Mathématiques - 2 BCPST 1&2 - Lycée Michel Montaigne

DM $N^{\circ}12$ - A remettre le mardi 17 janvier 2012

« Réduction - Calcul par Blocs - Intégrale à noyaux »

EXERCICE

Soit A la matrice carrée d'ordre 4 définie par

$$A = \left(\begin{array}{cccc} 0 & \frac{1}{2} & 0 & 0\\ 1 & 0 & \frac{1}{2} & 0\\ 0 & \frac{1}{2} & 0 & 0\\ 0 & 0 & \frac{1}{2} & 1 \end{array}\right)$$

- 1. Déterminer les valeurs propres de A. La matrice A est-elle diagonalisable?
- 2. On pose

$$B = \left(\begin{array}{ccc} 0 & \frac{1}{2} & 0\\ 1 & 0 & \frac{1}{2}\\ 0 & \frac{1}{2} & 0 \end{array}\right)$$

- (a) Montrer que pour tout entier naturel n, il existe α_n tel que : $B^{2n+1} = \alpha_n B$.
- (b) En déduire les valeurs de B^r pour toutes les valeurs de r entier naturel.
- (a) Montrer que pour tout entier naturel r, il existe trois réels a_r , b_r , c_r tels que :

$$A^{r} = \begin{pmatrix} & & & 0 \\ & B^{r} & & 0 \\ & & & 0 \\ a_{r} & b_{r} & c_{r} & 1 \end{pmatrix}$$

(b) En déduire l'expression de A^r en fonction de r. (On pourra distinguer les résultats selon la parité de r).

PROBLÈME

E désigne le $\mathbb R$ espace vectoriel des applications réelles continues sur [0,1]. On appelle T l'application qui à un élément f de E associe la fonction T(f) définie par :

$$\forall x \in [0,1], T(f)(x) = \int_0^1 (x-t)f(t)dt$$

- 1. Justifier que E n'est pas de dimension finie.
- 2. Vérifier que T est un endomorphisme de E.
- 3. On note e_1 et e_2 les vecteurs de E définis par

$$e_1: x \longmapsto 1$$
 et $e_2: x \longmapsto x$

Vérifier que Im(T) est inclus dans l'ensemble des applications affines sur [0,1], puis justifier que Im(T) est un sous-espace vectoriel de dimension deux dont une base est donnée par $\mathcal{B} = (e_1, e_2)$.

4. On note E_1 le sous-espace vectoriel de E égal à l'image de T, c'est-à-dire :

$$E_1 = \operatorname{Im}(T) = \operatorname{Vect}(e_1, e_2)$$

1

On définit T_1 par la restriction de T au sous-espace vectoriel E_1 .

(a) Justifier que T_1 est un endomorphisme de E_1 et vérifier que sa matrice A dans la base \mathcal{B} de E_1 est donnée par

$$A = \begin{pmatrix} -1/2 & -1/3 \\ 1 & 1/2 \end{pmatrix}$$

(b) Démontrer que T_1 n'a pas de valeur propre.

5. Recherche des valeurs propres de T

- (a) On note $g: x \longmapsto \cos(2\pi x)$. Calculer T(g). En déduire que 0 est valeur propre de T.
- (b) Pour λ réel non nul, montrer que $\operatorname{Ker}(T \lambda Id_E) \subset \operatorname{Im}(T)$.
- (c) En déduire que $Sp(T) = \{0\}.$

6. Résolution de l'équation : $\int_0^1 (x-t)f(t)dt - f(x) = g(x)$

Soit g une fonction de E fixée quelconque. On note (1) l'équation suivante d'inconnue f dans E:

$$T(f) - f = g \tag{1}$$

(a) Unicité

- i. Justifier sans calcul (à l'aide de la question précédente) que $T-Id_E$ est injectif.
- ii. En déduire que, si une solution de (1) existe, elle est unique.

(b) Existence

- i. Justifier que $T_1 Id_{E_1}$ est bijectif et donner son application réciproque (on pourra calculer $(A I_2)^{-1}$).
- ii. On pose $h = (T_1 Id_{E_1})^{-1}(T(g)) g$. Vérifier que cette définition a un sens puis que h est solution de l'équation (1).

(c) Un exemple

Donner l'unique solution de (1) lorsque la fonction g est donnée par $g: x \longmapsto x^2$.

- 7. On pose pour tout $n \in \mathbb{N}^*$, $g_n : x \longmapsto \cos(2n\pi x)$.
 - (a) Que vaut $T(g_n)$?
 - (b) Démontrer que la famille (g_1, \dots, g_n) est libre dans E.
 - (c) En déduire que le noyau de T n'est pas de dimension finie.