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Preface: What is Combinatorics?

Combinatorics, the mathematics of patterns, ..., helps us design com-
puter networks, crack security codes, or solve sudokus

Ursula Martin, Vice-Principal (Science and Engineering),
Queen Mary, University of London

These notes accompanied the course MAS219, Combinatorics, at Queen Mary,
University of London, in the Autumn semester 2007.

Itis impossible to define combinatorics, but an approximate description would
go like this. We are given the job of arranging certain objects or items according
to a specified pattern. Some of the questions that arise include:

¢ Is the arrangement possible?
¢ In how many ways can the arrangement be made?
e How do we go about finding such an arrangement?

This is best illustrated by examples.

Example 1: Sudoku You are given a & 9 grid, divided into nine X 3 squares.
Your job is to put the numbers 2,...,9 into the cells of the grid in such a way
that each number occurs just once in each row, once in each column, and once in
each 3x 3 subsquare.

It is not hard to see that the arrangement is indeed possible. A heroic calcula-
tion by Bertram Felgenhauer and Frazer Jarvis in 2005 showed that there are

6,670,903 752 021 072 936,960

different ways of filling the grid.

Now suppose that someone has complicated the problem by writing some
numbers into the grid already. In general it may or may not be possible to complete
the grid; and even if it is, it may be very difficult to find a solution. Nevertheless,
many people around the world enjoy engaging with this combinatorial problem
every day.

Example 2: Euler’s officers The great mathematician Leonhard Euler asked in
1782:



Six different regiments have six officers, each one holding a different
rank (of six different ranks altogether). Can the&officers be ar-
ranged in a square formation so that each row and column contains
one officer of each rank and one from each regiment?

Euler conjectured that the answer is “no”, and this guess was eventually proved
correct in 1900. However Euler also conjectured that the answer is “no” if six is
replaced by 10, 14, or any number congruent to 2 mod 4. He was completely
wrong about this, but this was not discovered until the 1960s.

Example 3: Kirkman’s schoolgirls In 1843, Thomas Kirkman asked:

Fifteen schoolgirls go for a walk every day for a week in five rows of
three. Is it possible to arrange the walks so that every two girls walk
together exactly once during the week?

This is certainly plausible. Each girl has to walk with fourteen others; every
day there are two other girls in her row, so seven days would be the right number
for the schedule. However, this does not prove that the arrangement is possible.

In fact, it can be done; Kirkman himself found a schedule satisfying the con-
ditions.

Examples and reality The examples may give you the impression that combi-
natorics is a collection of charming puzzles of little relevance to our modern tech-
nological world. In fact this is completely wrong. The course is not really about
applications, but in the digital world this subject is of enormous significance. Peo-
ple (and computers!) spend a lot of time sorting data, sending messages through
networks, correcting faulty data or encoding data to keep it safe from unauthorised
access, designing better networks, looking for new combinations of atoms to form
molecules which will provide us with better drugs, and so on. We need to decide
when such a problem has a solution, and to find the solution efficiently.

These notes These notes reflect the contents of the course in 2007. | have added
a couple of proofs of major theorems not covered in the course. The notes have
been provided with exercises (some of them with worked solutions) and an index.
The recommended textbook for the course was my own l@wkbinatorics:
Topics, Techniques, Algorithpfast published in 1994; but rather than following
the book | have written everything anew. The course covers roughly the first half
of the book; if you enjoyed this, you may want to read more, or to look at my
Notes on countingn the Web.
| am grateful to Volkan Yildiz who spotted a number of misprints in a prelim-
inary version of the notes.



v
Further reading Either of the two level 4 courses at Queen Mary can be taken
by students who have done the Combinatorics course:

e MAS408: Graphs, Colourings and Design

e MAS439: Enumerative and Asymptotic Combinatorics

| mentioned above milotes on countingvhich are on the web in the same

place as these notes.
Some other books which contain further material (including the recommended

course text) are:
e Martin Aigner,Combinatorial TheorySpringer, 1979.

Norman BiggsDiscrete Mathematic€nd edition), Oxford University Press,
2002.

Peter J. Cameroigombinatorics: Topics, Techniques, Algorith(@ad edi-
tion), Cambridge University Press, 1996.

J. H. van Lint and R. M. WilsonA Course in Combinatoric€Cambridge
University Press, 1992.

Jiri Matousek and Jaroslav Befil, Invitation to Discrete Mathematic©x-
ford University Press, 1998.
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Chapter 1

Subsets and binomial coefficients

One of the features of combinatorics is that there are usually several different
ways to prove something: typically, by a counting argument, or by analytic meth-
ods. There are lots of examples below. If two proofs are given, study them both.
Combinatorics is about techniques as much as, or even more than, theorems.

1.1 Subsets

Let n be a non-negative integer, and }tbe a set withh elements. How many
subsets doeX have?

Proposition 1.1 The number of subsets of an n-element s&f.is

First proof We encode subsets by sequenfase,,...,e,), where eactg is
either O or 1. There are 2 choices &t 2 choices foey, ..., 2 choices fog,; so
altogether 2 sequences. So we are done if we can establish a bijection between
subsets and sequences.

To each subséf of X, we associate the sequerieg, ey, ...,e,) where

6 — {1 ifiey,
0 ifigy.
It is easy to see that each sequence arises from a subset, and distinct sequences
arise from distinct subsets; so the correspondence is a bijection.

Second proof This is a proof by induction. Lef(n) be the number of subsets
of {1,2,...,n}. We see thaf (0) = 1 (the empty set has just one subset, namely
itself). Also, f(n+ 1) = 2f(n); for each subset of {1,2,...,n} can be extended

in two ways to a subset of1,2,...,n+1}: we can choose whether or not to

1



2 CHAPTER 1. SUBSETS AND BINOMIAL COEFFICIENTS

includen+ 1 in the subset. Now we can easily prove by induction fi{a) = 2".
The induction starts becau$¢0) = 1 = 2°. For the inductive step, assume that
f(n) =2"; then

f(n+1) =2f(n) =2.2"=2"1

So the induction goes through, and the proof is complete.

1.2 Subsets of fixed size

If nandk are integers satisfying € k < n, how manyk-element subsets does an
n-element seX have?

Define thebinomial coefﬁciem(E) by

n\ n(n—1)---(n—k+1)
(k)_ k(k—1)---1

(There arek factors in both the numerator and the denominator,itefactors
beingn—i+1andk—i+1.)

n\
For 0 < k < n, the number of k-element subsets of an n-element é?(t>s

Proof We choosek distinct elements of the-element seX. There aren choices
for the first elementn — 1 choices for the second; .n—i -+ 1 choices for thé-th;
... andn—k+ 1 choices for thé&-th. Multiply these numbers together to get that

) ) n
the total number of choices is the numerator of the frac 'ﬁ )

This is not the answer, since choosing the same elements in a different order
would give the same subset — for example, 1, then 4, then 3 would be the same as
3, then 1, then 4. So we have to divide by the number of different orders in which
we could choose thk elements. There atdechoices for the firstk — 1 for the
second; .. k—i+1 for thei-th; ... andk—k+ 1 =1 choice (really no choice at
all!) for the last. Multiplying these numbers gives the denominator of the fraction.
So the result is proved.

. . . . . n .
It will sometimes be convenient to give a meaning to the syn(q(o) even if

k is greater tham. We specify:

If k> n, then (E) =0.
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This is a “reasonable” choice sincekit> n, there are n&-element subsets of an
n ) ) .
n-element set. You should check that our formula (l)(r remains correct in this

case: ifk > n, then one of the factors in the numerator is equal to O.

1.3 Properties of binomial coefficients

1.3.1 Sum of binomial coefficients

The total number of subsets of arelement set is2 We know the number of
subsets of sizk, for each value ok: adding these up must give the total. In other

words,
()
K=0 k

1.3.2 Binomial coefficients and factorials

Here is an alternative formula for the binomial coefficients. This useftierial
function defined by
n=nn-1)(n—2)---1,

the product of all the integers from 1 tanclusive. Now we have

() = e

For if we take the definition of the binomial coefficient, and multiply top and
bottom by(n—k)!, then in the numerator we have the product of all the integers
from 1 ton, that is,n!; the denominator i&! (n—k)!.

In order to make this formula valid in the limiting cades- 0 andk = n, we
have to adopt the convention that8!1. This may seem strange, but if we want
the recurrencal =n- (n—1)! to hold forn = 1, then it is forced upon us! This

. . . 0
then correctly glves<g) = (2) =1,andin partlcula|<o) =1
However, the formula does not work kf> n, since themm — k < 0 and we

cannot define factorials of negative numbers.

1.3.3 Arecurrence relation

There is a simpleecurrence relatiorfor the binomial coefficients, which enables
big ones to be calculated from smaller ones by addition:

() ()= ()
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First proof Consider the problem of counting theelement subsets of am
element seX, which contains one special element cabed
First we count the sets which contatnEach of these must hake- 1 out of

- n—1
the remainingh— 1 elements. So there a %( 1 such sets.

Next we count the sets which do not contairEach of these must necessarily
havek elements chosen from the— 1 elements different fronx; so there are

n—-1
( K )such sets.

Adding these numbers together gives all (f{(]e) sets.

Second proof We can prove the result by calculation, using our formula:

n—1 n—1 (n—1)! (n—1)!
(k—l>+( k ) = k=DI(n—K! TK(—k=1)

=1k (n=1)!-(n—k)
B k!(n—k)!+ k! (n—Kk)!
_ n-(n-1)!

~ K'(n—Kk)!

AL

_ (k |

where we have used the facts that=n- (n—1)!, k!l =k- (k—1)!, and(n—Kk)! =
(n—k)-(n—k—-1)L.
| make no secret of the fact that | like the first proof better!

1.3.4 Symmetry

We have

()=

For the first proof, we find a bijective correspondence betweeR-tlement
sets and thén — k)-element sets in a set of sirethis is easily done by simply
matching each set with its complement.

The second proof, using the formula in 2 above, is a simple exercise for the
reader.
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1.3.5 Pascal’s Triangle

It is possible to arrange the binomial coefficients in a symmetrical triangular pat-

tern, in which then+ 1)-st row contains the+ 1 numbers(S) e (2) :

The triangle begins as follows:

1 5 10 10 5 1

Although we call this Pascal's Triangle, Pascal was not the first person to
write it down. Below is a version due to Chu-Shi-Chieh (Zhu Shijie), taken from
work of Yang Huli, in his bookSsu Yuan ¥ Chien dated 1303. Jia Xian knew it
about 250 years earlier. Other people who knew about it at roughly the same time
include Halayudha in India, and Al-Karaji and Omar Khayyam in Iran. We don’t
know who invented it!

I —
B oA & r o

The property in 1.3.4 above shows that the triangle has left-right symmetry.
The recurrence relation 1.3.3 shows that each entry of the triangle is the sum of
the two entries immediately above it. This gives a very quick method to generate
as much of the triangle as required.
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1.4 The Binomial Theorem

We now come to th&inomial Theorema generalisation of the property 1 of the
preceding paragraph (pyt=y = 1 to see this).

Theorem 1.2 (Binomial Theorem)

(X+y)"= i (E)xky”"‘-

k=0
First proof We have

(X+Y)" = (X+Y)(X+Y) - (X+Y),

where there ara factors on the right-hand side of the equation. If all the brackets
are expanded, we get a sum of very many terms; but each term is obtained by
choosingk from some of the brackets agdrom the remaining ones. If we choose

x from k brackets ang from the remainingn — k, we obtain a termx*y" k. So

the coefficient of this term is the number of ways we can do this, in other words,
the number of choices df out of then brackets from whichx is selected. This

number is(E) . So the theorem is proved.

Second proof We prove the theorem by induction anForn = 0, the left-hand
side is(x+y)? = 1, while the right-hand side has just the single té&0, which
is 8 x%Y = 1. So the induction starts.

Suppose that the Binomial Theorem holds for a valu&€hen

X+9™ = (x+y)(x+y)"
_ = ko k = konk .
(g ) or)

. L ./n :
Fork = m, second term gives us a contrlbutlérrln) XMy™1-M What is the con-

tribution to of the first term to the coefficient &fy"t1-M? To get this term, we
must putk = m— 1, and the coefficient i m_1)
So the coefficient of™y™1-Min (x+y)"t1is

(o 0) = (m) = (")
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which is just what we require to make the induction work. So the proof is com-
plete.

Sometimes it is convenient to have a one-variable form of the Binomial Theo-
rem. Puttingy = 1, we obtain

(1+x)"= i (E) XK.

k=0
1.5 Further properties of binomial coefficients

1.5.1 Even and odd

. ) ) . n
We know that, for fixedh, the sum of the binomial coefficien ﬁ< over all values

of k from 0 tonis 2". What if we add them up just for evénor just for oddk?

2l o\ L0-D/2 o .
i; (2i>: i; <2i+1>:2 '

Proof LetS andS be the sums of the even and odd binomial coefficients re-
spectively. Thers:+ S is the sum of all the binomial coefficients; in other words,

S+S=2"
If we putx = —1 in the one-variable Binomial Theorem, we obtain
n n . : . .
z (—1)k(k) = (—1+1)"=0. Now in this sum, the even binomial coefficients

K=0
have coefficient+t1 and the odd ones have coefficient; so the equation says

that

Forn > 0,

S-S$=0.
The two displayed equations show tifat= §, = 2"/2 = 2"1,

1.5.2 Binomial identities

There are a huge number of other equations connecting binomial coefficients.
Here is one.
Let m,n,k be positive integers. Then

506"

(This result is sometimes called tWandermonde convolution
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First proof Suppose a school class consistsnafirls andn boys, and we need
to choose a team d&f children. In how many ways can this be done? We count

o m .
the number of teams containingyirls: there are( : ) ways to choose the girls,

and kii ways of choosing the remainirky-i team members from theboys.

Multiplying these numbers gives us the number of possible teams containing
girls, and summing ovadrgives the total number of teams. But we know that the

. (/m+n
I :
arais (")
Second proof Consider the equation
(L+X)™ (14+x)" = (14+x)™".

m-+n
. k .
the left, we could choose the tepthfrom the first factor and*~' from the second

What is the term ink? On the right, it is< ) by the Binomial Theorem. On

and multiply them. The coefficients of these two terms (51%%) and (kn i); SO

we multiply these numbers, and then sum aver

5 () -(3)

1.5.3 Sum of sizes of sets

Puttingm= n =k, and noting tha<?> = (nn i) , the equation reduces to

Here are a some further results and proof techniques.

, (n=1\ /n
First result.n<k_1> = k(k)'

First proof From a class oh children, we have to choose a teamkahembers,
. n : :
and a captain for the team. There {r&) teams, andk choices of a captain for

n

k
choose the captain first (imways), and then the remainihkg- 1 team members

any team; altogethdec choices. But we could proceed differently: we could

from the remainingr— 1 children (in (E B D ways), givingk(E B D in all.
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Second proof

n k-n!
k(k> ~ K(n—K)!
n-(n—1)!

(k—1)I (n—K)!
_ n(E:D

n
Second result’y k(n) —n.- 21
&1 \K

First proof

Il

5

Nl
T
=

Second prooiVe have

Differentiating gives
n
n-1_ Ny k-1
n(1+x)" = k;k(k>x :
(We omit thek = 0 term since it is zero.) Now put= 1 to get the result.

Third proof There are K

on the left simply adds up the sizes of all these subsets. But we can calculate this
sum another way. Pair up each sub&ewith its complemeni \ A; these two

sets contaim elements between them. There afes@bsets, and so they fall into
21/2 = 21 pairs. Thus the value of the sumrg"1,

n )
) subsets of siz& of an n-element seX; so the sum

1.5.4 Congruences

Here is a picture of part of Pascal’s triangle. | have ptd mean that the entry
is odd, and left a blank if the entry is even. Notice the fractal structure of the
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diagram: If we know the triangle formed from the fir§trdws, we obtain the first
2"*+1 rows by putting two copies of the triangle side by side below the first one,
and leaving the positions in the middle triangle blank.

This is explained by a result callédicas’ Theorem

Theorem 1.3 (Lucas’ Theorem)Let p be a prime number. Write n and k to the
base p:

n=ap+ap+ap’+ --+agp?,  k=bo+bip+bop®+---+bgp,
where0 < a;,bj < p—1. Then

()=11) oo

In particular, (E) is divisible by p if and only if a< b; for some value of i.

The proof of the theorem is in the next section. You should try to explain
how this justifies the fractal shape of the diagram showing the parities in Pascal’s
triangle.

1.6 Appendix: Proof of Lucas’ Theorem

Recall the statement of Lucas’ Theorem:

Theorem (Lucas’ Theorem) Let p be a prime number. Write n and k to the
base p:

n=ap+ap+ap’+ --+agp?,  k=bo+bip+bop®+---+bgp,
where0 < a;,b; < p—1. Then

(=116 o

The proof comes from the following lemma:
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Lemma Let p be prime, and let & cp+a, k=dp+b, with0<ab<p-1.

()= (&)(5) moem

Proof Here is a short proof using the Binomial Theorem. The key is the fact
that, if pis prime, then

(1+x)P=1+xP (modp).

For each binomial coefficierélio), for 1<i < p-—1, is a multiple ofp, so all

intermediate terms in the Binomial Theorem vanish npod(We have(lio) =
p!/il(p—1i)!, and p divides the numerator but not the denominator.) Thus (con-
gruence moaq):
14" = (1+x)P(1+x)?
= (1+xP)°1+x)?

30780

Since 0< a,b < p, the only way to obtain a term itf = t4P+? in this expres-
sion is to take the term= d in the first sum and the terfjn= b in the second; this

(0)=(6)(5) (o

Proof of the theorem The proof is by induction od. The induction starts with
d = 1 since, them = ag, k = bp, and there is nothing to prove.

Suppose that the theorem holds with- 1 replacingd. As in the statement of
the theorem, let

as required.

n=ag+ap+ap’+---+agp’,  k=bo+bip+bpp®+---+bap?,

where 0< a;,bj < p—1. Puta=ag, c=a; +ayp+---+agp? 1, b=bo, d=bs +
bop+---+bgp?~L. Thenn=cp+a, k= dp+b, and we have (with congruences

mod p):
ny  [/c\/a
(k) = (d) (b) (by the Lemma)
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(ﬁ <a')) . (ao) (by the induction hypothesis)
= bi b0
_ ff(a
N il:l) (bi)'
n

Corollary  With the hypotheses of the theore@(,) is divisible by p if and only

if aj < bj for some i with0 <i <d.

Proof If g < bj, then (Z’
|

the theorem is zero, whence the product is zero.

) = 0. So one of the factors on the right-hand side of

If g > by, then the binomial coefficie z' is not divisible byp (it is non-
|
zero and there are no factgosn the numerator sincg < p— 1. Now a product
of d numbers not divisible by is itself not divisible byp.

Example Letn=2"-1. Then all the digits; of nin base 2 are equal to 1, so
we haveb; < a; for anyk. This means that every entry in rawof Pascal’s triangle
is odd.

Exercises

1. Write 1001 as a binomial coefﬁcie({l) with n < 20.

2. If X is a set of 8 elements, then the number of 3-element subs&t$saivice
the number of 2-element subsets. Is there any other size of thé feetwhich
this holds?

n
> (N
3. Calculatekzok (k)

4. Let X be an-element set. Find a bijectioR between the set df-element
subsets oK and the set of al{n — k)-element subsets &f. Deduce that

n\ n
k)] \n—k/°
5. This exercise extends the result about “summation of even and odd binomial

coefficients”in 1.5.1. Similar methods can deal with sums of binomial coefficients
wherek lies in any fixed congruence class of positive integers.
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Leti denote the square root efl, and note that % i = /2€%/%. Hence find the

real and imaginary parts ¢ +i)" for any natural numben. (You will probably

find it convenient to consider the different congruence classes mod 8 separately.)
Expanding(1+i)" by the Binomial Theorem, find expressions for

(-0)/4 /4
,; (41' +t)’

fort =0,1,2,3, again separating the congruence classes mod 8. (This involves
a lot of repetitious work. You should at least do all the calculationsnfer O

(mod 8.)

6. By calculating the coefficient of' on the two sides of the identity
(14X (1=x)" = (13",

or otherwise, prove that
n (N 2 0 if nis odd,
> (=1) (k) :{(—1>m<2r:') if n—2m

(a) Prove that
n\ n-k/n
k+1) k+1\k/
_ n n... Ny _
(b) Prove that, |’n>2k+1,then<k+1> > (k),lf n—2k+1,the”(k+1> =

n ) n n
(k)’ andifn< 2k+1, then<k+1> < (k)

(c) Hence show that, for fixedandk =0, 1,...,n, the binomial coefficients in-
crease, then remain constant for one steg igfodd), then decrease. (Such
a sequence is said to beimoda).
. . - m\ . .
(d) Show further that the largest binomial coefficien %n if n=2mis even,

o : 2m+1 2m+1
while if n=2m+ 1 is odd, ther< m+ ) and( m+ ) are equal largest.
m m-+1

(e) Deduce that, ih = 2m, then
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8.

(&) Show that the binomial coefficier(tzr;n> is divisible by every primep sat-
isfyingm+1< p<2m.

(b) Using the estimate on Problem Sheet 1, Question 2, show that the number

. . 2m
of primes betweem+ 1 and 2nis at most :
log,m

Remark: This is a weak version of the famo&sime Number Theoremvhich
sar}/s that the number of prime numbegrsatisfying 1< p < nis asymptotically

logn’
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Selections and arrangements

2.1 The formulae

We have a hat containingnames, and we are going to draw &utames. In how
many ways can we do this?

To answer the question, we have to clarify the strategy a bit. First, do we care
about the order in which the names are drawn, or not? Second, when we have
drawn a name, do we put it back in the hat and shake it up before the next draw,
or do we discard it? The answers to this question correspond to samplying with
order significant or not, and with repetition allowed or not allowed. If the order is
significant, we have &-tuple of names; if not, we have a set (if repetition is not
allowed), or what might be called a “multiset” if repetition is allowed. We will
write multisets in square brackets to distinguish them from sets.

For example, if the names aaeb, and we draw two of them, then

e order important, repetition allowed: there are four possibilitiesa), (a, b),
(b,a) and(b,b).

e order important, repetition not allowed: there are two possibilitiash)
and(b,a).

e order unimportant, repetition allowed: there are three possibilifees],
[a,b], and[b, b]. (Choosinga thenb is the same as choositghena.)

e order unimportant, repetition not allowed: just one possibility, narfia|}.

In general, the numbers of selections are given by the entries in the following
table. We use the notatigm)y for the numben(n—1)---(n—k+1). This is the

numerator in our definition 0<k> , and is often called thtalling factorial.

