is at leastxn; so when
we come to calculate the coefficient ofxn in B(A(x)), we only have to consider
finitely many termsbkA(x)k for 0≤ k≤ n. In other words, we only need finitely
many additions and multiplications to work out any term.

Differentiation We can also differentiate power series. If

A(x) = ∑
n≥0

anxn,

then
d

dx
A(x) = ∑

n≥1
nanxn−1 = ∑

m≥0
(m+1)am+1xn.

Notice what has happened here. The termn = 0 is zero, so we leave it out in the
first step; then we use a new summation variablem= n−1, so that asn runs from
1 to infinity, m runs from 0 to infinity.

3.3 The Binomial Theorem

We saw the Binomial Theorem, a formula for(1+x)n for positive integersn. Here
is a generalisation of it, first proved by Isaac Newton.
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We need to generalise the definition of binomial coefficients first. Leta be any
number, positive or negative, rational or irrational, real or complex. Letk be a
natural number (a positive integer or zero). Define(

a
k

)
=

a(a−1) · · ·(a−k+1)
k(k−1) · · ·1

.

This has the properties

• if a is a natural number, then

(
a
k

)
= 0 for k≥ n;

• otherwise,

(
a
k

)
6= 0 for all a.

For the only way we can have

(
a
k

)
= 0 is for one of the factors in the numerator

to be zero, that is,a− i = 0 (that is,a = i) for somei ≤ k−1.
Now we have:

Theorem 3.1 (The Binomial Theorem)For any complex number a,

(1+x)a = ∑
k≥0

(
a
k

)
xk.

There are two ways to interpret this theorem. In terms of calculus: the series
on the right converges for|x| < 1, and its sum is(1+ x)a. Second, in terms of
combinatorics: The usual rules of exponents hold. A “calculus proof” of the
Binomial Theorem (without all the tricky details about convergence) is given in
an appendix.

Example 1 The first law of exponents says that

(1+x)a(1+x)b = (1+x)a+b.

By the Binomial Theorem,(
∑
k≥0

(
a
k

)
xk

)
·

(
∑
k≥0

(
b
k

)
xk

)
= ∑

k≥0

(
a+b

k

)
xk.

Now by the rule for multiplication of power series,

k

∑
i=0

(
a
i

)(
b

k− i

)
=
(

a+b
k

)
.

This is the Vandermonde convolution. We saw it for natural numbersa andb
in Section 1.5.2; but now we know that it holds for anya andb at all.
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Example 2 We get some interesting examples by choosing exponents which are
not natural numbers.

Casea =−1 We have(
−1
k

)
=

(−1)(−2) · · ·(−k)
k(k−1) · · ·1

= (−1)k,

so

(1−x)−1 = ∑
k≥0

(
−1
k

)
(−x)k = ∑

k≥0

xk,

so we have the formula for the sum of a geometric series. We already used this in
calculating the generating function for the powers of 2.

Casea =−1/2 We have(
−1/2

k

)
=

(−1/2)(−3/2) · · ·(−(2k−1)/2)
k(k−1) · · ·1

=
(
−1
2

)k (2k−1)(2k−3) · · ·1
k(k−1) · · ·1

=
(
−1
4

)k 1
k!

2k(2k−1) · · ·1
k!

=
(
−1
4

)k(2k
k

)
,

where we have used the fact that 2k(2k−2) · · ·2 = 2k k!. Thus

(1−4x)−1/2 = ∑
k≥0

(
−1/2

k

)
(−4x)k = ∑

k≥0

(
−1
4

)k(2k
k

)
(−4x)k = ∑

k≥0

(
2k
k

)
xk.

So the generating function for thecentral binomial coefficients

(
2k
k

)
is 1/

√
1−4x.

Exampe 2, continued We can use what we just learned to prove the following
identity for the central binomial coefficients:

n

∑
k=0

(
2k
k

)(
2(n−k)

n−k

)
= 4n.
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Proof We start from the identity

(1−4x)−1/2(1−4x)−1/2 = (1−4x)−1.

Now the coefficient ofxn on the left is obtained by taking the coefficient ofxk in
the first factor(1−4x)−1/2, multiplying by the coefficient ofxn−k in the second
factor, and summing overk from 0 ton. This gives precisely the left-hand side of
the result we are proving.

On the right,
(1−4x)−1 = ∑

n≥0
4nxn,

so the coefficient ofxn is 4n, and we are done.

Example 3 Here is a simple example of the use of power series to solve a recur-
rence. We will have more complicated examples later.

Suppose that a sequence of numbersa0,a1,a2 satisfya0 = 1 andan = 2an−1

for n≥ 1. Of course it is clear that these numbers are the powers of 2. But let us
see this another way. The generating function is

A(x) = ∑
n≥0

anxn

= 1+ ∑
n≥1

2an−1xn

= 1+ ∑
m≥0

2amxm+1

= 1+2xA(x).

(Check that you can follow all these steps. In the third step we have used a new
summation variablem= n−1.) This equation can be rearranged to give

A(x) =
1

1−2x
= ∑

n≥0
(2x)n = ∑

n≥0
2nxn.

Now if two power series are equal then their coefficients must be the same; so we
havean = 2n for all n.

3.4 Other power series

Apart from the Binomial Theorem, there are a couple of other famous power series
which crop up from time to time:
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The exponential function In calculus this is usually written as ex. I will usually
write it as exp(x); this means the same thing. The power series is

exp(x) = ∑
n≥0

xn

n!
.

The most important properties are

• d
dx

exp(x) = exp(x). This is easy to prove from the power series since

d
dx

xn

n!
=

xn−1

(n−1)!
.

• exp(x+y) = exp(x)exp(y). (We prove this below.)

The logarithm function The function log(x) is not defined atx = 0 so we can-
not write it as a power series. Instead, we have

log(1+x) = ∑
n≥1

(−1)n−1xn

n
.

If we differentiate term by term we get

d
dx

log(x) = ∑
n≥1

(−x)n−1 = (1+x)−1.

The logarithm is the inverse of the exponential:

exp(log(1+x)) = 1+x, log(exp(x)) = x.

(Remember that we can substitute one power series in another if the first one has
constant term zero. This is OK for the first result above. In the second case, it
is really log(1+y), wherey = exp(x)−1, which does indeed have constant term
zero.)

Example Consider the equation exp(x+y) = exp(x)exp(y). The left hand side
is

∑
n≥0

(x+y)n

n!
= ∑

n≥0

1
n!

n

∑
k=0

n!
k! (n−k)!

xkyn−k

=

(
∑
k≥0

xk

k!

)(
∑̀
≥0

y`

`!

)
= exp(x)exp(y).
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(In the second line we used a dummy variable` = n− k. We have to check the
ranges of summation:n taking all values andk running from 0 ton is the same as
k and` independently taking all non-negative values.)

We could have reversed the procedure and derived the Binomial Theorem from
the property of the exponential function.

Actually there is a lot of very interesting combinatorics hidden in the power
series for the exponential and logarithm functions. If you are interested in this,
see myNotes on Countingon the Web.

3.4.1 Appendix: Proof of the Binomial Theorem

This proof is a bit of a cheat, since all the hard work is in the calculus.

Suppose we have a power series∑
k≥0

akx
k whose sum is a known functionf (x).

How do we work out the coefficientsak? If we differentiate the seriesn times, we
get

dn

dxn f (x) = ∑
k≥n

akk(k−1) · · ·(k−n+1)xk−n.

(We start the sum atk = n because then-th derivative of any smaller power ofx is
zero.) Then if we putx = 0, we find[

dn

dxn f (x)
]

x=0
= n! an,

so thatan = [(dn/dxn) f (x)]x=0/n!.
Taking f (x) = (1+x)a, when we differentiaten times we get

dn

dxn(1+x)a = a(a−1) · · ·(a−n+1)(1+x)a−n.

Puttingx = 0, we get[
dn

dxn(1+x)a
]

x=0
= a(a−1) · · ·(a−n+1).

So the coefficient ofxn in the power series for(1+x)a is

a(a−1) · · ·(a−n+1)
n!

=
(

a
n

)
,

so that(1+x)a = ∑
n≥0

(
a
n

)
xn.
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Exercises

1. The purpose of this exercise is to show you that, even when a power series fails
to converge, algebraic manipulations on it can still give us something interesting.

(a) Letπ be a permutation of the set{1, . . . ,n}. We say thatπ is decomposable
if there is a numberk, with 1≤ k≤ n−1, such thatπ maps the numbers 1, . . . ,k
to themselves. If no suchk exists thenπ is indecomposable.

There aren! permutations of the set{1, . . . ,n}. Suppose thatg(n) of them are
indecomposable. (By convention we take 0!= 1 but we do not defineg(0).)

For any permutationπ, let k be the smallest number such thatπ maps 1, . . . ,k
to themselves (so thatk = n if π is indecomposable). Show that there areg(k)(n−
k)! permutations with any given value ofk. Hence show that

n

∑
k=1

g(k)(n−k)! = n!.

Now let F(x) = ∑
n≥0

n! xn and G(x) = ∑
n≥1

g(n)xn be the generating functions

for the factorial numbers and the numbersg(n) respectively. Note thatG(x) has
constant term zero since we start at 1. Prove that

F(x)(1−G(x)) = 1.

Note that this equation makes sense even though the power series do not converge
for any non-zero value ofx.
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Chapter 4

Recurrence relations

Recurrence relations are a very powerful method of calculating combinatorial
numbers. But there are not many general methods for dealing with them, so
mostly we will just look at a few important examples. The main idea is that we can
turn a recurrence relation for a sequence of numbers into an equation (algebraic
or differential) for the generating function.

4.1 Fibonacci numbers

Leonardo Fibonacci was an Italian mathematician of the 13th century. His most
important work was the introduction of the Arabic numerals 0,1,2,3,4,5,6,7,8,9
to Europe. In order to show how much easier it is to calculate with these than
with the Roman numerals previously used, he posed the following problem as an
exercise in his bookLiber Abaci(The Book of Calculation):

A pair of rabbits do not breed in their first month of life, but at the end
of the second and every subsequent month they produce one pair of
offspring. If I acquire a new-born pair of rabbits at the beginning of
the year, how many pairs of rabbits will I have at the end of the year?

Under these conditions, the number of pairs of rabbits aftern months is called
thenth Fibonacci number Fn. How do we calculate these numbers?

First, we have
F0 = 1, F1 = 1.

For we are given that we have one pair of rabbits at the start of month 0, and they
do not produce offspring in month 1.

Next,
Fn = Fn−1 +Fn−2 for n≥ 2.

33
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To show this, letGn be the number of pairs of rabbits which are old enough to
breed at the end of monthn. Now by the conditions of the problem, we have
Gn = Fn−2 (since the rabbits breeding in monthn are all those born in monthn−2
or earlier). Also,Fn−Fn−1 = Gn, sinceGn pairs are born in monthn and are those
contributing toFn but not toFn−1. EliminatingGn from these two equations gives
the result.

So the answer to Fibonacci’s exercise can be found by a dozen additions, a
simple job using Arabic numerals.

Fibonacci did not invent these numbers, which had been known to Indian
mathematicians including Pingala, Virahanka and Hemachandra for nearly 1500
years when he wrote his book.

The conditionFn = Fn−1 +Fn−2 is an example of arecurrence relation. This
is a relation which enables any term of the sequence to be calculated if the earlier
terms are known. In this case we only need to know the two preceding terms.
Usually, a recurrence relation needs to be supplemented with initial conditions,
telling us how the sequence starts. In this case the recurrence relation only applies
for n≥ 2, so we need to be given the values ofF0 andF1 separately.

In the next section, we will solve this recurrence relation to find an explicit for-
mula for thenth Fibonacci number. First, though, we give a couple more counting
problems for which the Fibonacci numbers are the solution.

Example I have a staircase withn steps. At a single stride, I can go up either
one or two of the steps. In how many different ways can I walk up the staircase?

Let an be this number. Thena0 = 1 (since if there are no steps, then there
is only one way to do nothing!) anda1 = 1 (obviously). We claim thatan =
an−1+an−2 for n≥ 2. For letSbe the set of all ways of walking up the steps. The
last step we use before we reach the top is either numbern−1 or numbern−2
(since we ascend either one or two steps in the last stride); so letS1 be the set of
ways in which the penultimate step is numbern−1, andS2 those in which it is
numbern−2. ThenS1 andS2 are disjoint and have unionS. Moreover, clearly we
have|S1|= an−1 while |S2|= an−2, and|S|= an. So the recurrence relation holds.
Now a straightforward induction shows thatan = Fn for all natural numbersn.

This representation of the Fibonacci numbers was discussed by Virahanka in
the 6th century, in connection with Sanskrit poetry. A vowel in Sanskrit can be
long or short. If we assume that a long vowel is twice as long as a short vowel,
in how many ways can we make a line of poetry of lengthn out of long and short
vowels? Clearly this is the same problem, and the answer is thenth Fibonacci
numberFn.
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From this theorem we get a curious formula forFn:

Fn =
bn/2c

∑
k=0

(
n−k

k

)
.

For another way of stating our result is that the number of ways of writingn as an
ordered sum of ones and twos isFn. Now we can count these expressions another
way. Suppose that we havek twos in the sum. Then we must haven−2k ones,
so there aren− k terms altogether (and we see thatk≤ bn/2c). So the number
of expressions withk twos is the number of selections ofk elements fromn− k

(the positions in the sequence where the 2s occur), of which there are

(
n−k

k

)
.

Summing overk gives the result.
For example, whenn = 4, we have

•
(

4
0

)
= 1 (corresponding to 1+1+1+1);

•
(

3
1

)
= 3 (corresponding to 2+1+1, 1+2+1 and 1+1+2);

•
(

2
2

)
= 1 (corresponding to 2+2).

Summing, we haveF4 = 5.

Example How many sequences of lengthn are there consistsing of zeros and
ones with no two consecutive ones? (Call such a sequenceadmissible.) Let bn be
this number. Clearlyb0 = 1 (only the empty sequence), andb1 = 2 (the sequences
0 and 1 are both admissible).

Partition the setT of all admissible sequences into two subsetsT0 and T1,
whereT0 is the set of sequences ending in 0, andT1 is the set of sequences ending
in 1. Now given any admissible sequence of lengthn−1, we can add a zero to it
to get an admissible sequence of lengthn; so|T0|= bn−1. But we may only add a
1 to an admissible sequence if it ends in zero; so|T1| is the number of admissible
sequences of lengthn− 1 ending in zero, which by the preceding argument is
bn−2. Thus,bn = bn−1 +bn−2.

We have the same recurrence relation as for the Fibonacci numbers, but dif-
ferent initial conditions. However, we havebn = Fn+1 for all n. The proof is by
induction. We haveb0 = 1 = F1, b1 = 2 = F2, and forn≥ 2,

bn = bn−1 +bn−2 = Fn +Fn−1 = Fn+1.
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4.2 Linear recurrences with constant coefficients

In this section we will find a formula for thenth Fibonacci number. The two
methods we use can be extended to a wider class of recurrence relations.

Method 1 We are trying to solve the recurrence relation with initial conditions

F0 = 1, F1 = 1, Fn = Fn−1 +Fn−2 for n≥ 2.

We begin by observing that there is a unique solution. ForF0 andF1 are given,
and then the recurrence determinesF2,F3, . . .. (This is really an argument by in-
duction!) So, if we can find by any method at all a solution, then we know it is the
unique solution.

We will consider just the recurrence relationan = an−1 + an−2, and worry
about the initial conditions later. The next observation that we make is that the
recurrence relation islinear. That means that, if two sequences(an) and (bn)
satisfy it, then so does any linear combination(cn) with cn = pan + qbn for any
numbersp andq. So we concentrate on finding specific solutions.

We try a solution of the forman = αn for some numberα. [Why? One
answer is that it works, as we will see. A better answer is that, if you consider a
“one-term recurrence relation” likean = αan−1, it is obvious that there will be a
solutionan = αn.]

Now an = αn will satisfy the recurrence relation if and only if

α
n = α

n−1 +α
n−2 for n≥ 2.

This will be the case if and only ifα2 = α +1.
The quadratic equationx2 = x+1 has two solutions

α =
1+

√
5

2
, β =

1−
√

5
2

.

Soan = αn andan = β n both satisfy our recurrence relation, and by the linearity
principle, so does

an = pα
n +qβ

n

for any p andq.
Finally, we try to choosep andq such that this solution also satisfies the initial

conditionsa0 = a1 = 1. This gives us two equations

p + q = 1,
pα + qβ = 1.
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Solving these equations we find that

p =
1+

√
5

2
√

5
, q =

−1+
√

5

2
√

5
.

So we conclude that

Fn =
1√
5

(
1+

√
5

2

)n+1

− 1√
5

(
1−

√
5

2

)n+1

.

Now this is not a very good formula for calculation, since we need to know√
5 to a high degree of accuracy to use it. But it has one advantage. We have

α = 1.618. . . andβ = −0.618. . .. Soα > 1 while |β | < 1. This means that the
nth power ofα grows exponentially, while thenth power ofβ tends exponentially
to zero. So we get a very good approximation

Fn ≈
1√
5

(
1+

√
5

2

)n+1

.

The number(1+
√

5)/2 is called thegolden ratio. It has a long history in
Western art, music and botany.

Method 2 This method works with the generating functionf (x) = ∑
n≥0

Fnxn. Re-

call our conditions:

F0 = 1, F1 = 1, Fn = Fn−1 +Fn−2 for n≥ 2.

We claim that
(1−x−x2) f (x) = 1.

For the constant term in(1− x− x2) f (x) is F0 = 1, and the coefficient ofx is
F1−F0 = 0; while, forn≥ 2, the coefficient ofxn is Fn−Fn−1−Fn−2 = 0.

So

f (x) =
1

1−x−x2 .

To proceed we use the method ofpartial fractions. First, we factorise the
denominator:

1−x−x2 = (1−αx)(1−βx),

whereα andβ are as in the last section. Then we write

1
1−x−x2 =

p
1−αx

+
q

1−βx
.
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Multiplying up by the denominator,

1 = p(1−βx)+q(1−αx),

giving two equations

p+q = 1, pβ +qα = 0.

Solving these two equations gives the same values ofp andq as we found in the
last section.

Finally, we use the fact that

1
1−αx

= ∑
n≥0

α
nxn,

and similarly forβ , using the formula for a geometric series. So we have

f (x) = ∑
n≥0

(pα
n +qβ

n)xn,

so thatFn = pαn +qβ n, exactly as we found by the other method.

The methods used here work more generally. Akth order linear recurrence
with constant coefficientsis a relation

an = c1an−1 +c2an−2 + · · ·+ckan−k,

for fixed constantsc1, . . . ,ck, connecting the terms of a sequence(an). In order
to specify the terms completely, we need to specify the values ofa0,a1, . . . ,ak−1;
then the recurrence expresses all later terms uniquely.

We can use either of the above methods. The numbersα andβ earlier are
replaced by the solutionsα1, . . . ,α

k of the equation

xk = c1xk−1 +c2xk−2 + · · ·+ck.

There is one complication. If this polynomial has repeated roots, we don’t find
enough solutions of the forman = αn to use the first method. Instead, if the
numberα is anr-fold root, then ther functions

an = α
n,nα

n, . . . ,nr−1
α

n

all turn out to be solutions.
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Example The numberf (n) steps required to solve the “Chinese rings puzzle”
with n rings satisfies the recurrence

f (1) = 1, f (2) = 2, f (n) = f (n−1)+2 f (n−2)+1 for n≥ 3.

There is an awkward 1 on the right, which can be removed by puttingg(n) =
f (n)+1/2; we find that

g(1) = 3/2, g(2) = 5/2, g(n) = g(n−1)+2g(n−2) for n≥ 3.

Now the equation forα andβ is x2 = x+2, with solutionsα = 2, β =−1. So

g(n) = p·2n +q(−1)n.

