Mathématiques - 2 BCPST 1&2 - Lycée Michel Montaigne

DM $N^{\circ}10$ - A rendre le mardi 14 Janvier 2014

« Pseudo-solutions d'un système linéaire - Méthode des moindres carrés »

Notations

- Pour tous entiers naturels non nuls n et p, on note $\mathcal{M}_{n,p}(\mathbb{R})$ l'ensemble des matrices \tilde{A} n lignes et p colonnes à coefficients réels.
- On identifie toute matrice à 1 seule ligne et 1 seule colonne au seul réel qu'elle contient.
- La transposée d'une matrice M de $\mathcal{M}_{n,p}(\mathbb{R})$ est notée tM .
- Pour tout entier naturel n non nul, on désigne par E_n l'espace vectoriel des matrices à n lignes et 1 colonne.
 - Pour tous vecteurs Y et Z de E_n , on note : $\langle Y, Z \rangle = {}^t Z Y$ le produit scalaire de Y et Z.
 - Pour tout vecteur Y de E_n , on note : $||Y|| = \sqrt{\langle Y, Y \rangle} = \sqrt{tYY}$ la norme de Y.
 - On désigne par 0 le vecteur nul de E_n .
- Pour toute matrice A de $\mathcal{M}_{n,p}(\mathbb{R})$ on note :

$$\operatorname{Ker} A = \left\{ X \in E_p \middle/ AX = 0 \right\} \quad \text{et} \quad \operatorname{Im} A = \left\{ Y \in E_n \middle/ \exists X \in E_p \text{ tel que } Y = AX \right\}.$$

Partie I

- 1. Soit A une matrice quelconque de $\mathcal{M}_{n,p}(\mathbb{R})$. Montrer que : Ker A est un sous-espace vectoriel de E_p et Im A un sous-espace vectoriel de E_n .
- 2. Soient M une matrice de $\mathcal{M}_{p,p}(\mathbb{R})$ et N une matrice de $\mathcal{M}_{p,n}(\mathbb{R})$. Montrer que :

$$\operatorname{Im} MN \subset \operatorname{Im} M$$
 et $\operatorname{Ker} N \subset \operatorname{Ker} MN$.

- 3. Soit Y un vecteur de E_n . Montrer que : ||Y|| = 0 si et seulement si Y = 0
- 4. Montrer que, pour tout couple (Y,Z) de vecteurs de E_n et tout réel λ :

$$||Y + \lambda Z||^2 = ||Y||^2 + 2\lambda^t Z Y + \lambda^2 ||Z||^2$$
.

Dans les parties II et III, A désigne une matrice de $\mathcal{M}_{n,p}(\mathbb{R})$ et B un vecteur de E_n .

Partie II

- 1. Montrer que tout vecteur X de Ker^tA A vérifie : ||AX|| = 0.
- 2. Montrer l'égalité des deux espaces vectoriels $\operatorname{Ker}^t A A$ et $\operatorname{Ker} A$.
- 3. En déduire que les matrices tAA et A ont même rang puis que $\operatorname{Im}{}^tAA = \operatorname{Im}{}^tA$.
- 4. Montrer qu'il existe un vecteur X de E_p tel que : ${}^tAAX = {}^tAB$.

Partie III

On note (\mathcal{E}) l'équation matricielle AX = B d'inconnue X appartenant à E_p .

- X est dite solution de (\mathcal{E}) si AX = B.
- X élément de E_p est dite pseudo-solution de (\mathcal{E}) si :

$$\forall Z \in E_p , \|AX - B\| \le \|AZ - B\|.$$

- 1. On suppose que (\mathcal{E}) admet au moins une solution. Montrer que : X est une pseudo-solution de (\mathcal{E}) si et seulement si X est solution de (\mathcal{E}) .
- 2. Dans cette question, on suppose que X est une pseudo-solution de (\mathcal{E}) .
 - (a) Montrer que : $\forall \lambda \in \mathbb{R}, \ \forall U \in E_p, \ \|AX B\| \le \|AX B \lambda AU\|.$
 - (b) En déduire que : $\forall \lambda \in \mathbb{R}, \ \forall U \in E_p \ , \ \lambda^2 \|AU\|^2 2\lambda^t U^t A \ (AX B) \ge 0.$
 - (c) Montrer que : $\forall U \in E_p$, ${}^tU^{\,t}A (AX B) \leq 0$.
 - (d) En déduire que : ${}^{t}AAX = {}^{t}AB$.
- 3. On suppose que : ${}^{t}AAX = {}^{t}AB$.

Montrer que X est pseudo-solution de (\mathcal{E}) .

- 4. Dans cette question, on suppose que le rang de la matrice A est égal à p.
 - (a) Montrer que la matrice ${}^{t}AA$ est inversible.
 - (b) En déduire que (\mathcal{E}) admet une unique pseudo-solution X .
 - (c) Montrer que l'application linéaire p qui à tout vecteur Y de E_n associe $A({}^tAA)^{-1} {}^tAY$ est le projecteur orthogonal de E_n sur Im A.

Application 1

n désignant ici un entier au moins égal à 2, considérons n points M_1, M_2, \dots, M_n d'abscisses respectives x_1, x_2, \dots, x_n non toutes égales et d'ordonnées respectives y_1, y_2, \dots, y_n non toutes égales.

Dans le soucis d'obtenir la « meilleure droite » d'ajustement de ce nuage de points, nous vous proposons de déterminer l'unique peudo solution du système suivant :

$$(S_1) \begin{cases} a + x_1 b = y_1 \\ a + x_2 b = y_2 \\ \vdots & \vdots & \vdots \\ a + x_n b = y_n \end{cases}$$
 d'inconnue $\theta = \begin{pmatrix} a \\ b \end{pmatrix}$

- 1. Vérifier que ce système s'écrit sous la forme $A\theta=Y$ en précisant dans ce cas la matrice A et la matrice Y.
- 2. Justifier que ce système (S_1) admet une unique pseudo-solution que nous noterons $\widehat{\theta}$.
- 3. Déterminer la matrice ${}^{t}AA$ puis son inverse $({}^{t}AA)^{-1}$.
- 4. Déterminer tAY . En déduire $\widehat{\theta}$.
- 5. Notons \overline{Y} la projection orthogonale de Y sur la droite de E_n dirigé par le vecteur 1_n .
 - Montrer que $\|Y \overline{Y}\|^2 = \|Y A\widehat{\theta}\|^2 + \|A\widehat{\theta} \overline{Y}\|^2$
 - Vérifier que $\frac{\|\widehat{A}\widehat{\theta}-\overline{Y}\|^2}{\|Y-\overline{Y}\|^2}$ n'est autre que le carré du coefficient de corrélation de la série statistique double $(x_i, y_i)_{1 \le i \le n}$.

Application 2

Nous vous proposer de déterminer toutes les pseudo-solutions du système suivant :

$$(S_2) \begin{cases} a+b=5\\ a+b=6\\ a+b=9\\ a+c=4\\ a+c=9\\ a+c=10 \end{cases}$$
 d'inconnue $X = \begin{pmatrix} a\\ b\\ c \end{pmatrix}$

- 1. Vérifier que ce système s'écrit sous la forme AX = B en précisant la matrice A et la matrice B.
- 2. Déterminer les matrices ${}^{t}AA$ et ${}^{t}AB$.
- 3. Le système ${}^tAAX = {}^tAB$ de 3 équations à 3 inconnues est-t-il un système de Cramer?
- 4. Résoudre le système ${}^tAAX = {}^tAB$ et donner toutes les pseudo-solutions de (S_2) .