15
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Order Order not
significant | significant
Repetition nk n+k—1
allowed k
Repetition n
not allowed (i (k>

Note that the numerator in the top right entryni;i+ 1) --- (n+k— 1), the
so-calledrising factorial.

2.2 Proofs

Order significant, repetition allowed: We get to maké choices, and there are
n names to choose at each step. So thera‘apessibilities.

Order significant, repetition not allowed: This time, there aren names to
choose at the first step1— 1 at the second step (since we discarded the first
name after we chose it)y— 2 at the third step; ... and— k+ 1 at thek-th step.
Multiplying these numbers gives the answer.

Order not significant, repetition not allowed: We simply choose a set with
elements from tha elements in the hat. The number of ways of doing th(sE% ,

by definition. Alternatively choose with order significant, and repetition allowed,
and note that each unordered sample Kiakifferent orderings; so the answer is

(Nk/KL.

Order not significant, repetition allowed: This case is the most difficult. But
note, before we begin, that we cannot just use the argument in the preceding para-
graph to gen¥/kl. [WHY NOT?]

Step 1: The number of choices &fobjects frorm, with order not significant
and repetition allowed, is equal to the number of ways of choasimgn-negative
integersxy, ..., Xn satisfyingx; + - - - + X, = k. For given the selection, we can let
xi be the number of times that tlid name was selected; cleary, .. ., X, satisfy
the stated conditions. Conversely, givan. .., X, satisfying the conditions, form
a selection in which theth name is chosex times.

Thus, for example, suppose thet 3 andk = 6. If the names ara, b, ¢, then
the selectiona, a,b,b,b, c|] corresponds ta; = 2,x; = 3,x3 = 1.



2.3. BALLS IN URNS 17

Step 2: So we have to count the number of choices of non-negative integers

X1,...,%Xy with sumk. To do this, take a row afi+k — 1 cells; choosa — 1 of

. n+k—1 n+k—1
them and put markers in them. There re:]— L = +k

making this choice. Having made the choice, define.., x, as follows:

ways of

e Letx; be the number of cells before the first marked cell.

e Letx, be the number of cells between the first and second marked cell.

e ...
e Letx,_1 be the number of cells between the 1-st andn-th marked cell.
e Letx, be the number of cells after tmeth marked cell.

Then clearly the numbers;, ..., x, are non-negative integers; they add up to the
number of unmarked cells, whichje+k—1) — (n—1) = k.

Moreover, every way of choosing non-negative integers adding up kas
represented uniquely by such a markingnef 1 out ofn+ k— 1 boxes. So the
result is proved.

For example, our choice; = 2, xo = 3, x3 = 1 would come from a marking
of the followingn—1 = 2 out ofn+ k — 1 = 8 boxes:

I = <

To make this clearer, here is a table which gives both steps in thencase
k = 2. Let the names in the hat beb, c. The first column gives a selection of two
names (with repetition allowed and order unimportant). The second gives three
numbers adding up to 2. The third gives four boxes with a choice of two of them
marked.

aa (2,0,0) OOXKX
ab (1,1,0) OXOX
ac (1,0,1) DOXXO
bb (0,2,0) KOOX
bc (0,1,1) KOXO
cc (0,0,2) XKXOO

2.3 Ballsinurns

There is another way to look at the main result of the last section. Suppose that we
haven urns, or vased)s,...,U,. We havek indistinguishable balls. How many
ways can we put the balls in the urns? [Of course this problem can be put into
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many disguises. | haveidentical sweets. In how many ways can | distribute them
to a class oh children?]
If x; is the number of balls | put into théh urn [or the number of sweets | give

to theith child], thenxy,...,X, are non-negative integers which add ugktaSo
. : k—1
the number of ways of putting the balls into the urn<|nsJr K )

The conditions can be varied in many ways. Suppose, for example, that |
have to distributd balls among urns as above, but with the requirement that no
urn should be empty. This asks that> 1 for alli. If we define new variables
Y1,---,¥n DY Vi = X — 1, then the sum of thgs isk — n; so the number of choices

of they's is
n+(k—-n)—1\ (k-1
k—n ~\n-1)°

The simple way to think about this is: Suppose each urn is to be non-empty.
Then | first taken balls and put one in each urn. Then | distribute the remaining
k —n balls into the urns in any way. This gives the same result as above.

Example How many ways can | distribute 100 sweets to a class of 30 boys and
20 girls, if it is required that each boy has at least one sweet and each girl has at
least two sweets?

To solve this, | first give one sweet to each boy and two to each girl, using up
30+ 2-20= 70 sweets. Then I distribute the remaining 30 sweets among the 50

: : /304+50—-1 79
children, which can be done |<| 30 ) = <30) ways.

2.4 Making words from letters

How many ways can we arrangalistinct objects in order? By the formula in the
bottom left of the box, the answer is simgly), = n!. Another way of seeing this
is as follows. Let= (n) be this number. Then

F(O) =1, F(n) =nF(n—1) forn>0.

(We takeF (0) = 1 because there is just one list with no entries, the empty or blank
list. To get the second equation, we choose one ohtbljects to be first on the
list (there aren ways of doing this), and then we have to put the remainird. in
order after the first one.) Now an easy induction argument shows-{mat= n!
for all n.

Now we make the question a bit harder. How many ways of arranging some
(possibly all) of then objects in a list?
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Example How many words can | make from the letters of the wéACE-
TIOUS? (A word is simply a string of letters chosen from those in the word; we
do not require that it makes sense in English or any other language. The order of
the original letters in the word is irrelevant; a better analogy is that you are playing
Scrabble and you have these letters. By convention we include the “empty word”,
which is the string containing no letters.)

In the case given, the letters are all distinct; this makes life easier, so we start
with this case. Suppose that we are giveletters, all different. How mani-
letter words can we construct? These words are just selectidngetérs from
the givenn, with order important and repetition not allowed; so the number is
(nNk=n(n—1)---(n—k+1).

So the total numben/ (n) of words is

W) = 3 (M
k=0

We can express this another way. Note that=n!/(n—k)!. So

. 1 n1
W(n) =n! (kgom> =n! (%ﬂ) :

Now recall from calculus that

> 1

Zﬁ:e'

m=0

Inside the brackets of the formula fdf(n), we see the sum of the reciprocals of
the factorials from O ta, in other words, the sum of the firat+ 1 terms of the
infinite series. So we see that(n) is approximately en!.

We can be more precise:

0

n!
e-nl—W(n) = —
m:n—l—lm!
o 1 1
T hrl )42 FD)n+2)(nL3)
1 1 1
R R I | AL o A
1
T on

(In the last term we summed a geometric series.)
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In other words, @! is bigger than the integé (n) but smaller thatw(n) +
1/n; so we geW(n) by calculating en! and rounding down to the integer below.
So finally we conclude, using the “floor” or “integer part” function, that

W(n) = |e-n!].
For the wordFACETIOUS, we haven =9, and

W(n) = |e-9!| =986410

Remark AlthoughW(n) = |e-n!] is a beautiful simple formula, and gives us

a very good estimate for the size \f(n), it is not so good for the purpose of
calculation. For example, 70! is a number with about 100 digits, so in order to
decide whethew/(70) is odd or even we would need to know e to 100 places of
decimals (at least). For exact calculation it is better to use the formula

W(n) = in(k) =1+n+nn—-1)+nn-)(n—2)+---
K=0

We can also findV(n) by a recurrence method. We have
W(0) =1, W(n) =1+nW(n—1) forn> 0.

(The conditionW(0) = 1 is because of the empty word. In general, to form a
word of fromn letters, we choose one letter to go first {invays), and make a
word from the remaining — 1 letters (inWW(n— 1) ways) to follow it; but we have
missed out one word, namely the empty word, so we need to add 1.) An easy
induction now gives the formula fo(n).

If the letters we are given contain repetitions, it is more difficult to write down
a formula. Here, we will simply do an example.

Example How many words can be made from the letter§¥7ZYGY?

For the case when we use all the letters, the answer is not too hard. There are
6! ways of arranging the six letters, but any rearrangement of the ¥seill
give the same word. So the number of arrangements'& & 120.

If we allow words of arbitrary length, it is a bit more difficult. To solve it, we
subdivide the words according to the number of occurrences of theYetter

At mostoneY We have to make words out of the four lettér<, G andY.
This can be done iW(4) = 1+ 4+ 12+ 244 24= 65 ways.
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Two Ys Temporarily label thé's asY; andY, so we can distinguish them.
Now we have five letterS, Z, G, Y1 andY», but we must use the twds. Choose
some of the other three letters, order all letters including theMa/@a any way,
and add up all possibilities; finally divide by 2 since trie are really indistin-
guishable. We get

()2 (o (o () /-

All three Ys Similarly the total for this case is

() (o (o (o) -

So the total is 65 106+ 193 = 364.

Exercises

1. (a) How many ordered sequences of length 5 can be made using the elements
{1,2,3,4,5,6,7} if repetitions are allowed? How many of these contain exactly
two of the numbers 2, 3? In how many of them do even and odd numbers alter-
nate?

(b) What are the answers to these questions if repetitions are not allowed?
2. How many words can be made using the letters of the Wa®RTS? How
many of these are palindromes (that is, read the same backward as forward)?
3. LetX andY be sets withX| =nand|Y| =m.

(a) Determine the number of functiomsmappingX into'Y.

(b) How many of these functions are injections, i.e. one-to-one?

(c) How many of these functions are bijections, i.e. one-to-one and onto?

(d) (much harder) How many of these functions are surjections, i.e. onto?
4. How many permutations of the sgt,2,...,n} are there? How many of these

are cyclic permutationsthat is, their cycle decomposition consists of a single
cycle of lengtn?

5. For which values ofi isW(n) odd?
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Chapter 3

Power series

A lot of combinatorics is about sequences of numbers:
(ag,a1,ay,...)
We’'ll see such sequences as
(1,1,2,3,5,8,13,21,34,...)
(Fibonacci numbers), or
(1,1,2,6,24,120,720,504Q ... )

(factorials). A very useful device to represent such a sequence of humbers is to
take the numbers to be the coefficient in a power series

> anX" = ag+ ax+ax? +azpx + - - -
n>0

We call this power series thgenerating seriesr generating functioror the se-
guence of numbers.
In this chapter we look at power series and some of their uses in combinatorics.

Example We saw that the number of subsets ofraelement set is'2 This
gives us a sequence of numbers, namely
(=121=222=422=8..)

whose generating function is

2an —
n>0

1-—2x

using the formula for the sum of a geometric series.

23
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3.1 Power series

You've met power series in calculus, and maybe in analysis also. So how do they
compare with combinatorics:

First, the good news. We are not doing calculus here, so we don’t have to
worry whether the sequences converge or not. For us, a power series is just a
bookkeeping device, to wrap up infinitely many terms into a single mathematical
object. For example, if our sequence is the factorials above, then the power series

is
Z)n! X"
n>

and if you remember the ratio test from calculus, you should be able to show that
this series never converges unl&ss 0. (The ratio of successive terms is

(N4 1)!xX™1/nix" = (n+ 1)x, which tends to infinity ag — o.) But this power
series might still be useful!

Second, the good news. If a power series does converge, and if you know
something about the properties of the functi(x) it defines, then you can use
those properties in combinatorics also! We’'ll see some examples later. In the
example above, the sum of the series [§11- 2x); the series converges || <
1/2.

We denote the set of all power series with integer coefficient&[by]. This
should remind you of the notatidA[x| for the set of polynomials with integer
coefficients; power series are very similar to polynomials, but can have infinitely
many coefficients. Similarly, if we want the coefficients to be real numbers, we
write R[[x]], with similar modifications for the other number systems.

3.2 Operations on power series

There are various operations that can be done to power series. If you studied
Algebra, you have met the idea ofiag; the first two operations below (addition

and multiplication) makdR[[x]] into a ring, for any ringR (though we won't stop

to prove this).

Addition We add two power series term by term:

( Z)anx”) + ( Z)bnx”) = Z}(an +bn)X".
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Multiplication  We multiply power series in the same way as we multiply poly-
nomials. To get a term ir" in the product, we multiply the term i in the first
factor by the term iK™ X in the second, and sum over all valueskdfom 1 ton.

Thus
(n;anx”> . (n;bnx”> = n;cnx”,

n
where ¢, = Zakbnfk.
K=0

Substitution Let A(x) = % anx" andB(x) = 3 bpx". Suppose thasio = 0.
n>0 n>0
Then we can substitut&(x) for x in the second series:

BAX) = ¥ bu(AX)",
n>0
whereA(x)" is calculated using the multiplication rule.

Why do we need the constant termAxfx) to be zero? Consider the constant
term of the serieB(A(x)). It would bebg + biag + bza(2,+ .-+, and we would have
an infinite series ohumbers and would have to worry about convergence. But
if ag = 0, then the smallest power gfoccurring inA(x)" is at leas"; so when
we come to calculate the coefficientxd¥in B(A(x)), we only have to consider
finitely many termgy A(x)¥ for 0 < k < n. In other words, we only need finitely
many additions and multiplications to work out any term.

Differentiation We can also differentiate power series. If

AX) =Y anX",
d

A0 = Y nax™ =% (M+1)am1xX"
n>1 m>0
Notice what has happened here. The term 0 is zero, so we leave it out in the
first step; then we use a new summation variable n— 1, so that as runs from
1 to infinity, mruns from O to infinity.

then

3.3 The Binomial Theorem

We saw the Binomial Theorem, a formula fdr+x)" for positive integers. Here
is a generalisation of it, first proved by Isaac Newton.
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We need to generalise the definition of binomial coefficients firstaltet any
number, positive or negative, rational or irrational, real or complex. kLla¢ a
natural number (a positive integer or zero). Define

a\ a@a-1)---(a—k+1)
(k)_ k(k—1)---1 '

This has the properties

e if ais a natural number, theéi) =0fork>n;

° otherwise(i) =# 0 for all a.

a : .
For the only way we can ha K= 0 is for one of the factors in the numerator

to be zero, thatis—i = 0 (that is,a=1) for somei < k— 1.
Now we have:

Theorem 3.1 (The Binomial Theorem) For any complex number a,

(1+x)2= kgo (E) XK.

There are two ways to interpret this theorem. In terms of calculus: the series
on the right converges fdx| < 1, and its sum i1+ x)2. Second, in terms of
combinatorics: The usual rules of exponents hold. A “calculus proof” of the
Binomial Theorem (without all the tricky details about convergence) is given in
an appendix.

Example 1 The first law of exponents says that
(1+X)3(1+x)P = (1+x)3*.

By the Binomial Theorem,

(2.6) (2 () -5 (0
2 W) )
k>0 k k>0 k>0
Now by the rule for multiplication of power series,
K /a\/ b\ [a+b
i;i k—i) \ k /)’

This is the Vandermonde convolution. We saw it for natural numaensdb
in Section 1.5.2; but now we know that it holds for aagndb at all.
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Example 2 We get some interesting examples by choosing exponents which are
not natural numbers.

Casea=—-1 We have

(—1) _ (—1)(—2)':"‘(—‘() _ (-1,

Kk

SO

1-0"=Y ( 1> =3 X

k>0 k>0

so we have the formula for the sum of a geometric series. We already used this in
calculating the generating function for the powers of 2.

Casea=—1/2 We have

(—1/2) _ (=1/2)(=3/2) - (=(k-1)/2)

k k(k—1)---1
1\ (k-1)(2k-3)---1
N (7) k(k—1)---1

2k(2k—1)---1
ki

()
suic]

where we have used the fact th&{2k — 2) --- 2 = 2XkI. Thus

D

. . . . - 2K\ .
So the generating function for tieentral binomial coefflc:lenté K ) is1/v/1—4x.

Exampe 2, continued We can use what we just learned to prove the following
identity for the central binomial coefficients:

)0
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Proof We start from the identity
(1—4x) V21— Y2 =(1-4x)L.

Now the coefficient ok” on the left is obtained by taking the coefficientéfin
the first factor(1 — 4x)*1/2, multiplying by the coefficient ok™ ¥ in the second
factor, and summing ovdefrom O ton. This gives precisely the left-hand side of
the result we are proving.
On the right,
(1-40"t= 3 4",

n>0

so the coefficient ok" is 4", and we are done.

Example 3 Here is a simple example of the use of power series to solve a recur-
rence. We will have more complicated examples later.

Suppose that a sequence of numletsy, ay satisfyag = 1 anda, = 2a, 1
forn> 1. Of course it is clear that these numbers are the powers of 2. But let us
see this another way. The generating function is

AX) = n; anX"

= 1+ 28, 1X"
n>1

= 1+ Y 2a,x™1
mZO

— 14 2XAX).

(Check that you can follow all these steps. In the third step we have used a new
summation variablen= n—1.) This equation can be rearranged to give

A(X) = 1_1 = nZO(ZX)n = nZOZ”X”.

Now if two power series are equal then their coefficients must be the same; so we
havea,, = 2" for all n.

3.4 Other power series

Apart from the Binomial Theorem, there are a couple of other famous power series
which crop up from time to time:
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The exponential function In calculus this is usually written a.d will usually
write it as exgx); this means the same thing. The power series is

exp(x) =

XI’]

S n!
The most important properties are

o dixexp(x) = exp(x). This is easy to prove from the power series since

d x0 anl
dxnl ~ (n—1

e exp(x+y) = exp(x)exp(y). (We prove this below.)

The logarithm function  The function logx) is not defined ak = 0 so we can-
not write it as a power series. Instead, we have

(_1>n—1xn

log(1+x) = 2 -

n>1

If we differentiate term by term we get

The logarithm is the inverse of the exponential:
exp(log(1+x)) = 1+, log(exp(x)) = X.

(Remember that we can substitute one power series in another if the first one has
constant term zero. This is OK for the first result above. In the second case, it
is really log1+y), wherey = exp(X) — 1, which does indeed have constant term
zero.)

Example Consider the equation efp+Yy) = exp(x) exp(y). The left hand side
IS

(x+y)"

= exp(x)expy).
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(In the second line we used a dummy variable n— k. We have to check the
ranges of summatiom taking all values ané running from 0 ton is the same as
k and/ independently taking all non-negative values.)

We could have reversed the procedure and derived the Binomial Theorem from
the property of the exponential function.

Actually there is a lot of very interesting combinatorics hidden in the power
series for the exponential and logarithm functions. If you are interested in this,
see myNotes on Countingn the Web.

3.4.1 Appendix: Proof of the Binomial Theorem

This proof is a bit of a cheat, since all the hard work is in the calculus.

Suppose we have a power serEsakxk whose sum is a known functiof(x).
K>0
How do we work out the coefficientg? If we differentiate the serigstimes, we
get o

g 0= akk—1)-(k-n+ L)X,

k>n

(We start the sum &= n because the-th derivative of any smaller power &fis
zero.) Then if we puk = 0, we find

R
—fx] =nlap,
dx" x=0

so thata, = [(d"/dx") f (X)],_g /Nl
Taking f (x) = (1+x)3, when we differentiate times we get
n
w(l-l—x)a: aa—1)---(a—n+1)(1+x)>".
Puttingx = 0, we get
dn

{w(lﬂ)a} . =a@a—1)---(a—n+1).

So the coefficient oX" in the power series fofl + x)2 is

a@a-1)---(a—n+1) <a)7

n! n

so that(1+x)% =% <a)x“.
n>0
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Exercises

1. The purpose of this exercise is to show you that, even when a power series fails
to converge, algebraic manipulations on it can still give us something interesting.
(a) Letr be a permutation of the sét, ..., n}. We say thatr is decomposable
if there is a numbek, with 1 < k < n-— 1, such thatt maps the numbers 1.,k
to themselves. If no sudhexists thenr is indecomposable
There aren! permutations of the s€tl, ..., n}. Suppose thag(n) of them are
indecomposable. (By convention we take-O1 but we do not defing(0).)
For any permutatiorr, letk be the smallest number such tlamaps 1...,k
to themselves (so th&t=nif & is indecomposable). Show that there gfie)(n—
k)! permutations with any given value &f Hence show that

n K)(n—k)! =nl.
PECUEEE

Now let F(x) = » n!x" andG(x) = } g(n)x" be the generating functions
n>0 n>1
for the factorial numbers and the numbe(s) respectively. Note thab(x) has

constant term zero since we start at 1. Prove that
F(X)(1-G(x)) =1

Note that this equation makes sense even though the power series do not converge
for any non-zero value of.
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Chapter 4

Recurrence relations

Recurrence relations are a very powerful method of calculating combinatorial
numbers. But there are not many general methods for dealing with them, so
mostly we will just look at a few important examples. The main idea is that we can
turn a recurrence relation for a sequence of numbers into an equation (algebraic
or differential) for the generating function.

4.1 Fibonacci numbers

Leonardo Fibonacci was an Italian mathematician of the 13th century. His most
important work was the introduction of the Arabic numeral,@,3,4,5,6,7,8,9

to Europe. In order to show how much easier it is to calculate with these than
with the Roman numerals previously used, he posed the following problem as an
exercise in his bookiber Abaci(The Book of Calculation):

A pair of rabbits do not breed in their first month of life, but at the end
of the second and every subsequent month they produce one pair of
offspring. If | acquire a new-born pair of rabbits at the beginning of
the year, how many pairs of rabbits will | have at the end of the year?

Under these conditions, the number of pairs of rabbits afteonths is called
thenth Fibonacci number f How do we calculate these numbers?
First, we have
Fo=1, F=1

For we are given that we have one pair of rabbits at the start of month 0, and they
do not produce offspring in month 1.
Next,
Fi=F-1+F2 forn>2.

33
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To show this, letG, be the number of pairs of rabbits which are old enough to
breed at the end of montlh Now by the conditions of the problem, we have
Gn = Fh_2 (since the rabbits breeding in montfare all those born in montin— 2

or earlier). Alsof, — F,_1 = Gy, sinceGy, pairs are born in monthand are those
contributing toF, but not toF,_;. EliminatingG,, from these two equations gives
the result.

So the answer to Fibonacci's exercise can be found by a dozen additions, a
simple job using Arabic numerals.

Fibonacci did not invent these numbers, which had been known to Indian
mathematicians including Pingala, Virahanka and Hemachandra for nearly 1500
years when he wrote his book.

The conditionk, = F,_1 + F,_2 is an example of aecurrence relation This
is a relation which enables any term of the sequence to be calculated if the earlier
terms are known. In this case we only need to know the two preceding terms.
Usually, a recurrence relation needs to be supplemented with initial conditions,
telling us how the sequence starts. In this case the recurrence relation only applies
for n > 2, so we need to be given the valuedgfindF, separately.