The initial values give

2p−q = 3/2, 4p+q = 5/2,

with solutionp = 2/3, q =−1/6. So the solution to the original problem is

f (n) = (2/3)2n− (1/6)(−1)n− (1/2).

4.3 Linear recurrences with non-constant coefficients

The next complication is that a recurrence relation can have coefficients which are
not constants but functions ofn. The simplest example is the recurrence for the
factorial numbersn!:

0! = 1, n! = n· (n−1)! for n≥ 1.

A closely related example concernsW(n), the number of words that can be formed
of n distinct letters. We saw that

W(0) = 1, W(n) = 1+nW(n−1) for n≥ 1.

There are general methods for solving recurrences of this type (if the coefficients
are polynomials inn) in terms of so-calledhypergeometric functions. Here I will
simply discuss one example, which illustrates another technique.
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Derangements A permutationof {1, . . . ,n} is a bijective function from the set
{1, . . . ,n} to itself. The number of permutations isn!. We will say more about
permutations later. Here we look at a special type of permutation.

A derangementis a permutation which leaves no point fixed. That is, the per-
mutationπ is a derangement ifπ(i) 6= i for i = 1, . . . ,n. How many derangements
are there?

Let this number bed(n). Trivially d(0) = 1, since there are no points to fix.
Also, d(1) = 0 (there is only one permutation of{1}, and it obviously fixes the
point 1), andd(2) = 1 (the unique derangement being the permutation which
swaps 1 and 2).

We show that the following recurrence relation holds:

d(n) = (n−1)(d(n−1)+d(n−2)) for n≥ 2.

To see this, consider derangementsπ of {1, . . . ,n}. Since the pointn is not
fixed, we must haveπ(n) = i for somei, with 1≤ i ≤ n−1. Now by symmetry,
the number of derangements satisfyingπ(n) = i is independent ofi; so we only
have to count the derangements with a fixed value ofi, and multiply the number
of these byn−1.

We divide the derangements satisfyingπ(n) = i into two types:

Type 1: Those withπ(i) = n, that is, swappingi with n. Such a permutationπ is
a derangement of then−2 points different fromi andn. There ared(n−2)
such derangements; each of them can be extended to the whole set so that it
swapsi andn.

Type 2: Those withπ(i) 6= n. Thenπ( j) = n for some j 6= i. Now π maps
j 7→ n 7→ i. We can take a short-cut by going straight fromj to i, giving a
permutation of{1, . . . ,n−1}; this permutation is a derangement, so there
are d(n− 1) choices. Given any derangement of{1, . . . ,n− 1}, we can
extend it to{1, . . . ,n} by interpolatingn just beforei.

So the number of derangements mappingn to i is d(n− 1) + d(n− 2), and the
total number of derangements is(n−1)(d(n−1)+d(n−2)).

It is possible to use this recurrence to find a formula for the numbersd(n), or
to find a generating function for them; and there is a completely different approach
using the Inclusion–Exclusion Principle that I will discuss later in the notes. Here
I will merely quote the formula:

d(n) = n!
n

∑
k=0

(−1)k

k!
.
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Let us look at this formula. It is very similar to the formula forW(n), and can
be analysed similarly. Note that, from the exponential series, we see that

e−1 = ∑
k≥0

(−1)k

k!
,

so

n!e−1−d(n) = n! ∑
k≥n+1

(−1)k

k!
.

Just as forW(n), the right-hand side of this equation has modulus smaller than 1,
indeed, smaller than 1/2 if n≥ 1. We conclude that

d(n) is the integer nearest ton!/e

the difference being alternately positive and negative.
This has an interesting interpretation. Suppose thatn people go to the theatre,

and leave their hats at the cloakroom. After the performance, when they go to col-
lect their hats, the cloakroom attendant gives them out at random. Then the prob-
ability that nobody gets his or her correct hat is very close to 1/e= 0.367879. . ..
For we can regard the allocation of the hats as a random permutation of the correct
allocation; and the event that nobody gets the correct hat is just that the random
permutation is a derangement.

4.4 Non-linear recurrences

A recurrence relation is really any expression, however complicated, which ex-
presses thenth term of a sequence in terms of smaller terms. There is no general
method for solving an arbitrary recurrence relation. Here I will just consider one
important example.

Catalan numbers The Catalan numbers appear as the solution of many differ-
ent counting problems. For example, suppose that we have to calculate a product

x1 ·x2 · · ·xn.

If we can only multiply two factors at a time, we have to put in brackets to make
the expression well-defined. how many ways can we bracket such a product? Let
Cn be this number. Ifn = 1, no brackets are needed, andC1 = 1. If n≥ 2, then we
can bracket together the firstk terms inCk ways, and the lastn−k terms inCn−k

ways, and finally multiply together these two expressions and sum overk; so

Cn =
n−1

∑
k=1

CkCn−k.
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For example, there are five bracketings forn = 4, namely

((ab)c)d, (a(bc))d, (ab)(cd), a((bc)d), a(b(cd)).

Thus, theCatalan numbersare the numbersC1,C2, . . . satisfying

C1 = 1, Cn =
n−1

∑
k=1

CkCn−k for n≥ 2.

We haveC2 = 1 · 1 = 1; C3 = 1 · 1+ 1 · 1 = 2; C4 = 1 · 2+ 1 · 1+ 2 · 1 = 5 (as
illustrated above); and so on. Each valueCn for n≥ 1 is uniquely determined by
these conditions.

Let c(x) be the generating function:

c(x) = ∑
n≥1

Cnxn.

We claim that
c(x)2 = c(x)−x.

For consider the coefficient ofxn on the left-hand side. Ifn≥ 2, we obtain a con-
tribution to this term by taking the term inxk in the first factorc(x), and the term
in xn−k in the second; multiplying the coefficients (givingCkCn−k); and summing
overk. The sum runs from 1 ton−1 since the lowest degree of a term is 1, not 0.

For n = 1, this argument is wrong; there is no term inx on the left, where as
c(x) starts with the termx. So we have to subtractx to make the coefficients equal.
This gives the stated relation.

We can write this relation as

c(x)2−c(x)+x = 0.

Think of this as a quadratic in the unknownc(x). The solution is

c(x) =
1±

√
1−4x
2

.

Now we seem to have two solutions, whereas there should only be one. But we
know thatc(0) = 0, since the series has no constant term. If we took the plus sign,
we would getc(0) = 1. So we have to take the minus sign:

c(x) =
1−

√
1−4x
2

.

We can use this to find a formula for the Catalan numbers, using the Binomial
Theorem:

(1−4x)1/2 = ∑
n≥0

(
1/2
n

)
(−4)nxn.
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We have (
1/2
n

)
(−4)n =

1
2 ·

−1
2 · · · −(2n−3)

2 · (−4)n

n!

= −1·3· · ·(2n−3) ·4n

2nn!

= −1·2·3·4· · ·(2n−2) ·22n

22n−1n! (n−1)!

= −2
n

(
2n−2
n−1

)
.

(We used the fact that 2·4· (2n−2) = 2n−1(n−1)!.)
Now Cn is the coefficient inxn in this series multiplied by−1/2; so we have

Cn =
1
n

(
2n−2
n−1

)
.

Exercises

1. Lets(n) be the number of expressions forn as a sum of positive integers. For
example,

4 = 3+1 = 1+3 = 2+2 = 1+1+2 = 1+2+1 = 2+1+1 = 1+1+1+1,

sos(4) = 8.

(a) Show thats(1) = 1 and

s(n) = 1+
n−1

∑
k=1

s(k)

for n≥ 2.

(b) Deduce thats(1) = 1 ands(n) = 2s(n−1) for n≥ 2.

(c) Hence show thats(n) = 2n−1 for n≥ 1.

Notice how we have converted a rather complicated recurrence relation into a
much simpler one!

2. Solve the recurrence relation and initial conditions

a0 = 2, a1 = 4, a2 = 7, an = 4an−1−5an−2 +2an−3 for n≥ 3.

3. I purchase an item costingn pence. I have a large number of 1 and 2 pence
coins at my disposal. In how many ways can I pay for the item
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(a) if I am buying it from a machine and have to insert the coins one at a time;

(b) if I am buying it in a shop and can hand the money over all at once?

4. Solve the recurrence relation and initial conditions

a0 = 1, a1 = 1, an = 3an−1−2an−2 for n≥ 2.

5. Solve the recurrence relation and initial conditions

a0 = 2, an = a2
n−1 for n≥ 1.

6. Let

A =
(

0 1
1 1

)
.

Prove by induction that

An+1 =
(

Fn−1 Fn

Fn Fn+1

)
for n≥ 1, whereFn is thenth Fibonacci number.

7. (a) Use the recurrence relation in the text to prove that the derangement num-
bersd(n) satisfy the simpler recurrence

d(0) = 1, d(n) = nd(n−1)+(−1)n for n≥ 1.

(b) Now put f (n) = d(n)/n!. Show that

f (0) = 1, f (n) = f (n−1)+
(−1)n

n!
for n≥ 1.

Hence show thatf (n) =
n

∑
k=0

(−1)k/k!, and deduce the formula in the text ford(n).

(c) Use this formula to show that

∑
n≥0

dnxn

n!
=

e−x

1−x
.

The series on the left is theexponential generating functionof the derangement
numbers.

8. Take a circle and put 2n pointsP1,Q1,P2,Q2, . . . ,Pn,Qn equally spaced around
the circumference. Amatchingis a set ofn chords to the circle such that
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• each chord joins a pointPi to a pointQ j , for somei, j;

• each of the 2n points lies on exactly one of the chords;

• no two chords cross.

Let An be the number of different matchings.

(a) Show thatA0 = 1, A1 = 2, A2 = 3, A3 = 5.

(b) Show that, forn≥ 1, we hvae

An =
n

∑
i=1

Ai−1An−i .

[Hint: Consider the matchings in whichP1 is joined to the pointQi , and
show that there areAi−1An−i of these.]

(c) Hence show by induction thatAn is the(n+1)st Catalan numberCn+1.
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Chapter 5

Partitions and permutations

It can be argued that combinatorics is about three things: subsets, partitions, and
permutations. In the first section of the notes we counted the subsets of a set. In
this section we count partitions and permutations.

5.1 Partitions: Bell numbers

A partition of a setX is a setP of subsets ofX with the properties:

• any set inP is non-empty;

• any two sets inP are disjoint;

• the union of all the sets inP is X.

In other words, the sets of the partition coverX without any overlap.
By the Equivalence Relation Theorem, if R is an equivalence relation onX

(a reflexive, symmetric and transitive relation), then the equivalence classes ofR
form a partition ofX. Conversely, any partition is the set of equivalence classes of
a (unique) equivalence relation. So the number of partitions ofX is equal to the
number of equivalence relations onX.

Let B(n) be the number of partitions of ann-element set, say{1,2, . . . ,n}.
The numberB(n) is thenth Bell number. It is easy to see thatB(0) = B(1) = 1,
B(2) = 2, andB(3) = 5. The five partitions of{1,2,3} are

{123},{12,3},{13,2},{23,1},{1,2,3},

where we have written 12 instead of{1,2} to avoid a proliferation of curly brack-
ets.

47
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Proposition 5.1 The Bell numbers satisfy the recurrence

B(0) = 1, B(n) =
n

∑
k=1

(
n−1
k−1

)
B(n−k).

Proof We have seen that the initial condition holds. For the recurrence, we
ask: how many partitions are there such that the part containingn has exactlyk
elements? We must have 1≤ k≤ n. We have to choose this part, which involves
choosingk−1 of the remainingn−1 elements to go in a part withn; this can be

done in

(
n−1
k−1

)
ways. Then we must partition the remainingn−k points, which

can be done inBn−k ways. Multiplying, and summing overk, gives the result.

This recurrence can be used to find a generating function for the Bell num-
bers. The type of generating function we use is called anexponential generating
function, or e.g.f. for short. This has the form

F(x) = ∑
n≥0

B(n)xn

n!
.

The name is because of the relation to the exponential function

exp(x) = ∑
n≥0

xn

n!
.

We claim that
d

dx
F(x) = exp(x)F(x).

For on the left we have
d

dx
F(x) = ∑

n≥1

B(n)xn−1

(n−1)!

on cancelling then from the derivative inton!. So the coefficient ofxn−1 is
B(n)/(n−1)!.

On the right, to obtain the coefficient ofxn−1, we take the coefficient ofxk−1

in exp(x) (which is 1/(k−1)!, multiply by the coefficient ofxn−k in F(x) (which
is B(n−k)), and sum, obtaining

n

∑
k=1

1
(k−1)!

· B(n−k)
(n−k)!

=
1

(n−1)!

n

∑
k=1

(
n
k

)
B(n−k) =

B(n)
(n−1)!

So the two sides are equal.
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Now the differential equation can be separated as

1
F(x)

d
dx

F(x) = exp(x).

Integrating, we obtain
logF(x) = exp(x)+c,

so F(x) = ecexp(exp(x)). But F(0) = 1 (sinceB(0) = 1), soc = −1, and we
conclude that

F(x) = exp(exp(x)−1).

Unfortunately this simple formula for the e.g.f. doesn’t help us find a formula
for B(n). Even its asymptotic behaviour for largen is very complicated.

5.2 Partitions: Stirling numbers

We saw that the subsets of ann-element set (which are 2n in number) can be split

up according to the number of elements they contain. There are

(
n
k

)
k-element

subsets, and so we have
n

∑
k=0

(
n
k

)
= 2n.

In the same way, the partitions of a set can be split up. For 1≤ k≤ n, letS(n,k)
be the number of partitions of ann-element set havingk parts. The numbersS(n,k)
are calledStirling numbers of the second kind. (We meet Stirling numbers of the
first kind later.) Thus, we have

n

∑
k=1

S(n,k) = B(n).

In the last section we listed the partitions of a 3-element set; from the list we see
thatS(3,1) = 1, S(3,2) = 3, S(3,3) = 1.

There is a recurrence relation for Stirling numbers, similar to that for binomial
coefficients:

Proposition 5.2 S(n,1) = S(n,n) = 1 and

S(n,k) = S(n−1,k−1)+kS(n−1,k)

for 1 < k < n.



50 CHAPTER 5. PARTITIONS AND PERMUTATIONS

Proof The initial values are clear: there is a unique partition with a single part,
and a unique partition withn parts (each part has one element).

Now consider the partitions of{1, . . . ,n} with k parts, and divide them into
two classes:

• Those in which{n} is a part. These are obtained by adding the set{n} to
a partition of{1, . . . ,n−1} with k−1 parts. So there areS(n−1,k−1) of
them.

• Those in whichn belongs to a part of size bigger than 1. If we deleten from
this part, we get a partition of{1, . . . ,n−1} with k parts. But now, to go
back, we have to choose a partition, and also choose one of itsk parts to add
the elementn to. So there arekS(n−1,k) of these.

Adding gives the result.

We can arrange the Stirling numbers in a trinagle like Pascal’s, except that we
will line it up on the left. S(n,k) is thekth number in thenth row, starting both
counts at 1.

1
1 1
1 3 1
1 7 6 1
1 15 25 10 1
1 31 90 65 15 1

The rule is a little different from Pascal’s. To find the next element in columnk,
we multiply the number immediately above it byk and add the number above and
to the left.

The Stirling numbers have a remarkable property. Recall the falling factorial:

(x)k = x(x−1)(x−2) · · ·(x−k+1).

Proposition 5.3 For n≥ 1,

xn =
n

∑
k=1

S(n,k)(x)k.

First proof We use the fact that(x)k+1 = (x)k(x− k). Now our proof is by
induction, the result being clear forn = 1. Assuming the result forn−1, we have

xn = xn−1 ·x
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=
n−1

∑
k=1

S(n−1,k)(x)k(x−k+k)

=
n−1

∑
k=1

S(n−1,k)(x)k+1 +
n−1

∑
k=1

kS(n−1,k)(x)k.

For k ≤ n− 1, the coefficient of(x)k is S(n− 1,k− 1) + kS(n− 1,k) = S(n,k).
(We have to shift the argumentk down by one in the first term.) Fork = n, the
coefficient of(x)n is S(n−1,n−1); but this is equal toS(n,n), since both are 1.
The induction is complete.

Second proof Here is a completely different proof. Letm and n be positive
integers. We know thatmn is the number of ordered selections ofn objects from
a set ofm objects, with repetitions allowed; if repetitions are not allowed, the
number is(m)n. Let us count the selections with repetitions allowed in another
way. Take any such selection, say(x1,x2, . . . ,xn). Define a relation∼ on the set
{1, . . . ,n} by the rule thati ∼ j if xi = x j . This is an equivalence relation, so
it corresponds to a unique partition of the set{1, . . . ,n}. If this partition hask
classes, say, then there arek distinct elements amongx1, . . . ,xn, which we can
regard as a selection ofk things from a set ofm with repetitions not allowed.

Now given a partition of{1, . . . ,n} with k parts, and a selection(y1, . . . ,yk) of
k from m with repetitions not allowed, we can recover the original selection: put
xi = y j if i belongs to thejth part of the partition. So the number of selections with
k distinct elements isS(n,k)mk, and we conclude that the total number (which we
know to bemn) is the sum of all these values:

mn =
n

∑
k=1

(m)k.

Now consider the two polynomialsxn and
n

∑
k=1

(x)k. We know that they take

the same value if any positive integerm is substituted forx. So they are equal as
polynomials. For their difference is a polynomial of degree at mostn; if it is not
identically zero, it could have at mostn roots. So we have

xn =
n

∑
k=1

(x)k,

as required.

In Exercise 1 at the end of this chapter, we will see that some values ofS(n,k)
can be calculated. A general formula will be given in a later chapter of the notes.
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5.3 Permutations: cycle decomposition

A permutationis a one-to-one and onto function from a set to itself; in other
words, an arrangement of the elements of the set. In this section and the next we
will be counting permutations. The total number of permutations of a set of sizen
is n!. But we will subdivide the permutations, much as we did for partitions, and
count the parts.

Recall thecycle decompositionof a permutation, which we do by example.
Consider the permutation

π =
(

1 2 3 4 5 6 7 8 9 10
4 3 5 7 2 6 8 10 9 1

)
of the set{1, . . . ,10}. (This two-line notationindicates the permutation which
maps 1 to 4, 2 to 3, 3 to 5, and so on.) To compute the cycle decomposition,
we start anywhere (say 1), and follow the iterates of the function applied to our
starting point until we return there. If we have used every point, we are finished;
otherwise, we close the cycle, and start another one at an unused point. Continue
until every point has been used. We write a cycle as a list of points in brackets,
separated by commas. For our example above, the cycle decomposition is

π = (1,4,7,8,10)(2,3,5)(6)(9).

(Note that points fixed by the permutation show up as cycles of lengthi.)
The cycle decomposition of a permutation is not unique. We could start each

cycle at any point, and write the cycles in any order. For example, the permutation
above could also be written

π = (3,5,2)(9)(4,7,8,10,1)(6).

5.4 Permutations: Stirling numbers

Theparity of a permutationπ is the parity (odd or even) of the numbern−c(π),
wherec(π) is the number of cycles ofπ (including fixed points). A permutation
is calledevenor oddaccording to its parity. Sometimes we talk about thesignof
π: this is(−1)n−c(π), that is,+1 if π is even and−1 if π is odd.

Now theunsigned Stirling number of the first kind, u(n,k), is defined to be the
number of permutations of{1, . . . ,n} which havek cycles; theStirling number of
the first kindis s(n,k) = (−1)n−ku(n,k). (The sign we put in front is the sign of
the permutations we are counting.)
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We have|s(n,k)|= u(n,k) and

n

∑
k=1

|s(n,k)|= n!

(since the sum counts all permutations).

