Mathématiques - 2 BCPST 2 - Lycée Michel Montaigne

DM N^2 - A remettre le mercredi 19 septembre 2012

« Fonctions réciproques, Développements limités et suites »

Exercice 1

- 1. Résoudre sur $I = \left] -\frac{\pi}{2}; \frac{\pi}{2} \right[$ l'équation différentielle (E) : $y' (1 + \tan x) y = e^x$.
- **2.** Soit $f: \left\{ \begin{array}{ccc} I & \longrightarrow & \mathbb{R} \\ x & \longmapsto & (\tan x) e^x \end{array} \right.$
 - (a) Montrer que f réalise une bijection de I sur \mathbb{R} (on notera $g = f^{-1}$ la bijection réciproque de f).
 - (b) Montrer que $f \in \mathscr{C}^{\infty}(I)$; pour $k \in \{1, 2, 3\}$, calculer $f^{(k)}(0)$. On pourra utiliser le fait que f est solution de l'équation différentielle (E).
 - (c) Montrer que $g \in \mathscr{C}^1(\mathbb{R})$, exprimer g' en fonction de f' et g.
 - (d) Montrer que g' est dérivable sur \mathbb{R} et exprimer g'' en utilisant f'', f' et g.
 - (e) Déterminer les développements limités de f et de g à l'ordre 3 en 0.
- 3. Soit $n \in \mathbb{N}$ et $I_n = \left] -\frac{\pi}{2} + n\pi; \frac{\pi}{2} + n\pi \right[$.
 - (a) Montrer que l'équation d'inconnue x $\begin{cases} e^x.(\tan x) = 1 \\ x \in I_n \end{cases}$ admet une unique solution que l'on notera x_n , et que l'on exprimera à l'aide de g.
 - (b) Comme $x_n \in I_n$, on pose $\alpha_n = x_n n\pi$; on notera que $\alpha_n \in I$. Montrer que la suite (α_n) converge vers 0, puis déterminer un équivalent de α_n lorsque n tend vers l'infini.

Exercice 2

Soit x un réel de $]0, \pi/2[$ et $(u_n)_{n\in\mathbb{N}}$ la suite définie par :

$$u_0 = \cos x$$
 et $\forall n \in \mathbb{N}, \ u_{n+1} = u_n \cos\left(\frac{x}{2^{n+1}}\right)$.

- 1. (a) Montrer que la suite de terme général $w_n = u_n \sin\left(\frac{x}{2n}\right)$ est géométrique.
 - (b) En déduire pour tout n, la valeur de u_n en fonction de x et n.
 - (c) Montrer que la suite $(u_n)_{n\in\mathbb{N}}$ est convergente et donner sa limite.
- 2. La fonction MATLAB suivante permet le calcul des n ièmes termes de deux suites $(a_k)_k$ et $(b_k)_k$ dont les premiers termes sont respectivement $a_0 = 1$ et $b_0 = \frac{1}{\cos x}$.

```
function [a,b]=suite(n,x)
a=1; b=1/cos(x);
for k=1:n,
    a=(a+b)/2;
    b=sqrt(a*b);
```

end

- (a) Vérifier que $b_1 = \frac{\cos(x/2)}{\cos x}$.
- (b) Pour $n \ge 1$, écrire les relations de récurrence liant a_n , b_n , a_{n-1} , b_{n-1} .
- (c) Montrer que pour tout $n \in \mathbb{N}$, $a_n > 0$ et $b_n > 0$.
- **3**. (a) Montrer que pour $n \ge 1$, $b_n a_n = \frac{\sqrt{a_n}}{2(\sqrt{a_n} + \sqrt{b_{n-1}})}(b_{n-1} a_{n-1})$.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $a_n < b_n$.
 - (c) À l'aide de 3a, montrer que pour tout $n \in \mathbb{N}$, $0 < b_n a_n \le \frac{1}{2^n} \left(\frac{1}{\cos x} 1 \right)$.
 - (d) Montrer que les deux suites (a_n) et (b_n) sont monotones; préciser les monotonies.
 - (e) Montrer que ces deux suites sont convergentes, de limite commune L.
- **4.** Montrer que pour tout $n \in \mathbb{N}$, $a_n = \frac{u_n \cos(x/2^n)}{\cos^2(x)}$ et $b_n = \frac{u_n}{\cos^2(x)}$ et donner la valeur de L.