In the next section, we will solve this recurrence relation to find an explicit for-
mula for thenth Fibonacci number. First, though, we give a couple more counting
problems for which the Fibonacci numbers are the solution.

Example | have a staircase with steps. At a single stride, | can go up either
one or two of the steps. In how many different ways can | walk up the staircase?

Let a, be this number. Theay = 1 (since if there are no steps, then there
is only one way to do nothing!) anah = 1 (obviously). We claim thas, =
a,_1+an_2forn> 2. For letSbe the set of all ways of walking up the steps. The
last step we use before we reach the top is either numbet or numbem — 2
(since we ascend either one or two steps in the last stride); $p bet the set of
ways in which the penultimate step is numiper 1, andS, those in which it is
numbem— 2. ThenS andS; are disjoint and have unidd Moreover, clearly we
have|S;| = a,—1 while || = a,_2, and|§ = a,. So the recurrence relation holds.
Now a straightforward induction shows thet= F, for all natural numbers.

This representation of the Fibonacci numbers was discussed by Virahanka in
the 6th century, in connection with Sanskrit poetry. A vowel in Sanskrit can be
long or short. If we assume that a long vowel is twice as long as a short vowel,
in how many ways can we make a line of poetry of lengthut of long and short
vowels? Clearly this is the same problem, and the answer istth&ibonacci
numberk,.
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From this theorem we get a curious formula Far

/2 0k

k=0

For another way of stating our result is that the number of ways of wnitiagan
ordered sum of ones and twosHg Now we can count these expressions another
way. Suppose that we hakgwos in the sum. Then we must hane- 2k ones,

so there aren— k terms altogether (and we see that |n/2|). So the number

of expressions withk twos is the number of selections kbflements frorm — k

(the positions in the sequence where the 2s occur), of which theréneiek)

Summing ovek gives the result.
For example, when = 4, we have

° (:)1) =1 (corresponding to + 1+ 1+ 1);
o G’) = 3 (correspondingto21+1, 142+ 1 and 14+ 1+ 2);

° (g) =1 (corresponding to 2 2).
Summing, we havé; = 5.

Example How many sequences of lengthare there consistsing of zeros and
ones with no two consecutive ones? (Call such a sequethteéssible) Let b, be
this number. Clearlypg = 1 (only the empty sequence), abgd= 2 (the sequences
0 and 1 are both admissible).

Partition the sefl of all admissible sequences into two subskfsand Ty,
whereTg is the set of sequences ending in 0, dndk the set of sequences ending
in 1. Now given any admissible sequence of lengthl, we can add a zero to it
to get an admissible sequence of lengtiso |To| = by_1. But we may only add a
1 to an admissible sequence if it ends in zerofT§pis the number of admissible
sequences of length— 1 ending in zero, which by the preceding argument is
bn—_2. Thus,by, = bp_1 + bn_>.

We have the same recurrence relation as for the Fibonacci numbers, but dif-
ferent initial conditions. However, we havg = F,. 1 for all n. The proof is by
induction. We havdédy =1=F;, by =2=F, and forn > 2,

bn = bn—l + bn—2 = I:n + l:n—l = I:n—i—l-
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4.2 Linear recurrences with constant coefficients

In this section we will find a formula for thath Fibonacci number. The two
methods we use can be extended to a wider class of recurrence relations.

Method 1 We are trying to solve the recurrence relation with initial conditions
Fo=1 F =1, Fr=F-1+F,_2forn>2.

We begin by observing that there is a unique solution. Fgoand F; are given,
and then the recurrence determi@sks,.... (This is really an argument by in-
duction!) So, if we can find by any method at all a solution, then we know it is the
unique solution.

We will consider just the recurrence relatiap = an_1 + an_», and worry
about the initial conditions later. The next observation that we make is that the
recurrence relation inear. That means that, if two sequences,) and (by)
satisfy it, then so does any linear combinatien) with ¢, = pa, + gh, for any
numbersp andg. So we concentrate on finding specific solutions.

We try a solution of the forma, = a" for some numberx. [Why? One
answer is that it works, as we will see. A better answer is that, if you consider a
“one-term recurrence relation” lika, = axas_1, it is obvious that there will be a
solutiona, = a".]

Now a, = o" will satisfy the recurrence relation if and only if

a"=o" 1+ a"2forn> 2.

This will be the case if and only i&? = o + 1.
The quadratic equatiox? = x+ 1 has two solutions

1+V5 _1-5
;o P

Soa, = " anda, = 8" both satisfy our recurrence relation, and by the linearity
principle, so does

an = pa" +qB"
for any p andg.

Finally, we try to choos@ andq such that this solution also satisfies the initial
conditionsag = a; = 1. This gives us two equations

p + g = 1
po + b = 1.
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Solving these equations we find that

_1+V5 _ —1+45

So we conclude that

i i<:I-_’_\/§>n+li(]_\/E)nle

VAN /5l 2

Now this is not a very good formula for calculation, since we need to know
v/5 to a high degree of accuracy to use it. But it has one advantage. We have
o =1.618... and = —0.618.... Soa > 1 while || < 1. This means that the
nth power ofa grows exponentially, while theth power off3 tends exponentially
to zero. So we get a very good approximation

1
- L (145 n+
nN\/E 2 .

The number(1++/5)/2 is called thegolden ratia It has a long history in
Western art, music and botany.

Method 2 This method works with the generating functibfx) = Z Fx". Re-
n>0
call our conditions:

Fo=1 k=1, Fi=F_-1+F_2forn> 2.

We claim that
(1—x—x2)f(x) =1.

For the constant term ifil — x — x?)f(x) is Fp = 1, and the coefficient of is
F1 — Fo = 0; while, forn > 2, the coefficient ok" isF, — F,_1 — Fn_2 = 0.

So
1

=15

To proceed we use the method pdrtial fractions First, we factorise the
denominator:
1—x—x% = (1—ax)(1—px),

wherea andf are as in the last section. Then we write

1 _ p _q
1-x—x2 1-ax 1-Bx
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Multiplying up by the denominator,
1=p(1-px)+q(1-ax),
giving two equations
p+a=1 pf+ao=0.

Solving these two equations gives the same valugsafdq as we found in the
last section.
Finally, we use the fact that

and similarly forf3, using the formula for a geometric series. So we have

f(x) = %(Da“JrQﬁ”)X”,

n=

so thatF, = pa" + gB", exactly as we found by the other method.

The methods used here work more generallykti order linear recurrence
with constant coefficienis a relation

an = C1@n-1+Coan—2+ -+ Ckan_k,

for fixed constantgs, ..., ¢k, connecting the terms of a sequerieg). In order
to specify the terms completely, we need to specify the valueg,af,...,ax_1;
then the recurrence expresses all later terms uniquely.

We can use either of the above methods. The numbexsd  earlier are
replaced by the solutiors, . . ., ok of the equation

X=X T eoxXk %+ o

There is one complication. If this polynomial has repeated roots, we don't find
enough solutions of the forra, = " to use the first method. Instead, if the
numbera is anr-fold root, then the functions

an=a",na",....nta"

all turn out to be solutions.
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Example The numberf(n) steps required to solve the “Chinese rings puzzle”
with n rings satisfies the recurrence

f(1)=1 f(2)=2, f(n)=f(n—1)+2f(n—2)+1forn> 3.

There is an awkward 1 on the right, which can be removed by putiing =
f(n)+1/2; we find that

0(1)=3/2, g(2) =5/2, g(n)=g(n—1)+2g(n—2) forn> 3.
Now the equation forr and is x* = x+ 2, with solutionso = 2, 8 = —1. So
g(n) =p-2"+q(-1)"
The initial values give
2p—q=3/2, 4p+q=5/2,
with solutionp =2/3,q= —1/6. So the solution to the original problem is

f(n) = (2/3)2" - (1/6)(-1)" - (1/2).

4.3 Linear recurrences with non-constant coefficients
The next complication is that a recurrence relation can have coefficients which are

not constants but functions af The simplest example is the recurrence for the
factorial numbersi!:

ol=1, n=n-(n—21)!forn>1

A closely related example conceM&n), the number of words that can be formed
of ndistinct letters. We saw that

W(0) =1, W(n)=14+nW(n—1) forn> 1.
There are general methods for solving recurrences of this type (if the coefficients

are polynomials im) in terms of so-callethypergeometric functionddere | will
simply discuss one example, which illustrates another technique.
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Derangements A permutationof {1,...,n} is a bijective function from the set
{1,...,n} to itself. The number of permutationsrs. We will say more about
permutations later. Here we look at a special type of permutation.

A derangemenis a permutation which leaves no point fixed. That is, the per-
mutationr is a derangement if (i) #i fori = 1,...,n. How many derangements
are there?

Let this number bel(n). Trivially d(0) = 1, since there are no points to fix.
Also, d(1) = 0 (there is only one permutation ¢i}, and it obviously fixes the
point 1), andd(2) = 1 (the unique derangement being the permutation which
swaps 1 and 2).

We show that the following recurrence relation holds:

d(n)=(n-1)(d(n—1)+d(n—2)) forn> 2.

To see this, consider derangementsf {1,...,n}. Since the poinh is not
fixed, we must haver(n) =i for somei, with 1 <i < n—1. Now by symmetry,
the number of derangements satisfyim@) = i is independent of;, so we only
have to count the derangements with a fixed valuig ahd multiply the number
of these byn— 1.

We divide the derangements satisfyim@n) = i into two types:

Type 1: Those withr(i) = n, that is, swappingwith n. Such a permutation is
a derangement of the— 2 points different from andn. There are(n—2)
such derangements; each of them can be extended to the whole set so that it
swaps andn.

Type 2: Those withz(i) # n. Thenz(j) = n for somej #i. Now = maps
j — n—i. We can take a short-cut by going straight frgrto i, giving a
permutation of{1,...,n—1}; this permutation is a derangement, so there
ared(n—1) choices. Given any derangement{df,...,n— 1}, we can
extend itto{1,...,n} by interpolatingn just beforei.

So the number of derangements mappin® i is d(n— 1) +d(n— 2), and the
total number of derangements(is— 1)(d(n—1) +d(n—2)).

It is possible to use this recurrence to find a formula for the numib@rs or
to find a generating function for them; and there is a completely different approach
using the Inclusion—Exclusion Principle that | will discuss later in the notes. Here
I will merely quote the formula:
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Let us look at this formula. It is very similar to the formula #&(n), and can
be analysed similarly. Note that, from the exponential series, we see that

-1 (1)
el= :
2 K
) 1
-1
nlel—d(n)=n!
k>;+1 k!

Just as folW(n), the right-hand side of this equation has modulus smaller than 1,
indeed, smaller than/2 if n > 1. We conclude that

d(n) is the integer nearest td /e

the difference being alternately positive and negative.

This has an interesting interpretation. Supposerihpople go to the theatre,
and leave their hats at the cloakroom. After the performance, when they go to col-
lect their hats, the cloakroom attendant gives them out at random. Then the prob-
ability that nobody gets his or her correct hat is very close/®-10.367879. ..
For we can regard the allocation of the hats as a random permutation of the correct
allocation; and the event that nobody gets the correct hat is just that the random
permutation is a derangement.

4.4 Non-linear recurrences

A recurrence relation is really any expression, however complicated, which ex-
presses thath term of a sequence in terms of smaller terms. There is no general
method for solving an arbitrary recurrence relation. Here | will just consider one
important example.

Catalan numbers The Catalan numbers appear as the solution of many differ-
ent counting problems. For example, suppose that we have to calculate a product

X1+ X2+ Xn.

If we can only multiply two factors at a time, we have to put in brackets to make
the expression well-defined. how many ways can we bracket such a product? Let
Ch be this number. Ih = 1, no brackets are needed, &yd= 1. If n> 2, then we

can bracket together the fitsterms inCy ways, and the last— k terms inC,,_g

ways, and finally multiply together these two expressions and sunkpser

n-1
Ch=Y CCn ok
k=1
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For example, there are five bracketingsiios 4, namely
((abje)d, (a(bc))d, (ab)(cd), a((bc)d), a(b(cd)).
Thus, theCatalan numbersre the numberGy,C,, ... satisfying

n—1
Ci=1, Ch= Z CC,_kforn> 2.
K=1

We haveC; =1-1=1;C3=1-1+1-1=2;C4=1-2+1-1+2-1=5 (as
illustrated above); and so on. Each valigfor n > 1 is uniquely determined by
these conditions.

Let c(x) be the generating function:

We claim that
c(x)? = ¢(x) — x.

For consider the coefficient af' on the left-hand side. I > 2, we obtain a con-
tribution to this term by taking the term if in the first factorc(x), and the term
in X"~X in the second; multiplying the coefficients (giviGgC,_x); and summing
overk. The sum runs from 1 to— 1 since the lowest degree of a termis 1, not 0.
Forn =1, this argument is wrong; there is no termxion the left, where as
c(x) starts with the terrt. So we have to subtragto make the coefficients equal.
This gives the stated relation.
We can write this relation as

c(x)2 —¢(X) +x=0.
Think of this as a quadratic in the unknow(x). The solution is

o(x) = 1+ \/21—4X.

Now we seem to have two solutions, whereas there should only be one. But we
know thatc(0) = 0, since the series has no constant term. If we took the plus sign,
we would getc(0) = 1. So we have to take the minus sign:

c(X) = 1_— V21_4X

We can use this to find a formula for the Catalan numbers, using the Binomial
Theorem:
1/2

(1—4x)Y2 = an>< /

)(—4)”x”.
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We have
(42)-ar - 2 bt Sk Gl
n n!
1.3 (2n-3)-4"
2"n!
~1.2.3:4.--(2n—2). 27"
- 22 1p(n-1)!

. 2(2n-2
~ n\n-1)/)
(We used the fact that-2- (2n—2) = 2" 1(n—1)!.)
Now C; is the coefficient irx" in this series multiplied by-1/2; so we have

1/2n-2
Ch== .
" n(n—l)

1. Lets(n) be the number of expressions foas a sum of positive integers. For
example,

4=3+1=14+3=242=1+1+4+2=14241=2+1+1=14+1+1+1,
sos(4) = 8.
(a) Show thas(1) =1 and

Exercises

s(n)=1+ rlfs(k)
K=1

forn> 2.
(b) Deduce tha$(1) =1 ands(n) = 2s(n— 1) forn > 2.
(c) Hence show thai(n) = 2" forn > 1.

Notice how we have converted a rather complicated recurrence relation into a
much simpler one!

2. Solve the recurrence relation and initial conditions

=2 n=4a=7, an = 4an_1—5an_2+2a, 3forn> 3.

3. | purchase an item costingpence. | have a large number of 1 and 2 pence
coins at my disposal. In how many ways can | pay for the item
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(a) if  am buying it from a machine and have to insert the coins one at a time;

(b) if I am buying it in a shop and can hand the money over all at once?

4. Solve the recurrence relation and initial conditions

a=1 a=1, an=3ap_1—2a,_2forn>2.

5. Solve the recurrence relation and initial conditions

ag=2,  az=a forn>1
0 1
A= (1 1).

Fr1  F
An+1: n—1 n )
( Fn Fna

for n> 1, whereF, is thenth Fibonacci number.

6. Let

Prove by induction that

7. (a) Use the recurrence relation in the text to prove that the derangement num-
bersd(n) satisfy the simpler recurrence

d(0) =1, d(n)=nd(n—1)+(-1)"forn> 1.

(b) Now putf(n) =d(n)/nl. Show that

f(0)=1, f(n):f(n—1)+(_n—%)nforn21.

Hence show that(n) = Z (—1)%/k!, and deduce the formula in the text ).
k=0
(c) Use this formula to show that

X" e

n;o n 1-x

The series on the left is thexponential generating functiasf the derangement
numbers.

8. Take a circle and putr2pointsP;, Q1, P, Qo, ..., Py, Qn equally spaced around
the circumference. Anatchingis a set oin chords to the circle such that
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e each chord joins a poif to a pointQj, for somei, j;
e each of the A points lies on exactly one of the chords;
e no two chords cross.
Let A, be the number of different matchings.
(a) Showthatg=1,A; =2, A, =3,A3=5.

(b) Show that, fon > 1, we hvae
n
An=) A—1Ani.
2

[Hint: Consider the matchings in whidR is joined to the poinQ;, and
show that there ard; _;A,_i of these.]

(c) Hence show by induction thay, is the(n+ 1)st Catalan numbeZ,_ ;.
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Chapter 5

Partitions and permutations

It can be argued that combinatorics is about three things: subsets, partitions, and
permutations. In the first section of the notes we counted the subsets of a set. In
this section we count partitions and permutations.

5.1 Partitions: Bell numbers

A patrtition of a setX is a setP of subsets oK with the properties:
e any set inP is non-empty;
e any two sets irP are disjoint;
e the union of all the sets iR is X.

In other words, the sets of the partition covewithout any overlap.

By the Equivalence Relation Theoreni R is an equivalence relation ox
(a reflexive, symmetric and transitive relation), then the equivalence clasies of
form a partition ofX. Conversely, any partition is the set of equivalence classes of
a (unique) equivalence relation. So the number of partition$ ©f equal to the
number of equivalence relations &n

Let B(n) be the number of partitions of amelement set, say1,2,...,n}.
The numbeB(n) is thenth Bell number It is easy to see th&(0) = B(1) = 1,
B(2) = 2, andB(3) = 5. The five partitions of1,2,3} are

{123},{12,3},{13 2},{23 1},{1,2,3},

where we have written 12 instead {df, 2} to avoid a proliferation of curly brack-
ets.

47
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Proposition 5.1 The Bell numbers satisfy the recurrence

Bo =1 Bm=5% (" Bn_k.
© m=3 (§_y)em—w

Proof We have seen that the initial condition holds. For the recurrence, we
ask: how many partitions are there such that the part contamhegs exactlyk
elements? We must have<lk < n. We have to choose this part, which involves
choosingk — 1 of the remainingh — 1 elements to go in a part with this can be

n
done in (k
can be done an_k ways. Multiplying, and summing ovés; gives the result.

ways. Then we must partition the remainimg k points, which

This recurrence can be used to find a generating function for the Bell num-
bers. The type of generating function we use is calledxgonential generating
function or e.g.f. for short. This has the form

B(n)x"
F(x) = Z) ( 1) .
& n
The name is because of the relation to the exponential function

Xn
S n

exp(x) =

We claim that
dx F(X) = exp(X)F (X).

For on the left we have

d B(n)x"1
—_F — _~ 7
dx > n; (n—1)!
on cancelling the from the derivative inta!. So the coefficient ok" 1 is

B(n)/(n—1).

On the right, to obtain the coefficient g1, we take the coefficient of<1
in exp(x) (which is 1/(k— 1)!, multiply by the coefficient ok™ K in F (x) (which
is B(n—k)), and sum, obtaining

. 1 Bin-k_ 1 B(n)
I(;(k—l)! (n—k)! (n— 1'2() n

So the two sides are equal.
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Now the differential equation can be separated as

%%F (X) = exp(x).

Integrating, we obtain
logF (x) = exp(X) +c,

so F(x) = e“explexpx)). But F(0) =1 (sinceB(0) = 1), soc = —1, and we
conclude that
F(x) = exp(exp(x) — 1).

Unfortunately this simple formula for the e.g.f. doesn't help us find a formula
for B(n). Even its asymptotic behaviour for larges very complicated.

5.2 Partitions: Stirling numbers

We saw that the subsets of arelement set (which ar€'2n number) can be split

. . n
up according to the number of elements they contain. Ther{&)ek—element

5=

In the same way, the partitions of a set can be split up. RFOkX n, letS(n, k)
be the number of partitions of arelement set havingparts. The numbei§(n, k)
are calledStirling numbers of the second kin@/Ve meet Stirling numbers of the
first kind later.) Thus, we have

subsets, and so we have

i S(n, k) = B(n).
k=1

In the last section we listed the partitions of a 3-element set; from the list we see
thatS(3,1) =1,5(3,2) = 3,53,3) = 1.

There is a recurrence relation for Stirling numbers, similar to that for binomial
coefficients:

Proposition 5.2 S(n,1) = S(n,n) = 1 and
S(n,k) =S(n—1,k—1)+kSnh—1,k)

forl<k<n.
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Proof The initial values are clear: there is a unique partition with a single part,
and a unique partition with parts (each part has one element).

Now consider the partitions dfl,...,n} with k parts, and divide them into
two classes:

e Those in which{n} is a part. These are obtained by adding the{sétto
a partition of{1,...,n— 1} with k— 1 parts. So there ai&n—1,k—1) of
them.

e Those in whicin belongs to a part of size bigger than 1. If we delefeom
this part, we get a partition dfl,...,n— 1} with k parts. But now, to go
back, we have to choose a partition, and also choose onekgfétts to add
the elemennh to. So there ar&Sn— 1,k) of these.

Adding gives the result.

We can arrange the Stirling numbers in a trinagle like Pascal’s, except that we
will line it up on the left. §(n,k) is thekth number in thenth row, starting both
counts at 1.

1

1 1

1 3 1

1 7 6 1

1 15 25 10 1

1 31 90 65 15 1

The rule is a little different from Pascal’s. To find the next element in coligmn
we multiply the number immediately above it kynd add the number above and
to the left.

The Stirling numbers have a remarkable property. Recall the falling factorial:

(X)k=X(X—1)(Xx—2)--- (x—k+1).

Proposition 5.3 Forn> 1,

X" = i S(n, K) (X)k-
K=1

First proof We use the fact thafx)x.1 = (X)k(x— k). Now our proof is by
induction, the result being clear far= 1. Assuming the result far— 1, we have
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— nle(n — LK) (X)k(x—k+Kk)
k=1

n—1

n—1
= Y SN—LK) k1 + 5 kSN— 1K) (X)x.
k=1 k=1

For k < n—1, the coefficient of X)k is S(h—1,k—1) + k§n— 1,k) = §(n,k).
(We have to shift the argumektdown by one in the first term.) Fdr= n, the
coefficient of(x)n is S(n— 1,n— 1); but this is equal t&(n,n), since both are 1.
The induction is complete.

Second proof Here is a completely different proof. Let andn be positive
integers. We know that is the number of ordered selectionsrobbjects from
a set ofm objects, with repetitions allowed; if repetitions are not allowed, the
number is(m),. Let us count the selections with repetitions allowed in another
way. Take any such selection, s@y,xo,...,Xn). Define a relation~ on the set
{1,...,n} by the rule that ~ j if x, = x;. This is an equivalence relation, so
it corresponds to a unique partition of the $ét... n}. If this partition hask
classes, say, then there delistinct elements amongy, ..., X,, which we can
regard as a selection &fthings from a set ofn with repetitions not allowed.