Proposition 5.4 s(n,1) = (−1)n−1(n−1)!, s(n,n) = 1, and

s(n,k) = s(n−1,k−1)− (n−1)s(n−1,k).

Proof How many permutations of{1, . . . ,n} have a single cycle? Since the cycle
can start anywhere, we may as well begin with 1. Then we can visit the othern−1
numbers in any order. So the number of cyclic permutations is(n−1)!. Each has
sign(−1)n−1, sos(n,1) = (−1)n−1(n−1)!.

There is only a single permutation withn cycles, namely the identity permu-
tation which fixes every point; it has sign+1. Sos(n,n) = 1.

For the recursion, take the set of permutations withk cycles, and divide into
two classes:

• Those which fix the pointn (that is, which have a cycle(n)). Deleting this
cycle gives a permutation of{1, . . . ,n−1} with k−1 cycles. Clearly the
procedure reverses. Since(−1)(n−1)−(k−1) = (−1)n−k, the contribution to
s(n,k) from these permutations iss(n−1,k−1).

• Those which move the pointn, (that is, in whichn is in a cycle of length
greater than 1). Deletingn from the cycle containing it gives a permutation
of {1, . . . ,n− 1}, also withk cycles. When we reverse the construction,
for each permutation of{1, . . . ,n−1}, there aren−1 places in which we
could insertn. Since(−1)(n−1)−k = −(−1)n−k, the contribution of these
permutations tos(n,k) is−(n−1)s(n−1,k).

Adding these two terms gives the result.

We can write these Stirling numbers, like the others, in a triangular array. This
time, ignoring signs, a given entry is obtained by multiplying the entry above by
its row number (rather than its column number, as before) and adding the entry
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above and to the left. Then put in signs in a chessboard fashion. We obtain:

1
−1 1
2 −3 1
−6 11 −6 1
24 −50 35 −10 1

−120 274 −225 85 −15 1

From Proposition 5.4 we can prove a result which is the “inverse” of Proposi-
tion 5.3:

Proposition 5.5 For n≥ 1,

(x)n =
n

∑
k=1

s(n,k)xk.

For example, since(x)3 = x(x−1)(x−2) = x3−3x2 +2x, we have

s(3,3) = 1, s(3,2) =−3, s(3,1) = 2.

Proof Again the proof is by induction. Forn = 1, both sides of the equation are
equal tox. So suppose that the result is true forn−1. Then we have

(x)n = (x)n−1(x−n+1)

=
n−1

∑
k=1

s(n−1,k)xk(x−n+1)

=
n−1

∑
k=1

s(n−1,k)xk+1−
n−1

∑
k=1

(n−1)s(n−1,k)xk.

The coefficient ofxk for k < n is s(n−1,k−1)− (n−1)s(n−1,k) (moving the
index down by one in the first term). The coefficient ofxn is s(n−1,n−1) = 1 =
s(n,n).

One consequence of Propositions 5.3 and 5.5 is the following result.

Proposition 5.6 The lower triangular matrices of Stirling numbers of the first and
second types are inverses of each other.

This applies whether we regard them as “infinite matrices” or chop them off
after a fixed number of rows. Because the matrices are lower triangular, even
multiplying the infinite matrices only involves finite sums.
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Proof The polynomials with constant term zero form a vector spaceV. The
following two sequences are bases forV:

• x, x2, x3, . . .

• (x)1, (x)2, (x)3, . . .

Propositions 5.3 and 5.5 show that the two matrices of Stirling numbers are the
transition matrices between these two bases.

Another consequence of Proposition 5.5 is:

Proposition 5.7 For n≥2, the numbers of even and odd permutations of{1, . . . ,n}
are equal.

Proof Becausen≥ 2, we see that(x)n has a factor(x−1), and so is zero when
we putx = 1. Substitutingx = 1 into Proposition 5.5, we have

n

∑
k=1

s(n,k) = 0

for n ≥ 2. Now an even permutation contributes+1 to this sum, and an odd
permutation contributes−1; the contributions must match.

Remark For those who have done some abstract algebra, here is a completely
different proof of this result. The set of all permutations of{1, . . . ,n} forms a
group (with the operation of composition), called thesymmetric groupand written
Sn. The mapping that takes a permutation to its sign is a homomorphism from
Sn to the multiplicative group{±1} of order 2; the even permutations form the
kernel of this homomorphism, and therefore comprise a normal subgroup ofSn of
index 2, called thealternating groupand writtenAn. The odd permutations form
a coset ofAn. Now Lagrange’s Theorem tells us that the subgroup and its coset
have equally many elements.

Exercises

1. (a) Prove each of the following statements (i) by directly counting the partitions,
(ii) by using the recurrence relation:

• S(n,2) = 2n−1−1;

• S(n,n−1) =
(

n
2

)
.
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(b) Find a formula forS(n,n−2).

2. (a) Prove (i) by directly counting the permutations, (ii) by using the recurrence

relation, thats(n,n−1) =−
(

n
2

)
.

(b) Find a formula fors(n,n−2).

3. Calculate the number of permutations of{1,2,3,4,5,6} with three cycles

(a) by using the recursion formula for the appropriate Stirling numbers;

(b) by listing the possible cycle lengths of such a permutation and counting the
number of permutations with each possible cycle structure.

4. Letk be given, and letpk(n) be the probability that a randomly-chosen permu-

tation of{1, . . . ,n} has exactlyk fixed points. Show thatpk(n) =
(

n
k

)
d(n−k)/n!,

whered(n−k) is the(n−k)th derangement number, and hence show that

(a)
n

∑
k=0

(
n
k

)
d(n−k) = n!;

(b) lim
n→∞

pk(n) =
e−1

k!
.

[If you have studied some probability theory, the last statement says that the num-
ber of fixed points of a random permutation of the set{1, . . . ,n} approaches a
Poisson distribution with parameter 1 asn→ ∞.]



Chapter 6

The Principle of Inclusion and
Exclusion

Suppose that, in a class of 100 pupils, we are given the following information:

• 50 play football, 48 play music and 42 play chess;

• 23 play football and music, 22 play football and chess, and 21 play music
and chess;

• 10 play all three.

How many pupils do none of the three activities?

We can illustrate the eight possible combinations of activities with a Venn
diagram. Starting from the inside and working out, it is possible to see that the
numbers are as shown in the diagram. So the answer is 16.
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%1012
11

1315 14

9 16

Football Music

Chess

In this section we are going to develop a formula for this number, so that
the answer can be calculated directly from the given data. We will then use this
formula to count derangements and to find a formula for the Stirling numbers of
the second kind.
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6.1 PIE

The set-up is as follows. We have a “universal” setX, and a collectionA1,A2, . . . ,An

of subsets ofX. (In the example,X is the set of 100 pupils,n = 3, andA1,A2,A3

are the sets of pupils who take part in each of the three activities. We are given
|X|, |A1|, |A2| and |A3|, and also the sizes of the intersectionsA1∩A2, A1∩A3,
A2∩A3 andA1∩A2∩A3. For example,A1∩A2 is the set of pupils who play both
football and music.

In order to simplify the notation, we will denoteA1∩A2 by A{1,2}. More
generally, for every subsetI of the index set{1,2, . . . ,n}, we let

AI =
⋂
i∈I

Ai .

Thus,AI is the set of elements belonging to all the setsAi for which the indexi
belongs toI , and possibly some others. By convention,A{i} = Ai , andA/0 = X.

Theorem 6.1 (Principle of Inclusion and Exclusion)The number of elements of
X which lie in none of the sets A1, . . . ,An is equal to

∑
I⊆{1,2,...,n}

(−1)|I | |AI |.

In our example, the number of children taking part in no activity is

100−50−48−42+23+22+21−10= 16,

agreeing with what we found directly.

Proof We look at the expression in the theorem. It is the sum of cardinalities of
various subsets ofX with plus and minus signs. We evaluate this by looking at
each elementx∈ X and seeing how much it contributes to the sum.

An elementx which lies in none of the setsAi gives a contribution+1 from
A/0 = X, and no contribution from any of the other sets.

Now consider an elementx which lies in some of theAi , and let

J = {i ∈ {1, . . . ,n} : x∈ A j}

be the set of indices of sets containingx. Thenx∈ AI if and only if I ⊆ J. So the
contribution ofX is

∑
I⊆J

(−1)|I |.
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Let |J| = j. Then there are

(
j
i

)
subsets ofJ of sizei, and each of them gets the

sign(−1)i . So the contribution is

i

∑
j=0

(
j
i

)
(−1)i = (1−1) j = 0,

by the Binomial Theorem.
So the elements in none of the setsAi contribute+1 to the sum, while the

elements lying in some of these sets contribute 0. Hence the sum is just equal to
the number of elements lying in none of theAi , as was to be proved.

As a corollary we have the following result:

Proposition 6.2 Suppose that A1, . . . ,An are subsets of a set X. Suppose that
|X|= m0 and that|Ai |= m1 for i = 1, . . . ,n. Suppose further that the intersection
of any j of the sets Ai has cardinality mj . Then the number of elements in none of
the sets is

n

∑
j=0

(−1) j
(

n
j

)
mj .

For in the sum in Theorem 6.1, there are

(
n
j

)
setsAI with |I | = j; each of

them has cardinalitymj and contributes(−1) jmj to the sum.

6.2 Surjections and Stirling numbers

Let |A| = n and|B| = k. How many functions are there fromA to B? To specify
a function f , we simply have to define then values f (a) for a∈ A, which can be
arbitrary; so the number iskn.

How many of these functions are injective (one-to-one)? To count these, we
proceed as above, making sure that the values are all distinct; that is, we sample
without replacement. The answer is(k)n = k(k−1) · · ·(k−n+1). Note that this
number is zero ifn > k; there can be no injective function from a set to a smaller
set.

How many of the functions are surjective (onto)? This is more difficult to
count by elementary means; but PIE allows us to find the answer.

Let X be the set of all functions from{a1, . . . ,an} to {b1, . . . ,bm}. Then|X|=
kn.
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For i = 1, . . . ,k, let Ai be the set of all those functions which never take the
valuebi . (We are trying to count functions that take all values; to apply PIE we
need to remove all the functions that miss at least one value). Then the functions
in Ai takek−1 possible values, so there are(k−1)n of them.

Now suppose thatI ⊆ {1, . . . ,k} with |I |= j. ThenAI is the intersection of the
setsAi for i ∈ I , so it consists of all the functions which take no valuebi for i ∈ I .
These functions havek− i possible values, so there are(k− i)n of them.

Since the surjections are the functions lying in none of the setsAi , Proposi-
tion 6.2 gives:

Theorem 6.3 The number of surjections from a n-element set to an k-element set
is

k

∑
j=0

(−1) j
(

k
j

)
(k− j)n.

Remark This formula is useful but has its drawbacks. For example, it should
give zero whenk > n, since there cannot be a surjection from a set to a larger set.
But this is quite hard to show directly – have a try! Also, it is not obvious that

n

∑
j=0

(−1) j
(

n
j

)
(n− j)n = n! ,

though of course this must hold since ifk = n then the surjections are bijections
and there aren! of them.

This theorem allows us to find a formula for the Stirling numberS(n,k) of the
second kind. Remember thatS(n,k) is the number of partitions of ann-element
set intok parts. Given such a partition of{1, . . . ,n}, say, we can define a surjec-
tion from {1, . . . ,n} to {1, . . . ,k} as follows: if P1, . . . ,Pk are the parts, map the
elements of partPi to the valuei. SincePi 6= /0, some element is mapped toi for all
i ∈ {1, . . . ,k}, so we do have a surjection. In fact, a given partition givesk! surjec-
tions, since we can order the parts in any way we like. Conversely, any surjection
f gives a partition intok parts, where theith part is the inverse image ofi under
f . Thus the number of surjections isk! times the number of partitions, and so we
have:

Proposition 6.4

S(n,k) =
1
k!

k

∑
j=0

(−1) j
(

k
j

)
(k− j)n.
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6.3 Derangements

We can use a similar method to find a formula for the number of derangements of
{1, . . . ,n} (permutations with no fixed points).

Let X be the set of all permutations of{1, . . . ,n}. Then|X|= n!. Now for i =
1, . . . ,n, let Ai be the set of permutations which fix the pointi. There are(n−1)!
such permutations, since they can permute the othern−1 elements arbitrarily. For
any I ⊆ {1, . . . ,n}, AI consists of permutations fixing every point inI . If |I | = j,
these permutations move the othern− j points arbitrarily, so|AI |= (n− j)!. Now
a permutation is a derangement if and only if it does not fix any point; so, ifdn is
the number of derangements, then Proposition 6.2 gives:

Proposition 6.5

dn =
n

∑
j=0

(−1) j
(

n
j

)
(n− j)! = n!

n

∑
j=0

(−1) j

j!
.

This is the formula we saw in Chapter 5.

Exercises

1. An opinion poll reports that the percentage of voters who would be satisfied
with each of three candidates A, B, C for President is 65%, 57%, 58% respectively.
Further, 28% would accept A or B, 30% A or C, 27% B or C, and 12% would be
content with any of the three. What do you conclude?

2. I have 25 sweets to distribute to a class of 10 children.

(a) In how many ways can I distribute the sweets?

(b) In how many ways can I distribute the sweets if I give Alice at least four
sweets?

(c) In how many ways can I distribute the sweets if I give both Alice and Bob
at least four sweets?

(d) Use the Principle of Inclusion and Exclusion to count the number of ways I
can distribute the sweet if no child is to have more than three sweets.
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Chapter 7

Families of sets

We know now how many subsets of the set{1,2, . . . ,n} there are altogether (namely

2n), and the number of subsets of fixed sizek (namely

(
n
k

)
). We are now going

to turn to collections of sets satisfying various other conditions. Of course we
are really talking about “sets of sets” here, but to avoid confusion we will refer
to them as “families of sets”. Typically we will denote a family of sets by script
capital F, thus:F .

The set of all subsets of a setX is called thepower setof X, and denoted by
P(X). Thus, a family of sets is a subset ofP({1, . . . ,n}).

The main questions will be: Suppose that we place some restriction on the
relationships between sets in a family. What is the largest number of sets that we
can have? Which families reach this upper bound? We will examine one case in
detail, and state and proveSperner’s Theorem. Then we will look more briefly
at intersecting families and at families where any two sets intersect in a single
element.

7.1 Sperner’s theorem

A family F of subsets of{1, . . . ,n} is called aSperner familyif the following is
true:

For any two distinct setsA,B∈F , neither of them contains the other;
that is,A 6⊆ B andB 6⊆ A.

Our first question is: What is the largest Sperner family?
The cheapest way to build a Sperner family is to take all the subsets of some

fixed sizek. This gives us

(
n
k

)
such sets, and clearly no such set can contain

63
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another. We saw in Assignment 1, Question 2, that for fixedn the binomial co-

efficient

(
n
k

)
is greatest whenk = n/2 (if n is even) or whenk = (n− 1)/2 or

k = (n+1)/2 (whenn is odd – these two binomial coefficients are equal).
Other Sperner families can be constructed:{{1,2},{1,3,4},{2,3,4}} is an

example. Perhaps it is possible to find a larger family containing sets of different
sizes? The first part ofSperner’s Theoremtells us that it is not:

Theorem 7.1 LetF be a Sperner family of subsets of{1, . . . ,n}. Then

|F | ≤
(

n
bn/2c

)
.

Proof The following ingenious proof is known as the LYM method, since it was
invented by Lubell, Yamamoto and Meshalkin (and also by Bollobás; we have
seen many instances of mis-named theorems in mathematics!)

A chainis a sequence of subsets of{1,2, . . . ,n}, in which each set is contained
in the next set in the sequence. The maximal number of sets in a chain isn+
1; in such a maximal chain(A0,A1, . . . ,An), the setAk hask elements. Such
a chain starts with the empty set and adds one new element each time. Thus,
any maximal chain is described by a permutationπ of {1, . . . ,n}; we haveAi =
{π(1), . . . ,π(i)}.

It follows that the number of maximal chains is equal to the number of permu-
tations of{1, . . . ,n}, namelyn! .

Next we ask: how many maximal chains contain a given setA? If |A| = k,
then the firstk numbersπ(1), . . . ,π(k) in the permutation must be the elements of
A, and the lastn− k must be the remaining elements; so the number of maximal
chains containingA is k! (n−k)! .

Now, let F be a Sperner family. Then, forA,B∈ F , no maximal chain can
contain bothA andB. For if so, such a maximal chain would be(. . . ,A, . . . ,B, . . .),
say, and thenA⊆ B, contradicting the definition of a Sperner family. So if we add
up the numbers of maximal chains containing all the sets inF , the total cannot
be more than the total number of maximal chains:

∑
A∈F

|A|! (n−|A|)! ≤ n!,

from which we deduce (dividing both sides byn!) that

∑
A∈F

1(
n
|A|

) ≤ 1.
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This result (which is valid for any Sperner family) is known as theLYM inequality.

Now we saw, the largest binomial coefficient is

(
n

bn/2c

)
. So if we replace

the denominators on the left by larger quantities, we make the sum smaller, and
we find

|F |(
n

bn/2c

) = ∑
A∈F

1(
n

bn/2c

) ≤ 1,

and so we conclude that

|F | ≤
(

n
bn/2c

)
.

Our second question is: What are the families which meet this bound? We
have seen that, ifn is even, the set of alln-element subsets meets the bound; ifn
is odd, the set of all(n−1)/2-element subsets meets the bound, and so does the
set of all(n+1)/2-element subsets. The second part of Sperner’s Theorem tells
us that there are no others:

Theorem 7.2 Suppose thatF is a Sperner family of subsets of{1, . . . ,n} with

|F |=
(

n
bn/2c

)
. Then

(a) if n is even, thenF consists of all the n/2-element subsets;

(b) if n is odd, then eitherF consists of all the(n−1)/2-element subsets, or it
consists of all the(n+1)/2-element subsets.

Proof We have to look back at the preceding proof; in particular, the step from
the LYM inequality to the next line. This involved replacing the denominators(

n
|A|

)
by the possibly larger denominators

(
n

bn/2c

)
. If it ever occurred that the

new denominator was strictly larger, then we would have strict inequality in the

next step, and we would conclude that|F | <
(

n
bn/2c

)
. So all the sets in the

family F must have sizen/2 (if n is even), or size(n−1)/2 or (n+1)/2 (if n is
odd).

So the theorem is proved in the case wheren is even.
If n is odd, however, we have one more job to do: we must rule out the possi-

bility that there are sets of both possible sizes inF . So letn = 2m+1.
Looking at the proof again we see that, if the bound is met, then every maximal

chain must contain a set ofF . If A andB are sets of sizesmandm+1 respectively,
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then there is a maximal chain containing bothA andB; soF must contain exactly
one of these two sets. So ifA∈F thenB /∈F and conversely.

Now if C andD are two sets of sizem, then it is possible to find a sequence of
sets of sizes alternatelym andm+1 fromC to D. If C∈F , then we find that the
sets of sizem+1 don’t belong toF , while the sets of sizem all do. So every set
of sizem belongs toF . This implies that no set of sizem+1 can belong toF ,
soF is the set of allm-element sets.

In a similar way, ifF contains an(m+1)-element set, then it consists of all
(m+1)-element sets.

Here is an example to illustrate this proof. Suppose thatn = 7, m= 3, andF
contains the set{1,2,3}. We want to show that it contains{4,5,6}. We produce
the sequence

({1,2,3},{1,2,3,4},{2,3,4},{2,3,4,5},{3,4,5},{3,4,5,6},{4,5,6}).

Now {1,2,3} ∈ F ; so {1,2,3,4} /∈ F ; so {2,3,4} ∈ F ; and so on. Finally,
{4,5,6} ∈F , as required.

7.2 Intersecting families

We say that two setsA andB intersectif their intersection is not empty:A∩B 6= /0.
A family of subsets of{1, . . . ,n} is anintersecting familyif any two of its members
intersect.