Now given a partition of 1,...,n} with k parts, and a selectidiy, . .., yk) of
k from mwith repetitions not allowed, we can recover the original selection: put
Xi =Yij if i belongs to thgth part of the partition. So the number of selections with
k distinct elements i§(n, k)m¥, and we conclude that the total number (which we
know to bem") is the sum of all these values:

m" = S .
k;(m)k

n
Now consider the two polynomial€' and Z (X)k- We know that they take

the same value if any positive integaris substituted fox. So they are equal as
polynomials. For their difference is a polynomial of degree at mp#tit is not
identically zero, it could have at mostoots. So we have

n
X' = z (X)k,
K=1
as required.

In Exercise 1 at the end of this chapter, we will see that some valugs &)
can be calculated. A general formula will be given in a later chapter of the notes.
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5.3 Permutations: cycle decomposition

A permutationis a one-to-one and onto function from a set to itself; in other
words, an arrangement of the elements of the set. In this section and the next we
will be counting permutations. The total number of permutations of a set ofsize
is n!. But we will subdivide the permutations, much as we did for partitions, and
count the parts.

Recall thecycle decompositionf a permutation, which we do by example.
Consider the permutation

8

. <1 2 3 45 6 9 1()
4 3 57 2 6 10 9 1
of the set{1,...,10}. (Thistwo-line notationindicates the permutation which
maps 1 to 4, 2to 3, 3to 5, and so on.) To compute the cycle decomposition,
we start anywhere (say 1), and follow the iterates of the function applied to our
starting point until we return there. If we have used every point, we are finished;
otherwise, we close the cycle, and start another one at an unused point. Continue

until every point has been used. We write a cycle as a list of points in brackets,
separated by commas. For our example above, the cycle decomposition is

o ~

= (1,4,7,8,10)(2,3,5)(6)(9).

(Note that points fixed by the permutation show up as cycles of largth

The cycle decomposition of a permutation is not unique. We could start each
cycle at any point, and write the cycles in any order. For example, the permutation
above could also be written

= (3,5,2)(9)(4,7,8,10,1)(6).

5.4 Permutations: Stirling numbers

The parity of a permutatiorr is the parity (odd or even) of the numbe+ c(x),
wherec(r) is the number of cycles of (including fixed points). A permutation
is calledevenor odd according to its parity. Sometimes we talk about $ign of
n: thisis(—1)"%"), that is,+1 if 7 is even and-1 if & is odd.

Now theunsigned Stirling number of the first king(n, k), is defined to be the
number of permutations dfl, ..., n} which havek cycles; theStirling number of
the first kindis s(n,k) = (—1)"ku(n,k). (The sign we put in front is the sign of
the permutations we are counting.)
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We havels(n, k)| = u(n,k) and

n
S Is(n.k)| =n!
K=1
(since the sum counts all permutations).

Proposition 5.4 s(n,1) = (-1)"1(n—1)!, s(n,n) = 1, and

s(n,k) =s(n—1 k—1)—(n—1)s(n—1,k).

Proof How many permutations dfL,...,n} have a single cycle? Since the cycle
can start anywhere, we may as well begin with 1. Then we can visit therothgr
numbers in any order. So the number of cyclic permutatiofisis1)!. Each has
sign(—1)"1, sos(n,1) = (—1)"(n—1).

There is only a single permutation withcycles, namely the identity permu-
tation which fixes every point; it has signl. Sos(n,n) = 1.

For the recursion, take the set of permutations Wittycles, and divide into
two classes:

e Those which fix the point (that is, which have a cycl@)). Deleting this
cycle gives a permutation dfl,...,n— 1} with k— 1 cycles. Clearly the
procedure reverses. Sinte1)("-1D-Kk-1) — (_1)"-K the contribution to
s(n,k) from these permutations &n— 1, k—1).

e Those which move the poimt, (that is, in whichn is in a cycle of length
greater than 1). Deletingfrom the cycle containing it gives a permutation
of {1,...,n—1}, also withk cycles. When we reverse the construction,
for each permutation of1,...,n— 1}, there aren— 1 places in which we
could insertn. Since(—1)"Y-k = _(—1)"K the contribution of these
permutations ta(n, k) is —(n— 1)s(n— 1,k).

Adding these two terms gives the result.

We can write these Stirling numbers, like the others, in a triangular array. This
time, ignoring signs, a given entry is obtained by multiplying the entry above by
its row number (rather than its column number, as before) and adding the entry
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above and to the left. Then put in signs in a chessboard fashion. We obtain:

1
-1 1
2 -3 1

-6 11 -6 1
24 -50 35 -10 1
—-120 274 -225 85 -15 1

From Proposition 5.4 we can prove a result which is the “inverse” of Proposi-
tion 5.3:

Proposition 5.5 Forn> 1,

(X)n = i s(n, k)xK.
&1

For example, sincéx)s = x(x— 1) (x— 2) = x® — 3x* + 2x, we have

$3,3)=1, s(32)=-3, s(31)=2

Proof Again the proof is by induction. Far= 1, both sides of the equation are
equal tox. So suppose that the result is true fior 1. Then we have

¥n = (Xn-1(x—n+1)

_ s(n—1,K)x*(x—n+1)
1
1 _

= Y s(n—1,kx = (n—1)s(n—L,k)x"
1 =

77

=
Il

The coefficient ofX for k < nis s(n—1,k—1) — (n—1)s(n— 1,k) (moving the
index down by one in the first term). The coefficienxdiss(n—1,n—1) =1=
s(n,n).

One consequence of Propositions 5.3 and 5.5 is the following result.

Proposition 5.6 The lower triangular matrices of Stirling numbers of the first and
second types are inverses of each other.

This applies whether we regard them as “infinite matrices” or chop them off
after a fixed number of rows. Because the matrices are lower triangular, even
multiplying the infinite matrices only involves finite sums.
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Proof The polynomials with constant term zero form a vector spaceThe
following two sequences are basesYor

o X, X2, X3, ...

e (X)1, (X)2, (X)3, ...

Propositions 5.3 and 5.5 show that the two matrices of Stirling numbers are the
transition matrices between these two bases.

Another consequence of Proposition 5.5 is:

Proposition 5.7 For n> 2, the numbers of even and odd permutation§lof. ., n}
are equal.

Proof Becausea > 2, we see thafx), has a factofx— 1), and so is zero when
we putx = 1. Substituting« = 1 into Proposition 5.5, we have

i s(n,k) =0
K=1

for n > 2. Now an even permutation contributed to this sum, and an odd
permutation contributes 1; the contributions must match.

Remark For those who have done some abstract algebra, here is a completely
different proof of this result. The set of all permutations{df...,n} forms a
group (with the operation of composition), called #yenmetric grougnd written

S,. The mapping that takes a permutation to its sign is a homomorphism from
Sh to the multiplicative groug+1} of order 2; the even permutations form the
kernel of this homomorphism, and therefore comprise a normal subgrdgmobdf
index 2, called thalternating groupand writtenA,,. The odd permutations form

a coset ofA,. Now Lagrange’s Theorem tells us that the subgroup and its coset
have equally many elements.

Exercises

1. (a) Prove each of the following statements (i) by directly counting the partitions,
(ii) by using the recurrence relation:

e S(n2)=2"1_1;

e S(n,n—-1) = (2)
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(b) Find a formula foiS(n,n— 2).
2. (a) Prove (i) by directly counting the permutations, (ii) by using the recurrence
n
5):
(b) Find a formula fois(n,n— 2).

relation, thas(n,n—1) = —

3. Calculate the number of permutations{@f2,3,4,5,6} with three cycles
(a) by using the recursion formula for the appropriate Stirling numbers;

(b) by listing the possible cycle lengths of such a permutation and counting the
number of permutations with each possible cycle structure.

4. Letk be given, and lepx(n) be the probability that a randomly-chosen permu-

tation of{1,...,n} has exactlk fixed points. Show thaby(n) = (E) d(n—k)/n!,

whered(n—K) is the(n— k)th derangement number, and hence show that

@) éo (E) d(n—k) = n:

1
K
[If you have studied some probability theory, the last statement says that the num-

ber of fixed points of a random permutation of the §&f...,n} approaches a
Poisson distribution with parameter 1as- .]

(b) lim pi(n) =



Chapter 6

The Principle of Inclusion and
Exclusion

Suppose that, in a class of 100 pupils, we are given the following information:
¢ 50 play football, 48 play music and 42 play chess;

e 23 play football and music, 22 play football and chess, and 21 play music
and chess;

e 10 play all three.

How many pupils do none of the three activities?

We can illustrate the eight possible combinations of activities with a Venn
diagram. Starting from the inside and working out, it is possible to see that the
numbers are as shown in the diagram. So the answer is 16.

Football Music

Ches 16

In this section we are going to develop a formula for this number, so that
the answer can be calculated directly from the given data. We will then use this
formula to count derangements and to find a formula for the Stirling numbers of
the second kind.

57
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6.1 PIE

The set-up is as follows. We have a “universal”Xeand a collectiod\, Ay, . .., Ay
of subsets oK. (In the exampleX is the set of 100 pupil$) = 3, andA1, Ay, Az
are the sets of pupils who take part in each of the three activities. We are given
IX|, |A1]l, |A2| and|Ag|, and also the sizes of the intersectighagn Az, A1 N Ag,
Ao N Az andA; N A2 N Ag. For exampleA; N A; is the set of pupils who play both
football and music.

In order to simplify the notation, we will deno#® N A, by Ag;,,. More
generally, for every subsébf the index se{1,2,....n}, we let

A =A.
iel
Thus, A is the set of elements belonging to all the s&t$or which the index
belongs td, and possibly some others. By conventiég, = A, andAg = X.

Theorem 6.1 (Principle of Inclusion and Exclusion) The number of elements of
X which lie in none of the setsA. ., A, is equal to

DA
1C{1.2...n}

In our example, the number of children taking part in no activity is
100—50—-48—42+23+22+21—-10= 16,

agreeing with what we found directly.

Proof We look at the expression in the theorem. It is the sum of cardinalities of
various subsets of with plus and minus signs. We evaluate this by looking at
each elememnt € X and seeing how much it contributes to the sum.

An elementx which lies in none of the set&; gives a contributiont-1 from
Agp = X, and no contribution from any of the other sets.

Now consider an elemertwhich lies in some of thé,, and let

J={ie{l,....,n} : xe A}

be the set of indices of sets containglrhenx € A, if and only if| C J. So the
contribution ofX is

> (-1

IC
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]
_ [
sign(—1)'. So the contribution is

,Z(D(‘”i (-1l =0

by the Binomial Theorem.

So the elements in none of the sé@§scontribute+1 to the sum, while the
elements lying in some of these sets contribute 0. Hence the sum is just equal to
the number of elements lying in none of thAg as was to be proved.

Let |J| = j. Then there ar({ ) subsets of of sizei, and each of them gets the

As a corollary we have the following result:

Proposition 6.2 Suppose that A...,A, are subsets of a set X. Suppose that
|X| = mp and that|A;| = my for i = 1,...,n. Suppose further that the intersection
of any j of the setsihas cardinality m. Then the number of elements in none of

the sets is
()
-1 . m;.
j;( ) j)m

: : n : :
For in the sum in Theorem 6.1, there %?) setsAy with |I| = j; each of

them has cardinalityn; and contribute$—1)m; to the sum.

6.2 Surjections and Stirling numbers

Let |A| = nand|B| = k. How many functions are there frofto B? To specify
a functionf, we simply have to define thevaluesf (a) for a € A, which can be
arbitrary; so the number I€.

How many of these functions are injective (one-to-one)? To count these, we
proceed as above, making sure that the values are all distinct; that is, we sample
without replacement. The answer(lgn = k(k—1)---(k—n+1). Note that this
number is zero ih > k; there can be no injective function from a set to a smaller
set.

How many of the functions are surjective (onto)? This is more difficult to
count by elementary means; but PIE allows us to find the answer.

Let X be the set of all functions frorfay, ...,an} to {by,...,bm}. Then|X| =
K",
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Fori=1,...,k, let Aj be the set of all those functions which never take the
valueb;. (We are trying to count functions that take all values; to apply PIE we
need to remove all the functions that miss at least one value). Then the functions
in A; takek — 1 possible values, so there dke— 1)" of them.

Now suppose thdtC {1,... k} with ||| = j. ThenA is the intersection of the
setsA fori € 1, so it consists of all the functions which take no valbyéori € I.
These functions have— i possible values, so there gke—i)" of them.

Since the surjections are the functions lying in none of the AgtBroposi-
tion 6.2 gives:

Theorem 6.3 The number of surjections from a n-element set to an k-element set
is
k -k
> 0! (§) k=i
J:

Remark This formula is useful but has its drawbacks. For example, it should
give zero wherk > n, since there cannot be a surjection from a set to a larger set.
But this is quite hard to show directly — have a try! Also, it is not obvious that

Ji(—l)i (7)o =nt

though of course this must hold sinceki= n then the surjections are bijections
and there are! of them.

This theorem allows us to find a formula for the Stirling num8er, k) of the
second kind. Remember th&fn, k) is the number of partitions of amelement
set intok parts. Given such a partition ¢f., ..., n}, say, we can define a surjec-
tion from {1,...,n} to {1,...,k} as follows: ifPy,..., P are the parts, map the
elements of par® to the valud. SinceR # 0, some element is mappeditior all
i €{1,...,k}, sowe do have a surjection. In fact, a given partition gklesurjec-
tions, since we can order the parts in any way we like. Conversely, any surjection
f gives a partition intk parts, where théh part is the inverse image otunder
f. Thus the number of surjectionskstimes the number of partitions, and so we
have:

Proposition 6.4
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6.3 Derangements

We can use a similar method to find a formula for the number of derangements of
{1,...,n} (permutations with no fixed points).

Let X be the set of all permutations ¢1,...,n}. Then|X| =nl. Now fori =
1,...,n, letA be the set of permutations which fix the painThere argn— 1)!
such permutations, since they can permute the othelr elements arbitrarily. For
anyl C {1,...,n}, A; consists of permutations fixing every pointlinif |I| = j,
these permutations move the otiner j points arbitrarily, sdA/| = (n— j)!. Now
a permutation is a derangement if and only if it does not fix any point; sh,if
the number of derangements, then Proposition 6.2 gives:

Proposition 6.5

G — li(—l)j (T) (n—j) =n 2)(_“1)1‘

This is the formula we saw in Chapter 5.

Exercises

1. An opinion poll reports that the percentage of voters who would be satisfied
with each of three candidates A, B, C for President is 65%, 57%, 58% respectively.
Further, 28% would accept A or B, 30% A or C, 27% B or C, and 12% would be
content with any of the three. What do you conclude?

2. | have 25 sweets to distribute to a class of 10 children.
(&) In how many ways can | distribute the sweets?

(b) In how many ways can | distribute the sweets if | give Alice at least four
sweets?

(c) In how many ways can | distribute the sweets if | give both Alice and Bob
at least four sweets?

(d) Use the Principle of Inclusion and Exclusion to count the number of ways |
can distribute the sweet if no child is to have more than three sweets.
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Chapter 7

Families of sets

We know now how many subsets of the §&12, . .., n} there are altogether (namely
2"), and the number of subsets of fixed skzéhamely E ). We are now going

to turn to collections of sets satisfying various other conditions. Of course we
are really talking about “sets of sets” here, but to avoid confusion we will refer
to them as “families of sets”. Typically we will denote a family of sets by script
capital F, thus:#.

The set of all subsets of a setis called thepower setof X, and denoted by
Z(X). Thus, a family of sets is a subset&f({1,...,n}).

The main questions will be: Suppose that we place some restriction on the
relationships between sets in a family. What is the largest number of sets that we
can have? Which families reach this upper bound? We will examine one case in
detail, and state and pro&perner’'s TheoremThen we will look more briefly
at intersecting families and at families where any two sets intersect in a single
element.

7.1 Sperner’s theorem

A family .7 of subsets of1,...,n} is called aSperner familyif the following is
true:

For any two distinct setd, B € .%#, neither of them contains the other;
thatis,AZ BandB Z A.

Our first question is: What is the largest Sperner family?
The cheapest way to build a Sperner family is to take all the subsets of some

, : . n .
fixed sizek. This gives us(k) such sets, and clearly no such set can contain

63
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another. We saw in Assignment 1, Question 2, that for fixeéde binomial co-
efficient E is greatest whek = n/2 (if n is even) or wherk = (n—1)/2 or

k= (n+1)/2 (whennis odd — these two binomial coefficients are equal).

Other Sperner families can be constructéd1,2},{1,3,4},{2,3,4}} is an
example. Perhaps it is possible to find a larger family containing sets of different
sizes? The first part &perner’s Theorertells us that it is not:

Theorem 7.1 Let.# be a Sperner family of subsets{df,...,n}. Then

FI= ()

Proof The following ingenious proof is known as the LYM method, since it was
invented by Lubell, Yamamoto and Meshalkin (and also by Bahbve have
seen many instances of mis-named theorems in mathematics!)

A chainis a sequence of subsets{df 2,...,n}, in which each set is contained
in the next set in the sequence. The maximal number of sets in a chaif is
1; in such a maximal chaifAg,A,...,An), the setAy hask elements. Such
a chain starts with the empty set and adds one new element each time. Thus,
any maximal chain is described by a permutatioof {1,...,n}; we haveA =
{m(1),...,7(i)}.

It follows that the number of maximal chains is equal to the number of permu-
tations of{1,...,n}, namelyn! .

Next we ask: how many maximal chains contain a givenA&etlf |A| = k,
then the firsk numbersr(1),..., (k) in the permutation must be the elements of
A, and the lash — k must be the remaining elements; so the number of maximal
chains containing\is k! (n—Kk)! .

Now, let.# be a Sperner family. Then, f& B € ., no maximal chain can
contain bothA andB. For if so, such a maximal chain would be. A, ...,B,...),
say, and the’ C B, contradicting the definition of a Sperner family. So if we add
up the numbers of maximal chains containing all the set% irthe total cannot
be more than the total number of maximal chains:

S IAl (= IA)! <,

Ac7

from which we deduce (dividing both sides by that

2 7
“ (m)

=

<1
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This result (which is valid for any Sperner family) is known aslthé/ inequality

Now we saw, the largest binomial coefficient( . So if we replace

i n
_ 2
the denominators on the left by larger quantities, we make the sum smaller, and
we find
7] 1
= — <1

D <1,
() 7 ()

and so we conclude that
7| < ( " )
[n/2]

Our second question is: What are the families which meet this bound? We
have seen that, if is even, the set of ali-element subsets meets the boundy if
is odd, the set of al{n — 1) /2-element subsets meets the bound, and so does the
set of all(n+ 1) /2-element subsets. The second part of Sperner’s Theorem tells
us that there are no others:

Theorem 7.2 Suppose that# is a Sperner family of subsets §f, ..., n} with

|F| = (Ln;‘ZJ)' Then

(@) if nis even, thet” consists of all the f2-element subsets;

(b) if nis odd, then eithe#” consists of all thén— 1)/2-element subsets, or it
consists of all thén+ 1) /2-element subsets.

Proof We have to look back at the preceding proof; in particular, the step from
the LYM inequality to the next line. This involved replacing the denominators
n . : n .
(W) by the possibly larger denommato(sln/zj). If it ever occurred that the
new denominator was strictly larger, then we would have strict inequality in the
n .
next step, and we would conclude thaf| < (Ln/ZJ . So all the sets in the
family .# must have siza/2 (if nis even), or sizén—1)/2 or (n+1)/2 (if nis
odd).
So the theorem is proved in the case where even.
If nis odd, however, we have one more job to do: we must rule out the possi-
bility that there are sets of both possible sizeginSo leth = 2m+ 1.
Looking at the proof again we see that, if the bound is met, then every maximal
chain must contain a set & . If AandB are sets of sizanandm-+ 1 respectively,
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then there is a maximal chain containing bétendB; so.# must contain exactly
one of these two sets. SoAfe .# thenB ¢ .# and conversely.

Now if C andD are two sets of sizm, then it is possible to find a sequence of
sets of sizes alternatetgandm+ 1 fromC to D. If C € .#, then we find that the
sets of sizan+ 1 don't belong ta%, while the sets of sizenall do. So every set
of sizembelongs ta%. This implies that no set of siz@+ 1 can belong ta7,
s0.7 is the set of al-element sets.

In a similar way, if.# contains anim+ 1)-element set, then it consists of alll
(m+ 1)-element sets.

Here is an example to illustrate this proof. Supposehat7, m= 3, and.#
contains the sefl,2,3}. We want to show that it containgl,5,6}. We produce
the sequence

({1,2,3},{1,2,3,4},{2,3,4},{2,3,4,5},{3,4,5},{3,4,5,6},{4,5,6}).

Now {1,2,3} € #; s0{1,2,3,4} ¢ .7; s0{2,3,4} € #; and so on. Finally,
{4,5,6} € .7, as required.

7.2 Intersecting families

We say that two set& andB intersecif their intersection is not emptyAN B # 0.
Afamily of subsets of 1,. .., n} is anintersecting familyf any two of its members
intersect.

Theorem 7.3 The maximum size of an intersecting family of subsef4.of.,n}
is2n1,

Proof First we note that there do exist intersecting families containing gets.
For consider all the subsets ¢1,...,n} which contain the element Such a
subset has the forgn} UA, whereA s an arbitrary subset dfl,...,n—1}; there
are 21 choices forA. Clearly the resulting family is intersecting since any two
members have at least the elemeim common.

We have to show that it is not possible to have more thart 2ets in an
intersecting family. To see this, we list the sets in complementary pAirA'},
whereA' = {1,...,n}\ A There are 2/2 = 2"~1 such pairs. Now an intersecting
family .# can contain at most one set from each pair, slheedA’ are disjoint.
So|.#| < 2"1, as required.

Following the pattern of Sperner’'s Theorem, we should now go on to find all
the intersecting families which meet this bound. But this is not possible; there are
many different intersecting families meeting the bound. Here are a few examples.
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e As in the theorem, if we take all the subsets which contain some fixed ele-
ment of{1,...,n}, we obtain an intersecting family of siz&8 2.

e If nis odd, choose all the subsets which have size strictly greatenit2an
Any two such subsets must intersect; and there &ré @f them, since out
of each complementary pair we take the larger one.

e If nis even we can modify this argument. Take all subsets with more than
n/2 elements, and out of the sets of siZ& pick one of each complemen-
tary pair. For example, fon = 4, we could have either of the following
(where | write{1, 2,3} as 123 for brevity):

{1234123124,134,234,12,13,14}
{1234123124,134,234,12,13,23}

e Many other examples are possible. Ret 7, it can be showed that there are
25 — 64 sets which contain at least one of 1285 167,246,257,347,356.
Since these seven sets intersect, any sets containing them will also intersect.

Let’'s ask a different question. What is the maximum size of an intersecting
family of k-element subsets dfL, ..., n}?
If n < 2k, then anyk-element set contains more than halfdf. .. n}, so any

. n . . .
two of them intersect. The answer ther<|l§) , Which is not very interesting. So

we assume that > 2k.

In this case, let(i) consist of all thek-element subsets dfL, ..., n} which
n—-1
k—1
to pick k—1 more elements fronfl,...,n}\ {i}. A famous theorem called the
Erdos—Ko—Rado theoreshows that this is the best we can do:

contain the elemerit fori € {1,...,n}. Then|%(i)| = , since we have

Theorem 7.4 (a) If n > 2k, then an intersecting family of k-element subsets of
. n—1
{1,...,n} has size at mosék_ 1).

(b) If n> 2k, then the only intersecting families which have {%(]e_ i) are
the sets%(i), fori e {1,...,n}.

The proof of this theorem is beyond the scope of the course, but | have written
out the main part in the final section of this chapter. If you are interested in com-
binatorics, you are encouraged to study this proof, which has a lot of important
ideas in it.



68 CHAPTER 7. FAMILIES OF SETS

| will give here just the proof of part (a) of the theorem in the case when
n= 2k. This is similar to what we did before. Arrange tkelement subsets of
{1,...,2k} into complementary pairgA, A'}, whereA' = {1,...,2k} \ A. Then an
intersecting family contains at most one of each complementary pair, so the size
of such a family is at most

%<2kk) _ <2kk_—11>.
7.3 The de Bruijn—Erdos theorem

Now we will be even more specific. What is the maximum size of a family of
subsets of 1,...,n} having the property that any two of them have exactly one
point in common?

First we give some examples of such families.

e Forie{1,...,n}, let/(i) consist of the sefi} together with all sets of the
form {i, j} for j #i. Then|</(i)| = n and any two members a¥ (i) meet
in the point{i}.

e Forie{1,...,n}, let A(i) consist of the sefl,...,n}\ {i} together with
all sets of the forn{i, j} for j #i. Then|Z4(i)| = n, and any two members
of Z(i) meet in one point.

e Forn=17, the seven sets 12345 167,246,257,347,356 have the required
property. This configuration of seven sets is known ag-Hre plane

The diagram shows the second and third examples.
1

2 6 4

Thede Bruijn—Erds theorenshows thah is the maximum size, and describes
the families which meet the bound:

Theorem 7.5 Let.Z be a family of subsets éf., ..., n} with the property that
|ANB| = 1forall A,B € .#. Then|.Z#| < n. Equality holds if and only if one of
the following occurs:

(a) F = (i)or F = HA(i) forsomeic {1,...,n};
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(b) there is a positive integer q such thatro? + g+ 1, every set inZ contains
g+ 1 elements, and every element{df... n} is contained in g+ 1 of the
sets of#.

Note that the third example in our list above satisfies conclusion (c), with
q=2: we haven= 22+ 2+1 =7, each set has21 = 3 elements and each point
liesin 2+ 1 = 3 sets of#.

The proof will not be given here: it can be found in the recommended textbook
for the course. We will end this chapter by a brief look at some families satisfying
conclusion (c) of the theorem.

7.4 Finite fields and projective planes

We first do a little bit of linear algebra. Recall thati@ld is an algebraic structure
in which addition, subtraction, multiplication and division (except by zero) are all
possible, and the commutative, associative and distributive laws apgyisia
field, then we can talk about vector spaces dvethe standaran-dimensional
vector space is the s&t™ of all mtuples of elements d¥, with coordinatewise
operations.

We are interested in finite fields. Do any exist? Yes, the integerspiioamn a
field wheneverp is a prime number; this field is denoted By. There are others
too, as we will see later.

Theorem 7.6 Let F be a finite field with g elements, and V an m-dimensional
vector space over F. Then

@ VI=d™
(b) the number of-dimensional subspaces of V(g"—1)/(q—1);

(c) the number o2-dimensional subspaces of V is

(q"-1)(@™ -1
(Q—-(a*—-1)

Proof (a) Any m-dimensional vector space can be coordinatised by choosing a
basis; so we can take it to IB€". The result is clear.

(b) Any 1-dimensional subspace is spanned by a non-zero vector, of which
there areg™ — 1 in V. But, if c is any non-zero element &, thenv andcv span
the same 1-dimensional subspace. So each such subspage-lHaspanning
vectors, and the number of such subspacé¢g™s-1)/(q—1).



70 CHAPTER 7. FAMILIES OF SETS

(c) Any 2-dimensional subspace is spanned by two linearly independent vec-
torsvandw. There aref™ — 1 choices fow (since it must be non-zero) agd — g
choices forw (since it cannot be a multiple of. Thus there ar¢g™— 1)(q™ —

q) pairs (v,w). But by the same argument (puttimy= 2) we see that any 2-
dimensional subspace contaifwg — 1)(g? — g) spanning pairs of vectors. So we
get the number of subspaces by dividing, and cancelling a fgctor

We see that a 3-dimensional vector space(b@s-1)/(q—1) =g +q-+1
1-dimensional subspaces, and

(q*—1)(o?—1)
(a-1)(q?-1)

2-dimensional subspaces. Furthermor¥, i§ 3-dimensional, then

=?+q+1

e any 2-dimensional subspace contagas1 1-dimensional subspaces;
e any l-dimensional subspace is contained+nl 2-dimensional subspaces;
e any two 2-dimensional subspaces intersect in a 1-dimensional subspace.

The first part follows from the case= 2 in the theorem; the second is proved
by a similar argument. For the third, let djwh) = 3 and letw;,\W, be subspaces
with dim(W; ) = dim(W,) = 2. By the dimension formula,

dim(Wy +Ws) + dim(Wp NW.) = dim(Wh) + dim(Ws).

Now the right-hand side is equal to 4. We must have(Wn+W,) = 3 (it can-
not be larger since difW) = 3, and it cannot be smaller singg + W, properly
containdM). So dimWpNW,) = 1, as required.

Now letn = g°+ g+ 1, and number the 1-dimensional subspaceg ef F3
asU,...,Up, and the 2-dimensional subspaced\s...,W,. Now letA; be the
set{j :U; <W}, the set of indices of the 1-dimensional subspac#¥ iThen

e Aq,...,Ayare subsets ofl,... n}, each having sizg+ 1, and any element
lying in g+ 1 of them;

e any two ofAy, ..., A, intersect in just one element.

So we have a configuration satisfying case (c) of the de Bruijndgitteorem.

A family of sets satisfying case (c) of the de Bruijn—Bsatheorem is called
a projective plane The numbenq is called theorder of the projective plane. So
the example in the last section (the Fano plane) is a projective plane of order 2;
and the construction of this section shows that there exists a projective plane of
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any orderg for which there is a finite field witlg elements, in particular, i is a
prime number.

A theorem of Galois (which we will not prove here) says that there exists a
finite field with g elements if and only ify is a power of a prime number; and
moreover, such a finite field is unique. Here, for example, are the addition and
multiplication tables for a field with 4 elements, called (x, :indexfield!of or-
der 4

+/0 1 a B 10 1 a B
0/0 1 a B 0|0 0 0O
11 0 B « 110 1 a B
aloa B 0 1 a0 a B 1
B|B a 1 O B0 B 1 «

Here is an outline of the construction. We build this field from the fi&d
(integers mod 2) by adding the root of an irreducible polynomial, in the same way
that we construct the complex numbers from the real numbers by adding i, a root
of the polynomialx? +1 = 0. Some trial and error shows that the polynomial
x? +x+ 1 is irreducible ovefZ,; let o be a root of this polynomial, so that® +
a+1=0,ora?=o+1. (Remember that+1 =0 in Zy, and sax+ x = 0 for
anyx.) Then the elements of the field are all linear combinations of 1ognrce.

0,1, a,ax+ 1. We have pu = o+ 1 in the tables. For example,

o+ = a+(a+l)=(a+a)+1=1,
af = ala+l)=a’+a=a+1l+a=1

For which numberg does there exist a projective plane of orgerThis seems
to be one of the hardest questions in combinatorics. We have seen that they exist
whenever is a prime power. No example is knowngfis not a prime power. A
famous theorem called tHi&ruck—Ryser Theoresays that, ifg is congruent to 1
or 2 mod 4 andj is not the sum of two squares, then there is no projective plane
of orderq. Thus, there is no projective plane of order 6, since 6 is congruent to 2
mod 4 but is not the sum of two squares. The number 10 is also congruent to 2
mod 4, but is the sum of two squares &2+ 3?), so the theorem doesn't tell us
whether there is a projective plane or not. But a huge computation, including two
years on a Cray supercomputer, showed in 1989 that there is no projective plane
of order 10. The next number in doubtns= 12 (this is congruent to 0 mod 4,
so the Bruck—Ryser theorem does not apply to it). We have no idea whether a
projective plane of order 12 exists or not!
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7.5 Appendix: Proof of the Erdos—Ko—Rado Theo-
rem

We will prove this theorem using a result about graphs. First we develop some
terminology.

A graphconsists of a s&f of vertices, and a sé of edges; each edge is a set
of two vertices, and is regarded as connecting those two vertices. Here is a picture
of a graph.

A cliquein a graph is a set of vertices, any two of which are joined by an
edge. Acocliqueis a set of vertices, no two of which are joined by an edge. In
the example drawn above, the largest clique has three vertices, and the largest
coclique has two vertices.

An automorphisnof a graph is a permutation of the vertices which maps every
edge to an edge. The set of all automorphisms is a group (a subgroup of the
symmtric group), called thautomorphism groupf the graph. In our example,
the left-to-right reflection is an automorphism; the automorphism group contains
four elements (including the identity).

A graph is said to beertex-transitiveif, for any two vertices, there is an
automorphism of the graph which carries the first to the second. More generally,
for any groupG acting on any seX, we say thaG actstransitivelyon X if we can
carry any element ok to any other by some element of the group. Our example
graph is not vertex-transitive since no automorphism can take the left-hand vertex
(which lies on two edges) to the top vertex (which lies on three edges).

We use the fact that, if a grodpacts transitively on a s&, with |X| =n, then
for anyx,y € X, the number of elements & mappingx to y is equal to|G|/n.

For it is clear that the average numberxiis fixed andy varies over all points
in X) is |G|/n; and the elements of the group which mejo y form a coset of a
subgroupH, whereH is thestabiliserof x, the set of all elements @ fixing x.
By Lagrange’s Theorem, all cosets contain the same number of elements.

We first prove a theorem which is too weak for our purposes, but illustrates

the proof technique. Then we strengthen it to get the result we want.

Theorem 7.7 LetI" be a vertex-transitive graph on n vertices. Let C be a clique
and D a coclique in G. The|C| - |D| <n.
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Remark Our earlier example shows that the assumption of vertex-transitivity is
necessary for this theorem. The graph there has four vertices and has a 3-vertex
clique and a 2-vertex coclique.

Proof Let G be the automoorphism group of the grdphCount tripleg(x,y, g),
wherex € C, y € D, g € G, andg mapsx to y. There argC| choices ofx, |D|
choices ofy, and (by the remark before the theore[@)/n choices forG, so
IC| - |D|-|G|/n such triples.
Now count another way. For each elemgmt G, there is at most one element
of C which can be mapped intD by g. For any two elements ¢ are joined;
any two elements dD are not joined; so if mapped two elements @finto D it
would change an edge into a non-edge, which is impossible for an automorphism.
So for every element d& there is at most one triple of the type we are counting.
So|C|- |D|-|G|/n < |G|, from which the result follows.

Theorem 7.8 LetI" be a vertex-transitive graph on n vertices. Let Y be a subset
of the vertex set such that any clique contained in Y has size at nigjstTinen
any cligue in G has size at most mn.

To see that the preceding theorem follows from this one, ¥ke be a co-
clique. Any clique contained iD has at most one vertex, i.e. size at moHD|,
wherem = 1/|D|; so any cliqueC in G satisfies|C| < mn= n/|D|, from which
the required result follows.

Proof Again letG be the automorphism group of the grdphLetC be a clique.
As in the preceding proof, we count triplés y,g), wherexe C,y €Y, g € G,
andg mapsx toy. As before there arf| - |Y|- |G| /n such triples.

Now choose first the elemengt Suppose that it magspoints ofC into Y.
Their images form a clique, do< m|Y|. Thus there are at most|Y|- |G| such
triples.

So|C|-|Y]-|G|/n<m|Y|- |G|, whenceC| < mn

Theorem 7.9 (Erdés—Ko—Rado) Suppose that n and k are given, with>n2k.

Then the size of an intersecting family of k-subse{d of ., n} is at most(E: D :

Proof We make a graph as follows: the vertices are theelement subsets of
{1,...,n}; two vertices are joined if the corresponding subsets have non-empty
intersection. Then an intersecting family is just a clique in this graph. Moreover,
it is clear that the symmetric group did,...,n} acts vertex-transitively on this
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graph. (This says, given any tvkeelement subsets andB of {1,...,n}, there is

a permutation of 1,...,n} which carriesA to B. Note that any permutation maps
an intersecting pair dé-element sets to an intersecting pair, so is an automorphism
of the graph™.)

Now we find a collection oh subsets such that an intersecting family contains
at mostk of them. To do this, we taka points pg, p1,-.., Pn_1 €qually spaced
around a circle. Number the intervals between the pointg,as.,I,_1, where
lj = (pj, Pj+1). (We read the subscripts modutovhere necessary.) The sét
consists of all “intervals of lengtk’, that is, sets of the forngj,j+1,...,j+k—

1}. There aren such sets; we have to show that an intersecting family contains
at mostk of them. (Note that we have replacéd,...,n} by {0,...,n—1}; this
does not affect the argument.)

So suppose that is a subset off, any two of whose sets intersect. Each
point pj is the endpoint of two intervals i, namely{j,j+1,...,j+k—1} and
{j—Kk,...,j—2,j—1}. These two sets are disjoint, because of our assumption
n > 2k; soZ contains at most one of them.

Now take a set irZ, sayA={j,j+1,...,j+k—1}. Any other set inZ
intersects this one, so must have an end point in thgsgt, ..., pj+«—1} (the
set of p’s which are interior points of the interval corresponding\Jo Since each
of these points can be the end point of at most one interval corresponding to sets
in Z, there are at most— 1 more such sets, that is, at m&sdltogether.

Now it follows from Theorem 7.8 that the size of any intersecting family of
k-sets (that is, any clique in the gra@) is at most

) = (k)

Remark It is possible to show that, if > 2k, then any intersecting family &
sets attaining the bound of the theorem must consist &fsdits containing some
given point of{1,...,n}.

Exercises

2k—1
1. Letn= 2k. Show that there are<2<—1> intersecting families ok-element

, . 2k—1
subsets of1,...,n} having the maximum number K1 of members. Show

that only X of them have the forn¥ (i) for i € {1,...,n}. Hence show that the
second part of the Eéd—Ko—Rado Theorem goes badly wrong whea 2k.
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2. ldentify the right-hand picture before Theorem 7.5 with the example con-
structed using the finite field = Z,. [Hint: the subspace spanned by the vector
v = (a,b,c) corresponds to the point with labeh4- 2b+ c in the figure.]

3. Construct a finite field with 8 elements.

4. LetX ={1,...,n}. Show that, for every non-empty subgeof X, there is an
intersecting familyZ of subsets oK of size 21 with A € .. Show further that
any two subseta, Bwith ANB +# 0 are contained in a family with these properties.
What about three pairwise intersecting sets?

5. Show that the largest Sperner family of subset§lo®, 3,4,5} containing the
sets{1,2} and{3,4,5} contains eight sets. How does this compare with Sperner’s
Theorem?

6. Let.” be the family
{{17 27 3}7 {17 4’ 5}7 {17 67 7}7 {27 47 6}7 {27 57 7}7 {37 47 7}7 {37 57 6}}

of subsets 0f1,2,3,4,5,6,7}.
Let . be the family of all subsets dfl,...,7} which contain a member of
. Show that

(@) .Z is an intersecting family;

(b) .# contains 7 sets of size 3, 28 of size 4, 21 of size 5, 7 of size 6, and one
of size 7: in all, 64 sets.

7. LetX ={1,2,...,n} and.” = {Ay,A,...,Ay} be a family of distinct subsets
of X such thaiA; N A¢| = 1 for allk # j. For each € X, letr; be the number of
subsets of” which contain. Prove that

n

eri(ri —1)=Db(b-1).

[Hint: Count the number of ordered tripl¢sAj,Ac), whereAj, A¢ are distinct
sets in” andAjNAc = {i}, in two different ways.]
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Chapter 8

Systems of distinct representatives

The Students’ Union hasaffiliated clubs. Each club elects a delegate to the Ex-
ecutive Committee. The delegate must be a member of the club (s)he represents,
and no person can represent more than one club.

The two natural questions for a combinatorialist are: is it possible to choose
the representatives according to these rules? and In how many ways can this be
done? We will answer the first question here; the second is more difficult.

Of course the answer depends on the membership of the clubs. If, for example,
Sid and Doris are the only members of the Football Club, the Music Club, and the
Chess Club, then the election is clearly not possible. More generally, we see that
if any mclubs contain altogether less thamembers, the election is not possible.

So anecessarycondition for the election is that any clubs have between them
at leastm members. Surprisingly, this obvious condition also turns out to be
sufficient; this is the content dflall's Theorem

8.1 Hall's Theorem

Let us express these ideas more mathematicallyAL&k;, . .., Ay be sets. (Sup-
pose that they are all subsets of a universaXsgtWe allow here the possibility
that some of the sets are equal.spstem of distinct representativies the sets
(A1,A2,...,An) is ann-tuple (x1, Xz, ..., X,) of elements oK with the properties

(@) x € A fori=1,...,n (this says that the elements are ‘representatives’ of
the sets);

(b) xi # xj fori # j (this says that the representatives are ‘distinct’).
We abbreviate ‘system of distinct representatives’ to SDR.

77
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ForJ C {1,2,...,n}, define
AQ) = JA.

ied
(Do not confuse this withA;, which we met in the chapter on PIRA; is the
intersection of the sets with index th A(J) is their union.) We say that the
family of sets satifsieblall’'s Conditionif the following holds: for any subsetof
{1,2,...,n},
IA(J)| = 3.

Theorem 8.1 Let (A4,...,An) be a family of subsets of X. Then there exists a
system of distinct representatives for, A.,A,) if and only if Hall's condition
holds.

Proof First suppose that there is a SDR, sa&y,...,X,) for the sets. Take any
subsetd of {1,...,n}. ThenA(J) contains all the set8; for i € J, and hence
contains all the representativesfor i € J; since the representatives are distinct,
we have|A(J)| > |J|. So Hall's condition holds. (This is the argument we saw
earlier. If the choice of representatives is possible, thennasgts must contain
at least enough members to act as their representatives.)

Now we prove the converse, which is more difficult. Lé,...,A,) be a
family of sets satisfying Hall's condition. We have to show that an SDR can be
found. Our proof will be by induction on; we assume that a family of fewer than
n sets which satisfies Hall’'s condition has a SDR. The induction begingwth
since Hall's condition guarantees thatis not empty [WHY?]

We say that a set C {1,...,n} of indices iscritical if |A(J)| = |[J|. (Then all
of the members of the sefs for i € J must be used as their representatives.) We
divide the proof into two cases:

Case 1: No set is critical except for 0 and possiblg,...,n}. This means
that|A(J)| > |J| for every non-empty proper set of indices.

Choose any elemeny, of A, to be its representative. Theq cannot be
the representative of any other set; so we remove it. Alet A\ {xn} for
i=1,...,n—1. Now for any non-empty subsébf {1,...,n—1}, we have

A= AQ)-1> ] -1,

where the strict inequality holds by the case assumption. This meana{iJat >
J|, so that the family(Al,...,A], ;) satisfies Hall's condition. By the inductive
hypothesis, this family has a SDR, sgy, ..., Xn—1).
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But then(xy, ..., Xh—1,%n) IS @ SDR for the original family; fok, € A,, and
Xn 7 X; for i < n, sincex belongs toA butx, doesn't.

Case 2: There is a critical set, say. By the induction hypothesis, we can
choose an SDR¥; : j € J) for the sets indexed bd.

Fork ¢ J, let Af = Ac\ As. (We must remove the elementsAf: they have
all been used as representatives.) We check Hall’'s condition for this family. For
K C{1,...,n}\J, we have

AK)] = [AQUK)[ = AQ)]
> [JUK[=|J]
= |K|’

where in the second linA(JUK)| > |JUK]| by Hall’s condition, andA(J)| = |J|
by the case assumption. So the s&jsfor k ¢ J satisfy Hall's Condition. By
induction we can find a SDR for them, sé¥ : k ¢ J). Putting this together with
the previously chosen SDR for the séjsfor j € J gives a SDR for all of the sets.

This concludes the inductive step and so the proof.

There is a lot of checking to do to verify Hall’'s condition, though it is possible
to do this in a systematic way quite efficiently. But there is one nice situation in
which we can guarantee that it holds.

Proposition 8.2 Let (Ay,...,A,) be a famly of subsets of the dét ..., n}. Sup-
pose that there is a positive number k such that

(@) |Al=kfork=1,...,n;
(b) each element dfl,... k} is contained in exactly k of these sets.

Then the family has a SDR.

Proof We show that Hall's condition holds. TaldeC {1,...,n} and count pairs
(i,x) with i € J andx € A;. Clearly there aré]| - k such pairs. On the other hand,
x can be any element @f(J), and for eaclx there are at modt setsA; containing
xwith i € J (since there are jugtsuchj sets altogether). So the number of pairs is
at most|/A(J)| - k. Thus

91k < [AQ)| K

and sgA(J)| > [J].

For example, the Fano plane discussed in the last chapter of the notes consists
of seven 3-element subsets{df ..., 7}, so that each element §1,..., 7} lies in
exactly three of them. So it has an SDR.
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8.2 How many SDRs?

If the setsAy, ..., A, do not satisfy Hall's condition, they have no SDR. But if they
do, and they are not too small, then they have many different SDRs. This is the
content of the next result.

Proposition 8.3 Let Ay, ..., A, be subsets of a set X which satisfy Hall's condi-
tion. Suppose tha#| > k fori=1,...,n, where k is a positive integer. Then the
number of SDRs of the family is at least

K ifk<n,
(K)o ifk>n,

where(K)y, is the falling factorial Kk — 1) --- (k—n+1).

Proof The proof follows closely the proof of Hall's Theorem. We prove the
result by induction om. If n= 1, there is only one set, havirkgelements; there
are at leastk); = k SDRs. (Note thak > nin this case, so we are in the second
case in the statement of the result.)