Theorem 7.3 The maximum size of an intersecting family of subsets of{1, . . . ,n}
is 2n−1.

Proof First we note that there do exist intersecting families containing 2n−1 sets.
For consider all the subsets of{1, . . . ,n} which contain the elementn. Such a
subset has the form{n}∪A, whereA is an arbitrary subset of{1, . . . ,n−1}; there
are 2n−1 choices forA. Clearly the resulting family is intersecting since any two
members have at least the elementn in common.

We have to show that it is not possible to have more than 2n−1 sets in an
intersecting family. To see this, we list the sets in complementary pairs{A,A′},
whereA′ = {1, . . . ,n}\A. There are 2n/2 = 2n−1 such pairs. Now an intersecting
family F can contain at most one set from each pair, sinceA andA′ are disjoint.
So|F | ≤ 2n−1, as required.

Following the pattern of Sperner’s Theorem, we should now go on to find all
the intersecting families which meet this bound. But this is not possible; there are
many different intersecting families meeting the bound. Here are a few examples.
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• As in the theorem, if we take all the subsets which contain some fixed ele-
ment of{1, . . . ,n}, we obtain an intersecting family of size 2n−1.

• If n is odd, choose all the subsets which have size strictly greater thann/2.
Any two such subsets must intersect; and there are 2n−1 of them, since out
of each complementary pair we take the larger one.

• If n is even we can modify this argument. Take all subsets with more than
n/2 elements, and out of the sets of sizen/2 pick one of each complemen-
tary pair. For example, forn = 4, we could have either of the following
(where I write{1,2,3} as 123 for brevity):

{1234,123,124,134,234,12,13,14}
{1234,123,124,134,234,12,13,23}

• Many other examples are possible. Forn= 7, it can be showed that there are
26 = 64 sets which contain at least one of 123,145,167,246,257,347,356.
Since these seven sets intersect, any sets containing them will also intersect.

Let’s ask a different question. What is the maximum size of an intersecting
family of k-element subsets of{1, . . . ,n}?

If n < 2k, then anyk-element set contains more than half of{1, . . . ,n}, so any

two of them intersect. The answer then is

(
n
k

)
, which is not very interesting. So

we assume thatn≥ 2k.
In this case, letFk(i) consist of all thek-element subsets of{1, . . . ,n} which

contain the elementi, for i ∈ {1, . . . ,n}. Then|Fk(i)|=
(

n−1
k−1

)
, since we have

to pick k−1 more elements from{1, . . . ,n} \ {i}. A famous theorem called the
Erdős–Ko–Rado theoremshows that this is the best we can do:

Theorem 7.4 (a) If n≥ 2k, then an intersecting family of k-element subsets of

{1, . . . ,n} has size at most

(
n−1
k−1

)
.

(b) If n > 2k, then the only intersecting families which have size

(
n−1
k−1

)
are

the setsFk(i), for i ∈ {1, . . . ,n}.

The proof of this theorem is beyond the scope of the course, but I have written
out the main part in the final section of this chapter. If you are interested in com-
binatorics, you are encouraged to study this proof, which has a lot of important
ideas in it.
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I will give here just the proof of part (a) of the theorem in the case when
n = 2k. This is similar to what we did before. Arrange thek-element subsets of
{1, . . . ,2k} into complementary pairs{A,A′}, whereA′ = {1, . . . ,2k}\A. Then an
intersecting family contains at most one of each complementary pair, so the size
of such a family is at most

1
2

(
2k
k

)
=
(

2k−1
k−1

)
.

7.3 The de Bruijn–Erdős theorem

Now we will be even more specific. What is the maximum size of a family of
subsets of{1, . . . ,n} having the property that any two of them have exactly one
point in common?

First we give some examples of such families.

• For i ∈ {1, . . . ,n}, letA (i) consist of the set{i} together with all sets of the
form {i, j} for j 6= i. Then|A (i)|= n and any two members ofA (i) meet
in the point{i}.

• For i ∈ {1, . . . ,n}, let B(i) consist of the set{1, . . . ,n} \ {i} together with
all sets of the form{i, j} for j 6= i. Then|B(i)|= n, and any two members
of B(i) meet in one point.

• For n = 7, the seven sets 123,145,167,246,257,347,356 have the required
property. This configuration of seven sets is known as theFano plane.

The diagram shows the second and third examples.
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Thede Bruijn–Erd̋os theoremshows thatn is the maximum size, and describes
the families which meet the bound:

Theorem 7.5 LetF be a family of subsets of{1, . . . ,n} with the property that
|A∩B| = 1 for all A,B∈ F . Then|F | ≤ n. Equality holds if and only if one of
the following occurs:

(a) F = A (i) or F = B(i) for some i∈ {1, . . . ,n};
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(b) there is a positive integer q such that n= q2+q+1, every set inF contains
q+1 elements, and every element of{1, . . . ,n} is contained in q+1 of the
sets ofF .

Note that the third example in our list above satisfies conclusion (c), with
q= 2: we haven= 22+2+1= 7, each set has 2+1= 3 elements and each point
lies in 2+1 = 3 sets ofF .

The proof will not be given here: it can be found in the recommended textbook
for the course. We will end this chapter by a brief look at some families satisfying
conclusion (c) of the theorem.

7.4 Finite fields and projective planes

We first do a little bit of linear algebra. Recall that afield is an algebraic structure
in which addition, subtraction, multiplication and division (except by zero) are all
possible, and the commutative, associative and distributive laws apply. IfF is a
field, then we can talk about vector spaces overF ; the standardm-dimensional
vector space is the setFm of all m-tuples of elements ofF , with coordinatewise
operations.

We are interested in finite fields. Do any exist? Yes, the integers modp form a
field wheneverp is a prime number; this field is denoted byZp. There are others
too, as we will see later.

Theorem 7.6 Let F be a finite field with q elements, and V an m-dimensional
vector space over F. Then

(a) |V|= qm;

(b) the number of1-dimensional subspaces of V is(qm−1)/(q−1);

(c) the number of2-dimensional subspaces of V is

(qm−1)(qm−1−1)
(q−1)(q2−1)

.

Proof (a) Any m-dimensional vector space can be coordinatised by choosing a
basis; so we can take it to beFm. The result is clear.

(b) Any 1-dimensional subspace is spanned by a non-zero vector, of which
there areqm−1 in V. But, if c is any non-zero element ofF , thenv andcv span
the same 1-dimensional subspace. So each such subspace hasq− 1 spanning
vectors, and the number of such subspaces is(qm−1)/(q−1).
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(c) Any 2-dimensional subspace is spanned by two linearly independent vec-
torsv andw. There areqm−1 choices forv (since it must be non-zero) andqm−q
choices forw (since it cannot be a multiple ofv). Thus there are(qm−1)(qm−
q) pairs (v,w). But by the same argument (puttingm = 2) we see that any 2-
dimensional subspace contains(q2−1)(q2−q) spanning pairs of vectors. So we
get the number of subspaces by dividing, and cancelling a factorq.

We see that a 3-dimensional vector space has(q3−1)/(q−1) = q2 +q+1
1-dimensional subspaces, and

(q3−1)(q2−1)
(q−1)(q2−1)

= q2 +q+1

2-dimensional subspaces. Furthermore, ifV is 3-dimensional, then

• any 2-dimensional subspace containsq+1 1-dimensional subspaces;

• any 1-dimensional subspace is contained inq+1 2-dimensional subspaces;

• any two 2-dimensional subspaces intersect in a 1-dimensional subspace.

The first part follows from the casem= 2 in the theorem; the second is proved
by a similar argument. For the third, let dim(V) = 3 and letW1,W2 be subspaces
with dim(W1) = dim(W2) = 2. By the dimension formula,

dim(W1 +W2)+dim(W1∩W2) = dim(W1)+dim(W2).

Now the right-hand side is equal to 4. We must have dim(W1 +W2) = 3 (it can-
not be larger since dim(V) = 3, and it cannot be smaller sinceW1 +W2 properly
containsW1). So dim(W1∩W2) = 1, as required.

Now let n = q2 + q+ 1, and number the 1-dimensional subspaces ofV = F3

asU1, . . . ,Un, and the 2-dimensional subspaces asW1, . . . ,Wn. Now let Ai be the
set{ j : U j ≤Wi}, the set of indices of the 1-dimensional subspaces inWi . Then

• A1, . . . ,An are subsets of{1, . . . ,n}, each having sizeq+1, and any element
lying in q+1 of them;

• any two ofA1, . . . ,An intersect in just one element.

So we have a configuration satisfying case (c) of the de Bruijn–Erdős theorem.

A family of sets satisfying case (c) of the de Bruijn–Erdős theorem is called
a projective plane. The numberq is called theorder of the projective plane. So
the example in the last section (the Fano plane) is a projective plane of order 2;
and the construction of this section shows that there exists a projective plane of
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any orderq for which there is a finite field withq elements, in particular, ifq is a
prime number.

A theorem of Galois (which we will not prove here) says that there exists a
finite field with q elements if and only ifq is a power of a prime number; and
moreover, such a finite field is unique. Here, for example, are the addition and
multiplication tables for a field with 4 elements, called 0,1,α,β :indexfield!of or-
der 4

+ 0 1 α β

0 0 1 α β

1 1 0 β α

α α β 0 1
β β α 1 0

· 0 1 α β

0 0 0 0 0
1 0 1 α β

α 0 α β 1
β 0 β 1 α

Here is an outline of the construction. We build this field from the fieldZ2

(integers mod 2) by adding the root of an irreducible polynomial, in the same way
that we construct the complex numbers from the real numbers by adding i, a root
of the polynomialx2 + 1 = 0. Some trial and error shows that the polynomial
x2 +x+1 is irreducible overZ2; let α be a root of this polynomial, so thatα2 +
α +1 = 0, or α2 = α +1. (Remember that 1+1 = 0 in Z2, and sox+x = 0 for
anyx.) Then the elements of the field are all linear combinations of 1 andα, i.e.
0,1,α,α +1. We have putβ = α +1 in the tables. For example,

α +β = α +(α +1) = (α +α)+1 = 1,

αβ = α(α +1) = α
2 +α = α +1+α = 1.

For which numbersq does there exist a projective plane of orderq? This seems
to be one of the hardest questions in combinatorics. We have seen that they exist
wheneverq is a prime power. No example is known ifq is not a prime power. A
famous theorem called theBruck–Ryser Theoremsays that, ifq is congruent to 1
or 2 mod 4 andq is not the sum of two squares, then there is no projective plane
of orderq. Thus, there is no projective plane of order 6, since 6 is congruent to 2
mod 4 but is not the sum of two squares. The number 10 is also congruent to 2
mod 4, but is the sum of two squares (10= 12+32), so the theorem doesn’t tell us
whether there is a projective plane or not. But a huge computation, including two
years on a Cray supercomputer, showed in 1989 that there is no projective plane
of order 10. The next number in doubt isn = 12 (this is congruent to 0 mod 4,
so the Bruck–Ryser theorem does not apply to it). We have no idea whether a
projective plane of order 12 exists or not!
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7.5 Appendix: Proof of the Erdős–Ko–Rado Theo-
rem

We will prove this theorem using a result about graphs. First we develop some
terminology.

A graphconsists of a setV of vertices, and a setE of edges; each edge is a set
of two vertices, and is regarded as connecting those two vertices. Here is a picture
of a graph.
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A clique in a graph is a set of vertices, any two of which are joined by an
edge. Acocliqueis a set of vertices, no two of which are joined by an edge. In
the example drawn above, the largest clique has three vertices, and the largest
coclique has two vertices.

An automorphismof a graph is a permutation of the vertices which maps every
edge to an edge. The set of all automorphisms is a group (a subgroup of the
symmtric group), called theautomorphism groupof the graph. In our example,
the left-to-right reflection is an automorphism; the automorphism group contains
four elements (including the identity).

A graph is said to bevertex-transitiveif, for any two vertices, there is an
automorphism of the graph which carries the first to the second. More generally,
for any groupG acting on any setX, we say thatG actstransitivelyonX if we can
carry any element ofX to any other by some element of the group. Our example
graph is not vertex-transitive since no automorphism can take the left-hand vertex
(which lies on two edges) to the top vertex (which lies on three edges).

We use the fact that, if a groupG acts transitively on a setX, with |X|= n, then
for any x,y∈ X, the number of elements ofG mappingx to y is equal to|G|/n.
For it is clear that the average number (ifx is fixed andy varies over all points
in X) is |G|/n; and the elements of the group which mapx to y form a coset of a
subgroupH, whereH is thestabiliserof x, the set of all elements ofG fixing x.
By Lagrange’s Theorem, all cosets contain the same number of elements.

We first prove a theorem which is too weak for our purposes, but illustrates
the proof technique. Then we strengthen it to get the result we want.

Theorem 7.7 Let Γ be a vertex-transitive graph on n vertices. Let C be a clique
and D a coclique in G. Then|C| · |D| ≤ n.
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Remark Our earlier example shows that the assumption of vertex-transitivity is
necessary for this theorem. The graph there has four vertices and has a 3-vertex
clique and a 2-vertex coclique.

Proof Let G be the automoorphism group of the graphΓ. Count triples(x,y,g),
wherex ∈ C, y ∈ D, g ∈ G, andg mapsx to y. There are|C| choices ofx, |D|
choices ofy, and (by the remark before the theorem)|G|/n choices forG, so
|C| · |D| · |G|/n such triples.

Now count another way. For each elementg∈G, there is at most one element
of C which can be mapped intoD by g. For any two elements ofC are joined;
any two elements ofD are not joined; so ifg mapped two elements ofC into D it
would change an edge into a non-edge, which is impossible for an automorphism.
So for every element ofG there is at most one triple of the type we are counting.

So|C| · |D| · |G|/n≤ |G|, from which the result follows.

Theorem 7.8 Let Γ be a vertex-transitive graph on n vertices. Let Y be a subset
of the vertex set such that any clique contained in Y has size at most m|Y|. Then
any clique in G has size at most mn.

To see that the preceding theorem follows from this one, takeX to be a co-
clique. Any clique contained inD has at most one vertex, i.e. size at mostm|D|,
wherem= 1/|D|; so any cliqueC in G satisfies|C| ≤ mn= n/|D|, from which
the required result follows.

Proof Again letG be the automorphism group of the graphΓ. LetC be a clique.
As in the preceding proof, we count triples(x,y,g), wherex ∈C, y ∈ Y, g ∈ G,
andg mapsx to y. As before there are|C| · |Y| · |G|/n such triples.

Now choose first the elementg. Suppose that it mapsk points ofC into Y.
Their images form a clique, sok≤ m|Y|. Thus there are at mostm|Y| · |G| such
triples.

So|C| · |Y| · |G|/n≤m|Y| · |G|, whence|C| ≤mn.

Theorem 7.9 (Erdős–Ko–Rado) Suppose that n and k are given, with n≥ 2k.

Then the size of an intersecting family of k-subsets of{1, . . . ,n} is at most

(
n−1
k−1

)
.

Proof We make a graphΓ as follows: the vertices are thek-element subsets of
{1, . . . ,n}; two vertices are joined if the corresponding subsets have non-empty
intersection. Then an intersecting family is just a clique in this graph. Moreover,
it is clear that the symmetric group on{1, . . . ,n} acts vertex-transitively on this
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graph. (This says, given any twok-element subsetsA andB of {1, . . . ,n}, there is
a permutation of{1, . . . ,n} which carriesA to B. Note that any permutation maps
an intersecting pair ofk-element sets to an intersecting pair, so is an automorphism
of the graphΓ.)

Now we find a collection ofn subsets such that an intersecting family contains
at mostk of them. To do this, we taken points p0, p1, . . . , pn−1 equally spaced
around a circle. Number the intervals between the points asI0, . . . , In−1, where
I j = (p j , p j+1). (We read the subscripts modulon where necessary.) The setY
consists of all “intervals of lengthk”, that is, sets of the form{ j, j +1, . . . , j +k−
1}. There aren such sets; we have to show that an intersecting family contains
at mostk of them. (Note that we have replaced{1, . . . ,n} by {0, . . . ,n−1}; this
does not affect the argument.)

So suppose thatZ is a subset ofY, any two of whose sets intersect. Each
point p j is the endpoint of two intervals inY, namely{ j, j +1, . . . , j +k−1} and
{ j − k, . . . , j −2, j −1}. These two sets are disjoint, because of our assumption
n≥ 2k; soZ contains at most one of them.

Now take a set inZ, sayA = { j, j + 1, . . . , j + k− 1}. Any other set inZ
intersects this one, so must have an end point in the set{p j+1, . . . , p j+k−1} (the
set ofp’s which are interior points of the interval corresponding toA). Since each
of these points can be the end point of at most one interval corresponding to sets
in Z, there are at mostk−1 more such sets, that is, at mostk altogether.

Now it follows from Theorem 7.8 that the size of any intersecting family of
k-sets (that is, any clique in the graphG) is at most

k
n

(
n
k

)
=
(

n−1
k−1

)
.

Remark It is possible to show that, ifn > 2k, then any intersecting family ofk-
sets attaining the bound of the theorem must consist of allk-sets containing some
given point of{1, . . . ,n}.

Exercises

1. Let n = 2k. Show that there are 2
(2k−1

k−1

)
intersecting families ofk-element

subsets of{1, . . . ,n} having the maximum number

(
2k−1
k−1

)
of members. Show

that only 2k of them have the formFk(i) for i ∈ {1, . . . ,n}. Hence show that the
second part of the Erdős–Ko–Rado Theorem goes badly wrong whenn = 2k.
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2. Identify the right-hand picture before Theorem 7.5 with the example con-
structed using the finite fieldF = Z2. [Hint: the subspace spanned by the vector
v = (a,b,c) corresponds to the point with label 4a+2b+c in the figure.]

3. Construct a finite field with 8 elements.

4. LetX = {1, . . . ,n}. Show that, for every non-empty subsetA of X, there is an
intersecting familyF of subsets ofX of size 2n−1 with A∈F . Show further that
any two subsetsA,B with A∩B 6= /0 are contained in a family with these properties.
What about three pairwise intersecting sets?

5. Show that the largest Sperner family of subsets of{1,2,3,4,5} containing the
sets{1,2} and{3,4,5} contains eight sets. How does this compare with Sperner’s
Theorem?

6. LetS be the family

{{1,2,3},{1,4,5},{1,6,7},{2,4,6},{2,5,7},{3,4,7},{3,5,6}}

of subsets of{1,2,3,4,5,6,7}.
Let F be the family of all subsets of{1, . . . ,7} which contain a member of

S . Show that

(a) F is an intersecting family;

(b) F contains 7 sets of size 3, 28 of size 4, 21 of size 5, 7 of size 6, and one
of size 7: in all, 64 sets.

7. LetX = {1,2, . . . ,n} andS = {A1,A2, . . . ,Ab} be a family of distinct subsets
of X such that|A j ∩Ak| = 1 for all k 6= j. For eachi ∈ X, let r i be the number of
subsets ofS which containi. Prove that

n

∑
i=1

r i(r i −1) = b(b−1).

[Hint: Count the number of ordered triples(i,A j ,Ak), whereA j ,Ak are distinct
sets inS andA j ∩Ak = {i}, in two different ways.]
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Chapter 8

Systems of distinct representatives

The Students’ Union hasn affiliated clubs. Each club elects a delegate to the Ex-
ecutive Committee. The delegate must be a member of the club (s)he represents,
and no person can represent more than one club.

The two natural questions for a combinatorialist are: is it possible to choose
the representatives according to these rules? and In how many ways can this be
done? We will answer the first question here; the second is more difficult.