So letAq,. .., A, be sets satisfying the hypothesis. We divide into two cases as
in the proof of Hall's Theorem.

Case 1: There are no non-empty critical sets except possidly...,n}.
Choose any elememriof A, as its representative (there are at léagtoices forx).
Then the family(Aj,..., A, ;) consists oh— 1 sets, each of cardinality at least
k—1. So the number of SDRs of this family is at least

(k—1)! ifk—1<n-1,
(K—1)p_y ifk—1>n-1,

by the induction hypothesis. Multiplying by gives the correct lower bound for
the number of SDRs of the original family. (Note thatk — 1)! = k! andk- (k—

Dn-1=(K)n.)

Case 2: There is a non-empty proper critical set, sayVe havek < |Aj| =
|J] <n, so by the induction hypothesis the fam(¥; : j € J) has at least! SDRs.
As in the proof of Hall's Theorem, any such SDR can be extended to an SDR for
the whole family. So there are at le&$tSDRs, and the induction is complete.

As a consequence, we can improve Proposition 8.2:

Proposition 8.4 Suppose that the hypotheses of the preceding Proposition are
satisfied. Then there are at leastdistinct SDRs of the family of sets.



8.3. SUDOKU 81

This follows immediately from Propositions 8.3 and 8.2.
For example, the family{1,2},{1,3},{2,3}) of sets has two SDRs, namely
(1,3,2) and(2,1,3); the seven lines of the Fano plane have at least 8!'SDRs.

8.3 Sudoku

Hall's Marriage Theorem, and in particular the idea of a “critical set” which we
met in the proof, is relevant to solving Sudoku puzzles. This is something which
every Sudoku player knows to some degree.

Look at the empty cells in any row, column or subsquare of a Sudoku puzzle.
Let A; be the set of entries which could appear in itheempty cell (i.e. those
which do not already appear in the same row, column or subsquare). Then the
entries which we put there must form a SDR for the #gts Moreover, if we
can find a critical set, then as in the proof of Hall's Theorem, we can remove its
elements from the other sets, which simplifies the search for a SDR.

Here is an example.

The Times, 14 September 2005

Rating: Fiendish

2, 148
219
119
1 95 3
3 4
8 31 6
8.7
1.5
2|3 S

Look at the 3x 3 square in the bottom left of the puzzle. It has five empty
cells, whose row and column numbers étel), (1,2), (1,3), (2,1) and(3,3).

Cell (1,1) has 8 and 7 in the same row, 1 and 2 in the same column, and
1,2,3,5in the same subsquare. So the number we put there must be arie®f 4
Similarly we find the possibilities fof1,2) are 46,9, for (1,3) also 46,9, for
(2,1) are 46,7,8,9, and for(3,3) are 46,7,9.
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Cells(1,1), (1,2) and(1,3) form a critical set, since between them they only
contain three elements@ 9. So we can delete 8,9 from the other sets. We find
that 7 must go in(3,3) and then 7 or 8 ir12,1). So it must be 8 in cel(2,1).

In fact, this entire puzzle can be solved by this method of finding critical sets
and removing their elements from other sets.

Exercises

1. (a) Write down a SDR for the Fano plane.
(b) How many different SDRs can you find?

2. LetAy,...,A, be subsets ofl,...,n}. Let M be then x n matrix whose
(i,j) entry is 1 if j € A;, and O otherwise. Prove that the number of SDRs of
(Ag,...,An) is at least detM)|. [Hint: Use the formula for the determinant as a
sum over permutations. Each SDR contributes a tefno the sum.]

Deduce that the Fano plane has at least 24 SDRs.

3. Construct five familiesZ,, .75, #3, %4, %6, €ach consisting of three sub-
sets of the sefl,2,3}, such that#; has exactlyi different SDRs, for eache
{1,2,3,4,6}.

Does there exist a family of three subsetq df...,6} with five SDRs?

4. This exercise gives thdeficit form of Hall's Theoremit is a generalisation of
Hall's Theorem, but can be deduced from Hall's Theorem.

Theorem Let Ag,...,A, be subsets of a set X. Suppose that, for some positive
integer m, we have

|A(J)| > [J|—mforallJC {1,...,n},

where AJ) = U Aj. Then it is possible to find-aAm of the sets A. .., A, which
jed
have a SDR.
Prove this. Hint: Takem ‘dummy’ elementsz, ..., zy,, and add them to all
the setd\.]
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Latin squares

A Latin squareof ordern is an x n array, each cell containing one entry from
the set{1,...,n}, with the property that each element{df ... ,n} occurs once in
each row and once in each column of the array.

Here is an example.

N O >

3 5
1 4
5 2
4 3

g W N~

QR WN

4 2(3|1

Notice that each row and each column is a permutatiofigf. ., n}.
Sometimes we use a different seinymbols as the entries of a Latin square.
The definition is just the same. For example, @ayley tableof a group of orden
is a Latin square whose symbols are the group elements.
We will sometimes look at more general structures. Two of these are:

e A Latin rectangleis ak x narray (wherek < n) with entries from{1,...,n}
such that each symbol occurs once in each row and at most once in each
column.

e A partial Latin squareis an x n array (wherek < n) with each cell either
empty or containing an symbol frofd,...,n} such that each symbol oc-
curs at most once in each row and at most once in each column.

Thus, the firsk rows of a Latin square form a Latin rectangle; and if we take a
Latin square and blank out some of the entries we obtain a partial Latin square.
There is no shortage of partial Latin squares; the newspapers publish examples
every day!

Latin squares occur in algebra as Cayley tables of grouga=f{g1,...,0n}
is a finite group of orden, then itsCayley tableis then x n matrix whose(i, j)

83
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entry isg; o g; (the product ofy; andg; in the group). This matrix is a Latin square
— this follows from the group axioms, and is not discussed here.

9.1 Row by row

It is not difficult to show that there exists a Latin square of ort&ar eachn. We

are going to show something stronger, namely, a Latin square can be constructed
by adding a row at a time; it is not possible to get stuck. The proof uses Hall's
Theorem.

Proposition 9.1 Let L be a kx n Latin rectangle, where k n. Then L can be
extended to &k + 1) x n Latin rectangle.

Proof Fori=1,...,n, letA be the set of symbols which dwt occur in theith
column ofL. Then|Aj| = n—k, since there ark distinct symbols in any column
of L. Pick a symbolj. How many setg\; containj? We know thatj occursk
times inL, once in each row; these occurrences atedifferent columns, so there
aren — k columns in whichj does not occur, that is,— k setsA; containingj.

We have now verified the hypotheses of Proposition 8.2. From that proposition
we conclude that the familgA,, ..., An) has a system of distinct representatives,
say(X1,...,Xn)-

We claim that we can add the rof,...,X,) to L to obtain a larger Latin
rectangle. This is true because thare all distinct, so no symbol is repeated in
the new row; and; € A, sox doesn’t occur in columm of L, so no repeated
symbol is intriduced in any column. So the result is proved.

We can do more; we can give a lower bound for the number of Latin squares
of ordern.

Theorem 9.2 The number of Latin squares of order n is at least

nt-(n—1)!---21.11,

Proof Inthe preceding proof, we replace Proposition 8.2 by the stronger Propo-
sition 8.4, to conclude that the number of SDRs of the &&ts..., A,) is at least
(n—Kk)!. So the number of ways of extending & n Latin rectangle to &+ 1) xn
Latin rectangle is at leagh — k)!. (Each SDR gives an extension.)

Now there ara! 1 x n Latin rectangles (these are just permutations); each can
be extended to a 2 n Latin rectangle in at leagh — 1)! ways; each of these can
be extended to a 8 n Latin rectangle in at leagh — 2)! ways; and so on. The
result follows.
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Can we put an upper bound on the sumber of Latin squares? There is a trivial
upper bound, namei;!‘z; this is just the number of ways we can put symbols into
then? cells without worrying about the rules. This can be improved slightly. Each
row is a permutation, so the number of Latin squares is at fnbgt And, having
chosen the first row, each subsequent row is a derangement of it, so the number
of Latin squares is at most - (d(n))"~%, whered(n) is the derangement number
(remember thad(n) is approximatelyn! /e).

The exact answer has been calculatednfer 11 by exhaustive search. The
literature on this contains a lot of mistakes; the most reliable paper is by McKay,
Meynert and Wanless in th#dournal of Combinatorial Designs 2007, which
gives these values:

Number of Latin square
1
2
12
576
161280
812851200
61479419904000
108776032459082956800
5524751496156892842531225600
10 9982437658213039871725064756920320000
11| 776966836171770144107444346734230682311065600000

(2]

O©OoOoO~NO OIS WNPRES

Beyond this nobody knows the exact value. Even the best known upper and lower
bounds are quite a long way apart!

9.2 Youden ‘squares’

Youden ‘squares’ form a class of designs used in statistics. As we will present
them (and as they were first described by Youden) they are Latin rectangles; the
name comes from a different representation used by Fisher, in which they are
partial Latin squares (but we won't go into that). Essentially, a Youden ‘square’ is
a way of representing a family of sets satisfying the conditions of Proposition 8.2
as a Latin rectangle. Strictly speaking, statisticians only use the term when an
extra condition is satisfied by the family of sets, but that does not affect the result
below.

Proposition 9.3 Let Ay, ..., A, be subsets ofl,...,n}. Suppose that, for some
k > 0, every set Ahas k elements, and every elemert {1,...,n} lies in k of
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the sets A Then there is a k n Latin rectangle M such that the entries in the ith
column of M form the set;A

Example The Fano plane 12345,167,246,257,347,365 can be represented as

1/4/6/2|5|7]|3
2/5(1/4|7|3|6
3/1(7/6(2|4|5

Proof By Proposition 8.2, the family of sets has an SDR,...,X,), which
we can take to be the first row of the rectangle. NowAet A\ {x} fori =
1,...,n. Clearly |A| = k—1. Aos, given anyk € {1,...,n}, we have used as
the representative for one of the s@isso it lies in justk — 1 of the setsA’J-. So
the new family satisfies the conditions of the proposition With 1 replacingk.
Continue the process, with each SDR forming a new row, knl0.

9.3 Orthogonal Latin squares

Two Latin squared\ = (&) andB = (bj;) are said to b@rthogonalif they have
the following property: given a paik,|) of symbols from the sefl, ..., n}, there
is exactly one celli, j) such that; = k andbj; =1.

Here is an example:

12|34 11234
211|143 34|12
34|12 413|121
413121 2(1{4|3

Sometimes a pair of orthogonal Latin squares is call€@faeco-Latin squarelf

we replace the symbols in the first square by Latin letters and those in the second
by Greek letters, then the orthogonality condition says that every pair consisting of

a Latin and a Greek letter occurs exactly once in the array. For our above example,
we would get the following:

Ax | BB | Cy | D6
By | Ad | Da |Cf
Co | Dy | AB | Ba
DB |Coa | BS | Ay

Euler posed the following question in 1782.
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Of 36 officers, one holds each combination of six ranks and six regi-
ments. Can they be arranged in & 6 square on a parade ground, so
that each rank and each regiment is represented once in each row and
once in each column?

This question asks whether there exists a Graeco-Latin square of order 6. If so,
then taking the ranks as Latin letters and regiments as Greek letters we could
produce the required parade.

Euler invented Graeco-Latin squares in his researches on magic squares. A
magic squarés an x n square containing the numbers 1,n? each once, so that
the sum of the numbers in any row, column or diagonal is the same (necessarily
n(n’+41)/2. Euler noticed that it is often possible to construct a magic square
from a Graeco-Latin square as follows:

e Replace each of the two sets of symbols by the numhdrs.0,n—1.

e Regard a pair of numbei$ as being the baserepresentation of a single
numberin + j.

e Now the entries run from 0 to— 1. Add one to each so that the range is 1
ton.

The resulting square has all row and column sums constant [WHY?]. With some
extra care it is possible to make the diagonal sums constant as well. Here is an
example.

~
o
ol
o'
=
o

CB|Aa | By| |21/00]|12
Ay |BB |[Ca| |02|11]20
Ba | Cy | AB 10|22|01| |3

N
IN
o
w
&
~

0
H
I
©
N

Euler knew how to construct two orthogonal Latin squares of any order not
congruent to 2 mod 4. We now outline an algebraic construction which is similar
to the one Euler used.

First we give the construction using modular arithmetic. RemembeiZhat
denotes théntegers modulo nWe can take the elements to belQ..,n—1. To
add or multiply two elements, we add or multiply in the usual way as integers, and
then divide byn and take the remainder. So,4, we have 4-5=2,4-5=6.

An elementa € Zy, is a unit if there existsb € Z,, such thata-b=1. The
following fact is proved in elementary algebra:

The elementis a unit inZ, if and only if gcda,n) = 1.
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Now, for anya € Zp, letL(a) be the matrix whoséx,y) entry isa-x+Yy. Here
are the matricek(1),L(2),L(3) overZa:

0/1/2]|3 0/1/2]|3 0/1/2|3
1{2,3|0 2/3(0]1 3/0(1|2
2/3/0]|1 0/1/2]|3 2/3(0]|1
30112 2/3|/0(1 1/2/3|0

We see that (1) andL(3) are Latin squares bui(2) is not. Moreover_(1) and
L(3) are not orthogonal: the pai@, 0) occurs twice, the paif0, 1) not at all.

Proposition 9.4 (a) L(a) is a Latin square if a is a unit itZ.

(b) L(a1) and L(ay) are orthogonal if a — a, is a unit.

Proof (a)InL(a), if we look for symbolc in row x, we find it in columny where
ax+y = c. This has a unique solution= c— ax. Similarly, if we look forc in
columny, it will be in row x is ax+y = c. This impliesax=c—y, sox=b(c—Yy),
whereb is the inverse o&.

(b) Suppose we are looking for a cell in which the first square has the entry
and the second square has the edtryThen we have to solve the simultaneous
equations

auxX+y = C,
ax+y = d.

From these equations we deduce ffaat— ap)x = (c—d). Sox=b(c—d), where
b is the inverse of; — ap. Then either of the equations can be used toyind

This theorem is no use for constructing orthogonal Latin squares of even order.
For suppose that is even. Ifais a unit inZ;,, then gcda,n) = 1, soa must be
odd. Butifa; anda, are both odd, thea; — a; is even, and go@y — az,n = 1.
However, forn odd, gcd1,n) = gcd2,n) = 1, so we get a pair of orthogonal
Latin squares for every odd

Euler knew that it is possible to construct orthogonal Latin squares of arder
also ifnis a multiple of 4. Here’s why. This argument shows one of the benefits
of abstract algebra.

If we look at the construction we just gave, we see that there is nothing special
about the integers maa The construction works for amgommutative ring with
identity, that is, any structure in which we can add, subtract, and multiply, so that
the associative, commutative, distributive and identity laws hold. Proposition 9.4
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holds in this generality. Thus, R is a commutative ring with identity, then we
can define the matrik(a) for anya € R; andL(a) is a Latin square i& is a unit
in R, while L(a;) andL(ay) are orthogonal ig; — ay is a unit.

Now we use the following facts:

(a) The direct product of two commutative rings with identity is a commutative
ring with identity. [Thedirect productof R; andR; is the set of all ordered
pairs(ri,ro), with ry € Ry andry € Ry, with coordinatewise addition and
multiplication.] If a; is a unit inR; with inverseb,, anday is a unit inRy
with inverseb,, then(as, ap)(b1,b2) = (1,1), so(ag,az) is a unitinRy x Ry.

(b) There is a finite field (a commutative ring with identity in which every non-
zero element is a unit) of every prime power order.

Using (b), we can construct orthogonal Latin squares of order 4, 8, and any
larger power of 2. Then using (a), we can construct Latin squares of onder 4
8m, ..., for any odd numben.

Here is an example for (b). We give first the addition and multiplication tables
for a field with four elements,@, «, B. (We saw this already in chapter 6 of the
notes; there is a connection which we will see in the next section of this chapter.)
Then we give the three Latin squaled), L(a) andL(f).

Or R/

B
0
B
1
o

=R r O+
™R R OO
R™®O K|k
P O™ R|IK
=R R O -
OO0 oolo
™R O
PR olR

R O™ R
ORI RI™™
ORI O
D O™
QR RO
RRIO™

O K| R

R IOIFIR
= O|R|

PR

=™ RO
QRO

Euler knew this, and he asked about the 36 officers because his constructions
could not deal with the cases 2, 6, 10, or any number congruent to 2 mod 4. He
conjectured that orthogonal Latin squares of these orders could not exist. He was
right about 2 (this is easy to show directly) and 6 (this was proved by a long case-
by-case argument by Tarry in 1900), but wrong about the rest. Bose, Shrikhande
and Parker (the “Euler spoilers”) showed in 1960 that orthogonal Latin squares of
ordern exist for everyn excepin = 2 andn = 6.
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9.4 Sets of mutually orthogonal Latin squares

A set of mutually orthogonal Latin squares set of MOLSof ordern is a set
{L1,Lo,...,L;} such that

(a) each.; is a Latin square of order,
(b) Li andL; are orthogonal if # j.

We letN(n) denote the maximum size of a set of MOLS of ordefor n > 2.
[WHY NOT n=17?] This is a very important function. Our conclusion from the
last section can be expressed as follows:

N(2) =1, N(6) =1, N(n) > 2 forn#2,6.

Proposition 9.5 N(n) <n—1.

Proof Take aseflj,...,L;} of MOLS of ordern. We can change the symbols
in each Latin square to be anything we like. So let us agree that each square has
entry 1 in the top right-hand cell (in row 1 and column 1).

Now each square contains- 1 further entries 1. None of them can be in the
first row or first column, since this would violate the Latin square condition. Also,
no two of the entries 1 in different squares can be in the same cell. For any two
cellsLj andL; have entrieg1,1) in the top right-hand cell, so this combination
cannot occur anywhere else.

So ther (n— 1) further entries 1 in the squares fit in to thén — 1) positions
outside the first row and column without overlap. So we must éne- 1) <
(n—1)2, whencer < n—1 (sincen > 1).

Here is an important theorem of Bose about when equality can hold. Recall
the definition of grojective planef ordern from Chapter 7: a set ohsubsets of
{1,...,m}, wherem = n? + n+ 1, such that each subset contains 1 elements,
each element ofl,...,m} lies inn+ 1 subsets, and any two subsets intersect in
exactly one point.

Theorem 9.6 We have Nn) = n— 1 if and only if there is a projective plane of
order n.

The proof of this theorem is given in the next section.

If nis a prime power, we have seen that there exists afieldth n elements.
Now every non-zero element Bfis a unit (by definition of a field). So all the ma-
tricesL(a) forac F, a0, are Latin squares; and any two of them are orthogonal,
since ifa; # ap thena; — ap is a unit. Thus:
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Proposition 9.7 If there exists a field of order n (that is, if n is a prime power),
then Nn) =n—1.

It is thought that the converse of this proposition is also true. But this is not
proved, and seems to be one of the hardest open problems in combinatorics. We
know thatN(6) = 2, and that 3< N(10) < 6. But apart frorm = 6, there is not a
single non-prime-power value affor which N(n) is known!

9.5 Appendix: Proof of Bose’s Theorem

This proof is closely connected with classical topics in projective geometry, going
back to the invention of perspective by Renaissance artists and mathematicians.
Recall the statement of the theorem:

Theorem 9.8 For an integer n> 2, the following are equivalent:
(a) there exists a projective plane of order n;

(b) there exists a set of-A1 mutually orthogonal Latin squares of order n.

Proof The two constructions are just the reverse of each other.

(a) implies (b): We are given a projective plane of ordeconsisting of? +
n+ 1 points and the same number(of+ 1)-element subsets called lines, so that
any two lines intersect in a unique point.

Pick a lineL. This will play a special role in our construction, corresponding
to the ‘line at infinity’ where parallel lines ‘meet’. Also, select two special points
X andY in L, and number the remaining pointsas. .., Zn_1.

The pointX lies onn+ 1 lines, one of which id. Number the others as
X1,...,%Xn. Similarly number the remaining lines throuyhasys,...,y,, and the
remaining lines througl; asz,...,zpfori=1,...,n—1.

Any point P not onL lies on a unique lineg; throughX and a unique liney
throughY. The linesx; andy intersect just i{P}. We identify P with the cell
(j,k) inrow j and columrk of ann x n grid.

Now we can define arrayd(1),...,M(n—1) as follows. LetP be the point
corresponding to cellj, k) as above. There is a unique ine joiniAdo Z;. If this
line is zs, then we put symbdiin this cell iin the arrayM(i).

Claim: M(i) is a Latin square. For if the symbsloccurred twice in the
same row, say in positior(g, k) and(j, 1), then the linegjs andx; would have the
corresponding two points in common, which is not the case.
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Claim: M(i) andM(j) are orthogonal for+# j. For suppose we are looking
for a cell containing entrgin M(i) and entryt in M(j). The corresponding point
lies on the lines;s andzjt, and so is uniquely defined as their intersection. So
there is just one such cell.

So, from a projective plane of order we have constructed a set of- 1
MOLS of ordern.

(b) implies (a): Reverse the above construction. Here is a sketch, with the
details left out. Suppose thM(1),M(2),...,M(n— 1) be MOLS. We build a
projective plane.

Thepointsare of two types. First, the? ordered pairgj,k), for 1 < j,k <n.
Thenn+ 1 special pointX.,Y, Zy, . ..,Z,_1. This makesi? +n+ 1 altogether, the
right number.

Thelinesare of several types:

e nlinesx; for j =1,...,n: x; contains the pointsj,k) fork=1,...,nand
X.

e nlinesyi for k=1,... n: yx contains the pointsj,k) for j =1,...,nand
Y.

e Nn(n—1)lineszsfori=1,...,n—1lands=1,...,n: z s contains all points
(j,k) for whichM(i) jx = s, andZ;.

e Finally, aline{X,Y,Z1,...Zn_1}.
One can check that this really is a projective plane of order

Here is an example. We start with a pair of orthogonal Latin squares of order 3
and construct a projective plane. The lines are written in the same order as in the
above proof that (b) implies (a).

The Latin squares (which we have met before) are:

1123 112|3
2131 3112
3112 2131

The 13 points of the projective plane are the pgifor 1 <i, j < 3 together with
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X,Y,Z1,Z,. The thirteen lines are:

11 12 13 X
21 22 23 X
31 32 33 X
11 21 31Y
12 22 32 Y
13 23 33 Y
11 23 32 7
12 21 33 73
13 22 31 23
11 22 33 2,
12 23 31 7,
13 21 32 2,
XY 4 7

Here itis in diagrammatic form. The lines througlandY are the vertical and
horizontal lines of the grid; the lines through andZ, pass through the positions
of the three symbols in the squalesandL.

Exercises

1. LetA andB be orthogonal Latin squares of orderwhich uses the symbols
0,1,...,n—1. Construct a matrids in which theith entry consists of the pair
(&j,hij), regarded as a two-digit number written in baseShow thatS has the
properties

(a) its entries are all the integers from Orfo— 1 inclusive;
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(b) the sum of the entries in any row or colummis? — 1).

(This construction is due to Euler.)

2. Show that, up to permutations of rows and columns and changes in the names
of the symbols, there are just two different Latin squares of order 4. Show that
one, but not the other, has arthogonal matd€a Latin square orthogonal to it).

3. Prove that the Latin square given by the addition table of the integersamod
has an orthogonal mate if and onlynifs odd.

4. Let A be a Latin square of order. Suppose that, for some positive integer
r < n, only the numbers,1..,r occur in the first rows and columns oA.

(a) Show that the submatrix @& formed by the first rows and columns is a
Latin square of order.

(b) Show than > 2r.

(c) Give an example with=3 andn=7.

5. Letmbe an integer greater than 1. étm) be the multiplication table of the

non-zero integers maa, that is, them— 1) x (m— 1) matrix defined as follows:

rows and columns are indexed by21...,m— 1, and th€(i, j) entry isij modm.
Prove thatX(m) is a Latin square if and only ihis prime.

(xx) Does it have an orthogonal mate?



Chapter 10

Steiner triple systems

A Steiner triple system is a very special kind of family of sets. Here is the defini-
tion.

A Steiner triple systens a family # of subsets of ther-element seX =
{1,...,n} with the properties

(a) every set inZ has three elements;

(b) every two points oK are contained in exactly one member#f
We often call the elements of “points” and the elements of8 “blocks” or
“triples”.
Examples Here are some examples. The first three are ‘trivial’, the last two are
more interesting.

e TakeX =0,%#=0.

TakeX = {1}, Z=0.

TakeX = {1,2,3}, 2 = {{1,2,3}}.
TakeX = {1,2,3,4,5,6,7} and 4 to be the Fano plane:

TakeX = {1,...,9} and arrange the points &f in a 3x 3 grid. Now take
2 1o consist of the horizontal and vertical lines and the positions of the six

95
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terms in the formula for the determinant of &« 3 matrix. Another way of
saying the same thing is that these six sets are the positions of the symbols
in a pair of orthogonal Latin squares of order 3.

Steiner triple systems have various uses. For example, a Latin dguafk)

of ordern is calledidempotentf lj = i, andtotally symmetridf |;; = k implies
lji = kandlj, =1, for anyi, j,k. Now, given a Steiner triple syste{X, %), where
X ={1,...,n}, we construct a matrik = (l;j), wherel; =i and, ifi # j, then

lij =kif {i,j,k} € #. Conversely, any idempotent and totally symmetric Latin
square arises in this way from a Steiner triple system.

10.1 Existence oSTYn)

For which numbers does there exist a ST®)?

Theorem 10.1 Let (X,%) be a Steiner triple system of order n, where-10.
Then:

(a) Any element of X is contained([in— 1)/2 members ofZ.
(b) |Z|=n(n—1)/6.
(c) n=1or3mod6

Proof (a) Takex € X, and letr be the number of members &% containingx.
Count pairs(y,B) whereB € £, y € X, andy # x. There aren— 1 pointsy # X,
and for each sucl, there is a unique s@& € % containingx andy; so there are
n— 1 such pairs. On the other hand, there mhoices ofB containingx, and
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then two choices of € B with y # x (since|B| = 3). So the number of pairs is 2
Thus 2 =n—1, whence = (n—1)/2.

(b) Now count pairgx, B) wherex € X, B € %, andx € B. There ara choices
for x and(n— 1)/2 choices for a séB containing it (by (a)). On the other hand,
there ard.#| choices foB, and 3 choices for a pointe B. So

n(in—1)/2= 3|4,

whence#| =n(n—1)/6.

(c) Since(n—1)/2 must be an integer, we see thatust be odd. Sa=1, 3,
or 5 mod 6. We have to exclude the last case. So suppose thé6m+ 5. Then,
by (b),

(6m+5)(6m+4) (6m+5)(3m+2)

%: =
|Z| 5 3 ,

which is impossible since 3 does not divida & 5 or 3n+ 2.

We saw that there exist Steiner triple systems of orders 1, 3, 7 and 9. The
above theorem shows that they do not exist for any other positive order less than
10. In order to show that there is a SR we need to give a construction of one.

To prove the next result, we have to give infinitely many constructions. So the
proof is quite complicated! This theorem was first proved by Kirkman.

Theorem 10.2 There exists a Steiner triple system of order n if and only if either
n=0orn=1or3 mod6

Proof We have seen the “only if” part already. So we have to take a number
congruent to 1 or 3 mod 6, and construct a 81)S

For the cases whereis congruent to 3 mod 6, we can give a direct construc-
tion. For the other cases, we have to use a rather complicated recursive construc-
tion, building up large systems from smaller ones. | wish there were a simpler
proof!

Casen=3mod 68 Letn=3m, wheremis odd. We take the points of the
STS to be symbols;, b;, ¢;, wherei =0,...,m— 1: there are 81= n such points.
The blocks are of two types:

(a) sets{a,bi,ci}, fori=0,1,..., m—1;

(b) sets{a;,aj,bx}, {bi,bj,c} and{ci,cj,ac}, wherei # j andi + j = 2k modm.
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All addition in this proof will be modm, so the last condition will simply be
written asi + ] = 2k. We note that, in this equation, any twoiof,k determine
the third. (Clearlyi andk determinej = 2k —i, and similarlyj andk determind.
Suppose and j are given. Sincenis odd, we have gag@,m) =1, so 2 is a unit
iNn Zm; so there is a uniqulesatisfying X =i+ j, namelyk = h(i + j), whereh s
the inverse of 2 modh.) Moreover, if the two given values are unequal, then the
third value is different from both. (Clearly= k implies j = k. If i = j then the
equation readsi2Z= 2k which has the solution= k.)

Clearly every block is a set of size 3, so condition (a) of the definition holds.
We have to verify (b). So choose two poingndg; we have to show that there
is a unique block containing them. There are several cases:

(a) p=a;,g=a; (j #i). Nowi andj determine a uniqulesuch that + j = 2k;
and{a;,a;j, by} is the unique block containinganda.

(b) p=bhi, g=bj, or p=ci, g=cj: the argument is similar.

(c) p=a;, g=b;: clearly there is a unique blodla;, b;, ¢} of type (a) contain-
ing p andgq.

(d) p=hj,g=cj, or p=cj, q= g: the argument is similar.

(e) p=a;, gq= by wherek #i. There is a uniqug satisfyingi + j = 2k; and
j #1i. So the unique block i$a;, a;, by}

(H p=hi,g=ck Or p=ci, q= a, wherek # i: the argument is similar.
Forn =9, we obtain the twelve blocks

{ao0,bo,Co},{a1,b1,C1},{az, b2, Co},{ap,a1,b2},{ap,a, b1}, {a1,a2,b0},
{bo,b1,c2},{bo,b2,c1}, {b1,b2,co},{Co,C1,a2},{Co,Co,a1},{C1,C0, 80}

Casen=1mod 6 This case is much harder. | will give one example of
a recursive construction here, and put the complete proof of the theorem in an
appendix to this chapter.

Proposition 10.3 Suppose there existsST S n). Then there exists&TS2n+1).



10.1. EXISTENCE OF STSN) 99

Proof Let(X,%)be a STHn), whereX ={1,2,...,n}. We take a new set

Y:{a]_,...,an,b]_,...,bn,C},

with |Y| = 2n+-1, and construct a set of blocks; we show that these blocks form
aSTS2n+1).
The blocks are of two types:

(@) {&,bj,c}, fori=1,...,n.

(b) ForeveryblocKi, j,k} € %, the four blockg a;, aj, by}, {aj,ax, bi}, {ak, a,bj},
and{bj,bj,by}.

Clearly every block contains three points, so (a) of the definition holds. Take two
points p and g; we have to show that just one block contains them. There are
several cases:

(@) p=c, g=4&: aunique blocKa;,b;,c} € ¢ containsp andq.
(b) p=c,q=b;, or p=a;, q=b;: the argument is similar.

(c) p=a, b=aj withi # j: there is a unique blocki, j,k} € % containingi
andj, and then a unique blodke;, aj, bk} € € containingp anda.

(d) p=a, q=bj, withi # j: the argument is similar.

(e) p=bi,g=Dbj, withi # j: there is a unique block, j,k} € # containingi
andj, and then a unique blodk;, bj, bk} € € containingp anda.

Forn = 3, starting with the single blockl, 2,3}, we obtain seven blocks

{a1,b1,c},{az,bp,c},{ag,bs,c},{a1,az,b3},{a,a3,b1}, {as,a1,bz}, {b1, b2, b3}

of STS7).
This method constructs Steiner triple systems of orders 7, 15, 19, 31, ...,
but leaves several values undecided, such as 13, 25, 29, 37, ... . These will be

settled in the Appendix. The general principle is always the same (we build larger
systems out of smaller ones) except in one case, where we have to give a direct
construction: this is1 = 13, where we can take the point set toflfe. .., 12} (the
integers mod 13), and the blocks to be

{0,1,4},{1,2,5},{2,3,6},{3,4,7},{4,5,8},{5,6,9}, {6,7,10},
{7.8,11},{8,9,12},{0,9,10}, {1,10,11},{2,11,12},{0,3,12},
{0,2,8},{1,3,9},{2,4,10},{3,5,11}, {4,6,12},{0,5,7},{1,6,8},
{2,7,9},{3,8,10},{4,9,11},{5,10,12}, {0,6,11},{1,7,12}
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Note that it is not necessary to remember all these blocks. We start with the
two blocks{0,1,4} and{0,2,8}, and produce the rest of the system by adding
x to each of their elements mod 13, for=1,...,12. (This process is called the
developmenof the two blocks mod 13.)

There is a simple test for a starting set of blocks in this construction:

Proposition 10.4 Let By, ..., Bk be 3-element subsets @,. Then the develop-
ment of{ By, ..., Bk} is a Steiner triple system if and only if every non-zero element
of Zn has a unique representation in the form y, where xy € B; for some i with

1 <i <k. If this holds, then &= 6k + 1.

Proof We will prove it one way round. Suppose that the condition of the Propo-
sition holds, and let,, v be distinct elements d&,. We want to show that there
are unique elemenisz with 1 <i < k andz € Z, such thatu,v € B; + z If this
is to hold, we must havea—zv—ze€ B;. But(u—z)—(v—2z) =u—v, and by
assumption there are unique,y such thatu— v = x—y with X,y € B;. So we
must havau— z= x andv— z=y, whencez andi are uniquely determined.
Moreover, then— 1 non-zero elements must be given by the 6 differences for
each of the&k blocks, san— 1 = 6k, as required.

In the above example, we have the following expressions for elemefitss of
as differences from0, 1,4} and{0, 2, 8}:

1=1-0 2=2-0 3=4-1 4=4-0
5=0-8 6=8-2 7=2-8 8=8-0
9=0-4 10=1-4 11=0-2 12=0-1

For a simpler example, we get S as the development of a single block
{0, 1 3} in Z7:

1=1-0 2 -1
4=0-3 5=1-3

10.2 Kirkman’s schoolgirls

Despite their name, Steiner triple systems were invented, not by Steiner, but by
Kirkman; he gave the definition and proved Theorem 10.2 several years before
Steiner published a paper asking whether or not they exist. The reason we do not
call them “Kirkman triple systems” is that this name has been used for something
a bit different.

Kirkman posed the following problem:
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Fifteen schoolgirls go for a walk every day for a week in five rows of
three. Is it possible to arrange the walks so that every two girls walk
together exactly once during the week?

Let X = {1,...,15}, and let# be the set of all groups of three girls who walk
together during the course of the week. Then the terms of the problem require that
(X, %) is a Steiner triple system. But there is more structure. The.45% = 35
blocks of the Steiner triple system must have a partition into seven sets of five
(corresponding to the days of the week) such that the five blocks in each part of
the partition themselves form a partition Xf

We say that a Steiner triple systéxq, %) is resolvable or is aKirkman triple
systemif the set% can be partitioned into subse#,, ..., %, such that%; is a
partition of X fori =1,...,r.

Here is an example of a Kirkman triple system of order 9. The twelve blocks
are arranged into four rows forming the required partition.

%1 {{1,2,3},{4,5,6},{7,8,9}}
P {{1,4,7},{2,5,8},{3,6,9}}
Ps: {{1,5,9},{2,6,7},{3,4,8}}
A {{1,6,8},{2,4,9},{3,5,7}}

Since then points must be partitioned by the blocks, each of which has size 3,
we see thah must be divisible by 3 for such a system to exist. Since we know
thatnis odd, we conclude thatmust be congruent to 3 mod 6.

Now each class#; containsn/3 blocks. Since there amgn— 1)/6 blocks
altogether, we see that the number of classes is equal-tdl)/2. This can be
verified another way. We know that each point liegrir- 1) /2 blocks; but exactly
one of these blocks belongs to each cla&sso there must ben— 1) /2 classes.

Kirkman himself constructed a solution to the problem witk 15 (his orig-
inal ‘schoolgirls problem’). It took 120 years before the general case was finally
solved by Ray-Chaudhuri and Wilson in the 1970s. They proved the following
theorem (which is too complicated for this course!)

Theorem 10.5 For n > 0, there exists a Kirkman triple system of order n if and
only ifn=3 mod 6

10.3 Appendix: Proof of Kirkman’s Theorem

Kirkman’s Theorem states that a Steiner triple system of anésusts if and only

if n=0 ornis congruentto 1 or 3 mod 6. We have seen that this condition is
necessary, and we have to show that it is sufficient: in other wordssatisfies

the congruence condition, then we can construct a STS of arder
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This is a good example of a combinatorial construction. It contains both a
direct part (for numbers congruent to 3 mod 6, which we saw already) and a
recursive part; the recursive part shows that one small casel@) remains to
be dealt with (we already gave a construction for this value); and as we will see
below, it requires the construction of an ‘auxiliary’ structure for use in the main
construction (this is a STS containing a subsystem of order 7, which we now
define).

Let (X, %) be a Steiner triple system, and Mtbe a subset oK. We say
thatY is asubsystenf, for any two pointsys,y» € Y, the unique block ofX, %)
containingy; andy, is contained inY. If Y is a subsystem, and’ is the set
of blocks which are contained M, then(Y,%) is a Steiner triple system in its
own right. Given any Steiner triple systefX, %) with |X| > 3, there are some
obvious subsystems which always exist: the empty set; any 1-elemefit}set
and any block ofA.

Our main recursive construction is given by the following result:

Theorem 10.6 Let (X, %) be a Steiner triple system of order v containing a sub-
system Y of order u, and I1€Z, Z) be a Steiner triple system of order w. Then
there exists a Steiner triple system of order w(v— u). Moreover, if0 < u < v

and w> 1, then we may assume that this system contains a subsystem of.order

Remark If we takev =3 andu =1 (that is,(X, %) consists of a single block

and the subsystem is a single point), then we obtain a Steiner triple system of
order 1+ 2w. This is precisely the construction of Proposition 10.3. So the above
theorem generalises that proposition.

Proof We take the point set of the new system toYoe ((X\Y) x Z), which
does indeed have+ (v—u)w points, sinceY| =u, | X\ Y| =v—u, and|Z| = w.
We setm=v—u=|X\Y]|, and number the points o&f\ Y with the elements of
Zm.

The blocks of the new system are of the following types:

(&) All blocks contained iry.

(b) All blocks of the form{y, (x,2),(X,2)}, wherey €Y, x,X € X\Y, z€ Z,
and{y,x,x'} € A.

(c) All blocks of the form{(x,z), (X,2), (X",2)}, wherex, X, X" € X\ Y, z€ Z,
and{x, X, X"} € A.
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(d) All blocks of the form{(x,2),(xj,Z), (%, Z")}, wherex;,xj,x € X\,
27,7’ €Z. {zZ,Z'} is a block of 2, andi+ j + k=0 in Zny. [Recall
that points ofX \ Y are indexed by elements @f;.]

Now we have to show that any two points lie in a unique block. There are

several cases:

e Two points ofY lie in a unique block of type (a).
e A point of Y and a point of X \ Y) x Z lie in a unique block of type (b).

e Two points of(X\ Y) x Z with the same-coordinate lie in a unique block
of type either (b) or (c).

e Two points of(X \ Y) x Z with differentZ-coordinates lie in a unique block
of type (d). [Note that any two af j, k uniquely determine the third.]

So we do have a STS.

For the last part, assume theg 0. Thenu andv are odd, son=v—uis even.
Choose a block of7 of the form{y,x,x'}, wherey € Y andx,x' € X\ Y. Then
choose the indexing of \ Y by Zm, such thak = xg andx’ = Xy». Let{z,7,7"}
be a block ofZ. Then the seven points

Y (XOaZ)a (X07Z,)7 (X07Z,I)7 (Xm/Za Z)? (Xm/27zl)7 (Xm/2az”)

and the seven blocks

{y7 (XOaZ)a (Xm/Za Z)}a {y> (XOa Z/)v (Xm/z,Z,)}, {y> (XOa Z//)a (Xm/2= Z”)}
{<X0’ Z)’ (Xm/27zl)7 (Xm/ZvZ”)}7 {(Xm/272>7 (XO’ Zl)? (Xm/27zll>}7
{(Xm/27z)7 (Xm/27 2/)7 (X07Z//>}7 {(X07Z)7 (Xo,Z’), (Xo,ZU)}

form a subsystem. [Note that00+ 0= 0+ (m/2) + (m/2) = 0in Zm.]

Example Earlier, we were unable to construct STS of orders 25 or 37. With

Theorem 10.6, we can now construct these, using
25=1+3(9-1), 37=1+3(13-1).

(This is shorthand for saying: there exists a $J)Sontaining a STEL) subsys-
tem, and also a STS), so by Theorem 10.6 there is a SIS-3(9— 1)), and
similarly for the other one.
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We now turn to the proof of Kirkman’s Theorem. | will write the proof as an
argument by contradiction. That is, l&tn) be the statement that a S{If exists.
We say thah is admissibldaf nis congruent to 1 or 3 mod 6. | will assume timat
is the smallest admissible number for which an §)$loes not exist, and deduce
a contradiction. It is necessary to have another induction going on at the same
time. LetB(n) be the statement that there exists a 8J$ontaining a subsystem
of order 7. | will prove that ifn is congruent to 9 mod 12 amd> 15, thenB(n)
holds.

Firstlet us consideA(n). Suppose thak(m) is true for all admissible numbers
m<n.

e If nis congruent to 3 mod 6, then the direct construction in Theorem 10.2
gives an STH). So we only have to deal with numbers congruent to
1 mod 6.

e If nis congruent to 7 mod 12, then= 12k+ 7 = 1+ 2(6k+ 3). By as-
sumption,A(6k + 3) holds; therA(12k + 7) follows from Proposition 10.3.
So we only have to deal with numbers congruent to 1 mod 12.

¢ We separate these according to their congruence mod 36.

— If nis congruent to 1 mod 36, then=36k+1=1+3(1%&k+1—-1),
andA(12k+1) is true, S0A(36k+ 1) is true.

— If nis congruent to 25 mod 36, then= 36k+25=1+3(12k+9-1),
andA(12k+9) is true, sA(36k+ 25) is true.

— If nis congruent to 13 mod 36, then= 36k+13=7+3(12k+9—7).
so we need a ST32k + 9) with a subsystem of order 7, that is, we
need to know thaB(12k+ 9) is true, andA(36k + 13) will follow.
We are going to prove this fdkt > 1. Fork = 0, we gave a direct
construction of STEL3) on pp. 99-100. (Note that we already know
that an STS of order X2+ 9 exists by Theorem 10.2, but that one
doesn’t have the required subsystem.)

So we have to provB(12k+ 9) for k > 1. Again we split into congruences
mod 36.

e If nis congruent to 9 mod 36, then= 36k+9 =3+ (9—3)(6k+1). So
A(6k+ 1) together with Theorem 10.6 give the result.

e If nis congruent to 21 mod 36, then= 36k+21= 3+ (9—3)(6k+3). So
A(6k+ 3) together with Theorem 10.6 gives the result.
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e If nis congruent to 33 mod 36, then=36k+33=3+(12k+13—-3)3, So
A(12k+ 13) together with Theorem 10.6 give the result.

Although phrased as a “minimal counterexample’ argument, this proof is es-
sentially constructive. For example, how to construct a(®25? We have

e 625 is congruent to 13 mod 36, so we write 625 + 3(213— 7); we need
a STS213) with a subsystem of order 7.

e 213 is congruent to 33 mod 36, so we write 243+ 3(73—3); we need a
STY73).

e 73 is congruent to 1 mod 36, so we write #31L+ 3(25— 1); we need a
STY25).

e We already saw how to construct this: write 2581+ 3(9—1), so we need
a ST§9), which of course we know (it is given by the direct construction at
the start of Theorem 10.2).

In fact, we could construct ST625) more easily by using the fact that 625
25 = 0+ 25(25— 0) and the existence of STS5). But a general proof cannot
rely on lucky accidents like this!

Exercises

1. Suppose that an ST8 of orderv on a setX has a subsystem of orderu,
with u < v. Show thatv > 2u+ 1. [Hint: Let x be a point not ir¥. Show that the
triples containing and a point ofY are all distinct.]

2. Prove directly that if an ST8) and an ST8v) exist, then an ST&w) exists.
Show further that, if,w > 3, then we can find a ST®w) containing a subsystem
of order 9.

3. LetZ, denote the integers mod 2. L¥tbe the set of alhon-zerovectors in
the n-dimensional vector spad&,)". Let & be the set of all triple§x,y,z} of
vectors ofX satisfyingx+y+z=0.

(@) Prove thatX, %) is a Steiner triple system of ordef 2 1.

(b) Identify the Fano plane as a Steiner triple system of this form.

4. LetX = {1,...,n} and suppose tha# is a collection of 3-element subsets of
X with the property that any two members#fintersect inat mostone element.
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() Letry denote the number of members @f containing the elememnt €
{1,...,n}. Show thatyx < |(n—1)/2].

(b) By counting pairgx,B), with x € X andB € 4, show that

n} I'x

900y

s3]

(d) Hence or otherwise show thatnt= 6, then|%| < 4.