Of course the answer depends on the membership of the clubs. If, for example,
Sid and Doris are the only members of the Football Club, the Music Club, and the
Chess Club, then the election is clearly not possible. More generally, we see that
if any mclubs contain altogether less thanmmembers, the election is not possible.
So anecessarycondition for the election is that anym clubs have between them
at leastm members. Surprisingly, this obvious condition also turns out to be
sufficient; this is the content ofHall’s Theorem.

8.1 Hall’s Theorem

Let us express these ideas more mathematically. LetA1,A2, . . . ,Am be sets. (Sup-
pose that they are all subsets of a universal setX.) We allow here the possibility
that some of the sets are equal. Asystem of distinct representativesfor the sets
(A1,A2, . . . ,An) is ann-tuple(x1,x2, . . . ,xn) of elements ofX with the properties

(a) xi ∈ Ai for i = 1, . . . ,n (this says that the elements are ‘representatives’ of
the sets);

(b) xi 6= x j for i 6= j (this says that the representatives are ‘distinct’).

We abbreviate ‘system of distinct representatives’ to SDR.

77
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For J⊆ {1,2, . . . ,n}, define

A(J) =
⋃
i∈J

Ai .

(Do not confuse this withAJ, which we met in the chapter on PIE;AJ is the
intersection of the sets with index inJ, A(J) is their union.) We say that the
family of sets satifsiesHall’s Conditionif the following holds: for any subsetJ of
{1,2, . . . ,n},

|A(J)| ≥ |J|.

Theorem 8.1 Let (A1, . . . ,An) be a family of subsets of X. Then there exists a
system of distinct representatives for A1, . . . ,An) if and only if Hall’s condition
holds.

Proof First suppose that there is a SDR, say(x1, . . . ,xn) for the sets. Take any
subsetJ of {1, . . . ,n}. ThenA(J) contains all the setsAi for i ∈ J, and hence
contains all the representativesxi for i ∈ J; since the representatives are distinct,
we have|A(J)| ≥ |J|. So Hall’s condition holds. (This is the argument we saw
earlier. If the choice of representatives is possible, then anym sets must contain
at least enough members to act as their representatives.)

Now we prove the converse, which is more difficult. Let(A1, . . . ,An) be a
family of sets satisfying Hall’s condition. We have to show that an SDR can be
found. Our proof will be by induction onn; we assume that a family of fewer than
n sets which satisfies Hall’s condition has a SDR. The induction begins withn= 1
since Hall’s condition guarantees thatA1 is not empty [WHY?]

We say that a setJ⊆ {1, . . . ,n} of indices iscritical if |A(J)|= |J|. (Then all
of the members of the setsAi for i ∈ J must be used as their representatives.) We
divide the proof into two cases:

Case 1: No set is critical except for /0 and possibly{1, . . . ,n}. This means
that|A(J)|> |J| for every non-empty proper set of indices.

Choose any elementxn of An to be its representative. Thenxn cannot be
the representative of any other set; so we remove it. LetA′i = Ai \ {xn} for
i = 1, . . . ,n−1. Now for any non-empty subsetJ of {1, . . . ,n−1}, we have

|A′(J)| ≥ |A(J)|−1 > |J|−1,

where the strict inequality holds by the case assumption. This means that|A′(J)| ≥
|J|, so that the family(A′1, . . . ,A

′
n−1) satisfies Hall’s condition. By the inductive

hypothesis, this family has a SDR, say(x1, . . . ,xn−1).
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But then(x1, . . . ,xn−1,xn) is a SDR for the original family; forxn ∈ An, and
xn 6= xi for i < n, sincexi belongs toA′i butxn doesn’t.

Case 2: There is a critical set, sayJ. By the induction hypothesis, we can
choose an SDR(x j : j ∈ J) for the sets indexed byJ.

For k /∈ J, let A∗k = Ak \AJ. (We must remove the elements ofAJ: they have
all been used as representatives.) We check Hall’s condition for this family. For
K ⊆ {1, . . . ,n}\J, we have

|A∗(K)| = |A(J∪K)|− |A(J)|
≥ |J∪K|− |J|
= |K|,

where in the second line,|A(J∪K)| ≥ |J∪K| by Hall’s condition, and|A(J)|= |J|
by the case assumption. So the setsA∗k for k /∈ J satisfy Hall’s Condition. By
induction we can find a SDR for them, say(xk : k /∈ J). Putting this together with
the previously chosen SDR for the setsA j for j ∈ J gives a SDR for all of the sets.

This concludes the inductive step and so the proof.

There is a lot of checking to do to verify Hall’s condition, though it is possible
to do this in a systematic way quite efficiently. But there is one nice situation in
which we can guarantee that it holds.

Proposition 8.2 Let (A1, . . . ,An) be a famly of subsets of the set{1, . . . ,n}. Sup-
pose that there is a positive number k such that

(a) |Ai |= k for k= 1, . . . ,n;

(b) each element of{1, . . . ,k} is contained in exactly k of these sets.

Then the family has a SDR.

Proof We show that Hall’s condition holds. TakeJ⊆ {1, . . . ,n} and count pairs
(i,x) with i ∈ J andx∈ Ai . Clearly there are|J| ·k such pairs. On the other hand,
x can be any element ofA(J), and for eachx there are at mostk setsAi containing
x with i ∈ J (since there are justk suchj sets altogether). So the number of pairs is
at most|A(J)| ·k. Thus

|J| ·k≤ |A(J)| ·k,
and so|A(J)| ≥ |J|.

For example, the Fano plane discussed in the last chapter of the notes consists
of seven 3-element subsets of{1, . . . ,7}, so that each element of{1, . . . ,7} lies in
exactly three of them. So it has an SDR.



80 CHAPTER 8. SYSTEMS OF DISTINCT REPRESENTATIVES

8.2 How many SDRs?

If the setsA1, . . . ,An do not satisfy Hall’s condition, they have no SDR. But if they
do, and they are not too small, then they have many different SDRs. This is the
content of the next result.

Proposition 8.3 Let A1, . . . ,An be subsets of a set X which satisfy Hall’s condi-
tion. Suppose that|Ai | ≥ k for i = 1, . . . ,n, where k is a positive integer. Then the
number of SDRs of the family is at least{

k! if k ≤ n,
(k)n if k > n,

where(k)n is the falling factorial k(k−1) · · ·(k−n+1).

Proof The proof follows closely the proof of Hall’s Theorem. We prove the
result by induction onn. If n = 1, there is only one set, havingk elements; there
are at least(k)1 = k SDRs. (Note thatk≥ n in this case, so we are in the second
case in the statement of the result.)

So letA1, . . . ,An be sets satisfying the hypothesis. We divide into two cases as
in the proof of Hall’s Theorem.

Case 1: There are no non-empty critical sets except possibly{1, . . . ,n}.
Choose any elementx of An as its representative (there are at leastk choices forx).
Then the family(A′1, . . . ,A

′
n−1) consists ofn−1 sets, each of cardinality at least

k−1. So the number of SDRs of this family is at least{
(k−1)! if k−1≤ n−1,
(k−1)n−1 if k−1 > n−1,

by the induction hypothesis. Multiplying byk gives the correct lower bound for
the number of SDRs of the original family. (Note thatk · (k−1)! = k! andk · (k−
1)n−1 = (k)n.)

Case 2: There is a non-empty proper critical set, sayJ. We havek≤ |AJ|=
|J| ≤ n, so by the induction hypothesis the family(A j : j ∈ J) has at leastk! SDRs.
As in the proof of Hall’s Theorem, any such SDR can be extended to an SDR for
the whole family. So there are at leastk! SDRs, and the induction is complete.

As a consequence, we can improve Proposition 8.2:

Proposition 8.4 Suppose that the hypotheses of the preceding Proposition are
satisfied. Then there are at least k! distinct SDRs of the family of sets.
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This follows immediately from Propositions 8.3 and 8.2.
For example, the family({1,2},{1,3},{2,3}) of sets has two SDRs, namely

(1,3,2) and(2,1,3); the seven lines of the Fano plane have at least 3!= 6 SDRs.

8.3 Sudoku

Hall’s Marriage Theorem, and in particular the idea of a “critical set” which we
met in the proof, is relevant to solving Sudoku puzzles. This is something which
every Sudoku player knows to some degree.

Look at the empty cells in any row, column or subsquare of a Sudoku puzzle.
Let Ai be the set of entries which could appear in theith empty cell (i.e. those
which do not already appear in the same row, column or subsquare). Then the
entries which we put there must form a SDR for the setsAi . Moreover, if we
can find a critical set, then as in the proof of Hall’s Theorem, we can remove its
elements from the other sets, which simplifies the search for a SDR.

Here is an example.

The Times, 14 September 2005

Rating: Fiendish

2 4 8
2 9

1 9
1 9 5 3

3 4
8 3 1 6

8 7
1 5

2 3 5

Look at the 3× 3 square in the bottom left of the puzzle. It has five empty
cells, whose row and column numbers are(1,1), (1,2), (1,3), (2,1) and(3,3).

Cell (1,1) has 8 and 7 in the same row, 1 and 2 in the same column, and
1,2,3,5 in the same subsquare. So the number we put there must be one of 4,6,9.
Similarly we find the possibilities for(1,2) are 4,6,9, for (1,3) also 4,6,9, for
(2,1) are 4,6,7,8,9, and for(3,3) are 4,6,7,9.
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Cells(1,1), (1,2) and(1,3) form a critical set, since between them they only
contain three elements 4,6,9. So we can delete 4,6,9 from the other sets. We find
that 7 must go in(3,3) and then 7 or 8 in(2,1). So it must be 8 in cell(2,1).

In fact, this entire puzzle can be solved by this method of finding critical sets
and removing their elements from other sets.

Exercises

1. (a) Write down a SDR for the Fano plane.
(b) How many different SDRs can you find?

2. Let A1, . . . ,An be subsets of{1, . . . ,n}. Let M be then× n matrix whose
(i, j) entry is 1 if j ∈ Ai , and 0 otherwise. Prove that the number of SDRs of
(A1, . . . ,An) is at least|det(M)|. [Hint: Use the formula for the determinant as a
sum over permutations. Each SDR contributes a term±1 to the sum.]

Deduce that the Fano plane has at least 24 SDRs.

3. Construct five families,F1, F2, F3, F4, F6, each consisting of three sub-
sets of the set{1,2,3}, such thatFi has exactlyi different SDRs, for eachi ∈
{1,2,3,4,6}.

Does there exist a family of three subsets of{1, . . . ,6} with five SDRs?

4. This exercise gives thedeficit form of Hall’s Theorem. It is a generalisation of
Hall’s Theorem, but can be deduced from Hall’s Theorem.

Theorem Let A1, . . . ,An be subsets of a set X. Suppose that, for some positive
integer m, we have

|A(J)| ≥ |J|−m for all J⊆ {1, . . . ,n},

where A(J) =
⋃
j∈J

A j . Then it is possible to find n−m of the sets A1, . . . ,An which

have a SDR.

Prove this. [Hint: Takem ‘dummy’ elementsz1, . . . ,zm, and add them to all
the setsAi .]
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Latin squares

A Latin squareof ordern is a n× n array, each cell containing one entry from
the set{1, . . . ,n}, with the property that each element of{1, . . . ,n} occurs once in
each row and once in each column of the array.

Here is an example.
1 2 3 4 5
2 3 1 5 4
3 4 5 1 2
5 1 4 2 3
4 5 2 3 1

Notice that each row and each column is a permutation of{1, . . . ,n}.
Sometimes we use a different set ofn symbols as the entries of a Latin square.

The definition is just the same. For example, theCayley tableof a group of ordern
is a Latin square whose symbols are the group elements.

We will sometimes look at more general structures. Two of these are:

• A Latin rectangleis ak×n array (wherek≤ n) with entries from{1, . . . ,n}
such that each symbol occurs once in each row and at most once in each
column.

• A partial Latin squareis an×n array (wherek≤ n) with each cell either
empty or containing an symbol from{1, . . . ,n} such that each symbol oc-
curs at most once in each row and at most once in each column.

Thus, the firstk rows of a Latin square form a Latin rectangle; and if we take a
Latin square and blank out some of the entries we obtain a partial Latin square.
There is no shortage of partial Latin squares; the newspapers publish examples
every day!

Latin squares occur in algebra as Cayley tables of groups. IfG = {g1, . . . ,gn}
is a finite group of ordern, then itsCayley tableis then×n matrix whose(i, j)

83
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entry isgi ◦g j (the product ofgi andg j in the group). This matrix is a Latin square
– this follows from the group axioms, and is not discussed here.

9.1 Row by row

It is not difficult to show that there exists a Latin square of ordern for eachn. We
are going to show something stronger, namely, a Latin square can be constructed
by adding a row at a time; it is not possible to get stuck. The proof uses Hall’s
Theorem.

Proposition 9.1 Let L be a k× n Latin rectangle, where k< n. Then L can be
extended to a(k+1)×n Latin rectangle.

Proof For i = 1, . . . ,n, let Ai be the set of symbols which donot occur in theith
column ofL. Then|Ai |= n−k, since there arek distinct symbols in any column
of L. Pick a symbolj. How many setsAi contain j? We know thatj occursk
times inL, once in each row; these occurrences are ink different columns, so there
aren−k columns in whichj does not occur, that is,n−k setsAi containingj.

We have now verified the hypotheses of Proposition 8.2. From that proposition
we conclude that the family(A1, . . . ,An) has a system of distinct representatives,
say(x1, . . . ,xn).

We claim that we can add the row(x1, . . . ,xn) to L to obtain a larger Latin
rectangle. This is true because thexi are all distinct, so no symbol is repeated in
the new row; andxi ∈ Ai , so xi doesn’t occur in columni of L, so no repeated
symbol is intriduced in any column. So the result is proved.

We can do more; we can give a lower bound for the number of Latin squares
of ordern.

Theorem 9.2 The number of Latin squares of order n is at least

n! · (n−1)! · · ·2! ·1! .

Proof In the preceding proof, we replace Proposition 8.2 by the stronger Propo-
sition 8.4, to conclude that the number of SDRs of the sets(A1, . . . ,An) is at least
(n−k)!. So the number of ways of extending ak×nLatin rectangle to a(k+1)×n
Latin rectangle is at least(n−k)!. (Each SDR gives an extension.)

Now there aren! 1×n Latin rectangles (these are just permutations); each can
be extended to a 2×n Latin rectangle in at least(n−1)! ways; each of these can
be extended to a 3×n Latin rectangle in at least(n−2)! ways; and so on. The
result follows.
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Can we put an upper bound on the sumber of Latin squares? There is a trivial
upper bound, namelynn2

; this is just the number of ways we can put symbols into
then2 cells without worrying about the rules. This can be improved slightly. Each
row is a permutation, so the number of Latin squares is at most(n!)n. And, having
chosen the first row, each subsequent row is a derangement of it, so the number
of Latin squares is at mostn! · (d(n))n−1, whered(n) is the derangement number
(remember thatd(n) is approximatelyn!/e).

The exact answer has been calculated forn≤ 11 by exhaustive search. The
literature on this contains a lot of mistakes; the most reliable paper is by McKay,
Meynert and Wanless in theJournal of Combinatorial Designsin 2007, which
gives these values:

n Number of Latin squares
1 1
2 2
3 12
4 576
5 161280
6 812851200
7 61479419904000
8 108776032459082956800
9 5524751496156892842531225600

10 9982437658213039871725064756920320000
11 776966836171770144107444346734230682311065600000

Beyond this nobody knows the exact value. Even the best known upper and lower
bounds are quite a long way apart!

9.2 Youden ‘squares’

Youden ‘squares’ form a class of designs used in statistics. As we will present
them (and as they were first described by Youden) they are Latin rectangles; the
name comes from a different representation used by Fisher, in which they are
partial Latin squares (but we won’t go into that). Essentially, a Youden ‘square’ is
a way of representing a family of sets satisfying the conditions of Proposition 8.2
as a Latin rectangle. Strictly speaking, statisticians only use the term when an
extra condition is satisfied by the family of sets, but that does not affect the result
below.

Proposition 9.3 Let A1, . . . ,An be subsets of{1, . . . ,n}. Suppose that, for some
k > 0, every set Ai has k elements, and every element x∈ {1, . . . ,n} lies in k of
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the sets Ai . Then there is a k×n Latin rectangle M such that the entries in the ith
column of M form the set Ai .

Example The Fano plane 123,145,167,246,257,347,365 can be represented as

1 4 6 2 5 7 3
2 5 1 4 7 3 6
3 1 7 6 2 4 5

Proof By Proposition 8.2, the family of sets has an SDR(x1, . . . ,xn), which
we can take to be the first row of the rectangle. Now letA′i = Ai \ {xi} for i =
1, . . . ,n. Clearly |A′i | = k−1. Aos, given anyx ∈ {1, . . . ,n}, we have usedx as
the representative for one of the setsAi , so it lies in justk−1 of the setsA′j . So
the new family satisfies the conditions of the proposition withk−1 replacingk.
Continue the process, with each SDR forming a new row, untilk = 0.

9.3 Orthogonal Latin squares

Two Latin squaresA = (ai j ) andB = (bi j ) are said to beorthogonalif they have
the following property: given a pair(k, l) of symbols from the set{1, . . . ,n}, there
is exactly one cell(i, j) such thatai j = k andbi j = l .

Here is an example:

1 2 3 4
2 1 4 3
3 4 1 2
4 3 2 1

1 2 3 4
3 4 1 2
4 3 2 1
2 1 4 3

Sometimes a pair of orthogonal Latin squares is called aGraeco-Latin square. If
we replace the symbols in the first square by Latin letters and those in the second
by Greek letters, then the orthogonality condition says that every pair consisting of
a Latin and a Greek letter occurs exactly once in the array. For our above example,
we would get the following:

Aα Bβ Cγ Dδ

Bγ Aδ Dα Cβ

Cδ Dγ Aβ Bα

Dβ Cα Bδ Aγ

Euler posed the following question in 1782.
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Of 36 officers, one holds each combination of six ranks and six regi-
ments. Can they be arranged in a 6×6 square on a parade ground, so
that each rank and each regiment is represented once in each row and
once in each column?

This question asks whether there exists a Graeco-Latin square of order 6. If so,
then taking the ranks as Latin letters and regiments as Greek letters we could
produce the required parade.

Euler invented Graeco-Latin squares in his researches on magic squares. A
magic squareis an×n square containing the numbers 1, . . . ,n2 each once, so that
the sum of the numbers in any row, column or diagonal is the same (necessarily
n(n2 + 1)/2. Euler noticed that it is often possible to construct a magic square
from a Graeco-Latin square as follows:

• Replace each of the two sets of symbols by the numbers 0,1, . . . ,n−1.

• Regard a pair of numbersi j as being the basen representation of a single
numberin+ j.

• Now the entries run from 0 ton−1. Add one to each so that the range is 1
to n.

The resulting square has all row and column sums constant [WHY?]. With some
extra care it is possible to make the diagonal sums constant as well. Here is an
example.

Cβ Aα Bγ

Aγ Bβ Cα

Bα Cγ Aβ

21 00 12
02 11 20
10 22 01

7 0 5
2 4 6
3 8 1

8 1 6
3 5 7
4 9 2

Euler knew how to construct two orthogonal Latin squares of any order not
congruent to 2 mod 4. We now outline an algebraic construction which is similar
to the one Euler used.

First we give the construction using modular arithmetic. Remember thatZn

denotes theintegers modulo n. We can take the elements to be 0,1, . . . ,n−1. To
add or multiply two elements, we add or multiply in the usual way as integers, and
then divide byn and take the remainder. So, inZ7, we have 4+5 = 2, 4·5 = 6.

An elementa ∈ Zn is a unit if there existsb ∈ Zn such thata · b = 1. The
following fact is proved in elementary algebra:

The elementa is a unit inZn if and only if gcd(a,n) = 1.
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Now, for anya∈ Zn, let L(a) be the matrix whose(x,y) entry isa·x+y. Here
are the matricesL(1),L(2),L(3) overZ4:

0 1 2 3
1 2 3 0
2 3 0 1
3 0 1 2

0 1 2 3
2 3 0 1
0 1 2 3
2 3 0 1

0 1 2 3
3 0 1 2
2 3 0 1
1 2 3 0

We see thatL(1) andL(3) are Latin squares butL(2) is not. MoreoverL(1) and
L(3) are not orthogonal: the pair(0,0) occurs twice, the pair(0,1) not at all.

Proposition 9.4 (a) L(a) is a Latin square if a is a unit inZn.

(b) L(a1) and L(a2) are orthogonal if a1−a2 is a unit.

Proof (a) InL(a), if we look for symbolc in row x, we find it in columny where
ax+ y = c. This has a unique solutiony = c−ax. Similarly, if we look forc in
columny, it will be in row x is ax+y= c. This impliesax= c−y, sox= b(c−y),
whereb is the inverse ofa.

(b) Suppose we are looking for a cell in which the first square has the entryc
and the second square has the entryd. Then we have to solve the simultaneous
equations

a1x+y = c,

a2x+y = d.

From these equations we deduce that(a1−a2)x= (c−d). Sox= b(c−d), where
b is the inverse ofa1−a2. Then either of the equations can be used to findy.

This theorem is no use for constructing orthogonal Latin squares of even order.
For suppose thatn is even. Ifa is a unit inZn, then gcd(a,n) = 1, soa must be
odd. But ifa1 anda2 are both odd, thena1−a2 is even, and gcd(a1−a2,n6 = 1.

However, forn odd, gcd(1,n) = gcd(2,n) = 1, so we get a pair of orthogonal
Latin squares for every oddn.

Euler knew that it is possible to construct orthogonal Latin squares of ordern
also if n is a multiple of 4. Here’s why. This argument shows one of the benefits
of abstract algebra.

If we look at the construction we just gave, we see that there is nothing special
about the integers modn. The construction works for anycommutative ring with
identity, that is, any structure in which we can add, subtract, and multiply, so that
the associative, commutative, distributive and identity laws hold. Proposition 9.4
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holds in this generality. Thus, ifR is a commutative ring with identity, then we
can define the matrixL(a) for anya∈ R; andL(a) is a Latin square ifa is a unit
in R, while L(a1) andL(a2) are orthogonal ifa1−a2 is a unit.

Now we use the following facts:

(a) The direct product of two commutative rings with identity is a commutative
ring with identity. [Thedirect productof R1 andR2 is the set of all ordered
pairs(r1, r2), with r1 ∈ R1 and r2 ∈ R2, with coordinatewise addition and
multiplication.] If a1 is a unit inR1 with inverseb1, anda2 is a unit inR2

with inverseb2, then(a1,a2)(b1,b2) = (1,1), so(a1,a2) is a unit inR1×R2.

(b) There is a finite field (a commutative ring with identity in which every non-
zero element is a unit) of every prime power order.

Using (b), we can construct orthogonal Latin squares of order 4, 8, and any
larger power of 2. Then using (a), we can construct Latin squares of order 4m,
8m, . . . , for any odd numberm.

Here is an example for (b). We give first the addition and multiplication tables
for a field with four elements 0,1,α,β . (We saw this already in chapter 6 of the
notes; there is a connection which we will see in the next section of this chapter.)
Then we give the three Latin squaresL(1), L(α) andL(β ).

+ 0 1 α β

0 0 1 α β

1 1 0 β α

α α β 0 1
β β α 1 0

· 0 1 α β

0 0 0 0 0
1 0 1 α β

α 0 α β 1
β 0 β 1 α

0 1 α β

1 0 β α

α β 0 1
β α 1 0

1 0 β α

α β 0 1
β α 1 0
1 0 β α

0 1 α β

β α 1 0
1 0 β α

α β 0 1

Euler knew this, and he asked about the 36 officers because his constructions
could not deal with the cases 2, 6, 10, or any number congruent to 2 mod 4. He
conjectured that orthogonal Latin squares of these orders could not exist. He was
right about 2 (this is easy to show directly) and 6 (this was proved by a long case-
by-case argument by Tarry in 1900), but wrong about the rest. Bose, Shrikhande
and Parker (the “Euler spoilers”) showed in 1960 that orthogonal Latin squares of
ordern exist for everyn exceptn = 2 andn = 6.
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9.4 Sets of mutually orthogonal Latin squares

A set of mutually orthogonal Latin squaresor set of MOLSof ordern is a set
{L1,L2, . . . ,Lr} such that

(a) eachLi is a Latin square of ordern;

(b) Li andL j are orthogonal ifi 6= j.

We letN(n) denote the maximum size of a set of MOLS of ordern, for n≥ 2.
[WHY NOT n = 1?] This is a very important function. Our conclusion from the
last section can be expressed as follows:

N(2) = 1, N(6) = 1, N(n)≥ 2 for n 6= 2,6.

Proposition 9.5 N(n)≤ n−1.

Proof Take a set{L1, . . . ,Lr} of MOLS of ordern. We can change the symbols
in each Latin square to be anything we like. So let us agree that each square has
entry 1 in the top right-hand cell (in row 1 and column 1).

Now each square containsn−1 further entries 1. None of them can be in the
first row or first column, since this would violate the Latin square condition. Also,
no two of the entries 1 in different squares can be in the same cell. For any two
cells Li andL j have entries(1,1) in the top right-hand cell, so this combination
cannot occur anywhere else.

So ther(n−1) further entries 1 in ther squares fit in to the(n−1)2 positions
outside the first row and column without overlap. So we must haver(n− 1) ≤
(n−1)2, whencer ≤ n−1 (sincen > 1).

Here is an important theorem of Bose about when equality can hold. Recall
the definition of aprojective planeof ordern from Chapter 7: a set ofmsubsets of
{1, . . . ,m}, wherem= n2 +n+1, such that each subset containsn+1 elements,
each element of{1, . . . ,m} lies in n+1 subsets, and any two subsets intersect in
exactly one point.

Theorem 9.6 We have N(n) = n−1 if and only if there is a projective plane of
order n.

The proof of this theorem is given in the next section.

If n is a prime power, we have seen that there exists a fieldF with n elements.
Now every non-zero element ofF is a unit (by definition of a field). So all the ma-
tricesL(a) for a∈F , a 6= 0, are Latin squares; and any two of them are orthogonal,
since ifa1 6= a2 thena1−a2 is a unit. Thus:
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Proposition 9.7 If there exists a field of order n (that is, if n is a prime power),
then N(n) = n−1.

It is thought that the converse of this proposition is also true. But this is not
proved, and seems to be one of the hardest open problems in combinatorics. We
know thatN(6) = 2, and that 3≤ N(10)≤ 6. But apart fromn = 6, there is not a
single non-prime-power value ofn for whichN(n) is known!

9.5 Appendix: Proof of Bose’s Theorem

This proof is closely connected with classical topics in projective geometry, going
back to the invention of perspective by Renaissance artists and mathematicians.

Recall the statement of the theorem:

Theorem 9.8 For an integer n≥ 2, the following are equivalent:

(a) there exists a projective plane of order n;

(b) there exists a set of n−1 mutually orthogonal Latin squares of order n.

Proof The two constructions are just the reverse of each other.

(a) implies (b): We are given a projective plane of ordern, consisting ofn2 +
n+1 points and the same number of(n+1)-element subsets called lines, so that
any two lines intersect in a unique point.

Pick a lineL. This will play a special role in our construction, corresponding
to the ‘line at infinity’ where parallel lines ‘meet’. Also, select two special points
X andY in L, and number the remaining points asZ1, . . . ,Zn−1.

The pointX lies on n+ 1 lines, one of which isL. Number the others as
x1, . . . ,xn. Similarly number the remaining lines throughY asy1, . . . ,yn, and the
remaining lines throughZi aszi1, . . . ,zin for i = 1, . . . ,n−1.

Any point P not onL lies on a unique linex j throughX and a unique lineyk

throughY. The linesx j andyk intersect just in{P}. We identifyP with the cell
( j,k) in row j and columnk of ann×n grid.

Now we can define arraysM(1), . . . ,M(n−1) as follows. LetP be the point
corresponding to cell( j,k) as above. There is a unique ine joiningP to Zi . If this
line iszis, then we put symbols in this cell iin the arrayM(i).

Claim: M(i) is a Latin square. For if the symbols occurred twice in the
same row, say in positions( j,k) and( j, l), then the lineszis andx j would have the
corresponding two points in common, which is not the case.



92 CHAPTER 9. LATIN SQUARES

Claim: M(i) andM( j) are orthogonal fori 6= j. For suppose we are looking
for a cell containing entrys in M(i) and entryt in M( j). The corresponding point
lies on the lineszis andzjt , and so is uniquely defined as their intersection. So
there is just one such cell.

So, from a projective plane of ordern, we have constructed a set ofn− 1
MOLS of ordern.

(b) implies (a): Reverse the above construction. Here is a sketch, with the
details left out. Suppose thatM(1),M(2), . . . ,M(n− 1) be MOLS. We build a
projective plane.

Thepointsare of two types. First, then2 ordered pairs( j,k), for 1≤ j,k≤ n.
Thenn+1 special pointsX,Y,Z1, . . . ,Zn−1. This makesn2 +n+1 altogether, the
right number.

The linesare of several types:

• n linesx j for j = 1, . . . ,n: x j contains the points( j,k) for k = 1, . . . ,n and
X.

• n linesyk for k = 1, . . . ,n: yk contains the points( j,k) for j = 1, . . . ,n and
Y.

• n(n−1) lineszis for i = 1, . . . ,n−1 ands= 1, . . . ,n: zi,s contains all points
( j,k) for whichM(i) jk = s, andZi .

• Finally, a line{X,Y,Z1, . . .Zn−1}.

One can check that this really is a projective plane of ordern.

Here is an example. We start with a pair of orthogonal Latin squares of order 3
and construct a projective plane. The lines are written in the same order as in the
above proof that (b) implies (a).

The Latin squares (which we have met before) are:

1 2 3
2 3 1
3 1 2

1 2 3
3 1 2
2 3 1

The 13 points of the projective plane are the pairsi j for 1≤ i, j ≤ 3 together with
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X,Y,Z1,Z2. The thirteen lines are:

11 12 13 X
21 22 23 X
31 32 33 X
11 21 31 Y
12 22 32 Y
13 23 33 Y
11 23 32 Z1

12 21 33 Z1

13 22 31 Z1

11 22 33 Z2

12 23 31 Z2

13 21 32 Z2

X Y Z1 Z2

Here it is in diagrammatic form. The lines throughX andY are the vertical and
horizontal lines of the grid; the lines throughZ1 andZ2 pass through the positions
of the three symbols in the squaresL1 andL2.
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Exercises

1. Let A andB be orthogonal Latin squares of ordern, which uses the symbols
0,1, . . . ,n− 1. Construct a matrixS in which the ith entry consists of the pair
(ai j ,bi j ), regarded as a two-digit number written in basen. Show thatS has the
properties

(a) its entries are all the integers from 0 ton2−1 inclusive;
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(b) the sum of the entries in any row or column isn(n2−1).

(This construction is due to Euler.)

2. Show that, up to permutations of rows and columns and changes in the names
of the symbols, there are just two different Latin squares of order 4. Show that
one, but not the other, has anorthogonal mate(a Latin square orthogonal to it).

3. Prove that the Latin square given by the addition table of the integers modn
has an orthogonal mate if and only ifn is odd.

4. Let A be a Latin square of ordern. Suppose that, for some positive integer
r < n, only the numbers 1, . . . , r occur in the firstr rows and columns ofA.

(a) Show that the submatrix ofA formed by the firstr rows and columns is a
Latin square of orderr.

(b) Show thatn≥ 2r.

(c) Give an example withr = 3 andn = 7.

5. Letm be an integer greater than 1. LetX(m) be the multiplication table of the
non-zero integers modm, that is, the(m−1)× (m−1) matrix defined as follows:
rows and columns are indexed by 1,2, . . . ,m−1, and the(i, j) entry isi j modm.

Prove thatX(m) is a Latin square if and only ifm is prime.

(∗∗) Does it have an orthogonal mate?



Chapter 10

Steiner triple systems

A Steiner triple system is a very special kind of family of sets. Here is the defini-
tion.

A Steiner triple systemis a family B of subsets of then-element setX =
{1, . . . ,n} with the properties

(a) every set inB has three elements;

(b) every two points ofX are contained in exactly one member ofB.

We often call the elements ofX “points” and the elements ofB “blocks” or
“triples”.

Examples Here are some examples. The first three are ‘trivial’, the last two are
more interesting.

• TakeX = /0, B = /0.

• TakeX = {1}, B = /0.

• TakeX = {1,2,3}, B = {{1,2,3}}.

• TakeX = {1,2,3,4,5,6,7} andB to be the Fano plane:
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• TakeX = {1, . . . ,9} and arrange the points ofX in a 3×3 grid. Now take
B to consist of the horizontal and vertical lines and the positions of the six

95
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terms in the formula for the determinant of a 3×3 matrix. Another way of
saying the same thing is that these six sets are the positions of the symbols
in a pair of orthogonal Latin squares of order 3.
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Steiner triple systems have various uses. For example, a Latin squareL = (l i j )
of ordern is calledidempotentif l ii = i, andtotally symmetricif l i j = k implies
l ji = k andl jk = i, for anyi, j,k. Now, given a Steiner triple system(X,B), where
X = {1, . . . ,n}, we construct a matrixL = (l i j ), wherel ii = i and, if i 6= j, then
l i j = k if {i, j,k} ∈ B. Conversely, any idempotent and totally symmetric Latin
square arises in this way from a Steiner triple system.

10.1 Existence ofSTS(n)

For which numbersn does there exist a STS(n)?

Theorem 10.1 Let (X,B) be a Steiner triple system of order n, where n> 0.
Then:

(a) Any element of X is contained in(n−1)/2 members ofB.

(b) |B|= n(n−1)/6.

(c) n≡ 1 or 3 mod 6.

Proof (a) Takex∈ X, and letr be the number of members ofB containingx.
Count pairs(y,B) whereB∈ B, y∈ X, andy 6= x. There aren−1 pointsy 6= x,
and for each suchy, there is a unique setB∈ B containingx andy; so there are
n− 1 such pairs. On the other hand, there arer choices ofB containingx, and
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then two choices ofy∈ B with y 6= x (since|B|= 3). So the number of pairs is 2r.
Thus 2r = n−1, whencer = (n−1)/2.

(b) Now count pairs(x,B) wherex∈X, B∈B, andx∈B. There aren choices
for x and(n−1)/2 choices for a setB containing it (by (a)). On the other hand,
there are|B| choices forB, and 3 choices for a pointx∈ B. So

n(n−1)/2 = 3|B|,

whence|B|= n(n−1)/6.

(c) Since(n−1)/2 must be an integer, we see thatn must be odd. Son≡ 1, 3,
or 5 mod 6. We have to exclude the last case. So suppose thatn = 6m+5. Then,
by (b),

|B|= (6m+5)(6m+4)
6

=
(6m+5)(3m+2)

3
,

which is impossible since 3 does not divide 6m+5 or 3m+2.

We saw that there exist Steiner triple systems of orders 1, 3, 7 and 9. The
above theorem shows that they do not exist for any other positive order less than
10. In order to show that there is a STS(n), we need to give a construction of one.
To prove the next result, we have to give infinitely many constructions. So the
proof is quite complicated! This theorem was first proved by Kirkman.

Theorem 10.2 There exists a Steiner triple system of order n if and only if either
n = 0 or n≡ 1 or 3 mod 6.

Proof We have seen the “only if” part already. So we have to take a numbern
congruent to 1 or 3 mod 6, and construct a STS(n).

For the cases wheren is congruent to 3 mod 6, we can give a direct construc-
tion. For the other cases, we have to use a rather complicated recursive construc-
tion, building up large systems from smaller ones. I wish there were a simpler
proof!

Casen≡ 3 mod 6: Let n = 3m, wherem is odd. We take the points of the
STS to be symbolsai ,bi ,ci , wherei = 0, . . . ,m−1: there are 3m= n such points.
The blocks are of two types:

(a) sets{ai ,bi ,ci}, for i = 0,1, . . . ,m−1;

(b) sets{ai ,a j ,bk}, {bi ,b j ,ck} and{ci ,c j ,ak}, wherei 6= j andi+ j ≡2k modm.
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All addition in this proof will be modm, so the last condition will simply be
written asi + j = 2k. We note that, in this equation, any two ofi, j,k determine
the third. (Clearlyi andk determinej = 2k− i, and similarly j andk determinei.
Supposei and j are given. Sincem is odd, we have gcd(2,m) = 1, so 2 is a unit
in Zm; so there is a uniquek satisfying 2k = i + j, namelyk = h(i + j), whereh is
the inverse of 2 modm.) Moreover, if the two given values are unequal, then the
third value is different from both. (Clearlyi = k implies j = k. If i = j then the
equation reads 2i = 2k which has the solutioni = k.)

Clearly every block is a set of size 3, so condition (a) of the definition holds.
We have to verify (b). So choose two pointsp andq; we have to show that there
is a unique block containing them. There are several cases:

(a) p= ai , q= a j ( j 6= i). Now i and j determine a uniquek such thati + j = 2k;
and{ai ,a j ,bk} is the unique block containingp andq.

(b) p = bi , q = b j , or p = ci , q = c j : the argument is similar.

(c) p= ai , q= bi : clearly there is a unique block{ai ,bi ,ci} of type (a) contain-
ing p andq.

(d) p = bi , q = ci , or p = ci , q = ai : the argument is similar.

(e) p = ai , q = bk wherek 6= i. There is a uniquej satisfyingi + j = 2k; and
j 6= i. So the unique block is{ai ,a j ,bk}.

(f) p = bi , q = ck, or p = ci , q = ak, wherek 6= i: the argument is similar.

For n = 9, we obtain the twelve blocks

{a0,b0,c0},{a1,b1,c1},{a2,b2,c2},{a0,a1,b2},{a0,a2,b1},{a1,a2,b0},
{b0,b1,c2},{b0,b2,c1},{b1,b2,c0},{c0,c1,a2},{c0,c2,a1},{c1,c2,a0}.

Casen≡ 1 mod 6: This case is much harder. I will give one example of
a recursive construction here, and put the complete proof of the theorem in an
appendix to this chapter.

Proposition 10.3 Suppose there exists aSTS(n). Then there exists aSTS(2n+1).
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Proof Let (X,B) be a STS(n), whereX = {1,2, . . . ,n}. We take a new set

Y = {a1, . . . ,an,b1, . . . ,bn,c},

with |Y|= 2n+1, and construct a setC of blocks; we show that these blocks form
a STS(2n+1).

The blocks are of two types:

(a) {ai ,bi ,c}, for i = 1, . . . ,n.

(b) For every block{i, j,k}∈B, the four blocks{ai ,a j ,bk}, {a j ,ak,bi}, {ak,ai ,b j},
and{bi ,b j ,bk}.

Clearly every block contains three points, so (a) of the definition holds. Take two
points p andq; we have to show that just one block contains them. There are
several cases:

(a) p = c, q = ai : a unique block{ai ,bi ,c} ∈ C containsp andq.

(b) p = c, q = bi , or p = ai , q = bi : the argument is similar.

(c) p = ai , b = a j with i 6= j: there is a unique block{i, j,k} ∈B containingi
and j, and then a unique block{ai ,a j ,bk} ∈ C containingp andq.

(d) p = ai , q = b j , with i 6= j: the argument is similar.

(e) p = bi , q = b j , with i 6= j: there is a unique block{i, j,k} ∈B containingi
and j, and then a unique block{bi ,b j ,bk} ∈ C containingp andq.