(c) Deduce that

(e) Find an example of four 3-element subsetg bf ..,6} which satisfy the
hypothesigB; N Bj| < 1 for B;,Bj € 4, i # j.



Appendix A

Solutions to odd-numbered exercises

Chapter 1

1. 1001=7-11-13. So the numerator has to contain numbers divisible by all
three primes. Sa > 13. A little trial and error shows that

1001— 14.13-12-11 _ (14) .

4.3.2-1 4

n
3. We show first thatz k(k—1) (E) — n(n—1)2"2. This can be shown in two
ways: k=0

n
(a) Take the Binomial Theorerly (E) XK = (1+x)", differentiate twice, and
K=o

putx = 1.

(b) Use the fact that(k—1) (D =n(n—1) (E_ g) for k > 2. (The terms for

k= 0,1 are zero.) Now sum ovér

Thus

n

I(ikZ (E) - éok(k_ 1) (D +k;k(2) —n(n—1)2"24n2" 1 = p(n+1)2" 2.

5. Here it is forn congruent to 0 mod 8. In this case, we have
(1+i)"=2"2,

107
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Equating real and imaginary parts gives

Ln/ZJ_ i(n R
3 1 (5) = 2
-2
2, (_1>J(21+1) B

So, if §,5,$,S3 denote the sums of binomial coefficients focongruent to
0,1,2,3 mod 4 respectively, we have

S-%=2"% S-S=0
Since we already know that
S+ =S+S=2""1
we conclude that
S=2"2420-2/2 g o2 g o2 _on2/2 g o2
As a check, when = 8, we have
S=1+70+1=72, S =8+56=64 S,=28+28=56, S3=56+8=064

n—k/n (n—k)-n(n—=1)---(n—k+1) n
7"a)m(k): (k+1)-k(k—1)---1 :(k+1)'

(b) The ratio of(kil) to (E) is (n—K)/(k+1). This ratio is>,=,<1
according as —kis >,=,<k+1, thatis, anis >, =, <2k +1.

(c) By part (b), the binomial coefficients increase until the point whrete
2k+ 1 (if this occurs), at which point they remain constant for one step and then
decrease. This happensnifis odd. Ifnis even, then there is no value bfor
which n = 2k + 1, so the binomial coefficients increase uti= n/2 and then
decrease.

(d) This follows immediately from (c).

(e) Suppose that = 2m. Then <2nr1n) is the largest of ther®+ 1 binomial

2m
2°M (see Property 1 in section 1.3 of the notes). The largest binomial coefficient
is smaller than the sum, and larger than the average. This gives the stated result.

coefﬁcients(zcr)n), (Zm). Now the sum of these binomial coefficients is

Here is a chart of the binomial coefﬁcierészko> ,fork=0,...,20.
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We have
220 20 20
57 —4993219..., ( 1 0) = 184756  2°°=1048576
Chapter 2

1. (a) P = 16807; 7650 (see below) 3342+ 43.32 = 1008.

The argument for the second number goes like this. There are three choices
for which of 12,3 can occur; so we do the calculation for the case that 1 and 2
but not 3 occur and multiply by 3.

, i 5
Suppose that 1 and 2 occur knpositions. There are{k> ways to choose

these positions;*2- 2 ways to fill them with 1s and 2s (we are not allowed to use
all 1s or all 2s) and %% ways to fill the remaining positions with 8,6,7. So the
total is

(25— 2) +5(2* - 2)4+10(2° — 2)4? + 10(2% — 2)4% = 255Q

In (c) there are two terms in the sum because the sequence might begin with
an even number or an odd number. In the first case, there are three even numbers
which can be chosen frof2, 4,6} in 3% ways, and two odd numbers which can
be chosen fronf1,3,5,7} in 42 ways. The other term is similar.

(b) (7)5 = 2520; 1440 (see be|OWQS)3- (4)2—|— (4)3- (3)2 = 216.

For the first and third parts, simply replace the forrmfidy (n), everywhere.

For the second part, there are 3 choices for which 8f3to use, and 51 = 20
choices for their positions; the remaining entries are filled from the other four
numbers, in4)3 ways. So there are 1440 such sequences.
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3. (@m"; (b) (m)n; (c) n! (we must haven = niin this case); (d) see Chapter 6.
5. We have

W(n)=1+n+n(n—1)+n(n-1)(n—2)+---+nl.

Every term except the first two contains the product of two consecutive integers
and so is even. So the parityWf(n) is the same as that ofin, that is, even ih
is odd andvice versa

Chapter 3

1. Divide up the permutations according to the value of the smallest numker
for whichm maps{1,...,k} into itself. Note thak takes values.2, ... n, and that
k=nif and only if z is indecomposable. (On the other haké; 1 if and only if
r fixes 1.) Thenr induces an indecomposable permutation on thg Bet. , k},
and an arbitrary permutation on the g&t+1,...,n}. So there arg(k)(n—k)!
permutations with a given value & Summing ovek, we get all permutations,
so the total is!.

Consider the produé¢t(x)(1—G(x)). The constanttermis-1=1. Forn> 1,
the coefficient ok” is obtained by taking the term i from F (x) and the term
in XX from 1— G(x) fork=1,...,n, together with one more term which is the term
in X" from F(x) and the constant term from-1G(x). So the coefficient ok" in

the product is
n

Z —g(k)(n—=Kk)! +n! =0.
K=1

SoF (x)(1— G(x)) = 1.

Chapter 4

1. Clearlys(1) = 1.

An expression with sum could simply ben. Otherwise, if the last term is
n—k (wherek=1,...,n—1), then the terms before the last sunktand form an
arbitrary expression summing ko So we have

s(n) = 1+nfs(k).
k=1

Now forn > 1, we see that

s(n—1) = 1+nfs(k),
k=1
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and so -
s(n) =1+ 5 s(k)+s(n—1) =2s(n—-1).
K=1

This recurrence with the initial conditios{1) = 1 has solutiors(n) = 2",
as is easily shown by induction.
3. (a) We have seen that the answer isriteFibonacci numbef (n).

(b) Suppose that | hand ov&rcoins of value 2 pence. Then we must have
0<k<|n/2], and I must also include— 2k coins of value 1 penny. So the total
number of ways of paying is the number of choice&,ofhich is 1+ |n/2].

5. Itis clear thaty, is a power of 2 for alh. So puta, = 2t Then we find that
bp = 1 andby, = 2b,,_4 for all n. Sob,, = 2", and we conclude that, = 22",

7. Begin by recalling the recurrence relation for the derangement numbers:
do=1,d; =0, dn=(N—1)(dh-1+dn_2) forn>2.

(a) Induction om. Forn=1,d; = 0= 1+ (—1)%. so the result holds. Now
assume thatp, 1 = (n—1)dy_2+(—1)""L. Then

dh = (n—l)dn,1+(n—l>dn,2
(N—1)dn_1+0y 71— (-1t
= nd{1—l+(_1)n7

so it holds fom. Thus the formula is proved for ail

(b) Induction onn. The formula is clear fon = 0. Suppose that it holds for
n-1
n—1,thatisdy 1= (n—1)! 5 (~=1)/K. Then
k=0

dn = ndy_1+ (_1)n

n—l_lk —1)"n!

as required.
(c) We have
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The coefficient ofk" in this product is

n (_1)k B dn
K nl’

k=0

by (b); but this is the same as the coefficienkdfn D(x).

Chapter 5
1. (i) We haveS(2,2) = 1 and
Sn,2)=Sn-1,1)+2Sn—1,2) =1+29n—1,2)

for n> 3. By induction we now ge$(n, 2) = 2"~! — 1 foralln > 2. (The induction
starts an = 2. AssumingS(n—1,2) = 2"~2 — 1, we haveS(n,2) = 14-2(2"~2 —
1)=21-1)

We haveS(2,1) = 1 and

Snn—1)=Sn-1,n-2)+(n—-1)S(h—1,n—1)=Sn—-1,n-2)+ (n—1).

Again the required result follows by induction, the details of which are left to you.

(i) The set{1,...,n} has 2 subsets. Two of these (the empty set and the
whole set) cannot occur as parts in a partition with two parts. Each of the other
2" — 2 sets occurs with its complement in a unique partition. So the number of
partitions is(2" —2) /2 =2""1 1,

A partition with n— 1 parts must have one part of size 2 and all the rest of

size 1. There ar({n

2) ways to choose the part of size 2; all the other points lie in

parts of size 1.

A partition withn— 2 parts either has two parts of size 2 or one of size 3, with
all remaining parts of size 1. So we have

-2 = (5)(",%) /2 (3)

n(n—1)(n—2)(3n—1)
24 '
(The division by 2 in the first term is because the two parts of size 2 can be chosen
in either order yielding the same patrtition.)

3. (a) See the calculation of the table of values of Stirling numbers of the first kind
on p. 54 of the text. We see tha(6, 3) = —225, so the number of permutations is
225 (the minus sign indicates that they are all odd permutations).
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The possible cycle lengths are three positive numbers summing to 6; these are
[1,1,4], 0r[1,2,3], 0r [2,2,2].

6 .
There are 4) = 15 ways to choose the four points to form the 4-cycle, and

3!'=6 possible 4-cycles on this set. So 90 permutations with cycle lefigthsgl|.
6 . .
There are<3) = 20 choices of three points for a 3-cycle, and two 3-cycles on

this set. Ther@

uniquely. So 120 permutations with cycle length=, 3].

There are(S) (3) (3) = 90 choices of three 2-cycles; but they could be

chosen in any order, so we have to divide by=36, giving 15 permutations with
cycle lengthg2,2,2].
Total 90+ 120+ 15= 225.

) choices of two points for the 2-cycle, and the rest is determined

Chapter 6

1. The percentage of people satisfied with none of the candidates is
100—65—57—58+28+30+27—12= -7,

which is impossible. So the data is incorrect.

Chapter 7

1. Letn= 2k. Out of each complementary pair of sets of skze# contains
exactly one. The resulting family satisfies

1/2k 2k—1
Z| == =
#1=3(00) - (53)
since it contains one out of each complementary pak-séts by construction.
Moreover,.# is an intersecting family. For tak& B € .#; thenA andB cannot be
disjoint, since disjoink-sets are complementary and we took just one out of each
complementary pair.
2k 2k—1 . .

There ar% =g complementary pairs d¢sets, and so 2 raised
to this power number of choices of one set from each complementary pair. So this
is the number of maximum intersecting families of this form.
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Clearly there are onlyksets of the forn(i), sincei =1,...,n=2k. Thisis
much much smaller than the number of families just constructed. Even<ds,
we constructed?® = 1024 families of which only six are of the for#,(i).

The Erddbs—Ko—Rado Theorem says that every intersecting famikysafbsets

n —
k—1
construction shows that this is not trueni&= 2k.

of ann-set of maximum siz has the form%(i) if n > 2k. The above

3. By trial and error, or otherwise, the polynomidl+ x+ 1 is irreducible over
Z7, so we adjoin a roofx of this polynomial. Elements of the resulting field have
the forma+ ba + co?, wherea, b, ¢ € Zj; so there are eight elements, namely

0,1,oc,oc+1,a2,a2+1,a2+a,a2+1.
Addition is done by adding the coefficierdsh,c mod 2, so that, for example,
(@®>+1)+(a®+a)=a+1

To multiply, we use the fact that® = o + 1 (sincec is a root ofx® 4+ x+ 1 = 0),
and soo* = o + a. So for example

(@®+1)-(a’+a) = a*+o®+a’+a
= a’toatoatlto’ta
o+1

5. Any further set must contain at least one of 1 and 2 (if not, it would be contained
in {3,4,5}) and can’t contain both (or it would conta{i,2}). Similarly, such a
set must contain at least one g#35 but cannot contain them all. So to get such a
set we must include one ¢fLl} and{2}, and one of the six subse{8}, {4}, {5},
{3,4}, {3,5}, {4,5}, and take their union. This gives 8= 12 possible sets.
However, we cannot take all of these sets. If we tgke}, then{1,3,4} and
{1,3,5} are not permitted. In fact, we can take at most six of these sets: for if we
arrange the six sets containing 1 in pairs

({1,3},{1,3,4}),({1,4},{1,4,5}),({1,5},{1,3,5}),

and similarly for the sets containing 2, we can choose at most one of each pair. So
we can’t have more than{26 = 8 sets altogether.

However, we can obtain a Sperner family with 8 sets, by combining 1 with the
1-element subsets ¢8,4,5}, and 2 with the 2-element subsets:

{1,2},{3,4,5},{1,3},{1,4},{1,5},{2,3,4},{2,3,5},{2,4,5}.
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7. Follow the hint.

On one hand, if we choose the pointhere are; choices ofA; containing it,
and(rj — 1) choices ofA, (which must be different frond\;), sor;(ri — 1) such
triples beginning with. To count all the triples, we have to sum this expression
over all values of from 1 ton.

On the other hand, if we choogg and A first, there areb choices forA,;
and (b — 1) choices forAy; then|A;N Ay = 1, so there is just one choice for
belonging to both these sets. So the number of triplegs- 1).

Equating these two expressions gives the result.

In the family . of Question 6, each point lies in three sets%6f So each
term in the sum is 3 = 6, and the sum is ‘® = 42. On the other hanth,= 7, so
the right-hand side is also % = 42.

Chapter 8

1. Take the Fano plane to have the sets, 128 167,246 257,347, 356. Clearly
(1,4,6,2,7,3,5) is an SDR.

There are in all 24 SDRs for the Fano plane. Our arguments for this will
be based to some extent on ‘symmetry’. Thus, for example, we can choose any
element of 123 to be its representative, so ‘by symmetry’ we may choose 1. Again
by symmetry, we can choose either of 4 and 5 as the representative of the second
set, and either of 6 and 7 as the representative of the third. Suppose that we choose
4 and 6. Removing these representatives from the last four sets gives

2 257,37,35,

We must use 2 as representative of the fourth set. Then it is easy to see that there
are just two choices for the other three, nam@ély7, 3) or (7,3,5).
So altogether there are 3-2-2 = 24 SDRs.

(@) Clearly{{1},{2},{3}} has just one SDR.

(b) {{1,2},{1,2},{3}} has two SDRs, since both 1 and 2 and be representa-
tives for the first two sets.

(c) {{1,2},{2,3},{1,2,3}} has three SDRs. Check that there are three choices
of representatives for the first two sets; then the unused element can be the
representative of the last set.
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(d) {{1,2},{1,2,3},{1,2,3}} has four SDRs. For there are two choices for the
representative of the first set; if 1 is chosen, then the remaining elements of
the other two sets arg{2,3},{2,3}, with two SDRs, and similarly if 2 is
chosen.

(e) For{{1,2,3},{1,2,3},{1,2,3}}, any permutation of1, 2, 3) will be a valid
SDR.

Suppose that we have a family of three subsefd d?, 3} with five SDRs, say
all except(1,2,3). Then sincd1,3,2), (2,1,3) and(3,2,1) are all SDRs, we see
that each of 12,3 can appear as representative of each set, so each of the three
sets must b¢1, 2 3}. But then(1,2,3) would be a SDR, after all.

Chapter 9

1. (a) SinceA andB are orthogonal, each padir, j) fori,j =0,...,n—1 occurs
just once. These pairs represent in basdl the numbers from 06- 0 to (n—
1)(n—1) = (n—1)n+(n—1) = n® — 1, each once.

(b) In each row or column, each of time digits Q...,n— 1 occurs once, and
each of the units digits,0..,n— 1 occurs once. So the row or column sum is

n0+---+(N-1))+O+---+(n-1)) =(n+1)n(n—-1)/2,

as required.

3. The addition table dfy, is the Latin squaré (1) defined in this chapter. His
odd, therL(2) is a Latin square orthogonal to it.

Suppose than is even, and suppose (for a contradiction) thlats a Latin
square orthogonal tio(1). We begin by observing that the sum of all the elements
in Zn is n/2 if nis even. (For the sum ifZ is n(n—1)/2, andn is even, sm
dividesn?/2.)

Look at the positionsx;, y;) in which a given symbol occurs . Then

e Each row occurs once as soy X = n/2.
e Each column occurs ag, soyy; =n/2.

e The (X,Y;) entry of L(1) is x +V;i. SincelL(1) is orthogonal taM, each
symbol occurs once ag+Yi, SOY (X +Vi) =n/2.

But this is a contradiction, sina&2+n/2=0#n/2.

5. Suppose thahis not a prime; sayn= ab, where 1< a,b < m. Then

(a+1)b=ab+b=b=1bmodm,
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so the elemertt occurs twice in columib, in rows 1 anda+ 1. ThusM(m) is not
a Latin square.

Conversely, suppose thatis prime. In this case we show thétm) is a Latin
square with entries,1..,m—1.

(a) First note that all entries belong to this set. For if th¢) entry were not in
the set{1,...,m— 1}, then it would necessarily be zero; sovould divide
1], contrary to the fact thahis a prime which does not divide eithieor j.

(b) Suppose that the same entrgccurs twice in a row, say in positioris j )
and(i, k), with j < k. Thenij =ik =xmodm; soi(k— j) =0 modm. This
Is impossible for the same reason as in (a).

(c) A very similar argument to (b) shows that an entry cannot occur twice in a
column.

The last part of the question is more difficult. There is a theorem of algebra
saying that, ifp is prime, there exists primitive rootmod p, that is, an element
g whose powers give all the non-zero elementsZgf Thus the multiplicative
group ofZjy is isomorphic to the additive group @, 1. Now by the solution
to Question 3 above, we see that the Cayley table of this group does not have an
orthogonal mate ip is odd.

Chapter 10

1. Follow the hint. We know that the number of triples of the STS containing
the pointx is (v—1)/2 (Theorem 10.1(a)). For eaghe Y, there is a unique
triple containingx andy. No two of these triples are equal, since if the same
triple contained{x,y;1} and{x,y»} for y1,y> € Y, then this triple would contain
two points ofY and hence would be contained¥Yn contradicting the fact that it
containsx. So|Y|=u< (v—1)/2, whences > 2u+ 1.

3. (a) We have to show that, given any two distinct non-zero veatargly, the
unique solution ok+y+z= 0 (namelyz= —(x+Y)) is non-zero and is not equal
to eitherx ory. It will then follow thatx andy lie in a unique triple in%.

Note that—x = x for any vector in(Z;)", so we can write = x+y. Now:

e If z=0thenx+y=0, soy = —x =X, contrary to assumption.
e If z=Xx, theny = 0, contrary to assumption.

e If z=Yy, thenx =0, contrary to assumption.
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Finally, the order of the STS is the number of non-zero vectors, which-is12

(b) All seven equations+Yy+ z= 0 can be checked from the picture:
001

01
101

010 110 100



Appendix B

Miscellaneous problems

- : . —k
1. Show that the coefficient of in (x+x?)K is equal to(n K ) .

/2] s
Hence show that the coefficientxdfin (1—x—x?)~tis equal to Zo <n K k) :
k=

Deduce that w2,
n/2
n— k)
- Fn.
>, ("
a

2. Prove that(ibjj) is odd if and only ifb =22 — 1. [This exercise is due to

Thomas Miller.]

3. How many words can be made using some or all (possibly none) of the letters
of the wordMAMMAL?

4.
(a) How many permutations dfL,...,9} are there?
(b) How many of them consist of a single cycle?

(c) How many of them have exactly three cycles, none of which is of length 1?

(&) In how many ways can 25 sweets be distributed to a class of 12 children?
(b) How many ways are there if each child is to have at least one sweet?

(c) How many ways are there if each child is to have at least two sweets?

119
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6. Solve the recurrence relation and initial conditions

p=2,a1=4a=17, ap=4an_1—5a,_»+2a, 3forn> 3.

7. LetB(n) be thenth Bell number, the number of partitions f,...,n}. Prove
directly thatB(n) < n! for all n.

8. LetF, be thenth Fibonacci number. Prove by induction that
P — Fn-1Fne1 = (—1)"

forn>1.

9. LetS(n,k) be the Stirling number of the second kind (the number of partitions
of {1,...,n} into k parts, and let

F(X) = Z(S(n, k)x".

(a) Prove thaF;(x) =1/(1—x).
(b) Write down a recurrence relation f8(n, k).
(c) Use it to show that

X
1—kx

F(X) = Fe-1(X)

fork > 1.

(d) Hence show by induction dathat

XK

1—x)(1—2x)-- (1 k)

Fe(X) =
for k > 1.
10. Show that an permutation is even if and only if it has an even number of cycles
of even length (with no restriction on cycles of odd length).
11. LetAy,...,An be subsets of a s&t. ForJ C {1,...,n}, let
A= ﬂAi
ied

be the set of elements which lie in the s&tdor i € J (and possibly in some other
sets as well). LeB; be the set of elements which lie in the sAtdor i € J, and
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do not lie in the set#y for k ¢ J. Use the Principle of Inclusion and Exclusion to

show that ‘
Byl=§ (-1)<VIAc.

12. LetB be the matrix obtained from Pascal’s Triangle by moving the rows right

so that the left-hand side is vertical. So the entry in roand columrk is (D

nk(N .

k
Prove that the matricd® andB* are inverses of each other, by finding two bases
for the space of all polynomials such tiatand B* are the transition matrices.
[Hint: The Binomial Theorem.]

13.

Let B* be the matrix in which the entry in rowand columrk is (—1)

(&) Show that there does not exist a Latin square orthogonal to the square

3145

g W N
WO ELDN

N OB

AERIN W

5
1
3
2

[Hint: Suppose thaB is orthogonal to the given square and has entry 1 in
position(1,1). Where can the other 1s Bioccur?]

(b) Write down two orthogonal Latin squares of order 5.

14. LetF = Z3, the integers mod 3. L& = F" be the vector space of ailituples
of elements of. Let

B ={{xy,z} : Xy, z€ A X Y,zdistinct,x+y+z=0}.

Show that(V, #) is a Steiner triple system of ordef.3
15. Let.Z be an intersecting family of subsetsXf= {1,2,... n}.
(a) Show that.#| < 2",

(b) Show that, if|.7| = 2"~1, then for any subseA of X, eitherA ¢ .7, or
X\Ae Z.

(c) Show that, if.Z| = 2"1, Ac .#, andB is a subset 0K containingA, then
Be 7.
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16. Let.Z be an intersecting family of 2-element subset$Dbf .. ,n}. Show that
either

(@) thereis an elemente {1,...,n} contained in every set i ; or

(b) F = {{X,y},{y,Z},{X,Z}} for somex,y,z ¢ {1v . -7n}'

17. Let
F = 123,456,789, 147,258,369, 159, 267,348},

where, for example, 123 meafs, 2, 3}.
(a) Prove directly that” satisfies Hall's condition.

(b) Find a 3x 9 Latin rectangle whose columns are the setsrof
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