For n = 3, starting with the single block{1,2,3}, we obtain seven blocks

{a1,b1,c},{a2,b2,c},{a3,b3,c},{a1,a2,b3},{a2,a3,b1},{a3,a1,b2},{b1,b2,b3}

of STS(7).
This method constructs Steiner triple systems of orders 7, 15, 19, 31, . . . ,

but leaves several values undecided, such as 13, 25, 29, 37, . . . . These will be
settled in the Appendix. The general principle is always the same (we build larger
systems out of smaller ones) except in one case, where we have to give a direct
construction: this isn = 13, where we can take the point set to be{0, . . . ,12} (the
integers mod 13), and the blocks to be

{0,1,4},{1,2,5},{2,3,6},{3,4,7},{4,5,8},{5,6,9},{6,7,10},
{7,8,11},{8,9,12},{0,9,10},{1,10,11},{2,11,12},{0,3,12},
{0,2,8},{1,3,9},{2,4,10},{3,5,11},{4,6,12},{0,5,7},{1,6,8},
{2,7,9},{3,8,10},{4,9,11},{5,10,12},{0,6,11},{1,7,12}
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Note that it is not necessary to remember all these blocks. We start with the
two blocks{0,1,4} and{0,2,8}, and produce the rest of the system by adding
x to each of their elements mod 13, forx = 1, . . . ,12. (This process is called the
developmentof the two blocks mod 13.)

There is a simple test for a starting set of blocks in this construction:

Proposition 10.4 Let B1, . . . ,Bk be 3-element subsets ofZn. Then the develop-
ment of{B1, . . . ,Bk} is a Steiner triple system if and only if every non-zero element
of Zn has a unique representation in the form x−y, where x,y∈Bi for some i with
1≤ i ≤ k. If this holds, then n= 6k+1.

Proof We will prove it one way round. Suppose that the condition of the Propo-
sition holds, and letu,v be distinct elements ofZn. We want to show that there
are unique elementsi,z with 1≤ i ≤ k andz∈ Zn such thatu,v∈ Bi + z. If this
is to hold, we must haveu− z,v− z∈ Bi . But (u− z)− (v− z) = u− v, and by
assumption there are uniquei,x,y such thatu− v = x− y with x,y ∈ Bi . So we
must haveu−z= x andv−z= y, whencez andi are uniquely determined.

Moreover, then−1 non-zero elements must be given by the 6 differences for
each of thek blocks, son−1 = 6k, as required.

In the above example, we have the following expressions for elements ofZ13

as differences from{0,1,4} and{0,2,8}:

1 = 1−0 2= 2−0 3= 4−1 4= 4−0
5 = 0−8 6= 8−2 7= 2−8 8= 8−0
9 = 0−4 10= 1−4 11= 0−2 12= 0−1

For a simpler example, we get STS(7) as the development of a single block
{0,1,3} in Z7:

1 = 1−0 2= 3−1 3= 3−0
4 = 0−3 5= 1−3 6= 0−1

10.2 Kirkman’s schoolgirls

Despite their name, Steiner triple systems were invented, not by Steiner, but by
Kirkman; he gave the definition and proved Theorem 10.2 several years before
Steiner published a paper asking whether or not they exist. The reason we do not
call them “Kirkman triple systems” is that this name has been used for something
a bit different.

Kirkman posed the following problem:



10.3. APPENDIX: PROOF OF KIRKMAN’S THEOREM 101

Fifteen schoolgirls go for a walk every day for a week in five rows of
three. Is it possible to arrange the walks so that every two girls walk
together exactly once during the week?

Let X = {1, . . . ,15}, and letB be the set of all groups of three girls who walk
together during the course of the week. Then the terms of the problem require that
(X,B) is a Steiner triple system. But there is more structure. The 15·14/6 = 35
blocks of the Steiner triple system must have a partition into seven sets of five
(corresponding to the days of the week) such that the five blocks in each part of
the partition themselves form a partition ofX.

We say that a Steiner triple system(X,B) is resolvable, or is aKirkman triple
system, if the setB can be partitioned into subsetsB1, . . . ,Br such thatBi is a
partition ofX for i = 1, . . . , r.

Here is an example of a Kirkman triple system of order 9. The twelve blocks
are arranged into four rows forming the required partition.

B1 : {{1,2,3},{4,5,6},{7,8,9}}
B2 : {{1,4,7},{2,5,8},{3,6,9}}
B3 : {{1,5,9},{2,6,7},{3,4,8}}
B4 : {{1,6,8},{2,4,9},{3,5,7}}

Since then points must be partitioned by the blocks, each of which has size 3,
we see thatn must be divisible by 3 for such a system to exist. Since we know
thatn is odd, we conclude thatn must be congruent to 3 mod 6.

Now each classBi containsn/3 blocks. Since there aren(n− 1)/6 blocks
altogether, we see that the number of classes is equal to(n−1)/2. This can be
verified another way. We know that each point lies in(n−1)/2 blocks; but exactly
one of these blocks belongs to each classBi , so there must be(n−1)/2 classes.

Kirkman himself constructed a solution to the problem withn = 15 (his orig-
inal ‘schoolgirls problem’). It took 120 years before the general case was finally
solved by Ray-Chaudhuri and Wilson in the 1970s. They proved the following
theorem (which is too complicated for this course!)

Theorem 10.5 For n > 0, there exists a Kirkman triple system of order n if and
only if n≡ 3 mod 6.

10.3 Appendix: Proof of Kirkman’s Theorem

Kirkman’s Theorem states that a Steiner triple system of ordern exists if and only
if n = 0 or n is congruent to 1 or 3 mod 6. We have seen that this condition is
necessary, and we have to show that it is sufficient: in other words, ifn satisfies
the congruence condition, then we can construct a STS of ordern.
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This is a good example of a combinatorial construction. It contains both a
direct part (for numbers congruent to 3 mod 6, which we saw already) and a
recursive part; the recursive part shows that one small case (n = 13) remains to
be dealt with (we already gave a construction for this value); and as we will see
below, it requires the construction of an ‘auxiliary’ structure for use in the main
construction (this is a STS containing a subsystem of order 7, which we now
define).

Let (X,B) be a Steiner triple system, and letY be a subset ofX. We say
thatY is asubsystemif, for any two pointsy1,y2 ∈Y, the unique block of(X,B)
containingy1 and y2 is contained inY. If Y is a subsystem, andC is the set
of blocks which are contained inY, then(Y,C ) is a Steiner triple system in its
own right. Given any Steiner triple system(X,B) with |X| ≥ 3, there are some
obvious subsystems which always exist: the empty set; any 1-element set{x};
and any block ofB.

Our main recursive construction is given by the following result:

Theorem 10.6 Let (X,B) be a Steiner triple system of order v containing a sub-
system Y of order u, and let(Z,D) be a Steiner triple system of order w. Then
there exists a Steiner triple system of order u+w(v−u). Moreover, if0 < u < v
and w> 1, then we may assume that this system contains a subsystem of order7.

Remark If we takev = 3 andu = 1 (that is,(X,B) consists of a single block
and the subsystem is a single point), then we obtain a Steiner triple system of
order 1+2w. This is precisely the construction of Proposition 10.3. So the above
theorem generalises that proposition.

Proof We take the point set of the new system to beY∪ ((X \Y)×Z), which
does indeed haveu+(v−u)w points, since|Y|= u, |X \Y|= v−u, and|Z|= w.
We setm= v−u = |X \Y|, and number the points ofX \Y with the elements of
Zm.

The blocks of the new system are of the following types:

(a) All blocks contained inY.

(b) All blocks of the form{y,(x,z),(x′,z)}, wherey ∈ Y, x,x′ ∈ X \Y, z∈ Z,
and{y,x,x′} ∈B.

(c) All blocks of the form{(x,z),(x′,z),(x′′,z)}, wherex,x′,x′′ ∈ X \Y, z∈ Z,
and{x,x′,x′′} ∈B.



10.3. APPENDIX: PROOF OF KIRKMAN’S THEOREM 103

(d) All blocks of the form{(xi ,z),(x j ,z′),(xk,z′′)}, wherexi ,x j ,xk ∈ X \Y,
z,z′,z′′ ∈ Z. {z,z′,z′′} is a block ofD , and i + j + k = 0 in Zm. [Recall
that points ofX \Y are indexed by elements ofZm.]

Now we have to show that any two points lie in a unique block. There are
several cases:

• Two points ofY lie in a unique block of type (a).

• A point of Y and a point of(X \Y)×Z lie in a unique block of type (b).

• Two points of(X \Y)×Z with the sameZ-coordinate lie in a unique block
of type either (b) or (c).

• Two points of(X \Y)×Z with differentZ-coordinates lie in a unique block
of type (d). [Note that any two ofi, j,k uniquely determine the third.]

So we do have a STS.
For the last part, assume thatu 6= 0. Thenu andv are odd, som= v−u is even.

Choose a block ofB of the form{y,x,x′}, wherey∈ Y andx,x′ ∈ X \Y. Then
choose the indexing ofX \Y by Zm such thatx = x0 andx′ = xm/2. Let {z,z′,z′′}
be a block ofD . Then the seven points

y,(x0,z),(x0,z
′),(x0,z

′′),(xm/2,z),(xm/2,z
′),(xm/2,z

′′)

and the seven blocks

{y,(x0,z),(xm/2,z)},{y,(x0,z
′),(xm/2,z

′)},{y,(x0,z
′′),(xm/2,z

′′)}
{(x0,z),(xm/2,z

′),(xm/2,z
′′)},{(xm/2,z),(x0,z

′),(xm/2,z
′′)},

{(xm/2,z),(xm/2,z
′),(x0,z

′′)},{(x0,z),(x0,z
′),(x0,z

′′)}

form a subsystem. [Note that 0+0+0 = 0+(m/2)+(m/2) = 0 in Zm.]

Example Earlier, we were unable to construct STS of orders 25 or 37. With
Theorem 10.6, we can now construct these, using

25= 1+3(9−1), 37= 1+3(13−1).

(This is shorthand for saying: there exists a STS(9) containing a STS(1) subsys-
tem, and also a STS(3), so by Theorem 10.6 there is a STS(1+ 3(9− 1)), and
similarly for the other one.
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We now turn to the proof of Kirkman’s Theorem. I will write the proof as an
argument by contradiction. That is, letA(n) be the statement that a STS(n) exists.
We say thatn is admissibleif n is congruent to 1 or 3 mod 6. I will assume thatn
is the smallest admissible number for which an STS(n) does not exist, and deduce
a contradiction. It is necessary to have another induction going on at the same
time. LetB(n) be the statement that there exists a STS(n) containing a subsystem
of order 7. I will prove that ifn is congruent to 9 mod 12 andn≥ 15, thenB(n)
holds.

First let us considerA(n). Suppose thatA(m) is true for all admissible numbers
m< n.

• If n is congruent to 3 mod 6, then the direct construction in Theorem 10.2
gives an STS(n). So we only have to deal with numbers congruent to
1 mod 6.

• If n is congruent to 7 mod 12, thenn = 12k+ 7 = 1+ 2(6k+ 3). By as-
sumption,A(6k+3) holds; thenA(12k+7) follows from Proposition 10.3.
So we only have to deal with numbers congruent to 1 mod 12.

• We separate these according to their congruence mod 36.

– If n is congruent to 1 mod 36, thenn = 36k+1 = 1+3(12k+1−1),
andA(12k+1) is true, soA(36k+1) is true.

– If n is congruent to 25 mod 36, thenn= 36k+25= 1+3(12k+9−1),
andA(12k+9) is true, soA(36k+25) is true.

– If n is congruent to 13 mod 36, thenn= 36k+13= 7+3(12k+9−7).
so we need a STS(12k+ 9) with a subsystem of order 7, that is, we
need to know thatB(12k+ 9) is true, andA(36k+ 13) will follow.
We are going to prove this fork ≥ 1. For k = 0, we gave a direct
construction of STS(13) on pp. 99–100. (Note that we already know
that an STS of order 12k+ 9 exists by Theorem 10.2, but that one
doesn’t have the required subsystem.)

So we have to proveB(12k+ 9) for k≥ 1. Again we split into congruences
mod 36.

• If n is congruent to 9 mod 36, thenn = 36k+9 = 3+(9−3)(6k+1). So
A(6k+1) together with Theorem 10.6 give the result.

• If n is congruent to 21 mod 36, thenn= 36k+21= 3+(9−3)(6k+3). So
A(6k+3) together with Theorem 10.6 gives the result.
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• If n is congruent to 33 mod 36, thenn= 36k+33= 3+(12k+13−3)3, So
A(12k+13) together with Theorem 10.6 give the result.

Although phrased as a “minimal counterexample’ argument, this proof is es-
sentially constructive. For example, how to construct a STS(625)? We have

• 625 is congruent to 13 mod 36, so we write 625= 7+3(213−7); we need
a STS(213) with a subsystem of order 7.

• 213 is congruent to 33 mod 36, so we write 213= 3+3(73−3); we need a
STS(73).

• 73 is congruent to 1 mod 36, so we write 73= 1+ 3(25− 1); we need a
STS(25).

• We already saw how to construct this: write 25= 1+3(9−1), so we need
a STS(9), which of course we know (it is given by the direct construction at
the start of Theorem 10.2).

In fact, we could construct STS(625) more easily by using the fact that 625=
252 = 0+ 25(25−0) and the existence of STS(25). But a general proof cannot
rely on lucky accidents like this!

Exercises

1. Suppose that an STS(v) of orderv on a setX has a subsystemY of orderu,
with u < v. Show thatv≥ 2u+1. [Hint: Let x be a point not inY. Show that the
triples containingx and a point ofY are all distinct.]

2. Prove directly that if an STS(v) and an STS(w) exist, then an STS(vw) exists.
Show further that, ifv,w≥ 3, then we can find a STS(vw) containing a subsystem
of order 9.

3. Let Z2 denote the integers mod 2. LetX be the set of allnon-zerovectors in
the n-dimensional vector space(Z2)n. Let B be the set of all triples{x,y,z} of
vectors ofX satisfyingx+y+z= 0.

(a) Prove that(X,B) is a Steiner triple system of order 2n−1.

(b) Identify the Fano plane as a Steiner triple system of this form.

4. Let X = {1, . . . ,n} and suppose thatB is a collection of 3-element subsets of
X with the property that any two members ofB intersect inat mostone element.
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(a) Let rx denote the number of members ofB containing the elementx ∈
{1, . . . ,n}. Show thatrx ≤ b(n−1)/2c.

(b) By counting pairs(x,B), with x∈ X andB∈B, show that

|B|=
∑x∈{1,...,n} rx

3
.

(c) Deduce that

|B| ≤
⌊

n
3

⌊
n−1

2

⌋⌋
.

(d) Hence or otherwise show that, ifn = 6, then|B| ≤ 4.

(e) Find an example of four 3-element subsets of{1, . . . ,6} which satisfy the
hypothesis|Bi ∩B j | ≤ 1 for Bi ,B j ∈B, i 6= j.
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Solutions to odd-numbered exercises

Chapter 1

1. 1001= 7 · 11· 13. So the numerator has to contain numbers divisible by all
three primes. Son≥ 13. A little trial and error shows that

1001=
14·13·12·11

4·3·2·1
=
(

14
4

)
.

3. We show first that
n

∑
k=0

k(k−1)
(

n
k

)
= n(n−1)2n−2. This can be shown in two

ways:

(a) Take the Binomial Theorem
n

∑
k=0

(
n
k

)
xk = (1+x)n, differentiate twice, and

putx = 1.

(b) Use the fact thatk(k−1)
(

n
k

)
= n(n−1)

(
n−2
k−2

)
for k≥ 2. (The terms for

k = 0,1 are zero.) Now sum overk.

Thus

n

∑
k=0

k2
(

n
k

)
=

n

∑
k=0

k(k−1)
(

n
k

)
+

n

∑
k=0

k

(
n
k

)
= n(n−1)2n−2+n2n−1 = n(n+1)2n−2.

5. Here it is forn congruent to 0 mod 8. In this case, we have

(1+ i)n = 2n/2.

107
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Equating real and imaginary parts gives

bn/2c

∑
j=0

(−1) j
(

n
2 j

)
= 2n/2,

b(n−1)/2c

∑
j=0

(−1) j
(

n
2 j +1

)
= 0.

So, if S0,S1,S2,S3 denote the sums of binomial coefficients fork congruent to
0,1,2,3 mod 4 respectively, we have

S0−S2 = 2n/2, S1−S3 = 0.

Since we already know that

S0 +S2 = S1 +S3 = 2n−1,

we conclude that

S0 = 2n−2 +2(n−2)/2, S1 = 2n−2, S2 = 2n−2−2(n−2)/2, S3 = 2n−2.

As a check, whenn = 8, we have

S0 = 1+70+1= 72, S1 = 8+56= 64, S2 = 28+28= 56, S3 = 56+8= 64.

7. (a)
n−k
k+1

(
n
k

)
=

(n−k) ·n(n−1) · · ·(n−k+1)
(k+1) ·k(k−1) · · ·1

=
(

n
k+1

)
.

(b) The ratio of

(
n

k+1

)
to

(
n
k

)
is (n− k)/(k+ 1). This ratio is>,=,<1

according asn−k is >,=,<k+1, that is, asn is >,=,<2k+1.

(c) By part (b), the binomial coefficients increase until the point wheren =
2k+1 (if this occurs), at which point they remain constant for one step and then
decrease. This happens ifn is odd. If n is even, then there is no value ofk for
which n = 2k+ 1, so the binomial coefficients increase untilk = n/2 and then
decrease.

(d) This follows immediately from (c).

(e) Suppose thatn = 2m. Then

(
2m
m

)
is the largest of the 2m+ 1 binomial

coefficients

(
2m
0

)
, . . . ,

(
2m
2m

)
. Now the sum of these binomial coefficients is

22m (see Property 1 in section 1.3 of the notes). The largest binomial coefficient
is smaller than the sum, and larger than the average. This gives the stated result.

Here is a chart of the binomial coefficients

(
20
k

)
, for k = 0, . . . ,20.
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We have

220

21
= 49932.19. . . ,

(
20
10

)
= 184756, 220 = 1048576.

Chapter 2

1. (a) 75 = 16807; 7650 (see below) ; 33 ·42 +43 ·32 = 1008.
The argument for the second number goes like this. There are three choices

for which of 1,2,3 can occur; so we do the calculation for the case that 1 and 2
but not 3 occur and multiply by 3.

Suppose that 1 and 2 occur ink positions. There are

(
5
k

)
ways to choose

these positions; 2k−2 ways to fill them with 1s and 2s (we are not allowed to use
all 1s or all 2s) and 45−k ways to fill the remaining positions with 4,5,6,7. So the
total is

(25−2)+5(24−2)4+10(23−2)42 +10(22−2)43 = 2550.

In (c) there are two terms in the sum because the sequence might begin with
an even number or an odd number. In the first case, there are three even numbers
which can be chosen from{2,4,6} in 33 ways, and two odd numbers which can
be chosen from{1,3,5,7} in 42 ways. The other term is similar.

(b) (7)5 = 2520; 1440 (see below);(3)3 · (4)2 +(4)3 · (3)2 = 216.
For the first and third parts, simply replace the formulank by (n)k everywhere.
For the second part, there are 3 choices for which of 1,2,3 to use, and 5·4= 20

choices for their positions; the remaining entries are filled from the other four
numbers, in(4)3 ways. So there are 1440 such sequences.
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3. (a)mn; (b) (m)n; (c) n! (we must havem= n in this case); (d) see Chapter 6.

5. We have

W(n) = 1+n+n(n−1)+n(n−1)(n−2)+ · · ·+n!.

Every term except the first two contains the product of two consecutive integers
and so is even. So the parity ofW(n) is the same as that of 1+n, that is, even ifn
is odd andvice versa.

Chapter 3

1. Divide up the permutationsπ according to the value of the smallest numberk
for whichπ maps{1, . . . ,k} into itself. Note thatk takes values 1,2, . . . ,n, and that
k = n if and only if π is indecomposable. (On the other hand,k = 1 if and only if
π fixes 1.) Thenπ induces an indecomposable permutation on the set{1, . . . ,k},
and an arbitrary permutation on the set{k+ 1, . . . ,n}. So there areg(k)(n− k)!
permutations with a given value ofk. Summing overk, we get all permutations,
so the total isn!.

Consider the productF(x)(1−G(x)). The constant term is 1·1= 1. Forn> 1,
the coefficient ofxn is obtained by taking the term inxn−k from F(x) and the term
in xk from 1−G(x) for k= 1, . . . ,n, together with one more term which is the term
in xn from F(x) and the constant term from 1−G(x). So the coefficient ofxn in
the product is

n

∑
k=1

−g(k)(n−k)! +n! = 0.

SoF(x)(1−G(x)) = 1.

Chapter 4

1. Clearlys(1) = 1.
An expression with sumn could simply ben. Otherwise, if the last term is

n−k (wherek = 1, . . . ,n−1), then the terms before the last sum tok, and form an
arbitrary expression summing tok. So we have

s(n) = 1+
n−1

∑
k=1

s(k).

Now for n > 1, we see that

s(n−1) = 1+
n−2

∑
k=1

s(k),
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and so

s(n) = 1+
n−2

∑
k=1

s(k)+s(n−1) = 2s(n−1).

This recurrence with the initial conditions(1) = 1 has solutions(n) = 2n−1,
as is easily shown by induction.

3. (a) We have seen that the answer is thenth Fibonacci numberF(n).
(b) Suppose that I hand overk coins of value 2 pence. Then we must have

0≤ k≤ bn/2c, and I must also includen−2k coins of value 1 penny. So the total
number of ways of paying is the number of choices ofk, which is 1+ bn/2c.
5. It is clear thatan is a power of 2 for alln. So putan = 2bn. Then we find that
b0 = 1 andbn = 2bn−1 for all n. Sobn = 2n, and we conclude thatan = 22n

.

7. Begin by recalling the recurrence relation for the derangement numbers:

d0 = 1, d1 = 0, dn = (n−1)(dn−1 +dn−2) for n≥ 2.

(a) Induction onn. For n = 1, d1 = 0 = 1+(−1)1. so the result holds. Now
assume thatdn−1 = (n−1)dn−2 +(−1)n−1. Then

dn = (n−1)dn−1 +(n−1)dn−2

= (n−1)dn−1 +dn−1− (−1)n−1

= ndn−1 +(−1)n,

so it holds forn. Thus the formula is proved for alln.

(b) Induction onn. The formula is clear forn = 0. Suppose that it holds for

n−1, that is,dn−1 = (n−1)!
n−1

∑
k=0

(−1)k/k!. Then

dn = ndn−1 +(−1)n

= n!
n−1

∑
k=0

(−1)k

k!
+

(−1)nn!
n!

= n!
n

∑
k=0

(−1)k

k!

as required.

(c) We have

(e−x)(1−x)−1 =

(
∑
n≥0

(−1)nxn

n!

)(
∑
n≥0

xn

)
.
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The coefficient ofxn in this product is

n

∑
k=0

(−1)k

k!
=

dn

n!
,

by (b); but this is the same as the coefficient ofxn in D(x).

Chapter 5

1. (i) We haveS(2,2) = 1 and

S(n,2) = S(n−1,1)+2S(n−1,2) = 1+2S(n−1,2)

for n≥ 3. By induction we now getS(n,2) = 2n−1−1 for all n≥ 2. (The induction
starts atn = 2. AssumingS(n−1,2) = 2n−2−1, we haveS(n,2) = 1+2(2n−2−
1) = 2n−1−1.)

We haveS(2,1) = 1 and

S(n,n−1) = S(n−1,n−2)+(n−1)S(n−1,n−1) = S(n−1,n−2)+(n−1).

Again the required result follows by induction, the details of which are left to you.

(ii) The set{1, . . . ,n} has 2n subsets. Two of these (the empty set and the
whole set) cannot occur as parts in a partition with two parts. Each of the other
2n−2 sets occurs with its complement in a unique partition. So the number of
partitions is(2n−2)/2 = 2n−1−1.

A partition with n− 1 parts must have one part of size 2 and all the rest of

size 1. There are

(
n
2

)
ways to choose the part of size 2; all the other points lie in

parts of size 1.

A partition withn−2 parts either has two parts of size 2 or one of size 3, with
all remaining parts of size 1. So we have

S(n,n−2) =
(

n
2

)(
n−2

2

)/
2+
(

n
3

)
=

n(n−1)(n−2)(3n−1)
24

.

(The division by 2 in the first term is because the two parts of size 2 can be chosen
in either order yielding the same partition.)

3. (a) See the calculation of the table of values of Stirling numbers of the first kind
on p. 54 of the text. We see thats(6,3) =−225, so the number of permutations is
225 (the minus sign indicates that they are all odd permutations).
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The possible cycle lengths are three positive numbers summing to 6; these are
[1,1,4], or [1,2,3], or [2,2,2].

There are

(
6
4

)
= 15 ways to choose the four points to form the 4-cycle, and

3! = 6 possible 4-cycles on this set. So 90 permutations with cycle lengths[1,1,4].

There are

(
6
3

)
= 20 choices of three points for a 3-cycle, and two 3-cycles on

this set. Then

(
3
2

)
choices of two points for the 2-cycle, and the rest is determined

uniquely. So 120 permutations with cycle lengths[1,2,3].

There are

(
6
2

)(
4
2

)(
2
2

)
= 90 choices of three 2-cycles; but they could be

chosen in any order, so we have to divide by 3!= 6, giving 15 permutations with
cycle lengths[2,2,2].

Total 90+120+15= 225.

Chapter 6

1. The percentage of people satisfied with none of the candidates is

100−65−57−58+28+30+27−12=−7,

which is impossible. So the data is incorrect.

Chapter 7

1. Let n = 2k. Out of each complementary pair of sets of sizek, F contains
exactly one. The resulting family satisfies

|F |= 1
2

(
2k
k

)
=
(

2k−1
k−1

)
,

since it contains one out of each complementary pair ofk-sets by construction.
Moreover,F is an intersecting family. For takeA,B∈F ; thenA andB cannot be
disjoint, since disjointk-sets are complementary and we took just one out of each
complementary pair.

There are1
2

(
2k
k

)
=
(

2k−1
k−1

)
complementary pairs ofk-sets, and so 2 raised

to this power number of choices of one set from each complementary pair. So this
is the number of maximum intersecting families of this form.
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Clearly there are only 2k sets of the formFk(i), sincei = 1, . . . ,n= 2k. This is
much much smaller than the number of families just constructed. Even forn = 6,
we constructed 210 = 1024 families of which only six are of the formFn(i).

The Erd̋os–Ko–Rado Theorem says that every intersecting family ofk-subsets

of ann-set of maximum size

(
n−1
k−1

)
has the formFk(i) if n > 2k. The above

construction shows that this is not true ifn = 2k.

3. By trial and error, or otherwise, the polynomialx3 + x+1 is irreducible over
Z2, so we adjoin a rootα of this polynomial. Elements of the resulting field have
the forma+bα +cα2, wherea,b,c∈ Z2; so there are eight elements, namely

0,1,α,α +1,α2,α2 +1,α2 +α,α2 +1.

Addition is done by adding the coefficientsa,b,c mod 2, so that, for example,

(α2 +1)+(α2 +α) = α +1.

To multiply, we use the fact thatα3 = α +1 (sinceα is a root ofx3 +x+1 = 0),
and soα4 = α2 +α. So for example

(α2 +1) · (α2 +α) = α
4 +α

3 +α
2 +α

= α
2 +α +α +1+α

2 +α

= α +1.

5. Any further set must contain at least one of 1 and 2 (if not, it would be contained
in {3,4,5}) and can’t contain both (or it would contain{1,2}). Similarly, such a
set must contain at least one of 3,4,5 but cannot contain them all. So to get such a
set we must include one of{1} and{2}, and one of the six subsets{3}, {4}, {5},
{3,4}, {3,5}, {4,5}, and take their union. This gives 2·6 = 12 possible sets.

However, we cannot take all of these sets. If we take{1,3}, then{1,3,4} and
{1,3,5} are not permitted. In fact, we can take at most six of these sets: for if we
arrange the six sets containing 1 in pairs

({1,3},{1,3,4}),({1,4},{1,4,5}),({1,5},{1,3,5}),

and similarly for the sets containing 2, we can choose at most one of each pair. So
we can’t have more than 2+6 = 8 sets altogether.

However, we can obtain a Sperner family with 8 sets, by combining 1 with the
1-element subsets of{3,4,5}, and 2 with the 2-element subsets:

{1,2},{3,4,5},{1,3},{1,4},{1,5},{2,3,4},{2,3,5},{2,4,5}.
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7. Follow the hint.
On one hand, if we choose the pointi, there arer i choices ofA j containing it,

and(r i −1) choices ofAk (which must be different fromA j ), so r i(r i −1) such
triples beginning withi. To count all the triples, we have to sum this expression
over all values ofi from 1 ton.

On the other hand, if we chooseA j andAk first, there areb choices forA j

and (b− 1) choices forAk; then |A j ∩Ak| = 1, so there is just one choice fori
belonging to both these sets. So the number of triples isb(b−1).

Equating these two expressions gives the result.

In the family S of Question 6, each point lies in three sets ofS . So each
term in the sum is 3·2 = 6, and the sum is 7·6 = 42. On the other hand,b = 7, so
the right-hand side is also 7·6 = 42.

Chapter 8

1. Take the Fano plane to have the sets 123,145,167,246,257,347,356. Clearly
(1,4,6,2,7,3,5) is an SDR.

There are in all 24 SDRs for the Fano plane. Our arguments for this will
be based to some extent on ‘symmetry’. Thus, for example, we can choose any
element of 123 to be its representative, so ‘by symmetry’ we may choose 1. Again
by symmetry, we can choose either of 4 and 5 as the representative of the second
set, and either of 6 and 7 as the representative of the third. Suppose that we choose
4 and 6. Removing these representatives from the last four sets gives

2,257,37,35.

We must use 2 as representative of the fourth set. Then it is easy to see that there
are just two choices for the other three, namely(5,7,3) or (7,3,5).

So altogether there are 3·2·2·2 = 24 SDRs.

3.

(a) Clearly{{1},{2},{3}} has just one SDR.

(b) {{1,2},{1,2},{3}} has two SDRs, since both 1 and 2 and be representa-
tives for the first two sets.

(c) {{1,2},{2,3},{1,2,3}} has three SDRs. Check that there are three choices
of representatives for the first two sets; then the unused element can be the
representative of the last set.
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(d) {{1,2},{1,2,3},{1,2,3}} has four SDRs. For there are two choices for the
representative of the first set; if 1 is chosen, then the remaining elements of
the other two sets are{{2,3},{2,3}, with two SDRs, and similarly if 2 is
chosen.

(e) For{{1,2,3},{1,2,3},{1,2,3}}, any permutation of(1,2,3) will be a valid
SDR.

Suppose that we have a family of three subsets of{1,2,3} with five SDRs, say
all except(1,2,3). Then since(1,3,2), (2,1,3) and(3,2,1) are all SDRs, we see
that each of 1,2,3 can appear as representative of each set, so each of the three
sets must be{1,2,3}. But then(1,2,3) would be a SDR, after all.

Chapter 9

1. (a) SinceA andB are orthogonal, each pair(i, j) for i, j = 0, . . . ,n−1 occurs
just once. These pairs represent in basen all the numbers from 00= 0 to (n−
1)(n−1) = (n−1)n+(n−1) = n2−1, each once.

(b) In each row or column, each of thens digits 0, . . . ,n−1 occurs once, and
each of the units digits 0, . . . ,n−1 occurs once. So the row or column sum is

n(0+ · · ·+(n−1))+(0+ · · ·+(n−1)) = (n+1)n(n−1)/2,

as required.

3. The addition table ofZn is the Latin squareL(1) defined in this chapter. Ifn is
odd, thenL(2) is a Latin square orthogonal to it.

Suppose thatn is even, and suppose (for a contradiction) thatM is a Latin
square orthogonal toL(1). We begin by observing that the sum of all the elements
in Zn is n/2 if n is even. (For the sum inZ is n(n− 1)/2, andn is even, son
dividesn2/2.)

Look at the positions(xi ,yi) in which a given symbol occurs inM. Then

• Each row occurs once asxi , so∑xi = n/2.

• Each column occurs asyi , so∑yi = n/2.

• The (xi ,yi) entry of L(1) is xi + yi . SinceL(1) is orthogonal toM, each
symbol occurs once asxi +yi , so∑(xi +yi) = n/2.

But this is a contradiction, sincen/2+n/2 = 0 6= n/2.

5. Suppose thatm is not a prime; saym= ab, where 1< a,b < m. Then

(a+1)b = ab+b≡ b = 1b modm,
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so the elementb occurs twice in columnb, in rows 1 anda+1. ThusM(m) is not
a Latin square.

Conversely, suppose thatm is prime. In this case we show thatM(m) is a Latin
square with entries 1, . . . ,m−1.

(a) First note that all entries belong to this set. For if the(i, j) entry were not in
the set{1, . . . ,m−1}, then it would necessarily be zero; som would divide
i j , contrary to the fact thatm is a prime which does not divide eitheri or j.

(b) Suppose that the same entryx occurs twice in a row, say in positions(i, j)
and(i,k), with j < k. Theni j ≡ ik ≡ x modm; so i(k− j)≡ 0 modm. This
is impossible for the same reason as in (a).

(c) A very similar argument to (b) shows that an entry cannot occur twice in a
column.

The last part of the question is more difficult. There is a theorem of algebra
saying that, ifp is prime, there exists aprimitive rootmod p, that is, an element
g whose powers give all the non-zero elements ofZp. Thus the multiplicative
group ofZp is isomorphic to the additive group ofZp−1. Now by the solution
to Question 3 above, we see that the Cayley table of this group does not have an
orthogonal mate ifp is odd.

Chapter 10

1. Follow the hint. We know that the number of triples of the STS containing
the pointx is (v− 1)/2 (Theorem 10.1(a)). For eachy ∈ Y, there is a unique
triple containingx and y. No two of these triples are equal, since if the same
triple contained{x,y1} and{x,y2} for y1,y2 ∈ Y, then this triple would contain
two points ofY and hence would be contained inY, contradicting the fact that it
containsx. So|Y|= u≤ (v−1)/2, whencev≥ 2u+1.

3. (a) We have to show that, given any two distinct non-zero vectorsx andy, the
unique solution ofx+y+z= 0 (namelyz=−(x+y)) is non-zero and is not equal
to eitherx or y. It will then follow thatx andy lie in a unique triple inB.

Note that−x = x for any vector in(Z2)n, so we can writez= x+y. Now:

• If z= 0 thenx+y = 0, soy =−x = x, contrary to assumption.

• If z= x, theny = 0, contrary to assumption.

• If z= y, thenx = 0, contrary to assumption.
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Finally, the order of the STS is the number of non-zero vectors, which is 2n−1.

(b) All seven equationsx+y+z= 0 can be checked from the picture:
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Appendix B

Miscellaneous problems

1. Show that the coefficient ofxn in (x+x2)k is equal to

(
n−k

k

)
.

Hence show that the coefficient ofxn in (1−x−x2)−1 is equal to
bn/2c

∑
k=0

(
n−k

k

)
.

Deduce that
bn/2c

∑
k=0

(
n−k

k

)
= Fn.

2. Prove that

(
2a +b
2b+1

)
is odd if and only ifb = 2a−1. [This exercise is due to

Thomas M̈uller.]

3. How many words can be made using some or all (possibly none) of the letters
of the wordMAMMAL?

4.

(a) How many permutations of{1, . . . ,9} are there?

(b) How many of them consist of a single cycle?

(c) How many of them have exactly three cycles, none of which is of length 1?

5.

(a) In how many ways can 25 sweets be distributed to a class of 12 children?

(b) How many ways are there if each child is to have at least one sweet?

(c) How many ways are there if each child is to have at least two sweets?

119
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6. Solve the recurrence relation and initial conditions

a0 = 2, a1 = 4, a2 = 7, an = 4an−1−5an−2 +2an−3 for n≥ 3.

7. LetB(n) be thenth Bell number, the number of partitions of{1, . . . ,n}. Prove
directly thatB(n)≤ n! for all n.

8. LetFn be thenth Fibonacci number. Prove by induction that

F2
n −Fn−1Fn+1 = (−1)n

for n≥ 1.

9. LetS(n,k) be the Stirling number of the second kind (the number of partitions
of {1, . . . ,n} into k parts, and let

Fk(x) = ∑
n≥k

S(n,k)xn.

(a) Prove thatF1(x) = 1/(1−x).

(b) Write down a recurrence relation forS(n,k).

(c) Use it to show that

Fk(x) =
x

1−kx
Fk−1(x)

for k≥ 1.

(d) Hence show by induction onk that

Fk(x) =
xk

(1−x)(1−2x) · · ·(1−kx)

for k≥ 1.

10. Show that an permutation is even if and only if it has an even number of cycles
of even length (with no restriction on cycles of odd length).

11. LetA1, . . . ,An be subsets of a setX. ForJ⊆ {1, . . . ,n}, let

AJ =
⋂
i∈J

Ai

be the set of elements which lie in the setsAi for i ∈ J (and possibly in some other
sets as well). LetBJ be the set of elements which lie in the setsAi for i ∈ J, and
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do not lie in the setsAk for k /∈ J. Use the Principle of Inclusion and Exclusion to
show that

|BJ|= ∑
K⊇J

(−1)|K\J|AK.

12. LetB be the matrix obtained from Pascal’s Triangle by moving the rows right

so that the left-hand side is vertical. So the entry in rown and columnk is

(
n
k

)
.

Let B∗ be the matrix in which the entry in rown and columnk is (−1)n−k

(
n
k

)
.

Prove that the matricesB andB∗ are inverses of each other, by finding two bases
for the space of all polynomials such thatB andB∗ are the transition matrices.
[Hint: The Binomial Theorem.]

13.

(a) Show that there does not exist a Latin square orthogonal to the square

1 2 3 4 5
2 1 4 5 3
3 4 5 1 2
4 5 2 3 1
5 3 1 2 4

[Hint: Suppose thatB is orthogonal to the given square and has entry 1 in
position(1,1). Where can the other 1s inB occur?]

(b) Write down two orthogonal Latin squares of order 5.

14. LetF = Z3, the integers mod 3. LetV = Fn be the vector space of alln-tuples
of elements ofF . Let

B = {{x,y,z} : x,y,z∈B,x,y,z distinct,x+y+z= 0}.

Show that(V,B) is a Steiner triple system of order 3n.

15. LetF be an intersecting family of subsets ofX = {1,2, . . . ,n}.

(a) Show that|F | ≤ 2n−1.

(b) Show that, if|F | = 2n−1, then for any subsetA of X, eitherA ∈ F , or
X \A∈F .

(c) Show that, if|F |= 2n−1, A∈F , andB is a subset ofX containingA, then
B∈F .
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16. LetF be an intersecting family of 2-element subsets of{1, . . . ,n}. Show that
either

(a) there is an elementx∈ {1, . . . ,n} contained in every set inF ; or

(b) F = {{x,y},{y,z},{x,z}} for somex,y,z∈ {1, . . . ,n}.

17. Let
F = {123,456,789,147,258,369,159,267,348},

where, for example, 123 means{1,2,3}.

(a) Prove directly thatF satisfies Hall’s condition.

(b) Find a 3×9 Latin rectangle whose columns are the sets ofF .
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